text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ HomologicalComplex.Hom.f (P q) 0 = 𝟙 (HomologicalComplex.X K[X] 0)
[PROOFSTEP]
induction' q with q hq
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ HomologicalComplex.Hom.f (P Nat.zero) 0 = 𝟙 (HomologicalComplex.X K[X] 0)
[PROOFSTEP]
rfl
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq : HomologicalComplex.Hom.f (P q) 0 = 𝟙 (HomologicalComplex.X K[X] 0)
⊢ HomologicalComplex.Hom.f (P (Nat.succ q)) 0 = 𝟙 (HomologicalComplex.X K[X] 0)
[PROOFSTEP]
simp only [P_succ, HomologicalComplex.add_f_apply, HomologicalComplex.comp_f, HomologicalComplex.id_f, id_comp, hq,
Hσ_eq_zero, add_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ P q + Q q = 𝟙 K[X]
[PROOFSTEP]
rw [Q]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ P q + (𝟙 K[X] - P q) = 𝟙 K[X]
[PROOFSTEP]
abel
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ P q + (𝟙 K[X] - P q) = 𝟙 K[X]
[PROOFSTEP]
abel
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ Q (q + 1) = Q q - P q ≫ Hσ q
[PROOFSTEP]
simp only [Q, P_succ, comp_add, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ 𝟙 K[X] - (P q + P q ≫ Hσ q) = 𝟙 K[X] - P q - P q ≫ Hσ q
[PROOFSTEP]
abel
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ 𝟙 K[X] - (P q + P q ≫ Hσ q) = 𝟙 K[X] - P q - P q ≫ Hσ q
[PROOFSTEP]
abel
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ HomologicalComplex.Hom.f (Q q) 0 = 0
[PROOFSTEP]
simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, Q, P_f_0_eq, sub_self]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + 0
⊢ HomologicalComplex.Hom.f (P 0) (n + 1) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
exfalso
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + 0
⊢ False
[PROOFSTEP]
have hj₂ := Fin.is_lt j
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + 0
hj₂ : ↑j < n + 1
⊢ False
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
⊢ HigherFacesVanish (q + 1) (HomologicalComplex.Hom.f (P (q + 1)) (n + 1))
[PROOFSTEP]
simp only [P_succ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
⊢ HigherFacesVanish (q + 1) (HomologicalComplex.Hom.f (P q ≫ (𝟙 K[X] + Hσ q)) (n + 1))
[PROOFSTEP]
exact (of_P q n).induction
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v : HigherFacesVanish q φ
⊢ φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
[PROOFSTEP]
induction' q with q hq
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q φ
v : HigherFacesVanish Nat.zero φ
⊢ φ ≫ HomologicalComplex.Hom.f (P Nat.zero) (n + 1) = φ
[PROOFSTEP]
simp only [P_zero]
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q φ
v : HigherFacesVanish Nat.zero φ
⊢ φ ≫ HomologicalComplex.Hom.f (𝟙 K[X]) (n + 1) = φ
[PROOFSTEP]
apply comp_id
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
⊢ φ ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = φ
[PROOFSTEP]
simp only [P_succ, comp_add, HomologicalComplex.comp_f, HomologicalComplex.add_f_apply, comp_id, ← assoc, hq v.of_succ,
add_right_eq_self]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0
[PROOFSTEP]
by_cases hqn : n < q
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : n < q
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0
[PROOFSTEP]
exact v.of_succ.comp_Hσ_eq_zero hqn
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0
[PROOFSTEP]
obtain ⟨a, ha⟩ := Nat.le.dest (not_lt.mp hqn)
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0
[PROOFSTEP]
have hnaq : n = a + q := by linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
⊢ n = a + q
[PROOFSTEP]
linarith
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0
[PROOFSTEP]
simp only [v.of_succ.comp_Hσ_eq hnaq, neg_eq_zero, ← assoc]
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
⊢ (φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
have eq :=
v ⟨a, by linarith⟩
(by
simp only [hnaq, Nat.succ_eq_add_one, add_assoc]
rfl)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
⊢ a < n + 1
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
⊢ n + 1 ≤ ↑{ val := a, isLt := (_ : a < n + 1) } + Nat.succ q
[PROOFSTEP]
simp only [hnaq, Nat.succ_eq_add_one, add_assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
⊢ a + (q + 1) ≤ a + (q + 1)
[PROOFSTEP]
rfl
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
eq : φ ≫ δ X (Fin.succ { val := a, isLt := (_ : a < n + 1) }) = 0
⊢ (φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
simp only [Fin.succ_mk] at eq
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q✝ : ℕ
φ : Y ⟶ X.obj (op [n + 1])
v✝ : HigherFacesVanish q✝ φ
q : ℕ
hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
v : HigherFacesVanish (Nat.succ q) φ
hqn : ¬n < q
a : ℕ
ha : q + a = n
hnaq : n = a + q
eq : φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } = 0
⊢ (φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
simp only [eq, zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
⊢ φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ ↔ HigherFacesVanish q φ
[PROOFSTEP]
constructor
[GOAL]
case mp
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
⊢ φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ → HigherFacesVanish q φ
[PROOFSTEP]
intro hφ
[GOAL]
case mp
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
hφ : φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
⊢ HigherFacesVanish q φ
[PROOFSTEP]
rw [← hφ]
[GOAL]
case mp
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
hφ : φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
⊢ HigherFacesVanish q (φ ≫ HomologicalComplex.Hom.f (P q) (n + 1))
[PROOFSTEP]
apply HigherFacesVanish.of_comp
[GOAL]
case mp.v
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
hφ : φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
⊢ HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (n + 1))
[PROOFSTEP]
apply HigherFacesVanish.of_P
[GOAL]
case mpr
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (op [n + 1])
⊢ HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ
[PROOFSTEP]
exact HigherFacesVanish.comp_P_eq_self
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
⊢ HomologicalComplex.Hom.f (P q) n ≫ HomologicalComplex.Hom.f (P q) n = HomologicalComplex.Hom.f (P q) n
[PROOFSTEP]
rcases n with (_ | n)
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ HomologicalComplex.Hom.f (P q) Nat.zero ≫ HomologicalComplex.Hom.f (P q) Nat.zero =
HomologicalComplex.Hom.f (P q) Nat.zero
[PROOFSTEP]
rw [P_f_0_eq q, comp_id]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
⊢ HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n) =
HomologicalComplex.Hom.f (P q) (Nat.succ n)
[PROOFSTEP]
exact (HigherFacesVanish.of_P q n).comp_P_eq_self
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ P q ≫ P q = P q
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
⊢ HomologicalComplex.Hom.f (P q ≫ P q) n = HomologicalComplex.Hom.f (P q) n
[PROOFSTEP]
exact P_f_idem q n
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ Q q ≫ Q q = Q q
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
⊢ HomologicalComplex.Hom.f (Q q ≫ Q q) n = HomologicalComplex.Hom.f (Q q) n
[PROOFSTEP]
exact Q_f_idem q n
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.247062, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
induction' q with q hq
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{?u.247062, u_1} C
inst✝ : Preadditive C
X x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => P Nat.zero) x✝ =
(fun X => P Nat.zero) x✝¹ ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
dsimp [alternatingFaceMapComplex]
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{?u.247062, u_1} C
inst✝ : Preadditive C
X x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ AlternatingFaceMapComplex.map f ≫ P 0 = P 0 ≫ AlternatingFaceMapComplex.map f
[PROOFSTEP]
simp only [P_zero, id_comp, comp_id]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.247062, u_1} C
inst✝ : Preadditive C
X x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
q : ℕ
hq : (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f
⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => P (Nat.succ q)) x✝ =
(fun X => P (Nat.succ q)) x✝¹ ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
simp only [P_succ, add_comp, comp_add, assoc, comp_id, hq, reassoc_of% hq]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.247062, u_1} C
inst✝ : Preadditive C
X x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
q : ℕ
hq : (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f
⊢ P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ (alternatingFaceMapComplex C).map f ≫ Hσ q =
P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ Hσ q ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
erw [(natTransHσ q).naturality f]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.247062, u_1} C
inst✝ : Preadditive C
X x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
q : ℕ
hq : (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f
⊢ P q ≫ (alternatingFaceMapComplex C).map f +
P q ≫ NatTrans.app (natTransHσ q) x✝¹ ≫ (alternatingFaceMapComplex C).map f =
P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ Hσ q ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
⊢ NatTrans.app f (op [n]) ≫ HomologicalComplex.Hom.f (Q q) n =
HomologicalComplex.Hom.f (Q q) n ≫ NatTrans.app f (op [n])
[PROOFSTEP]
simp only [Q, HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, comp_sub, P_f_naturality, sub_comp, sub_left_inj]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
⊢ NatTrans.app f (op [n]) ≫ 𝟙 (HomologicalComplex.X K[Y] n) = 𝟙 (HomologicalComplex.X K[X] n) ≫ NatTrans.app f (op [n])
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
⊢ NatTrans.app f (op [n]) ≫ 𝟙 (Y.obj (op [n])) = 𝟙 (X.obj (op [n])) ≫ NatTrans.app f (op [n])
[PROOFSTEP]
simp only [comp_id, id_comp]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
⊢ G.map (HomologicalComplex.Hom.f (P q) n) = HomologicalComplex.Hom.f (P q) n
[PROOFSTEP]
induction' q with q hq
[GOAL]
case zero
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
n : ℕ
⊢ G.map (HomologicalComplex.Hom.f (P Nat.zero) n) = HomologicalComplex.Hom.f (P Nat.zero) n
[PROOFSTEP]
simp only [P_zero]
[GOAL]
case zero
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
n : ℕ
⊢ G.map (HomologicalComplex.Hom.f (𝟙 K[X]) n) = HomologicalComplex.Hom.f (𝟙 K[((whiskering C D).obj G).obj X]) n
[PROOFSTEP]
apply G.map_id
[GOAL]
case succ
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
n q : ℕ
hq : G.map (HomologicalComplex.Hom.f (P q) n) = HomologicalComplex.Hom.f (P q) n
⊢ G.map (HomologicalComplex.Hom.f (P (Nat.succ q)) n) = HomologicalComplex.Hom.f (P (Nat.succ q)) n
[PROOFSTEP]
simp only [P_succ, comp_add, HomologicalComplex.comp_f, HomologicalComplex.add_f_apply, comp_id, Functor.map_add,
Functor.map_comp, hq, map_Hσ]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
⊢ G.map (HomologicalComplex.Hom.f (Q q) n) = HomologicalComplex.Hom.f (Q q) n
[PROOFSTEP]
rw [← add_right_inj (G.map ((P q : K[X] ⟶ _).f n)), ← G.map_add, map_P G X q n, P_add_Q_f, P_add_Q_f]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
⊢ G.map (𝟙 (X.obj (op [n]))) = 𝟙 ((((whiskering C D).obj G).obj X).obj (op [n]))
[PROOFSTEP]
apply G.map_id
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Projections", "llama_tokens": 10111} |
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.10521, u_3} B
inst✝ : Category.{u_5, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
⊢ (equivalence₁ hF).counitIso = equivalence₁CounitIso hF
[PROOFSTEP]
ext Y
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.10521, u_3} B
inst✝ : Category.{u_5, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
Y : B'
⊢ NatTrans.app (equivalence₁ hF).counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y
[PROOFSTEP]
dsimp [equivalence₁]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.10521, u_3} B
inst✝ : Category.{u_5, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
Y : B'
⊢ NatTrans.app (Functor.asEquivalence F).counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y
[PROOFSTEP]
unfold Functor.asEquivalence
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.10521, u_3} B
inst✝ : Category.{u_5, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
Y : B'
⊢ NatTrans.app (Equivalence.mk' F (IsEquivalence.inverse F) IsEquivalence.unitIso IsEquivalence.counitIso).counitIso.hom
Y =
NatTrans.app (equivalence₁CounitIso hF).hom Y
[PROOFSTEP]
dsimp [equivalence₀, IsEquivalence.inverse, IsEquivalence.ofEquivalence]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.10521, u_3} B
inst✝ : Category.{u_5, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
Y : B'
⊢ NatTrans.app IsEquivalence.counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y
[PROOFSTEP]
simp
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.21328, u_3} B
inst✝ : Category.{u_6, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
⊢ (equivalence₁ hF).unitIso = equivalence₁UnitIso hF
[PROOFSTEP]
ext X
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.21328, u_3} B
inst✝ : Category.{u_6, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app (equivalence₁ hF).unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X
[PROOFSTEP]
dsimp [equivalence₁]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.21328, u_3} B
inst✝ : Category.{u_6, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app (Functor.asEquivalence F).unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X
[PROOFSTEP]
unfold Functor.asEquivalence
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.21328, u_3} B
inst✝ : Category.{u_6, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app (Equivalence.mk' F (IsEquivalence.inverse F) IsEquivalence.unitIso IsEquivalence.counitIso).unitIso.hom
X =
NatTrans.app (equivalence₁UnitIso hF).hom X
[PROOFSTEP]
dsimp [NatIso.hcomp, IsEquivalence.ofEquivalence]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{?u.21328, u_3} B
inst✝ : Category.{u_6, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app IsEquivalence.unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X
[PROOFSTEP]
simp
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
⊢ (equivalence₂ eB hF).counitIso = equivalence₂CounitIso eB hF
[PROOFSTEP]
ext Y'
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
Y' : B
⊢ NatTrans.app (equivalence₂ eB hF).counitIso.hom Y' = NatTrans.app (equivalence₂CounitIso eB hF).hom Y'
[PROOFSTEP]
dsimp [equivalence₂, Iso.refl]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
Y' : B
⊢ eB.inverse.map (NatTrans.app (equivalence₁ hF).counitIso.hom (eB.functor.obj Y')) ≫ NatTrans.app eB.unitIso.inv Y' =
NatTrans.app (equivalence₂CounitIso eB hF).hom Y'
[PROOFSTEP]
simp only [equivalence₁CounitIso_eq, equivalence₂CounitIso_hom_app, equivalence₁CounitIso_hom_app, Functor.map_comp,
assoc]
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
⊢ (equivalence₂ eB hF).unitIso = equivalence₂UnitIso eB hF
[PROOFSTEP]
ext X
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app (equivalence₂ eB hF).unitIso.hom X = NatTrans.app (equivalence₂UnitIso eB hF).hom X
[PROOFSTEP]
dsimp [equivalence₂]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app (equivalence₁ hF).unitIso.hom X ≫
(equivalence₁ hF).inverse.map (NatTrans.app eB.counitIso.inv (F.obj X)) =
NatTrans.app (equivalence₂UnitIso eB hF).hom X
[PROOFSTEP]
simp only [equivalence₂UnitIso_hom_app, equivalence₁UnitIso_eq, equivalence₁UnitIso_hom_app, assoc,
NatIso.cancel_natIso_hom_left]
[GOAL]
case w.w.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
X : A
⊢ NatTrans.app eA.unitIso.hom X ≫
eA.inverse.map (NatTrans.app e'.unitIso.hom (eA.functor.obj X)) ≫
eA.inverse.map (e'.inverse.map (NatTrans.app hF.hom X)) ≫
(equivalence₁ hF).inverse.map (NatTrans.app eB.counitIso.inv (F.obj X)) =
NatTrans.app eA.unitIso.hom X ≫
eA.inverse.map (NatTrans.app e'.unitIso.hom (eA.functor.obj X)) ≫
eA.inverse.map (e'.inverse.map (NatTrans.app hF.hom X)) ≫
eA.inverse.map (e'.inverse.map (NatTrans.app eB.counitIso.inv (F.obj X)))
[PROOFSTEP]
rfl
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{?u.46977, u_1} A
inst✝² : Category.{?u.46981, u_2} A'
inst✝¹ : Category.{?u.46985, u_3} B
inst✝ : Category.{?u.46989, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
⊢ IsEquivalence G
[PROOFSTEP]
refine' IsEquivalence.ofIso _ (IsEquivalence.ofEquivalence (equivalence₂ eB hF).symm)
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{?u.46977, u_1} A
inst✝² : Category.{?u.46981, u_2} A'
inst✝¹ : Category.{?u.46985, u_3} B
inst✝ : Category.{?u.46989, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
⊢ (CategoryTheory.Equivalence.symm (equivalence₂ eB hF)).functor ≅ G
[PROOFSTEP]
calc
eB.functor ⋙ e'.inverse ⋙ eA.inverse ≅ (eB.functor ⋙ e'.inverse) ⋙ eA.inverse := Iso.refl _
_ ≅ (G ⋙ eA.functor) ⋙ eA.inverse := (isoWhiskerRight hG _)
_ ≅ G ⋙ 𝟭 A := (isoWhiskerLeft _ eA.unitIso.symm)
_ ≅ G := Functor.rightUnitor G
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{?u.52568, u_1} A
inst✝² : Category.{?u.52572, u_2} A'
inst✝¹ : Category.{?u.52576, u_3} B
inst✝ : Category.{?u.52580, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
⊢ (G ⋙ eA.functor) ⋙ e'.functor ≅ G ⋙ eA.functor ⋙ e'.functor
[PROOFSTEP]
rfl
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
⊢ (equivalence hF hG).counitIso = equivalenceCounitIso η
[PROOFSTEP]
ext1
[GOAL]
case w
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
⊢ (equivalence hF hG).counitIso.hom = (equivalenceCounitIso η).hom
[PROOFSTEP]
apply NatTrans.ext
[GOAL]
case w.app
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
⊢ (equivalence hF hG).counitIso.hom.app = (equivalenceCounitIso η).hom.app
[PROOFSTEP]
ext Y
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ NatTrans.app (equivalence hF hG).counitIso.hom Y = NatTrans.app (equivalenceCounitIso η).hom Y
[PROOFSTEP]
dsimp [equivalence, Functor.asEquivalence, IsEquivalence.ofEquivalence]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ NatTrans.app IsEquivalence.unitIso.inv Y = NatTrans.app (equivalenceCounitIso η).hom Y
[PROOFSTEP]
rw [equivalenceCounitIso_hom_app, IsEquivalence.ofIso_unitIso_inv_app]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ (IsEquivalence.inverse (equivalence₂ eB hF).inverse).map
(NatTrans.app
(((Iso.refl (eB.functor ⋙ e'.inverse ⋙ eA.inverse) ≪≫ isoWhiskerRight hG eA.inverse) ≪≫
isoWhiskerLeft G eA.unitIso.symm) ≪≫
Functor.rightUnitor G).inv
Y) ≫
NatTrans.app IsEquivalence.unitIso.inv Y =
eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y
[PROOFSTEP]
dsimp
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ eB.inverse.map
(F.map
(𝟙 (G.obj Y) ≫
NatTrans.app eA.unitIso.hom (G.obj Y) ≫
eA.inverse.map (NatTrans.app hG.inv Y) ≫ 𝟙 (eA.inverse.obj (e'.inverse.obj (eB.functor.obj Y))))) ≫
NatTrans.app (equivalence₂ eB hF).counitIso.hom Y =
eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y
[PROOFSTEP]
simp only [comp_id, id_comp, F.map_comp, assoc, equivalence₂CounitIso_eq, equivalence₂CounitIso_hom_app, ←
eB.inverse.map_comp_assoc, ← τ₀_hom_app, hη, τ₁_hom_app]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ eB.inverse.map
(F.map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫
F.map (eA.inverse.map (NatTrans.app hG.inv Y)) ≫
NatTrans.app hF.inv (eA.inverse.obj (e'.inverse.obj (eB.functor.obj Y))) ≫
e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫
e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y) ≫
NatTrans.app eB.unitIso.inv Y =
eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y
[PROOFSTEP]
erw [hF.inv.naturality_assoc, hF.inv.naturality_assoc]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ eB.inverse.map
(NatTrans.app hF.inv (G.obj Y) ≫
(eA.functor ⋙ e'.functor).map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫
(eA.functor ⋙ e'.functor).map (eA.inverse.map (NatTrans.app hG.inv Y)) ≫
e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫
e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y) ≫
NatTrans.app eB.unitIso.inv Y =
eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y
[PROOFSTEP]
dsimp
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ eB.inverse.map
(NatTrans.app hF.inv (G.obj Y) ≫
e'.functor.map (eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y))) ≫
e'.functor.map (eA.functor.map (eA.inverse.map (NatTrans.app hG.inv Y))) ≫
e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫
e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y) ≫
NatTrans.app eB.unitIso.inv Y =
eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y
[PROOFSTEP]
congr 2
[GOAL]
case w.app.h.e_a.e_a
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ NatTrans.app hF.inv (G.obj Y) ≫
e'.functor.map (eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y))) ≫
e'.functor.map (eA.functor.map (eA.inverse.map (NatTrans.app hG.inv Y))) ≫
e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫
e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y =
NatTrans.app η.hom Y
[PROOFSTEP]
simp only [assoc, ← e'.functor.map_comp_assoc, Equivalence.fun_inv_map, Iso.inv_hom_id_app_assoc, hG.inv_hom_id_app]
[GOAL]
case w.app.h.e_a.e_a
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ NatTrans.app hF.inv (G.obj Y) ≫
e'.functor.map
(eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫
NatTrans.app (Equivalence.counit eA) (eA.functor.obj (G.obj Y)) ≫ 𝟙 ((G ⋙ eA.functor).obj Y)) ≫
NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y =
NatTrans.app η.hom Y
[PROOFSTEP]
dsimp
[GOAL]
case w.app.h.e_a.e_a
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_6, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_5, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
Y : B
⊢ NatTrans.app hF.inv (G.obj Y) ≫
e'.functor.map
(eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫
NatTrans.app (Equivalence.counit eA) (eA.functor.obj (G.obj Y)) ≫ 𝟙 (eA.functor.obj (G.obj Y))) ≫
NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y =
NatTrans.app η.hom Y
[PROOFSTEP]
rw [comp_id, eA.functor_unitIso_comp, e'.functor.map_id, id_comp, hF.inv_hom_id_app_assoc]
[GOAL]
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
⊢ (equivalence hF hG).unitIso = equivalenceUnitIso hG ε
[PROOFSTEP]
ext1
[GOAL]
case w
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
⊢ (equivalence hF hG).unitIso.hom = (equivalenceUnitIso hG ε).hom
[PROOFSTEP]
apply NatTrans.ext
[GOAL]
case w.app
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
⊢ (equivalence hF hG).unitIso.hom.app = (equivalenceUnitIso hG ε).hom.app
[PROOFSTEP]
ext X
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
X : A
⊢ NatTrans.app (equivalence hF hG).unitIso.hom X = NatTrans.app (equivalenceUnitIso hG ε).hom X
[PROOFSTEP]
dsimp [equivalence, Functor.asEquivalence, IsEquivalence.ofEquivalence, IsEquivalence.inverse]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
X : A
⊢ NatTrans.app IsEquivalence.counitIso.inv X = NatTrans.app (equivalenceUnitIso hG ε).hom X
[PROOFSTEP]
rw [IsEquivalence.ofIso_counitIso_inv_app]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
X : A
⊢ NatTrans.app IsEquivalence.counitIso.inv X ≫
NatTrans.app
(((Iso.refl (eB.functor ⋙ e'.inverse ⋙ eA.inverse) ≪≫ isoWhiskerRight hG eA.inverse) ≪≫
isoWhiskerLeft G eA.unitIso.symm) ≪≫
Functor.rightUnitor G).hom
((IsEquivalence.inverse (equivalence₂ eB hF).inverse).obj X) =
NatTrans.app (equivalenceUnitIso hG ε).hom X
[PROOFSTEP]
dsimp
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
X : A
⊢ NatTrans.app (equivalence₂ eB hF).unitIso.hom X ≫
((𝟙 (eA.inverse.obj (e'.inverse.obj (eB.functor.obj (eB.inverse.obj (F.obj X))))) ≫
eA.inverse.map (NatTrans.app hG.hom (eB.inverse.obj (F.obj X)))) ≫
NatTrans.app eA.unitIso.inv (G.obj (eB.inverse.obj (F.obj X)))) ≫
𝟙 (G.obj (eB.inverse.obj (F.obj X))) =
NatTrans.app (equivalenceUnitIso hG ε).hom X
[PROOFSTEP]
erw [id_comp, comp_id]
[GOAL]
case w.app.h
A : Type u_1
A' : Type u_2
B : Type u_3
B' : Type u_4
inst✝³ : Category.{u_5, u_1} A
inst✝² : Category.{u_7, u_2} A'
inst✝¹ : Category.{u_6, u_3} B
inst✝ : Category.{u_8, u_4} B'
eA : A ≌ A'
eB : B ≌ B'
e' : A' ≌ B'
F : A ⥤ B'
hF : eA.functor ⋙ e'.functor ≅ F
G : B ⥤ A
hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor
η : G ⋙ F ≅ eB.functor
hη : τ₀ = τ₁ hF hG η
ε : eA.functor ≅ F ⋙ e'.inverse
hε : υ hF = ε
X : A
⊢ NatTrans.app (equivalence₂ eB hF).unitIso.hom X ≫
eA.inverse.map (NatTrans.app hG.hom (eB.inverse.obj (F.obj X))) ≫
NatTrans.app eA.unitIso.inv (G.obj (eB.inverse.obj (F.obj X))) =
NatTrans.app (equivalenceUnitIso hG ε).hom X
[PROOFSTEP]
simp only [equivalence₂UnitIso_eq eB hF, equivalence₂UnitIso_hom_app, assoc, equivalenceUnitIso_hom_app, ←
eA.inverse.map_comp_assoc, ← hε, υ_hom_app]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Compatibility", "llama_tokens": 14854} |
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.183203, u_1} A
inst✝ : Abelian A
⊢ SimplicialObject A ≌ ChainComplex A ℕ
[PROOFSTEP]
let F : SimplicialObject A ⥤ _ := Idempotents.DoldKan.N
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.183203, u_1} A
inst✝ : Abelian A
F : SimplicialObject A ⥤ ChainComplex A ℕ := Idempotents.DoldKan.N
⊢ SimplicialObject A ≌ ChainComplex A ℕ
[PROOFSTEP]
let hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.183203, u_1} A
inst✝ : Abelian A
F : SimplicialObject A ⥤ ChainComplex A ℕ := Idempotents.DoldKan.N
hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
⊢ SimplicialObject A ≌ ChainComplex A ℕ
[PROOFSTEP]
letI : IsEquivalence (N : SimplicialObject A ⥤ _) := IsEquivalence.ofIso comparisonN.symm hF
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.183203, u_1} A
inst✝ : Abelian A
F : SimplicialObject A ⥤ ChainComplex A ℕ := Idempotents.DoldKan.N
hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence
this : IsEquivalence N := IsEquivalence.ofIso comparisonN.symm hF
⊢ SimplicialObject A ≌ ChainComplex A ℕ
[PROOFSTEP]
exact N.asEquivalence
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Equivalence", "llama_tokens": 569} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
⊢ HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
induction' q with q hq
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (Q Nat.zero) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.zero) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
simp only [Nat.zero_eq, Q_zero, HomologicalComplex.zero_f_apply, Nat.not_lt_zero, Finset.filter_False, Finset.sum_empty]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
by_cases hqn : q + 1 ≤ n + 1
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
swap
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
rw [Q_is_eventually_constant (show n + 1 ≤ q by linarith), hq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
⊢ n + 1 ≤ q
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
⊢ ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
congr 1
[GOAL]
case neg.e_s
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
⊢ Finset.filter (fun i => ↑i < q) Finset.univ = Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ
[PROOFSTEP]
ext ⟨x, hx⟩
[GOAL]
case neg.e_s.a.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
x : ℕ
hx : x < n + 1
⊢ { val := x, isLt := hx } ∈ Finset.filter (fun i => ↑i < q) Finset.univ ↔
{ val := x, isLt := hx } ∈ Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ
[PROOFSTEP]
simp only [Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, true_and]
[GOAL]
case neg.e_s.a.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
x : ℕ
hx : x < n + 1
⊢ x < q ↔ x < q + 1
[PROOFSTEP]
constructor
[GOAL]
case neg.e_s.a.mk.mp
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
x : ℕ
hx : x < n + 1
⊢ x < q → x < q + 1
[PROOFSTEP]
intro
[GOAL]
case neg.e_s.a.mk.mpr
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
x : ℕ
hx : x < n + 1
⊢ x < q + 1 → x < q
[PROOFSTEP]
intro
[GOAL]
case neg.e_s.a.mk.mp
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
x : ℕ
hx : x < n + 1
a✝ : x < q
⊢ x < q + 1
[PROOFSTEP]
linarith
[GOAL]
case neg.e_s.a.mk.mpr
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : ¬q + 1 ≤ n + 1
x : ℕ
hx : x < n + 1
a✝ : x < q + 1
⊢ x < q
[PROOFSTEP]
linarith
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
cases' Nat.le.dest (Nat.succ_le_succ_iff.mp hqn) with a ha
[GOAL]
case pos.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
rw [Q_succ, HomologicalComplex.sub_f_apply, HomologicalComplex.comp_f, hq]
[GOAL]
case pos.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
⊢ ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) -
HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
symm
[GOAL]
case pos.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
⊢ ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) -
HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)
[PROOFSTEP]
conv_rhs => rw [sub_eq_add_neg, add_comm]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
| ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) -
HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)
[PROOFSTEP]
rw [sub_eq_add_neg, add_comm]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
| ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) -
HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)
[PROOFSTEP]
rw [sub_eq_add_neg, add_comm]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
| ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) -
HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)
[PROOFSTEP]
rw [sub_eq_add_neg, add_comm]
[GOAL]
case pos.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
⊢ ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) =
-HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) +
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
let q' : Fin (n + 1) := ⟨q, Nat.succ_le_iff.mp hqn⟩
[GOAL]
case pos.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
⊢ ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) =
-HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) +
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
rw [← @Finset.add_sum_erase _ _ _ _ _ _ q' (by simp)]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
⊢ q' ∈ Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ
[PROOFSTEP]
simp
[GOAL]
case pos.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
⊢ HomologicalComplex.Hom.f (P ↑q') (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm q')) ≫ SimplicialObject.σ X (↑Fin.revPerm q') +
∑ x in Finset.erase (Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ) q',
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ SimplicialObject.σ X (↑Fin.revPerm x) =
-HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) +
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
congr
[GOAL]
case pos.intro.e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
⊢ HomologicalComplex.Hom.f (P ↑q') (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm q')) ≫ SimplicialObject.σ X (↑Fin.revPerm q') =
-HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)
[PROOFSTEP]
have hnaq' : n = a + q := by linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
⊢ n = a + q
[PROOFSTEP]
linarith
[GOAL]
case pos.intro.e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
hnaq' : n = a + q
⊢ HomologicalComplex.Hom.f (P ↑q') (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm q')) ≫ SimplicialObject.σ X (↑Fin.revPerm q') =
-HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)
[PROOFSTEP]
simp only [Fin.val_mk, (HigherFacesVanish.of_P q n).comp_Hσ_eq hnaq', q'.revPerm_eq hnaq', neg_neg]
[GOAL]
case pos.intro.e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
hnaq' : n = a + q
⊢ HomologicalComplex.Hom.f (P q) (n + 1) ≫
SimplicialObject.δ X (Fin.succ { val := a, isLt := (_ : a < Nat.succ n) }) ≫
SimplicialObject.σ X { val := a, isLt := (_ : a < Nat.succ n) } =
HomologicalComplex.Hom.f (P q) (n + 1) ≫
SimplicialObject.δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
SimplicialObject.σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rfl
[GOAL]
case pos.intro.e_a.e_s
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
⊢ Finset.erase (Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ) q' = Finset.filter (fun i => ↑i < q) Finset.univ
[PROOFSTEP]
ext ⟨i, hi⟩
[GOAL]
case pos.intro.e_a.e_s.a.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
i : ℕ
hi : i < n + 1
⊢ { val := i, isLt := hi } ∈ Finset.erase (Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ) q' ↔
{ val := i, isLt := hi } ∈ Finset.filter (fun i => ↑i < q) Finset.univ
[PROOFSTEP]
simp only [Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ, forall_true_left, Finset.mem_filter,
lt_self_iff_false, or_true, and_self, not_true, Finset.mem_erase, ne_eq, Fin.mk.injEq, true_and]
[GOAL]
case pos.intro.e_a.e_s.a.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n q : ℕ
hq :
HomologicalComplex.Hom.f (Q q) (n + 1) =
∑ i in Finset.filter (fun i => ↑i < q) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
hqn : q + 1 ≤ n + 1
a : ℕ
ha : q + a = n
q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) }
i : ℕ
hi : i < n + 1
⊢ ¬i = q ∧ (i < q ∨ i = q) ↔ i < q
[PROOFSTEP]
aesop
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ φ (id X n) = 𝟙 (X.obj (op [n + 1]))
[PROOFSTEP]
simp only [← P_add_Q_f (n + 1) (n + 1), φ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ (id X n).a +
∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b (id X n) (↑Fin.revPerm x) =
HomologicalComplex.Hom.f (P (n + 1)) (n + 1) + HomologicalComplex.Hom.f (Q (n + 1)) (n + 1)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ (id X n).a = HomologicalComplex.Hom.f (P (n + 1)) (n + 1)
[PROOFSTEP]
simp only [id, PInfty_f, P_f_idem]
[GOAL]
case e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ ∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b (id X n) (↑Fin.revPerm x) =
HomologicalComplex.Hom.f (Q (n + 1)) (n + 1)
[PROOFSTEP]
exact Eq.trans (by congr; simp) (decomposition_Q n (n + 1)).symm
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ ∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b (id X n) (↑Fin.revPerm x) =
∑ i in Finset.filter (fun i => ↑i < n + 1) Finset.univ,
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)
[PROOFSTEP]
congr
[GOAL]
case e_s
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ Finset.univ = Finset.filter (fun i => ↑i < n + 1) Finset.univ
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ φ (postComp f h) = φ f ≫ h
[PROOFSTEP]
unfold φ postComp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ { a := f.a ≫ h, b := fun i => b f i ≫ h }.a +
∑ i : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫
b { a := f.a ≫ h, b := fun i => b f i ≫ h } (↑Fin.revPerm i) =
(HomologicalComplex.Hom.f PInfty (n + 1) ≫ f.a +
∑ i : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ b f (↑Fin.revPerm i)) ≫
h
[PROOFSTEP]
simp only [add_comp, sum_comp, assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ φ (preComp f g) = NatTrans.app g (op [n + 1]) ≫ φ f
[PROOFSTEP]
unfold φ preComp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫
{ a := NatTrans.app g (op [n + 1]) ≫ f.a, b := fun i => NatTrans.app g (op [n]) ≫ b f i }.a +
∑ i : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X' (Fin.succ (↑Fin.revPerm i)) ≫
b { a := NatTrans.app g (op [n + 1]) ≫ f.a, b := fun i => NatTrans.app g (op [n]) ≫ b f i }
(↑Fin.revPerm i) =
NatTrans.app g (op [n + 1]) ≫
(HomologicalComplex.Hom.f PInfty (n + 1) ≫ f.a +
∑ i : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ b f (↑Fin.revPerm i))
[PROOFSTEP]
simp only [PInfty_f, comp_add]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ NatTrans.app g (op [n + 1]) ≫ f.a +
∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X' (Fin.succ (↑Fin.revPerm x)) ≫ NatTrans.app g (op [n]) ≫ b f (↑Fin.revPerm x) =
NatTrans.app g (op [n + 1]) ≫ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ f.a +
NatTrans.app g (op [n + 1]) ≫
∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b f (↑Fin.revPerm x)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ NatTrans.app g (op [n + 1]) ≫ f.a =
NatTrans.app g (op [n + 1]) ≫ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ f.a
[PROOFSTEP]
simp only [P_f_naturality_assoc]
[GOAL]
case e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X X' : SimplicialObject C
n : ℕ
Z Z' : C
f : MorphComponents X n Z
g : X' ⟶ X
h : Z ⟶ Z'
⊢ ∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X' (Fin.succ (↑Fin.revPerm x)) ≫ NatTrans.app g (op [n]) ≫ b f (↑Fin.revPerm x) =
NatTrans.app g (op [n + 1]) ≫
∑ x : Fin (n + 1),
HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b f (↑Fin.revPerm x)
[PROOFSTEP]
simp only [comp_sum, P_f_naturality_assoc, SimplicialObject.δ_naturality_assoc]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Decomposition", "llama_tokens": 14271} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.725, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
j : ℕ
⊢ ¬ComplexShape.Rel c 0 j
[PROOFSTEP]
intro hj
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.725, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
j : ℕ
hj : ComplexShape.Rel c 0 j
⊢ False
[PROOFSTEP]
dsimp at hj
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.725, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
j : ℕ
hj : j + 1 = 0
⊢ False
[PROOFSTEP]
apply Nat.not_succ_le_zero j
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.725, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
j : ℕ
hj : j + 1 = 0
⊢ Nat.succ j ≤ 0
[PROOFSTEP]
rw [Nat.succ_eq_add_one, hj]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.35594, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
⊢ X.obj (op [n + 1]) = HomologicalComplex.X K[X] m
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n m : ℕ
hnq : n < q
hnm : ComplexShape.Rel c m n
⊢ hσ' q n m hnm = 0
[PROOFSTEP]
simp only [hσ', hσ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n m : ℕ
hnq : n < q
hnm : ComplexShape.Rel c m n
⊢ (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) =
0
[PROOFSTEP]
split_ifs
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n m : ℕ
hnq : n < q
hnm : ComplexShape.Rel c m n
⊢ 0 ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = 0
[PROOFSTEP]
exact zero_comp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.71579, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
⊢ X.obj (op [n + 1]) = HomologicalComplex.X K[X] m
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
⊢ hσ' q n m hnm =
((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))
[PROOFSTEP]
simp only [hσ', hσ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
⊢ (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) =
((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))
[PROOFSTEP]
split_ifs
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
h✝ : n < q
⊢ 0 ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) =
((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
h✝ : n < q
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
h✝ : ¬n < q
⊢ ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) =
((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))
[PROOFSTEP]
have h' := tsub_eq_of_eq_add ha
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a m : ℕ
ha : n = a + q
hnm : ComplexShape.Rel c m n
h✝ : ¬n < q
h' : n - q = a
⊢ ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) =
((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n a : ℕ
ha : n = a + q
⊢ hσ' q n (n + 1) (_ : n + 1 = n + 1) = (-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [hσ'_eq ha rfl, eqToHom_refl, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ HomologicalComplex.Hom.f (Hσ q) 0 = 0
[PROOFSTEP]
unfold Hσ
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) 0 = 0
[PROOFSTEP]
rw [nullHomotopicMap'_f_of_not_rel_left (c_mk 1 0 rfl) cs_down_0_not_rel_left]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ hσ' q 0 1 (_ : ComplexShape.Rel c 1 0) ≫ HomologicalComplex.d K[X] 1 0 = 0
[PROOFSTEP]
rcases q with (_ | q)
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ hσ' Nat.zero 0 1 (_ : ComplexShape.Rel c 1 0) ≫ HomologicalComplex.d K[X] 1 0 = 0
[PROOFSTEP]
rw [hσ'_eq (show 0 = 0 + 0 by rfl) (c_mk 1 0 rfl)]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ 0 = 0 + 0
[PROOFSTEP]
rfl
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ (((-1) ^ 0 • σ X { val := 0, isLt := (_ : 0 < Nat.succ 0) }) ≫ eqToHom (_ : X.obj (op [0 + 1]) = X.obj (op [1]))) ≫
HomologicalComplex.d K[X] 1 0 =
0
[PROOFSTEP]
simp only [pow_zero, Fin.mk_zero, one_zsmul, eqToHom_refl, Category.comp_id]
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ σ X 0 ≫ HomologicalComplex.d K[X] 1 0 = 0
[PROOFSTEP]
erw [ChainComplex.of_d]
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ σ X 0 ≫ AlternatingFaceMapComplex.objD X 0 = 0
[PROOFSTEP]
rw [AlternatingFaceMapComplex.objD, Fin.sum_univ_two, Fin.val_zero, Fin.val_one, pow_zero, pow_one, one_smul, neg_smul,
one_smul, comp_add, comp_neg, add_neg_eq_zero]
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ σ X 0 ≫ δ X 0 = σ X 0 ≫ δ X 1
[PROOFSTEP]
erw [δ_comp_σ_self, δ_comp_σ_succ]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ hσ' (Nat.succ q) 0 1 (_ : ComplexShape.Rel c 1 0) ≫ HomologicalComplex.d K[X] 1 0 = 0
[PROOFSTEP]
rw [hσ'_eq_zero (Nat.succ_pos q) (c_mk 1 0 rfl), zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
X Y : SimplicialObject C
f : X ⟶ Y
⊢ NatTrans.app f (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ NatTrans.app f (op [m])
[PROOFSTEP]
have h : n + 1 = m := hnm
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
X Y : SimplicialObject C
f : X ⟶ Y
h : n + 1 = m
⊢ NatTrans.app f (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ NatTrans.app f (op [m])
[PROOFSTEP]
subst h
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
⊢ NatTrans.app f (op [n]) ≫ hσ' q n (n + 1) hnm = hσ' q n (n + 1) hnm ≫ NatTrans.app f (op [n + 1])
[PROOFSTEP]
simp only [hσ', eqToHom_refl, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
⊢ NatTrans.app f (op [n]) ≫ hσ q n = hσ q n ≫ NatTrans.app f (op [n + 1])
[PROOFSTEP]
unfold hσ
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
⊢ (NatTrans.app f (op [n]) ≫
if n < q then 0 else (-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) =
(if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
NatTrans.app f (op [n + 1])
[PROOFSTEP]
split_ifs
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
h✝ : n < q
⊢ NatTrans.app f (op [n]) ≫ 0 = 0 ≫ NatTrans.app f (op [n + 1])
[PROOFSTEP]
rw [zero_comp, comp_zero]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
h✝ : ¬n < q
⊢ NatTrans.app f (op [n]) ≫ ((-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) =
((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ NatTrans.app f (op [n + 1])
[PROOFSTEP]
simp only [zsmul_comp, comp_zsmul]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
h✝ : ¬n < q
⊢ (-1) ^ (n - q) • NatTrans.app f (op [n]) ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } =
(-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) } ≫ NatTrans.app f (op [n + 1])
[PROOFSTEP]
erw [f.naturality]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X✝ : SimplicialObject C
q n : ℕ
X Y : SimplicialObject C
f : X ⟶ Y
hnm : ComplexShape.Rel c (n + 1) n
h✝ : ¬n < q
⊢ (-1) ^ (n - q) • NatTrans.app f (op [n]) ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } =
(-1) ^ (n - q) •
NatTrans.app f (op [n]) ≫ Y.map (SimplexCategory.σ { val := n - q, isLt := (_ : n - q < Nat.succ n) }).op
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.259122, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => Hσ q) x✝ = (fun X => Hσ q) x✝¹ ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
unfold Hσ
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.259122, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => nullHomotopicMap' (hσ' q)) x✝ =
(fun X => nullHomotopicMap' (hσ' q)) x✝¹ ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
rw [nullHomotopicMap'_comp, comp_nullHomotopicMap']
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.259122, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ (nullHomotopicMap' fun i j hij => HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) i ≫ hσ' q i j hij) =
nullHomotopicMap' fun i j hij => hσ' q i j hij ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) j
[PROOFSTEP]
congr
[GOAL]
case e_h
C : Type u_1
inst✝¹ : Category.{?u.259122, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
⊢ (fun i j hij => HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) i ≫ hσ' q i j hij) = fun i j hij =>
hσ' q i j hij ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) j
[PROOFSTEP]
ext n m hnm
[GOAL]
case e_h.h.h.h
C : Type u_1
inst✝¹ : Category.{?u.259122, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
x✝¹ x✝ : SimplicialObject C
f : x✝¹ ⟶ x✝
n m : ℕ
hnm : ComplexShape.Rel (ComplexShape.down ℕ) m n
⊢ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) n ≫ hσ' q n m hnm =
hσ' q n m hnm ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) m
[PROOFSTEP]
simp only [alternatingFaceMapComplex_map_f, hσ'_naturality]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
⊢ hσ' q n m hnm = G.map (hσ' q n m hnm)
[PROOFSTEP]
unfold hσ' hσ
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
⊢ (if n < q then 0
else (-1) ^ (n - q) • σ (((whiskering C D).obj G).obj X) { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) =
G.map
((if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])))
[PROOFSTEP]
split_ifs
[GOAL]
case pos
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
h✝ : n < q
⊢ 0 ≫ eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) =
G.map (0 ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])))
[PROOFSTEP]
simp only [Functor.map_zero, zero_comp]
[GOAL]
case neg
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
h✝ : ¬n < q
⊢ ((-1) ^ (n - q) • σ (((whiskering C D).obj G).obj X) { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) =
G.map
(((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])))
[PROOFSTEP]
simp only [eqToHom_map, Functor.map_comp, Functor.map_zsmul]
[GOAL]
case neg
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n m : ℕ
hnm : ComplexShape.Rel c m n
h✝ : ¬n < q
⊢ ((-1) ^ (n - q) • σ (((whiskering C D).obj G).obj X) { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫
eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) =
((-1) ^ (n - q) • G.map (σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) })) ≫
eqToHom (_ : G.obj (X.obj (op [n + 1])) = G.obj (HomologicalComplex.X K[X] m))
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
⊢ HomologicalComplex.Hom.f (Hσ q) n = G.map (HomologicalComplex.Hom.f (Hσ q) n)
[PROOFSTEP]
unfold Hσ
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n =
G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n)
[PROOFSTEP]
have eq := HomologicalComplex.congr_hom (map_nullHomotopicMap' G (@hσ' _ _ _ X q)) n
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
eq :
HomologicalComplex.Hom.f ((Functor.mapHomologicalComplex G c).map (nullHomotopicMap' (hσ' q))) n =
HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => G.map (hσ' q i j hij)) n
⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n =
G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n)
[PROOFSTEP]
simp only [Functor.mapHomologicalComplex_map_f, ← map_hσ'] at eq
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
eq :
G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) =
HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n
⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n =
G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n)
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
eq :
G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) =
HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n
⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n =
HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n
[PROOFSTEP]
let h := (Functor.congr_obj (map_alternatingFaceMapComplex G) X).symm
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
q n : ℕ
eq :
G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) =
HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n
h : ((whiskering C D).obj G ⋙ alternatingFaceMapComplex D).obj X =
(alternatingFaceMapComplex C ⋙ Functor.mapHomologicalComplex G (ComplexShape.down ℕ)).obj X :=
Eq.symm (Functor.congr_obj (map_alternatingFaceMapComplex G) X)
⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n =
HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n
[PROOFSTEP]
congr
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Homotopies", "llama_tokens": 9332} |
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ ∀ (i j : ℕ),
ComplexShape.Rel (ComplexShape.down ℕ) i j →
((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) i).hom ≫
HomologicalComplex.d K i j =
HomologicalComplex.d (Splitting.nondegComplex (Γ₀.splitting K)) i j ≫
((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) j).hom
[PROOFSTEP]
rintro _ n (rfl : n + 1 = _)
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ ((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) (n + 1)).hom ≫
HomologicalComplex.d K (n + 1) n =
HomologicalComplex.d (Splitting.nondegComplex (Γ₀.splitting K)) (n + 1) n ≫
((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) n).hom
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ 𝟙 (Splitting.N (Γ₀.splitting K) (n + 1)) ≫ HomologicalComplex.d K (n + 1) n =
(Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj (Γ₀.obj K)) (n + 1) n ≫
Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))) ≫
𝟙 (Splitting.N (Γ₀.splitting K) n)
[PROOFSTEP]
simp only [id_comp, comp_id, AlternatingFaceMapComplex.obj_d_eq, Preadditive.sum_comp, Preadditive.comp_sum]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.d K (n + 1) n =
Finset.sum Finset.univ fun j =>
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
((-1) ^ ↑j • δ (Γ₀.obj K) j) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
rw [Fintype.sum_eq_single (0 : Fin (n + 2))]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.d K (n + 1) n =
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
((-1) ^ ↑0 • δ (Γ₀.obj K) 0) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
simp only [Fin.val_zero, pow_zero, one_zsmul]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.d K (n + 1) n =
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
δ (Γ₀.obj K) 0 ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
erw [Γ₀.Obj.mapMono_on_summand_id_assoc, Γ₀.Obj.Termwise.mapMono_δ₀, Splitting.ι_πSummand_eq_id, comp_id]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ ∀ (x : Fin (n + 2)),
x ≠ 0 →
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
((-1) ^ ↑x • δ (Γ₀.obj K) x) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) =
0
[PROOFSTEP]
intro i hi
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
((-1) ^ ↑i • δ (Γ₀.obj K) i) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) =
0
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
((-1) ^ ↑i • δ (Γ₀.obj K) i) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) =
0
[PROOFSTEP]
simp only [Preadditive.zsmul_comp, Preadditive.comp_zsmul, assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
⊢ (-1) ^ ↑i •
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
δ (Γ₀.obj K) i ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) =
0
[PROOFSTEP]
erw [Γ₀.Obj.mapMono_on_summand_id_assoc, Γ₀.Obj.Termwise.mapMono_eq_zero, zero_comp, zsmul_zero]
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
⊢ [n + 1] ≠ [n]
[PROOFSTEP]
intro h
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
h : [n + 1] = [n]
⊢ False
[PROOFSTEP]
replace h := congr_arg SimplexCategory.len h
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
h : SimplexCategory.len [n + 1] = SimplexCategory.len [n]
⊢ False
[PROOFSTEP]
change n + 1 = n at h
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
h : n + 1 = n
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case h₂
C : Type u_1
inst✝² : Category.{?u.42, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
i : Fin (n + 2)
hi : i ≠ 0
⊢ ¬Isδ₀ (SimplexCategory.δ i)
[PROOFSTEP]
simpa only [Isδ₀.iff] using hi
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ N₁Γ₀.app K =
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫
(toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)
[PROOFSTEP]
ext1
[GOAL]
case w
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ (N₁Γ₀.app K).hom =
((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫
(toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)).hom
[PROOFSTEP]
dsimp [N₁Γ₀]
[GOAL]
case w
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ (((Karoubi.Hom.mk PInfty ≫ NatTrans.app Split.toKaroubiNondegComplexFunctorIsoN₁.inv (Split.mk' (Γ₀.splitting K))) ≫
Karoubi.Hom.mk (𝟙 (Splitting.nondegComplex (Γ₀.splitting K)))) ≫
(toKaroubi (ChainComplex C ℕ)).map (NatTrans.app Γ₀'CompNondegComplexFunctor.hom K)) ≫
Karoubi.Hom.mk (𝟙 K) =
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom
[PROOFSTEP]
erw [id_comp, comp_id, comp_id]
[GOAL]
case w
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ NatTrans.app Split.toKaroubiNondegComplexFunctorIsoN₁.inv (Split.mk' (Γ₀.splitting K)) ≫
(toKaroubi (ChainComplex C ℕ)).map (NatTrans.app Γ₀'CompNondegComplexFunctor.hom K) =
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ NatTrans.app N₁Γ₀.hom K =
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom
[PROOFSTEP]
change (N₁Γ₀.app K).hom = _
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ (N₁Γ₀.app K).hom =
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom
[PROOFSTEP]
simp only [N₁Γ₀_app]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ ((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫
(toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)).hom =
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ NatTrans.app N₁Γ₀.inv K =
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom
[PROOFSTEP]
change (N₁Γ₀.app K).inv = _
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ (N₁Γ₀.app K).inv =
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom
[PROOFSTEP]
simp only [N₁Γ₀_app]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ ((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫
(toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)).inv =
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.Hom.f (NatTrans.app N₁Γ₀.hom K).f n =
HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv.f n
[PROOFSTEP]
rw [N₁Γ₀_hom_app]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.Hom.f
((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫
(toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom).f
n =
HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv.f n
[PROOFSTEP]
apply comp_id
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.Hom.f (NatTrans.app N₁Γ₀.inv K).f n =
HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom.f n
[PROOFSTEP]
rw [N₁Γ₀_inv_app]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HomologicalComplex.Hom.f
((toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫
(Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom).f
n =
HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom.f n
[PROOFSTEP]
apply id_comp
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
⊢ toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁
[PROOFSTEP]
have h := Functor.congr_obj (functorExtension₂_comp_whiskeringLeft_toKaroubi (ChainComplex C ℕ) (SimplicialObject C)) Γ₀
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
h :
(functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C) ⋙
(whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (SimplicialObject C))).obj
(toKaroubi (ChainComplex C ℕ))).obj
Γ₀ =
((whiskeringRight (ChainComplex C ℕ) (SimplicialObject C) (Karoubi (SimplicialObject C))).obj
(toKaroubi (SimplicialObject C))).obj
Γ₀
⊢ toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁
[PROOFSTEP]
have h' :=
Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi (SimplicialObject C) (ChainComplex C ℕ)) N₁
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
h :
(functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C) ⋙
(whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (SimplicialObject C))).obj
(toKaroubi (ChainComplex C ℕ))).obj
Γ₀ =
((whiskeringRight (ChainComplex C ℕ) (SimplicialObject C) (Karoubi (SimplicialObject C))).obj
(toKaroubi (SimplicialObject C))).obj
Γ₀
h' :
(functorExtension₁ (SimplicialObject C) (ChainComplex C ℕ) ⋙
(whiskeringLeft (SimplicialObject C) (Karoubi (SimplicialObject C)) (Karoubi (ChainComplex C ℕ))).obj
(toKaroubi (SimplicialObject C))).obj
N₁ =
(𝟭 (SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ))).obj N₁
⊢ toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁
[PROOFSTEP]
dsimp [N₂, Γ₂, functorExtension₁] at h h' ⊢
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
h :
toKaroubi (ChainComplex C ℕ) ⋙ (functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C)).obj Γ₀ =
Γ₀ ⋙ toKaroubi (SimplicialObject C)
h' : toKaroubi (SimplicialObject C) ⋙ FunctorExtension₁.obj N₁ = N₁
⊢ toKaroubi (ChainComplex C ℕ) ⋙
(functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C)).obj Γ₀ ⋙ FunctorExtension₁.obj N₁ =
Γ₀ ⋙ N₁
[PROOFSTEP]
rw [← Functor.assoc, h, Functor.assoc, h']
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
X : Karoubi (ChainComplex C ℕ)
n : ℕ
⊢ HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv X).f n =
HomologicalComplex.Hom.f X.p n ≫ Splitting.ιSummand (Γ₀.splitting X.X) (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
simp only [N₂Γ₂, Functor.preimageIso, Iso.trans, whiskeringLeft_obj_preimage_app, N₂Γ₂ToKaroubiIso_inv, assoc,
Functor.id_map, NatTrans.comp_app, eqToHom_app, Karoubi.comp_f, Karoubi.eqToHom_f, Karoubi.decompId_p_f,
HomologicalComplex.comp_f, N₁Γ₀_inv_app_f_f, Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, Functor.comp_map,
Functor.comp_obj, Karoubi.decompId_i_f, eqToHom_refl, comp_id, N₂_map_f_f, Γ₂_map_f_app, N₁_obj_p,
PInfty_on_Γ₀_splitting_summand_eq_self_assoc, toKaroubi_obj_X, Splitting.ι_desc, Splitting.IndexSet.id_fst,
SimplexCategory.len_mk, unop_op, Karoubi.HomologicalComplex.p_idem_assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom
[PROOFSTEP]
let e : _ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 _ := N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
e : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 (Karoubi (ChainComplex C ℕ)) :=
N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀
⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom
[PROOFSTEP]
have h := ((whiskeringLeft _ _ (Karoubi (ChainComplex C ℕ))).obj (toKaroubi (ChainComplex C ℕ))).image_preimage e.hom
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
e : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 (Karoubi (ChainComplex C ℕ)) :=
N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀
h :
((whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (ChainComplex C ℕ))).obj
(toKaroubi (ChainComplex C ℕ))).map
(((whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (ChainComplex C ℕ))).obj
(toKaroubi (ChainComplex C ℕ))).preimage
e.hom) =
e.hom
⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom
[PROOFSTEP]
dsimp only [whiskeringLeft, N₂Γ₂, Functor.preimageIso] at h ⊢
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
e : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 (Karoubi (ChainComplex C ℕ)) :=
N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀
h :
whiskerLeft (toKaroubi (ChainComplex C ℕ))
((CategoryTheory.Functor.mk
{ obj := fun G => toKaroubi (ChainComplex C ℕ) ⋙ G,
map := fun {X Y} α => whiskerLeft (toKaroubi (ChainComplex C ℕ)) α }).preimage
(N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀).hom) =
(N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀).hom
⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ))
((CategoryTheory.Functor.mk
{ obj := fun G => toKaroubi (ChainComplex C ℕ) ⋙ G,
map := fun {X Y} α => whiskerLeft (toKaroubi (ChainComplex C ℕ)) α }).preimage
(N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀).hom) =
N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom
[PROOFSTEP]
exact h
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.GammaCompN", "llama_tokens": 8245} |
[GOAL]
d x y x' y' : ℤ
h : { re := x, im := y } = { re := x', im := y' }
⊢ { re := x, im := y }.re = { re := x', im := y' }.re ∧ { re := x, im := y }.im = { re := x', im := y' }.im
[PROOFSTEP]
injection h
[GOAL]
d x y x' y' : ℤ
re_eq✝ : x = x'
im_eq✝ : y = y'
⊢ { re := x, im := y }.re = { re := x', im := y' }.re ∧ { re := x, im := y }.im = { re := x', im := y' }.im
[PROOFSTEP]
constructor
[GOAL]
case left
d x y x' y' : ℤ
re_eq✝ : x = x'
im_eq✝ : y = y'
⊢ { re := x, im := y }.re = { re := x', im := y' }.re
[PROOFSTEP]
assumption
[GOAL]
case right
d x y x' y' : ℤ
re_eq✝ : x = x'
im_eq✝ : y = y'
⊢ { re := x, im := y }.im = { re := x', im := y' }.im
[PROOFSTEP]
assumption
[GOAL]
d x y x' y' : ℤ
x✝ : { re := x, im := y }.re = { re := x', im := y' }.re ∧ { re := x, im := y }.im = { re := x', im := y' }.im
h₁ : { re := x, im := y }.re = { re := x', im := y' }.re
h₂ : { re := x, im := y }.im = { re := x', im := y' }.im
⊢ { re := x, im := y } = { re := x', im := y' }
[PROOFSTEP]
congr
[GOAL]
d : ℤ
z : ℤ√d
⊢ (bit1 z).im = bit0 z.im
[PROOFSTEP]
simp [bit1]
[GOAL]
d : ℤ
⊢ AddCommGroup (ℤ√d)
[PROOFSTEP]
refine
{ add := (· + ·)
zero := (0 : ℤ√d)
sub := fun a b => a + -b
neg := Neg.neg
zsmul := @zsmulRec (ℤ√d) ⟨0⟩ ⟨(· + ·)⟩ ⟨Neg.neg⟩
nsmul := @nsmulRec (ℤ√d) ⟨0⟩ ⟨(· + ·)⟩
add_assoc := ?_
zero_add := ?_
add_zero := ?_
add_left_neg := ?_
add_comm := ?_ }
[GOAL]
case refine_1
d : ℤ
⊢ ∀ (a b c : ℤ√d), a + b + c = a + (b + c)
[PROOFSTEP]
intros
[GOAL]
case refine_2
d : ℤ
⊢ ∀ (a : ℤ√d), 0 + a = a
[PROOFSTEP]
intros
[GOAL]
case refine_3
d : ℤ
⊢ ∀ (a : ℤ√d), a + 0 = a
[PROOFSTEP]
intros
[GOAL]
case refine_4
d : ℤ
⊢ ∀ (a : ℤ√d), -a + a = 0
[PROOFSTEP]
intros
[GOAL]
case refine_5
d : ℤ
⊢ ∀ (a b : ℤ√d), a + b = b + a
[PROOFSTEP]
intros
[GOAL]
case refine_1
d : ℤ
a✝ b✝ c✝ : ℤ√d
⊢ a✝ + b✝ + c✝ = a✝ + (b✝ + c✝)
[PROOFSTEP]
simp [ext, add_comm, add_left_comm]
[GOAL]
case refine_2
d : ℤ
a✝ : ℤ√d
⊢ 0 + a✝ = a✝
[PROOFSTEP]
simp [ext, add_comm, add_left_comm]
[GOAL]
case refine_3
d : ℤ
a✝ : ℤ√d
⊢ a✝ + 0 = a✝
[PROOFSTEP]
simp [ext, add_comm, add_left_comm]
[GOAL]
case refine_4
d : ℤ
a✝ : ℤ√d
⊢ -a✝ + a✝ = 0
[PROOFSTEP]
simp [ext, add_comm, add_left_comm]
[GOAL]
case refine_5
d : ℤ
a✝ b✝ : ℤ√d
⊢ a✝ + b✝ = b✝ + a✝
[PROOFSTEP]
simp [ext, add_comm, add_left_comm]
[GOAL]
d : ℤ
⊢ CommRing (ℤ√d)
[PROOFSTEP]
refine
{ Zsqrtd.addGroupWithOne with
add := (· + ·)
zero := (0 : ℤ√d)
mul := (· * ·)
one := 1
npow := @npowRec (ℤ√d) ⟨1⟩ ⟨(· * ·)⟩, add_comm := ?_
left_distrib := ?_
right_distrib := ?_
zero_mul := ?_
mul_zero := ?_
mul_assoc := ?_
one_mul := ?_
mul_one := ?_
mul_comm := ?_ }
[GOAL]
case refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a b : ℤ√d), a + b = b + a
[PROOFSTEP]
intros
[GOAL]
case refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a b c : ℤ√d), a * (b + c) = a * b + a * c
[PROOFSTEP]
intros
[GOAL]
case refine_3
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a b c : ℤ√d), (a + b) * c = a * c + b * c
[PROOFSTEP]
intros
[GOAL]
case refine_4
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a : ℤ√d), 0 * a = 0
[PROOFSTEP]
intros
[GOAL]
case refine_5
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a : ℤ√d), a * 0 = 0
[PROOFSTEP]
intros
[GOAL]
case refine_6
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a b c : ℤ√d), a * b * c = a * (b * c)
[PROOFSTEP]
intros
[GOAL]
case refine_7
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a : ℤ√d), 1 * a = a
[PROOFSTEP]
intros
[GOAL]
case refine_8
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a : ℤ√d), a * 1 = a
[PROOFSTEP]
intros
[GOAL]
case refine_9
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
⊢ ∀ (a b : ℤ√d), a * b = b * a
[PROOFSTEP]
intros
[GOAL]
case refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ a✝ + b✝ = b✝ + a✝
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ a✝ * (b✝ + c✝) = a✝ * b✝ + a✝ * c✝
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_3
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝ + b✝) * c✝ = a✝ * c✝ + b✝ * c✝
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_4
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ 0 * a✝ = 0
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_5
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ a✝ * 0 = 0
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_6
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ a✝ * b✝ * c✝ = a✝ * (b✝ * c✝)
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_7
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ 1 * a✝ = a✝
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_8
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ a✝ * 1 = a✝
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_9
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ a✝ * b✝ = b✝ * a✝
[PROOFSTEP]
refine ext.mpr ⟨?_, ?_⟩
[GOAL]
case refine_1.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ (a✝ + b✝).re = (b✝ + a✝).re
[PROOFSTEP]
simp
[GOAL]
case refine_1.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ (a✝ + b✝).im = (b✝ + a✝).im
[PROOFSTEP]
simp
[GOAL]
case refine_2.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝ * (b✝ + c✝)).re = (a✝ * b✝ + a✝ * c✝).re
[PROOFSTEP]
simp
[GOAL]
case refine_2.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝ * (b✝ + c✝)).im = (a✝ * b✝ + a✝ * c✝).im
[PROOFSTEP]
simp
[GOAL]
case refine_3.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ ((a✝ + b✝) * c✝).re = (a✝ * c✝ + b✝ * c✝).re
[PROOFSTEP]
simp
[GOAL]
case refine_3.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ ((a✝ + b✝) * c✝).im = (a✝ * c✝ + b✝ * c✝).im
[PROOFSTEP]
simp
[GOAL]
case refine_4.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (0 * a✝).re = 0.re
[PROOFSTEP]
simp
[GOAL]
case refine_4.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (0 * a✝).im = 0.im
[PROOFSTEP]
simp
[GOAL]
case refine_5.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (a✝ * 0).re = 0.re
[PROOFSTEP]
simp
[GOAL]
case refine_5.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (a✝ * 0).im = 0.im
[PROOFSTEP]
simp
[GOAL]
case refine_6.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝ * b✝ * c✝).re = (a✝ * (b✝ * c✝)).re
[PROOFSTEP]
simp
[GOAL]
case refine_6.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝ * b✝ * c✝).im = (a✝ * (b✝ * c✝)).im
[PROOFSTEP]
simp
[GOAL]
case refine_7.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (1 * a✝).re = a✝.re
[PROOFSTEP]
simp
[GOAL]
case refine_7.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (1 * a✝).im = a✝.im
[PROOFSTEP]
simp
[GOAL]
case refine_8.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (a✝ * 1).re = a✝.re
[PROOFSTEP]
simp
[GOAL]
case refine_8.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ : ℤ√d
⊢ (a✝ * 1).im = a✝.im
[PROOFSTEP]
simp
[GOAL]
case refine_9.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ (a✝ * b✝).re = (b✝ * a✝).re
[PROOFSTEP]
simp
[GOAL]
case refine_9.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ (a✝ * b✝).im = (b✝ * a✝).im
[PROOFSTEP]
simp
[GOAL]
case refine_1.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ a✝.re + b✝.re = b✝.re + a✝.re
[PROOFSTEP]
ring
[GOAL]
case refine_1.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ a✝.im + b✝.im = b✝.im + a✝.im
[PROOFSTEP]
ring
[GOAL]
case refine_2.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ a✝.re * (b✝.re + c✝.re) + d * a✝.im * (b✝.im + c✝.im) =
a✝.re * b✝.re + d * a✝.im * b✝.im + (a✝.re * c✝.re + d * a✝.im * c✝.im)
[PROOFSTEP]
ring
[GOAL]
case refine_2.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ a✝.re * (b✝.im + c✝.im) + a✝.im * (b✝.re + c✝.re) = a✝.re * b✝.im + a✝.im * b✝.re + (a✝.re * c✝.im + a✝.im * c✝.re)
[PROOFSTEP]
ring
[GOAL]
case refine_3.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝.re + b✝.re) * c✝.re + d * (a✝.im + b✝.im) * c✝.im =
a✝.re * c✝.re + d * a✝.im * c✝.im + (b✝.re * c✝.re + d * b✝.im * c✝.im)
[PROOFSTEP]
ring
[GOAL]
case refine_3.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝.re + b✝.re) * c✝.im + (a✝.im + b✝.im) * c✝.re = a✝.re * c✝.im + a✝.im * c✝.re + (b✝.re * c✝.im + b✝.im * c✝.re)
[PROOFSTEP]
ring
[GOAL]
case refine_6.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝.re * b✝.re + d * a✝.im * b✝.im) * c✝.re + d * (a✝.re * b✝.im + a✝.im * b✝.re) * c✝.im =
a✝.re * (b✝.re * c✝.re + d * b✝.im * c✝.im) + d * a✝.im * (b✝.re * c✝.im + b✝.im * c✝.re)
[PROOFSTEP]
ring
[GOAL]
case refine_6.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ c✝ : ℤ√d
⊢ (a✝.re * b✝.re + d * a✝.im * b✝.im) * c✝.im + (a✝.re * b✝.im + a✝.im * b✝.re) * c✝.re =
a✝.re * (b✝.re * c✝.im + b✝.im * c✝.re) + a✝.im * (b✝.re * c✝.re + d * b✝.im * c✝.im)
[PROOFSTEP]
ring
[GOAL]
case refine_9.refine_1
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ a✝.re * b✝.re + d * a✝.im * b✝.im = b✝.re * a✝.re + d * b✝.im * a✝.im
[PROOFSTEP]
ring
[GOAL]
case refine_9.refine_2
d : ℤ
src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne
a✝ b✝ : ℤ√d
⊢ a✝.re * b✝.im + a✝.im * b✝.re = b✝.re * a✝.im + b✝.im * a✝.re
[PROOFSTEP]
ring
[GOAL]
d : ℤ
⊢ AddMonoid (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ Monoid (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ CommMonoid (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ CommSemigroup (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ Semigroup (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ AddCommSemigroup (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ AddSemigroup (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ CommSemiring (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ Semiring (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ Ring (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
⊢ Distrib (ℤ√d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
a b : ℤ√d
⊢ (star (a * b)).re = (star b * star a).re
[PROOFSTEP]
simp
[GOAL]
d : ℤ
a b : ℤ√d
⊢ a.re * b.re + d * a.im * b.im = b.re * a.re + d * b.im * a.im
[PROOFSTEP]
ring
[GOAL]
d : ℤ
a b : ℤ√d
⊢ (star (a * b)).im = (star b * star a).im
[PROOFSTEP]
simp
[GOAL]
d : ℤ
a b : ℤ√d
⊢ -(a.im * b.re) + -(a.re * b.im) = -(b.re * a.im) + -(b.im * a.re)
[PROOFSTEP]
ring
[GOAL]
d : ℤ
⊢ ¬(0.re = 1.re ∧ 0.im = 1.im)
[PROOFSTEP]
simp
[GOAL]
d n : ℤ
⊢ (↑n).re = n
[PROOFSTEP]
cases n
[GOAL]
case ofNat
d : ℤ
a✝ : ℕ
⊢ (↑(Int.ofNat a✝)).re = Int.ofNat a✝
[PROOFSTEP]
rfl
[GOAL]
case negSucc
d : ℤ
a✝ : ℕ
⊢ (↑(Int.negSucc a✝)).re = Int.negSucc a✝
[PROOFSTEP]
rfl
[GOAL]
d n : ℤ
⊢ (↑n).im = 0
[PROOFSTEP]
cases n
[GOAL]
case ofNat
d : ℤ
a✝ : ℕ
⊢ (↑(Int.ofNat a✝)).im = 0
[PROOFSTEP]
rfl
[GOAL]
case negSucc
d : ℤ
a✝ : ℕ
⊢ (↑(Int.negSucc a✝)).im = 0
[PROOFSTEP]
rfl
[GOAL]
d n : ℤ
⊢ ↑n = { re := n, im := 0 }
[PROOFSTEP]
simp [ext]
[GOAL]
d : ℤ
m n : ℕ
⊢ ↑m = ↑n → m = n
[PROOFSTEP]
simp [ext]
[GOAL]
d n : ℤ
⊢ ofInt n = ↑n
[PROOFSTEP]
simp [ext, ofInt_re, ofInt_im]
[GOAL]
d n x y : ℤ
⊢ ↑n * { re := x, im := y } = { re := n * x, im := n * y }
[PROOFSTEP]
simp [ext]
[GOAL]
d a : ℤ
b : ℤ√d
⊢ (↑a * b).re = a * b.re
[PROOFSTEP]
simp
[GOAL]
d a : ℤ
b : ℤ√d
⊢ (↑a * b).im = a * b.im
[PROOFSTEP]
simp
[GOAL]
d x y : ℤ
⊢ sqrtd * { re := x, im := y } = { re := d * y, im := x }
[PROOFSTEP]
simp [ext]
[GOAL]
d : ℤ
⊢ sqrtd * sqrtd = ↑d
[PROOFSTEP]
simp [ext]
[GOAL]
d n x y : ℤ
⊢ sqrtd * ↑n * { re := x, im := y } = { re := d * n * y, im := n * x }
[PROOFSTEP]
simp [ext]
[GOAL]
d x y : ℤ
⊢ { re := x, im := y } = ↑x + sqrtd * ↑y
[PROOFSTEP]
simp [ext]
[GOAL]
d x y : ℤ
⊢ { re := x, im := y } * star { re := x, im := y } = ↑x * ↑x - ↑d * ↑y * ↑y
[PROOFSTEP]
simp [ext, sub_eq_add_neg, mul_comm]
[GOAL]
d m n : ℤ
h : ↑m = ↑n
⊢ m = n
[PROOFSTEP]
simpa using congr_arg re h
[GOAL]
d z : ℤ
a : ℤ√d
⊢ ↑z ∣ a ↔ z ∣ a.re ∧ z ∣ a.im
[PROOFSTEP]
constructor
[GOAL]
case mp
d z : ℤ
a : ℤ√d
⊢ ↑z ∣ a → z ∣ a.re ∧ z ∣ a.im
[PROOFSTEP]
rintro ⟨x, rfl⟩
[GOAL]
case mp.intro
d z : ℤ
x : ℤ√d
⊢ z ∣ (↑z * x).re ∧ z ∣ (↑z * x).im
[PROOFSTEP]
simp only [add_zero, coe_int_re, zero_mul, mul_im, dvd_mul_right, and_self_iff, mul_re, mul_zero, coe_int_im]
[GOAL]
case mpr
d z : ℤ
a : ℤ√d
⊢ z ∣ a.re ∧ z ∣ a.im → ↑z ∣ a
[PROOFSTEP]
rintro ⟨⟨r, hr⟩, ⟨i, hi⟩⟩
[GOAL]
case mpr.intro.intro.intro
d z : ℤ
a : ℤ√d
r : ℤ
hr : a.re = z * r
i : ℤ
hi : a.im = z * i
⊢ ↑z ∣ a
[PROOFSTEP]
use⟨r, i⟩
[GOAL]
case h
d z : ℤ
a : ℤ√d
r : ℤ
hr : a.re = z * r
i : ℤ
hi : a.im = z * i
⊢ a = ↑z * { re := r, im := i }
[PROOFSTEP]
rw [smul_val, ext]
[GOAL]
case h
d z : ℤ
a : ℤ√d
r : ℤ
hr : a.re = z * r
i : ℤ
hi : a.im = z * i
⊢ a.re = { re := z * r, im := z * i }.re ∧ a.im = { re := z * r, im := z * i }.im
[PROOFSTEP]
exact ⟨hr, hi⟩
[GOAL]
d a b : ℤ
⊢ ↑a ∣ ↑b ↔ a ∣ b
[PROOFSTEP]
rw [coe_int_dvd_iff]
[GOAL]
d a b : ℤ
⊢ a ∣ (↑b).re ∧ a ∣ (↑b).im ↔ a ∣ b
[PROOFSTEP]
constructor
[GOAL]
case mp
d a b : ℤ
⊢ a ∣ (↑b).re ∧ a ∣ (↑b).im → a ∣ b
[PROOFSTEP]
rintro ⟨hre, -⟩
[GOAL]
case mp.intro
d a b : ℤ
hre : a ∣ (↑b).re
⊢ a ∣ b
[PROOFSTEP]
rwa [coe_int_re] at hre
[GOAL]
case mpr
d a b : ℤ
⊢ a ∣ b → a ∣ (↑b).re ∧ a ∣ (↑b).im
[PROOFSTEP]
rw [coe_int_re, coe_int_im]
[GOAL]
case mpr
d a b : ℤ
⊢ a ∣ b → a ∣ b ∧ a ∣ 0
[PROOFSTEP]
exact fun hc => ⟨hc, dvd_zero a⟩
[GOAL]
d a : ℤ
b c : ℤ√d
ha : a ≠ 0
h : ↑a * b = ↑a * c
⊢ b = c
[PROOFSTEP]
rw [ext] at h ⊢
[GOAL]
d a : ℤ
b c : ℤ√d
ha : a ≠ 0
h : (↑a * b).re = (↑a * c).re ∧ (↑a * b).im = (↑a * c).im
⊢ b.re = c.re ∧ b.im = c.im
[PROOFSTEP]
apply And.imp _ _ h
[GOAL]
d a : ℤ
b c : ℤ√d
ha : a ≠ 0
h : (↑a * b).re = (↑a * c).re ∧ (↑a * b).im = (↑a * c).im
⊢ (↑a * b).re = (↑a * c).re → b.re = c.re
[PROOFSTEP]
simpa only [smul_re, smul_im] using mul_left_cancel₀ ha
[GOAL]
d a : ℤ
b c : ℤ√d
ha : a ≠ 0
h : (↑a * b).re = (↑a * c).re ∧ (↑a * b).im = (↑a * c).im
⊢ (↑a * b).im = (↑a * c).im → b.im = c.im
[PROOFSTEP]
simpa only [smul_re, smul_im] using mul_left_cancel₀ ha
[GOAL]
d : ℤ
a : ℤ√d
⊢ Int.gcd a.re a.im = 0 ↔ a = 0
[PROOFSTEP]
simp only [Int.gcd_eq_zero_iff, ext, eq_self_iff_true, zero_im, zero_re]
[GOAL]
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ IsCoprime b.re b.im
[PROOFSTEP]
apply isCoprime_of_dvd
[GOAL]
case nonzero
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ ¬(b.re = 0 ∧ b.im = 0)
[PROOFSTEP]
rintro ⟨hre, him⟩
[GOAL]
case nonzero.intro
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
hre : b.re = 0
him : b.im = 0
⊢ False
[PROOFSTEP]
obtain rfl : b = 0 := by simp only [ext, hre, eq_self_iff_true, zero_im, him, and_self_iff, zero_re]
[GOAL]
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
hre : b.re = 0
him : b.im = 0
⊢ b = 0
[PROOFSTEP]
simp only [ext, hre, eq_self_iff_true, zero_im, him, and_self_iff, zero_re]
[GOAL]
case nonzero.intro
d : ℤ
a : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : 0 ∣ a
hre : 0.re = 0
him : 0.im = 0
⊢ False
[PROOFSTEP]
rw [zero_dvd_iff] at hdvd
[GOAL]
case nonzero.intro
d : ℤ
a : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : a = 0
hre : 0.re = 0
him : 0.im = 0
⊢ False
[PROOFSTEP]
simp [hdvd, zero_im, zero_re, not_isCoprime_zero_zero] at hcoprime
[GOAL]
case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
⊢ ∀ (z : ℤ), z ∈ nonunits ℤ → z ≠ 0 → z ∣ b.re → ¬z ∣ b.im
[PROOFSTEP]
rintro z hz - hzdvdu hzdvdv
[GOAL]
case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ False
[PROOFSTEP]
apply hz
[GOAL]
case H
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ IsUnit z
[PROOFSTEP]
obtain ⟨ha, hb⟩ : z ∣ a.re ∧ z ∣ a.im := by
rw [← coe_int_dvd_iff]
apply dvd_trans _ hdvd
rw [coe_int_dvd_iff]
exact ⟨hzdvdu, hzdvdv⟩
[GOAL]
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ z ∣ a.re ∧ z ∣ a.im
[PROOFSTEP]
rw [← coe_int_dvd_iff]
[GOAL]
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ ↑z ∣ a
[PROOFSTEP]
apply dvd_trans _ hdvd
[GOAL]
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ ↑z ∣ b
[PROOFSTEP]
rw [coe_int_dvd_iff]
[GOAL]
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
⊢ z ∣ b.re ∧ z ∣ b.im
[PROOFSTEP]
exact ⟨hzdvdu, hzdvdv⟩
[GOAL]
case H.intro
d : ℤ
a b : ℤ√d
hcoprime : IsCoprime a.re a.im
hdvd : b ∣ a
z : ℤ
hz : z ∈ nonunits ℤ
hzdvdu : z ∣ b.re
hzdvdv : z ∣ b.im
ha : z ∣ a.re
hb : z ∣ a.im
⊢ IsUnit z
[PROOFSTEP]
exact hcoprime.isUnit_of_dvd' ha hb
[GOAL]
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
⊢ ∃ b, a = ↑↑(Int.gcd a.re a.im) * b ∧ IsCoprime b.re b.im
[PROOFSTEP]
obtain ⟨re, im, H1, Hre, Him⟩ := Int.exists_gcd_one hgcd
[GOAL]
case intro.intro.intro.intro
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = re * ↑(Int.gcd a.re a.im)
Him : a.im = im * ↑(Int.gcd a.re a.im)
⊢ ∃ b, a = ↑↑(Int.gcd a.re a.im) * b ∧ IsCoprime b.re b.im
[PROOFSTEP]
rw [mul_comm] at Hre Him
[GOAL]
case intro.intro.intro.intro
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = ↑(Int.gcd a.re a.im) * re
Him : a.im = ↑(Int.gcd a.re a.im) * im
⊢ ∃ b, a = ↑↑(Int.gcd a.re a.im) * b ∧ IsCoprime b.re b.im
[PROOFSTEP]
refine' ⟨⟨re, im⟩, _, _⟩
[GOAL]
case intro.intro.intro.intro.refine'_1
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = ↑(Int.gcd a.re a.im) * re
Him : a.im = ↑(Int.gcd a.re a.im) * im
⊢ a = ↑↑(Int.gcd a.re a.im) * { re := re, im := im }
[PROOFSTEP]
rw [smul_val, ext, ← Hre, ← Him]
[GOAL]
case intro.intro.intro.intro.refine'_1
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = ↑(Int.gcd a.re a.im) * re
Him : a.im = ↑(Int.gcd a.re a.im) * im
⊢ a.re = { re := a.re, im := a.im }.re ∧ a.im = { re := a.re, im := a.im }.im
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.intro.refine'_1.left
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = ↑(Int.gcd a.re a.im) * re
Him : a.im = ↑(Int.gcd a.re a.im) * im
⊢ a.re = { re := a.re, im := a.im }.re
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.intro.refine'_1.right
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = ↑(Int.gcd a.re a.im) * re
Him : a.im = ↑(Int.gcd a.re a.im) * im
⊢ a.im = { re := a.re, im := a.im }.im
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.intro.intro.refine'_2
d : ℤ
a : ℤ√d
hgcd : 0 < Int.gcd a.re a.im
re im : ℤ
H1 : Int.gcd re im = 1
Hre : a.re = ↑(Int.gcd a.re a.im) * re
Him : a.im = ↑(Int.gcd a.re a.im) * im
⊢ IsCoprime { re := re, im := im }.re { re := re, im := im }.im
[PROOFSTEP]
rw [← Int.gcd_eq_one_iff_coprime, H1]
[GOAL]
d✝ : ℤ
c d x y z w : ℕ
xy : SqLe x c y d
zw : SqLe z c w d
⊢ c * (x * z) * (c * (x * z)) ≤ d * (y * w) * (d * (y * w))
[PROOFSTEP]
simpa [mul_comm, mul_left_comm] using mul_le_mul xy zw (Nat.zero_le _) (Nat.zero_le _)
[GOAL]
d✝ : ℤ
c d x y z w : ℕ
xy : SqLe x c y d
zw : SqLe z c w d
⊢ SqLe (x + z) c (y + w) d
[PROOFSTEP]
have xz := sqLe_add_mixed xy zw
[GOAL]
d✝ : ℤ
c d x y z w : ℕ
xy : SqLe x c y d
zw : SqLe z c w d
xz : c * (x * z) ≤ d * (y * w)
⊢ SqLe (x + z) c (y + w) d
[PROOFSTEP]
simp [SqLe, mul_assoc] at xy zw
[GOAL]
d✝ : ℤ
c d x y z w : ℕ
xz : c * (x * z) ≤ d * (y * w)
xy : c * (x * x) ≤ d * (y * y)
zw : c * (z * z) ≤ d * (w * w)
⊢ SqLe (x + z) c (y + w) d
[PROOFSTEP]
simp [SqLe, mul_add, mul_comm, mul_left_comm, add_le_add, *]
[GOAL]
d✝ : ℤ
c d x y z w : ℕ
zw : SqLe y d x c
h : SqLe (x + z) c (y + w) d
⊢ SqLe z c w d
[PROOFSTEP]
apply le_of_not_gt
[GOAL]
case a
d✝ : ℤ
c d x y z w : ℕ
zw : SqLe y d x c
h : SqLe (x + z) c (y + w) d
⊢ ¬c * z * z > d * w * w
[PROOFSTEP]
intro l
[GOAL]
case a
d✝ : ℤ
c d x y z w : ℕ
zw : SqLe y d x c
h : SqLe (x + z) c (y + w) d
l : c * z * z > d * w * w
⊢ False
[PROOFSTEP]
refine' not_le_of_gt _ h
[GOAL]
case a
d✝ : ℤ
c d x y z w : ℕ
zw : SqLe y d x c
h : SqLe (x + z) c (y + w) d
l : c * z * z > d * w * w
⊢ c * (x + z) * (x + z) > d * (y + w) * (y + w)
[PROOFSTEP]
simp only [SqLe, mul_add, mul_comm, mul_left_comm, add_assoc, gt_iff_lt]
[GOAL]
case a
d✝ : ℤ
c d x y z w : ℕ
zw : SqLe y d x c
h : SqLe (x + z) c (y + w) d
l : c * z * z > d * w * w
⊢ d * (y * y) + (d * (y * w) + (d * (y * w) + d * (w * w))) < c * (x * x) + (c * (x * z) + (c * (x * z) + c * (z * z)))
[PROOFSTEP]
have hm := sqLe_add_mixed zw (le_of_lt l)
[GOAL]
case a
d✝ : ℤ
c d x y z w : ℕ
zw : SqLe y d x c
h : SqLe (x + z) c (y + w) d
l : c * z * z > d * w * w
hm : d * (y * w) ≤ c * (x * z)
⊢ d * (y * y) + (d * (y * w) + (d * (y * w) + d * (w * w))) < c * (x * x) + (c * (x * z) + (c * (x * z) + c * (z * z)))
[PROOFSTEP]
simp only [SqLe, mul_assoc, gt_iff_lt] at l zw
[GOAL]
case a
d✝ : ℤ
c d x y z w : ℕ
h : SqLe (x + z) c (y + w) d
hm : d * (y * w) ≤ c * (x * z)
l : d * (w * w) < c * (z * z)
zw : d * (y * y) ≤ c * (x * x)
⊢ d * (y * y) + (d * (y * w) + (d * (y * w) + d * (w * w))) < c * (x * x) + (c * (x * z) + (c * (x * z) + c * (z * z)))
[PROOFSTEP]
exact
lt_of_le_of_lt (add_le_add_right zw _) (add_lt_add_left (add_lt_add_of_le_of_lt hm (add_lt_add_of_le_of_lt hm l)) _)
[GOAL]
d✝ : ℤ
c d x y n : ℕ
xy : SqLe x c y d
⊢ SqLe (n * x) c (n * y) d
[PROOFSTEP]
simpa [SqLe, mul_left_comm, mul_assoc] using Nat.mul_le_mul_left (n * n) xy
[GOAL]
d✝ : ℤ
d x y z w : ℕ
⊢ (SqLe x 1 y d → SqLe z 1 w d → SqLe (x * w + y * z) d (x * z + d * y * w) 1) ∧
(SqLe x 1 y d → SqLe w d z 1 → SqLe (x * z + d * y * w) 1 (x * w + y * z) d) ∧
(SqLe y d x 1 → SqLe z 1 w d → SqLe (x * z + d * y * w) 1 (x * w + y * z) d) ∧
(SqLe y d x 1 → SqLe w d z 1 → SqLe (x * w + y * z) d (x * z + d * y * w) 1)
[PROOFSTEP]
refine' ⟨_, _, _, _⟩
[GOAL]
case refine'_1
d✝ : ℤ
d x y z w : ℕ
⊢ SqLe x 1 y d → SqLe z 1 w d → SqLe (x * w + y * z) d (x * z + d * y * w) 1
[PROOFSTEP]
intro xy zw
[GOAL]
case refine'_1
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe z 1 w d
⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1
[PROOFSTEP]
have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw))
[GOAL]
case refine'_1
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe z 1 w d
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1
[PROOFSTEP]
refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _)
[GOAL]
case refine'_1
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe z 1 w d
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ 0 ≤ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z))
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe z 1 w d
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z)) =
(↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z))
[PROOFSTEP]
simp only [one_mul, Int.ofNat_add, Int.ofNat_mul]
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe z 1 w d
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) - ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) =
(↑d * ↑y * ↑y - ↑x * ↑x) * (↑d * ↑w * ↑w - ↑z * ↑z)
[PROOFSTEP]
ring
[GOAL]
case refine'_2
d✝ : ℤ
d x y z w : ℕ
⊢ SqLe x 1 y d → SqLe w d z 1 → SqLe (x * z + d * y * w) 1 (x * w + y * z) d
[PROOFSTEP]
intro xy zw
[GOAL]
case refine'_2
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe w d z 1
⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d
[PROOFSTEP]
have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw))
[GOAL]
case refine'_2
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe w d z 1
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d
[PROOFSTEP]
refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _)
[GOAL]
case refine'_2
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe w d z 1
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ 0 ≤ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w))
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe w d z 1
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) =
(↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w))
[PROOFSTEP]
simp only [one_mul, Int.ofNat_add, Int.ofNat_mul]
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe x 1 y d
zw : SqLe w d z 1
this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) - (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) =
(↑d * ↑y * ↑y - ↑x * ↑x) * (↑z * ↑z - ↑d * ↑w * ↑w)
[PROOFSTEP]
ring
[GOAL]
case refine'_3
d✝ : ℤ
d x y z w : ℕ
⊢ SqLe y d x 1 → SqLe z 1 w d → SqLe (x * z + d * y * w) 1 (x * w + y * z) d
[PROOFSTEP]
intro xy zw
[GOAL]
case refine'_3
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe z 1 w d
⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d
[PROOFSTEP]
have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw))
[GOAL]
case refine'_3
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe z 1 w d
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d
[PROOFSTEP]
refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _)
[GOAL]
case refine'_3
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe z 1 w d
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ 0 ≤ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w))
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe z 1 w d
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) =
(↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z))
[PROOFSTEP]
simp only [one_mul, Int.ofNat_add, Int.ofNat_mul]
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe z 1 w d
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z))
⊢ ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) - (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) =
(↑x * ↑x - ↑d * ↑y * ↑y) * (↑d * ↑w * ↑w - ↑z * ↑z)
[PROOFSTEP]
ring
[GOAL]
case refine'_4
d✝ : ℤ
d x y z w : ℕ
⊢ SqLe y d x 1 → SqLe w d z 1 → SqLe (x * w + y * z) d (x * z + d * y * w) 1
[PROOFSTEP]
intro xy zw
[GOAL]
case refine'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe w d z 1
⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1
[PROOFSTEP]
have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw))
[GOAL]
case refine'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe w d z 1
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1
[PROOFSTEP]
refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _)
[GOAL]
case refine'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe w d z 1
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ 0 ≤ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z))
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe w d z 1
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z)) =
(↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w))
[PROOFSTEP]
simp only [one_mul, Int.ofNat_add, Int.ofNat_mul]
[GOAL]
case h.e'_4
d✝ : ℤ
d x y z w : ℕ
xy : SqLe y d x 1
zw : SqLe w d z 1
this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w))
⊢ (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) - ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) =
(↑x * ↑x - ↑d * ↑y * ↑y) * (↑z * ↑z - ↑d * ↑w * ↑w)
[PROOFSTEP]
ring
[GOAL]
d✝ : ℤ
c d : ℕ
x y : ℤ
⊢ Nonnegg c d x y = Nonnegg d c y x
[PROOFSTEP]
induction x
[GOAL]
case ofNat
d✝ : ℤ
c d : ℕ
y : ℤ
a✝ : ℕ
⊢ Nonnegg c d (Int.ofNat a✝) y = Nonnegg d c y (Int.ofNat a✝)
[PROOFSTEP]
induction y
[GOAL]
case negSucc
d✝ : ℤ
c d : ℕ
y : ℤ
a✝ : ℕ
⊢ Nonnegg c d (Int.negSucc a✝) y = Nonnegg d c y (Int.negSucc a✝)
[PROOFSTEP]
induction y
[GOAL]
case ofNat.ofNat
d✝ : ℤ
c d a✝¹ a✝ : ℕ
⊢ Nonnegg c d (Int.ofNat a✝¹) (Int.ofNat a✝) = Nonnegg d c (Int.ofNat a✝) (Int.ofNat a✝¹)
[PROOFSTEP]
rfl
[GOAL]
case ofNat.negSucc
d✝ : ℤ
c d a✝¹ a✝ : ℕ
⊢ Nonnegg c d (Int.ofNat a✝¹) (Int.negSucc a✝) = Nonnegg d c (Int.negSucc a✝) (Int.ofNat a✝¹)
[PROOFSTEP]
rfl
[GOAL]
case negSucc.ofNat
d✝ : ℤ
c d a✝¹ a✝ : ℕ
⊢ Nonnegg c d (Int.negSucc a✝¹) (Int.ofNat a✝) = Nonnegg d c (Int.ofNat a✝) (Int.negSucc a✝¹)
[PROOFSTEP]
rfl
[GOAL]
case negSucc.negSucc
d✝ : ℤ
c d a✝¹ a✝ : ℕ
⊢ Nonnegg c d (Int.negSucc a✝¹) (Int.negSucc a✝) = Nonnegg d c (Int.negSucc a✝) (Int.negSucc a✝¹)
[PROOFSTEP]
rfl
[GOAL]
d✝ : ℤ
c d b : ℕ
⊢ Nonnegg c d (-↑0) ↑b → SqLe 0 d b c
[PROOFSTEP]
simp [SqLe, Nat.zero_le]
[GOAL]
d✝ : ℤ
c d a b : ℕ
⊢ Nonnegg c d (-↑(a + 1)) ↑b ↔ SqLe (a + 1) d b c
[PROOFSTEP]
rw [← Int.negSucc_coe]
[GOAL]
d✝ : ℤ
c d a b : ℕ
⊢ Nonnegg c d (Int.negSucc a) ↑b ↔ SqLe (a + 1) d b c
[PROOFSTEP]
rfl
[GOAL]
d✝ : ℤ
c d a b : ℕ
⊢ Nonnegg c d (↑a) (-↑b) ↔ SqLe b c a d
[PROOFSTEP]
rw [nonnegg_comm]
[GOAL]
d✝ : ℤ
c d a b : ℕ
⊢ Nonnegg d c (-↑b) ↑a ↔ SqLe b c a d
[PROOFSTEP]
exact nonnegg_neg_pos
[GOAL]
d : ℤ
⊢ norm 0 = 0
[PROOFSTEP]
simp [norm]
[GOAL]
d : ℤ
⊢ norm 1 = 1
[PROOFSTEP]
simp [norm]
[GOAL]
d n : ℤ
⊢ norm ↑n = n * n
[PROOFSTEP]
simp [norm]
[GOAL]
d : ℤ
n m : ℤ√d
⊢ norm (n * m) = norm n * norm m
[PROOFSTEP]
simp only [norm, mul_im, mul_re]
[GOAL]
d : ℤ
n m : ℤ√d
⊢ (n.re * m.re + d * n.im * m.im) * (n.re * m.re + d * n.im * m.im) -
d * (n.re * m.im + n.im * m.re) * (n.re * m.im + n.im * m.re) =
(n.re * n.re - d * n.im * n.im) * (m.re * m.re - d * m.im * m.im)
[PROOFSTEP]
ring
[GOAL]
d : ℤ
n : ℤ√d
⊢ ↑(norm n) = n * star n
[PROOFSTEP]
cases n
[GOAL]
case mk
d re✝ im✝ : ℤ
⊢ ↑(norm { re := re✝, im := im✝ }) = { re := re✝, im := im✝ } * star { re := re✝, im := im✝ }
[PROOFSTEP]
simp [norm, star, Zsqrtd.ext, mul_comm, sub_eq_add_neg]
[GOAL]
d : ℤ
x : ℤ√d
⊢ ↑(norm (-x)) = ↑(norm x)
[PROOFSTEP]
rw [norm_eq_mul_conj, star_neg, neg_mul_neg, norm_eq_mul_conj]
[GOAL]
d : ℤ
x : ℤ√d
⊢ ↑(norm (star x)) = ↑(norm x)
[PROOFSTEP]
rw [norm_eq_mul_conj, star_star, mul_comm, norm_eq_mul_conj]
[GOAL]
d : ℤ
hd : d ≤ 0
n : ℤ√d
⊢ 0 ≤ -(d * n.im * n.im)
[PROOFSTEP]
rw [mul_assoc, neg_mul_eq_neg_mul]
[GOAL]
d : ℤ
hd : d ≤ 0
n : ℤ√d
⊢ 0 ≤ -d * (n.im * n.im)
[PROOFSTEP]
exact mul_nonneg (neg_nonneg.2 hd) (mul_self_nonneg _)
[GOAL]
d : ℤ
x : ℤ√d
h : Int.natAbs (norm x) = 1
hx : 0 ≤ norm x
⊢ 1 = x * star x
[PROOFSTEP]
rwa [← Int.coe_nat_inj', Int.natAbs_of_nonneg hx, ← @Int.cast_inj (ℤ√d) _ _, norm_eq_mul_conj, eq_comm] at h
[GOAL]
d : ℤ
x : ℤ√d
h : Int.natAbs (norm x) = 1
hx : norm x ≤ 0
⊢ 1 = x * -star x
[PROOFSTEP]
rwa [← Int.coe_nat_inj', Int.ofNat_natAbs_of_nonpos hx, ← @Int.cast_inj (ℤ√d) _ _, Int.cast_neg, norm_eq_mul_conj,
neg_mul_eq_mul_neg, eq_comm] at h
[GOAL]
d : ℤ
x : ℤ√d
h : IsUnit x
⊢ Int.natAbs (norm x) = 1
[PROOFSTEP]
let ⟨y, hy⟩ := isUnit_iff_dvd_one.1 h
[GOAL]
d : ℤ
x : ℤ√d
h : IsUnit x
y : ℤ√d
hy : 1 = x * y
⊢ Int.natAbs (norm x) = 1
[PROOFSTEP]
have := congr_arg (Int.natAbs ∘ norm) hy
[GOAL]
d : ℤ
x : ℤ√d
h : IsUnit x
y : ℤ√d
hy : 1 = x * y
this : (Int.natAbs ∘ norm) 1 = (Int.natAbs ∘ norm) (x * y)
⊢ Int.natAbs (norm x) = 1
[PROOFSTEP]
rw [Function.comp_apply, Function.comp_apply, norm_mul, Int.natAbs_mul, norm_one, Int.natAbs_one, eq_comm,
mul_eq_one] at this
[GOAL]
d : ℤ
x : ℤ√d
h : IsUnit x
y : ℤ√d
hy : 1 = x * y
this : Int.natAbs (norm x) = 1 ∧ Int.natAbs (norm y) = 1
⊢ Int.natAbs (norm x) = 1
[PROOFSTEP]
exact this.1
[GOAL]
d✝ d : ℤ
z : ℤ√d
⊢ IsUnit z ↔ IsUnit (norm z)
[PROOFSTEP]
rw [Int.isUnit_iff_natAbs_eq, norm_eq_one_iff]
[GOAL]
d✝ d : ℤ
hd : d ≤ 0
z : ℤ√d
⊢ norm z = 1 ↔ IsUnit z
[PROOFSTEP]
rw [← norm_eq_one_iff, ← Int.coe_nat_inj', Int.natAbs_of_nonneg (norm_nonneg hd z), Int.ofNat_one]
[GOAL]
d✝ d : ℤ
hd : d < 0
z : ℤ√d
⊢ norm z = 0 ↔ z = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
d✝ d : ℤ
hd : d < 0
z : ℤ√d
⊢ norm z = 0 → z = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : norm z = 0
⊢ z = 0
[PROOFSTEP]
rw [ext, zero_re, zero_im]
[GOAL]
case mp
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : norm z = 0
⊢ z.re = 0 ∧ z.im = 0
[PROOFSTEP]
rw [norm_def, sub_eq_add_neg, mul_assoc] at h
[GOAL]
case mp
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
⊢ z.re = 0 ∧ z.im = 0
[PROOFSTEP]
have left := mul_self_nonneg z.re
[GOAL]
case mp
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
⊢ z.re = 0 ∧ z.im = 0
[PROOFSTEP]
have right := neg_nonneg.mpr (mul_nonpos_of_nonpos_of_nonneg hd.le (mul_self_nonneg z.im))
[GOAL]
case mp
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
⊢ z.re = 0 ∧ z.im = 0
[PROOFSTEP]
obtain ⟨ha, hb⟩ := (add_eq_zero_iff' left right).mp h
[GOAL]
case mp.intro
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
ha : z.re * z.re = 0
hb : -(d * (z.im * z.im)) = 0
⊢ z.re = 0 ∧ z.im = 0
[PROOFSTEP]
constructor
[GOAL]
case mp.intro.left
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
ha : z.re * z.re = 0
hb : -(d * (z.im * z.im)) = 0
⊢ z.re = 0
[PROOFSTEP]
apply eq_zero_of_mul_self_eq_zero
[GOAL]
case mp.intro.right
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
ha : z.re * z.re = 0
hb : -(d * (z.im * z.im)) = 0
⊢ z.im = 0
[PROOFSTEP]
apply eq_zero_of_mul_self_eq_zero
[GOAL]
case mp.intro.left.h
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
ha : z.re * z.re = 0
hb : -(d * (z.im * z.im)) = 0
⊢ z.re * z.re = 0
[PROOFSTEP]
exact ha
[GOAL]
case mp.intro.right.h
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
ha : z.re * z.re = 0
hb : -(d * (z.im * z.im)) = 0
⊢ z.im * z.im = 0
[PROOFSTEP]
rw [neg_eq_zero, mul_eq_zero] at hb
[GOAL]
case mp.intro.right.h
d✝ d : ℤ
hd : d < 0
z : ℤ√d
h : z.re * z.re + -(d * (z.im * z.im)) = 0
left : 0 ≤ z.re * z.re
right : 0 ≤ -(d * (z.im * z.im))
ha : z.re * z.re = 0
hb : d = 0 ∨ z.im * z.im = 0
⊢ z.im * z.im = 0
[PROOFSTEP]
exact hb.resolve_left hd.ne
[GOAL]
case mpr
d✝ d : ℤ
hd : d < 0
z : ℤ√d
⊢ z = 0 → norm z = 0
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
d✝ d : ℤ
hd : d < 0
⊢ norm 0 = 0
[PROOFSTEP]
exact norm_zero
[GOAL]
d✝ d : ℤ
hd : d ≤ 0
x y : ℤ√d
h : Associated x y
⊢ norm x = norm y
[PROOFSTEP]
obtain ⟨u, rfl⟩ := h
[GOAL]
case intro
d✝ d : ℤ
hd : d ≤ 0
x : ℤ√d
u : (ℤ√d)ˣ
⊢ norm x = norm (x * ↑u)
[PROOFSTEP]
rw [norm_mul, (norm_eq_one_iff' hd _).mpr u.isUnit, mul_one]
[GOAL]
d✝ c d : ℕ
a b : ℤ
⊢ Decidable (Nonnegg c d a b)
[PROOFSTEP]
cases a
[GOAL]
case ofNat
d✝ c d : ℕ
b : ℤ
a✝ : ℕ
⊢ Decidable (Nonnegg c d (Int.ofNat a✝) b)
[PROOFSTEP]
cases b
[GOAL]
case negSucc
d✝ c d : ℕ
b : ℤ
a✝ : ℕ
⊢ Decidable (Nonnegg c d (Int.negSucc a✝) b)
[PROOFSTEP]
cases b
[GOAL]
case ofNat.ofNat
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable (Nonnegg c d (Int.ofNat a✝¹) (Int.ofNat a✝))
[PROOFSTEP]
unfold Nonnegg SqLe
[GOAL]
case ofNat.negSucc
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable (Nonnegg c d (Int.ofNat a✝¹) (Int.negSucc a✝))
[PROOFSTEP]
unfold Nonnegg SqLe
[GOAL]
case negSucc.ofNat
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable (Nonnegg c d (Int.negSucc a✝¹) (Int.ofNat a✝))
[PROOFSTEP]
unfold Nonnegg SqLe
[GOAL]
case negSucc.negSucc
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable (Nonnegg c d (Int.negSucc a✝¹) (Int.negSucc a✝))
[PROOFSTEP]
unfold Nonnegg SqLe
[GOAL]
case ofNat.ofNat
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable
(match Int.ofNat a✝¹, Int.ofNat a✝ with
| Int.ofNat a, Int.ofNat b => True
| Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a
| Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b
| Int.negSucc a, Int.negSucc a_1 => False)
[PROOFSTEP]
infer_instance
[GOAL]
case ofNat.negSucc
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable
(match Int.ofNat a✝¹, Int.negSucc a✝ with
| Int.ofNat a, Int.ofNat b => True
| Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a
| Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b
| Int.negSucc a, Int.negSucc a_1 => False)
[PROOFSTEP]
infer_instance
[GOAL]
case negSucc.ofNat
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable
(match Int.negSucc a✝¹, Int.ofNat a✝ with
| Int.ofNat a, Int.ofNat b => True
| Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a
| Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b
| Int.negSucc a, Int.negSucc a_1 => False)
[PROOFSTEP]
infer_instance
[GOAL]
case negSucc.negSucc
d✝ c d a✝¹ a✝ : ℕ
⊢ Decidable
(match Int.negSucc a✝¹, Int.negSucc a✝ with
| Int.ofNat a, Int.ofNat b => True
| Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a
| Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b
| Int.negSucc a, Int.negSucc a_1 => False)
[PROOFSTEP]
infer_instance
[GOAL]
d x y z w : ℕ
xy : Nonneg { re := ↑x, im := -↑y }
zw : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
have : Nonneg ⟨Int.subNatNat x z, Int.subNatNat w y⟩ :=
Int.subNatNat_elim x z (fun m n i => SqLe y d m 1 → SqLe n 1 w d → Nonneg ⟨i, Int.subNatNat w y⟩)
(fun j k =>
Int.subNatNat_elim w y (fun m n i => SqLe n d (k + j) 1 → SqLe k 1 m d → Nonneg ⟨Int.ofNat j, i⟩)
(fun _ _ _ _ => trivial) fun m n xy zw => sqLe_cancel zw xy)
(fun j k =>
Int.subNatNat_elim w y (fun m n i => SqLe n d k 1 → SqLe (k + j + 1) 1 m d → Nonneg ⟨-[j+1], i⟩)
(fun m n xy zw => sqLe_cancel xy zw) fun m n xy zw =>
let t := Nat.le_trans zw (sqLe_of_le (Nat.le_add_right n (m + 1)) le_rfl xy)
have : k + j + 1 ≤ k := Nat.mul_self_le_mul_self_iff.2 (by simpa [one_mul] using t)
absurd this (not_le_of_gt <| Nat.succ_le_succ <| Nat.le_add_right _ _))
(nonnegg_pos_neg.1 xy) (nonnegg_neg_pos.1 zw)
[GOAL]
d x y z w : ℕ
xy✝ : Nonneg { re := ↑x, im := -↑y }
zw✝ : Nonneg { re := -↑z, im := ↑w }
j k m n : ℕ
xy : SqLe (n + m + 1) d k 1
zw : SqLe (k + j + 1) 1 n d
t : 1 * (k + j + 1) * (k + j + 1) ≤ 1 * k * k := Nat.le_trans zw (sqLe_of_le (Nat.le_add_right n (m + 1)) le_rfl xy)
⊢ (k + j + 1) * (k + j + 1) ≤ k * k
[PROOFSTEP]
simpa [one_mul] using t
[GOAL]
d x y z w : ℕ
xy : Nonneg { re := ↑x, im := -↑y }
zw : Nonneg { re := -↑z, im := ↑w }
this : Nonneg { re := subNatNat x z, im := subNatNat w y }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
rw [add_def, neg_add_eq_sub]
[GOAL]
d x y z w : ℕ
xy : Nonneg { re := ↑x, im := -↑y }
zw : Nonneg { re := -↑z, im := ↑w }
this : Nonneg { re := subNatNat x z, im := subNatNat w y }
⊢ Nonneg { re := ↑x + -↑z, im := ↑w - ↑y }
[PROOFSTEP]
rwa [Int.subNatNat_eq_coe, Int.subNatNat_eq_coe] at this
[GOAL]
d : ℕ
a b : ℤ√↑d
ha : Nonneg a
hb : Nonneg b
⊢ Nonneg (a + b)
[PROOFSTEP]
rcases nonneg_cases ha with ⟨x, y, rfl | rfl | rfl⟩
[GOAL]
case intro.intro.inl
d : ℕ
b : ℤ√↑d
hb : Nonneg b
x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
⊢ Nonneg ({ re := ↑x, im := ↑y } + b)
[PROOFSTEP]
rcases nonneg_cases hb with ⟨z, w, rfl | rfl | rfl⟩
[GOAL]
case intro.intro.inr.inl
d : ℕ
b : ℤ√↑d
hb : Nonneg b
x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
⊢ Nonneg ({ re := ↑x, im := -↑y } + b)
[PROOFSTEP]
rcases nonneg_cases hb with ⟨z, w, rfl | rfl | rfl⟩
[GOAL]
case intro.intro.inr.inr
d : ℕ
b : ℤ√↑d
hb : Nonneg b
x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
⊢ Nonneg ({ re := -↑x, im := ↑y } + b)
[PROOFSTEP]
rcases nonneg_cases hb with ⟨z, w, rfl | rfl | rfl⟩
[GOAL]
case intro.intro.inl.intro.intro.inl
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := ↑y } + { re := ↑z, im := ↑w })
[PROOFSTEP]
trivial
[GOAL]
case intro.intro.inl.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg ({ re := ↑x, im := ↑y } + { re := ↑z, im := -↑w })
[PROOFSTEP]
refine' nonnegg_cases_right fun i h => sqLe_of_le _ _ (nonnegg_pos_neg.1 hb)
[GOAL]
case intro.intro.inl.intro.intro.inr.inl.refine'_1
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
i : ℕ
h : { re := ↑x, im := ↑y }.im + { re := ↑z, im := -↑w }.im = -↑i
⊢ i ≤ w
[PROOFSTEP]
dsimp only at h
[GOAL]
case intro.intro.inl.intro.intro.inr.inl.refine'_1
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
i : ℕ
h : ↑y + -↑w = -↑i
⊢ i ≤ w
[PROOFSTEP]
exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro y (by simp [add_comm, *])))
[GOAL]
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
i : ℕ
h : ↑y + -↑w = -↑i
⊢ -↑w + ↑y = -↑i
[PROOFSTEP]
simp [add_comm, *]
[GOAL]
case intro.intro.inl.intro.intro.inr.inl.refine'_2
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
i : ℕ
h : { re := ↑x, im := ↑y }.im + { re := ↑z, im := -↑w }.im = -↑i
⊢ z ≤ x + z
[PROOFSTEP]
apply Nat.le_add_left
[GOAL]
case intro.intro.inl.intro.intro.inr.inr
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := ↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
refine' nonnegg_cases_left fun i h => sqLe_of_le _ _ (nonnegg_neg_pos.1 hb)
[GOAL]
case intro.intro.inl.intro.intro.inr.inr.refine'_1
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
i : ℕ
h : { re := ↑x, im := ↑y }.re + { re := -↑z, im := ↑w }.re = -↑i
⊢ i ≤ z
[PROOFSTEP]
dsimp only at h
[GOAL]
case intro.intro.inl.intro.intro.inr.inr.refine'_1
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
i : ℕ
h : ↑x + -↑z = -↑i
⊢ i ≤ z
[PROOFSTEP]
exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro x (by simp [add_comm, *])))
[GOAL]
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
i : ℕ
h : ↑x + -↑z = -↑i
⊢ -↑z + ↑x = -↑i
[PROOFSTEP]
simp [add_comm, *]
[GOAL]
case intro.intro.inl.intro.intro.inr.inr.refine'_2
d x y : ℕ
ha : Nonneg { re := ↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
i : ℕ
h : { re := ↑x, im := ↑y }.re + { re := -↑z, im := ↑w }.re = -↑i
⊢ w ≤ y + w
[PROOFSTEP]
apply Nat.le_add_left
[GOAL]
case intro.intro.inr.inl.intro.intro.inl
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := ↑w })
[PROOFSTEP]
refine' nonnegg_cases_right fun i h => sqLe_of_le _ _ (nonnegg_pos_neg.1 ha)
[GOAL]
case intro.intro.inr.inl.intro.intro.inl.refine'_1
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : { re := ↑x, im := -↑y }.im + { re := ↑z, im := ↑w }.im = -↑i
⊢ i ≤ y
[PROOFSTEP]
dsimp only at h
[GOAL]
case intro.intro.inr.inl.intro.intro.inl.refine'_1
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : -↑y + ↑w = -↑i
⊢ i ≤ y
[PROOFSTEP]
exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro w (by simp [*])))
[GOAL]
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : -↑y + ↑w = -↑i
⊢ -↑y + ↑w = -↑i
[PROOFSTEP]
simp [*]
[GOAL]
case intro.intro.inr.inl.intro.intro.inl.refine'_2
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : { re := ↑x, im := -↑y }.im + { re := ↑z, im := ↑w }.im = -↑i
⊢ x ≤ x + z
[PROOFSTEP]
apply Nat.le_add_right
[GOAL]
case intro.intro.inr.inl.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := -↑w })
[PROOFSTEP]
have : Nonneg ⟨_, _⟩ := nonnegg_pos_neg.2 (sqLe_add (nonnegg_pos_neg.1 ha) (nonnegg_pos_neg.1 hb))
[GOAL]
case intro.intro.inr.inl.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
this : Nonneg { re := ↑(x + z), im := -↑(y + w) }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := -↑w })
[PROOFSTEP]
rw [Nat.cast_add, Nat.cast_add, neg_add] at this
[GOAL]
case intro.intro.inr.inl.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
this : Nonneg { re := ↑x + ↑z, im := -↑y + -↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := -↑w })
[PROOFSTEP]
rwa [add_def]
-- Porting note: was
-- simpa [add_comm] using
-- nonnegg_pos_neg.2 (sqLe_add (nonnegg_pos_neg.1 ha) (nonnegg_pos_neg.1 hb))
[GOAL]
case intro.intro.inr.inl.intro.intro.inr.inr
d x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
exact nonneg_add_lem ha hb
[GOAL]
case intro.intro.inr.inr.intro.intro.inl
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := ↑z, im := ↑w })
[PROOFSTEP]
refine' nonnegg_cases_left fun i h => sqLe_of_le _ _ (nonnegg_neg_pos.1 ha)
[GOAL]
case intro.intro.inr.inr.intro.intro.inl.refine'_1
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : { re := -↑x, im := ↑y }.re + { re := ↑z, im := ↑w }.re = -↑i
⊢ i ≤ x
[PROOFSTEP]
dsimp only at h
[GOAL]
case intro.intro.inr.inr.intro.intro.inl.refine'_1
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : -↑x + ↑z = -↑i
⊢ i ≤ x
[PROOFSTEP]
exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro _ h))
[GOAL]
case intro.intro.inr.inr.intro.intro.inl.refine'_2
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := ↑w }
i : ℕ
h : { re := -↑x, im := ↑y }.re + { re := ↑z, im := ↑w }.re = -↑i
⊢ y ≤ y + w
[PROOFSTEP]
apply Nat.le_add_right
[GOAL]
case intro.intro.inr.inr.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := ↑z, im := -↑w })
[PROOFSTEP]
dsimp
[GOAL]
case intro.intro.inr.inr.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg { re := -↑x + ↑z, im := ↑y + -↑w }
[PROOFSTEP]
rw [add_comm, add_comm (y : ℤ)]
[GOAL]
case intro.intro.inr.inr.intro.intro.inr.inl
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg { re := ↑z + -↑x, im := -↑w + ↑y }
[PROOFSTEP]
exact nonneg_add_lem hb ha
[GOAL]
case intro.intro.inr.inr.intro.intro.inr.inr
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
have : Nonneg ⟨_, _⟩ := nonnegg_neg_pos.2 (sqLe_add (nonnegg_neg_pos.1 ha) (nonnegg_neg_pos.1 hb))
[GOAL]
case intro.intro.inr.inr.intro.intro.inr.inr
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
this : Nonneg { re := -↑(x + z), im := ↑(y + w) }
⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
rw [Nat.cast_add, Nat.cast_add, neg_add] at this
[GOAL]
case intro.intro.inr.inr.intro.intro.inr.inr
d x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
z w : ℕ
hb : Nonneg { re := -↑z, im := ↑w }
this : Nonneg { re := -↑x + -↑z, im := ↑y + ↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := -↑z, im := ↑w })
[PROOFSTEP]
rwa [add_def]
-- Porting note: was
-- simpa [add_comm] using
-- nonnegg_neg_pos.2 (sqLe_add (nonnegg_neg_pos.1 ha) (nonnegg_neg_pos.1 hb))
[GOAL]
d : ℕ
a : ℤ√↑d
⊢ Nonneg a ↔ Nonneg (a - 0)
[PROOFSTEP]
simp
[GOAL]
d : ℕ
a b : ℤ√↑d
⊢ a ≤ b ∨ b ≤ a
[PROOFSTEP]
have t := (b - a).nonneg_total
[GOAL]
d : ℕ
a b : ℤ√↑d
t : Nonneg (b - a) ∨ Nonneg (-(b - a))
⊢ a ≤ b ∨ b ≤ a
[PROOFSTEP]
rwa [neg_sub] at t
[GOAL]
d : ℕ
a : ℤ√↑d
⊢ Nonneg (a - a)
[PROOFSTEP]
simp only [sub_self]
[GOAL]
d : ℕ
a : ℤ√↑d
⊢ Nonneg 0
[PROOFSTEP]
trivial
[GOAL]
d : ℕ
a b c : ℤ√↑d
hab : a ≤ b
hbc : b ≤ c
⊢ a ≤ c
[PROOFSTEP]
simpa [sub_add_sub_cancel'] using hab.add hbc
[GOAL]
d : ℕ
a : ℤ√↑d
⊢ ∃ n, a ≤ ↑n
[PROOFSTEP]
obtain ⟨x, y, (h : a ≤ ⟨x, y⟩)⟩ : ∃ x y : ℕ, Nonneg (⟨x, y⟩ + -a) :=
match -a with
| ⟨Int.ofNat x, Int.ofNat y⟩ => ⟨0, 0, by trivial⟩
| ⟨Int.ofNat x, -[y+1]⟩ => ⟨0, y + 1, by simp [add_def, Int.negSucc_coe, add_assoc]; trivial⟩
| ⟨-[x+1], Int.ofNat y⟩ => ⟨x + 1, 0, by simp [Int.negSucc_coe, add_assoc]; trivial⟩
| ⟨-[x+1], -[y+1]⟩ => ⟨x + 1, y + 1, by simp [Int.negSucc_coe, add_assoc]; trivial⟩
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg ({ re := ↑0, im := ↑0 } + { re := ofNat x, im := ofNat y })
[PROOFSTEP]
trivial
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg ({ re := ↑0, im := ↑(y + 1) } + { re := ofNat x, im := -[y+1] })
[PROOFSTEP]
simp [add_def, Int.negSucc_coe, add_assoc]
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg { re := ↑x, im := 0 }
[PROOFSTEP]
trivial
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg ({ re := ↑(x + 1), im := ↑0 } + { re := -[x+1], im := ofNat y })
[PROOFSTEP]
simp [Int.negSucc_coe, add_assoc]
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg { re := 0, im := ↑y }
[PROOFSTEP]
trivial
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg ({ re := ↑(x + 1), im := ↑(y + 1) } + { re := -[x+1], im := -[y+1] })
[PROOFSTEP]
simp [Int.negSucc_coe, add_assoc]
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
⊢ Nonneg { re := 0, im := 0 }
[PROOFSTEP]
trivial
[GOAL]
case intro.intro
d : ℕ
a : ℤ√↑d
x y : ℕ
h : a ≤ { re := ↑x, im := ↑y }
⊢ ∃ n, a ≤ ↑n
[PROOFSTEP]
refine' ⟨x + d * y, h.trans _⟩
[GOAL]
case intro.intro
d : ℕ
a : ℤ√↑d
x y : ℕ
h : a ≤ { re := ↑x, im := ↑y }
⊢ { re := ↑x, im := ↑y } ≤ ↑(x + d * y)
[PROOFSTEP]
change Nonneg ⟨↑x + d * y - ↑x, 0 - ↑y⟩
[GOAL]
case intro.intro
d : ℕ
a : ℤ√↑d
x y : ℕ
h : a ≤ { re := ↑x, im := ↑y }
⊢ Nonneg { re := ↑x + ↑d * ↑y - ↑x, im := 0 - ↑y }
[PROOFSTEP]
cases' y with y
[GOAL]
case intro.intro.zero
d : ℕ
a : ℤ√↑d
x : ℕ
h : a ≤ { re := ↑x, im := ↑Nat.zero }
⊢ Nonneg { re := ↑x + ↑d * ↑Nat.zero - ↑x, im := 0 - ↑Nat.zero }
[PROOFSTEP]
simp
[GOAL]
case intro.intro.zero
d : ℕ
a : ℤ√↑d
x : ℕ
h : a ≤ { re := ↑x, im := ↑Nat.zero }
⊢ Nonneg { re := 0, im := 0 }
[PROOFSTEP]
trivial
[GOAL]
case intro.intro.succ
d : ℕ
a : ℤ√↑d
x y : ℕ
h : a ≤ { re := ↑x, im := ↑(Nat.succ y) }
⊢ Nonneg { re := ↑x + ↑d * ↑(Nat.succ y) - ↑x, im := 0 - ↑(Nat.succ y) }
[PROOFSTEP]
have h : ∀ y, SqLe y d (d * y) 1 := fun y => by
simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_right (y * y) (Nat.le_mul_self d)
[GOAL]
d : ℕ
a : ℤ√↑d
x y✝ : ℕ
h : a ≤ { re := ↑x, im := ↑(Nat.succ y✝) }
y : ℕ
⊢ SqLe y d (d * y) 1
[PROOFSTEP]
simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_right (y * y) (Nat.le_mul_self d)
[GOAL]
case intro.intro.succ
d : ℕ
a : ℤ√↑d
x y : ℕ
h✝ : a ≤ { re := ↑x, im := ↑(Nat.succ y) }
h : ∀ (y : ℕ), SqLe y d (d * y) 1
⊢ Nonneg { re := ↑x + ↑d * ↑(Nat.succ y) - ↑x, im := 0 - ↑(Nat.succ y) }
[PROOFSTEP]
rw [show (x : ℤ) + d * Nat.succ y - x = d * Nat.succ y by simp]
[GOAL]
d : ℕ
a : ℤ√↑d
x y : ℕ
h✝ : a ≤ { re := ↑x, im := ↑(Nat.succ y) }
h : ∀ (y : ℕ), SqLe y d (d * y) 1
⊢ ↑x + ↑d * ↑(Nat.succ y) - ↑x = ↑d * ↑(Nat.succ y)
[PROOFSTEP]
simp
[GOAL]
case intro.intro.succ
d : ℕ
a : ℤ√↑d
x y : ℕ
h✝ : a ≤ { re := ↑x, im := ↑(Nat.succ y) }
h : ∀ (y : ℕ), SqLe y d (d * y) 1
⊢ Nonneg { re := ↑d * ↑(Nat.succ y), im := 0 - ↑(Nat.succ y) }
[PROOFSTEP]
exact h (y + 1)
[GOAL]
d : ℕ
a b : ℤ√↑d
ab : a ≤ b
c : ℤ√↑d
⊢ Nonneg (c + b - (c + a))
[PROOFSTEP]
rw [add_sub_add_left_eq_sub]
[GOAL]
d : ℕ
a b : ℤ√↑d
ab : a ≤ b
c : ℤ√↑d
⊢ Nonneg (b - a)
[PROOFSTEP]
exact ab
[GOAL]
d : ℕ
a b c : ℤ√↑d
h : c + a ≤ c + b
⊢ a ≤ b
[PROOFSTEP]
simpa using Zsqrtd.add_le_add_left _ _ h (-c)
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha : Nonneg a
⊢ Nonneg (↑n * a)
[PROOFSTEP]
rw [← Int.cast_ofNat n]
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha : Nonneg a
⊢ Nonneg (↑↑n * a)
[PROOFSTEP]
exact
match a, nonneg_cases ha, ha with
| _, ⟨x, y, Or.inl rfl⟩, _ => by rw [smul_val]; trivial
| _, ⟨x, y, Or.inr <| Or.inl rfl⟩, ha => by rw [smul_val];
simpa using nonnegg_pos_neg.2 (sqLe_smul n <| nonnegg_pos_neg.1 ha)
| _, ⟨x, y, Or.inr <| Or.inr rfl⟩, ha => by rw [smul_val];
simpa using nonnegg_neg_pos.2 (sqLe_smul n <| nonnegg_neg_pos.1 ha)
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha : Nonneg a
x y : ℕ
x✝ : Nonneg { re := ↑x, im := ↑y }
⊢ Nonneg (↑↑n * { re := ↑x, im := ↑y })
[PROOFSTEP]
rw [smul_val]
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha : Nonneg a
x y : ℕ
x✝ : Nonneg { re := ↑x, im := ↑y }
⊢ Nonneg { re := ↑n * ↑x, im := ↑n * ↑y }
[PROOFSTEP]
trivial
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
⊢ Nonneg (↑↑n * { re := ↑x, im := -↑y })
[PROOFSTEP]
rw [smul_val]
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
⊢ Nonneg { re := ↑n * ↑x, im := ↑n * -↑y }
[PROOFSTEP]
simpa using nonnegg_pos_neg.2 (sqLe_smul n <| nonnegg_pos_neg.1 ha)
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
⊢ Nonneg (↑↑n * { re := -↑x, im := ↑y })
[PROOFSTEP]
rw [smul_val]
[GOAL]
d : ℕ
a : ℤ√↑d
n : ℕ
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
⊢ Nonneg { re := ↑n * -↑x, im := ↑n * ↑y }
[PROOFSTEP]
simpa using nonnegg_neg_pos.2 (sqLe_smul n <| nonnegg_neg_pos.1 ha)
[GOAL]
d : ℕ
a : ℤ√↑d
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
⊢ Nonneg (sqrtd * { re := ↑x, im := -↑y })
[PROOFSTEP]
simp only [muld_val, mul_neg]
[GOAL]
d : ℕ
a : ℤ√↑d
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
⊢ Nonneg { re := -(↑d * ↑y), im := ↑x }
[PROOFSTEP]
apply nonnegg_neg_pos.2
[GOAL]
d : ℕ
a : ℤ√↑d
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
⊢ SqLe (d * y) 1 x d
[PROOFSTEP]
simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_left d (nonnegg_pos_neg.1 ha)
[GOAL]
d : ℕ
a : ℤ√↑d
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
⊢ Nonneg (sqrtd * { re := -↑x, im := ↑y })
[PROOFSTEP]
simp only [muld_val]
[GOAL]
d : ℕ
a : ℤ√↑d
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
⊢ Nonneg { re := ↑d * ↑y, im := -↑x }
[PROOFSTEP]
apply nonnegg_pos_neg.2
[GOAL]
d : ℕ
a : ℤ√↑d
ha✝ : Nonneg a
x y : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
⊢ SqLe x d (d * y) 1
[PROOFSTEP]
simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_left d (nonnegg_neg_pos.1 ha)
[GOAL]
d x y : ℕ
a : ℤ√↑d
ha : Nonneg a
⊢ Nonneg ({ re := ↑x, im := ↑y } * a)
[PROOFSTEP]
have : (⟨x, y⟩ * a : ℤ√d) = (x : ℤ√d) * a + sqrtd * ((y : ℤ√d) * a) := by
rw [decompose, right_distrib, mul_assoc, Int.cast_ofNat, Int.cast_ofNat]
[GOAL]
d x y : ℕ
a : ℤ√↑d
ha : Nonneg a
⊢ { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)
[PROOFSTEP]
rw [decompose, right_distrib, mul_assoc, Int.cast_ofNat, Int.cast_ofNat]
[GOAL]
d x y : ℕ
a : ℤ√↑d
ha : Nonneg a
this : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)
⊢ Nonneg ({ re := ↑x, im := ↑y } * a)
[PROOFSTEP]
rw [this]
[GOAL]
d x y : ℕ
a : ℤ√↑d
ha : Nonneg a
this : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a)
⊢ Nonneg (↑x * a + sqrtd * (↑y * a))
[PROOFSTEP]
exact (nonneg_smul ha).add (nonneg_muld <| nonneg_smul ha)
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
x✝ : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } * { re := ↑z, im := ↑w })
[PROOFSTEP]
rw [mul_comm]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
x✝ : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := ↑z, im := ↑w } * { re := -↑x, im := ↑y })
[PROOFSTEP]
exact nonneg_mul_lem ha
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
x✝ : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } * { re := ↑z, im := ↑w })
[PROOFSTEP]
rw [mul_comm]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
x✝ : Nonneg { re := ↑z, im := ↑w }
⊢ Nonneg ({ re := ↑z, im := ↑w } * { re := ↑x, im := -↑y })
[PROOFSTEP]
exact nonneg_mul_lem ha
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } * { re := -↑z, im := ↑w })
[PROOFSTEP]
rw [calc
(⟨-x, y⟩ * ⟨-z, w⟩ : ℤ√d) = ⟨_, _⟩ := rfl
_ = ⟨x * z + d * y * w, -(x * w + y * z)⟩ := by simp [add_comm]]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
hb : Nonneg { re := -↑z, im := ↑w }
⊢ {
re :=
{ re := -↑x, im := ↑y }.re * { re := -↑z, im := ↑w }.re +
↑d * { re := -↑x, im := ↑y }.im * { re := -↑z, im := ↑w }.im,
im :=
{ re := -↑x, im := ↑y }.re * { re := -↑z, im := ↑w }.im +
{ re := -↑x, im := ↑y }.im * { re := -↑z, im := ↑w }.re } =
{ re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) }
[PROOFSTEP]
simp [add_comm]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg { re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) }
[PROOFSTEP]
exact nonnegg_pos_neg.2 (sqLe_mul.left (nonnegg_neg_pos.1 ha) (nonnegg_neg_pos.1 hb))
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg ({ re := -↑x, im := ↑y } * { re := ↑z, im := -↑w })
[PROOFSTEP]
rw [calc
(⟨-x, y⟩ * ⟨z, -w⟩ : ℤ√d) = ⟨_, _⟩ := rfl
_ = ⟨-(x * z + d * y * w), x * w + y * z⟩ := by simp [add_comm]]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
hb : Nonneg { re := ↑z, im := -↑w }
⊢ {
re :=
{ re := -↑x, im := ↑y }.re * { re := ↑z, im := -↑w }.re +
↑d * { re := -↑x, im := ↑y }.im * { re := ↑z, im := -↑w }.im,
im :=
{ re := -↑x, im := ↑y }.re * { re := ↑z, im := -↑w }.im +
{ re := -↑x, im := ↑y }.im * { re := ↑z, im := -↑w }.re } =
{ re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z }
[PROOFSTEP]
simp [add_comm]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := -↑x, im := ↑y }
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z }
[PROOFSTEP]
exact nonnegg_neg_pos.2 (sqLe_mul.right.left (nonnegg_neg_pos.1 ha) (nonnegg_pos_neg.1 hb))
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } * { re := -↑z, im := ↑w })
[PROOFSTEP]
rw [calc
(⟨x, -y⟩ * ⟨-z, w⟩ : ℤ√d) = ⟨_, _⟩ := rfl
_ = ⟨-(x * z + d * y * w), x * w + y * z⟩ := by simp [add_comm]]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
hb : Nonneg { re := -↑z, im := ↑w }
⊢ {
re :=
{ re := ↑x, im := -↑y }.re * { re := -↑z, im := ↑w }.re +
↑d * { re := ↑x, im := -↑y }.im * { re := -↑z, im := ↑w }.im,
im :=
{ re := ↑x, im := -↑y }.re * { re := -↑z, im := ↑w }.im +
{ re := ↑x, im := -↑y }.im * { re := -↑z, im := ↑w }.re } =
{ re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z }
[PROOFSTEP]
simp [add_comm]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
hb : Nonneg { re := -↑z, im := ↑w }
⊢ Nonneg { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z }
[PROOFSTEP]
exact nonnegg_neg_pos.2 (sqLe_mul.right.right.left (nonnegg_pos_neg.1 ha) (nonnegg_neg_pos.1 hb))
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg ({ re := ↑x, im := -↑y } * { re := ↑z, im := -↑w })
[PROOFSTEP]
rw [calc
(⟨x, -y⟩ * ⟨z, -w⟩ : ℤ√d) = ⟨_, _⟩ := rfl
_ = ⟨x * z + d * y * w, -(x * w + y * z)⟩ := by simp [add_comm]]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
hb : Nonneg { re := ↑z, im := -↑w }
⊢ {
re :=
{ re := ↑x, im := -↑y }.re * { re := ↑z, im := -↑w }.re +
↑d * { re := ↑x, im := -↑y }.im * { re := ↑z, im := -↑w }.im,
im :=
{ re := ↑x, im := -↑y }.re * { re := ↑z, im := -↑w }.im +
{ re := ↑x, im := -↑y }.im * { re := ↑z, im := -↑w }.re } =
{ re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) }
[PROOFSTEP]
simp [add_comm]
[GOAL]
d : ℕ
a b : ℤ√↑d
ha✝ : Nonneg a
hb✝ : Nonneg b
x y z w : ℕ
ha : Nonneg { re := ↑x, im := -↑y }
hb : Nonneg { re := ↑z, im := -↑w }
⊢ Nonneg { re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) }
[PROOFSTEP]
exact nonnegg_pos_neg.2 (sqLe_mul.right.right.right (nonnegg_pos_neg.1 ha) (nonnegg_pos_neg.1 hb))
[GOAL]
d : ℕ
a b : ℤ√↑d
⊢ 0 ≤ a → 0 ≤ b → 0 ≤ a * b
[PROOFSTEP]
simp_rw [← nonneg_iff_zero_le]
[GOAL]
d : ℕ
a b : ℤ√↑d
⊢ Nonneg a → Nonneg b → Nonneg (a * b)
[PROOFSTEP]
exact nonneg_mul
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
h : x * x = d * y * y
g : ℕ := Nat.gcd x y
gpos : g > 0
⊢ False
[PROOFSTEP]
let ⟨m, n, co, (hx : x = m * g), (hy : y = n * g)⟩ := Nat.exists_coprime gpos
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
h : x * x = d * y * y
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
⊢ False
[PROOFSTEP]
rw [hx, hy] at h
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
⊢ False
[PROOFSTEP]
have : m * m = d * (n * n) :=
by
refine
mul_left_cancel₀ (mul_pos gpos gpos).ne'
?_
-- Porting note: was `simpa [mul_comm, mul_left_comm] using h`
calc
g * g * (m * m)
_ = m * g * (m * g) := by ring
_ = d * (n * g) * (n * g) := h
_ = g * g * (d * (n * n)) := by ring
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
⊢ m * m = d * (n * n)
[PROOFSTEP]
refine
mul_left_cancel₀ (mul_pos gpos gpos).ne'
?_
-- Porting note: was `simpa [mul_comm, mul_left_comm] using h`
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
⊢ g * g * (m * m) = g * g * (d * (n * n))
[PROOFSTEP]
calc
g * g * (m * m)
_ = m * g * (m * g) := by ring
_ = d * (n * g) * (n * g) := h
_ = g * g * (d * (n * n)) := by ring
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
⊢ g * g * (m * m) = m * g * (m * g)
[PROOFSTEP]
ring
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
⊢ d * (n * g) * (n * g) = g * g * (d * (n * n))
[PROOFSTEP]
ring
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
this : m * m = d * (n * n)
⊢ False
[PROOFSTEP]
have co2 :=
let co1 := co.mul_right co
co1.mul co1
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
this : m * m = d * (n * n)
co2 : Nat.coprime (m * m) (n * n)
⊢ False
[PROOFSTEP]
exact
Nonsquare.ns d m (Nat.dvd_antisymm (by rw [this]; apply dvd_mul_right) <| co2.dvd_of_dvd_mul_right <| by simp [this])
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
this : m * m = d * (n * n)
co2 : Nat.coprime (m * m) (n * n)
⊢ d ∣ m * m
[PROOFSTEP]
rw [this]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
this : m * m = d * (n * n)
co2 : Nat.coprime (m * m) (n * n)
⊢ d ∣ d * (n * n)
[PROOFSTEP]
apply dvd_mul_right
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
g : ℕ := Nat.gcd x y
gpos : g > 0
m n : ℕ
h : m * g * (m * g) = d * (n * g) * (n * g)
co : Nat.coprime m n
hx : x = m * g
hy : y = n * g
this : m * m = d * (n * n)
co2 : Nat.coprime (m * m) (n * n)
⊢ m * m ∣ d * (n * n)
[PROOFSTEP]
simp [this]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℤ
h : x * x = ↑d * y * y
⊢ x = 0 ∧ y = 0
[PROOFSTEP]
rw [mul_assoc, ← Int.natAbs_mul_self, ← Int.natAbs_mul_self, ← Int.ofNat_mul, ← mul_assoc] at h
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℤ
h : ↑(Int.natAbs x * Int.natAbs x) = ↑(d * Int.natAbs y * Int.natAbs y)
⊢ x = 0 ∧ y = 0
[PROOFSTEP]
exact
let ⟨h1, h2⟩ := divides_sq_eq_zero (Int.ofNat.inj h)
⟨Int.natAbs_eq_zero.mp h1, Int.natAbs_eq_zero.mp h2⟩
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
e : (x + 1) * (x + 1) = d * (y + 1) * (y + 1)
⊢ False
[PROOFSTEP]
have t := (divides_sq_eq_zero e).left
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
e : (x + 1) * (x + 1) = d * (y + 1) * (y + 1)
t : x + 1 = 0
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
d : ℕ
dnsq : Nonsquare d
x : ℕ
xy : Nonneg { re := -[x+1], im := 0 }
x✝ : Nonneg (-{ re := -[x+1], im := 0 })
⊢ 0 < 1
[PROOFSTEP]
decide
[GOAL]
d : ℕ
dnsq : Nonsquare d
x : ℕ
x✝ : Nonneg { re := ↑(x + 1), im := 0 }
yx : Nonneg (-{ re := ↑(x + 1), im := 0 })
⊢ 0 < 1
[PROOFSTEP]
decide
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
xy : SqLe (y + 1) d (x + 1) 1
yx : SqLe (Nat.add x 0 + 1) 1 (Nat.succ y) d
⊢ { re := ↑(x + 1), im := -[y+1] } = 0
[PROOFSTEP]
let t := le_antisymm yx xy
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
xy : SqLe (y + 1) d (x + 1) 1
yx : SqLe (Nat.add x 0 + 1) 1 (Nat.succ y) d
t : 1 * (Nat.add x 0 + 1) * (Nat.add x 0 + 1) = d * Nat.succ y * Nat.succ y := le_antisymm yx xy
⊢ { re := ↑(x + 1), im := -[y+1] } = 0
[PROOFSTEP]
rw [one_mul] at t
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
xy : SqLe (y + 1) d (x + 1) 1
yx : SqLe (Nat.add x 0 + 1) 1 (Nat.succ y) d
t : (Nat.add x 0 + 1) * (Nat.add x 0 + 1) = d * Nat.succ y * Nat.succ y
⊢ { re := ↑(x + 1), im := -[y+1] } = 0
[PROOFSTEP]
exact absurd t (not_divides_sq _ _)
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
xy : SqLe (x + 1) 1 (y + 1) d
yx : SqLe (Nat.add y 0 + 1) d (Nat.succ x) 1
⊢ { re := -[x+1], im := ↑(y + 1) } = 0
[PROOFSTEP]
let t := le_antisymm xy yx
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
xy : SqLe (x + 1) 1 (y + 1) d
yx : SqLe (Nat.add y 0 + 1) d (Nat.succ x) 1
t : 1 * (x + 1) * (x + 1) = d * (y + 1) * (y + 1) := le_antisymm xy yx
⊢ { re := -[x+1], im := ↑(y + 1) } = 0
[PROOFSTEP]
rw [one_mul] at t
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y : ℕ
xy : SqLe (x + 1) 1 (y + 1) d
yx : SqLe (Nat.add y 0 + 1) d (Nat.succ x) 1
t : (x + 1) * (x + 1) = d * (y + 1) * (y + 1)
⊢ { re := -[x+1], im := ↑(y + 1) } = 0
[PROOFSTEP]
exact absurd t (not_divides_sq _ _)
[GOAL]
d : ℕ
dnsq : Nonsquare d
a b : ℤ√↑d
ab : a ≤ b
ba : b ≤ a
⊢ Nonneg (-(a - b))
[PROOFSTEP]
rwa [neg_sub]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h : { re := x, im := y } * { re := z, im := w } = 0
⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0
[PROOFSTEP]
injection h with h1 h2
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1 : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2 : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0
[PROOFSTEP]
have h1 : x * z = -(d * y * w) := eq_neg_of_add_eq_zero_left h1
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2 : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0
[PROOFSTEP]
have h2 : x * w = -(y * z) := eq_neg_of_add_eq_zero_left h2
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
h2 : x * w = -(y * z)
⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0
[PROOFSTEP]
have fin : x * x = d * y * y → (⟨x, y⟩ : ℤ√d) = 0 := fun e =>
match x, y, divides_sq_eq_zero_z e with
| _, _, ⟨rfl, rfl⟩ => rfl
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
h2 : x * w = -(y * z)
fin : x * x = ↑d * y * y → { re := x, im := y } = 0
⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0
[PROOFSTEP]
exact
if z0 : z = 0 then
if w0 : w = 0 then
Or.inr
(match z, w, z0, w0 with
| _, _, rfl, rfl => rfl)
else
Or.inl <|
fin <|
mul_right_cancel₀ w0 <|
calc
x * x * w = -y * (x * z) := by simp [h2, mul_assoc, mul_left_comm]
_ = d * y * y * w := by simp [h1, mul_assoc, mul_left_comm]
else
Or.inl <|
fin <|
mul_right_cancel₀ z0 <|
calc
x * x * z = d * -y * (x * w) := by simp [h1, mul_assoc, mul_left_comm]
_ = d * y * y * z := by simp [h2, mul_assoc, mul_left_comm]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
h2 : x * w = -(y * z)
fin : x * x = ↑d * y * y → { re := x, im := y } = 0
z0 : z = 0
w0 : ¬w = 0
⊢ x * x * w = -y * (x * z)
[PROOFSTEP]
simp [h2, mul_assoc, mul_left_comm]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
h2 : x * w = -(y * z)
fin : x * x = ↑d * y * y → { re := x, im := y } = 0
z0 : z = 0
w0 : ¬w = 0
⊢ -y * (x * z) = ↑d * y * y * w
[PROOFSTEP]
simp [h1, mul_assoc, mul_left_comm]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
h2 : x * w = -(y * z)
fin : x * x = ↑d * y * y → { re := x, im := y } = 0
z0 : ¬z = 0
⊢ x * x * z = ↑d * -y * (x * w)
[PROOFSTEP]
simp [h1, mul_assoc, mul_left_comm]
[GOAL]
d : ℕ
dnsq : Nonsquare d
x y z w : ℤ
h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0
h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0
h1 : x * z = -(↑d * y * w)
h2 : x * w = -(y * z)
fin : x * x = ↑d * y * y → { re := x, im := y } = 0
z0 : ¬z = 0
⊢ ↑d * -y * (x * w) = ↑d * y * y * z
[PROOFSTEP]
simp [h2, mul_assoc, mul_left_comm]
[GOAL]
d : ℕ
dnsq : Nonsquare d
src✝² : CommRing (ℤ√↑d) := commRing
src✝¹ : LinearOrder (ℤ√↑d) := linearOrder
src✝ : Nontrivial (ℤ√↑d) := nontrivial
⊢ 0 ≤ 1
[PROOFSTEP]
trivial
[GOAL]
d : ℕ
dnsq : Nonsquare d
⊢ LinearOrderedRing (ℤ√↑d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℕ
dnsq : Nonsquare d
⊢ OrderedRing (ℤ√↑d)
[PROOFSTEP]
infer_instance
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
⊢ norm a = 0 ↔ a = 0
[PROOFSTEP]
refine' ⟨fun ha => ext.mpr _, fun h => by rw [h, norm_zero]⟩
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
h : a = 0
⊢ norm a = 0
[PROOFSTEP]
rw [h, norm_zero]
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : norm a = 0
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
dsimp only [norm] at ha
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re - d * a.im * a.im = 0
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
rw [sub_eq_zero] at ha
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
by_cases h : 0 ≤ d
[GOAL]
case pos
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : 0 ≤ d
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
obtain ⟨d', rfl⟩ := Int.eq_ofNat_of_zero_le h
[GOAL]
case pos.intro
d' : ℕ
h_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n
a : ℤ√↑d'
ha : a.re * a.re = ↑d' * a.im * a.im
h : 0 ≤ ↑d'
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
haveI : Nonsquare d' := ⟨fun n h => h_nonsquare n <| by exact_mod_cast h⟩
[GOAL]
d' : ℕ
h_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n
a : ℤ√↑d'
ha : a.re * a.re = ↑d' * a.im * a.im
h✝ : 0 ≤ ↑d'
n : ℕ
h : d' = n * n
⊢ ↑d' = ↑n * ↑n
[PROOFSTEP]
exact_mod_cast h
[GOAL]
case pos.intro
d' : ℕ
h_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n
a : ℤ√↑d'
ha : a.re * a.re = ↑d' * a.im * a.im
h : 0 ≤ ↑d'
this : Nonsquare d'
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
exact divides_sq_eq_zero_z ha
[GOAL]
case neg
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : ¬0 ≤ d
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : d < 0
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
suffices a.re * a.re = 0 by
rw [eq_zero_of_mul_self_eq_zero this] at ha ⊢
simpa only [true_and_iff, or_self_right, zero_re, zero_im, eq_self_iff_true, zero_eq_mul, mul_zero, mul_eq_zero, h.ne,
false_or_iff, or_self_iff] using ha
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : d < 0
this : a.re * a.re = 0
⊢ a.re = 0.re ∧ a.im = 0.im
[PROOFSTEP]
rw [eq_zero_of_mul_self_eq_zero this] at ha ⊢
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : 0 * 0 = d * a.im * a.im
h : d < 0
this : a.re * a.re = 0
⊢ 0 = 0.re ∧ a.im = 0.im
[PROOFSTEP]
simpa only [true_and_iff, or_self_right, zero_re, zero_im, eq_self_iff_true, zero_eq_mul, mul_zero, mul_eq_zero, h.ne,
false_or_iff, or_self_iff] using ha
[GOAL]
case neg
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : d < 0
⊢ a.re * a.re = 0
[PROOFSTEP]
apply _root_.le_antisymm _ (mul_self_nonneg _)
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : d < 0
⊢ a.re * a.re ≤ 0
[PROOFSTEP]
rw [ha, mul_assoc]
[GOAL]
d : ℤ
h_nonsquare : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : a.re * a.re = d * a.im * a.im
h : d < 0
⊢ d * (a.im * a.im) ≤ 0
[PROOFSTEP]
exact mul_nonpos_of_nonpos_of_nonneg h.le (mul_self_nonneg _)
[GOAL]
R : Type
inst✝ : Ring R
d : ℤ
f g : ℤ√d →+* R
h : ↑f sqrtd = ↑g sqrtd
⊢ f = g
[PROOFSTEP]
ext ⟨x_re, x_im⟩
[GOAL]
case a.mk
R : Type
inst✝ : Ring R
d : ℤ
f g : ℤ√d →+* R
h : ↑f sqrtd = ↑g sqrtd
x_re x_im : ℤ
⊢ ↑f { re := x_re, im := x_im } = ↑g { re := x_re, im := x_im }
[PROOFSTEP]
simp [decompose, h]
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
⊢ (fun a => ↑a.re + ↑a.im * ↑r) 1 = 1
[PROOFSTEP]
simp
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
a b : ℤ√d
⊢ OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b
[PROOFSTEP]
have :
(a.re + a.im * r : R) * (b.re + b.im * r) = a.re * b.re + (a.re * b.im + a.im * b.re) * r + a.im * b.im * (r * r) :=
by ring
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
a b : ℤ√d
⊢ (↑a.re + ↑a.im * ↑r) * (↑b.re + ↑b.im * ↑r) =
↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * (↑r * ↑r)
[PROOFSTEP]
ring
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
a b : ℤ√d
this :
(↑a.re + ↑a.im * ↑r) * (↑b.re + ↑b.im * ↑r) =
↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * (↑r * ↑r)
⊢ OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b
[PROOFSTEP]
simp [this, r.prop]
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
a b : ℤ√d
this :
(↑a.re + ↑a.im * ↑r) * (↑b.re + ↑b.im * ↑r) =
↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * (↑r * ↑r)
⊢ ↑a.re * ↑b.re + ↑d * ↑a.im * ↑b.im + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r =
↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * ↑d
[PROOFSTEP]
ring
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
0 =
0
[PROOFSTEP]
simp
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
a b : ℤ√d
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
(a + b) =
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
a +
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
b
[PROOFSTEP]
simp
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
a b : ℤ√d
⊢ ↑a.re + ↑b.re + (↑a.im + ↑b.im) * ↑r = ↑a.re + ↑a.im * ↑r + (↑b.re + ↑b.im * ↑r)
[PROOFSTEP]
ring
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
f : ℤ√d →+* R
⊢ ↑f sqrtd * ↑f sqrtd = ↑d
[PROOFSTEP]
rw [← f.map_mul, dmuld, map_intCast]
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
⊢ (fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) })
((fun r =>
{
toMonoidHom :=
{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) },
map_zero' := (_ : ↑0 + ↑0 * ↑r = 0),
map_add' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
(a + b) =
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
a +
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
b) })
r) =
r
[PROOFSTEP]
ext
[GOAL]
case a
R : Type
inst✝ : CommRing R
d : ℤ
r : { r // r * r = ↑d }
⊢ ↑((fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) })
((fun r =>
{
toMonoidHom :=
{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) },
map_zero' := (_ : ↑0 + ↑0 * ↑r = 0),
map_add' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
(a + b) =
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
a +
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
b) })
r)) =
↑r
[PROOFSTEP]
simp
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
f : ℤ√d →+* R
⊢ (fun r =>
{
toMonoidHom :=
{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) },
map_zero' := (_ : ↑0 + ↑0 * ↑r = 0),
map_add' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
(a + b) =
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
a +
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) })
b) })
((fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) }) f) =
f
[PROOFSTEP]
refine hom_ext _ _ ?_
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
f : ℤ√d →+* R
⊢ ↑((fun r =>
{
toMonoidHom :=
{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) },
map_zero' := (_ : ↑0 + ↑0 * ↑r = 0),
map_add' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
(a + b) =
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
a +
OneHom.toFun
(↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) },
map_mul' :=
(_ :
∀ (a b : ℤ√d),
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
(a * b) =
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
a *
OneHom.toFun
{ toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }
b) })
b) })
((fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) }) f))
sqrtd =
↑f sqrtd
[PROOFSTEP]
simp
[GOAL]
R : Type
inst✝¹ : CommRing R
inst✝ : CharZero R
d : ℤ
r : { r // r * r = ↑d }
hd : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : ↑(↑lift r) a = 0
⊢ a = 0
[PROOFSTEP]
have h_inj : Function.Injective ((↑) : ℤ → R) := Int.cast_injective
[GOAL]
R : Type
inst✝¹ : CommRing R
inst✝ : CharZero R
d : ℤ
r : { r // r * r = ↑d }
hd : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : ↑(↑lift r) a = 0
h_inj : Function.Injective Int.cast
⊢ a = 0
[PROOFSTEP]
suffices lift r a.norm = 0
by
simp only [coe_int_re, add_zero, lift_apply_apply, coe_int_im, Int.cast_zero, zero_mul] at this
rwa [← Int.cast_zero, h_inj.eq_iff, norm_eq_zero hd] at this
[GOAL]
R : Type
inst✝¹ : CommRing R
inst✝ : CharZero R
d : ℤ
r : { r // r * r = ↑d }
hd : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : ↑(↑lift r) a = 0
h_inj : Function.Injective Int.cast
this : ↑(↑lift r) ↑(norm a) = 0
⊢ a = 0
[PROOFSTEP]
simp only [coe_int_re, add_zero, lift_apply_apply, coe_int_im, Int.cast_zero, zero_mul] at this
[GOAL]
R : Type
inst✝¹ : CommRing R
inst✝ : CharZero R
d : ℤ
r : { r // r * r = ↑d }
hd : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : ↑(↑lift r) a = 0
h_inj : Function.Injective Int.cast
this : ↑(norm a) = 0
⊢ a = 0
[PROOFSTEP]
rwa [← Int.cast_zero, h_inj.eq_iff, norm_eq_zero hd] at this
[GOAL]
R : Type
inst✝¹ : CommRing R
inst✝ : CharZero R
d : ℤ
r : { r // r * r = ↑d }
hd : ∀ (n : ℤ), d ≠ n * n
a : ℤ√d
ha : ↑(↑lift r) a = 0
h_inj : Function.Injective Int.cast
⊢ ↑(↑lift r) ↑(norm a) = 0
[PROOFSTEP]
rw [norm_eq_mul_conj, RingHom.map_mul, ha, zero_mul]
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
a : ℤ√d
⊢ norm a = 1 ↔ a ∈ unitary (ℤ√d)
[PROOFSTEP]
rw [unitary.mem_iff_self_mul_star, ← norm_eq_mul_conj]
[GOAL]
R : Type
inst✝ : CommRing R
d : ℤ
a : ℤ√d
⊢ norm a = 1 ↔ ↑(norm a) = 1
[PROOFSTEP]
norm_cast
| {"mathlib_filename": "Mathlib.NumberTheory.Zsqrtd.Basic", "llama_tokens": 53655} |
[GOAL]
⊢ ∀ (x y : ZMod 4),
OneHom.toFun
{ toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }
(x * y) =
OneHom.toFun
{ toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }
x *
OneHom.toFun
{ toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }
y
[PROOFSTEP]
decide
[GOAL]
⊢ ∀ (a : ZMod 4),
¬IsUnit a →
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ![0, 1, 0, -1],
map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) },
map_mul' :=
(_ :
∀ (x y : ZMod 4),
OneHom.toFun
{ toFun := ![0, 1, 0, -1],
map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }
(x * y) =
OneHom.toFun
{ toFun := ![0, 1, 0, -1],
map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }
x *
OneHom.toFun
{ toFun := ![0, 1, 0, -1],
map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }
y) })
a =
0
[PROOFSTEP]
decide
[GOAL]
⊢ MulChar.IsQuadratic χ₄
[PROOFSTEP]
intro a
[GOAL]
a : ZMod 4
⊢ ↑χ₄ a = 0 ∨ ↑χ₄ a = 1 ∨ ↑χ₄ a = -1
[PROOFSTEP]
fin_cases a
[GOAL]
case head
⊢ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 0 ∨
↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 1 ∨ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = -1
case tail.head
⊢ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 0 ∨
↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 1 ∨
↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = -1
case tail.tail.head
⊢ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 0 ∨
↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 1 ∨
↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = -1
case tail.tail.tail.head
⊢ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 0 ∨
↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 1 ∨
↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = -1
[PROOFSTEP]
all_goals decide
[GOAL]
case head
⊢ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 0 ∨
↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 1 ∨ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.head
⊢ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 0 ∨
↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 1 ∨
↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.head
⊢ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 0 ∨
↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 1 ∨
↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.head
⊢ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 0 ∨
↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 1 ∨
↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = -1
[PROOFSTEP]
decide
[GOAL]
n : ℕ
⊢ ↑χ₄ ↑n = ↑χ₄ ↑(n % 4)
[PROOFSTEP]
rw [← ZMod.nat_cast_mod n 4]
[GOAL]
n : ℤ
⊢ ↑χ₄ ↑n = ↑χ₄ ↑(n % 4)
[PROOFSTEP]
rw [← ZMod.int_cast_mod n 4]
[GOAL]
n : ℤ
⊢ ↑χ₄ ↑(n % ↑4) = ↑χ₄ ↑(n % 4)
[PROOFSTEP]
norm_cast
[GOAL]
n : ℤ
⊢ ↑χ₄ ↑n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1
[PROOFSTEP]
have help : ∀ m : ℤ, 0 ≤ m → m < 4 → χ₄ m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 := by decide
[GOAL]
n : ℤ
⊢ ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1
[PROOFSTEP]
decide
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1
⊢ ↑χ₄ ↑n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1
[PROOFSTEP]
rw [← Int.emod_emod_of_dvd n (by norm_num : (2 : ℤ) ∣ 4), ← ZMod.int_cast_mod n 4]
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1
⊢ 2 ∣ 4
[PROOFSTEP]
norm_num
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1
⊢ ↑χ₄ ↑(n % ↑4) = if n % 4 % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1
[PROOFSTEP]
exact help (n % 4) (Int.emod_nonneg n (by norm_num)) (Int.emod_lt n (by norm_num))
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1
⊢ 4 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1
⊢ 4 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
⊢ ↑χ₄ ↑n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1
[PROOFSTEP]
exact_mod_cast χ₄_int_eq_if_mod_four n
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ ↑χ₄ ↑n = (-1) ^ (n / 2)
[PROOFSTEP]
rw [χ₄_nat_eq_if_mod_four]
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ (if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1) = (-1) ^ (n / 2)
[PROOFSTEP]
simp only [hn, Nat.one_ne_zero, if_false]
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ (n / 2)
[PROOFSTEP]
conv_rhs =>
-- Porting note: was `nth_rw`
arg 2; rw [← Nat.div_add_mod n 4]
enter [1, 1, 1]; rw [(by norm_num : 4 = 2 * 2)]
[GOAL]
n : ℕ
hn : n % 2 = 1
| (-1) ^ (n / 2)
[PROOFSTEP]
arg 2; rw [← Nat.div_add_mod n 4]
enter [1, 1, 1]; rw [(by norm_num : 4 = 2 * 2)]
[GOAL]
n : ℕ
hn : n % 2 = 1
| (-1) ^ (n / 2)
[PROOFSTEP]
arg 2; rw [← Nat.div_add_mod n 4]
enter [1, 1, 1]; rw [(by norm_num : 4 = 2 * 2)]
[GOAL]
n : ℕ
hn : n % 2 = 1
| (-1) ^ (n / 2)
[PROOFSTEP]
arg 2
[GOAL]
n : ℕ
hn : n % 2 = 1
| n / 2
[PROOFSTEP]
rw [← Nat.div_add_mod n 4]
[GOAL]
n : ℕ
hn : n % 2 = 1
| (4 * (n / 4) + n % 4) / 2
[PROOFSTEP]
enter [1, 1, 1]
[GOAL]
n : ℕ
hn : n % 2 = 1
| 4
[PROOFSTEP]
rw [(by norm_num : 4 = 2 * 2)]
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ 4 = 2 * 2
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ ((2 * 2 * (n / 4) + n % 4) / 2)
[PROOFSTEP]
rw [mul_assoc, add_comm, Nat.add_mul_div_left _ _ (by norm_num : 0 < 2), pow_add, pow_mul, neg_one_sq, one_pow, mul_one]
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ (n % 4 / 2)
[PROOFSTEP]
have help : ∀ m : ℕ, m < 4 → m % 2 = 1 → ite (m = 1) (1 : ℤ) (-1) = (-1) ^ (m / 2) := by decide
[GOAL]
n : ℕ
hn : n % 2 = 1
⊢ ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2)
[PROOFSTEP]
decide
[GOAL]
n : ℕ
hn : n % 2 = 1
help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2)
⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ (n % 4 / 2)
[PROOFSTEP]
exact help (n % 4) (Nat.mod_lt n (by norm_num)) ((Nat.mod_mod_of_dvd n (by norm_num : 2 ∣ 4)).trans hn)
[GOAL]
n : ℕ
hn : n % 2 = 1
help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2)
⊢ 4 > 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
hn : n % 2 = 1
help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2)
⊢ 2 ∣ 4
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
hn : n % 4 = 1
⊢ ↑χ₄ ↑n = 1
[PROOFSTEP]
rw [χ₄_nat_mod_four, hn]
[GOAL]
n : ℕ
hn : n % 4 = 1
⊢ ↑χ₄ ↑1 = 1
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
hn : n % 4 = 3
⊢ ↑χ₄ ↑n = -1
[PROOFSTEP]
rw [χ₄_nat_mod_four, hn]
[GOAL]
n : ℕ
hn : n % 4 = 3
⊢ ↑χ₄ ↑3 = -1
[PROOFSTEP]
rfl
[GOAL]
n : ℤ
hn : n % 4 = 1
⊢ ↑χ₄ ↑n = 1
[PROOFSTEP]
rw [χ₄_int_mod_four, hn]
[GOAL]
n : ℤ
hn : n % 4 = 1
⊢ ↑χ₄ ↑1 = 1
[PROOFSTEP]
rfl
[GOAL]
n : ℤ
hn : n % 4 = 3
⊢ ↑χ₄ ↑n = -1
[PROOFSTEP]
rw [χ₄_int_mod_four, hn]
[GOAL]
n : ℤ
hn : n % 4 = 3
⊢ ↑χ₄ ↑3 = -1
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
hn : n % 4 = 1
⊢ (-1) ^ (n / 2) = 1
[PROOFSTEP]
rw [← χ₄_eq_neg_one_pow (Nat.odd_of_mod_four_eq_one hn), ← nat_cast_mod, hn]
[GOAL]
n : ℕ
hn : n % 4 = 1
⊢ ↑χ₄ ↑1 = 1
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
hn : n % 4 = 3
⊢ (-1) ^ (n / 2) = -1
[PROOFSTEP]
rw [← χ₄_eq_neg_one_pow (Nat.odd_of_mod_four_eq_three hn), ← nat_cast_mod, hn]
[GOAL]
n : ℕ
hn : n % 4 = 3
⊢ ↑χ₄ ↑3 = -1
[PROOFSTEP]
rfl
[GOAL]
⊢ ∀ (x y : ZMod 8),
OneHom.toFun
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }
(x * y) =
OneHom.toFun
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' :=
(_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }
x *
OneHom.toFun
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' :=
(_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }
y
[PROOFSTEP]
decide
[GOAL]
⊢ ∀ (a : ZMod 8),
¬IsUnit a →
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' :=
(_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) },
map_mul' :=
(_ :
∀ (x y : ZMod 8),
OneHom.toFun
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' :=
(_ :
Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 =
Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }
(x * y) =
OneHom.toFun
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' :=
(_ :
Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 =
Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }
x *
OneHom.toFun
{ toFun := ![0, 1, 0, -1, 0, -1, 0, 1],
map_one' :=
(_ :
Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 =
Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }
y) })
a =
0
[PROOFSTEP]
decide
[GOAL]
⊢ MulChar.IsQuadratic χ₈
[PROOFSTEP]
intro a
[GOAL]
a : ZMod 8
⊢ ↑χ₈ a = 0 ∨ ↑χ₈ a = 1 ∨ ↑χ₈ a = -1
[PROOFSTEP]
fin_cases a
[GOAL]
case head
⊢ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨
↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = -1
case tail.head
⊢ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨
↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨
↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1
case tail.tail.head
⊢ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨
↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨
↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1
case tail.tail.tail.head
⊢ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨
↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨
↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1
case tail.tail.tail.tail.head
⊢ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨
↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨
↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1
case tail.tail.tail.tail.tail.head
⊢ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨
↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨
↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1
case tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
0 ∨
↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
1 ∨
↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
-1
case tail.tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =
0 ∨
↑χ₈
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
1 ∨
↑χ₈
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
-1
[PROOFSTEP]
all_goals decide
[GOAL]
case head
⊢ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨
↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.head
⊢ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨
↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨
↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.head
⊢ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨
↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨
↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.head
⊢ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨
↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨
↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.head
⊢ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨
↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨
↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.head
⊢ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨
↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨
↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
0 ∨
↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
1 ∨
↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
-1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =
0 ∨
↑χ₈
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
1 ∨
↑χ₈
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
-1
[PROOFSTEP]
decide
[GOAL]
n : ℕ
⊢ ↑χ₈ ↑n = ↑χ₈ ↑(n % 8)
[PROOFSTEP]
rw [← ZMod.nat_cast_mod n 8]
[GOAL]
n : ℤ
⊢ ↑χ₈ ↑n = ↑χ₈ ↑(n % 8)
[PROOFSTEP]
rw [← ZMod.int_cast_mod n 8]
[GOAL]
n : ℤ
⊢ ↑χ₈ ↑(n % ↑8) = ↑χ₈ ↑(n % 8)
[PROOFSTEP]
norm_cast
[GOAL]
n : ℤ
⊢ ↑χ₈ ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1
[PROOFSTEP]
have help : ∀ m : ℤ, 0 ≤ m → m < 8 → χ₈ m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 := by decide
[GOAL]
n : ℤ
⊢ ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1
[PROOFSTEP]
decide
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1
⊢ ↑χ₈ ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1
[PROOFSTEP]
rw [← Int.emod_emod_of_dvd n (by norm_num : (2 : ℤ) ∣ 8), ← ZMod.int_cast_mod n 8]
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1
⊢ 2 ∣ 8
[PROOFSTEP]
norm_num
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1
⊢ ↑χ₈ ↑(n % ↑8) = if n % 8 % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1
[PROOFSTEP]
exact help (n % 8) (Int.emod_nonneg n (by norm_num)) (Int.emod_lt n (by norm_num))
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1
⊢ 8 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1
⊢ 8 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
⊢ ↑χ₈ ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1
[PROOFSTEP]
exact_mod_cast χ₈_int_eq_if_mod_eight n
[GOAL]
⊢ ∀ (x y : ZMod 8),
OneHom.toFun
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }
(x * y) =
OneHom.toFun
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' :=
(_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }
x *
OneHom.toFun
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' :=
(_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }
y
[PROOFSTEP]
decide
[GOAL]
⊢ ∀ (a : ZMod 8),
¬IsUnit a →
OneHom.toFun
(↑{
toOneHom :=
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' :=
(_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) },
map_mul' :=
(_ :
∀ (x y : ZMod 8),
OneHom.toFun
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' :=
(_ :
Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 =
Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }
(x * y) =
OneHom.toFun
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' :=
(_ :
Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 =
Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }
x *
OneHom.toFun
{ toFun := ![0, 1, 0, 1, 0, -1, 0, -1],
map_one' :=
(_ :
Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 =
Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }
y) })
a =
0
[PROOFSTEP]
decide
[GOAL]
⊢ MulChar.IsQuadratic χ₈'
[PROOFSTEP]
intro a
[GOAL]
a : ZMod 8
⊢ ↑χ₈' a = 0 ∨ ↑χ₈' a = 1 ∨ ↑χ₈' a = -1
[PROOFSTEP]
fin_cases a
[GOAL]
case head
⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨
↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = -1
case tail.head
⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨
↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨
↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1
case tail.tail.head
⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨
↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨
↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1
case tail.tail.tail.head
⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨
↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨
↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1
case tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨
↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨
↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1
case tail.tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨
↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨
↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1
case tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
0 ∨
↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
1 ∨
↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
-1
case tail.tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =
0 ∨
↑χ₈'
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
1 ∨
↑χ₈'
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
-1
[PROOFSTEP]
all_goals decide
[GOAL]
case head
⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨
↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.head
⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨
↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨
↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.head
⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨
↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨
↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.head
⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨
↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨
↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨
↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨
↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨
↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨
↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
0 ∨
↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
1 ∨
↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
-1
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =
0 ∨
↑χ₈'
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
1 ∨
↑χ₈'
{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } =
-1
[PROOFSTEP]
decide
[GOAL]
n : ℤ
⊢ ↑χ₈' ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1
[PROOFSTEP]
have help : ∀ m : ℤ, 0 ≤ m → m < 8 → χ₈' m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 := by decide
[GOAL]
n : ℤ
⊢ ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1
[PROOFSTEP]
decide
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1
⊢ ↑χ₈' ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1
[PROOFSTEP]
rw [← Int.emod_emod_of_dvd n (by norm_num : (2 : ℤ) ∣ 8), ← ZMod.int_cast_mod n 8]
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1
⊢ 2 ∣ 8
[PROOFSTEP]
norm_num
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1
⊢ ↑χ₈' ↑(n % ↑8) = if n % 8 % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1
[PROOFSTEP]
exact help (n % 8) (Int.emod_nonneg n (by norm_num)) (Int.emod_lt n (by norm_num))
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1
⊢ 8 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℤ
help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1
⊢ 8 ≠ 0
[PROOFSTEP]
norm_num
[GOAL]
n : ℕ
⊢ ↑χ₈' ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1
[PROOFSTEP]
exact_mod_cast χ₈'_int_eq_if_mod_eight n
[GOAL]
a : ZMod 8
⊢ ↑χ₈' a = ↑χ₄ ↑a * ↑χ₈ a
[PROOFSTEP]
fin_cases a
[GOAL]
case head
⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } =
↑χ₄ ↑{ val := 0, isLt := (_ : 0 < 7 + 1) } * ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) }
case tail.head
⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } =
↑χ₄ ↑{ val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } * ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) }
case tail.tail.head
⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } =
↑χ₄ ↑{ val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } *
↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) }
case tail.tail.tail.head
⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } =
↑χ₄ ↑{ val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } *
↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) }
case tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } =
↑χ₄ ↑{ val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } *
↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) }
case tail.tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } =
↑χ₄ ↑{ val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } *
↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) }
case tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
↑χ₄
↑{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } *
↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) }
case tail.tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 7,
isLt :=
(_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =
↑χ₄
↑{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } *
↑χ₈
{ val := 7,
isLt :=
(_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) }
[PROOFSTEP]
all_goals decide
[GOAL]
case head
⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } =
↑χ₄ ↑{ val := 0, isLt := (_ : 0 < 7 + 1) } * ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) }
[PROOFSTEP]
decide
[GOAL]
case tail.head
⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } =
↑χ₄ ↑{ val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } * ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) }
[PROOFSTEP]
decide
[GOAL]
case tail.tail.head
⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } =
↑χ₄ ↑{ val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } *
↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) }
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.head
⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } =
↑χ₄ ↑{ val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } *
↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) }
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } =
↑χ₄ ↑{ val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } *
↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) }
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.head
⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } =
↑χ₄ ↑{ val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } *
↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) }
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } =
↑χ₄
↑{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } *
↑χ₈
{ val := 6,
isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) }
[PROOFSTEP]
decide
[GOAL]
case tail.tail.tail.tail.tail.tail.tail.head
⊢ ↑χ₈'
{ val := 7,
isLt :=
(_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } =
↑χ₄
↑{ val := 7,
isLt :=
(_ :
(fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a)
7) } *
↑χ₈
{ val := 7,
isLt :=
(_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) }
[PROOFSTEP]
decide
[GOAL]
a : ℤ
⊢ ↑χ₈' ↑a = ↑χ₄ ↑a * ↑χ₈ ↑a
[PROOFSTEP]
rw [← @cast_int_cast 8 (ZMod 4) _ 4 _ (by norm_num) a]
[GOAL]
a : ℤ
⊢ 4 ∣ 8
[PROOFSTEP]
norm_num
[GOAL]
a : ℤ
⊢ ↑χ₈' ↑a = ↑χ₄ ↑↑a * ↑χ₈ ↑a
[PROOFSTEP]
exact χ₈'_eq_χ₄_mul_χ₈ a
| {"mathlib_filename": "Mathlib.NumberTheory.LegendreSymbol.ZModChar", "llama_tokens": 17702} |
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Notations", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.LongNames", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.Cli", "llama_tokens": 0} |
|
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
j : Fin (n + 1)
x✝ : n + 1 ≤ ↑j + (n + 1)
⊢ HomologicalComplex.Hom.f (AlgebraicTopology.inclusionOfMooreComplexMap X) (n + 1) ≫
SimplicialObject.δ X (Fin.succ j) =
0
[PROOFSTEP]
dsimp [AlgebraicTopology.inclusionOfMooreComplexMap, NormalizedMooreComplex.objX]
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
j : Fin (n + 1)
x✝ : n + 1 ≤ ↑j + (n + 1)
⊢ arrow (Finset.inf Finset.univ fun k => kernelSubobject (SimplicialObject.δ X (Fin.succ k))) ≫
SimplicialObject.δ X (Fin.succ j) =
0
[PROOFSTEP]
rw [← factorThru_arrow _ _ (finset_inf_arrow_factors Finset.univ _ j (by simp only [Finset.mem_univ])), assoc,
kernelSubobject_arrow_comp, comp_zero]
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
j : Fin (n + 1)
x✝ : n + 1 ≤ ↑j + (n + 1)
⊢ j ∈ Finset.univ
[PROOFSTEP]
simp only [Finset.mem_univ]
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
⊢ Factors (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n)
[PROOFSTEP]
rcases n with _ | n
[GOAL]
case zero
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
⊢ Factors (NormalizedMooreComplex.objX X Nat.zero) (HomologicalComplex.Hom.f PInfty Nat.zero)
[PROOFSTEP]
apply top_factors
[GOAL]
case succ
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
⊢ Factors (NormalizedMooreComplex.objX X (Nat.succ n)) (HomologicalComplex.Hom.f PInfty (Nat.succ n))
[PROOFSTEP]
rw [PInfty_f, NormalizedMooreComplex.objX, finset_inf_factors]
[GOAL]
case succ
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
⊢ ∀ (i : Fin (n + 1)),
i ∈ Finset.univ →
Factors (kernelSubobject (SimplicialObject.δ X (Fin.succ i)))
(HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n))
[PROOFSTEP]
intro i _
[GOAL]
case succ
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
i : Fin (n + 1)
a✝ : i ∈ Finset.univ
⊢ Factors (kernelSubobject (SimplicialObject.δ X (Fin.succ i))) (HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n))
[PROOFSTEP]
apply kernelSubobject_factors
[GOAL]
case succ.w
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
n : ℕ
i : Fin (n + 1)
a✝ : i ∈ Finset.univ
⊢ HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n) ≫ SimplicialObject.δ X (Fin.succ i) = 0
[PROOFSTEP]
exact (HigherFacesVanish.of_P (n + 1) n) i le_add_self
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.88673, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
n : ℕ
⊢ (fun n =>
factorThru (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n)
(_ : Factors (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n)))
(n + 1) ≫
NormalizedMooreComplex.objD X n =
AlternatingFaceMapComplex.objD X n ≫
(fun n =>
factorThru (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n)
(_ : Factors (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n)))
n
[PROOFSTEP]
rw [← cancel_mono (NormalizedMooreComplex.objX X n).arrow, assoc, assoc, factorThru_arrow, ←
inclusionOfMooreComplexMap_f, ← normalizedMooreComplex_objD, ← (inclusionOfMooreComplexMap X).comm (n + 1) n,
inclusionOfMooreComplexMap_f, factorThru_arrow_assoc, ← alternatingFaceMapComplex_obj_d]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.88673, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ HomologicalComplex.d ((alternatingFaceMapComplex A).obj X) (n + 1) n =
HomologicalComplex.d ((alternatingFaceMapComplex A).obj X) (n + 1) n ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
exact PInfty.comm (n + 1) n
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ PInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty
[PROOFSTEP]
aesop_cat
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X Y : SimplicialObject A
f : X ⟶ Y
⊢ AlternatingFaceMapComplex.map f ≫ PInftyToNormalizedMooreComplex Y =
PInftyToNormalizedMooreComplex X ≫ NormalizedMooreComplex.map f
[PROOFSTEP]
aesop_cat
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ PInfty ≫ PInftyToNormalizedMooreComplex X = PInftyToNormalizedMooreComplex X
[PROOFSTEP]
aesop_cat
[GOAL]
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X
[PROOFSTEP]
ext (_ | n)
[GOAL]
case h.zero
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X ≫ PInfty) Nat.zero =
HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) 0 ≫ 𝟙 (X.obj (Opposite.op (SimplexCategory.mk 0))) =
HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) 0
[PROOFSTEP]
simp only [comp_id]
[GOAL]
case h.succ
A : Type u_1
inst✝¹ : Category.{u_2, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
n : ℕ
⊢ HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X ≫ PInfty) (Nat.succ n) =
HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) (Nat.succ n)
[PROOFSTEP]
exact (HigherFacesVanish.inclusionOfMooreComplexMap n).comp_P_eq_self
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.108671, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
Z✝ : ChainComplex A ℕ
x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X
hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X
⊢ x✝¹ = x✝
[PROOFSTEP]
ext n
[GOAL]
case h
A : Type u_1
inst✝¹ : Category.{?u.108671, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
Z✝ : ChainComplex A ℕ
x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X
hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X
n : ℕ
⊢ HomologicalComplex.Hom.f x✝¹ n = HomologicalComplex.Hom.f x✝ n
[PROOFSTEP]
dsimp
[GOAL]
case h
A : Type u_1
inst✝¹ : Category.{?u.108671, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
Z✝ : ChainComplex A ℕ
x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X
hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X
n : ℕ
⊢ HomologicalComplex.Hom.f x✝¹ n = HomologicalComplex.Hom.f x✝ n
[PROOFSTEP]
ext
[GOAL]
case h.h
A : Type u_1
inst✝¹ : Category.{?u.108671, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
Z✝ : ChainComplex A ℕ
x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X
hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X
n : ℕ
⊢ HomologicalComplex.Hom.f x✝¹ n ≫ arrow (NormalizedMooreComplex.objX X n) =
HomologicalComplex.Hom.f x✝ n ≫ arrow (NormalizedMooreComplex.objX X n)
[PROOFSTEP]
exact HomologicalComplex.congr_hom hf n
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.109759, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ inclusionOfMooreComplexMap X ≫ PInftyToNormalizedMooreComplex X = 𝟙 ((normalizedMooreComplex A).obj X)
[PROOFSTEP]
simp only [← cancel_mono (inclusionOfMooreComplexMap X), assoc, id_comp,
PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, inclusionOfMooreComplexMap_comp_PInfty]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ PInftyToNormalizedMooreComplex X =
(N₁.obj X).p ≫
PInftyToNormalizedMooreComplex X ≫ ((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).obj X).p
[PROOFSTEP]
erw [comp_id, PInfty_comp_PInftyToNormalizedMooreComplex]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X Y : SimplicialObject A
f : X ⟶ Y
⊢ N₁.map f ≫ (fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) Y =
(fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) X ≫
(normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).map f
[PROOFSTEP]
simp only [Functor.comp_map, normalizedMooreComplex_map, PInftyToNormalizedMooreComplex_naturality, Karoubi.hom_ext_iff,
Karoubi.comp_f, N₁_map_f, PInfty_comp_PInftyToNormalizedMooreComplex_assoc, toKaroubi_map_f, assoc]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ inclusionOfMooreComplexMap X =
((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).obj X).p ≫ inclusionOfMooreComplexMap X ≫ (N₁.obj X).p
[PROOFSTEP]
erw [inclusionOfMooreComplexMap_comp_PInfty, id_comp]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X Y : SimplicialObject A
f : X ⟶ Y
⊢ (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).map f ≫
(fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) Y =
(fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) X ≫ N₁.map f
[PROOFSTEP]
ext
[GOAL]
case h.h
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X Y : SimplicialObject A
f : X ⟶ Y
i✝ : ℕ
⊢ HomologicalComplex.Hom.f
((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).map f ≫
(fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) Y).f
i✝ =
HomologicalComplex.Hom.f ((fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) X ≫ N₁.map f).f i✝
[PROOFSTEP]
simp only [Functor.comp_map, normalizedMooreComplex_map, Karoubi.comp_f, toKaroubi_map_f, HomologicalComplex.comp_f,
NormalizedMooreComplex.map_f, inclusionOfMooreComplexMap_f, factorThru_arrow, N₁_map_f,
inclusionOfMooreComplexMap_comp_PInfty_assoc, AlternatingFaceMapComplex.map_f]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
⊢ ((NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) ≫
NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) =
𝟙 N₁
[PROOFSTEP]
ext X : 3
[GOAL]
case w.h.h
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ (NatTrans.app
((NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) ≫
NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X))
X).f =
(NatTrans.app (𝟙 N₁) X).f
[PROOFSTEP]
simp only [PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, NatTrans.comp_app, Karoubi.comp_f, N₁_obj_p,
NatTrans.id_app, Karoubi.id_eq]
[GOAL]
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X : SimplicialObject A
⊢ ((NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) ≫
NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) =
𝟙 (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ))
[PROOFSTEP]
ext X : 3
[GOAL]
case w.h.h
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ (NatTrans.app
((NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) ≫
NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X))
X).f =
(NatTrans.app (𝟙 (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ))) X).f
[PROOFSTEP]
rw [← cancel_mono (inclusionOfMooreComplexMap X)]
[GOAL]
case w.h.h
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ (NatTrans.app
((NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) ≫
NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X))
X).f ≫
inclusionOfMooreComplexMap X =
(NatTrans.app (𝟙 (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ))) X).f ≫ inclusionOfMooreComplexMap X
[PROOFSTEP]
simp only [NatTrans.comp_app, Karoubi.comp_f, assoc, NatTrans.id_app, Karoubi.id_eq,
PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, inclusionOfMooreComplexMap_comp_PInfty]
[GOAL]
case w.h.h
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ inclusionOfMooreComplexMap X =
((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).obj X).p ≫ inclusionOfMooreComplexMap X
[PROOFSTEP]
dsimp only [Functor.comp_obj, toKaroubi]
[GOAL]
case w.h.h
A : Type u_1
inst✝¹ : Category.{?u.110631, u_1} A
inst✝ : Abelian A
X✝ X : SimplicialObject A
⊢ inclusionOfMooreComplexMap X = 𝟙 ((normalizedMooreComplex A).obj X) ≫ inclusionOfMooreComplexMap X
[PROOFSTEP]
erw [id_comp]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Normalized", "llama_tokens": 5906} |
{"mathlib_filename": "Mathlib.Util.Superscript", "llama_tokens": 0} |
|
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
i : Fin (j + 2)
⊢ Isδ₀ (SimplexCategory.δ i) ↔ i = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
i : Fin (j + 2)
⊢ Isδ₀ (SimplexCategory.δ i) → i = 0
[PROOFSTEP]
rintro ⟨_, h₂⟩
[GOAL]
case mp.intro
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
i : Fin (j + 2)
left✝ : len [j + 1] = len [j] + 1
h₂ : ↑(Hom.toOrderHom (SimplexCategory.δ i)) 0 ≠ 0
⊢ i = 0
[PROOFSTEP]
by_contra h
[GOAL]
case mp.intro
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
i : Fin (j + 2)
left✝ : len [j + 1] = len [j] + 1
h₂ : ↑(Hom.toOrderHom (SimplexCategory.δ i)) 0 ≠ 0
h : ¬i = 0
⊢ False
[PROOFSTEP]
exact h₂ (Fin.succAbove_ne_zero_zero h)
[GOAL]
case mpr
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
i : Fin (j + 2)
⊢ i = 0 → Isδ₀ (SimplexCategory.δ i)
[PROOFSTEP]
rintro rfl
[GOAL]
case mpr
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
⊢ Isδ₀ (SimplexCategory.δ 0)
[PROOFSTEP]
exact ⟨rfl, by dsimp; exact Fin.succ_ne_zero (0 : Fin (j + 1))⟩
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
⊢ ↑(Hom.toOrderHom (SimplexCategory.δ 0)) 0 ≠ 0
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.1159, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
j : ℕ
⊢ ¬↑(Hom.toOrderHom (SimplexCategory.δ 0)) 0 = 0
[PROOFSTEP]
exact Fin.succ_ne_zero (0 : Fin (j + 1))
[GOAL]
C : Type u_1
inst✝² : Category.{?u.2609, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
n : ℕ
i : [n] ⟶ [n + 1]
inst✝ : Mono i
hi : Isδ₀ i
⊢ i = SimplexCategory.δ 0
[PROOFSTEP]
obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i
[GOAL]
case intro
C : Type u_1
inst✝² : Category.{?u.2609, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
n : ℕ
j : Fin (n + 2)
inst✝ : Mono (SimplexCategory.δ j)
hi : Isδ₀ (SimplexCategory.δ j)
⊢ SimplexCategory.δ j = SimplexCategory.δ 0
[PROOFSTEP]
rw [iff] at hi
[GOAL]
case intro
C : Type u_1
inst✝² : Category.{?u.2609, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
n : ℕ
j : Fin (n + 2)
inst✝ : Mono (SimplexCategory.δ j)
hi : j = 0
⊢ SimplexCategory.δ j = SimplexCategory.δ 0
[PROOFSTEP]
rw [hi]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
by_cases Δ = Δ'
[GOAL]
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
by_cases Δ = Δ'
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h : Δ = Δ'
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
exact eqToHom (by congr)
[GOAL]
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h : Δ = Δ'
⊢ HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ')
[PROOFSTEP]
congr
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h : ¬Δ = Δ'
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
by_cases Isδ₀ i
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h : ¬Δ = Δ'
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
by_cases Isδ₀ i
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h✝ : ¬Δ = Δ'
h : Isδ₀ i
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
exact K.d Δ.len Δ'.len
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{?u.36495, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
K : ChainComplex C ℕ
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h✝ : ¬Δ = Δ'
h : ¬Isδ₀ i
⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ')
[PROOFSTEP]
exact 0
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
⊢ mapMono K (𝟙 Δ) = 𝟙 (HomologicalComplex.X K (len Δ))
[PROOFSTEP]
unfold mapMono
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
⊢ (if h : Δ = Δ then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ))
else if h : Isδ₀ (𝟙 Δ) then HomologicalComplex.d K (len Δ) (len Δ) else 0) =
𝟙 (HomologicalComplex.X K (len Δ))
[PROOFSTEP]
simp only [eq_self_iff_true, eqToHom_refl, dite_eq_ite, if_true]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
hi : Isδ₀ i
⊢ mapMono K i = HomologicalComplex.d K (len Δ) (len Δ')
[PROOFSTEP]
unfold mapMono
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
hi : Isδ₀ i
⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ'))
else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) =
HomologicalComplex.d K (len Δ) (len Δ')
[PROOFSTEP]
suffices Δ ≠ Δ' by simp only [dif_neg this, dif_pos hi]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
hi : Isδ₀ i
this : Δ ≠ Δ'
⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ'))
else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) =
HomologicalComplex.d K (len Δ) (len Δ')
[PROOFSTEP]
simp only [dif_neg this, dif_pos hi]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
hi : Isδ₀ i
⊢ Δ ≠ Δ'
[PROOFSTEP]
rintro rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ'' : SimplexCategory
i : Δ ⟶ Δ
inst✝ : Mono i
hi : Isδ₀ i
⊢ False
[PROOFSTEP]
simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
n : ℕ
⊢ Isδ₀ (SimplexCategory.δ 0)
[PROOFSTEP]
rw [Isδ₀.iff]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h₁ : Δ ≠ Δ'
h₂ : ¬Isδ₀ i
⊢ mapMono K i = 0
[PROOFSTEP]
unfold mapMono
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h₁ : Δ ≠ Δ'
h₂ : ¬Isδ₀ i
⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ'))
else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) =
0
[PROOFSTEP]
rw [Ne.def] at h₁
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Isδ₀ i
⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ'))
else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) =
0
[PROOFSTEP]
split_ifs
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Isδ₀ i
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ ⟶ Δ'
inst✝ : Mono i
⊢ mapMono K i ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ mapMono K' i
[PROOFSTEP]
unfold mapMono
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ ⟶ Δ'
inst✝ : Mono i
⊢ (if h : Δ' = Δ then eqToHom (_ : HomologicalComplex.X K (len Δ') = HomologicalComplex.X K (len Δ))
else if h : Isδ₀ i then HomologicalComplex.d K (len Δ') (len Δ) else 0) ≫
HomologicalComplex.Hom.f f (len Δ) =
HomologicalComplex.Hom.f f (len Δ') ≫
if h : Δ' = Δ then eqToHom (_ : HomologicalComplex.X K' (len Δ') = HomologicalComplex.X K' (len Δ))
else if h : Isδ₀ i then HomologicalComplex.d K' (len Δ') (len Δ) else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ ⟶ Δ'
inst✝ : Mono i
h : Δ' = Δ
⊢ eqToHom (_ : HomologicalComplex.X K (len Δ') = HomologicalComplex.X K (len Δ)) ≫ HomologicalComplex.Hom.f f (len Δ) =
HomologicalComplex.Hom.f f (len Δ') ≫
eqToHom (_ : HomologicalComplex.X K' (len Δ') = HomologicalComplex.X K' (len Δ))
[PROOFSTEP]
subst h
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ' Δ'' : SimplexCategory
i : Δ' ⟶ Δ'
inst✝ : Mono i
⊢ eqToHom (_ : HomologicalComplex.X K (len Δ') = HomologicalComplex.X K (len Δ')) ≫
HomologicalComplex.Hom.f f (len Δ') =
HomologicalComplex.Hom.f f (len Δ') ≫
eqToHom (_ : HomologicalComplex.X K' (len Δ') = HomologicalComplex.X K' (len Δ'))
[PROOFSTEP]
simp only [id_comp, eqToHom_refl, comp_id]
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ ⟶ Δ'
inst✝ : Mono i
h : ¬Δ' = Δ
h✝ : Isδ₀ i
⊢ HomologicalComplex.d K (len Δ') (len Δ) ≫ HomologicalComplex.Hom.f f (len Δ) =
HomologicalComplex.Hom.f f (len Δ') ≫ HomologicalComplex.d K' (len Δ') (len Δ)
[PROOFSTEP]
rw [HomologicalComplex.Hom.comm]
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i : Δ ⟶ Δ'
inst✝ : Mono i
h : ¬Δ' = Δ
h✝ : ¬Isδ₀ i
⊢ 0 ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ 0
[PROOFSTEP]
rw [zero_comp, comp_zero]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
by_cases h₁ : Δ = Δ'
[GOAL]
case pos
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : Δ = Δ'
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
subst h₁
[GOAL]
case pos
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ
i : Δ ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
simp only [SimplexCategory.eq_id_of_mono i, comp_id, id_comp, mapMono_id K, eqToHom_refl]
-- case where i' : Δ'' ⟶ Δ' is the identity
[GOAL]
case neg
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
by_cases h₂ : Δ' = Δ''
[GOAL]
case pos
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : Δ' = Δ''
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
subst h₂
[GOAL]
case pos
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' : SimplexCategory
i : Δ' ⟶ Δ
inst✝¹ : Mono i
h₁ : ¬Δ = Δ'
i' : Δ' ⟶ Δ'
inst✝ : Mono i'
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
simp only [SimplexCategory.eq_id_of_mono i', comp_id, id_comp, mapMono_id K, eqToHom_refl]
-- then the RHS is always zero
[GOAL]
case neg
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
obtain ⟨k, hk⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i h₁)
[GOAL]
case neg.intro
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
obtain ⟨k', hk'⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i' h₂)
[GOAL]
case neg.intro.intro
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
have eq : Δ.len = Δ''.len + (k + k' + 2) := by linarith
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
⊢ len Δ = len Δ'' + (k + k' + 2)
[PROOFSTEP]
linarith
[GOAL]
case neg.intro.intro
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i)
[PROOFSTEP]
rw [mapMono_eq_zero K (i' ≫ i) _ _]
[GOAL]
case neg.intro.intro
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ mapMono K i ≫ mapMono K i' = 0
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ Δ ≠ Δ''
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ ¬Isδ₀ (i' ≫ i)
[PROOFSTEP]
rotate_left
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ Δ ≠ Δ''
[PROOFSTEP]
by_contra h
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
h : Δ = Δ''
⊢ False
[PROOFSTEP]
simp only [self_eq_add_right, h, add_eq_zero_iff, and_false] at eq
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ ¬Isδ₀ (i' ≫ i)
[PROOFSTEP]
by_contra h
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
h : Isδ₀ (i' ≫ i)
⊢ False
[PROOFSTEP]
simp only [h.1, add_right_inj] at eq
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
h : Isδ₀ (i' ≫ i)
eq : 1 = k + k' + 2
⊢ False
[PROOFSTEP]
linarith
-- in all cases, the LHS is also zero, either by definition, or because d ≫ d = 0
[GOAL]
case neg.intro.intro
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
⊢ mapMono K i ≫ mapMono K i' = 0
[PROOFSTEP]
by_cases h₃ : Isδ₀ i
[GOAL]
case pos
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
h₃ : Isδ₀ i
⊢ mapMono K i ≫ mapMono K i' = 0
[PROOFSTEP]
by_cases h₄ : Isδ₀ i'
[GOAL]
case pos
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
h₃ : Isδ₀ i
h₄ : Isδ₀ i'
⊢ mapMono K i ≫ mapMono K i' = 0
[PROOFSTEP]
rw [mapMono_δ₀' K i h₃, mapMono_δ₀' K i' h₄, HomologicalComplex.d_comp_d]
[GOAL]
case neg
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
h₃ : Isδ₀ i
h₄ : ¬Isδ₀ i'
⊢ mapMono K i ≫ mapMono K i' = 0
[PROOFSTEP]
simp only [mapMono_eq_zero K i' h₂ h₄, comp_zero]
[GOAL]
case neg
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ Δ' Δ'' : SimplexCategory
i' : Δ'' ⟶ Δ'
i : Δ' ⟶ Δ
inst✝¹ : Mono i'
inst✝ : Mono i
h₁ : ¬Δ = Δ'
h₂ : ¬Δ' = Δ''
k : ℕ
hk : len Δ = len Δ' + k + 1
k' : ℕ
hk' : len Δ' = len Δ'' + k' + 1
eq : len Δ = len Δ'' + (k + k' + 2)
h₃ : ¬Isδ₀ i
⊢ mapMono K i ≫ mapMono K i' = 0
[PROOFSTEP]
simp only [mapMono_eq_zero K i h₁ h₃, zero_comp]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
Δ'' : SimplexCategory
e : Δ'.unop ⟶ Δ''
i : Δ'' ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Sigma.ι (summand K Δ) A ≫ map K θ = Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e)
[PROOFSTEP]
simp only [map, colimit.ι_desc, Cofan.mk_ι_app]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
Δ'' : SimplexCategory
e : Δ'.unop ⟶ Δ''
i : Δ'' ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫
Sigma.ι (summand K Δ') (Splitting.IndexSet.pull A θ) =
Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e)
[PROOFSTEP]
have h := SimplexCategory.image_eq fac
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
Δ'' : SimplexCategory
e : Δ'.unop ⟶ Δ''
i : Δ'' ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
h : image (θ.unop ≫ Splitting.IndexSet.e A) = Δ''
⊢ Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫
Sigma.ι (summand K Δ') (Splitting.IndexSet.pull A θ) =
Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e)
[PROOFSTEP]
subst h
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A)
i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫
Sigma.ι (summand K Δ') (Splitting.IndexSet.pull A θ) =
Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e)
[PROOFSTEP]
congr
[GOAL]
case e_a.e_i
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A)
i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ image.ι (θ.unop ≫ Splitting.IndexSet.e A) = i
[PROOFSTEP]
exact SimplexCategory.image_ι_eq fac
[GOAL]
case e_a.h.e_6.h
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A)
i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Splitting.IndexSet.pull A θ = Splitting.IndexSet.mk e
[PROOFSTEP]
dsimp only [SimplicialObject.Splitting.IndexSet.pull]
[GOAL]
case e_a.h.e_6.h
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A)
i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Splitting.IndexSet.mk (factorThruImage (θ.unop ≫ Splitting.IndexSet.e A)) = Splitting.IndexSet.mk e
[PROOFSTEP]
congr
[GOAL]
case e_a.h.e_6.h.e_f
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A)
i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ factorThruImage (θ.unop ≫ Splitting.IndexSet.e A) = e
[PROOFSTEP]
exact SimplexCategory.factorThruImage_eq fac
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
x✝ : Discrete (Splitting.IndexSet Δ)
A : Splitting.IndexSet Δ
⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (𝟙 Δ) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫
𝟙 ({ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.obj Δ)
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
x✝ : Discrete (Splitting.IndexSet Δ)
A : Splitting.IndexSet Δ
⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ Obj.map K (𝟙 Δ) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ 𝟙 (Obj.obj₂ K Δ)
[PROOFSTEP]
have fac : A.e ≫ 𝟙 A.1.unop = (𝟙 Δ).unop ≫ A.e := by rw [unop_id, comp_id, id_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
x✝ : Discrete (Splitting.IndexSet Δ)
A : Splitting.IndexSet Δ
⊢ Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (𝟙 Δ).unop ≫ Splitting.IndexSet.e A
[PROOFSTEP]
rw [unop_id, comp_id, id_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
x✝ : Discrete (Splitting.IndexSet Δ)
A : Splitting.IndexSet Δ
fac : Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (𝟙 Δ).unop ≫ Splitting.IndexSet.e A
⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ Obj.map K (𝟙 Δ) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ 𝟙 (Obj.obj₂ K Δ)
[PROOFSTEP]
erw [Obj.map_on_summand₀ K A fac, Obj.Termwise.mapMono_id, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
x✝ : Discrete (Splitting.IndexSet Δ)
A : Splitting.IndexSet Δ
fac : Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (𝟙 Δ).unop ≫ Splitting.IndexSet.e A
⊢ Sigma.ι (Obj.summand K Δ) (Splitting.IndexSet.mk (Splitting.IndexSet.e A)) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A }
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ'' Δ' Δ : SimplexCategoryᵒᵖ
θ' : Δ'' ⟶ Δ'
θ : Δ' ⟶ Δ
x✝ : Discrete (Splitting.IndexSet Δ'')
A : Splitting.IndexSet Δ''
⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (θ' ≫ θ) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ' ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ
[PROOFSTEP]
have fac : θ.unop ≫ θ'.unop ≫ A.e = (θ' ≫ θ).unop ≫ A.e := by rw [unop_comp, assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ'' Δ' Δ : SimplexCategoryᵒᵖ
θ' : Δ'' ⟶ Δ'
θ : Δ' ⟶ Δ
x✝ : Discrete (Splitting.IndexSet Δ'')
A : Splitting.IndexSet Δ''
⊢ θ.unop ≫ θ'.unop ≫ Splitting.IndexSet.e A = (θ' ≫ θ).unop ≫ Splitting.IndexSet.e A
[PROOFSTEP]
rw [unop_comp, assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ'' Δ' Δ : SimplexCategoryᵒᵖ
θ' : Δ'' ⟶ Δ'
θ : Δ' ⟶ Δ
x✝ : Discrete (Splitting.IndexSet Δ'')
A : Splitting.IndexSet Δ''
fac : θ.unop ≫ θ'.unop ≫ Splitting.IndexSet.e A = (θ' ≫ θ).unop ≫ Splitting.IndexSet.e A
⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (θ' ≫ θ) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ' ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ
[PROOFSTEP]
rw [← image.fac (θ'.unop ≫ A.e), ← assoc, ← image.fac (θ.unop ≫ factorThruImage (θ'.unop ≫ A.e)), assoc] at fac
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ'' Δ' Δ : SimplexCategoryᵒᵖ
θ' : Δ'' ⟶ Δ'
θ : Δ' ⟶ Δ
x✝ : Discrete (Splitting.IndexSet Δ'')
A : Splitting.IndexSet Δ''
fac :
factorThruImage (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
image.ι (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
image.ι (θ'.unop ≫ Splitting.IndexSet.e A) =
(θ' ≫ θ).unop ≫ Splitting.IndexSet.e A
⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (θ' ≫ θ) =
colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ' ≫
{ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ
[PROOFSTEP]
simp only [Obj.map_on_summand₀'_assoc K A θ', Obj.map_on_summand₀' K _ θ, Obj.Termwise.mapMono_comp_assoc,
Obj.map_on_summand₀ K A fac]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.105445, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ'' Δ' Δ : SimplexCategoryᵒᵖ
θ' : Δ'' ⟶ Δ'
θ : Δ' ⟶ Δ
x✝ : Discrete (Splitting.IndexSet Δ'')
A : Splitting.IndexSet Δ''
fac :
factorThruImage (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
image.ι (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
image.ι (θ'.unop ≫ Splitting.IndexSet.e A) =
(θ' ≫ θ).unop ≫ Splitting.IndexSet.e A
⊢ Obj.Termwise.mapMono K
(image.ι (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
image.ι (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
Sigma.ι (Obj.summand K Δ)
(Splitting.IndexSet.mk (factorThruImage (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)))) =
Obj.Termwise.mapMono K
(image.ι (θ.unop ≫ Splitting.IndexSet.e (Splitting.IndexSet.pull A θ')) ≫
image.ι (θ'.unop ≫ Splitting.IndexSet.e A)) ≫
Sigma.ι (Obj.summand K Δ) (Splitting.IndexSet.pull (Splitting.IndexSet.pull A θ') θ)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ : SimplexCategoryᵒᵖ
x✝ : Discrete (Splitting.IndexSet Δ)
A : Splitting.IndexSet Δ
⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ))
{ as := A } ≫
Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ =
colimit.ι
(Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ))
{ as := A } ≫
𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ)
[PROOFSTEP]
induction' Δ using Opposite.rec' with Δ
[GOAL]
case h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝¹ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ✝ : SimplexCategoryᵒᵖ
x✝¹ : Discrete (Splitting.IndexSet Δ✝)
A✝ : Splitting.IndexSet Δ✝
Δ : SimplexCategory
x✝ : Discrete (Splitting.IndexSet (op Δ))
A : Splitting.IndexSet (op Δ)
⊢ colimit.ι
(Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op Δ)))
{ as := A } ≫
Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) (op Δ) =
colimit.ι
(Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op Δ)))
{ as := A } ≫
𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op Δ))
[PROOFSTEP]
induction' Δ using SimplexCategory.rec with n
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝¹ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ✝ : SimplexCategoryᵒᵖ
x✝² : Discrete (Splitting.IndexSet Δ✝)
A✝¹ : Splitting.IndexSet Δ✝
Δ : SimplexCategory
x✝¹ : Discrete (Splitting.IndexSet (op Δ))
A✝ : Splitting.IndexSet (op Δ)
n : ℕ
x✝ : Discrete (Splitting.IndexSet (op [n]))
A : Splitting.IndexSet (op [n])
⊢ colimit.ι
(Discrete.functor
(Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n])))
{ as := A } ≫
Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) (op [n]) =
colimit.ι
(Discrete.functor
(Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n])))
{ as := A } ≫
𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n]))
[PROOFSTEP]
dsimp [Splitting.map]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝¹ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ✝ : SimplexCategoryᵒᵖ
x✝² : Discrete (Splitting.IndexSet Δ✝)
A✝¹ : Splitting.IndexSet Δ✝
Δ : SimplexCategory
x✝¹ : Discrete (Splitting.IndexSet (op Δ))
A✝ : Splitting.IndexSet (op Δ)
n : ℕ
x✝ : Discrete (Splitting.IndexSet (op [n]))
A : Splitting.IndexSet (op [n])
⊢ (colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫
Sigma.desc fun A =>
Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op) =
colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫
𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n]))
[PROOFSTEP]
simp only [colimit.ι_desc, Cofan.mk_ι_app, Γ₀.obj_map]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝¹ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ✝ : SimplexCategoryᵒᵖ
x✝² : Discrete (Splitting.IndexSet Δ✝)
A✝¹ : Splitting.IndexSet Δ✝
Δ : SimplexCategory
x✝¹ : Discrete (Splitting.IndexSet (op Δ))
A✝ : Splitting.IndexSet (op Δ)
n : ℕ
x✝ : Discrete (Splitting.IndexSet (op [n]))
A : Splitting.IndexSet (op [n])
⊢ Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op =
colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫
𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n]))
[PROOFSTEP]
erw [Γ₀.Obj.map_on_summand₀ K (SimplicialObject.Splitting.IndexSet.id A.1) (show A.e ≫ 𝟙 _ = A.e.op.unop ≫ 𝟙 _ by rfl),
Γ₀.Obj.Termwise.mapMono_id, A.ext', id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝¹ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ✝ : SimplexCategoryᵒᵖ
x✝² : Discrete (Splitting.IndexSet Δ✝)
A✝¹ : Splitting.IndexSet Δ✝
Δ : SimplexCategory
x✝¹ : Discrete (Splitting.IndexSet (op Δ))
A✝ : Splitting.IndexSet (op Δ)
n : ℕ
x✝ : Discrete (Splitting.IndexSet (op [n]))
A : Splitting.IndexSet (op [n])
⊢ Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (Splitting.IndexSet.e A).op.unop ≫ 𝟙 (op A.fst.unop).unop
[PROOFSTEP]
rfl
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝¹ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ✝ : SimplexCategoryᵒᵖ
x✝² : Discrete (Splitting.IndexSet Δ✝)
A✝¹ : Splitting.IndexSet Δ✝
Δ : SimplexCategory
x✝¹ : Discrete (Splitting.IndexSet (op Δ))
A✝ : Splitting.IndexSet (op Δ)
n : ℕ
x✝ : Discrete (Splitting.IndexSet (op [n]))
A : Splitting.IndexSet (op [n])
⊢ Sigma.ι (Obj.summand K (op [n]))
(Splitting.IndexSet.mk
(Splitting.IndexSet.e
{ fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } })) =
colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst))
{ as := { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } } }
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{?u.135855, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
⊢ IsIso (Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ)
[PROOFSTEP]
rw [Γ₀.splitting_map_eq_id]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.135855, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ✝ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
Δ : SimplexCategoryᵒᵖ
⊢ IsIso (𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ))
[PROOFSTEP]
apply IsIso.id
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
Δ'' : SimplexCategory
e : Δ'.unop ⟶ Δ''
i : Δ'' ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Splitting.ιSummand (splitting K) A ≫ (obj K).map θ =
Termwise.mapMono K i ≫ Splitting.ιSummand (splitting K) (Splitting.IndexSet.mk e)
[PROOFSTEP]
dsimp only [SimplicialObject.Splitting.ιSummand, SimplicialObject.Splitting.ιCoprod]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
Δ'' : SimplexCategory
e : Δ'.unop ⟶ Δ''
i : Δ'' ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ (Sigma.ι (Splitting.summand (splitting K).N Δ) A ≫ (Splitting.iso (splitting K) Δ).hom) ≫ (obj K).map θ =
Termwise.mapMono K i ≫
Sigma.ι (Splitting.summand (splitting K).N (op Δ'.unop)) (Splitting.IndexSet.mk e) ≫
(Splitting.iso (splitting K) (op Δ'.unop)).hom
[PROOFSTEP]
simp only [assoc, Γ₀.splitting_iso_hom_eq_id, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ''✝ : SimplexCategory
inst✝² : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
Δ'' : SimplexCategory
e : Δ'.unop ⟶ Δ''
i : Δ'' ⟶ A.fst.unop
inst✝¹ : Epi e
inst✝ : Mono i
fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A
⊢ Sigma.ι (Splitting.summand (splitting K).N Δ) A ≫ (obj K).map θ =
Termwise.mapMono K i ≫ Sigma.ι (Splitting.summand (splitting K).N (op Δ'.unop)) (Splitting.IndexSet.mk e)
[PROOFSTEP]
exact Γ₀.Obj.map_on_summand₀ K A fac
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
⊢ Splitting.ιSummand (splitting K) A ≫ (obj K).map θ =
Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫
Splitting.ιSummand (splitting K) (Splitting.IndexSet.pull A θ)
[PROOFSTEP]
apply Obj.map_on_summand
[GOAL]
case fac
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
Δ Δ' : SimplexCategoryᵒᵖ
A : Splitting.IndexSet Δ
θ : Δ ⟶ Δ'
⊢ factorThruImage (θ.unop ≫ Splitting.IndexSet.e A) ≫ image.ι (θ.unop ≫ Splitting.IndexSet.e A) =
θ.unop ≫ Splitting.IndexSet.e A
[PROOFSTEP]
apply image.fac
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝¹ : HasFiniteCoproducts C
Δ Δ' : SimplexCategory
e : Δ' ⟶ Δ
inst✝ : Epi e
⊢ Splitting.ιSummand (splitting K) (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map e.op =
Splitting.ιSummand (splitting K) (Splitting.IndexSet.mk e)
[PROOFSTEP]
simpa only [Γ₀.Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) e.op (rfl : e ≫ 𝟙 Δ = e ≫ 𝟙 Δ),
Γ₀.Obj.Termwise.mapMono_id] using id_comp _
[GOAL]
C : Type u_1
inst✝² : Category.{?u.164164, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ' Δ : SimplexCategoryᵒᵖ
θ : Δ' ⟶ Δ
⊢ (obj K).map θ ≫
(fun Δ =>
Splitting.desc (splitting K) Δ fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A)
Δ =
(fun Δ =>
Splitting.desc (splitting K) Δ fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A)
Δ' ≫
(obj K').map θ
[PROOFSTEP]
apply (Γ₀.splitting K).hom_ext'
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.164164, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ' Δ : SimplexCategoryᵒᵖ
θ : Δ' ⟶ Δ
⊢ ∀ (A : Splitting.IndexSet Δ'),
Splitting.ιSummand (splitting K) A ≫
(obj K).map θ ≫
(fun Δ =>
Splitting.desc (splitting K) Δ fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A)
Δ =
Splitting.ιSummand (splitting K) A ≫
(fun Δ =>
Splitting.desc (splitting K) Δ fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A)
Δ' ≫
(obj K').map θ
[PROOFSTEP]
intro A
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.164164, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ' Δ : SimplexCategoryᵒᵖ
θ : Δ' ⟶ Δ
A : Splitting.IndexSet Δ'
⊢ Splitting.ιSummand (splitting K) A ≫
(obj K).map θ ≫
(fun Δ =>
Splitting.desc (splitting K) Δ fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A)
Δ =
Splitting.ιSummand (splitting K) A ≫
(fun Δ =>
Splitting.desc (splitting K) Δ fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A)
Δ' ≫
(obj K').map θ
[PROOFSTEP]
simp only [(splitting K).ι_desc_assoc, Obj.map_on_summand'_assoc K _ θ, (splitting K).ι_desc, assoc,
Obj.map_on_summand' K' _ θ]
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.164164, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ✝ Δ'✝ Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
Δ' Δ : SimplexCategoryᵒᵖ
θ : Δ' ⟶ Δ
A : Splitting.IndexSet Δ'
⊢ Obj.Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫
HomologicalComplex.Hom.f f (len (Splitting.IndexSet.pull A θ).fst.unop) ≫
Splitting.ιSummand (splitting K') (Splitting.IndexSet.pull A θ) =
HomologicalComplex.Hom.f f (len A.fst.unop) ≫
Obj.Termwise.mapMono K' (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫
Splitting.ιSummand (splitting K') (Splitting.IndexSet.pull A θ)
[PROOFSTEP]
apply Obj.Termwise.mapMono_naturality_assoc
[GOAL]
C : Type u_1
inst✝² : Category.{?u.167032, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
n : ℕ
⊢ Splitting.ι ((fun K => Split.mk' (Γ₀.splitting K)) K).s n ≫ NatTrans.app (Γ₀.map f) (op [n]) =
HomologicalComplex.Hom.f f n ≫ Splitting.ι ((fun K => Split.mk' (Γ₀.splitting K)) K').s n
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.167032, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
n : ℕ
⊢ (Splitting.ι (Γ₀.splitting K) n ≫
Splitting.desc (Γ₀.splitting K) (op [n]) fun A =>
HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (Γ₀.splitting K') A) =
HomologicalComplex.Hom.f f n ≫ Splitting.ι (Γ₀.splitting K') n
[PROOFSTEP]
simp only [← Splitting.ιSummand_id, (Γ₀.splitting K).ι_desc]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.167032, u_1} C
inst✝¹ : Preadditive C
K✝ K'✝ : ChainComplex C ℕ
f✝ : K✝ ⟶ K'✝
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K K' : ChainComplex C ℕ
f : K ⟶ K'
n : ℕ
⊢ HomologicalComplex.Hom.f f (len (Splitting.IndexSet.id (op [n])).fst.unop) ≫
Splitting.ιSummand (Γ₀.splitting K') (Splitting.IndexSet.id (op [n])) =
HomologicalComplex.Hom.f f n ≫ Splitting.ιSummand (Γ₀.splitting K') (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ HigherFacesVanish (n + 1) (Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])))
[PROOFSTEP]
intro j _
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) =
0
[PROOFSTEP]
have eq := Γ₀.Obj.mapMono_on_summand_id K (SimplexCategory.δ j.succ)
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) =
0
[PROOFSTEP]
rw [Γ₀.Obj.Termwise.mapMono_eq_zero K, zero_comp] at eq
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
0
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) =
0
case h₁
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
⊢ [n + 1] ≠ [n]
case h₂
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
⊢ ¬Isδ₀ (SimplexCategory.δ (Fin.succ j))
[PROOFSTEP]
rotate_left
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
⊢ [n + 1] ≠ [n]
[PROOFSTEP]
intro h
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
h : [n + 1] = [n]
⊢ False
[PROOFSTEP]
exact (Nat.succ_ne_self n) (congr_arg SimplexCategory.len h)
[GOAL]
case h₂
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
⊢ ¬Isδ₀ (SimplexCategory.δ (Fin.succ j))
[PROOFSTEP]
exact fun h => Fin.succ_ne_zero j (by simpa only [Isδ₀.iff] using h)
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
h : Isδ₀ (SimplexCategory.δ (Fin.succ j))
⊢ Fin.succ j = 0
[PROOFSTEP]
simpa only [Isδ₀.iff] using h
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
j : Fin (n + 1)
a✝ : n + 1 ≤ ↑j + (n + 1)
eq :
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
(Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op =
0
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫
SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) =
0
[PROOFSTEP]
exact eq
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
rw [PInfty_f]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f (P n) n =
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))
[PROOFSTEP]
rcases n with _ | n
[GOAL]
case zero
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.zero])) ≫
HomologicalComplex.Hom.f (P Nat.zero) Nat.zero =
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.zero]))
[PROOFSTEP]
simpa only [P_f_0_eq] using comp_id _
[GOAL]
case succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : Preadditive C
K✝ K' : ChainComplex C ℕ
f : K✝ ⟶ K'
Δ Δ' Δ'' : SimplexCategory
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
n : ℕ
⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.succ n])) ≫
HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n) =
Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.succ n]))
[PROOFSTEP]
exact (HigherFacesVanish.on_Γ₀_summand_id K n).comp_P_eq_self
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.FunctorGamma", "llama_tokens": 29711} |
{"mathlib_filename": "Mathlib.Util.Qq", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.Imports", "llama_tokens": 0} |
|
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.28, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
⊢ b < n + 1 + 1
[PROOFSTEP]
simp only [hnbq, Nat.lt_add_one_iff, le_add_iff_nonneg_right, zero_le]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
j : Fin (n + 1 + 1)
hj : n + 1 + 1 ≤ ↑j + q
⊢ (φ ≫ SimplicialObject.σ X { val := b, isLt := (_ : b < n + 1 + 1) }) ≫ SimplicialObject.δ X (Fin.succ j) = 0
[PROOFSTEP]
rw [assoc, SimplicialObject.δ_comp_σ_of_gt', Fin.pred_succ, v.comp_δ_eq_zero_assoc _ _ hj, zero_comp]
[GOAL]
case H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
j : Fin (n + 1 + 1)
hj : n + 1 + 1 ≤ ↑j + q
⊢ Fin.succ { val := b, isLt := (_ : b < n + 1 + 1) } < Fin.succ j
[PROOFSTEP]
dsimp
[GOAL]
case H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
j : Fin (n + 1 + 1)
hj : n + 1 + 1 ≤ ↑j + q
⊢ { val := b + 1, isLt := (_ : Nat.succ b < Nat.succ (n + 2)) } < Fin.succ j
[PROOFSTEP]
rw [Fin.lt_iff_val_lt_val, Fin.val_succ]
[GOAL]
case H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
j : Fin (n + 1 + 1)
hj : n + 1 + 1 ≤ ↑j + q
⊢ ↑{ val := b + 1, isLt := (_ : Nat.succ b < Nat.succ (n + 2)) } < ↑j + 1
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
j : Fin (n + 1 + 1)
hj : n + 1 + 1 ≤ ↑j + q
⊢ j ≠ 0
[PROOFSTEP]
intro hj'
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
Y : C
X : SimplicialObject C
n b q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnbq : n + 1 = b + q
j : Fin (n + 1 + 1)
hj : n + 1 + 1 ≤ ↑j + q
hj' : j = 0
⊢ False
[PROOFSTEP]
simp only [hnbq, add_comm b, add_assoc, hj', Fin.val_zero, zero_add, add_le_iff_nonpos_right, nonpos_iff_eq_zero,
add_eq_zero, false_and] at hj
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
[PROOFSTEP]
revert i hi
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
⊢ ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
[PROOFSTEP]
induction' q with q hq
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ ∀ (i : Fin (n + 1)),
n + 1 ≤ ↑i + Nat.zero → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P Nat.zero) (n + 1) = 0
[PROOFSTEP]
intro i (hi : n + 1 ≤ i)
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
hi : n + 1 ≤ ↑i
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P Nat.zero) (n + 1) = 0
[PROOFSTEP]
exfalso
[GOAL]
case zero.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
hi : n + 1 ≤ ↑i
⊢ False
[PROOFSTEP]
linarith [Fin.is_lt i]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
⊢ ∀ (i : Fin (n + 1)),
n + 1 ≤ ↑i + Nat.succ q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0
[PROOFSTEP]
intro i (hi : n + 1 ≤ i + q + 1)
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0
[PROOFSTEP]
by_cases n + 1 ≤ (i : ℕ) + q
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0
[PROOFSTEP]
by_cases n + 1 ≤ (i : ℕ) + q
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
h : n + 1 ≤ ↑i + q
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0
[PROOFSTEP]
rw [P_succ, HomologicalComplex.comp_f, ← assoc, hq i h, zero_comp]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
h : ¬n + 1 ≤ ↑i + q
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0
[PROOFSTEP]
replace hi : n = i + q := by
obtain ⟨j, hj⟩ := le_iff_exists_add.mp hi
rw [← Nat.lt_succ_iff, Nat.succ_eq_add_one, hj, not_lt, add_le_iff_nonpos_right, nonpos_iff_eq_zero] at h
rw [← add_left_inj 1, hj, self_eq_add_right, h]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
h : ¬n + 1 ≤ ↑i + q
⊢ n = ↑i + q
[PROOFSTEP]
obtain ⟨j, hj⟩ := le_iff_exists_add.mp hi
[GOAL]
case intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
h : ¬n + 1 ≤ ↑i + q
j : ℕ
hj : ↑i + q + 1 = n + 1 + j
⊢ n = ↑i + q
[PROOFSTEP]
rw [← Nat.lt_succ_iff, Nat.succ_eq_add_one, hj, not_lt, add_le_iff_nonpos_right, nonpos_iff_eq_zero] at h
[GOAL]
case intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
hi : n + 1 ≤ ↑i + q + 1
j : ℕ
h : j = 0
hj : ↑i + q + 1 = n + 1 + j
⊢ n = ↑i + q
[PROOFSTEP]
rw [← add_left_inj 1, hj, self_eq_add_right, h]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n q : ℕ
hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0
i : Fin (n + 1)
h : ¬n + 1 ≤ ↑i + q
hi : n = ↑i + q
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0
[PROOFSTEP]
rcases n with _ | n
[GOAL]
case neg.zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
i : Fin (Nat.zero + 1)
h : ¬Nat.zero + 1 ≤ ↑i + q
hi : Nat.zero = ↑i + q
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.zero + 1) = 0
[PROOFSTEP]
fin_cases i
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬Nat.zero + 1 ≤ ↑{ val := 0, isLt := (_ : 0 < Nat.zero + 1) } + q
hi : Nat.zero = ↑{ val := 0, isLt := (_ : 0 < Nat.zero + 1) } + q
⊢ SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.zero + 1) } ≫
HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.zero + 1) =
0
[PROOFSTEP]
dsimp at h hi
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.zero + 1) } ≫
HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.zero + 1) =
0
[PROOFSTEP]
rw [show q = 0 by linarith]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ q = 0
[PROOFSTEP]
linarith
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.zero + 1) } ≫
HomologicalComplex.Hom.f (P (Nat.succ 0)) (Nat.zero + 1) =
0
[PROOFSTEP]
change X.σ 0 ≫ (P 1).f 1 = 0
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 1) 1 = 0
[PROOFSTEP]
simp only [P_succ, HomologicalComplex.add_f_apply, comp_add, HomologicalComplex.id_f,
AlternatingFaceMapComplex.obj_d_eq, Hσ, HomologicalComplex.comp_f,
Homotopy.nullHomotopicMap'_f (c_mk 2 1 rfl) (c_mk 1 0 rfl), comp_id]
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 0) 1 +
(SimplicialObject.σ X 0 ≫
HomologicalComplex.Hom.f (P 0) 1 ≫
(Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) ≫
hσ' 0 0 1 (_ : ComplexShape.Rel c 1 0) +
SimplicialObject.σ X 0 ≫
HomologicalComplex.Hom.f (P 0) 1 ≫
hσ' 0 1 2 (_ : ComplexShape.Rel c 2 1) ≫
Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) =
0
[PROOFSTEP]
erw [hσ'_eq' (zero_add 0).symm, hσ'_eq' (add_zero 1).symm, comp_id, Fin.sum_univ_two, Fin.sum_univ_succ,
Fin.sum_univ_two]
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X 0 +
(SimplicialObject.σ X 0 ≫
HomologicalComplex.Hom.f (P 0) 1 ≫
((-1) ^ ↑0 • SimplicialObject.δ X 0 + (-1) ^ ↑1 • SimplicialObject.δ X 1) ≫
((-1) ^ 0 • SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.succ 0) }) +
SimplicialObject.σ X 0 ≫
HomologicalComplex.Hom.f (P 0) 1 ≫
((-1) ^ 1 • SimplicialObject.σ X { val := 1, isLt := (_ : 1 < Nat.succ 1) }) ≫
((-1) ^ ↑0 • SimplicialObject.δ X 0 +
((-1) ^ ↑(Fin.succ 0) • SimplicialObject.δ X (Fin.succ 0) +
(-1) ^ ↑(Fin.succ 1) • SimplicialObject.δ X (Fin.succ 1)))) =
0
[PROOFSTEP]
simp only [Fin.val_zero, pow_zero, pow_one, pow_add, one_smul, neg_smul, Fin.mk_one, Fin.val_succ, Fin.val_one,
Fin.succ_one_eq_two, P_zero, HomologicalComplex.id_f, Fin.val_two, pow_two, mul_neg, one_mul, neg_mul, neg_neg,
id_comp, add_comp, comp_add, Fin.mk_zero, neg_comp, comp_neg, Fin.succ_zero_eq_one]
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X 0 +
(SimplicialObject.σ X 0 ≫ SimplicialObject.δ X 0 ≫ SimplicialObject.σ X 0 +
-SimplicialObject.σ X 0 ≫ SimplicialObject.δ X 1 ≫ SimplicialObject.σ X 0 +
(-SimplicialObject.σ X 0 ≫ SimplicialObject.σ X 1 ≫ SimplicialObject.δ X 0 +
(SimplicialObject.σ X 0 ≫ SimplicialObject.σ X 1 ≫ SimplicialObject.δ X 1 +
-SimplicialObject.σ X 0 ≫ SimplicialObject.σ X 1 ≫ SimplicialObject.δ X 2))) =
0
[PROOFSTEP]
erw [SimplicialObject.δ_comp_σ_self, SimplicialObject.δ_comp_σ_self_assoc, SimplicialObject.δ_comp_σ_succ, comp_id,
SimplicialObject.δ_comp_σ_of_le X (show (0 : Fin 2) ≤ Fin.castSucc 0 by rw [Fin.castSucc_zero]),
SimplicialObject.δ_comp_σ_self_assoc, SimplicialObject.δ_comp_σ_succ_assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ 0 ≤ Fin.castSucc 0
[PROOFSTEP]
rw [Fin.castSucc_zero]
[GOAL]
case neg.zero.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hq :
∀ (i : Fin (Nat.zero + 1)),
Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0
h : ¬0 + 1 ≤ 0 + q
hi : 0 = 0 + q
⊢ SimplicialObject.σ X 0 +
(SimplicialObject.σ X 0 + -SimplicialObject.σ X 0 +
(-SimplicialObject.σ X 0 + (SimplicialObject.σ X 0 + -SimplicialObject.σ X 0))) =
0
[PROOFSTEP]
simp only [add_right_neg, add_zero, zero_add]
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : Nat.succ n = ↑i + q
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.succ n + 1) = 0
[PROOFSTEP]
rw [← id_comp (X.σ i), ← (P_add_Q_f q n.succ : _ = 𝟙 (X.obj _)), add_comp, add_comp, P_succ]
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : Nat.succ n = ↑i + q
⊢ (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) +
(HomologicalComplex.Hom.f (Q q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
have v : HigherFacesVanish q ((P q).f n.succ ≫ X.σ i) := (HigherFacesVanish.of_P q n).comp_σ hi
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : Nat.succ n = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
⊢ (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) +
(HomologicalComplex.Hom.f (Q q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
erw [← assoc, v.comp_P_eq_self, HomologicalComplex.add_f_apply, Preadditive.comp_add, comp_id, v.comp_Hσ_eq hi, assoc,
SimplicialObject.δ_comp_σ_succ_assoc, Fin.eta, decomposition_Q n q, sum_comp, sum_comp, Finset.sum_eq_zero, add_zero,
add_neg_eq_zero]
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : Nat.succ n = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
⊢ ∀ (x : Fin (n + 1)),
x ∈ Finset.filter (fun i => ↑i < q) Finset.univ →
((HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ SimplicialObject.σ X (↑Fin.revPerm x)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
intro j hj
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : Nat.succ n = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : j ∈ Finset.filter (fun i => ↑i < q) Finset.univ
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
simp only [true_and_iff, Finset.mem_univ, Finset.mem_filter] at hj
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : Nat.succ n = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
simp only [Nat.succ_eq_add_one] at hi
[GOAL]
case neg.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
obtain ⟨k, hk⟩ := Nat.le.dest (Nat.lt_succ_iff.mp (Fin.is_lt j))
[GOAL]
case neg.succ.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : ↑j + k = n
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
rw [add_comm] at hk
[GOAL]
case neg.succ.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
have hi' : i = Fin.castSucc ⟨i, by linarith⟩ := by
ext
simp only [Fin.castSucc_mk, Fin.eta]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
⊢ ↑i < n + 1
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
⊢ i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
⊢ ↑i = ↑(Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) })
[PROOFSTEP]
simp only [Fin.castSucc_mk, Fin.eta]
[GOAL]
case neg.succ.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
have eq :=
hq j.revPerm.succ
(by
simp only [← hk, Fin.revPerm_eq j hk.symm, Nat.succ_eq_add_one, Fin.succ_mk, Fin.val_mk]
linarith)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
⊢ Nat.succ n + 1 ≤ ↑(Fin.succ (↑Fin.revPerm j)) + q
[PROOFSTEP]
simp only [← hk, Fin.revPerm_eq j hk.symm, Nat.succ_eq_add_one, Fin.succ_mk, Fin.val_mk]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
⊢ k + ↑j + 1 + 1 ≤ k + 1 + q
[PROOFSTEP]
linarith
[GOAL]
case neg.succ.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
eq : SimplicialObject.σ X (Fin.succ (↑Fin.revPerm j)) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫
SimplicialObject.σ X i) ≫
HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) =
0
[PROOFSTEP]
rw [HomologicalComplex.comp_f, assoc, assoc, assoc, hi', SimplicialObject.σ_comp_σ_assoc, reassoc_of% eq, zero_comp,
comp_zero, comp_zero, comp_zero]
[GOAL]
case neg.succ.intro.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
eq : SimplicialObject.σ X (Fin.succ (↑Fin.revPerm j)) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
⊢ { val := ↑i, isLt := (_ : ↑i < n + 1) } ≤ ↑Fin.revPerm j
[PROOFSTEP]
simp only [Fin.revPerm_eq j hk.symm, Fin.le_iff_val_le_val, Fin.val_mk]
[GOAL]
case neg.succ.intro.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hq :
∀ (i : Fin (Nat.succ n + 1)),
Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
i : Fin (Nat.succ n + 1)
h : ¬Nat.succ n + 1 ≤ ↑i + q
hi : n + 1 = ↑i + q
v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i)
j : Fin (n + 1)
hj : ↑j < q
k : ℕ
hk : k + ↑j = n
hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }
eq : SimplicialObject.σ X (Fin.succ (↑Fin.revPerm j)) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0
⊢ ↑i ≤ k
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f PInfty (n + 1) = 0
[PROOFSTEP]
rw [PInfty_f, σ_comp_P_eq_zero X i]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ n + 1 ≤ ↑i + (n + 1)
[PROOFSTEP]
simp only [le_add_iff_nonneg_left, zero_le]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
Δ' : SimplexCategory
θ : [n] ⟶ Δ'
hθ : ¬Mono θ
⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rw [SimplexCategory.mono_iff_injective] at hθ
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
Δ' : SimplexCategory
θ : [n] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
cases n
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
θ : [Nat.zero] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty Nat.zero = 0
[PROOFSTEP]
exfalso
[GOAL]
case zero.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
θ : [Nat.zero] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
⊢ False
[PROOFSTEP]
apply hθ
[GOAL]
case zero.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
θ : [Nat.zero] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
⊢ Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
[PROOFSTEP]
intro x y h
[GOAL]
case zero.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
θ : [Nat.zero] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
x y : Fin (SimplexCategory.len [Nat.zero] + 1)
h : ↑(SimplexCategory.Hom.toOrderHom θ) x = ↑(SimplexCategory.Hom.toOrderHom θ) y
⊢ x = y
[PROOFSTEP]
fin_cases x
[GOAL]
case zero.h.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
θ : [Nat.zero] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
y : Fin (SimplexCategory.len [Nat.zero] + 1)
h :
↑(SimplexCategory.Hom.toOrderHom θ) { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } =
↑(SimplexCategory.Hom.toOrderHom θ) y
⊢ { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } = y
[PROOFSTEP]
fin_cases y
[GOAL]
case zero.h.head.head
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
θ : [Nat.zero] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
h :
↑(SimplexCategory.Hom.toOrderHom θ) { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } =
↑(SimplexCategory.Hom.toOrderHom θ) { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) }
⊢ { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } =
{ val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) }
[PROOFSTEP]
rfl
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
n✝ : ℕ
θ : [Nat.succ n✝] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n✝) = 0
[PROOFSTEP]
obtain ⟨i, α, h⟩ := SimplexCategory.eq_σ_comp_of_not_injective θ hθ
[GOAL]
case succ.intro.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
n✝ : ℕ
θ : [Nat.succ n✝] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
i : Fin (n✝ + 1)
α : [n✝] ⟶ Δ'
h : θ = SimplexCategory.σ i ≫ α
⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n✝) = 0
[PROOFSTEP]
rw [h, op_comp, X.map_comp, assoc, show X.map (SimplexCategory.σ i).op = X.σ i by rfl, σ_comp_PInfty, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Δ' : SimplexCategory
n✝ : ℕ
θ : [Nat.succ n✝] ⟶ Δ'
hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ)
i : Fin (n✝ + 1)
α : [n✝] ⟶ Δ'
h : θ = SimplexCategory.σ i ≫ α
⊢ X.map (SimplexCategory.σ i).op = SimplicialObject.σ X i
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Degeneracies", "llama_tokens": 17177} |
{"mathlib_filename": "Mathlib.Util.Syntax", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.DummyLabelAttr", "llama_tokens": 0} |
|
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.42, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ Homotopy (P (q + 1)) (𝟙 K[X])
[PROOFSTEP]
refine'
Homotopy.trans (Homotopy.ofEq _)
(Homotopy.trans (Homotopy.add (homotopyPToId q) (Homotopy.compLeft (homotopyHσToZero q) (P q))) (Homotopy.ofEq _))
[GOAL]
case refine'_1
C : Type u_1
inst✝¹ : Category.{?u.42, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ P (q + 1) = P q + P q ≫ Hσ q
[PROOFSTEP]
simp only [P_succ, comp_add, comp_id]
[GOAL]
case refine'_2
C : Type u_1
inst✝¹ : Category.{?u.42, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
⊢ 𝟙 K[X] + P q ≫ 0 = 𝟙 K[X]
[PROOFSTEP]
simp only [add_zero, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hqn : n < q
⊢ Homotopy.hom (homotopyPToId X (q + 1)) n (n + 1) = Homotopy.hom (homotopyPToId X q) n (n + 1)
[PROOFSTEP]
simp only [homotopyHσToZero, AlternatingFaceMapComplex.obj_X, Nat.add_eq, Homotopy.trans_hom, Homotopy.ofEq_hom,
Pi.zero_apply, Homotopy.add_hom, Homotopy.compLeft_hom, add_zero, Homotopy.nullHomotopy'_hom, ComplexShape.down_Rel,
hσ'_eq_zero hqn (c_mk (n + 1) n rfl), dite_eq_ite, ite_self, comp_zero, zero_add, homotopyPToId]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hqn : n < q
⊢ Homotopy.hom (homotopyPToId X (q + 0)) n (n + 1) = Homotopy.hom (homotopyPToId X q) n (n + 1)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n =
((↑(dNext n) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) +
↑(prevD n) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) +
HomologicalComplex.Hom.f (𝟙 K[X]) n
[PROOFSTEP]
rcases n with _ | n
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ HomologicalComplex.Hom.f PInfty Nat.zero =
((↑(dNext Nat.zero) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) +
↑(prevD Nat.zero) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) +
HomologicalComplex.Hom.f (𝟙 K[X]) Nat.zero
[PROOFSTEP]
simpa only [Homotopy.dNext_zero_chainComplex, Homotopy.prevD_chainComplex, PInfty_f, Nat.zero_eq, P_f_0_eq,
zero_add] using (homotopyPToId X 2).comm 0
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty (Nat.succ n) =
((↑(dNext (Nat.succ n)) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) +
↑(prevD (Nat.succ n)) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) +
HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n)
[PROOFSTEP]
rw [Homotopy.dNext_succ_chainComplex, Homotopy.prevD_chainComplex, PInfty_f, ←
P_is_eventually_constant (rfl.le : n + 1 ≤ n + 1)]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) =
HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) +
Homotopy.hom (homotopyPToId X (Nat.succ n + 1 + 1)) (Nat.succ n) (Nat.succ n + 1) ≫
HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) +
HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n)
[PROOFSTEP]
erw [homotopyPToId_eventually_constant X (lt_add_one (Nat.succ n))]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) =
HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) +
Homotopy.hom (homotopyPToId X (Nat.succ n + 1)) (Nat.succ n) (Nat.succ n + 1) ≫
HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) +
HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n)
[PROOFSTEP]
have := (homotopyPToId X (n + 2)).comm (n + 1)
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
this :
HomologicalComplex.Hom.f (P (n + 2)) (n + 1) =
↑(dNext (n + 1)) (homotopyPToId X (n + 2)).hom + ↑(prevD (n + 1)) (homotopyPToId X (n + 2)).hom +
HomologicalComplex.Hom.f (𝟙 K[X]) (n + 1)
⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) =
HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) +
Homotopy.hom (homotopyPToId X (Nat.succ n + 1)) (Nat.succ n) (Nat.succ n + 1) ≫
HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) +
HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n)
[PROOFSTEP]
rw [Homotopy.dNext_succ_chainComplex, Homotopy.prevD_chainComplex] at this
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{?u.44641, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
this :
HomologicalComplex.Hom.f (P (n + 2)) (n + 1) =
HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 2)) n (n + 1) +
Homotopy.hom (homotopyPToId X (n + 2)) (n + 1) (n + 1 + 1) ≫ HomologicalComplex.d K[X] (n + 1 + 1) (n + 1) +
HomologicalComplex.Hom.f (𝟙 K[X]) (n + 1)
⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) =
HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) +
Homotopy.hom (homotopyPToId X (Nat.succ n + 1)) (Nat.succ n) (Nat.succ n + 1) ≫
HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) +
HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n)
[PROOFSTEP]
exact this
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.HomotopyEquivalence", "llama_tokens": 2859} |
{"mathlib_filename": "Mathlib.Util.CountHeartbeats", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.SynthesizeUsing", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.AssertNoSorry", "llama_tokens": 0} |
|
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hqn : n ≤ q
⊢ HomologicalComplex.Hom.f (P (q + 1)) n = HomologicalComplex.Hom.f (P q) n
[PROOFSTEP]
rcases n with (_ | n)
[GOAL]
case zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q : ℕ
hqn : Nat.zero ≤ q
⊢ HomologicalComplex.Hom.f (P (q + 1)) Nat.zero = HomologicalComplex.Hom.f (P q) Nat.zero
[PROOFSTEP]
simp only [Nat.zero_eq, P_f_0_eq]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hqn : Nat.succ n ≤ q
⊢ HomologicalComplex.Hom.f (P (q + 1)) (Nat.succ n) = HomologicalComplex.Hom.f (P q) (Nat.succ n)
[PROOFSTEP]
simp only [P_succ, add_right_eq_self, comp_add, HomologicalComplex.comp_f, HomologicalComplex.add_f_apply, comp_id]
[GOAL]
case succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hqn : Nat.succ n ≤ q
⊢ HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ HomologicalComplex.Hom.f (Hσ q) (Nat.succ n) = 0
[PROOFSTEP]
exact (HigherFacesVanish.of_P q n).comp_Hσ_eq_zero (Nat.succ_le_iff.mp hqn)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
q n : ℕ
hqn : n ≤ q
⊢ HomologicalComplex.Hom.f (Q (q + 1)) n = HomologicalComplex.Hom.f (Q q) n
[PROOFSTEP]
simp only [Q, HomologicalComplex.sub_f_apply, P_is_eventually_constant hqn]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.41303, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ (fun n => HomologicalComplex.Hom.f (P n) n) (n + 1) ≫ AlternatingFaceMapComplex.objD X n =
AlternatingFaceMapComplex.objD X n ≫ (fun n => HomologicalComplex.Hom.f (P n) n) n
[PROOFSTEP]
simpa only [← P_is_eventually_constant (show n ≤ n by rfl), AlternatingFaceMapComplex.obj_d_eq] using
(P (n + 1) : K[X] ⟶ _).comm (n + 1) n
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.41303, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ n ≤ n
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ HomologicalComplex.Hom.f QInfty 0 = 0
[PROOFSTEP]
dsimp [QInfty]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ 𝟙 (X.obj (op [0])) - 𝟙 (X.obj (op [0])) = 0
[PROOFSTEP]
simp only [sub_self]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
simp only [PInfty_f, P_f_idem]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ PInfty ≫ PInfty = PInfty
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (PInfty ≫ PInfty) n = HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
exact PInfty_f_idem n
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ QInfty ≫ QInfty = QInfty
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (QInfty ≫ QInfty) n = HomologicalComplex.Hom.f QInfty n
[PROOFSTEP]
exact QInfty_f_idem n
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f QInfty n = 0
[PROOFSTEP]
dsimp only [QInfty]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (𝟙 K[X] - PInfty) n = 0
[PROOFSTEP]
simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, comp_sub, comp_id, PInfty_f_idem, sub_self]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ PInfty ≫ QInfty = 0
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (PInfty ≫ QInfty) n = HomologicalComplex.Hom.f 0 n
[PROOFSTEP]
apply PInfty_f_comp_QInfty_f
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f QInfty n ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
dsimp only [QInfty]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (𝟙 K[X] - PInfty) n ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, sub_comp, id_comp, PInfty_f_idem, sub_self]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ QInfty ≫ PInfty = 0
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f (QInfty ≫ PInfty) n = HomologicalComplex.Hom.f 0 n
[PROOFSTEP]
apply QInfty_f_comp_PInfty_f
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ PInfty + QInfty = 𝟙 K[X]
[PROOFSTEP]
dsimp only [QInfty]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
⊢ PInfty + (𝟙 K[X] - PInfty) = 𝟙 K[X]
[PROOFSTEP]
simp only [add_sub_cancel'_right]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.354986, u_1} C
inst✝ : Preadditive C
X✝ X Y : SimplicialObject C
f : X ⟶ Y
⊢ (alternatingFaceMapComplex C).map f ≫ (fun x => PInfty) Y = (fun x => PInfty) X ≫ (alternatingFaceMapComplex C).map f
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝¹ : Category.{?u.354986, u_1} C
inst✝ : Preadditive C
X✝ X Y : SimplicialObject C
f : X ⟶ Y
n : ℕ
⊢ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f ≫ (fun x => PInfty) Y) n =
HomologicalComplex.Hom.f ((fun x => PInfty) X ≫ (alternatingFaceMapComplex C).map f) n
[PROOFSTEP]
exact PInfty_f_naturality n f
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_4, u_1} C
inst✝³ : Preadditive C
X✝ : SimplicialObject C
D : Type u_2
inst✝² : Category.{u_3, u_2} D
inst✝¹ : Preadditive D
G : C ⥤ D
inst✝ : Functor.Additive G
X : SimplicialObject C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n = G.map (HomologicalComplex.Hom.f PInfty n)
[PROOFSTEP]
simp only [PInfty_f, map_P]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let Y₁ := (karoubiFunctorCategoryEmbedding _ _).obj Y
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let Y₂ := Y.X
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let Y₃ := ((whiskering _ _).obj (toKaroubi C)).obj Y.X
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let Y₄ := (karoubiFunctorCategoryEmbedding _ _).obj ((toKaroubi _).obj Y.X)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let P₁ : K[Y₁] ⟶ _ := PInfty
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let P₂ : K[Y₂] ⟶ _ := PInfty
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let P₃ : K[Y₃] ⟶ _ := PInfty
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
let P₄ : K[Y₄] ⟶ _ := PInfty
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
change (P₁.f n).f = Y.p.app (op [n]) ≫ P₂.f n
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n
[PROOFSTEP]
have h₃₂ : (P₃.f n).f = P₂.f n := Karoubi.hom_ext_iff.mp (map_PInfty_f (toKaroubi C) Y₂ n)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n
[PROOFSTEP]
have h₄₃ : P₄.f n = P₃.f n :=
by
have h := Functor.congr_obj (toKaroubi_comp_karoubiFunctorCategoryEmbedding _ _) Y₂
simp only [← natTransPInfty_f_app]
congr 1
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
⊢ HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
[PROOFSTEP]
have h := Functor.congr_obj (toKaroubi_comp_karoubiFunctorCategoryEmbedding _ _) Y₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h :
(toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y₂ =
((whiskeringRight SimplexCategoryᵒᵖ C (Karoubi C)).obj (toKaroubi C)).obj Y₂
⊢ HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
[PROOFSTEP]
simp only [← natTransPInfty_f_app]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h :
(toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y₂ =
((whiskeringRight SimplexCategoryᵒᵖ C (Karoubi C)).obj (toKaroubi C)).obj Y₂
⊢ NatTrans.app (natTransPInfty_f (Karoubi C) n)
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)) =
NatTrans.app (natTransPInfty_f (Karoubi C) n) (((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X)
[PROOFSTEP]
congr 1
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n
[PROOFSTEP]
have h₁₄ :=
Idempotents.natTrans_eq ((𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C)) ◫ (natTransPInfty_f (Karoubi C) n))
Y
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
NatTrans.app (𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C) ◫ natTransPInfty_f (Karoubi C) n) Y =
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
alternatingFaceMapComplex (Karoubi C) ⋙ HomologicalComplex.eval (Karoubi C) (ComplexShape.down ℕ) n).map
(Karoubi.decompId_i Y) ≫
NatTrans.app (𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C) ◫ natTransPInfty_f (Karoubi C) n)
(Karoubi.mk Y.X (𝟙 Y.X)) ≫
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
alternatingFaceMapComplex (Karoubi C) ⋙ HomologicalComplex.eval (Karoubi C) (ComplexShape.down ℕ) n).map
(Karoubi.decompId_p Y)
⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n
[PROOFSTEP]
dsimp [natTransPInfty_f] at h₁₄
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
(Karoubi.Hom.mk (NatTrans.app Y.p (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫
Karoubi.Hom.mk (NatTrans.app Y.p (op [n])) =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
((Karoubi.Hom.mk (𝟙 (Y.X.obj (op [n]))) ≫ HomologicalComplex.Hom.f PInfty n) ≫
Karoubi.Hom.mk (𝟙 (Y.X.obj (op [n])))) ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n
[PROOFSTEP]
erw [id_comp, id_comp, comp_id, comp_id] at h₁₄
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n
[PROOFSTEP]
rw [← h₃₂, ← h₄₃, h₁₄]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
⊢ (NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])).f =
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f P₄ n).f
[PROOFSTEP]
simp only [KaroubiFunctorCategoryEmbedding.map_app_f, Karoubi.decompId_p_f, Karoubi.decompId_i_f, Karoubi.comp_f]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) =
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f
[PROOFSTEP]
let π : Y₄ ⟶ Y₄ := (toKaroubi _ ⋙ karoubiFunctorCategoryEmbedding _ _).map Y.p
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p
⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) =
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f
[PROOFSTEP]
have eq := Karoubi.hom_ext_iff.mp (PInfty_f_naturality n π)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p
eq :
(NatTrans.app π (op [n]) ≫ HomologicalComplex.Hom.f PInfty n).f =
(HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app π (op [n])).f
⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) =
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f
[PROOFSTEP]
simp only [Karoubi.comp_f] at eq
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p
eq :
(NatTrans.app ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p)
(op [n])).f ≫
(HomologicalComplex.Hom.f PInfty n).f =
(HomologicalComplex.Hom.f PInfty n).f ≫
(NatTrans.app ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p)
(op [n])).f
⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) =
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f
[PROOFSTEP]
dsimp at eq
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : Karoubi (SimplicialObject C)
n : ℕ
Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y
Y₂ : SimplicialObject C := Y.X
Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X
Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C :=
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)
P₁ : K[Y₁] ⟶ K[Y₁] := PInfty
P₂ : K[Y₂] ⟶ K[Y₂] := PInfty
P₃ : K[Y₃] ⟶ K[Y₃] := PInfty
P₄ : K[Y₄] ⟶ K[Y₄] := PInfty
h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n
h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n
h₁₄ :
HomologicalComplex.Hom.f PInfty n =
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫
HomologicalComplex.Hom.f PInfty n ≫
NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])
π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p
eq :
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f =
(HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n])
⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) =
NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f
[PROOFSTEP]
rw [← eq, app_idem_assoc Y (op [n])]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.PInfty", "llama_tokens": 14603} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.28, u_1} C
inst✝ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
⊢ ∀ [inst : IsIso (N₁.map f)], IsIso f
[PROOFSTEP]
intro
-- restating the result in a way that allows induction on the degree n
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
⊢ IsIso f
[PROOFSTEP]
suffices ∀ n : ℕ, IsIso (f.app (op [n]))
by
haveI : ∀ Δ : SimplexCategoryᵒᵖ, IsIso (f.app Δ) := fun Δ => this Δ.unop.len
apply NatIso.isIso_of_isIso_app
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
this : ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
⊢ IsIso f
[PROOFSTEP]
haveI : ∀ Δ : SimplexCategoryᵒᵖ, IsIso (f.app Δ) := fun Δ => this Δ.unop.len
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
this✝ : ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
this : ∀ (Δ : SimplexCategoryᵒᵖ), IsIso (NatTrans.app f Δ)
⊢ IsIso f
[PROOFSTEP]
apply NatIso.isIso_of_isIso_app
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
[PROOFSTEP]
have h₁ := HomologicalComplex.congr_hom (Karoubi.hom_ext_iff.mp (IsIso.hom_inv_id (N₁.map f)))
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f (N₁.map f ≫ inv (N₁.map f)).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f i
⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
[PROOFSTEP]
have h₂ := HomologicalComplex.congr_hom (Karoubi.hom_ext_iff.mp (IsIso.inv_hom_id (N₁.map f)))
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f (N₁.map f ≫ inv (N₁.map f)).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f i
h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f) ≫ N₁.map f).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj Y)).f i
⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
[PROOFSTEP]
have h₃ := fun n => Karoubi.HomologicalComplex.p_comm_f_assoc (inv (N₁.map f)) n (f.app (op [n]))
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f (N₁.map f ≫ inv (N₁.map f)).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f i
h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f) ≫ N₁.map f).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj Y)).f i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f (N₁.obj Y).p n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f (N₁.obj X).p n ≫ NatTrans.app f (op [n])
⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
[PROOFSTEP]
simp only [N₁_map_f, Karoubi.comp_f, HomologicalComplex.comp_f, AlternatingFaceMapComplex.map_f, N₁_obj_p,
Karoubi.id_eq, assoc] at h₁ h₂ h₃
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n]))
[PROOFSTEP]
intro n
[GOAL]
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
n : ℕ
⊢ IsIso (NatTrans.app f (op [n]))
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
⊢ IsIso (NatTrans.app f (op [Nat.zero]))
[PROOFSTEP]
use(inv (N₁.map f)).f.f 0
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧
HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero]))
[PROOFSTEP]
have h₁₀ := h₁ 0
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
h₁₀ :
HomologicalComplex.Hom.f PInfty 0 ≫ NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 =
HomologicalComplex.Hom.f PInfty 0
⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧
HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero]))
[PROOFSTEP]
have h₂₀ := h₂ 0
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
h₁₀ :
HomologicalComplex.Hom.f PInfty 0 ≫ NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 =
HomologicalComplex.Hom.f PInfty 0
h₂₀ :
HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ HomologicalComplex.Hom.f PInfty 0 ≫ NatTrans.app f (op [0]) =
HomologicalComplex.Hom.f PInfty 0
⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧
HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero]))
[PROOFSTEP]
dsimp at h₁₀ h₂₀
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
h₁₀ : 𝟙 (X.obj (op [0])) ≫ NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [0]))
h₂₀ : HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ 𝟙 (X.obj (op [0])) ≫ NatTrans.app f (op [0]) = 𝟙 (Y.obj (op [0]))
⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧
HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero]))
[PROOFSTEP]
simp only [id_comp, comp_id] at h₁₀ h₂₀
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
h₁₀ : NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [0]))
h₂₀ : HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [0]) = 𝟙 (Y.obj (op [0]))
⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧
HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero]))
[PROOFSTEP]
tauto
[GOAL]
case succ
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
n : ℕ
hn : IsIso (NatTrans.app f (op [n]))
⊢ IsIso (NatTrans.app f (op [Nat.succ n]))
[PROOFSTEP]
haveI := hn
[GOAL]
case succ
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
n : ℕ
hn this : IsIso (NatTrans.app f (op [n]))
⊢ IsIso (NatTrans.app f (op [Nat.succ n]))
[PROOFSTEP]
use φ {
a := PInfty.f (n + 1) ≫ (inv (N₁.map f)).f.f (n + 1)
b := fun i => inv (f.app (op [n])) ≫ X.σ i }
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.28, u_1} C
inst✝¹ : Preadditive C
X Y : SimplicialObject C
f : X ⟶ Y
inst✝ : IsIso (N₁.map f)
h₂ :
∀ (i : ℕ),
HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) =
HomologicalComplex.Hom.f PInfty i
h₃ :
∀ (n : ℕ),
HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) =
HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n])
h₁ :
∀ (i : ℕ),
HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i =
HomologicalComplex.Hom.f PInfty i
n : ℕ
hn this : IsIso (NatTrans.app f (op [n]))
⊢ NatTrans.app f (op [Nat.succ n]) ≫
φ
{ a := HomologicalComplex.Hom.f PInfty (n + 1) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f (n + 1),
b := fun i => inv (NatTrans.app f (op [n])) ≫ SimplicialObject.σ X i } =
𝟙 (X.obj (op [Nat.succ n])) ∧
φ
{ a := HomologicalComplex.Hom.f PInfty (n + 1) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f (n + 1),
b := fun i => inv (NatTrans.app f (op [n])) ≫ SimplicialObject.σ X i } ≫
NatTrans.app f (op [Nat.succ n]) =
𝟙 (Y.obj (op [Nat.succ n]))
[PROOFSTEP]
simp only [MorphComponents.id, ← id_φ, ← preComp_φ, preComp, ← postComp_φ, postComp, PInfty_f_naturality_assoc,
IsIso.hom_inv_id_assoc, assoc, IsIso.inv_hom_id_assoc, SimplicialObject.σ_naturality, h₁, h₂, h₃]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
⊢ N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor =
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
[PROOFSTEP]
refine' CategoryTheory.Functor.ext (fun P => _) fun P Q f => _
[GOAL]
case refine'_1
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
⊢ (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P =
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P
[PROOFSTEP]
refine' HomologicalComplex.ext _ _
[GOAL]
case refine'_1.refine'_1
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
⊢ ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P).X =
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P).X
[PROOFSTEP]
ext n
[GOAL]
case refine'_1.refine'_1.h.h_X
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
⊢ (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X =
(HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
n).X
[PROOFSTEP]
rfl
[GOAL]
case refine'_1.refine'_1.h.h_p
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
⊢ (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).p ≫
eqToHom
(_ :
(HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X =
(HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X) =
eqToHom
(_ :
(HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X =
(HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X) ≫
(HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
n).p
[PROOFSTEP]
dsimp
[GOAL]
case refine'_1.refine'_1.h.h_p
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
⊢ (HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n])) ≫ 𝟙 (P.X.obj (op [n])) =
𝟙 (P.X.obj (op [n])) ≫ (HomologicalComplex.Hom.f PInfty n).f
[PROOFSTEP]
simp only [karoubi_PInfty_f, comp_id, PInfty_f_naturality, id_comp, eqToHom_refl]
[GOAL]
case refine'_1.refine'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
⊢ ∀ (i j : ℕ),
ComplexShape.Rel (ComplexShape.down ℕ) i j →
HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) i j ≫
eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) j =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P)
j) =
eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) i =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P)
i) ≫
HomologicalComplex.d
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
i j
[PROOFSTEP]
rintro _ n (rfl : n + 1 = _)
[GOAL]
case refine'_1.refine'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
⊢ HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) n ≫
eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
n) =
eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
(n + 1)) ≫
HomologicalComplex.d
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
(n + 1) n
[PROOFSTEP]
ext
[GOAL]
case refine'_1.refine'_2.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
⊢ (HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) n ≫
eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P)
n)).f =
(eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P)
(n + 1)) ≫
HomologicalComplex.d
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
(n + 1) n).f
[PROOFSTEP]
have h := (AlternatingFaceMapComplex.map P.p).comm (n + 1) n
[GOAL]
case refine'_1.refine'_2.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
h :
HomologicalComplex.Hom.f (AlternatingFaceMapComplex.map P.p) (n + 1) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n =
HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n ≫
HomologicalComplex.Hom.f (AlternatingFaceMapComplex.map P.p) n
⊢ (HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) n ≫
eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P)
n)).f =
(eqToHom
(_ :
HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) =
HomologicalComplex.X
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P)
(n + 1)) ≫
HomologicalComplex.d
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P)
(n + 1) n).f
[PROOFSTEP]
dsimp [N₂, karoubiChainComplexEquivalence, KaroubiHomologicalComplexEquivalence.Functor.obj] at h ⊢
[GOAL]
case refine'_1.refine'_2.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P : Karoubi (SimplicialObject C)
n : ℕ
h :
NatTrans.app P.p (op [n + 1]) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n =
HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n ≫ NatTrans.app P.p (op [n])
⊢ ((HomologicalComplex.Hom.f PInfty (n + 1) ≫ NatTrans.app P.p (op [n + 1])) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n) ≫
(eqToHom
(_ :
Karoubi.mk (P.X.obj (op [n])) (HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n])) =
HomologicalComplex.X
((Functor.mapHomologicalComplex (KaroubiKaroubi.inverse C) (ComplexShape.down ℕ)).obj
(HomologicalComplex.mk
(fun n =>
Karoubi.mk ((KaroubiFunctorCategoryEmbedding.obj P).obj (op [n]))
(HomologicalComplex.Hom.f PInfty n))
fun i j =>
Karoubi.Hom.mk
(HomologicalComplex.Hom.f PInfty i ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)) i
j)))
n)).f =
(eqToHom
(_ :
Karoubi.mk (P.X.obj (op [n + 1]))
(HomologicalComplex.Hom.f PInfty (n + 1) ≫ NatTrans.app P.p (op [n + 1])) =
HomologicalComplex.X
((Functor.mapHomologicalComplex (KaroubiKaroubi.inverse C) (ComplexShape.down ℕ)).obj
(HomologicalComplex.mk
(fun n =>
Karoubi.mk ((KaroubiFunctorCategoryEmbedding.obj P).obj (op [n]))
(HomologicalComplex.Hom.f PInfty n))
fun i j =>
Karoubi.Hom.mk
(HomologicalComplex.Hom.f PInfty i ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)) i
j)))
(n + 1))).f ≫
(HomologicalComplex.Hom.f PInfty (n + 1)).f ≫
(HomologicalComplex.d (AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)) (n + 1) n).f
[PROOFSTEP]
simp only [assoc, Karoubi.eqToHom_f, eqToHom_refl, comp_id, karoubi_alternatingFaceMapComplex_d, karoubi_PInfty_f, ←
HomologicalComplex.Hom.comm_assoc, ← h, app_idem_assoc]
[GOAL]
case refine'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P Q : Karoubi (SimplicialObject C)
f : P ⟶ Q
⊢ (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).map f =
eqToHom
(_ :
(N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P =
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
P) ≫
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).map
f ≫
eqToHom
(_ :
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj
Q =
(N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj Q)
[PROOFSTEP]
ext n
[GOAL]
case refine'_2.h.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P Q : Karoubi (SimplicialObject C)
f : P ⟶ Q
n : ℕ
⊢ (HomologicalComplex.Hom.f ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).map f) n).f =
(HomologicalComplex.Hom.f
(eqToHom
(_ :
(N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P =
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
P) ≫
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).map
f ≫
eqToHom
(_ :
(karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse
(ComplexShape.down ℕ)).obj
Q =
(N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj Q))
n).f
[PROOFSTEP]
dsimp [KaroubiKaroubi.inverse, Functor.mapHomologicalComplex]
[GOAL]
case refine'_2.h.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
P Q : Karoubi (SimplicialObject C)
f : P ⟶ Q
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f.f (op [n]) =
(HomologicalComplex.Hom.f
(eqToHom
(_ :
(karoubiChainComplexEquivalence C ℕ).functor.obj (N₂.obj P) =
HomologicalComplex.mk (fun i => Karoubi.mk (P.X.obj (op [i])) (HomologicalComplex.Hom.f PInfty i).f)
fun i j =>
Karoubi.Hom.mk
(HomologicalComplex.d
((karoubiChainComplexEquivalence (Karoubi C) ℕ).functor.obj
(N₁.obj (KaroubiFunctorCategoryEmbedding.obj P)))
i j).f.f))
n).f ≫
((HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app f.f (op [n])) ≫
(HomologicalComplex.Hom.f
(eqToHom
(_ :
(HomologicalComplex.mk (fun i => Karoubi.mk (Q.X.obj (op [i])) (HomologicalComplex.Hom.f PInfty i).f)
fun i j =>
Karoubi.Hom.mk
(HomologicalComplex.d
((karoubiChainComplexEquivalence (Karoubi C) ℕ).functor.obj
(N₁.obj (KaroubiFunctorCategoryEmbedding.obj Q)))
i j).f.f) =
(karoubiChainComplexEquivalence C ℕ).functor.obj (N₂.obj Q)))
n).f
[PROOFSTEP]
simp only [karoubi_PInfty_f, HomologicalComplex.eqToHom_f, Karoubi.eqToHom_f, assoc, comp_id, PInfty_f_naturality,
app_p_comp, karoubiChainComplexEquivalence_functor_obj_X_p, N₂_obj_p_f, eqToHom_refl, PInfty_f_naturality_assoc,
app_comp_p, PInfty_f_idem_assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.74447, u_1} C
inst✝ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
⊢ ∀ [inst : IsIso (N₂.map f)], IsIso f
[PROOFSTEP]
intro
-- The following functor `F` reflects isomorphism because it is
-- a composition of four functors which reflects isomorphisms.
-- Then, it suffices to show that `F.map f` is an isomorphism.
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
⊢ IsIso f
[PROOFSTEP]
let F₁ := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
⊢ IsIso f
[PROOFSTEP]
let F₂ : SimplicialObject (Karoubi C) ⥤ _ := N₁
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
⊢ IsIso f
[PROOFSTEP]
let F₃ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
⊢ IsIso f
[PROOFSTEP]
let F₄ := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
⊢ IsIso f
[PROOFSTEP]
let F := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
⊢ IsIso f
[PROOFSTEP]
haveI : ReflectsIsomorphisms F₁ := reflectsIsomorphisms_of_full_and_faithful _
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this : ReflectsIsomorphisms F₁
⊢ IsIso f
[PROOFSTEP]
haveI : ReflectsIsomorphisms F₂ := by infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this : ReflectsIsomorphisms F₁
⊢ ReflectsIsomorphisms F₂
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝ : ReflectsIsomorphisms F₁
this : ReflectsIsomorphisms F₂
⊢ IsIso f
[PROOFSTEP]
haveI : ReflectsIsomorphisms F₃ := reflectsIsomorphisms_of_full_and_faithful _
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝¹ : ReflectsIsomorphisms F₁
this✝ : ReflectsIsomorphisms F₂
this : ReflectsIsomorphisms F₃
⊢ IsIso f
[PROOFSTEP]
haveI : ReflectsIsomorphisms ((KaroubiKaroubi.equivalence C).inverse) := reflectsIsomorphisms_of_full_and_faithful _
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝² : ReflectsIsomorphisms F₁
this✝¹ : ReflectsIsomorphisms F₂
this✝ : ReflectsIsomorphisms F₃
this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse
⊢ IsIso f
[PROOFSTEP]
have : IsIso (F.map f) := by
simp only
rw [← compatibility_N₂_N₁_karoubi, Functor.comp_map]
apply Functor.map_isIso
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝² : ReflectsIsomorphisms F₁
this✝¹ : ReflectsIsomorphisms F₂
this✝ : ReflectsIsomorphisms F₃
this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse
⊢ IsIso (F.map f)
[PROOFSTEP]
simp only
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝² : ReflectsIsomorphisms F₁
this✝¹ : ReflectsIsomorphisms F₂
this✝ : ReflectsIsomorphisms F₃
this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse
⊢ IsIso
((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙
N₁ ⋙
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).map
f)
[PROOFSTEP]
rw [← compatibility_N₂_N₁_karoubi, Functor.comp_map]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝² : ReflectsIsomorphisms F₁
this✝¹ : ReflectsIsomorphisms F₂
this✝ : ReflectsIsomorphisms F₃
this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse
⊢ IsIso ((karoubiChainComplexEquivalence C ℕ).functor.map (N₂.map f))
[PROOFSTEP]
apply Functor.map_isIso
[GOAL]
C : Type u_1
inst✝² : Category.{?u.74447, u_1} C
inst✝¹ : Preadditive C
A✝ B✝ : Karoubi (SimplicialObject C)
f : A✝ ⟶ B✝
inst✝ : IsIso (N₂.map f)
F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C :=
karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C
F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁
F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ :=
(karoubiChainComplexEquivalence (Karoubi C) ℕ).functor
F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤
HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) :=
Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)
F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄
this✝³ : ReflectsIsomorphisms F₁
this✝² : ReflectsIsomorphisms F₂
this✝¹ : ReflectsIsomorphisms F₃
this✝ : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse
this : IsIso (F.map f)
⊢ IsIso f
[PROOFSTEP]
exact isIso_of_reflects_iso f F
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.NReflectsIso", "llama_tokens": 20161} |
[GOAL]
g✝ : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
g : SL(2, R)
⊢ IsCoprime (↑g 1 0) (↑g 1 1)
[PROOFSTEP]
use-(↑g : Matrix (Fin 2) (Fin 2) R) 0 1, (↑g : Matrix (Fin 2) (Fin 2) R) 0 0
[GOAL]
case h
g✝ : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
g : SL(2, R)
⊢ -↑g 0 1 * ↑g 1 0 + ↑g 0 0 * ↑g 1 1 = 1
[PROOFSTEP]
rw [add_comm, neg_mul, ← sub_eq_add_neg, ← det_fin_two]
[GOAL]
case h
g✝ : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
g : SL(2, R)
⊢ det ↑g = 1
[PROOFSTEP]
exact g.det_coe
[GOAL]
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
⊢ Set.SurjOn (fun g => ↑g 1) Set.univ {cd | IsCoprime (cd 0) (cd 1)}
[PROOFSTEP]
rintro cd ⟨b₀, a, gcd_eqn⟩
[GOAL]
case intro.intro
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
⊢ cd ∈ (fun g => ↑g 1) '' Set.univ
[PROOFSTEP]
let A := of ![![a, -b₀], cd]
[GOAL]
case intro.intro
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
⊢ cd ∈ (fun g => ↑g 1) '' Set.univ
[PROOFSTEP]
have det_A_1 : det A = 1 := by
convert gcd_eqn
rw [det_fin_two]
simp [(by ring : a * cd 1 + b₀ * cd 0 = b₀ * cd 0 + a * cd 1)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
⊢ det A = 1
[PROOFSTEP]
convert gcd_eqn
[GOAL]
case h.e'_2
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
⊢ det A = b₀ * cd 0 + a * cd 1
[PROOFSTEP]
rw [det_fin_two]
[GOAL]
case h.e'_2
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
⊢ A 0 0 * A 1 1 - A 0 1 * A 1 0 = b₀ * cd 0 + a * cd 1
[PROOFSTEP]
simp [(by ring : a * cd 1 + b₀ * cd 0 = b₀ * cd 0 + a * cd 1)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
⊢ a * cd 1 + b₀ * cd 0 = b₀ * cd 0 + a * cd 1
[PROOFSTEP]
ring
[GOAL]
case intro.intro
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
det_A_1 : det A = 1
⊢ cd ∈ (fun g => ↑g 1) '' Set.univ
[PROOFSTEP]
refine' ⟨⟨A, det_A_1⟩, Set.mem_univ _, _⟩
[GOAL]
case intro.intro
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
det_A_1 : det A = 1
⊢ (fun g => ↑g 1) { val := A, property := det_A_1 } = cd
[PROOFSTEP]
ext
[GOAL]
case intro.intro.h
g : SL(2, ℤ)
z : ℍ
R : Type u_1
inst✝ : CommRing R
cd : Fin 2 → R
b₀ a : R
gcd_eqn : b₀ * cd 0 + a * cd 1 = 1
A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] :=
↑of ![![a, -b₀], cd]
det_A_1 : det A = 1
x✝ : Fin 2
⊢ (fun g => ↑g 1) { val := A, property := det_A_1 } x✝ = cd x✝
[PROOFSTEP]
simp
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
letI : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
let π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
let π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
let f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := π₀.smulRight (z : ℂ) + π₁.smulRight 1
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
have f_def : ⇑f = fun p : Fin 2 → ℝ => (p 0 : ℂ) * ↑z + p 1 :=
by
ext1
dsimp only [LinearMap.coe_proj, real_smul, LinearMap.coe_smulRight, LinearMap.add_apply]
rw [mul_one]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
⊢ ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
[PROOFSTEP]
ext1
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
x✝ : Fin 2 → ℝ
⊢ ↑f x✝ = ↑(x✝ 0) * ↑z + ↑(x✝ 1)
[PROOFSTEP]
dsimp only [LinearMap.coe_proj, real_smul, LinearMap.coe_smulRight, LinearMap.add_apply]
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
x✝ : Fin 2 → ℝ
⊢ ↑(Function.eval 0 x✝) * ↑z + ↑(Function.eval 1 x✝) * 1 = ↑(x✝ 0) * ↑z + ↑(x✝ 1)
[PROOFSTEP]
rw [mul_one]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
have : (fun p : Fin 2 → ℤ => normSq ((p 0 : ℂ) * ↑z + ↑(p 1))) = normSq ∘ f ∘ fun p : Fin 2 → ℤ => ((↑) : ℤ → ℝ) ∘ p :=
by
ext1
rw [f_def]
dsimp only [Function.comp]
rw [ofReal_int_cast, ofReal_int_cast]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
⊢ (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
[PROOFSTEP]
ext1
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
x✝ : Fin 2 → ℤ
⊢ ↑normSq (↑(x✝ 0) * ↑z + ↑(x✝ 1)) = (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) x✝
[PROOFSTEP]
rw [f_def]
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
x✝ : Fin 2 → ℤ
⊢ ↑normSq (↑(x✝ 0) * ↑z + ↑(x✝ 1)) = (↑normSq ∘ (fun p => ↑(p 0) * ↑z + ↑(p 1)) ∘ fun p => Int.cast ∘ p) x✝
[PROOFSTEP]
dsimp only [Function.comp]
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
x✝ : Fin 2 → ℤ
⊢ ↑normSq (↑(x✝ 0) * ↑z + ↑(x✝ 1)) = ↑normSq (↑↑(x✝ 0) * ↑z + ↑↑(x✝ 1))
[PROOFSTEP]
rw [ofReal_int_cast, ofReal_int_cast]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop
[PROOFSTEP]
rw [this]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop
[PROOFSTEP]
have hf : LinearMap.ker f = ⊥ :=
by
let g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, imLm.comp ((z : ℂ) • ((conjAe : ℂ →ₐ[ℝ] ℂ) : ℂ →ₗ[ℝ] ℂ))]
suffices ((z : ℂ).im⁻¹ • g).comp f = LinearMap.id by exact LinearMap.ker_eq_bot_of_inverse this
apply LinearMap.ext
intro c
have hz : (z : ℂ).im ≠ 0 := z.2.ne'
rw [LinearMap.comp_apply, LinearMap.smul_apply, LinearMap.id_apply]
ext i
dsimp only [Pi.smul_apply, LinearMap.pi_apply, smul_eq_mul]
fin_cases i
· show (z : ℂ).im⁻¹ * (f c).im = c 0
rw [f_def, add_im, ofReal_mul_im, ofReal_im, add_zero, mul_left_comm, inv_mul_cancel hz, mul_one]
· show (z : ℂ).im⁻¹ * ((z : ℂ) * conj (f c)).im = c 1
rw [f_def, RingHom.map_add, RingHom.map_mul, mul_add, mul_left_comm, mul_conj, conj_ofReal, conj_ofReal, ←
ofReal_mul, add_im, ofReal_im, zero_add, inv_mul_eq_iff_eq_mul₀ hz]
simp only [ofReal_im, ofReal_re, mul_im, zero_add, mul_zero]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
⊢ LinearMap.ker f = ⊥
[PROOFSTEP]
let g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, imLm.comp ((z : ℂ) • ((conjAe : ℂ →ₐ[ℝ] ℂ) : ℂ →ₗ[ℝ] ℂ))]
[GOAL]
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
⊢ LinearMap.ker f = ⊥
[PROOFSTEP]
suffices ((z : ℂ).im⁻¹ • g).comp f = LinearMap.id by exact LinearMap.ker_eq_bot_of_inverse this
[GOAL]
g✝ : SL(2, ℤ)
z : ℍ
this✝¹ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this✝ : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
this : LinearMap.comp ((↑z).im⁻¹ • g) f = LinearMap.id
⊢ LinearMap.ker f = ⊥
[PROOFSTEP]
exact LinearMap.ker_eq_bot_of_inverse this
[GOAL]
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
⊢ LinearMap.comp ((↑z).im⁻¹ • g) f = LinearMap.id
[PROOFSTEP]
apply LinearMap.ext
[GOAL]
case h
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
⊢ ∀ (x : Fin 2 → ℝ), ↑(LinearMap.comp ((↑z).im⁻¹ • g) f) x = ↑LinearMap.id x
[PROOFSTEP]
intro c
[GOAL]
case h
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
⊢ ↑(LinearMap.comp ((↑z).im⁻¹ • g) f) c = ↑LinearMap.id c
[PROOFSTEP]
have hz : (z : ℂ).im ≠ 0 := z.2.ne'
[GOAL]
case h
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ ↑(LinearMap.comp ((↑z).im⁻¹ • g) f) c = ↑LinearMap.id c
[PROOFSTEP]
rw [LinearMap.comp_apply, LinearMap.smul_apply, LinearMap.id_apply]
[GOAL]
case h
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ (↑z).im⁻¹ • ↑g (↑f c) = c
[PROOFSTEP]
ext i
[GOAL]
case h.h
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
i : Fin 2
⊢ ((↑z).im⁻¹ • ↑g (↑f c)) i = c i
[PROOFSTEP]
dsimp only [Pi.smul_apply, LinearMap.pi_apply, smul_eq_mul]
[GOAL]
case h.h
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
i : Fin 2
⊢ (↑z).im⁻¹ *
↑(vecCons imLm ![LinearMap.comp imLm (↑z • ↑↑↑conjAe)] i)
(↑(LinearMap.smulRight (LinearMap.proj 0) ↑z + LinearMap.smulRight (LinearMap.proj 1) 1) c) =
c i
[PROOFSTEP]
fin_cases i
[GOAL]
case h.h.head
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ (↑z).im⁻¹ *
↑(vecCons imLm ![LinearMap.comp imLm (↑z • ↑↑↑conjAe)] { val := 0, isLt := (_ : 0 < 2) })
(↑(LinearMap.smulRight (LinearMap.proj 0) ↑z + LinearMap.smulRight (LinearMap.proj 1) 1) c) =
c { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
show (z : ℂ).im⁻¹ * (f c).im = c 0
[GOAL]
case h.h.head
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ (↑z).im⁻¹ * (↑f c).im = c 0
[PROOFSTEP]
rw [f_def, add_im, ofReal_mul_im, ofReal_im, add_zero, mul_left_comm, inv_mul_cancel hz, mul_one]
[GOAL]
case h.h.tail.head
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ (↑z).im⁻¹ *
↑(vecCons imLm ![LinearMap.comp imLm (↑z • ↑↑↑conjAe)] { val := 1, isLt := (_ : (fun a => a < 2) 1) })
(↑(LinearMap.smulRight (LinearMap.proj 0) ↑z + LinearMap.smulRight (LinearMap.proj 1) 1) c) =
c { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
show (z : ℂ).im⁻¹ * ((z : ℂ) * conj (f c)).im = c 1
[GOAL]
case h.h.tail.head
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ (↑z).im⁻¹ * (↑z * ↑(starRingEnd ((fun x => ℂ) c)) (↑f c)).im = c 1
[PROOFSTEP]
rw [f_def, RingHom.map_add, RingHom.map_mul, mul_add, mul_left_comm, mul_conj, conj_ofReal, conj_ofReal, ← ofReal_mul,
add_im, ofReal_im, zero_add, inv_mul_eq_iff_eq_mul₀ hz]
[GOAL]
case h.h.tail.head
g✝ : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)]
c : Fin 2 → ℝ
hz : (↑z).im ≠ 0
⊢ (↑z * ↑(c 1)).im = (↑z).im * c 1
[PROOFSTEP]
simp only [ofReal_im, ofReal_re, mul_im, zero_add, mul_zero]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop
[PROOFSTEP]
have hf' : ClosedEmbedding f :=
by
have := @LinearEquiv.closedEmbedding_of_injective ℝ _ (Fin 2 → ℝ) _ _ ℂ _ _ _ f
exact this hf
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
⊢ ClosedEmbedding ↑f
[PROOFSTEP]
have := @LinearEquiv.closedEmbedding_of_injective ℝ _ (Fin 2 → ℝ) _ _ ℂ _ _ _ f
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝¹ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this✝ : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
this : LinearMap.ker f = ⊥ → ∀ [inst : FiniteDimensional ℝ (Fin 2 → ℝ)], ClosedEmbedding ↑f
⊢ ClosedEmbedding ↑f
[PROOFSTEP]
exact this hf
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
hf' : ClosedEmbedding ↑f
⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop
[PROOFSTEP]
have h₂ : Tendsto (fun p : Fin 2 → ℤ => ((↑) : ℤ → ℝ) ∘ p) cofinite (cocompact _) :=
by
convert Tendsto.pi_map_coprodᵢ fun _ => Int.tendsto_coe_cofinite
· rw [coprodᵢ_cofinite]
· rw [coprodᵢ_cocompact]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
hf' : ClosedEmbedding ↑f
⊢ Tendsto (fun p => Int.cast ∘ p) cofinite (cocompact (Fin 2 → ℝ))
[PROOFSTEP]
convert Tendsto.pi_map_coprodᵢ fun _ => Int.tendsto_coe_cofinite
[GOAL]
case h.e'_4
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
hf' : ClosedEmbedding ↑f
⊢ cofinite = Filter.coprodᵢ fun x => cofinite
[PROOFSTEP]
rw [coprodᵢ_cofinite]
[GOAL]
case h.e'_5
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
hf' : ClosedEmbedding ↑f
⊢ cocompact (Fin 2 → ℝ) = Filter.coprodᵢ fun x => cocompact ℝ
[PROOFSTEP]
rw [coprodᵢ_cocompact]
[GOAL]
g : SL(2, ℤ)
z : ℍ
this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule
π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0
π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1
f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1
f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1)
this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p
hf : LinearMap.ker f = ⊥
hf' : ClosedEmbedding ↑f
h₂ : Tendsto (fun p => Int.cast ∘ p) cofinite (cocompact (Fin 2 → ℝ))
⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop
[PROOFSTEP]
exact tendsto_normSq_cocompact_atTop.comp (hf'.tendsto_cocompact.comp h₂)
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
⊢ (Fin 2 → ℝ) ≃ₗ[ℝ] Fin 2 → ℝ
[PROOFSTEP]
refine'
LinearMap.GeneralLinearGroup.generalLinearEquiv ℝ (Fin 2 → ℝ)
(GeneralLinearGroup.toLinear (planeConformalMatrix (cd 0 : ℝ) (-(cd 1 : ℝ)) _))
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
⊢ ↑(cd 0) ^ 2 + (-↑(cd 1)) ^ 2 ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
⊢ ¬cd 0 ^ 2 + (-cd 1) ^ 2 = 0
[PROOFSTEP]
rw [neg_sq]
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
⊢ ¬cd 0 ^ 2 + cd 1 ^ 2 = 0
[PROOFSTEP]
exact hcd.sq_add_sq_ne_zero
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
⊢ Tendsto (fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact ℝ)
[PROOFSTEP]
let mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => of ![![t, (-(1 : ℤ) : ℝ)], (↑) ∘ cd]
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
⊢ Tendsto (fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact ℝ)
[PROOFSTEP]
have hmB : Continuous mB := by
refine' continuous_matrix _
simp only [Fin.forall_fin_two, continuous_const, continuous_id', of_apply, cons_val_zero, cons_val_one, and_self_iff]
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
⊢ Continuous mB
[PROOFSTEP]
refine' continuous_matrix _
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
⊢ ∀ (i j : Fin 2), Continuous fun a => mB a i j
[PROOFSTEP]
simp only [Fin.forall_fin_two, continuous_const, continuous_id', of_apply, cons_val_zero, cons_val_one, and_self_iff]
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
⊢ Tendsto (fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact ℝ)
[PROOFSTEP]
refine' Filter.Tendsto.of_tendsto_comp _ (comap_cocompact_le hmB)
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite
(cocompact (Matrix (Fin 2) (Fin 2) ℝ))
[PROOFSTEP]
let f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g : Matrix _ _ ℤ) ((↑) : ℤ → ℝ)
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite
(cocompact (Matrix (Fin 2) (Fin 2) ℝ))
[PROOFSTEP]
have cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m : Matrix (Fin 2) (Fin 2) ℤ => Matrix.map m ((↑) : ℤ → ℝ)) cofinite (cocompact _) := by
simpa only [coprodᵢ_cofinite, coprodᵢ_cocompact] using
Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Int.tendsto_coe_cofinite
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
⊢ Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
[PROOFSTEP]
simpa only [coprodᵢ_cofinite, coprodᵢ_cocompact] using
Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Int.tendsto_coe_cofinite
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite
(cocompact (Matrix (Fin 2) (Fin 2) ℝ))
[PROOFSTEP]
have hf₁ : Tendsto f₁ cofinite (cocompact _) :=
cocompact_ℝ_to_cofinite_ℤ_matrix.comp Subtype.coe_injective.tendsto_cofinite
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite
(cocompact (Matrix (Fin 2) (Fin 2) ℝ))
[PROOFSTEP]
have hf₂ : ClosedEmbedding (lcRow0Extend hcd) := (lcRow0Extend hcd).toContinuousLinearEquiv.toHomeomorph.closedEmbedding
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite
(cocompact (Matrix (Fin 2) (Fin 2) ℝ))
[PROOFSTEP]
convert hf₂.tendsto_cocompact.comp (hf₁.comp Subtype.coe_injective.tendsto_cofinite) using 1
[GOAL]
case h.e'_3.h
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd]
hmB : Continuous mB
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
⊢ (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) =
↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a
[PROOFSTEP]
ext ⟨g, rfl⟩ i j : 3
[GOAL]
case h.e'_3.h.h.mk.a.h
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
i j : Fin 2
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } i j =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } i j
[PROOFSTEP]
fin_cases i <;> [fin_cases j; skip]
-- the following are proved by `simp`, but it is replaced by `simp only` to avoid timeouts.
[GOAL]
case h.e'_3.h.h.mk.a.h
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
i j : Fin 2
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } i j =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } i j
[PROOFSTEP]
fin_cases i
[GOAL]
case h.e'_3.h.h.mk.a.h.head
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
j : Fin 2
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } j =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) }
{ val := 0, isLt := (_ : 0 < 2) } j
[PROOFSTEP]
fin_cases j
[GOAL]
case h.e'_3.h.h.mk.a.h.tail.head
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
j : Fin 2
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } j =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) }
{ val := 1, isLt := (_ : (fun a => a < 2) 1) } j
[PROOFSTEP]
skip
[GOAL]
case h.e'_3.h.h.mk.a.h.head.head
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) }
{ val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
simp only [mulVec, dotProduct, Fin.sum_univ_two, coe_matrix_coe, Int.coe_castRingHom, lcRow0_apply, Function.comp_apply,
cons_val_zero, lcRow0Extend_apply, LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv,
GeneralLinearGroup.coe_toLinear, planeConformalMatrix_val, neg_neg, mulVecLin_apply, cons_val_one, head_cons,
of_apply, Fin.mk_zero, Fin.mk_one]
[GOAL]
case h.e'_3.h.h.mk.a.h.head.tail.head
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) }
{ val := 1, isLt := (_ : (fun a => a < 2) 1) } =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) }
{ val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
convert congr_arg (fun n : ℤ => (-n : ℝ)) g.det_coe.symm using 1
[GOAL]
case h.e'_3
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
⊢ (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) }
{ val := 1, isLt := (_ : (fun a => a < 2) 1) } =
-↑(Matrix.det ↑g)
[PROOFSTEP]
simp only [mulVec, dotProduct, Fin.sum_univ_two, Matrix.det_fin_two, Function.comp_apply, Subtype.coe_mk,
lcRow0Extend_apply, cons_val_zero, LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv,
GeneralLinearGroup.coe_toLinear, planeConformalMatrix_val, mulVecLin_apply, cons_val_one, head_cons, map_apply,
neg_mul, Int.cast_sub, Int.cast_mul, neg_sub, of_apply, Fin.mk_zero, Fin.mk_one]
[GOAL]
case h.e'_3
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
⊢ -(↑(↑g 1 1) * ↑(↑g 0 0)) + ↑(↑g 1 0) * ↑(↑g 0 1) = ↑(↑g 0 1) * ↑(↑g 1 0) - ↑(↑g 0 0) * ↑(↑g 1 1)
[PROOFSTEP]
ring
[GOAL]
case h.e'_3.h.h.mk.a.h.tail.head
g✝ : SL(2, ℤ)
z : ℍ
f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast
cocompact_ℝ_to_cofinite_ℤ_matrix :
Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ))
g : SL(2, ℤ)
hcd : IsCoprime (↑g 1 0) (↑g 1 1)
mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1]
hmB : Continuous mB
hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd)
j : Fin 2
⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1))
{ val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } j =
(↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) }
{ val := 1, isLt := (_ : (fun a => a < 2) 1) } j
[PROOFSTEP]
rfl
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
⊢ ↑(g • z) =
↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) +
(↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))
[PROOFSTEP]
have nonZ1 : (p 0 : ℂ) ^ 2 + (p 1 : ℂ) ^ 2 ≠ 0 := by exact_mod_cast hp.sq_add_sq_ne_zero
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
⊢ ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
[PROOFSTEP]
exact_mod_cast hp.sq_add_sq_ne_zero
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
⊢ ↑(g • z) =
↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) +
(↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))
[PROOFSTEP]
have : ((↑) : ℤ → ℝ) ∘ p ≠ 0 := fun h => hp.ne_zero (by ext i; simpa using congr_fun h i)
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
h : Int.cast ∘ p = 0
⊢ p = 0
[PROOFSTEP]
ext i
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
h : Int.cast ∘ p = 0
i : Fin 2
⊢ p i = OfNat.ofNat 0 i
[PROOFSTEP]
simpa using congr_fun h i
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
⊢ ↑(g • z) =
↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) +
(↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))
[PROOFSTEP]
have nonZ2 : (p 0 : ℂ) * z + p 1 ≠ 0 := by simpa using linear_ne_zero _ z this
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
⊢ ↑(p 0) * ↑z + ↑(p 1) ≠ 0
[PROOFSTEP]
simpa using linear_ne_zero _ z this
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0
⊢ ↑(g • z) =
↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) +
(↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))
[PROOFSTEP]
field_simp [nonZ1, nonZ2, denom_ne_zero, num]
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0
⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))) =
((↑(p 0) * ↑(↑g 0 0) + ↑(p 1) * ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) +
(↑(p 1) * ↑z - ↑(p 0)) * (↑(p 0) ^ 2 + ↑(p 1) ^ 2)) *
denom (↑g) z
[PROOFSTEP]
rw [(by simp : (p 1 : ℂ) * z - p 0 = (p 1 * z - p 0) * ↑(Matrix.det (↑g : Matrix (Fin 2) (Fin 2) ℤ)))]
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0
⊢ ↑(p 1) * ↑z - ↑(p 0) = (↑(p 1) * ↑z - ↑(p 0)) * ↑(Matrix.det ↑g)
[PROOFSTEP]
simp
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0
⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))) =
((↑(p 0) * ↑(↑g 0 0) + ↑(p 1) * ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) +
(↑(p 1) * ↑z - ↑(p 0)) * ↑(Matrix.det ↑g) * (↑(p 0) ^ 2 + ↑(p 1) ^ 2)) *
denom (↑g) z
[PROOFSTEP]
rw [← hg, det_fin_two]
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0
⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) *
((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1)))) =
((↑(↑g 1 0) * ↑(↑g 0 0) + ↑(↑g 1 1) * ↑(↑g 0 1)) *
((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1))) +
(↑(↑g 1 1) * ↑z - ↑(↑g 1 0)) * ↑(↑g 0 0 * ↑g 1 1 - ↑g 0 1 * ↑g 1 0) * (↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2)) *
denom (↑g) z
[PROOFSTEP]
simp only [Int.coe_castRingHom, coe_matrix_coe, Int.cast_mul, ofReal_int_cast, map_apply, denom, Int.cast_sub,
coe_GLPos_coe_GL_coe_matrix, coe'_apply_complex]
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
hg : ↑g 1 = p
nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
this : Int.cast ∘ p ≠ 0
nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0
⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) *
((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1)))) =
((↑(↑g 1 0) * ↑(↑g 0 0) + ↑(↑g 1 1) * ↑(↑g 0 1)) *
((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1))) +
(↑(↑g 1 1) * ↑z - ↑(↑g 1 0)) * (↑(↑g 0 0) * ↑(↑g 1 1) - ↑(↑g 0 1) * ↑(↑g 1 0)) *
(↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2)) *
(↑(↑g 1 0) * ↑z + ↑(↑g 1 1))
[PROOFSTEP]
ring
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
⊢ Tendsto (fun g => |UpperHalfPlane.re (↑g • z)|) cofinite atTop
[PROOFSTEP]
suffices Tendsto (fun g : (fun g : SL(2, ℤ) => (↑ₘg) 1) ⁻¹' { p } => ((g : SL(2, ℤ)) • z).re) cofinite (cocompact ℝ) by
exact tendsto_norm_cocompact_atTop.comp this
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
this : Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ)
⊢ Tendsto (fun g => |UpperHalfPlane.re (↑g • z)|) cofinite atTop
[PROOFSTEP]
exact tendsto_norm_cocompact_atTop.comp this
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ)
[PROOFSTEP]
have : ((p 0 : ℝ) ^ 2 + (p 1 : ℝ) ^ 2)⁻¹ ≠ 0 := by
apply inv_ne_zero
exact_mod_cast hp.sq_add_sq_ne_zero
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
⊢ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0
[PROOFSTEP]
apply inv_ne_zero
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
⊢ ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0
[PROOFSTEP]
exact_mod_cast hp.sq_add_sq_ne_zero
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0
⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ)
[PROOFSTEP]
let f := Homeomorph.mulRight₀ _ this
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0
f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this
⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ)
[PROOFSTEP]
let ff := Homeomorph.addRight (((p 1 : ℂ) * z - p 0) / (((p 0 : ℂ) ^ 2 + (p 1 : ℂ) ^ 2) * (p 0 * z + p 1))).re
[GOAL]
g : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0
f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this
ff : ℝ ≃ₜ ℝ := Homeomorph.addRight ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re
⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ)
[PROOFSTEP]
convert (f.trans ff).closedEmbedding.tendsto_cocompact.comp (tendsto_lcRow0 hp) with _ _ g
[GOAL]
case h.e'_3.h.h
g✝ : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0
f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this
ff : ℝ ≃ₜ ℝ := Homeomorph.addRight ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re
e_1✝ : ↑((fun g => ↑g 1) ⁻¹' {p}) = { g // ↑g 1 = p }
g : ↑((fun g => ↑g 1) ⁻¹' {p})
⊢ UpperHalfPlane.re (↑g • z) =
(↑(Homeomorph.trans f ff) ∘ fun g => ↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) g
[PROOFSTEP]
change
((g : SL(2, ℤ)) • z).re =
lcRow0 p ↑(↑g : SL(2, ℝ)) / ((p 0 : ℝ) ^ 2 + (p 1 : ℝ) ^ 2) +
Complex.re (((p 1 : ℂ) * z - p 0) / (((p 0 : ℂ) ^ 2 + (p 1 : ℂ) ^ 2) * (p 0 * z + p 1)))
[GOAL]
case h.e'_3.h.h
g✝ : SL(2, ℤ)
z : ℍ
p : Fin 2 → ℤ
hp : IsCoprime (p 0) (p 1)
this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0
f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this
ff : ℝ ≃ₜ ℝ := Homeomorph.addRight ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re
e_1✝ : ↑((fun g => ↑g 1) ⁻¹' {p}) = { g // ↑g 1 = p }
g : ↑((fun g => ↑g 1) ⁻¹' {p})
⊢ UpperHalfPlane.re (↑g • z) =
↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) +
((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re
[PROOFSTEP]
exact_mod_cast congr_arg Complex.re (smul_eq_lcRow0_add z hp g.2)
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
classical
let s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
have hs : s.Nonempty := ⟨![1, 1], isCoprime_one_left⟩
obtain ⟨p, hp_coprime, hp⟩ := Filter.Tendsto.exists_within_forall_le hs (tendsto_normSq_coprime_pair z)
obtain ⟨g, -, hg⟩ := bottom_row_surj hp_coprime
refine' ⟨g, fun g' => _⟩
rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, div_le_div_left]
· simpa [← hg] using hp ((↑ₘg') 1) (bottom_row_coprime g')
· exact z.im_pos
· exact normSq_denom_pos g' z
· exact normSq_denom_pos g z
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
let s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
[GOAL]
g : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
have hs : s.Nonempty := ⟨![1, 1], isCoprime_one_left⟩
[GOAL]
g : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
obtain ⟨p, hp_coprime, hp⟩ := Filter.Tendsto.exists_within_forall_le hs (tendsto_normSq_coprime_pair z)
[GOAL]
case intro.intro
g : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
obtain ⟨g, -, hg⟩ := bottom_row_surj hp_coprime
[GOAL]
case intro.intro.intro.intro
g✝ : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
g : SL(2, ℤ)
hg : (fun g => ↑g 1) g = p
⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
refine' ⟨g, fun g' => _⟩
[GOAL]
case intro.intro.intro.intro
g✝ : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
g : SL(2, ℤ)
hg : (fun g => ↑g 1) g = p
g' : SL(2, ℤ)
⊢ UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, div_le_div_left]
[GOAL]
case intro.intro.intro.intro
g✝ : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
g : SL(2, ℤ)
hg : (fun g => ↑g 1) g = p
g' : SL(2, ℤ)
⊢ ↑normSq (denom (↑g) z) ≤ ↑normSq (denom (↑g') z)
[PROOFSTEP]
simpa [← hg] using hp ((↑ₘg') 1) (bottom_row_coprime g')
[GOAL]
case intro.intro.intro.intro.ha
g✝ : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
g : SL(2, ℤ)
hg : (fun g => ↑g 1) g = p
g' : SL(2, ℤ)
⊢ 0 < UpperHalfPlane.im z
[PROOFSTEP]
exact z.im_pos
[GOAL]
case intro.intro.intro.intro.hb
g✝ : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
g : SL(2, ℤ)
hg : (fun g => ↑g 1) g = p
g' : SL(2, ℤ)
⊢ 0 < ↑normSq (denom (↑g') z)
[PROOFSTEP]
exact normSq_denom_pos g' z
[GOAL]
case intro.intro.intro.intro.hc
g✝ : SL(2, ℤ)
z : ℍ
s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)}
hs : Set.Nonempty s
p : Fin 2 → ℤ
hp_coprime : p ∈ s
hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1))
g : SL(2, ℤ)
hg : (fun g => ↑g 1) g = p
g' : SL(2, ℤ)
⊢ 0 < ↑normSq (denom (↑g) z)
[PROOFSTEP]
exact normSq_denom_pos g z
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
⊢ ∃ g, ↑g 1 = cd ∧ ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
[PROOFSTEP]
haveI : Nonempty { g : SL(2, ℤ) // (↑ₘg) 1 = cd } :=
let ⟨x, hx⟩ := bottom_row_surj hcd
⟨⟨x, hx.2⟩⟩
[GOAL]
g : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this : Nonempty { g // ↑g 1 = cd }
⊢ ∃ g, ↑g 1 = cd ∧ ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
[PROOFSTEP]
obtain ⟨g, hg⟩ := Filter.Tendsto.exists_forall_le (tendsto_abs_re_smul z hcd)
[GOAL]
case intro
g✝ : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this : Nonempty { g // ↑g 1 = cd }
g : { g // ↑g 1 = cd }
hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)|
⊢ ∃ g, ↑g 1 = cd ∧ ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
[PROOFSTEP]
refine' ⟨g, g.2, _⟩
[GOAL]
case intro
g✝ : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this : Nonempty { g // ↑g 1 = cd }
g : { g // ↑g 1 = cd }
hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)|
⊢ ∀ (g' : SL(2, ℤ)), ↑↑g 1 = ↑g' 1 → |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (g' • z)|
[PROOFSTEP]
intro g1 hg1
[GOAL]
case intro
g✝ : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this : Nonempty { g // ↑g 1 = cd }
g : { g // ↑g 1 = cd }
hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)|
g1 : SL(2, ℤ)
hg1 : ↑↑g 1 = ↑g1 1
⊢ |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (g1 • z)|
[PROOFSTEP]
have : g1 ∈ (fun g : SL(2, ℤ) => (↑ₘg) 1) ⁻¹' { cd } :=
by
rw [Set.mem_preimage, Set.mem_singleton_iff]
exact Eq.trans hg1.symm (Set.mem_singleton_iff.mp (Set.mem_preimage.mp g.2))
[GOAL]
g✝ : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this : Nonempty { g // ↑g 1 = cd }
g : { g // ↑g 1 = cd }
hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)|
g1 : SL(2, ℤ)
hg1 : ↑↑g 1 = ↑g1 1
⊢ g1 ∈ (fun g => ↑g 1) ⁻¹' {cd}
[PROOFSTEP]
rw [Set.mem_preimage, Set.mem_singleton_iff]
[GOAL]
g✝ : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this : Nonempty { g // ↑g 1 = cd }
g : { g // ↑g 1 = cd }
hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)|
g1 : SL(2, ℤ)
hg1 : ↑↑g 1 = ↑g1 1
⊢ ↑g1 1 = cd
[PROOFSTEP]
exact Eq.trans hg1.symm (Set.mem_singleton_iff.mp (Set.mem_preimage.mp g.2))
[GOAL]
case intro
g✝ : SL(2, ℤ)
z : ℍ
cd : Fin 2 → ℤ
hcd : IsCoprime (cd 0) (cd 1)
this✝ : Nonempty { g // ↑g 1 = cd }
g : { g // ↑g 1 = cd }
hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)|
g1 : SL(2, ℤ)
hg1 : ↑↑g 1 = ↑g1 1
this : g1 ∈ (fun g => ↑g 1) ⁻¹' {cd}
⊢ |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (g1 • z)|
[PROOFSTEP]
exact hg ⟨g1, this⟩
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
⊢ ↑(T ^ n • z) = ↑z + ↑n
[PROOFSTEP]
rw [sl_moeb, UpperHalfPlane.coe_smul]
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
⊢ num (↑(T ^ n)) z / denom (↑(T ^ n)) z = ↑z + ↑n
[PROOFSTEP]
simp [coe_T_zpow, denom, num, -map_zpow]
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
⊢ UpperHalfPlane.re (T ^ n • z) = UpperHalfPlane.re z + ↑n
[PROOFSTEP]
rw [← coe_re, coe_T_zpow_smul_eq, add_re, int_cast_re, coe_re]
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
⊢ UpperHalfPlane.im (T ^ n • z) = UpperHalfPlane.im z
[PROOFSTEP]
rw [← coe_im, coe_T_zpow_smul_eq, add_im, int_cast_im, add_zero, coe_im]
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ UpperHalfPlane.re (T • z) = UpperHalfPlane.re z + 1
[PROOFSTEP]
simpa using re_T_zpow_smul z 1
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ UpperHalfPlane.im (T • z) = UpperHalfPlane.im z
[PROOFSTEP]
simpa using im_T_zpow_smul z 1
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ UpperHalfPlane.re (T⁻¹ • z) = UpperHalfPlane.re z - 1
[PROOFSTEP]
simpa using re_T_zpow_smul z (-1)
[GOAL]
g : SL(2, ℤ)
z : ℍ
⊢ UpperHalfPlane.im (T⁻¹ • z) = UpperHalfPlane.im z
[PROOFSTEP]
simpa using im_T_zpow_smul z (-1)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z
[PROOFSTEP]
have had := g.det_coe
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : det ↑g = 1
⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z
[PROOFSTEP]
replace had : (↑ₘg) 0 0 * (↑ₘg) 1 1 = 1
[GOAL]
case had
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : det ↑g = 1
⊢ ↑g 0 0 * ↑g 1 1 = 1
[PROOFSTEP]
rw [det_fin_two, hc] at had
[GOAL]
case had
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 - ↑g 0 1 * 0 = 1
⊢ ↑g 0 0 * ↑g 1 1 = 1
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z
[PROOFSTEP]
rcases Int.eq_one_or_neg_one_of_mul_eq_one' had with (⟨ha, hd⟩ | ⟨ha, hd⟩)
[GOAL]
case inl.intro
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z
[PROOFSTEP]
use(↑ₘg) 0 1
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ ∀ (z : ℍ), g • z = T ^ ↑g 0 1 • z
[PROOFSTEP]
suffices g = T ^ (↑ₘg) 0 1 by intro z; conv_lhs => rw [this]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
this : g = T ^ ↑g 0 1
⊢ ∀ (z : ℍ), g • z = T ^ ↑g 0 1 • z
[PROOFSTEP]
intro z
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
this : g = T ^ ↑g 0 1
z : ℍ
⊢ g • z = T ^ ↑g 0 1 • z
[PROOFSTEP]
conv_lhs => rw [this]
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
this : g = T ^ ↑g 0 1
z : ℍ
| g • z
[PROOFSTEP]
rw [this]
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
this : g = T ^ ↑g 0 1
z : ℍ
| g • z
[PROOFSTEP]
rw [this]
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
this : g = T ^ ↑g 0 1
z : ℍ
| g • z
[PROOFSTEP]
rw [this]
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ g = T ^ ↑g 0 1
[PROOFSTEP]
ext i j
[GOAL]
case h.a
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
i j : Fin 2
⊢ ↑g i j = ↑(T ^ ↑g 0 1) i j
[PROOFSTEP]
fin_cases i
[GOAL]
case h.a.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
j : Fin 2
⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } j = ↑(T ^ ↑g 0 1) { val := 0, isLt := (_ : 0 < 2) } j
[PROOFSTEP]
fin_cases j
[GOAL]
case h.a.tail.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
j : Fin 2
⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } j = ↑(T ^ ↑g 0 1) { val := 1, isLt := (_ : (fun a => a < 2) 1) } j
[PROOFSTEP]
fin_cases j
[GOAL]
case h.a.head.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } =
↑(T ^ ↑g 0 1) { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case h.a.head.tail.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =
↑(T ^ ↑g 0 1) { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case h.a.tail.head.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } =
↑(T ^ ↑g 0 1) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case h.a.tail.head.tail.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = 1
hd : ↑g 1 1 = 1
⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =
↑(T ^ ↑g 0 1) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case inr.intro
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z
[PROOFSTEP]
use-((↑ₘg) 0 1)
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ ∀ (z : ℍ), g • z = T ^ (-↑g 0 1) • z
[PROOFSTEP]
suffices g = -T ^ (-((↑ₘg) 0 1)) by intro z; conv_lhs => rw [this, SL_neg_smul]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
this : g = -T ^ (-↑g 0 1)
⊢ ∀ (z : ℍ), g • z = T ^ (-↑g 0 1) • z
[PROOFSTEP]
intro z
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
this : g = -T ^ (-↑g 0 1)
z : ℍ
⊢ g • z = T ^ (-↑g 0 1) • z
[PROOFSTEP]
conv_lhs => rw [this, SL_neg_smul]
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
this : g = -T ^ (-↑g 0 1)
z : ℍ
| g • z
[PROOFSTEP]
rw [this, SL_neg_smul]
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
this : g = -T ^ (-↑g 0 1)
z : ℍ
| g • z
[PROOFSTEP]
rw [this, SL_neg_smul]
[GOAL]
g : SL(2, ℤ)
z✝ : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
this : g = -T ^ (-↑g 0 1)
z : ℍ
| g • z
[PROOFSTEP]
rw [this, SL_neg_smul]
[GOAL]
case h
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ g = -T ^ (-↑g 0 1)
[PROOFSTEP]
ext i j
[GOAL]
case h.a
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
i j : Fin 2
⊢ ↑g i j = ↑(-T ^ (-↑g 0 1)) i j
[PROOFSTEP]
fin_cases i
[GOAL]
case h.a.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
j : Fin 2
⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } j = ↑(-T ^ (-↑g 0 1)) { val := 0, isLt := (_ : 0 < 2) } j
[PROOFSTEP]
fin_cases j
[GOAL]
case h.a.tail.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
j : Fin 2
⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } j =
↑(-T ^ (-↑g 0 1)) { val := 1, isLt := (_ : (fun a => a < 2) 1) } j
[PROOFSTEP]
fin_cases j
[GOAL]
case h.a.head.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } =
↑(-T ^ (-↑g 0 1)) { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case h.a.head.tail.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =
↑(-T ^ (-↑g 0 1)) { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case h.a.tail.head.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } =
↑(-T ^ (-↑g 0 1)) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
case h.a.tail.head.tail.head
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 0
had : ↑g 0 0 * ↑g 1 1 = 1
ha : ↑g 0 0 = -1
hd : ↑g 1 1 = -1
⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } =
↑(-T ^ (-↑g 0 1)) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) }
[PROOFSTEP]
simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
⊢ g = T ^ ↑g 0 0 * S * T ^ ↑g 1 1
[PROOFSTEP]
have hg := g.det_coe.symm
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : 1 = det ↑g
⊢ g = T ^ ↑g 0 0 * S * T ^ ↑g 1 1
[PROOFSTEP]
replace hg : (↑ₘg) 0 1 = (↑ₘg) 0 0 * (↑ₘg) 1 1 - 1
[GOAL]
case hg
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : 1 = det ↑g
⊢ ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
[PROOFSTEP]
rw [det_fin_two, hc] at hg
[GOAL]
case hg
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : 1 = ↑g 0 0 * ↑g 1 1 - ↑g 0 1 * 1
⊢ ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ g = T ^ ↑g 0 0 * S * T ^ ↑g 1 1
[PROOFSTEP]
refine' Subtype.ext _
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑g = ↑(T ^ ↑g 0 0 * S * T ^ ↑g 1 1)
[PROOFSTEP]
conv_lhs => rw [Matrix.eta_fin_two (↑ₘg)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
| ↑g
[PROOFSTEP]
rw [Matrix.eta_fin_two (↑ₘg)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
| ↑g
[PROOFSTEP]
rw [Matrix.eta_fin_two (↑ₘg)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
| ↑g
[PROOFSTEP]
rw [Matrix.eta_fin_two (↑ₘg)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑of ![![↑g 0 0, ↑g 0 1], ![↑g 1 0, ↑g 1 1]] = ↑(T ^ ↑g 0 0 * S * T ^ ↑g 1 1)
[PROOFSTEP]
rw [hc, hg]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑of ![![↑g 0 0, ↑g 0 0 * ↑g 1 1 - 1], ![1, ↑g 1 1]] = ↑(T ^ ↑g 0 0 * S * T ^ ↑g 1 1)
[PROOFSTEP]
simp only [coe_mul, coe_T_zpow, coe_S, mul_fin_two]
-- Porting note: Was `congrm !![_, _; _, _] <;> ring`.
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑of ![![↑g 0 0, ↑g 0 0 * ↑g 1 1 - 1], ![1, ↑g 1 1]] =
↑of
![![(1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0,
(1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1],
![(0 * 0 + 1 * 1) * 1 + (0 * -1 + 1 * 0) * 0, (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1]]
[PROOFSTEP]
congr! 3 <;> [skip; congr! 1; congr! 2]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑of ![![↑g 0 0, ↑g 0 0 * ↑g 1 1 - 1], ![1, ↑g 1 1]] =
↑of
![![(1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0,
(1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1],
![(0 * 0 + 1 * 1) * 1 + (0 * -1 + 1 * 0) * 0, (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1]]
[PROOFSTEP]
congr! 3
[GOAL]
case h.e'_6.h.e'_3.h.e'_3
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑g 0 0 = (1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0
[PROOFSTEP]
skip
[GOAL]
case h.e'_6.h.e'_3.h.e'_4
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ![↑g 0 0 * ↑g 1 1 - 1] = ![(1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1]
[PROOFSTEP]
congr! 1
[GOAL]
case h.e'_6.h.e'_4.h.e'_3
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ![1, ↑g 1 1] = ![(0 * 0 + 1 * 1) * 1 + (0 * -1 + 1 * 0) * 0, (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1]
[PROOFSTEP]
congr! 2
[GOAL]
case h.e'_6.h.e'_3.h.e'_3
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑g 0 0 = (1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0
[PROOFSTEP]
ring
[GOAL]
case h.e'_6.h.e'_3.h.e'_4.h.e'_3
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑g 0 0 * ↑g 1 1 - 1 = (1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1
[PROOFSTEP]
ring
[GOAL]
case h.e'_6.h.e'_4.h.e'_3.h.e'_4.h.e'_3
g : SL(2, ℤ)
z : ℍ
hc : ↑g 1 0 = 1
hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1
⊢ ↑g 1 1 = (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1
[PROOFSTEP]
ring
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : 1 < ↑normSq ↑z
⊢ ↑normSq ↑(S • z) < 1
[PROOFSTEP]
simpa [coe_S, num, denom] using (inv_lt_inv z.normSq_pos zero_lt_one).mpr h
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
⊢ UpperHalfPlane.im z < UpperHalfPlane.im (S • z)
[PROOFSTEP]
have : z.im < z.im / normSq (z : ℂ) := by
have imz : 0 < z.im := im_pos z
apply (lt_div_iff z.normSq_pos).mpr
nlinarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
⊢ UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z
[PROOFSTEP]
have imz : 0 < z.im := im_pos z
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
imz : 0 < UpperHalfPlane.im z
⊢ UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z
[PROOFSTEP]
apply (lt_div_iff z.normSq_pos).mpr
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
imz : 0 < UpperHalfPlane.im z
⊢ UpperHalfPlane.im z * ↑normSq ↑z < UpperHalfPlane.im z
[PROOFSTEP]
nlinarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
this : UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z
⊢ UpperHalfPlane.im z < UpperHalfPlane.im (S • z)
[PROOFSTEP]
convert this
[GOAL]
case h.e'_4
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
this : UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z
⊢ UpperHalfPlane.im (S • z) = UpperHalfPlane.im z / ↑normSq ↑z
[PROOFSTEP]
simp only [SpecialLinearGroup.im_smul_eq_div_normSq]
[GOAL]
case h.e'_4
g : SL(2, ℤ)
z : ℍ
h : ↑normSq ↑z < 1
this : UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z
⊢ UpperHalfPlane.im z / ↑normSq (denom (↑S) z) = UpperHalfPlane.im z / ↑normSq ↑z
[PROOFSTEP]
simp [denom, coe_S]
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
⊢ |2 * UpperHalfPlane.re z| < 1
[PROOFSTEP]
rw [abs_mul, abs_two, ← lt_div_iff' (zero_lt_two' ℝ)]
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
⊢ |UpperHalfPlane.re z| < 1 / 2
[PROOFSTEP]
exact h.2
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
⊢ 3 < 4 * UpperHalfPlane.im z ^ 2
[PROOFSTEP]
have : 1 < z.re * z.re + z.im * z.im := by simpa [Complex.normSq_apply] using h.1
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
⊢ 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
[PROOFSTEP]
simpa [Complex.normSq_apply] using h.1
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
this : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
⊢ 3 < 4 * UpperHalfPlane.im z ^ 2
[PROOFSTEP]
have := h.2
[GOAL]
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
this✝ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
this : |UpperHalfPlane.re z| < 1 / 2
⊢ 3 < 4 * UpperHalfPlane.im z ^ 2
[PROOFSTEP]
cases abs_cases z.re
[GOAL]
case inl
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
this✝ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
this : |UpperHalfPlane.re z| < 1 / 2
h✝ : |UpperHalfPlane.re z| = UpperHalfPlane.re z ∧ 0 ≤ UpperHalfPlane.re z
⊢ 3 < 4 * UpperHalfPlane.im z ^ 2
[PROOFSTEP]
nlinarith
[GOAL]
case inr
g : SL(2, ℤ)
z : ℍ
h : z ∈ 𝒟ᵒ
this✝ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
this : |UpperHalfPlane.re z| < 1 / 2
h✝ : |UpperHalfPlane.re z| = -UpperHalfPlane.re z ∧ UpperHalfPlane.re z < 0
⊢ 3 < 4 * UpperHalfPlane.im z ^ 2
[PROOFSTEP]
nlinarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
n : ℤ
⊢ 1 < ↑normSq ↑(T ^ n • z)
[PROOFSTEP]
have hz₁ : 1 < z.re * z.re + z.im * z.im := hz.1
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
n : ℤ
hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
⊢ 1 < ↑normSq ↑(T ^ n • z)
[PROOFSTEP]
have hzn := Int.nneg_mul_add_sq_of_abs_le_one n (abs_two_mul_re_lt_one_of_mem_fdo hz).le
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
n : ℤ
hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
hzn : 0 ≤ ↑n * (2 * UpperHalfPlane.re z) + ↑n * ↑n
⊢ 1 < ↑normSq ↑(T ^ n • z)
[PROOFSTEP]
have : 1 < (z.re + ↑n) * (z.re + ↑n) + z.im * z.im := by linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
n : ℤ
hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
hzn : 0 ≤ ↑n * (2 * UpperHalfPlane.re z) + ↑n * ↑n
⊢ 1 < (UpperHalfPlane.re z + ↑n) * (UpperHalfPlane.re z + ↑n) + UpperHalfPlane.im z * UpperHalfPlane.im z
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
n : ℤ
hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z
hzn : 0 ≤ ↑n * (2 * UpperHalfPlane.re z) + ↑n * ↑n
this : 1 < (UpperHalfPlane.re z + ↑n) * (UpperHalfPlane.re z + ↑n) + UpperHalfPlane.im z * UpperHalfPlane.im z
⊢ 1 < ↑normSq ↑(T ^ n • z)
[PROOFSTEP]
simpa [coe_T_zpow, normSq, num, denom, -map_zpow]
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
hz : z ∈ 𝒟ᵒ
hg : T ^ n • z ∈ 𝒟ᵒ
⊢ n = 0
[PROOFSTEP]
suffices |(n : ℝ)| < 1 by rwa [← Int.cast_abs, ← Int.cast_one, Int.cast_lt, Int.abs_lt_one_iff] at this
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
hz : z ∈ 𝒟ᵒ
hg : T ^ n • z ∈ 𝒟ᵒ
this : |↑n| < 1
⊢ n = 0
[PROOFSTEP]
rwa [← Int.cast_abs, ← Int.cast_one, Int.cast_lt, Int.abs_lt_one_iff] at this
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
hz : z ∈ 𝒟ᵒ
hg : T ^ n • z ∈ 𝒟ᵒ
⊢ |↑n| < 1
[PROOFSTEP]
have h₁ := hz.2
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
hz : z ∈ 𝒟ᵒ
hg : T ^ n • z ∈ 𝒟ᵒ
h₁ : |UpperHalfPlane.re z| < 1 / 2
⊢ |↑n| < 1
[PROOFSTEP]
have h₂ := hg.2
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
hz : z ∈ 𝒟ᵒ
hg : T ^ n • z ∈ 𝒟ᵒ
h₁ : |UpperHalfPlane.re z| < 1 / 2
h₂ : |UpperHalfPlane.re (T ^ n • z)| < 1 / 2
⊢ |↑n| < 1
[PROOFSTEP]
rw [re_T_zpow_smul] at h₂
[GOAL]
g : SL(2, ℤ)
z : ℍ
n : ℤ
hz : z ∈ 𝒟ᵒ
hg : T ^ n • z ∈ 𝒟ᵒ
h₁ : |UpperHalfPlane.re z| < 1 / 2
h₂ : |UpperHalfPlane.re z + ↑n| < 1 / 2
⊢ |↑n| < 1
[PROOFSTEP]
calc
|(n : ℝ)| ≤ |z.re| + |z.re + (n : ℝ)| := abs_add' (n : ℝ) z.re
_ < 1 / 2 + 1 / 2 := (add_lt_add h₁ h₂)
_ = 1 := add_halves 1
[GOAL]
g : SL(2, ℤ)
z✝ z : ℍ
⊢ ∃ g, g • z ∈ 𝒟
[PROOFSTEP]
obtain ⟨g₀, hg₀⟩ := exists_max_im z
[GOAL]
case intro
g : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
⊢ ∃ g, g • z ∈ 𝒟
[PROOFSTEP]
obtain ⟨g, hg, hg'⟩ := exists_row_one_eq_and_min_re z (bottom_row_coprime g₀)
[GOAL]
case intro.intro.intro
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
⊢ ∃ g, g • z ∈ 𝒟
[PROOFSTEP]
refine'
⟨g, _⟩
-- `g` has same max im property as `g₀`
[GOAL]
case intro.intro.intro
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
⊢ g • z ∈ 𝒟
[PROOFSTEP]
have hg₀' : ∀ g' : SL(2, ℤ), (g' • z).im ≤ (g • z).im :=
by
have hg'' : (g • z).im = (g₀ • z).im := by
rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, denom_apply, denom_apply,
hg]
simpa only [hg''] using hg₀
[GOAL]
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
⊢ ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
have hg'' : (g • z).im = (g₀ • z).im := by
rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, denom_apply, denom_apply, hg]
[GOAL]
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
⊢ UpperHalfPlane.im (g • z) = UpperHalfPlane.im (g₀ • z)
[PROOFSTEP]
rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, denom_apply, denom_apply, hg]
[GOAL]
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg'' : UpperHalfPlane.im (g • z) = UpperHalfPlane.im (g₀ • z)
⊢ ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
[PROOFSTEP]
simpa only [hg''] using hg₀
[GOAL]
case intro.intro.intro
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ g • z ∈ 𝒟
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ 1 ≤ ↑normSq ↑(g • z)
[PROOFSTEP]
contrapose! hg₀'
[GOAL]
case intro.intro.intro.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ↑normSq ↑(g • z) < 1
⊢ ∃ g', UpperHalfPlane.im (g • z) < UpperHalfPlane.im (g' • z)
[PROOFSTEP]
refine' ⟨S * g, _⟩
[GOAL]
case intro.intro.intro.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ↑normSq ↑(g • z) < 1
⊢ UpperHalfPlane.im (g • z) < UpperHalfPlane.im ((S * g) • z)
[PROOFSTEP]
rw [mul_smul]
[GOAL]
case intro.intro.intro.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ↑normSq ↑(g • z) < 1
⊢ UpperHalfPlane.im (g • z) < UpperHalfPlane.im (S • g • z)
[PROOFSTEP]
exact im_lt_im_S_smul hg₀'
[GOAL]
case intro.intro.intro.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ |UpperHalfPlane.re (g • z)| ≤ 1 / 2
[PROOFSTEP]
show
|(g • z).re| ≤
1 /
2
-- if not, then either `T` or `T'` decrease |Re|.
[GOAL]
case intro.intro.intro.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ |UpperHalfPlane.re (g • z)| ≤ 1 / 2
[PROOFSTEP]
rw [abs_le]
[GOAL]
case intro.intro.intro.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ -(1 / 2) ≤ UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) ≤ 1 / 2
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.right.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ -(1 / 2) ≤ UpperHalfPlane.re (g • z)
[PROOFSTEP]
contrapose! hg'
[GOAL]
case intro.intro.intro.right.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
⊢ ∃ g', ↑g 1 = ↑g' 1 ∧ |UpperHalfPlane.re (g' • z)| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
refine' ⟨T * g, (T_mul_apply_one _).symm, _⟩
[GOAL]
case intro.intro.intro.right.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
⊢ |UpperHalfPlane.re ((T * g) • z)| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
rw [mul_smul, re_T_smul]
[GOAL]
case intro.intro.intro.right.left
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
cases abs_cases ((g • z).re + 1)
[GOAL]
case intro.intro.intro.right.left.inl
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
h✝ : |UpperHalfPlane.re (g • z) + 1| = UpperHalfPlane.re (g • z) + 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) + 1
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
cases abs_cases (g • z).re
[GOAL]
case intro.intro.intro.right.left.inr
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
h✝ : |UpperHalfPlane.re (g • z) + 1| = -(UpperHalfPlane.re (g • z) + 1) ∧ UpperHalfPlane.re (g • z) + 1 < 0
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
cases abs_cases (g • z).re
[GOAL]
case intro.intro.intro.right.left.inl.inl
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
h✝¹ : |UpperHalfPlane.re (g • z) + 1| = UpperHalfPlane.re (g • z) + 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) + 1
h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z)
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.left.inl.inr
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
h✝¹ : |UpperHalfPlane.re (g • z) + 1| = UpperHalfPlane.re (g • z) + 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) + 1
h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.left.inr.inl
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
h✝¹ : |UpperHalfPlane.re (g • z) + 1| = -(UpperHalfPlane.re (g • z) + 1) ∧ UpperHalfPlane.re (g • z) + 1 < 0
h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z)
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.left.inr.inr
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : UpperHalfPlane.re (g • z) < -(1 / 2)
h✝¹ : |UpperHalfPlane.re (g • z) + 1| = -(UpperHalfPlane.re (g • z) + 1) ∧ UpperHalfPlane.re (g • z) + 1 < 0
h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0
⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)|
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
⊢ UpperHalfPlane.re (g • z) ≤ 1 / 2
[PROOFSTEP]
contrapose! hg'
[GOAL]
case intro.intro.intro.right.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
⊢ ∃ g', ↑g 1 = ↑g' 1 ∧ |UpperHalfPlane.re (g' • z)| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
refine' ⟨T⁻¹ * g, (T_inv_mul_apply_one _).symm, _⟩
[GOAL]
case intro.intro.intro.right.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
⊢ |UpperHalfPlane.re ((T⁻¹ * g) • z)| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
rw [mul_smul, re_T_inv_smul]
[GOAL]
case intro.intro.intro.right.right
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
cases abs_cases ((g • z).re - 1)
[GOAL]
case intro.intro.intro.right.right.inl
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
h✝ : |UpperHalfPlane.re (g • z) - 1| = UpperHalfPlane.re (g • z) - 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) - 1
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
cases abs_cases (g • z).re
[GOAL]
case intro.intro.intro.right.right.inr
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
h✝ : |UpperHalfPlane.re (g • z) - 1| = -(UpperHalfPlane.re (g • z) - 1) ∧ UpperHalfPlane.re (g • z) - 1 < 0
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
cases abs_cases (g • z).re
[GOAL]
case intro.intro.intro.right.right.inl.inl
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
h✝¹ : |UpperHalfPlane.re (g • z) - 1| = UpperHalfPlane.re (g • z) - 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) - 1
h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z)
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.right.inl.inr
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
h✝¹ : |UpperHalfPlane.re (g • z) - 1| = UpperHalfPlane.re (g • z) - 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) - 1
h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.right.inr.inl
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
h✝¹ : |UpperHalfPlane.re (g • z) - 1| = -(UpperHalfPlane.re (g • z) - 1) ∧ UpperHalfPlane.re (g • z) - 1 < 0
h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z)
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
case intro.intro.intro.right.right.inr.inr
g✝ : SL(2, ℤ)
z✝ z : ℍ
g₀ : SL(2, ℤ)
hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z)
g : SL(2, ℤ)
hg : ↑g 1 = ↑g₀ 1
hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z)
hg' : 1 / 2 < UpperHalfPlane.re (g • z)
h✝¹ : |UpperHalfPlane.re (g • z) - 1| = -(UpperHalfPlane.re (g • z) - 1) ∧ UpperHalfPlane.re (g • z) - 1 < 0
h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0
⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)|
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
⊢ |↑g 1 0| ≤ 1
[PROOFSTEP]
let c' : ℤ := (↑ₘg) 1 0
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
⊢ |↑g 1 0| ≤ 1
[PROOFSTEP]
let c : ℝ := (c' : ℝ)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
⊢ |↑g 1 0| ≤ 1
[PROOFSTEP]
suffices 3 * c ^ 2 < 4
by
rw [← Int.cast_pow, ← Int.cast_three, ← Int.cast_four, ← Int.cast_mul, Int.cast_lt] at this
replace this : c' ^ 2 ≤ 1 ^ 2; · linarith
rwa [sq_le_sq, abs_one] at this
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : 3 * c ^ 2 < 4
⊢ |↑g 1 0| ≤ 1
[PROOFSTEP]
rw [← Int.cast_pow, ← Int.cast_three, ← Int.cast_four, ← Int.cast_mul, Int.cast_lt] at this
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : 3 * c' ^ 2 < 4
⊢ |↑g 1 0| ≤ 1
[PROOFSTEP]
replace this : c' ^ 2 ≤ 1 ^ 2
[GOAL]
case this
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : 3 * c' ^ 2 < 4
⊢ c' ^ 2 ≤ 1 ^ 2
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c' ^ 2 ≤ 1 ^ 2
⊢ |↑g 1 0| ≤ 1
[PROOFSTEP]
rwa [sq_le_sq, abs_one] at this
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
⊢ 3 * c ^ 2 < 4
[PROOFSTEP]
suffices c ≠ 0 → 9 * c ^ 4 < 16 by
rcases eq_or_ne c 0 with (hc | hc)
· rw [hc]; norm_num
· refine' (abs_lt_of_sq_lt_sq' _ (by norm_num)).2
specialize this hc
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c ≠ 0 → 9 * c ^ 4 < 16
⊢ 3 * c ^ 2 < 4
[PROOFSTEP]
rcases eq_or_ne c 0 with (hc | hc)
[GOAL]
case inl
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c ≠ 0 → 9 * c ^ 4 < 16
hc : c = 0
⊢ 3 * c ^ 2 < 4
[PROOFSTEP]
rw [hc]
[GOAL]
case inl
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c ≠ 0 → 9 * c ^ 4 < 16
hc : c = 0
⊢ 3 * 0 ^ 2 < 4
[PROOFSTEP]
norm_num
[GOAL]
case inr
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c ≠ 0 → 9 * c ^ 4 < 16
hc : c ≠ 0
⊢ 3 * c ^ 2 < 4
[PROOFSTEP]
refine' (abs_lt_of_sq_lt_sq' _ (by norm_num)).2
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c ≠ 0 → 9 * c ^ 4 < 16
hc : c ≠ 0
⊢ 0 ≤ 4
[PROOFSTEP]
norm_num
[GOAL]
case inr
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
this : c ≠ 0 → 9 * c ^ 4 < 16
hc : c ≠ 0
⊢ (3 * c ^ 2) ^ 2 < 4 ^ 2
[PROOFSTEP]
specialize this hc
[GOAL]
case inr
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : c ≠ 0
this : 9 * c ^ 4 < 16
⊢ (3 * c ^ 2) ^ 2 < 4 ^ 2
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
⊢ c ≠ 0 → 9 * c ^ 4 < 16
[PROOFSTEP]
intro hc
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : c ≠ 0
⊢ 9 * c ^ 4 < 16
[PROOFSTEP]
replace hc : 0 < c ^ 4
[GOAL]
case hc
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : c ≠ 0
⊢ 0 < c ^ 4
[PROOFSTEP]
change 0 < c ^ (2 * 2)
[GOAL]
case hc
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : c ≠ 0
⊢ 0 < c ^ (2 * 2)
[PROOFSTEP]
rw [pow_mul]
[GOAL]
case hc
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : c ≠ 0
⊢ 0 < (c ^ 2) ^ 2
[PROOFSTEP]
apply sq_pos_of_pos (sq_pos_of_ne_zero _ hc)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
⊢ 9 * c ^ 4 < 16
[PROOFSTEP]
have h₁ :=
mul_lt_mul_of_pos_right
(mul_lt_mul'' (three_lt_four_mul_im_sq_of_mem_fdo hg) (three_lt_four_mul_im_sq_of_mem_fdo hz) (by linarith)
(by linarith))
hc
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
⊢ 0 ≤ 3
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
⊢ 0 ≤ 3
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
⊢ 9 * c ^ 4 < 16
[PROOFSTEP]
have h₂ : (c * z.im) ^ 4 / normSq (denom (↑g) z) ^ 2 ≤ 1 :=
div_le_one_of_le (pow_four_le_pow_two_of_pow_two_le (UpperHalfPlane.c_mul_im_sq_le_normSq_denom z g)) (sq_nonneg _)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
⊢ 9 * c ^ 4 < 16
[PROOFSTEP]
let nsq := normSq (denom g z)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z)
⊢ 9 * c ^ 4 < 16
[PROOFSTEP]
calc
9 * c ^ 4 < c ^ 4 * z.im ^ 2 * (g • z).im ^ 2 * 16 := by linarith
_ = c ^ 4 * z.im ^ 4 / nsq ^ 2 * 16 :=
by
rw [SpecialLinearGroup.im_smul_eq_div_normSq, div_pow]
ring
_ ≤ 16 := by rw [← mul_pow]; linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z)
⊢ 9 * c ^ 4 < c ^ 4 * UpperHalfPlane.im z ^ 2 * UpperHalfPlane.im (g • z) ^ 2 * 16
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z)
⊢ c ^ 4 * UpperHalfPlane.im z ^ 2 * UpperHalfPlane.im (g • z) ^ 2 * 16 = c ^ 4 * UpperHalfPlane.im z ^ 4 / nsq ^ 2 * 16
[PROOFSTEP]
rw [SpecialLinearGroup.im_smul_eq_div_normSq, div_pow]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z)
⊢ c ^ 4 * UpperHalfPlane.im z ^ 2 * (UpperHalfPlane.im z ^ 2 / ↑normSq (denom (↑g) z) ^ 2) * 16 =
c ^ 4 * UpperHalfPlane.im z ^ 4 / nsq ^ 2 * 16
[PROOFSTEP]
ring
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z)
⊢ c ^ 4 * UpperHalfPlane.im z ^ 4 / nsq ^ 2 * 16 ≤ 16
[PROOFSTEP]
rw [← mul_pow]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
c' : ℤ := ↑g 1 0
c : ℝ := ↑c'
hc : 0 < c ^ 4
h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4
h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1
nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z)
⊢ (c * UpperHalfPlane.im z) ^ 4 / nsq ^ 2 * 16 ≤ 16
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
⊢ ↑g 1 0 = 0
[PROOFSTEP]
have hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → (↑ₘg') 1 0 ≠ 1 :=
by
intro g' hg'
by_contra hc
let a := (↑ₘg') 0 0
let d := (↑ₘg') 1 1
have had : T ^ (-a) * g' = S * T ^ d := by rw [g_eq_of_c_eq_one hc]; group
let w := T ^ (-a) • g' • z
have h₁ : w = S • T ^ d • z := by simp only [← mul_smul, had]
replace h₁ : normSq w < 1 := h₁.symm ▸ normSq_S_smul_lt_one (one_lt_normSq_T_zpow_smul hz d)
have h₂ : 1 < normSq w := one_lt_normSq_T_zpow_smul hg' (-a)
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
⊢ ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
[PROOFSTEP]
intro g' hg'
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
⊢ ↑g' 1 0 ≠ 1
[PROOFSTEP]
by_contra hc
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
⊢ False
[PROOFSTEP]
let a := (↑ₘg') 0 0
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
⊢ False
[PROOFSTEP]
let d := (↑ₘg') 1 1
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
⊢ False
[PROOFSTEP]
have had : T ^ (-a) * g' = S * T ^ d := by rw [g_eq_of_c_eq_one hc]; group
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
⊢ T ^ (-a) * g' = S * T ^ d
[PROOFSTEP]
rw [g_eq_of_c_eq_one hc]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
⊢ T ^ (-a) * (T ^ ↑g' 0 0 * S * T ^ ↑g' 1 1) = S * T ^ d
[PROOFSTEP]
group
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
had : T ^ (-a) * g' = S * T ^ d
⊢ False
[PROOFSTEP]
let w := T ^ (-a) • g' • z
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
had : T ^ (-a) * g' = S * T ^ d
w : ℍ := T ^ (-a) • g' • z
⊢ False
[PROOFSTEP]
have h₁ : w = S • T ^ d • z := by simp only [← mul_smul, had]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
had : T ^ (-a) * g' = S * T ^ d
w : ℍ := T ^ (-a) • g' • z
⊢ w = S • T ^ d • z
[PROOFSTEP]
simp only [← mul_smul, had]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
had : T ^ (-a) * g' = S * T ^ d
w : ℍ := T ^ (-a) • g' • z
h₁ : w = S • T ^ d • z
⊢ False
[PROOFSTEP]
replace h₁ : normSq w < 1 := h₁.symm ▸ normSq_S_smul_lt_one (one_lt_normSq_T_zpow_smul hz d)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
had : T ^ (-a) * g' = S * T ^ d
w : ℍ := T ^ (-a) • g' • z
h₁ : ↑normSq ↑w < 1
⊢ False
[PROOFSTEP]
have h₂ : 1 < normSq w := one_lt_normSq_T_zpow_smul hg' (-a)
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
g' : SL(2, ℤ)
hg' : g' • z ∈ 𝒟ᵒ
hc : ↑g' 1 0 = 1
a : ℤ := ↑g' 0 0
d : ℤ := ↑g' 1 1
had : T ^ (-a) * g' = S * T ^ d
w : ℍ := T ^ (-a) • g' • z
h₁ : ↑normSq ↑w < 1
h₂ : 1 < ↑normSq ↑w
⊢ False
[PROOFSTEP]
linarith
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
⊢ ↑g 1 0 = 0
[PROOFSTEP]
have hn : (↑ₘg) 1 0 ≠ -1 := by
intro hc
replace hc : (↑ₘ(-g)) 1 0 = 1; · simp [← neg_eq_iff_eq_neg.mpr hc]
replace hg : -g • z ∈ 𝒟ᵒ := (SL_neg_smul g z).symm ▸ hg
exact hp hg hc
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
⊢ ↑g 1 0 ≠ -1
[PROOFSTEP]
intro hc
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
hc : ↑g 1 0 = -1
⊢ False
[PROOFSTEP]
replace hc : (↑ₘ(-g)) 1 0 = 1
[GOAL]
case hc
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
hc : ↑g 1 0 = -1
⊢ (-↑g) 1 0 = 1
[PROOFSTEP]
simp [← neg_eq_iff_eq_neg.mpr hc]
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
hc : (-↑g) 1 0 = 1
⊢ False
[PROOFSTEP]
replace hg : -g • z ∈ 𝒟ᵒ := (SL_neg_smul g z).symm ▸ hg
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
hc : (-↑g) 1 0 = 1
hg : -g • z ∈ 𝒟ᵒ
⊢ False
[PROOFSTEP]
exact hp hg hc
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1
hn : ↑g 1 0 ≠ -1
⊢ ↑g 1 0 = 0
[PROOFSTEP]
specialize hp hg
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hn : ↑g 1 0 ≠ -1
hp : ↑g 1 0 ≠ 1
⊢ ↑g 1 0 = 0
[PROOFSTEP]
rcases Int.abs_le_one_iff.mp <| abs_c_le_one hz hg with ⟨⟩
[GOAL]
case inl
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hn : ↑g 1 0 ≠ -1
hp : ↑g 1 0 ≠ 1
h✝ : ↑g 1 0 = 0
⊢ ↑g 1 0 = 0
[PROOFSTEP]
tauto
[GOAL]
case inr
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
hn : ↑g 1 0 ≠ -1
hp : ↑g 1 0 ≠ 1
h✝ : ↑g 1 0 = 1 ∨ ↑g 1 0 = -1
⊢ ↑g 1 0 = 0
[PROOFSTEP]
tauto
[GOAL]
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
⊢ z = g • z
[PROOFSTEP]
obtain ⟨n, hn⟩ := exists_eq_T_zpow_of_c_eq_zero (c_eq_zero hz hg)
[GOAL]
case intro
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
hg : g • z ∈ 𝒟ᵒ
n : ℤ
hn : ∀ (z : ℍ), g • z = T ^ n • z
⊢ z = g • z
[PROOFSTEP]
rw [hn] at hg ⊢
[GOAL]
case intro
g : SL(2, ℤ)
z : ℍ
hz : z ∈ 𝒟ᵒ
n : ℤ
hg : T ^ n • z ∈ 𝒟ᵒ
hn : ∀ (z : ℍ), g • z = T ^ n • z
⊢ z = T ^ n • z
[PROOFSTEP]
simp [eq_zero_of_mem_fdo_of_T_zpow_mem_fdo hz hg, one_smul]
| {"mathlib_filename": "Mathlib.NumberTheory.Modular", "llama_tokens": 64408} |
{"mathlib_filename": "Mathlib.Util.AssertExists", "llama_tokens": 0} |
|
[GOAL]
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ X.obj Δ ⟶ N s (SimplexCategory.len A.fst.unop)
[PROOFSTEP]
refine' (s.iso Δ).inv ≫ Sigma.desc fun B => _
[GOAL]
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop)
[PROOFSTEP]
by_cases B = A
[GOAL]
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop)
[PROOFSTEP]
by_cases B = A
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : B = A
⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop)
[PROOFSTEP]
exact eqToHom (by subst h; rfl)
[GOAL]
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : B = A
⊢ summand s.N Δ B = N s (SimplexCategory.len A.fst.unop)
[PROOFSTEP]
subst h
[GOAL]
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
B : IndexSet Δ
⊢ summand s.N Δ B = N s (SimplexCategory.len B.fst.unop)
[PROOFSTEP]
rfl
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{?u.243, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : ¬B = A
⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop)
[PROOFSTEP]
exact 0
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ ιSummand s A ≫ πSummand s A = 𝟙 (N s (SimplexCategory.len A.fst.unop))
[PROOFSTEP]
dsimp only [ιSummand, iso_hom, πSummand, iso_inv, summand]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ ((ιCoprod s.N A ≫ map X s.ι Δ) ≫
inv (map X s.ι Δ) ≫
Sigma.desc fun B =>
if h : B = A then eqToHom (_ : summand s.N Δ B = N s (SimplexCategory.len A.fst.unop)) else 0) =
𝟙 (N s (SimplexCategory.len A.fst.unop))
[PROOFSTEP]
simp only [summand, assoc, IsIso.hom_inv_id_assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ (ιCoprod s.N A ≫
Sigma.desc fun B =>
if h : B = A then eqToHom (_ : summand s.N Δ B = N s (SimplexCategory.len A.fst.unop)) else 0) =
𝟙 (N s (SimplexCategory.len A.fst.unop))
[PROOFSTEP]
erw [colimit.ι_desc, Cofan.mk_ι_app]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ (if h : { as := A }.as = A then eqToHom (_ : summand s.N Δ { as := A }.as = N s (SimplexCategory.len A.fst.unop))
else 0) =
𝟙 (N s (SimplexCategory.len A.fst.unop))
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ (if h : A = A then 𝟙 (N s (SimplexCategory.len A.fst.unop)) else 0) = 𝟙 (N s (SimplexCategory.len A.fst.unop))
[PROOFSTEP]
simp only [dite_eq_ite, ite_true]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : B ≠ A
⊢ ιSummand s A ≫ πSummand s B = 0
[PROOFSTEP]
dsimp only [ιSummand, iso_hom, πSummand, iso_inv, summand]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : B ≠ A
⊢ ((ιCoprod s.N A ≫ map X s.ι Δ) ≫
inv (map X s.ι Δ) ≫
Sigma.desc fun B_1 =>
if h : B_1 = B then eqToHom (_ : summand s.N Δ B_1 = N s (SimplexCategory.len B.fst.unop)) else 0) =
0
[PROOFSTEP]
simp only [summand, assoc, IsIso.hom_inv_id_assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : B ≠ A
⊢ (ιCoprod s.N A ≫
Sigma.desc fun B_1 =>
if h : B_1 = B then eqToHom (_ : summand s.N Δ B_1 = N s (SimplexCategory.len B.fst.unop)) else 0) =
0
[PROOFSTEP]
erw [colimit.ι_desc, Cofan.mk_ι_app]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : HasZeroMorphisms C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
h : B ≠ A
⊢ (if h : { as := A }.as = B then eqToHom (_ : summand s.N Δ { as := A }.as = N s (SimplexCategory.len B.fst.unop))
else 0) =
0
[PROOFSTEP]
exact dif_neg h.symm
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Δ : SimplexCategoryᵒᵖ
⊢ 𝟙 (X.obj Δ) = ∑ A : IndexSet Δ, πSummand s A ≫ ιSummand s A
[PROOFSTEP]
apply s.hom_ext'
[GOAL]
case h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Δ : SimplexCategoryᵒᵖ
⊢ ∀ (A : IndexSet Δ), ιSummand s A ≫ 𝟙 (X.obj Δ) = ιSummand s A ≫ ∑ A : IndexSet Δ, πSummand s A ≫ ιSummand s A
[PROOFSTEP]
intro A
[GOAL]
case h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ ιSummand s A ≫ 𝟙 (X.obj Δ) = ιSummand s A ≫ ∑ A : IndexSet Δ, πSummand s A ≫ ιSummand s A
[PROOFSTEP]
rw [comp_id, comp_sum, Finset.sum_eq_single A, ι_πSummand_eq_id_assoc]
[GOAL]
case h.h₀
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ ∀ (b : IndexSet Δ), b ∈ Finset.univ → b ≠ A → ιSummand s A ≫ πSummand s b ≫ ιSummand s b = 0
[PROOFSTEP]
intro B _ h₂
[GOAL]
case h.h₀
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Δ : SimplexCategoryᵒᵖ
A B : IndexSet Δ
a✝ : B ∈ Finset.univ
h₂ : B ≠ A
⊢ ιSummand s A ≫ πSummand s B ≫ ιSummand s B = 0
[PROOFSTEP]
rw [s.ι_πSummand_eq_zero_assoc _ _ h₂, zero_comp]
[GOAL]
case h.h₁
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Δ : SimplexCategoryᵒᵖ
A : IndexSet Δ
⊢ ¬A ∈ Finset.univ → ιSummand s A ≫ πSummand s A ≫ ιSummand s A = 0
[PROOFSTEP]
simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
⊢ SimplicialObject.σ X i ≫ πSummand s (IndexSet.id (op [n + 1])) = 0
[PROOFSTEP]
apply s.hom_ext'
[GOAL]
case h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
⊢ ∀ (A : IndexSet (op [n])),
ιSummand s A ≫ SimplicialObject.σ X i ≫ πSummand s (IndexSet.id (op [n + 1])) = ιSummand s A ≫ 0
[PROOFSTEP]
intro A
[GOAL]
case h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
⊢ ιSummand s A ≫ SimplicialObject.σ X i ≫ πSummand s (IndexSet.id (op [n + 1])) = ιSummand s A ≫ 0
[PROOFSTEP]
dsimp only [SimplicialObject.σ]
[GOAL]
case h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
⊢ ιSummand s A ≫ X.map (SimplexCategory.σ i).op ≫ πSummand s (IndexSet.id (op [n + 1])) = ιSummand s A ≫ 0
[PROOFSTEP]
rw [comp_zero, s.ιSummand_epi_naturality_assoc A (SimplexCategory.σ i).op, ι_πSummand_eq_zero]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
⊢ IndexSet.id (op [n + 1]) ≠ IndexSet.epiComp A (SimplexCategory.σ i).op
[PROOFSTEP]
rw [ne_comm]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
⊢ IndexSet.epiComp A (SimplexCategory.σ i).op ≠ IndexSet.id (op [n + 1])
[PROOFSTEP]
change ¬(A.epiComp (SimplexCategory.σ i).op).EqId
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
⊢ ¬IndexSet.EqId (IndexSet.epiComp A (SimplexCategory.σ i).op)
[PROOFSTEP]
rw [IndexSet.eqId_iff_len_eq]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
⊢ ¬SimplexCategory.len (IndexSet.epiComp A (SimplexCategory.σ i).op).fst.unop = SimplexCategory.len (op [n + 1]).unop
[PROOFSTEP]
have h := SimplexCategory.len_le_of_epi (inferInstance : Epi A.e)
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
h : SimplexCategory.len A.fst.unop ≤ SimplexCategory.len (op [n]).unop
⊢ ¬SimplexCategory.len (IndexSet.epiComp A (SimplexCategory.σ i).op).fst.unop = SimplexCategory.len (op [n + 1]).unop
[PROOFSTEP]
dsimp at h ⊢
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
i : Fin (n + 1)
A : IndexSet (op [n])
h : SimplexCategory.len A.fst.unop ≤ n
⊢ ¬SimplexCategory.len A.fst.unop = n + 1
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X✝ : SimplicialObject C
s✝ : Splitting X✝
inst✝ : Preadditive C
X : SimplicialObject C
s : Splitting X
n : ℕ
A : IndexSet (op [n])
hA : ¬IndexSet.EqId A
⊢ ιSummand s A ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rw [SimplicialObject.Splitting.IndexSet.eqId_iff_mono] at hA
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X✝ : SimplicialObject C
s✝ : Splitting X✝
inst✝ : Preadditive C
X : SimplicialObject C
s : Splitting X
n : ℕ
A : IndexSet (op [n])
hA : ¬Mono (IndexSet.e A)
⊢ ιSummand s A ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rw [SimplicialObject.Splitting.ιSummand_eq, assoc, degeneracy_comp_PInfty X n A.e hA, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
⊢ f ≫ HomologicalComplex.Hom.f PInfty n = 0 ↔ f ≫ πSummand s (IndexSet.id (op [n])) = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
⊢ f ≫ HomologicalComplex.Hom.f PInfty n = 0 → f ≫ πSummand s (IndexSet.id (op [n])) = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ HomologicalComplex.Hom.f PInfty n = 0
⊢ f ≫ πSummand s (IndexSet.id (op [n])) = 0
[PROOFSTEP]
rcases n with _ | n
[GOAL]
case mp.zero
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
f : Z ⟶ X.obj (op [Nat.zero])
h : f ≫ HomologicalComplex.Hom.f PInfty Nat.zero = 0
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.zero])) = 0
[PROOFSTEP]
dsimp at h
[GOAL]
case mp.zero
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
f : Z ⟶ X.obj (op [Nat.zero])
h : f ≫ 𝟙 (X.obj (op [0])) = 0
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.zero])) = 0
[PROOFSTEP]
rw [comp_id] at h
[GOAL]
case mp.zero
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
f : Z ⟶ X.obj (op [Nat.zero])
h : f = 0
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.zero])) = 0
[PROOFSTEP]
rw [h, zero_comp]
[GOAL]
case mp.succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [Nat.succ n])
h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0
[PROOFSTEP]
have h' := f ≫= PInfty_f_add_QInfty_f (n + 1)
[GOAL]
case mp.succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [Nat.succ n])
h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0
h' :
f ≫ (HomologicalComplex.Hom.f PInfty (n + 1) + HomologicalComplex.Hom.f QInfty (n + 1)) =
f ≫ 𝟙 (HomologicalComplex.X K[X] (n + 1))
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0
[PROOFSTEP]
dsimp at h'
[GOAL]
case mp.succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [Nat.succ n])
h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0
h' :
f ≫ (HomologicalComplex.Hom.f PInfty (n + 1) + HomologicalComplex.Hom.f QInfty (n + 1)) = f ≫ 𝟙 (X.obj (op [n + 1]))
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0
[PROOFSTEP]
rw [comp_id, comp_add, h, zero_add] at h'
[GOAL]
case mp.succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [Nat.succ n])
h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0
h' : f ≫ HomologicalComplex.Hom.f QInfty (n + 1) = f
⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0
[PROOFSTEP]
rw [← h', assoc, QInfty_f, decomposition_Q, Preadditive.sum_comp, Preadditive.comp_sum, Finset.sum_eq_zero]
[GOAL]
case mp.succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [Nat.succ n])
h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0
h' : f ≫ HomologicalComplex.Hom.f QInfty (n + 1) = f
⊢ ∀ (x : Fin (n + 1)),
x ∈ Finset.filter (fun i => ↑i < n + 1) Finset.univ →
f ≫
(HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ SimplicialObject.σ X (↑Fin.revPerm x)) ≫
πSummand s (IndexSet.id (op [Nat.succ n])) =
0
[PROOFSTEP]
intro i _
[GOAL]
case mp.succ
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [Nat.succ n])
h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0
h' : f ≫ HomologicalComplex.Hom.f QInfty (n + 1) = f
i : Fin (n + 1)
a✝ : i ∈ Finset.filter (fun i => ↑i < n + 1) Finset.univ
⊢ f ≫
(HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫
SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)) ≫
πSummand s (IndexSet.id (op [Nat.succ n])) =
0
[PROOFSTEP]
simp only [assoc, σ_comp_πSummand_id_eq_zero, comp_zero]
[GOAL]
case mpr
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
⊢ f ≫ πSummand s (IndexSet.id (op [n])) = 0 → f ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
intro h
[GOAL]
case mpr
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
⊢ f ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rw [← comp_id f, assoc, s.decomposition_id, Preadditive.sum_comp, Preadditive.comp_sum, Fintype.sum_eq_zero]
[GOAL]
case mpr.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
⊢ ∀ (a : IndexSet (op [n])), f ≫ (πSummand s a ≫ ιSummand s a) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
intro A
[GOAL]
case mpr.h
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
A : IndexSet (op [n])
⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
by_cases hA : A.EqId
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
A : IndexSet (op [n])
hA : IndexSet.EqId A
⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
dsimp at hA
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
A : IndexSet (op [n])
hA : A = IndexSet.id (op [n])
⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
subst hA
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
⊢ f ≫ (πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n]))) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rw [assoc, reassoc_of% h, zero_comp]
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
Z : C
n : ℕ
f : Z ⟶ X.obj (op [n])
h : f ≫ πSummand s (IndexSet.id (op [n])) = 0
A : IndexSet (op [n])
hA : ¬IndexSet.EqId A
⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
simp only [assoc, s.ιSummand_comp_PInfty_eq_zero A hA, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) = πSummand s (IndexSet.id (op [n]))
[PROOFSTEP]
conv_rhs => rw [← id_comp (s.πSummand _)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
| πSummand s (IndexSet.id (op [n]))
[PROOFSTEP]
rw [← id_comp (s.πSummand _)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
| πSummand s (IndexSet.id (op [n]))
[PROOFSTEP]
rw [← id_comp (s.πSummand _)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
| πSummand s (IndexSet.id (op [n]))
[PROOFSTEP]
rw [← id_comp (s.πSummand _)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) =
𝟙 (X.obj (op [n])) ≫ πSummand s (IndexSet.id (op [n]))
[PROOFSTEP]
symm
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ 𝟙 (X.obj (op [n])) ≫ πSummand s (IndexSet.id (op [n])) =
HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n]))
[PROOFSTEP]
rw [← sub_eq_zero, ← sub_comp, ← comp_PInfty_eq_zero_iff, sub_comp, id_comp, PInfty_f_idem, sub_self]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
conv_rhs => rw [← id_comp (PInfty.f n)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
| HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
rw [← id_comp (PInfty.f n)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
| HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
rw [← id_comp (PInfty.f n)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
| HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
rw [← id_comp (PInfty.f n)]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
𝟙 (HomologicalComplex.X K[X] n) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
erw [s.decomposition_id, Preadditive.sum_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
∑ j : IndexSet (op [n]), (πSummand s j ≫ ιSummand s j) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
rw [Fintype.sum_eq_single (IndexSet.id (op [n])), assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ ∀ (x : IndexSet (op [n])),
x ≠ IndexSet.id (op [n]) → (πSummand s x ≫ ιSummand s x) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rintro A (hA : ¬A.EqId)
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
A : IndexSet (op [n])
hA : ¬IndexSet.EqId A
⊢ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0
[PROOFSTEP]
rw [assoc, s.ιSummand_comp_PInfty_eq_zero A hA, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
j k : ℕ
A : IndexSet (op [j])
hA : ¬IndexSet.EqId A
⊢ ιSummand s A ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0
[PROOFSTEP]
rw [A.eqId_iff_mono] at hA
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
j k : ℕ
A : IndexSet (op [j])
hA : ¬Mono (IndexSet.e A)
⊢ ιSummand s A ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0
[PROOFSTEP]
rw [← assoc, ← s.comp_PInfty_eq_zero_iff, assoc, ← PInfty.comm j k, s.ιSummand_eq, assoc,
degeneracy_comp_PInfty_assoc X j A.e hA, zero_comp, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
hij : ¬ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ d s i j = 0
[PROOFSTEP]
simp only [d, K[X].shape i j hij, zero_comp, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
⊢ d s i j ≫ d s j k = 0
[PROOFSTEP]
simp only [d, assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
⊢ ιSummand s (IndexSet.id (op [i])) ≫
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
have eq : K[X].d i j ≫ 𝟙 (X.obj (op [j])) ≫ K[X].d j k ≫ s.πSummand (IndexSet.id (op [k])) = 0 := by
erw [id_comp, HomologicalComplex.d_comp_d_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
⊢ HomologicalComplex.d K[X] i j ≫
𝟙 (X.obj (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
erw [id_comp, HomologicalComplex.d_comp_d_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
𝟙 (X.obj (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ιSummand s (IndexSet.id (op [i])) ≫
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
rw [s.decomposition_id] at eq
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
(∑ A : IndexSet (op [j]), πSummand s A ≫ ιSummand s A) ≫
HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ιSummand s (IndexSet.id (op [i])) ≫
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
classical
rw [Fintype.sum_eq_add_sum_compl (IndexSet.id (op [j])), add_comp, comp_add, assoc, Preadditive.sum_comp,
Preadditive.comp_sum, Finset.sum_eq_zero, add_zero] at eq
swap
· intro A hA
simp only [Finset.mem_compl, Finset.mem_singleton] at hA
simp only [assoc, ιSummand_comp_d_comp_πSummand_eq_zero _ _ _ _ hA, comp_zero]
rw [eq, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
(∑ A : IndexSet (op [j]), πSummand s A ≫ ιSummand s A) ≫
HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ιSummand s (IndexSet.id (op [i])) ≫
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
rw [Fintype.sum_eq_add_sum_compl (IndexSet.id (op [j])), add_comp, comp_add, assoc, Preadditive.sum_comp,
Preadditive.comp_sum, Finset.sum_eq_zero, add_zero] at eq
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ιSummand s (IndexSet.id (op [i])) ≫
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) +
∑ j_1 in {IndexSet.id (op [j])}ᶜ,
HomologicalComplex.d K[X] i j ≫
(πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ∀ (x : IndexSet (op [j])),
x ∈ {IndexSet.id (op [j])}ᶜ →
HomologicalComplex.d K[X] i j ≫
(πSummand s x ≫ ιSummand s x) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
swap
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) +
∑ j_1 in {IndexSet.id (op [j])}ᶜ,
HomologicalComplex.d K[X] i j ≫
(πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ∀ (x : IndexSet (op [j])),
x ∈ {IndexSet.id (op [j])}ᶜ →
HomologicalComplex.d K[X] i j ≫
(πSummand s x ≫ ιSummand s x) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
intro A hA
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) +
∑ j_1 in {IndexSet.id (op [j])}ᶜ,
HomologicalComplex.d K[X] i j ≫
(πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
A : IndexSet (op [j])
hA : A ∈ {IndexSet.id (op [j])}ᶜ
⊢ HomologicalComplex.d K[X] i j ≫
(πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
simp only [Finset.mem_compl, Finset.mem_singleton] at hA
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) +
∑ j_1 in {IndexSet.id (op [j])}ᶜ,
HomologicalComplex.d K[X] i j ≫
(πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
A : IndexSet (op [j])
hA : ¬A = IndexSet.id (op [j])
⊢ HomologicalComplex.d K[X] i j ≫
(πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
simp only [assoc, ιSummand_comp_d_comp_πSummand_eq_zero _ _ _ _ hA, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.276754, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j k : ℕ
x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k
eq :
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
⊢ ιSummand s (IndexSet.id (op [i])) ≫
HomologicalComplex.d K[X] i j ≫
πSummand s (IndexSet.id (op [j])) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) =
0
[PROOFSTEP]
rw [eq, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ (fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) i ≫
HomologicalComplex.d (N₁.obj X).X i j =
HomologicalComplex.d ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).X i j ≫
(fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) j
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ (ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.Hom.f PInfty i) ≫ HomologicalComplex.d K[X] i j =
(ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j]))) ≫
ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.Hom.f PInfty j
[PROOFSTEP]
rw [assoc, assoc, assoc, πSummand_comp_ιSummand_comp_PInfty_eq_PInfty, HomologicalComplex.Hom.comm]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
⊢ (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) =
((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p ≫
(HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫
(N₁.obj X).p
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ HomologicalComplex.Hom.f
(HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) n =
HomologicalComplex.Hom.f
(((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p ≫
(HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫
(N₁.obj X).p)
n
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
𝟙 (N s n) ≫
(ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ HomologicalComplex.Hom.f PInfty n
[PROOFSTEP]
rw [id_comp, assoc, PInfty_f_idem]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ (fun n => πSummand s (IndexSet.id (op [n]))) i ≫
HomologicalComplex.d ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).X i j =
HomologicalComplex.d (N₁.obj X).X i j ≫ (fun n => πSummand s (IndexSet.id (op [n]))) j
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ πSummand s (IndexSet.id (op [i])) ≫
ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) =
HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j]))
[PROOFSTEP]
slice_rhs 1 1 => rw [← id_comp (K[X].d i j)]
[GOAL]
case a
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
| HomologicalComplex.d K[X] i j
case a
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
| πSummand s (IndexSet.id (op [j]))
[PROOFSTEP]
rw [← id_comp (K[X].d i j)]
[GOAL]
case a
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
| HomologicalComplex.d K[X] i j
case a
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
| πSummand s (IndexSet.id (op [j]))
[PROOFSTEP]
rw [← id_comp (K[X].d i j)]
[GOAL]
case a
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
| HomologicalComplex.d K[X] i j
case a
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
| πSummand s (IndexSet.id (op [j]))
[PROOFSTEP]
rw [← id_comp (K[X].d i j)]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ πSummand s (IndexSet.id (op [i])) ≫
ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) =
(𝟙 (HomologicalComplex.X K[X] i) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j]))
[PROOFSTEP]
erw [s.decomposition_id]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ πSummand s (IndexSet.id (op [i])) ≫
ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) =
((∑ A : IndexSet (op [i]), πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] i j) ≫
πSummand s (IndexSet.id (op [j]))
[PROOFSTEP]
rw [sum_comp, sum_comp, Finset.sum_eq_single (IndexSet.id (op [i])), assoc, assoc]
[GOAL]
case h₀
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ ∀ (b : IndexSet (op [i])),
b ∈ Finset.univ →
b ≠ IndexSet.id (op [i]) →
((πSummand s b ≫ ιSummand s b) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) = 0
[PROOFSTEP]
intro A _ hA
[GOAL]
case h₀
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : IndexSet (op [i])
a✝ : A ∈ Finset.univ
hA : A ≠ IndexSet.id (op [i])
⊢ ((πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) = 0
[PROOFSTEP]
simp only [assoc, s.ιSummand_comp_d_comp_πSummand_eq_zero _ _ _ hA, comp_zero]
[GOAL]
case h₁
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ ¬IndexSet.id (op [i]) ∈ Finset.univ →
((πSummand s (IndexSet.id (op [i])) ≫ ιSummand s (IndexSet.id (op [i]))) ≫ HomologicalComplex.d K[X] i j) ≫
πSummand s (IndexSet.id (op [j])) =
0
[PROOFSTEP]
simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
⊢ (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) =
(N₁.obj X).p ≫
(HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫
((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ HomologicalComplex.Hom.f (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) n =
HomologicalComplex.Hom.f
((N₁.obj X).p ≫
(HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫
((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p)
n
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ πSummand s (IndexSet.id (op [n])) = HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) ≫ 𝟙 (N s n)
[PROOFSTEP]
simp only [comp_id, PInfty_comp_πSummand_id]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
⊢ Karoubi.Hom.mk
(HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫
Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) =
𝟙 ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s))
[PROOFSTEP]
ext n
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ HomologicalComplex.Hom.f
(Karoubi.Hom.mk
(HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫
Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n])))).f
n =
HomologicalComplex.Hom.f (𝟙 ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s))).f n
[PROOFSTEP]
simp only [assoc, PInfty_comp_πSummand_id, Karoubi.comp_f, HomologicalComplex.comp_f, ι_πSummand_eq_id]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ 𝟙 (N s (SimplexCategory.len (IndexSet.id (op [n])).fst.unop)) =
HomologicalComplex.Hom.f (𝟙 ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s))).f n
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
⊢ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫
Karoubi.Hom.mk
(HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) =
𝟙 (N₁.obj X)
[PROOFSTEP]
ext n
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.336016, u_1} C
inst✝¹ : HasFiniteCoproducts C
X : SimplicialObject C
s : Splitting X
inst✝ : Preadditive C
n : ℕ
⊢ HomologicalComplex.Hom.f
(Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫
Karoubi.Hom.mk
(HomologicalComplex.Hom.mk fun n =>
ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n)).f
n =
HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f n
[PROOFSTEP]
simp only [πSummand_comp_ιSummand_comp_PInfty_eq_PInfty, Karoubi.comp_f, HomologicalComplex.comp_f, N₁_obj_p,
Karoubi.id_eq]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ Hom.f Φ i ≫ HomologicalComplex.d ((fun S => Splitting.nondegComplex S.s) S₂) i j =
HomologicalComplex.d ((fun S => Splitting.nondegComplex S.s) S₁) i j ≫ Hom.f Φ j
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ Hom.f Φ i ≫
Splitting.ιSummand S₂.s (Splitting.IndexSet.id (op [i])) ≫
HomologicalComplex.d K[S₂.X] i j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
(Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫
HomologicalComplex.d K[S₁.X] i j ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j]))) ≫
Hom.f Φ j
[PROOFSTEP]
erw [← ιSummand_naturality_symm_assoc Φ (Splitting.IndexSet.id (op [i])),
((alternatingFaceMapComplex C).map Φ.F).comm_assoc i j]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫
HomologicalComplex.d ((alternatingFaceMapComplex C).obj S₁.X) i j ≫
HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫
Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
(Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫
HomologicalComplex.d K[S₁.X] i j ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j]))) ≫
Hom.f Φ j
[PROOFSTEP]
simp only [assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫
HomologicalComplex.d ((alternatingFaceMapComplex C).obj S₁.X) i j ≫
HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫
Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫
HomologicalComplex.d K[S₁.X] i j ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫
Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
apply S₁.s.hom_ext'
[GOAL]
case e_a.e_a.h
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ ∀ (A : Splitting.IndexSet (op [j])),
Splitting.ιSummand S₁.s A ≫
HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫
Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
intro A
[GOAL]
case e_a.e_a.h
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
⊢ Splitting.ιSummand S₁.s A ≫
HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫
Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
dsimp [alternatingFaceMapComplex]
[GOAL]
case e_a.e_a.h
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
⊢ Splitting.ιSummand S₁.s A ≫ NatTrans.app Φ.F (op [j]) ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
erw [ιSummand_naturality_symm_assoc Φ A]
[GOAL]
case e_a.e_a.h
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫
Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
by_cases A.EqId
[GOAL]
case e_a.e_a.h
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫
Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
by_cases A.EqId
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
h : Splitting.IndexSet.EqId A
⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫
Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
dsimp at h
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
h : A = Splitting.IndexSet.id (op [j])
⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫
Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
subst h
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ Hom.f Φ (SimplexCategory.len (Splitting.IndexSet.id (op [j])).fst.unop) ≫
Splitting.ιSummand S₂.s (Splitting.IndexSet.id (op [j])) ≫
Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫
Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
simp only [Splitting.ι_πSummand_eq_id, comp_id, Splitting.ι_πSummand_eq_id_assoc]
[GOAL]
case pos
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ Hom.f Φ (SimplexCategory.len (Splitting.IndexSet.id (op [j])).fst.unop) = Hom.f Φ j
[PROOFSTEP]
rfl
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
h : ¬Splitting.IndexSet.EqId A
⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫
Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
have h' : Splitting.IndexSet.id (op [j]) ≠ A := by
rw [ne_comm]
exact h
[GOAL]
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
h : ¬Splitting.IndexSet.EqId A
⊢ Splitting.IndexSet.id (op [j]) ≠ A
[PROOFSTEP]
rw [ne_comm]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
h : ¬Splitting.IndexSet.EqId A
⊢ A ≠ Splitting.IndexSet.id (op [j])
[PROOFSTEP]
exact h
[GOAL]
case neg
C : Type u_1
inst✝² : Category.{?u.406470, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
S₁ S₂ : Split C
Φ : S₁ ⟶ S₂
i j : ℕ
x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j
A : Splitting.IndexSet (op [j])
h : ¬Splitting.IndexSet.EqId A
h' : Splitting.IndexSet.id (op [j]) ≠ A
⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫
Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) =
Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j
[PROOFSTEP]
rw [S₁.s.ι_πSummand_eq_zero_assoc _ _ h', S₂.s.ι_πSummand_eq_zero _ _ h', zero_comp, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.449707, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
X✝ Y✝ : Split C
Φ : X✝ ⟶ Y✝
⊢ (nondegComplexFunctor ⋙ toKaroubi (ChainComplex C ℕ)).map Φ ≫
((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) Y✝).hom =
((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) X✝).hom ≫ (forget C ⋙ N₁).map Φ
[PROOFSTEP]
ext n
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.449707, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
X✝ Y✝ : Split C
Φ : X✝ ⟶ Y✝
n : ℕ
⊢ HomologicalComplex.Hom.f
((nondegComplexFunctor ⋙ toKaroubi (ChainComplex C ℕ)).map Φ ≫
((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) Y✝).hom).f
n =
HomologicalComplex.Hom.f (((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) X✝).hom ≫ (forget C ⋙ N₁).map Φ).f n
[PROOFSTEP]
dsimp
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.449707, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
X✝ Y✝ : Split C
Φ : X✝ ⟶ Y✝
n : ℕ
⊢ Hom.f Φ n ≫ Splitting.ιSummand Y✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
(Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫
HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app Φ.F (op [n])
[PROOFSTEP]
simp only [Karoubi.comp_f, toKaroubi_map_f, HomologicalComplex.comp_f, nondegComplexFunctor_map_f,
Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, N₁_map_f, AlternatingFaceMapComplex.map_f, assoc, PInfty_f_idem_assoc]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.449707, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
X✝ Y✝ : Split C
Φ : X✝ ⟶ Y✝
n : ℕ
⊢ Hom.f Φ n ≫ Splitting.ιSummand Y✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n =
Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫
HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app Φ.F (op [n])
[PROOFSTEP]
erw [← Split.ιSummand_naturality_symm_assoc Φ (Splitting.IndexSet.id (op [n]))]
[GOAL]
case h.h
C : Type u_1
inst✝² : Category.{?u.449707, u_1} C
inst✝¹ : Preadditive C
inst✝ : HasFiniteCoproducts C
X✝ Y✝ : Split C
Φ : X✝ ⟶ Y✝
n : ℕ
⊢ Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫
NatTrans.app Φ.F (op [n]) ≫ HomologicalComplex.Hom.f PInfty n =
Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫
HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app Φ.F (op [n])
[PROOFSTEP]
rw [PInfty_f_naturality]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject", "llama_tokens": 28454} |
{"mathlib_filename": "Mathlib.Util.Time", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.WithWeakNamespace", "llama_tokens": 0} |
|
[GOAL]
⊢ 1 = 1
[PROOFSTEP]
sleep_heartbeats 1000
[GOAL]
⊢ 1 = 1
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Util.SleepHeartbeats", "llama_tokens": 52} |
{"mathlib_filename": "Mathlib.Util.IncludeStr", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.MemoFix", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.CompileInductive", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.Export", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.WhatsNew", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Util.Tactic", "llama_tokens": 0} |
|
[GOAL]
x : SimplexCategory
i : Fin (len x + 1)
⊢ Monotone fun x => i
[PROOFSTEP]
tauto
[GOAL]
f : [0] ⟶ [0]
⊢ f = 𝟙 [0]
[PROOFSTEP]
ext : 3
[GOAL]
case a.h.h
f : [0] ⟶ [0]
x✝ : Fin (len [0] + 1)
⊢ ↑(Hom.toOrderHom f) x✝ = ↑(Hom.toOrderHom (𝟙 [0])) x✝
[PROOFSTEP]
apply @Subsingleton.elim (Fin 1)
[GOAL]
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
⊢ δ i ≫ δ (Fin.succ j) = δ j ≫ δ (Fin.castSucc i)
[PROOFSTEP]
ext k
[GOAL]
case a.h.h.h
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
k : Fin (len [n] + 1)
⊢ ↑(↑(Hom.toOrderHom (δ i ≫ δ (Fin.succ j))) k) = ↑(↑(Hom.toOrderHom (δ j ≫ δ (Fin.castSucc i))) k)
[PROOFSTEP]
dsimp [δ, Fin.succAbove]
[GOAL]
case a.h.h.h
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
k : Fin (len [n] + 1)
⊢ ↑(if ↑(if ↑k < ↑i then Fin.castSucc k else Fin.succ k) < ↑(Fin.succ j) then
Fin.castSucc (if ↑k < ↑i then Fin.castSucc k else Fin.succ k)
else Fin.succ (if ↑k < ↑i then Fin.castSucc k else Fin.succ k)) =
↑(if ↑(if ↑k < ↑j then Fin.castSucc k else Fin.succ k) < ↑i then
Fin.castSucc (if ↑k < ↑j then Fin.castSucc k else Fin.succ k)
else Fin.succ (if ↑k < ↑j then Fin.castSucc k else Fin.succ k))
[PROOFSTEP]
rcases i with ⟨i, _⟩
[GOAL]
case a.h.h.h.mk
n : ℕ
j : Fin (n + 2)
k : Fin (len [n] + 1)
i : ℕ
isLt✝ : i < n + 2
H : { val := i, isLt := isLt✝ } ≤ j
⊢ ↑(if ↑(if ↑k < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k) < ↑(Fin.succ j) then
Fin.castSucc (if ↑k < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k)
else Fin.succ (if ↑k < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k)) =
↑(if ↑(if ↑k < ↑j then Fin.castSucc k else Fin.succ k) < ↑{ val := i, isLt := isLt✝ } then
Fin.castSucc (if ↑k < ↑j then Fin.castSucc k else Fin.succ k)
else Fin.succ (if ↑k < ↑j then Fin.castSucc k else Fin.succ k))
[PROOFSTEP]
rcases j with ⟨j, _⟩
[GOAL]
case a.h.h.h.mk.mk
n : ℕ
k : Fin (len [n] + 1)
i : ℕ
isLt✝¹ : i < n + 2
j : ℕ
isLt✝ : j < n + 2
H : { val := i, isLt := isLt✝¹ } ≤ { val := j, isLt := isLt✝ }
⊢ ↑(if
↑(if ↑k < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc k else Fin.succ k) <
↑(Fin.succ { val := j, isLt := isLt✝ }) then
Fin.castSucc (if ↑k < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc k else Fin.succ k)
else Fin.succ (if ↑k < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc k else Fin.succ k)) =
↑(if
↑(if ↑k < ↑{ val := j, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k) <
↑{ val := i, isLt := isLt✝¹ } then
Fin.castSucc (if ↑k < ↑{ val := j, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k)
else Fin.succ (if ↑k < ↑{ val := j, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k))
[PROOFSTEP]
rcases k with ⟨k, _⟩
[GOAL]
case a.h.h.h.mk.mk.mk
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
⊢ ↑(if
↑(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } then
Fin.castSucc { val := k, isLt := isLt✝ }
else Fin.succ { val := k, isLt := isLt✝ }) <
↑(Fin.succ { val := j, isLt := isLt✝¹ }) then
Fin.castSucc
(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } then Fin.castSucc { val := k, isLt := isLt✝ }
else Fin.succ { val := k, isLt := isLt✝ })
else
Fin.succ
(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } then Fin.castSucc { val := k, isLt := isLt✝ }
else Fin.succ { val := k, isLt := isLt✝ })) =
↑(if
↑(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } then
Fin.castSucc { val := k, isLt := isLt✝ }
else Fin.succ { val := k, isLt := isLt✝ }) <
↑{ val := i, isLt := isLt✝² } then
Fin.castSucc
(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } then Fin.castSucc { val := k, isLt := isLt✝ }
else Fin.succ { val := k, isLt := isLt✝ })
else
Fin.succ
(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } then Fin.castSucc { val := k, isLt := isLt✝ }
else Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) =
↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < i
h✝² : k < j + 1
h✝¹ : k < j
H : i ≤ j
h✝ : i ≤ k
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < i
h✝² : k < j + 1
h✝¹ : k + 1 < i
H : i ≤ j
h✝ : j ≤ k
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < i
h✝² : k < j + 1
H : i ≤ j
h✝¹ : j ≤ k
h✝ : i ≤ k + 1
⊢ k = k + 1 + 1
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < i
h✝² : k < j
h✝¹ : k < i
H : i ≤ j
h✝ : j + 1 ≤ k
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < i
H : i ≤ j
h✝² : j + 1 ≤ k
h✝¹ : j ≤ k
h✝ : i ≤ k + 1
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < j
h✝² : k < i
H : i ≤ j
h✝¹ : i ≤ k
h✝ : k < j
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
H : i ≤ j
h✝³ : i ≤ k
h✝² : k < j
h✝¹ : j ≤ k
h✝ : i ≤ k + 1
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < j
h✝² : k < i
H : i ≤ j
h✝¹ : i ≤ k
h✝ : j ≤ k
⊢ k + 1 + 1 = k
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k < j
H : i ≤ j
h✝² : i ≤ k
h✝¹ : j ≤ k
h✝ : i ≤ k
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : k + 1 < i
H : i ≤ j
h✝² : i ≤ k
h✝¹ h✝ : j ≤ k
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
isLt✝² : i < n + 2
j : ℕ
isLt✝¹ : j < n + 2
H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ }
k : ℕ
isLt✝ : k < len [n] + 1
h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² }
h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ })
h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ }
h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² }
⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ }))
[PROOFSTEP]
simp at *
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
hj : j = 0
⊢ False
[PROOFSTEP]
simp [hj, Fin.not_lt_zero] at H
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ δ i ≫ δ j = δ (Fin.pred j (_ : j = 0 → False)) ≫ δ (Fin.castSucc i)
[PROOFSTEP]
rw [← δ_comp_δ]
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ δ i ≫ δ j = δ i ≫ δ (Fin.succ (Fin.pred j (_ : j = 0 → False)))
[PROOFSTEP]
rw [Fin.succ_pred]
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ i ≤ Fin.pred j (_ : j = 0 → False)
[PROOFSTEP]
simpa only [Fin.le_iff_val_le_val, ← Nat.lt_succ_iff, Nat.succ_eq_add_one, ← Fin.val_succ, j.succ_pred,
Fin.lt_iff_val_lt_val] using H
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ δ (Fin.castLT i (_ : ↑i < n + 2)) ≫ δ (Fin.succ j) = δ j ≫ δ i
[PROOFSTEP]
rw [δ_comp_δ]
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ δ j ≫ δ (Fin.castSucc (Fin.castLT i (_ : ↑i < n + 2))) = δ j ≫ δ i
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ Fin.castLT i (_ : ↑i < n + 2) ≤ j
[PROOFSTEP]
exact H
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : j = Fin.castSucc i
⊢ δ i ≫ δ j = δ i ≫ δ (Fin.succ i)
[PROOFSTEP]
subst H
[GOAL]
n : ℕ
i : Fin (n + 2)
⊢ δ i ≫ δ (Fin.castSucc i) = δ i ≫ δ (Fin.succ i)
[PROOFSTEP]
rw [δ_comp_δ_self]
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : i ≤ Fin.castSucc j
⊢ δ (Fin.castSucc i) ≫ σ (Fin.succ j) = σ j ≫ δ i
[PROOFSTEP]
rcases i with ⟨i, hi⟩
[GOAL]
case mk
n : ℕ
j : Fin (n + 1)
i : ℕ
hi : i < n + 2
H : { val := i, isLt := hi } ≤ Fin.castSucc j
⊢ δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ j) = σ j ≫ δ { val := i, isLt := hi }
[PROOFSTEP]
rcases j with ⟨j, hj⟩
[GOAL]
case mk.mk
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : { val := i, isLt := hi } ≤ Fin.castSucc { val := j, isLt := hj }
⊢ δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ { val := j, isLt := hj }) =
σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi }
[PROOFSTEP]
ext ⟨k, hk⟩
[GOAL]
case mk.mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : { val := i, isLt := hi } ≤ Fin.castSucc { val := j, isLt := hj }
k : ℕ
hk : k < len [n + 1] + 1
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ { val := j, isLt := hj })))
{ val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
simp at H hk
[GOAL]
case mk.mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ { val := j, isLt := hj })))
{ val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
dsimp [σ, δ, Fin.predAbove, Fin.succAbove]
[GOAL]
case mk.mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
⊢ ↑(if h :
{ val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } <
if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) } then
Fin.pred
(if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) })
(_ :
(if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) ≠
0)
else
Fin.castLT
(if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) })
(_ :
↑(if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) <
n + 1 + 1)) =
↑(if
↑(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }) <
i then
Fin.castSucc
(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) })
else
Fin.succ
(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }))
[PROOFSTEP]
simp [Fin.lt_iff_val_lt_val, Fin.ite_val, Fin.dite_val]
[GOAL]
case mk.mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
⊢ (if j + 1 < if k < i then k else k + 1 then (if k < i then k else k + 1) - 1 else if k < i then k else k + 1) =
if (if j < k then k - 1 else k) < i then if j < k then k - 1 else k else (if j < k then k - 1 else k) + 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k - 1 = k - 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : j + 1 < k
h✝ : ¬j < k
⊢ k - 1 = k
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : ¬j + 1 < k
h✝ : ¬j < k
⊢ k = k
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : j + 1 < k + 1
h✝ : ¬j < k
⊢ k + 1 - 1 = k + 1
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 = k - 1 + 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : ¬j + 1 < k + 1
h✝ : ¬j < k
⊢ k + 1 = k + 1
[PROOFSTEP]
all_goals try simp <;> linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k - 1 = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k - 1 = k - 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : j + 1 < k
h✝ : ¬j < k
⊢ k - 1 = k
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : j + 1 < k
h✝ : ¬j < k
⊢ k - 1 = k
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : ¬j + 1 < k
h✝ : ¬j < k
⊢ k = k
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : ¬j + 1 < k
h✝ : ¬j < k
⊢ k = k
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : j + 1 < k + 1
h✝ : ¬j < k
⊢ k + 1 - 1 = k + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : j + 1 < k + 1
h✝ : ¬j < k
⊢ k + 1 - 1 = k + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : j + 1 < k + 1
h✝ : ¬j < k
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : ¬j + 1 < k + 1
h✝ : ¬j < k
⊢ k + 1 = k + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : ¬k < i
h✝¹ : ¬j + 1 < k + 1
h✝ : ¬j < k
⊢ k + 1 = k + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : j + 1 < k
h✝ : ¬j < k
⊢ k - 1 = k
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
all_goals cases k <;> simp at * <;> linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝² : k < i
h✝¹ : j + 1 < k
h✝ : ¬j < k
⊢ k - 1 = k
[PROOFSTEP]
cases k
[GOAL]
case neg.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1
h✝² : Nat.zero < i
h✝¹ : j + 1 < Nat.zero
h✝ : ¬j < Nat.zero
⊢ Nat.zero - 1 = Nat.zero
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝² : Nat.succ n✝ < i
h✝¹ : j + 1 < Nat.succ n✝
h✝ : ¬j < Nat.succ n✝
⊢ Nat.succ n✝ - 1 = Nat.succ n✝
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝² : Nat.succ n✝ < i
h✝¹ : j + 1 < Nat.succ n✝
h✝ : Nat.succ n✝ ≤ j
⊢ n✝ = Nat.succ n✝
[PROOFSTEP]
linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
cases k
[GOAL]
case pos.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1
h✝³ : Nat.zero < i
h✝² : ¬j + 1 < Nat.zero
h✝¹ : j < Nat.zero
h✝ : Nat.zero - 1 < i
⊢ Nat.zero = Nat.zero - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : Nat.succ n✝ < i
h✝² : ¬j + 1 < Nat.succ n✝
h✝¹ : j < Nat.succ n✝
h✝ : Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ = Nat.succ n✝ - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : Nat.succ n✝ < i
h✝² : j < Nat.succ n✝
h✝¹ : Nat.succ n✝ ≤ j + 1
h✝ : n✝ < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : k < i
h✝² : ¬j + 1 < k
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
[PROOFSTEP]
cases k
[GOAL]
case neg.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1
h✝³ : Nat.zero < i
h✝² : ¬j + 1 < Nat.zero
h✝¹ : j < Nat.zero
h✝ : ¬Nat.zero - 1 < i
⊢ Nat.zero = Nat.zero - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : Nat.succ n✝ < i
h✝² : ¬j + 1 < Nat.succ n✝
h✝¹ : j < Nat.succ n✝
h✝ : ¬Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ = Nat.succ n✝ - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
[PROOFSTEP]
cases k
[GOAL]
case pos.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1
h✝³ : ¬Nat.zero < i
h✝² : j + 1 < Nat.zero + 1
h✝¹ : j < Nat.zero
h✝ : Nat.zero - 1 < i
⊢ Nat.zero + 1 - 1 = Nat.zero - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : ¬Nat.succ n✝ < i
h✝² : j + 1 < Nat.succ n✝ + 1
h✝¹ : j < Nat.succ n✝
h✝ : Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : j < Nat.succ n✝
h✝² : i ≤ Nat.succ n✝
h✝¹ : j < n✝ + 1
h✝ : n✝ < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : j + 1 < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
[PROOFSTEP]
cases k
[GOAL]
case neg.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1
h✝³ : ¬Nat.zero < i
h✝² : j + 1 < Nat.zero + 1
h✝¹ : j < Nat.zero
h✝ : ¬Nat.zero - 1 < i
⊢ Nat.zero + 1 - 1 = Nat.zero - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : ¬Nat.succ n✝ < i
h✝² : j + 1 < Nat.succ n✝ + 1
h✝¹ : j < Nat.succ n✝
h✝ : ¬Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
k : ℕ
hk : k < n + 1 + 1
H : i ≤ j
h✝³ : ¬k < i
h✝² : ¬j + 1 < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
cases k
[GOAL]
case pos.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1
h✝³ : ¬Nat.zero < i
h✝² : ¬j + 1 < Nat.zero + 1
h✝¹ : j < Nat.zero
h✝ : Nat.zero - 1 < i
⊢ Nat.zero + 1 = Nat.zero - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : ¬Nat.succ n✝ < i
h✝² : ¬j + 1 < Nat.succ n✝ + 1
h✝¹ : j < Nat.succ n✝
h✝ : Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ + 1 = Nat.succ n✝ - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : j < Nat.succ n✝
h✝² : i ≤ Nat.succ n✝
h✝¹ : n✝ + 1 ≤ j
h✝ : n✝ < i
⊢ Nat.succ n✝ + 1 = n✝
[PROOFSTEP]
linarith
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ δ (Fin.castSucc i) ≫ σ i = 𝟙 [n]
[PROOFSTEP]
rcases i with ⟨i, hi⟩
[GOAL]
case mk
n i : ℕ
hi : i < n + 1
⊢ δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := i, isLt := hi } = 𝟙 [n]
[PROOFSTEP]
ext ⟨j, hj⟩
[GOAL]
case mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < len [n] + 1
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := i, isLt := hi }))
{ val := j, isLt := hj }) =
↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := hj })
[PROOFSTEP]
simp at hj
[GOAL]
case mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := i, isLt := hi }))
{ val := j, isLt := hj }) =
↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := hj })
[PROOFSTEP]
dsimp [σ, δ, Fin.predAbove, Fin.succAbove]
[GOAL]
case mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
⊢ ↑(if h :
{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } <
if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then
Fin.pred
(if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })
(_ :
(if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠
0)
else
Fin.castLT
(if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })
(_ :
↑(if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) <
n + 1)) =
j
[PROOFSTEP]
simp [Fin.lt_iff_val_lt_val, Fin.ite_val, Fin.dite_val]
[GOAL]
case mk.a.h.h.mk.h
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
⊢ (if i < if j < i then j else j + 1 then (if j < i then j else j + 1) - 1 else if j < i then j else j + 1) = j
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : j < i
h✝ : i < j
⊢ j - 1 = j
case neg
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : j < i
h✝ : ¬i < j
⊢ j = j
case pos
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : ¬j < i
h✝ : i < j + 1
⊢ j + 1 - 1 = j
case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : ¬i < j + 1 ⊢ j + 1 = j
[PROOFSTEP]
any_goals simp
[GOAL]
case pos
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : j < i
h✝ : i < j
⊢ j - 1 = j
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : j < i
h✝ : ¬i < j
⊢ j = j
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : ¬j < i
h✝ : i < j + 1
⊢ j + 1 - 1 = j
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : ¬j < i
h✝ : ¬i < j + 1
⊢ j + 1 = j
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : j < i
h✝ : i < j
⊢ j - 1 = j
case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : ¬i < j + 1 ⊢ False
[PROOFSTEP]
all_goals linarith
[GOAL]
case pos
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : j < i
h✝ : i < j
⊢ j - 1 = j
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
h✝¹ : ¬j < i
h✝ : ¬i < j + 1
⊢ False
[PROOFSTEP]
linarith
[GOAL]
n : ℕ
j : Fin (n + 2)
i : Fin (n + 1)
H : j = Fin.castSucc i
⊢ δ j ≫ σ i = 𝟙 [n]
[PROOFSTEP]
subst H
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ δ (Fin.castSucc i) ≫ σ i = 𝟙 [n]
[PROOFSTEP]
rw [δ_comp_σ_self]
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ δ (Fin.succ i) ≫ σ i = 𝟙 [n]
[PROOFSTEP]
ext j
[GOAL]
case a.h.h.h
n : ℕ
i : Fin (n + 1)
j : Fin (len [n] + 1)
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ i) ≫ σ i)) j) = ↑(↑(Hom.toOrderHom (𝟙 [n])) j)
[PROOFSTEP]
rcases i with ⟨i, _⟩
[GOAL]
case a.h.h.h.mk
n : ℕ
j : Fin (len [n] + 1)
i : ℕ
isLt✝ : i < n + 1
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝ }) ≫ σ { val := i, isLt := isLt✝ })) j) =
↑(↑(Hom.toOrderHom (𝟙 [n])) j)
[PROOFSTEP]
rcases j with ⟨j, _⟩
[GOAL]
case a.h.h.h.mk.mk
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝¹ }) ≫ σ { val := i, isLt := isLt✝¹ }))
{ val := j, isLt := isLt✝ }) =
↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := isLt✝ })
[PROOFSTEP]
dsimp [δ, σ, Fin.succAbove, Fin.predAbove]
[GOAL]
case a.h.h.h.mk.mk
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
⊢ ↑(if h :
{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } <
if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then
Fin.pred
(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })
(_ :
(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠
0)
else
Fin.castLT
(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) })
(_ :
↑(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) <
n + 1)) =
j
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : j < i + 1
h✝ : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
⊢ ↑(Fin.pred { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
(_ : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } ≠ 0)) =
j
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : j < i + 1
h✝ : ¬{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
⊢ ↑(Fin.castLT { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
(_ : ↑{ val := j, isLt := (_ : j < Nat.succ (n + 1)) } < n + 1)) =
j
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : ¬j < i + 1
h✝ : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }
⊢ ↑(Fin.pred { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }
(_ : { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } ≠ 0)) =
j
[PROOFSTEP]
simp
[GOAL]
case neg
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : ¬j < i + 1
h✝ : ¬{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }
⊢ ↑(Fin.castLT { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }
(_ : ↑{ val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } < n + 1)) =
j
[PROOFSTEP]
simp
[GOAL]
case pos
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : j < i + 1
h✝ : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j, isLt := (_ : j < Nat.succ (n + 1)) }
⊢ j - 1 = j
[PROOFSTEP]
simp at *
[GOAL]
case neg
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : ¬j < i + 1
h✝ : ¬{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }
⊢ False
[PROOFSTEP]
simp at *
[GOAL]
case pos
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : j < i + 1
h✝ : i < j
⊢ j - 1 = j
[PROOFSTEP]
linarith
[GOAL]
case neg
n i : ℕ
isLt✝¹ : i < n + 1
j : ℕ
isLt✝ : j < len [n] + 1
h✝¹ : i + 1 ≤ j
h✝ : j + 1 ≤ i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
n : ℕ
j : Fin (n + 2)
i : Fin (n + 1)
H : j = Fin.succ i
⊢ δ j ≫ σ i = 𝟙 [n]
[PROOFSTEP]
subst H
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ δ (Fin.succ i) ≫ σ i = 𝟙 [n]
[PROOFSTEP]
rw [δ_comp_σ_succ]
[GOAL]
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : Fin.castSucc j < i
⊢ δ (Fin.succ i) ≫ σ (Fin.castSucc j) = σ j ≫ δ i
[PROOFSTEP]
ext ⟨k, hk⟩
[GOAL]
case a.h.h.mk.h
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : Fin.castSucc j < i
k : ℕ
hk : k < len [n + 1] + 1
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ i) ≫ σ (Fin.castSucc j))) { val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ j ≫ δ i)) { val := k, isLt := hk })
[PROOFSTEP]
rcases i with ⟨i, hi⟩
[GOAL]
case a.h.h.mk.h.mk
n : ℕ
j : Fin (n + 1)
k : ℕ
hk : k < len [n + 1] + 1
i : ℕ
hi : i < n + 2
H : Fin.castSucc j < { val := i, isLt := hi }
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := hi }) ≫ σ (Fin.castSucc j))) { val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ j ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
rcases j with ⟨j, hj⟩
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < len [n + 1] + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : Fin.castSucc { val := j, isLt := hj } < { val := i, isLt := hi }
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := hi }) ≫ σ (Fin.castSucc { val := j, isLt := hj })))
{ val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
simp at H hk
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := hi }) ≫ σ (Fin.castSucc { val := j, isLt := hj })))
{ val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
dsimp [δ, σ, Fin.predAbove, Fin.succAbove]
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
⊢ ↑(if h :
{ val := j, isLt := (_ : j < Nat.succ (n + 1 + 1)) } <
if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) } then
Fin.pred
(if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) })
(_ :
(if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) ≠
0)
else
Fin.castLT
(if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) })
(_ :
↑(if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) }
else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) <
n + 1 + 1)) =
↑(if
↑(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }) <
i then
Fin.castSucc
(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) })
else
Fin.succ
(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }))
[PROOFSTEP]
simp [Fin.lt_iff_val_lt_val, Fin.ite_val, Fin.dite_val]
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
⊢ (if j < if k < i + 1 then k else k + 1 then (if k < i + 1 then k else k + 1) - 1
else if k < i + 1 then k else k + 1) =
if (if j < k then k - 1 else k) < i then if j < k then k - 1 else k else (if j < k then k - 1 else k) + 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k - 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k = k
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k = k + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k + 1 - 1 = k
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k + 1 - 1 = k + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 = k - 1 + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k + 1 = k
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k + 1 = k + 1
[PROOFSTEP]
all_goals try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k - 1 = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k - 1 = k - 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k = k
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k = k
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k = k + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k = k + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
[PROOFSTEP]
simp
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1 + 1
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k + 1 - 1 = k
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k + 1 - 1 = k
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k + 1 - 1 = k + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k + 1 - 1 = k + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 = k - 1 + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 = k - 1 + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k = k - 1
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k + 1 = k
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ k + 1 = k
[PROOFSTEP]
simp
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : k < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k + 1 = k + 1
[PROOFSTEP]
try simp <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : ¬j < k
h✝ : ¬k < i
⊢ k + 1 = k + 1
[PROOFSTEP]
simp
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
all_goals cases k <;> simp at * <;> linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝² : k < i + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k - 1 = k - 1 + 1
[PROOFSTEP]
cases k
[GOAL]
case neg.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
hk : Nat.zero < n + 1 + 1
h✝² : Nat.zero < i + 1
h✝¹ : j < Nat.zero
h✝ : ¬Nat.zero - 1 < i
⊢ Nat.zero - 1 = Nat.zero - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝² : Nat.succ n✝ < i + 1
h✝¹ : j < Nat.succ n✝
h✝ : ¬Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ - 1 = Nat.succ n✝ - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝² : Nat.succ n✝ < i + 1
h✝¹ : j < Nat.succ n✝
h✝ : i ≤ n✝
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 - 1 = k - 1
[PROOFSTEP]
cases k
[GOAL]
case pos.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
hk : Nat.zero < n + 1 + 1
h✝³ : ¬Nat.zero < i + 1
h✝² : j < Nat.zero + 1
h✝¹ : j < Nat.zero
h✝ : Nat.zero - 1 < i
⊢ Nat.zero + 1 - 1 = Nat.zero - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : ¬Nat.succ n✝ < i + 1
h✝² : j < Nat.succ n✝ + 1
h✝¹ : j < Nat.succ n✝
h✝ : Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : j < Nat.succ n✝ + 1
h✝² : j < Nat.succ n✝
h✝¹ : i + 1 ≤ Nat.succ n✝
h✝ : n✝ < i
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : j < k + 1
h✝¹ : j < k
h✝ : ¬k - 1 < i
⊢ k + 1 - 1 = k - 1 + 1
[PROOFSTEP]
cases k
[GOAL]
case neg.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
hk : Nat.zero < n + 1 + 1
h✝³ : ¬Nat.zero < i + 1
h✝² : j < Nat.zero + 1
h✝¹ : j < Nat.zero
h✝ : ¬Nat.zero - 1 < i
⊢ Nat.zero + 1 - 1 = Nat.zero - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : ¬Nat.succ n✝ < i + 1
h✝² : j < Nat.succ n✝ + 1
h✝¹ : j < Nat.succ n✝
h✝ : ¬Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1 + 1
[PROOFSTEP]
simp at *
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1
i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
h✝³ : ¬k < i + 1
h✝² : ¬j < k + 1
h✝¹ : j < k
h✝ : k - 1 < i
⊢ k + 1 = k - 1
[PROOFSTEP]
cases k
[GOAL]
case pos.zero
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
hk : Nat.zero < n + 1 + 1
h✝³ : ¬Nat.zero < i + 1
h✝² : ¬j < Nat.zero + 1
h✝¹ : j < Nat.zero
h✝ : Nat.zero - 1 < i
⊢ Nat.zero + 1 = Nat.zero - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : ¬Nat.succ n✝ < i + 1
h✝² : ¬j < Nat.succ n✝ + 1
h✝¹ : j < Nat.succ n✝
h✝ : Nat.succ n✝ - 1 < i
⊢ Nat.succ n✝ + 1 = Nat.succ n✝ - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 2
j : ℕ
hj : j < n + 1
H : j < i
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1
h✝³ : j < Nat.succ n✝
h✝² : i + 1 ≤ Nat.succ n✝
h✝¹ : Nat.succ n✝ + 1 ≤ j
h✝ : n✝ < i
⊢ Nat.succ n✝ + 1 = n✝
[PROOFSTEP]
linarith
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
hi : i = 0
⊢ False
[PROOFSTEP]
simp only [Fin.not_lt_zero, hi] at H
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ δ i ≫ σ j = σ (Fin.castLT j (_ : ↑j < n + 1)) ≫ δ (Fin.pred i (_ : i = 0 → False))
[PROOFSTEP]
rw [← δ_comp_σ_of_gt]
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ δ i ≫ σ j = δ (Fin.succ (Fin.pred i (_ : i = 0 → False))) ≫ σ (Fin.castSucc (Fin.castLT j (_ : ↑j < n + 1)))
[PROOFSTEP]
simp
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ Fin.castSucc (Fin.castLT j (_ : ↑j < n + 1)) < Fin.pred i (_ : i = 0 → False)
[PROOFSTEP]
rw [Fin.castSucc_castLT, ← Fin.succ_lt_succ_iff, Fin.succ_pred]
[GOAL]
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ Fin.succ j < i
[PROOFSTEP]
exact H
[GOAL]
n : ℕ
i j : Fin (n + 1)
H : i ≤ j
⊢ σ (Fin.castSucc i) ≫ σ j = σ (Fin.succ j) ≫ σ i
[PROOFSTEP]
ext ⟨k, hk⟩
[GOAL]
case a.h.h.mk.h
n : ℕ
i j : Fin (n + 1)
H : i ≤ j
k : ℕ
hk : k < len [n + 1 + 1] + 1
⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc i) ≫ σ j)) { val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ (Fin.succ j) ≫ σ i)) { val := k, isLt := hk })
[PROOFSTEP]
rcases i with ⟨i, hi⟩
[GOAL]
case a.h.h.mk.h.mk
n : ℕ
j : Fin (n + 1)
k : ℕ
hk : k < len [n + 1 + 1] + 1
i : ℕ
hi : i < n + 1
H : { val := i, isLt := hi } ≤ j
⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc { val := i, isLt := hi }) ≫ σ j)) { val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ (Fin.succ j) ≫ σ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
rcases j with ⟨j, hj⟩
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < len [n + 1 + 1] + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : { val := i, isLt := hi } ≤ { val := j, isLt := hj }
⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := j, isLt := hj }))
{ val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ (Fin.succ { val := j, isLt := hj }) ≫ σ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
simp at H hk
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := j, isLt := hj }))
{ val := k, isLt := hk }) =
↑(↑(Hom.toOrderHom (σ (Fin.succ { val := j, isLt := hj }) ≫ σ { val := i, isLt := hi })) { val := k, isLt := hk })
[PROOFSTEP]
dsimp [σ, Fin.predAbove]
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
⊢ ↑(if h :
{ val := j, isLt := (_ : j < Nat.succ (n + 1)) } <
if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) } then
Fin.pred
(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) })
(_ :
(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) ≠
0)
else
Fin.castLT
(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) })
(_ :
↑(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) <
n + 1)) =
↑(if h :
{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } <
if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) } then
Fin.pred
(if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) })
(_ :
(if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) ≠
0)
else
Fin.castLT
(if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) })
(_ :
↑(if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then
Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0)
else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) <
n + 1))
[PROOFSTEP]
simp [Fin.lt_iff_val_lt_val, Fin.ite_val]
[GOAL]
case a.h.h.mk.h.mk.mk
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
⊢ (if j < if i < k then k - 1 else k then (if i < k then k - 1 else k) - 1 else if i < k then k - 1 else k) =
if i < if j + 1 < k then k - 1 else k then (if j + 1 < k then k - 1 else k) - 1 else if j + 1 < k then k - 1 else k
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 - 1 = k - 1 - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : j < k - 1
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 - 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 - 1 = k - 1
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : ¬j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 = k - 1
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : j < k
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : j < k
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : ¬i < k
h✝¹ : j < k
h✝ : ¬j + 1 < k
⊢ k - 1 = k
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : ¬j < k
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k = k - 1 - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : ¬j < k
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k = k - 1
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : ¬i < k
h✝¹ : ¬j < k
h✝ : ¬j + 1 < k
⊢ k = k
[PROOFSTEP]
all_goals try linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 - 1 = k - 1 - 1
[PROOFSTEP]
try linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 - 1 = k - 1 - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : j < k - 1
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 - 1 = k - 1
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : j < k - 1
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 - 1 = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 - 1 = k - 1
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 - 1 = k - 1
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
[PROOFSTEP]
try linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 = k - 1
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : ¬j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 = k - 1
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : ¬j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 = k - 1
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : j < k
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
[PROOFSTEP]
try linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : j < k
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : j < k
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 = k - 1
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : j < k
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k - 1 = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : ¬i < k
h✝¹ : j < k
h✝ : ¬j + 1 < k
⊢ k - 1 = k
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : ¬i < k
h✝¹ : j < k
h✝ : ¬j + 1 < k
⊢ k - 1 = k
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : ¬j < k
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k = k - 1 - 1
[PROOFSTEP]
try linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : ¬j < k
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k = k - 1 - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : ¬j < k
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k = k - 1
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : ¬i < k
h✝² : ¬j < k
h✝¹ : j + 1 < k
h✝ : ¬i < k - 1
⊢ k = k - 1
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : ¬i < k
h✝¹ : ¬j < k
h✝ : ¬j + 1 < k
⊢ k = k
[PROOFSTEP]
try linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : ¬i < k
h✝¹ : ¬j < k
h✝ : ¬j + 1 < k
⊢ k = k
[PROOFSTEP]
linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 - 1 = k - 1
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
[PROOFSTEP]
all_goals cases k <;> simp at *; linarith
[GOAL]
case neg
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝² : i < k
h✝¹ : j < k - 1
h✝ : ¬j + 1 < k
⊢ k - 1 - 1 = k - 1
[PROOFSTEP]
cases k
[GOAL]
case neg.zero
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1 + 1
h✝² : i < Nat.zero
h✝¹ : j < Nat.zero - 1
h✝ : ¬j + 1 < Nat.zero
⊢ Nat.zero - 1 - 1 = Nat.zero - 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1 + 1
h✝² : i < Nat.succ n✝
h✝¹ : j < Nat.succ n✝ - 1
h✝ : ¬j + 1 < Nat.succ n✝
⊢ Nat.succ n✝ - 1 - 1 = Nat.succ n✝ - 1
[PROOFSTEP]
simp at *
[GOAL]
case neg.succ
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1 + 1
h✝² : i < Nat.succ n✝
h✝¹ : j < n✝
h✝ : Nat.succ n✝ ≤ j + 1
⊢ n✝ - 1 = n✝
[PROOFSTEP]
linarith
[GOAL]
case pos
n k : ℕ
hk : k < n + 1 + 1 + 1
i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
h✝³ : i < k
h✝² : ¬j < k - 1
h✝¹ : j + 1 < k
h✝ : i < k - 1
⊢ k - 1 = k - 1 - 1
[PROOFSTEP]
cases k
[GOAL]
case pos.zero
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
hk : Nat.zero < n + 1 + 1 + 1
h✝³ : i < Nat.zero
h✝² : ¬j < Nat.zero - 1
h✝¹ : j + 1 < Nat.zero
h✝ : i < Nat.zero - 1
⊢ Nat.zero - 1 = Nat.zero - 1 - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1 + 1
h✝³ : i < Nat.succ n✝
h✝² : ¬j < Nat.succ n✝ - 1
h✝¹ : j + 1 < Nat.succ n✝
h✝ : i < Nat.succ n✝ - 1
⊢ Nat.succ n✝ - 1 = Nat.succ n✝ - 1 - 1
[PROOFSTEP]
simp at *
[GOAL]
case pos.succ
n i : ℕ
hi : i < n + 1
j : ℕ
hj : j < n + 1
H : i ≤ j
n✝ : ℕ
hk : Nat.succ n✝ < n + 1 + 1 + 1
h✝³ : i < Nat.succ n✝
h✝² : j + 1 < Nat.succ n✝
h✝¹ : n✝ ≤ j
h✝ : i < n✝
⊢ n✝ = n✝ - 1
[PROOFSTEP]
linarith
[GOAL]
X Y : SimplexCategory
x✝ : IsIsomorphic X Y
I : X ≅ Y
⊢ X = Y
[PROOFSTEP]
suffices Fintype.card (Fin (X.len + 1)) = Fintype.card (Fin (Y.len + 1))
by
ext
simpa
[GOAL]
X Y : SimplexCategory
x✝ : IsIsomorphic X Y
I : X ≅ Y
this : Fintype.card (Fin (len X + 1)) = Fintype.card (Fin (len Y + 1))
⊢ X = Y
[PROOFSTEP]
ext
[GOAL]
case a
X Y : SimplexCategory
x✝ : IsIsomorphic X Y
I : X ≅ Y
this : Fintype.card (Fin (len X + 1)) = Fintype.card (Fin (len Y + 1))
⊢ len X = len Y
[PROOFSTEP]
simpa
[GOAL]
X Y : SimplexCategory
x✝ : IsIsomorphic X Y
I : X ≅ Y
⊢ Fintype.card (Fin (len X + 1)) = Fintype.card (Fin (len Y + 1))
[PROOFSTEP]
apply Fintype.card_congr
[GOAL]
case f
X Y : SimplexCategory
x✝ : IsIsomorphic X Y
I : X ≅ Y
⊢ Fin (len X + 1) ≃ Fin (len Y + 1)
[PROOFSTEP]
exact Equiv.ulift.symm.trans (((skeletalFunctor.{0} ⋙ forget NonemptyFinLinOrdCat).mapIso I).toEquiv.trans Equiv.ulift)
[GOAL]
x✝¹ x✝ : SimplexCategory
f g : x✝¹ ⟶ x✝
h : skeletalFunctor.map f = skeletalFunctor.map g
⊢ f = g
[PROOFSTEP]
ext x : 3
[GOAL]
case a.h.h
x✝¹ x✝ : SimplexCategory
f g : x✝¹ ⟶ x✝
h : skeletalFunctor.map f = skeletalFunctor.map g
x : Fin (len x✝¹ + 1)
⊢ ↑(Hom.toOrderHom f) x = ↑(Hom.toOrderHom g) x
[PROOFSTEP]
apply ULift.up_injective.{v}
[GOAL]
case a.h.h.a
x✝¹ x✝ : SimplexCategory
f g : x✝¹ ⟶ x✝
h : skeletalFunctor.map f = skeletalFunctor.map g
x : Fin (len x✝¹ + 1)
⊢ { down := ↑(Hom.toOrderHom f) x } = { down := ↑(Hom.toOrderHom g) x }
[PROOFSTEP]
change (skeletalFunctor.{v}.map f) ⟨x⟩ = (skeletalFunctor.map g) ⟨x⟩
[GOAL]
case a.h.h.a
x✝¹ x✝ : SimplexCategory
f g : x✝¹ ⟶ x✝
h : skeletalFunctor.map f = skeletalFunctor.map g
x : Fin (len x✝¹ + 1)
⊢ ↑(skeletalFunctor.map f) { down := x } = ↑(skeletalFunctor.map g) { down := x }
[PROOFSTEP]
rw [h]
[GOAL]
X : NonemptyFinLinOrdCat
⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X
[PROOFSTEP]
have aux : Fintype.card X = Fintype.card X - 1 + 1 := (Nat.succ_pred_eq_of_pos <| Fintype.card_pos_iff.mpr ⟨⊥⟩).symm
[GOAL]
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X
[PROOFSTEP]
let f := monoEquivOfFin X aux
[GOAL]
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X
[PROOFSTEP]
have hf := (Finset.univ.orderEmbOfFin aux).strictMono
[GOAL]
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X
[PROOFSTEP]
refine'
{ hom := ⟨fun i => f i.down, _⟩
inv := ⟨fun i => ⟨f.symm i⟩, _⟩
hom_inv_id := _
inv_hom_id := _ }
[GOAL]
case refine'_1
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
⊢ Monotone fun i => ↑f i.down
[PROOFSTEP]
rintro ⟨i⟩ ⟨j⟩ h
[GOAL]
case refine'_1.up.up
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i j : Fin (len [Fintype.card ↑X - 1] + 1)
h : { down := i } ≤ { down := j }
⊢ (fun i => ↑f i.down) { down := i } ≤ (fun i => ↑f i.down) { down := j }
[PROOFSTEP]
show f i ≤ f j
[GOAL]
case refine'_1.up.up
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i j : Fin (len [Fintype.card ↑X - 1] + 1)
h : { down := i } ≤ { down := j }
⊢ ↑f i ≤ ↑f j
[PROOFSTEP]
exact hf.monotone h
[GOAL]
case refine'_2
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
⊢ Monotone fun i => { down := ↑(OrderIso.symm f) i }
[PROOFSTEP]
intro i j h
[GOAL]
case refine'_2
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i j : ↑X
h : i ≤ j
⊢ (fun i => { down := ↑(OrderIso.symm f) i }) i ≤ (fun i => { down := ↑(OrderIso.symm f) i }) j
[PROOFSTEP]
show f.symm i ≤ f.symm j
[GOAL]
case refine'_2
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i j : ↑X
h : i ≤ j
⊢ ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j
[PROOFSTEP]
rw [← hf.le_iff_le]
[GOAL]
case refine'_2
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i j : ↑X
h : i ≤ j
⊢ ↑(Finset.orderEmbOfFin Finset.univ aux) (↑(OrderIso.symm f) i) ≤
↑(Finset.orderEmbOfFin Finset.univ aux) (↑(OrderIso.symm f) j)
[PROOFSTEP]
show f (f.symm i) ≤ f (f.symm j)
[GOAL]
case refine'_2
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i j : ↑X
h : i ≤ j
⊢ ↑f (↑(OrderIso.symm f) i) ≤ ↑f (↑(OrderIso.symm f) j)
[PROOFSTEP]
simpa only [OrderIso.apply_symm_apply]
[GOAL]
case refine'_3
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
⊢ { toFun := fun i => ↑f i.down,
monotone' :=
(_ :
∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄,
a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) } ≫
{ toFun := fun i => { down := ↑(OrderIso.symm f) i },
monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) } =
𝟙 (skeletalFunctor.obj [Fintype.card ↑X - 1])
[PROOFSTEP]
ext1 ⟨i⟩
[GOAL]
case refine'_3.w.up
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i : Fin (len [Fintype.card ↑X - 1] + 1)
⊢ ↑({ toFun := fun i => ↑f i.down,
monotone' :=
(_ :
∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄,
a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) } ≫
{ toFun := fun i => { down := ↑(OrderIso.symm f) i },
monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) })
{ down := i } =
↑(𝟙 (skeletalFunctor.obj [Fintype.card ↑X - 1])) { down := i }
[PROOFSTEP]
exact congr_arg ULift.up (f.symm_apply_apply i)
[GOAL]
case refine'_4
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
⊢ { toFun := fun i => { down := ↑(OrderIso.symm f) i },
monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) } ≫
{ toFun := fun i => ↑f i.down,
monotone' :=
(_ :
∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄,
a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) } =
𝟙 X
[PROOFSTEP]
ext1 i
[GOAL]
case refine'_4.w
X : NonemptyFinLinOrdCat
aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1
f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux
hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux)
i : (forget NonemptyFinLinOrdCat).obj X
⊢ ↑({ toFun := fun i => { down := ↑(OrderIso.symm f) i },
monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) } ≫
{ toFun := fun i => ↑f i.down,
monotone' :=
(_ :
∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄,
a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) })
i =
↑(𝟙 X) i
[PROOFSTEP]
exact f.apply_symm_apply i
[GOAL]
n : ℕ
⊢ len [0] ≤ n
[PROOFSTEP]
simp
[GOAL]
X✝ Y✝ : SimplexCategory
a₁✝ a₂✝ : X✝ ⟶ Y✝
h :
(CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₁✝ =
(CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₂✝
⊢ a₁✝ = a₂✝
[PROOFSTEP]
ext : 2
[GOAL]
case a.h
X✝ Y✝ : SimplexCategory
a₁✝ a₂✝ : X✝ ⟶ Y✝
h :
(CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₁✝ =
(CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₂✝
⊢ ↑(Hom.toOrderHom a₁✝) = ↑(Hom.toOrderHom a₂✝)
[PROOFSTEP]
exact h
[GOAL]
n m : SimplexCategory
f : n ⟶ m
⊢ Mono f ↔ Function.Injective ↑(Hom.toOrderHom f)
[PROOFSTEP]
rw [← Functor.mono_map_iff_mono skeletalEquivalence.functor.{0}]
[GOAL]
n m : SimplexCategory
f : n ⟶ m
⊢ Mono (skeletalEquivalence.functor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f)
[PROOFSTEP]
dsimp only [skeletalEquivalence, Functor.asEquivalence_functor]
[GOAL]
n m : SimplexCategory
f : n ⟶ m
⊢ Mono (skeletalFunctor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f)
[PROOFSTEP]
rw [NonemptyFinLinOrdCat.mono_iff_injective, skeletalFunctor.coe_map, Function.Injective.of_comp_iff ULift.up_injective,
Function.Injective.of_comp_iff' _ ULift.down_bijective]
[GOAL]
n m : SimplexCategory
f : n ⟶ m
⊢ Epi f ↔ Function.Surjective ↑(Hom.toOrderHom f)
[PROOFSTEP]
rw [← Functor.epi_map_iff_epi skeletalEquivalence.functor.{0}]
[GOAL]
n m : SimplexCategory
f : n ⟶ m
⊢ Epi (skeletalEquivalence.functor.map f) ↔ Function.Surjective ↑(Hom.toOrderHom f)
[PROOFSTEP]
dsimp only [skeletalEquivalence, Functor.asEquivalence_functor]
[GOAL]
n m : SimplexCategory
f : n ⟶ m
⊢ Epi (skeletalFunctor.map f) ↔ Function.Surjective ↑(Hom.toOrderHom f)
[PROOFSTEP]
rw [NonemptyFinLinOrdCat.epi_iff_surjective, skeletalFunctor.coe_map,
Function.Surjective.of_comp_iff' ULift.up_bijective, Function.Surjective.of_comp_iff _ ULift.down_surjective]
[GOAL]
x y : SimplexCategory
f : x ⟶ y
⊢ Mono f → len x ≤ len y
[PROOFSTEP]
intro hyp_f_mono
[GOAL]
x y : SimplexCategory
f : x ⟶ y
hyp_f_mono : Mono f
⊢ len x ≤ len y
[PROOFSTEP]
have f_inj : Function.Injective f.toOrderHom.toFun := mono_iff_injective.1 hyp_f_mono
[GOAL]
x y : SimplexCategory
f : x ⟶ y
hyp_f_mono : Mono f
f_inj : Function.Injective (Hom.toOrderHom f).toFun
⊢ len x ≤ len y
[PROOFSTEP]
simpa using Fintype.card_le_of_injective f.toOrderHom.toFun f_inj
[GOAL]
x y : SimplexCategory
f : x ⟶ y
⊢ Epi f → len y ≤ len x
[PROOFSTEP]
intro hyp_f_epi
[GOAL]
x y : SimplexCategory
f : x ⟶ y
hyp_f_epi : Epi f
⊢ len y ≤ len x
[PROOFSTEP]
have f_surj : Function.Surjective f.toOrderHom.toFun := epi_iff_surjective.1 hyp_f_epi
[GOAL]
x y : SimplexCategory
f : x ⟶ y
hyp_f_epi : Epi f
f_surj : Function.Surjective (Hom.toOrderHom f).toFun
⊢ len y ≤ len x
[PROOFSTEP]
simpa using Fintype.card_le_of_surjective f.toOrderHom.toFun f_surj
[GOAL]
n : ℕ
i : Fin (n + 2)
⊢ Mono (δ i)
[PROOFSTEP]
rw [mono_iff_injective]
[GOAL]
n : ℕ
i : Fin (n + 2)
⊢ Function.Injective ↑(Hom.toOrderHom (δ i))
[PROOFSTEP]
exact Fin.succAbove_right_injective
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ Epi (σ i)
[PROOFSTEP]
rw [epi_iff_surjective]
[GOAL]
n : ℕ
i : Fin (n + 1)
⊢ Function.Surjective ↑(Hom.toOrderHom (σ i))
[PROOFSTEP]
intro b
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
⊢ ∃ a, ↑(Hom.toOrderHom (σ i)) a = b
[PROOFSTEP]
simp only [σ, mkHom, Hom.toOrderHom_mk, OrderHom.coe_mk]
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
⊢ ∃ a, Fin.predAbove i a = b
[PROOFSTEP]
by_cases b ≤ i
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
⊢ ∃ a, Fin.predAbove i a = b
[PROOFSTEP]
by_cases b ≤ i
[GOAL]
case pos
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : b ≤ i
⊢ ∃ a, Fin.predAbove i a = b
[PROOFSTEP]
use b
[GOAL]
case h
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : b ≤ i
⊢ Fin.predAbove i ↑↑b = b
[PROOFSTEP]
rw [Fin.predAbove_below i b (by simpa only [Fin.coe_eq_castSucc] using h)]
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : b ≤ i
⊢ ↑↑b ≤ Fin.castSucc i
[PROOFSTEP]
simpa only [Fin.coe_eq_castSucc] using h
[GOAL]
case h
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : b ≤ i
⊢ Fin.castPred ↑↑b = b
[PROOFSTEP]
simp only [len_mk, Fin.coe_eq_castSucc, Fin.castPred_castSucc]
[GOAL]
case neg
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : ¬b ≤ i
⊢ ∃ a, Fin.predAbove i a = b
[PROOFSTEP]
use b.succ
[GOAL]
case h
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : ¬b ≤ i
⊢ Fin.predAbove i (Fin.succ b) = b
[PROOFSTEP]
rw [Fin.predAbove_above i b.succ _, Fin.pred_succ]
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : ¬b ≤ i
⊢ Fin.castSucc i < Fin.succ b
n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : ¬b ≤ i ⊢ Fin.castSucc i < Fin.succ b
[PROOFSTEP]
rw [not_le] at h
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : i < b
⊢ Fin.castSucc i < Fin.succ b
[PROOFSTEP]
rw [Fin.lt_iff_val_lt_val] at h ⊢
[GOAL]
n : ℕ
i : Fin (n + 1)
b : Fin (len [n] + 1)
h : ↑i < ↑b
⊢ ↑(Fin.castSucc i) < ↑(Fin.succ b)
[PROOFSTEP]
simpa only [Fin.val_succ, Fin.coe_castSucc] using Nat.lt.step h
[GOAL]
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
⊢ inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
[PROOFSTEP]
by_cases h' : y₁ < y₂
[GOAL]
case pos
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
⊢ inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
[PROOFSTEP]
by_contra h''
[GOAL]
case pos
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
⊢ False
[PROOFSTEP]
apply not_le.mpr h'
[GOAL]
case pos
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
⊢ y₂ ≤ y₁
[PROOFSTEP]
convert f.toOrderHom.monotone (le_of_not_ge h'')
[GOAL]
case h.e'_3
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
⊢ y₂ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₂)
case h.e'_4
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
⊢ y₁ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₁)
[PROOFSTEP]
all_goals exact (congr_hom (Iso.inv_hom_id (asIso ((forget SimplexCategory).map f))) _).symm
[GOAL]
case h.e'_3
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
⊢ y₂ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₂)
[PROOFSTEP]
exact (congr_hom (Iso.inv_hom_id (asIso ((forget SimplexCategory).map f))) _).symm
[GOAL]
case h.e'_4
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : y₁ < y₂
h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
⊢ y₁ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₁)
[PROOFSTEP]
exact (congr_hom (Iso.inv_hom_id (asIso ((forget SimplexCategory).map f))) _).symm
[GOAL]
case neg
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
y₁ y₂ : Fin (len B✝ + 1)
h : y₁ ≤ y₂
h' : ¬y₁ < y₂
⊢ inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂
[PROOFSTEP]
rw [eq_of_le_of_not_lt h h']
[GOAL]
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
⊢ f ≫
Hom.mk
{ toFun := inv ((forget SimplexCategory).map f),
monotone' :=
(_ :
∀ (y₁ y₂ : Fin (len B✝ + 1)),
y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } =
𝟙 A✝
[PROOFSTEP]
ext1
[GOAL]
case a
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
⊢ Hom.toOrderHom
(f ≫
Hom.mk
{ toFun := inv ((forget SimplexCategory).map f),
monotone' :=
(_ :
∀ (y₁ y₂ : Fin (len B✝ + 1)),
y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) }) =
Hom.toOrderHom (𝟙 A✝)
[PROOFSTEP]
ext1
[GOAL]
case a.h
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
⊢ ↑(Hom.toOrderHom
(f ≫
Hom.mk
{ toFun := inv ((forget SimplexCategory).map f),
monotone' :=
(_ :
∀ (y₁ y₂ : Fin (len B✝ + 1)),
y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) })) =
↑(Hom.toOrderHom (𝟙 A✝))
[PROOFSTEP]
exact Iso.hom_inv_id (asIso ((forget _).map f))
[GOAL]
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
⊢ Hom.mk
{ toFun := inv ((forget SimplexCategory).map f),
monotone' :=
(_ :
∀ (y₁ y₂ : Fin (len B✝ + 1)),
y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } ≫
f =
𝟙 B✝
[PROOFSTEP]
ext1
[GOAL]
case a
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
⊢ Hom.toOrderHom
(Hom.mk
{ toFun := inv ((forget SimplexCategory).map f),
monotone' :=
(_ :
∀ (y₁ y₂ : Fin (len B✝ + 1)),
y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } ≫
f) =
Hom.toOrderHom (𝟙 B✝)
[PROOFSTEP]
ext1
[GOAL]
case a.h
A✝ B✝ : SimplexCategory
f : A✝ ⟶ B✝
hf : IsIso ((forget SimplexCategory).map f)
⊢ ↑(Hom.toOrderHom
(Hom.mk
{ toFun := inv ((forget SimplexCategory).map f),
monotone' :=
(_ :
∀ (y₁ y₂ : Fin (len B✝ + 1)),
y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } ≫
f)) =
↑(Hom.toOrderHom (𝟙 B✝))
[PROOFSTEP]
exact Iso.inv_hom_id (asIso ((forget _).map f))
[GOAL]
x y : SimplexCategory
e : x ≅ y
i : Fin (len x + 1)
⊢ ↑(Hom.toOrderHom e.inv) (↑(Hom.toOrderHom e.hom) i) = i
[PROOFSTEP]
simpa only using congr_arg (fun φ => (Hom.toOrderHom φ) i) e.hom_inv_id
[GOAL]
x y : SimplexCategory
e : x ≅ y
i : Fin (len y + 1)
⊢ ↑(Hom.toOrderHom e.hom) (↑(Hom.toOrderHom e.inv) i) = i
[PROOFSTEP]
simpa only using congr_arg (fun φ => (Hom.toOrderHom φ) i) e.inv_hom_id
[GOAL]
x : SimplexCategory
e : x ≅ x
⊢ e = Iso.refl x
[PROOFSTEP]
have h : (Finset.univ : Finset (Fin (x.len + 1))).card = x.len + 1 := Finset.card_fin (x.len + 1)
[GOAL]
x : SimplexCategory
e : x ≅ x
h : Finset.card Finset.univ = len x + 1
⊢ e = Iso.refl x
[PROOFSTEP]
have eq₁ := Finset.orderEmbOfFin_unique' h fun i => Finset.mem_univ ((orderIsoOfIso e) i)
[GOAL]
x : SimplexCategory
e : x ≅ x
h : Finset.card Finset.univ = len x + 1
eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.orderEmbOfFin Finset.univ h
⊢ e = Iso.refl x
[PROOFSTEP]
have eq₂ :=
Finset.orderEmbOfFin_unique' h fun i =>
Finset.mem_univ
((orderIsoOfIso (Iso.refl x)) i)
-- Porting note: the proof was rewritten from this point in #3414 (reenableeta)
-- It could be investigated again to see if the original can be restored.
[GOAL]
x : SimplexCategory
e : x ≅ x
h : Finset.card Finset.univ = len x + 1
eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.orderEmbOfFin Finset.univ h
eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x)) = Finset.orderEmbOfFin Finset.univ h
⊢ e = Iso.refl x
[PROOFSTEP]
ext x
[GOAL]
case w.a.h.h.h
x✝ : SimplexCategory
e : x✝ ≅ x✝
h : Finset.card Finset.univ = len x✝ + 1
eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.orderEmbOfFin Finset.univ h
eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x✝)) = Finset.orderEmbOfFin Finset.univ h
x : Fin (len x✝ + 1)
⊢ ↑(↑(Hom.toOrderHom e.hom) x) = ↑(↑(Hom.toOrderHom (Iso.refl x✝).hom) x)
[PROOFSTEP]
replace eq₁ := congr_arg (· x) eq₁
[GOAL]
case w.a.h.h.h
x✝ : SimplexCategory
e : x✝ ≅ x✝
h : Finset.card Finset.univ = len x✝ + 1
eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x✝)) = Finset.orderEmbOfFin Finset.univ h
x : Fin (len x✝ + 1)
eq₁ :
(fun x_1 => ↑x_1 x) (RelIso.toRelEmbedding (orderIsoOfIso e)) =
(fun x_1 => ↑x_1 x) (Finset.orderEmbOfFin Finset.univ h)
⊢ ↑(↑(Hom.toOrderHom e.hom) x) = ↑(↑(Hom.toOrderHom (Iso.refl x✝).hom) x)
[PROOFSTEP]
replace eq₂ := congr_arg (· x) eq₂.symm
[GOAL]
case w.a.h.h.h
x✝ : SimplexCategory
e : x✝ ≅ x✝
h : Finset.card Finset.univ = len x✝ + 1
x : Fin (len x✝ + 1)
eq₁ :
(fun x_1 => ↑x_1 x) (RelIso.toRelEmbedding (orderIsoOfIso e)) =
(fun x_1 => ↑x_1 x) (Finset.orderEmbOfFin Finset.univ h)
eq₂ :
(fun x_1 => ↑x_1 x) (Finset.orderEmbOfFin Finset.univ h) =
(fun x_1 => ↑x_1 x) (RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x✝)))
⊢ ↑(↑(Hom.toOrderHom e.hom) x) = ↑(↑(Hom.toOrderHom (Iso.refl x✝).hom) x)
[PROOFSTEP]
simp_all
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
⊢ ∃ θ', θ = σ i ≫ θ'
[PROOFSTEP]
use δ i.succ ≫ θ
[GOAL]
case h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
⊢ θ = σ i ≫ δ (Fin.succ i) ≫ θ
[PROOFSTEP]
ext1
[GOAL]
case h.a
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
⊢ Hom.toOrderHom θ = Hom.toOrderHom (σ i ≫ δ (Fin.succ i) ≫ θ)
[PROOFSTEP]
ext1
[GOAL]
case h.a.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
⊢ ↑(Hom.toOrderHom θ) = ↑(Hom.toOrderHom (σ i ≫ δ (Fin.succ i) ≫ θ))
[PROOFSTEP]
ext1 x
[GOAL]
case h.a.h.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (σ i ≫ δ (Fin.succ i) ≫ θ)) x
[PROOFSTEP]
simp only [Hom.toOrderHom_mk, Function.comp_apply, OrderHom.comp_coe, Hom.comp, smallCategory_comp, σ, mkHom,
OrderHom.coe_mk]
[GOAL]
case h.a.h.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x))
[PROOFSTEP]
by_cases h' : x ≤ Fin.castSucc i
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x))
[PROOFSTEP]
rw [Fin.predAbove_below i x h']
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.castPred x))
[PROOFSTEP]
have eq := Fin.castSucc_castPred (gt_of_gt_of_ge (Fin.castSucc_lt_last i) h')
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
eq : Fin.castSucc (Fin.castPred x) = x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.castPred x))
[PROOFSTEP]
dsimp [δ]
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
eq : Fin.castSucc (Fin.castPred x) = x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (Fin.succAbove (Fin.succ i) (Fin.castPred x))
[PROOFSTEP]
erw [Fin.succAbove_below i.succ x.castPred _]
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
eq : Fin.castSucc (Fin.castPred x) = x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (Fin.castSucc (Fin.castPred x))
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
eq : Fin.castSucc (Fin.castPred x) = x
⊢ Fin.castSucc (Fin.castPred x) < Fin.succ i
[PROOFSTEP]
swap
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
eq : Fin.castSucc (Fin.castPred x) = x
⊢ Fin.castSucc (Fin.castPred x) < Fin.succ i
[PROOFSTEP]
rwa [eq, ← Fin.le_castSucc_iff]
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : x ≤ Fin.castSucc i
eq : Fin.castSucc (Fin.castPred x) = x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (Fin.castSucc (Fin.castPred x))
[PROOFSTEP]
rw [eq]
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : ¬x ≤ Fin.castSucc i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x))
[PROOFSTEP]
simp only [not_le] at h'
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : Fin.castSucc i < x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x))
[PROOFSTEP]
let y := x.pred <| by rintro (rfl : x = 0); simp at h'
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : Fin.castSucc i < x
⊢ x ≠ 0
[PROOFSTEP]
rintro (rfl : x = 0)
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
h' : Fin.castSucc i < 0
⊢ False
[PROOFSTEP]
simp at h'
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x))
[PROOFSTEP]
have hy : x = y.succ := (Fin.succ_pred x _).symm
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h' : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x))
[PROOFSTEP]
rw [hy] at h' ⊢
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) =
↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i (Fin.succ y)))
[PROOFSTEP]
rw [Fin.predAbove_above i y.succ h', Fin.pred_succ]
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) y)
[PROOFSTEP]
by_cases h'' : y = i
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : y = i
⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) y)
[PROOFSTEP]
rw [h'']
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : y = i
⊢ ↑(Hom.toOrderHom θ) (Fin.succ i) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) i)
[PROOFSTEP]
refine' hi.symm.trans _
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : y = i
⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) i)
[PROOFSTEP]
congr 1
[GOAL]
case pos.h.e_6.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : y = i
⊢ Fin.castSucc i = ↑(Hom.toOrderHom (δ (Fin.succ i))) i
[PROOFSTEP]
dsimp [δ]
[GOAL]
case pos.h.e_6.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : y = i
⊢ Fin.castSucc i = Fin.succAbove (Fin.succ i) i
[PROOFSTEP]
erw [Fin.succAbove_below i.succ]
[GOAL]
case pos.h.e_6.h.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : y = i
⊢ Fin.castSucc i < Fin.succ i
[PROOFSTEP]
exact Fin.lt_succ
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : ¬y = i
⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) y)
[PROOFSTEP]
dsimp [δ]
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : ¬y = i
⊢ ↑(Hom.toOrderHom θ) (Fin.succ (Fin.pred x (_ : x = 0 → False))) =
↑(Hom.toOrderHom θ) (Fin.succAbove (Fin.succ i) (Fin.pred x (_ : x = 0 → False)))
[PROOFSTEP]
erw [Fin.succAbove_above i.succ _]
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
h' : Fin.castSucc i < Fin.succ y
hy : x = Fin.succ y
h'' : ¬y = i
⊢ Fin.succ i ≤ Fin.castSucc (Fin.pred x (_ : x = 0 → False))
[PROOFSTEP]
simp only [Fin.lt_iff_val_lt_val, Fin.le_iff_val_le_val, Fin.val_succ, Fin.coe_castSucc, Nat.lt_succ_iff,
Fin.ext_iff] at h' h'' ⊢
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False))
[PROOFSTEP]
cases' Nat.le.dest h' with c hc
[GOAL]
case neg.intro
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
c : ℕ
hc : ↑i + c = ↑(Fin.pred x (_ : x = 0 → False))
⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False))
[PROOFSTEP]
cases c
[GOAL]
case neg.intro.zero
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
hc : ↑i + Nat.zero = ↑(Fin.pred x (_ : x = 0 → False))
⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False))
[PROOFSTEP]
exfalso
[GOAL]
case neg.intro.zero.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
hc : ↑i + Nat.zero = ↑(Fin.pred x (_ : x = 0 → False))
⊢ False
[PROOFSTEP]
simp only [Nat.zero_eq, add_zero, len_mk, Fin.coe_pred, ge_iff_le] at hc
[GOAL]
case neg.intro.zero.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
hc : ↑i = ↑x - 1
⊢ False
[PROOFSTEP]
rw [hc] at h''
[GOAL]
case neg.intro.zero.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑x - 1
hc : ↑i = ↑x - 1
⊢ False
[PROOFSTEP]
exact h'' rfl
[GOAL]
case neg.intro.succ
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
n✝ : ℕ
hc : ↑i + Nat.succ n✝ = ↑(Fin.pred x (_ : x = 0 → False))
⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False))
[PROOFSTEP]
rw [← hc]
[GOAL]
case neg.intro.succ
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
i : Fin (n + 1)
hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i)
x : Fin (len [n + 1] + 1)
h'✝ : Fin.castSucc i < x
y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False)
hy : x = Fin.succ y
h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False))
h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i
n✝ : ℕ
hc : ↑i + Nat.succ n✝ = ↑(Fin.pred x (_ : x = 0 → False))
⊢ ↑i + 1 ≤ ↑i + Nat.succ n✝
[PROOFSTEP]
simp only [add_le_add_iff_left, Nat.succ_eq_add_one, le_add_iff_nonneg_left, zero_le]
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ¬Function.Injective ↑(Hom.toOrderHom θ)
⊢ ∃ i θ', θ = σ i ≫ θ'
[PROOFSTEP]
simp only [Function.Injective, exists_prop, not_forall] at hθ
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
⊢ ∃ i θ', θ = σ i ≫ θ'
[PROOFSTEP]
have hθ₂ : ∃ x y : Fin (n + 2), (Hom.toOrderHom θ) x = (Hom.toOrderHom θ) y ∧ x < y :=
by
rcases hθ with ⟨x, y, ⟨h₁, h₂⟩⟩
by_cases h : x < y
· exact ⟨x, y, ⟨h₁, h⟩⟩
· refine' ⟨y, x, ⟨h₁.symm, _⟩⟩
cases' lt_or_eq_of_le (not_lt.mp h) with h' h'
· exact h'
· exfalso
exact h₂ h'.symm
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y
[PROOFSTEP]
rcases hθ with ⟨x, y, ⟨h₁, h₂⟩⟩
[GOAL]
case intro.intro.intro
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y
[PROOFSTEP]
by_cases h : x < y
[GOAL]
case pos
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
h : x < y
⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y
[PROOFSTEP]
exact ⟨x, y, ⟨h₁, h⟩⟩
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
h : ¬x < y
⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y
[PROOFSTEP]
refine' ⟨y, x, ⟨h₁.symm, _⟩⟩
[GOAL]
case neg
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
h : ¬x < y
⊢ y < x
[PROOFSTEP]
cases' lt_or_eq_of_le (not_lt.mp h) with h' h'
[GOAL]
case neg.inl
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
h : ¬x < y
h' : y < x
⊢ y < x
[PROOFSTEP]
exact h'
[GOAL]
case neg.inr
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
h : ¬x < y
h' : y = x
⊢ y < x
[PROOFSTEP]
exfalso
[GOAL]
case neg.inr.h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
x y : Fin (len [n + 1] + 1)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : ¬x = y
h : ¬x < y
h' : y = x
⊢ False
[PROOFSTEP]
exact h₂ h'.symm
[GOAL]
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
hθ₂ : ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y
⊢ ∃ i θ', θ = σ i ≫ θ'
[PROOFSTEP]
rcases hθ₂ with ⟨x, y, ⟨h₁, h₂⟩⟩
[GOAL]
case intro.intro.intro
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : x < y
⊢ ∃ i θ', θ = σ i ≫ θ'
[PROOFSTEP]
let z := x.castPred
[GOAL]
case intro.intro.intro
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : x < y
z : Fin (n + 1) := Fin.castPred x
⊢ ∃ i θ', θ = σ i ≫ θ'
[PROOFSTEP]
use z
[GOAL]
case h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y
h₂ : x < y
z : Fin (n + 1) := Fin.castPred x
⊢ ∃ θ', θ = σ z ≫ θ'
[PROOFSTEP]
rw [← show Fin.castSucc z = x from Fin.castSucc_castPred (lt_of_lt_of_le h₂ (Fin.le_last y))] at h₁ h₂
[GOAL]
case h
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
z : Fin (n + 1) := Fin.castPred x
h₂ : Fin.castSucc z < y
h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y
⊢ ∃ θ', θ = σ z ≫ θ'
[PROOFSTEP]
apply eq_σ_comp_of_not_injective'
[GOAL]
case h.hi
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
z : Fin (n + 1) := Fin.castPred x
h₂ : Fin.castSucc z < y
h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y
⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) (Fin.succ z)
[PROOFSTEP]
rw [Fin.castSucc_lt_iff_succ_le] at h₂
[GOAL]
case h.hi
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
z : Fin (n + 1) := Fin.castPred x
h₂ : Fin.succ z ≤ y
h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y
⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) (Fin.succ z)
[PROOFSTEP]
apply le_antisymm
[GOAL]
case h.hi.a
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
z : Fin (n + 1) := Fin.castPred x
h₂ : Fin.succ z ≤ y
h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y
⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc z) ≤ ↑(Hom.toOrderHom θ) (Fin.succ z)
[PROOFSTEP]
exact θ.toOrderHom.monotone (le_of_lt (Fin.castSucc_lt_succ z))
[GOAL]
case h.hi.a
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
z : Fin (n + 1) := Fin.castPred x
h₂ : Fin.succ z ≤ y
h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y
⊢ ↑(Hom.toOrderHom θ) (Fin.succ z) ≤ ↑(Hom.toOrderHom θ) (Fin.castSucc z)
[PROOFSTEP]
rw [h₁]
[GOAL]
case h.hi.a
n : ℕ
Δ' : SimplexCategory
θ : [n + 1] ⟶ Δ'
hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1
x y : Fin (n + 2)
z : Fin (n + 1) := Fin.castPred x
h₂ : Fin.succ z ≤ y
h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y
⊢ ↑(Hom.toOrderHom θ) (Fin.succ z) ≤ ↑(Hom.toOrderHom θ) y
[PROOFSTEP]
exact θ.toOrderHom.monotone h₂
[GOAL]
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
⊢ ∃ θ', θ = θ' ≫ δ i
[PROOFSTEP]
by_cases i < Fin.last (n + 1)
[GOAL]
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
⊢ ∃ θ', θ = θ' ≫ δ i
[PROOFSTEP]
by_cases i < Fin.last (n + 1)
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
⊢ ∃ θ', θ = θ' ≫ δ i
[PROOFSTEP]
use θ ≫ σ (Fin.castPred i)
[GOAL]
case h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
⊢ θ = (θ ≫ σ (Fin.castPred i)) ≫ δ i
[PROOFSTEP]
ext1
[GOAL]
case h.a
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
⊢ Hom.toOrderHom θ = Hom.toOrderHom ((θ ≫ σ (Fin.castPred i)) ≫ δ i)
[PROOFSTEP]
ext1
[GOAL]
case h.a.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
⊢ ↑(Hom.toOrderHom θ) = ↑(Hom.toOrderHom ((θ ≫ σ (Fin.castPred i)) ≫ δ i))
[PROOFSTEP]
ext1 x
[GOAL]
case h.a.h.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom ((θ ≫ σ (Fin.castPred i)) ≫ δ i)) x
[PROOFSTEP]
simp only [Hom.toOrderHom_mk, Function.comp_apply, OrderHom.comp_coe, Hom.comp, smallCategory_comp]
[GOAL]
case h.a.h.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
by_cases h' : θ.toOrderHom x ≤ i
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
simp only [σ, mkHom, Hom.toOrderHom_mk, OrderHom.coe_mk]
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (Fin.predAbove (Fin.castPred i) (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
rw [Fin.predAbove_below (Fin.castPred i) (θ.toOrderHom x) (by simpa [Fin.castSucc_castPred h] using h')]
[GOAL]
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x ≤ Fin.castSucc (Fin.castPred i)
[PROOFSTEP]
simpa [Fin.castSucc_castPred h] using h'
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (Fin.castPred (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
dsimp [δ]
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = Fin.succAbove i (Fin.castPred (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
erw [Fin.succAbove_below i]
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x))
case pos.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x)) < i
[PROOFSTEP]
swap
[GOAL]
case pos.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x)) < i
[PROOFSTEP]
simp only [Fin.lt_iff_val_lt_val, Fin.coe_castSucc]
[GOAL]
case pos.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Fin.castPred (↑(Hom.toOrderHom θ) x)) < ↑i
[PROOFSTEP]
exact lt_of_le_of_lt (Fin.coe_castPred_le_self _) (Fin.lt_iff_val_lt_val.mp ((Ne.le_iff_lt (hi x)).mp h'))
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
rw [Fin.castSucc_castPred]
[GOAL]
case pos
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x < Fin.last (n + 1)
[PROOFSTEP]
apply lt_of_le_of_lt h' h
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : ¬↑(Hom.toOrderHom θ) x ≤ i
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
simp only [not_le] at h'
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : i < ↑(Hom.toOrderHom θ) x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x))
[PROOFSTEP]
simp only [σ, mkHom, Hom.toOrderHom_mk, OrderHom.coe_mk,
Fin.predAbove_above (Fin.castPred i) (θ.toOrderHom x) (by simpa only [Fin.castSucc_castPred h] using h')]
[GOAL]
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : i < ↑(Hom.toOrderHom θ) x
⊢ Fin.castSucc (Fin.castPred i) < ↑(Hom.toOrderHom θ) x
[PROOFSTEP]
simpa only [Fin.castSucc_castPred h] using h'
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : i < ↑(Hom.toOrderHom θ) x
⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (Fin.pred (↑(Hom.toOrderHom θ) x) (_ : ↑(Hom.toOrderHom θ) x ≠ 0))
[PROOFSTEP]
dsimp [δ]
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : i < ↑(Hom.toOrderHom θ) x
⊢ ↑(Hom.toOrderHom θ) x = Fin.succAbove i (Fin.pred (↑(Hom.toOrderHom θ) x) (_ : ↑(Hom.toOrderHom θ) x ≠ 0))
[PROOFSTEP]
erw [Fin.succAbove_above i _, Fin.succ_pred]
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : i < Fin.last (n + 1)
x : Fin (len Δ + 1)
h' : i < ↑(Hom.toOrderHom θ) x
⊢ i ≤ Fin.castSucc (Fin.pred (↑(Hom.toOrderHom θ) x) (_ : ↑(Hom.toOrderHom θ) x ≠ 0))
[PROOFSTEP]
simpa only [Fin.le_iff_val_le_val, Fin.coe_castSucc, Fin.coe_pred] using Nat.le_pred_of_lt (Fin.lt_iff_val_lt_val.mp h')
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
i : Fin (n + 2)
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i
h : ¬i < Fin.last (n + 1)
⊢ ∃ θ', θ = θ' ≫ δ i
[PROOFSTEP]
obtain rfl := le_antisymm (Fin.le_last i) (not_lt.mp h)
[GOAL]
case neg
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1)
h : ¬Fin.last (n + 1) < Fin.last (n + 1)
⊢ ∃ θ', θ = θ' ≫ δ (Fin.last (n + 1))
[PROOFSTEP]
use θ ≫ σ (Fin.last _)
[GOAL]
case h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1)
h : ¬Fin.last (n + 1) < Fin.last (n + 1)
⊢ θ = (θ ≫ σ (Fin.last n)) ≫ δ (Fin.last (n + 1))
[PROOFSTEP]
ext x : 4
[GOAL]
case h.a.h.h.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1)
h : ¬Fin.last (n + 1) < Fin.last (n + 1)
x : Fin (len Δ + 1)
⊢ ↑(↑(Hom.toOrderHom θ) x) = ↑(↑(Hom.toOrderHom ((θ ≫ σ (Fin.last n)) ≫ δ (Fin.last (n + 1)))) x)
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
case h.a.h.h.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1)
h : ¬Fin.last (n + 1) < Fin.last (n + 1)
x : Fin (len Δ + 1)
⊢ ↑(↑(Hom.toOrderHom θ) x) = ↑(Fin.succAbove (Fin.last (n + 1)) (Fin.castPred (↑(Hom.toOrderHom θ) x)))
[PROOFSTEP]
dsimp only [Fin.castPred]
[GOAL]
case h.a.h.h.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1)
h : ¬Fin.last (n + 1) < Fin.last (n + 1)
x : Fin (len Δ + 1)
⊢ ↑(↑(Hom.toOrderHom θ) x) = ↑(Fin.succAbove (Fin.last (n + 1)) (Fin.predAbove (Fin.last n) (↑(Hom.toOrderHom θ) x)))
[PROOFSTEP]
rw [Fin.predAbove_last, Fin.succAbove_last, Fin.castSucc_castPred]
[GOAL]
case h.a.h.h.h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1)
h : ¬Fin.last (n + 1) < Fin.last (n + 1)
x : Fin (len Δ + 1)
⊢ ↑(Hom.toOrderHom θ) x < Fin.last (n + 1)
[PROOFSTEP]
exact (Ne.le_iff_lt (hi x)).mp (Fin.le_last _)
[GOAL]
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hθ : ¬Function.Surjective ↑(Hom.toOrderHom θ)
⊢ ∃ i θ', θ = θ' ≫ δ i
[PROOFSTEP]
cases' not_forall.mp hθ with i hi
[GOAL]
case intro
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hθ : ¬Function.Surjective ↑(Hom.toOrderHom θ)
i : Fin (len [n + 1] + 1)
hi : ¬∃ a, ↑(Hom.toOrderHom θ) a = i
⊢ ∃ i θ', θ = θ' ≫ δ i
[PROOFSTEP]
use i
[GOAL]
case h
n : ℕ
Δ : SimplexCategory
θ : Δ ⟶ [n + 1]
hθ : ¬Function.Surjective ↑(Hom.toOrderHom θ)
i : Fin (len [n + 1] + 1)
hi : ¬∃ a, ↑(Hom.toOrderHom θ) a = i
⊢ ∃ θ', θ = θ' ≫ δ i
[PROOFSTEP]
exact eq_comp_δ_of_not_surjective' θ i (not_exists.mp hi)
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Mono i
⊢ i = 𝟙 x
[PROOFSTEP]
suffices IsIso i by apply eq_id_of_isIso
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Mono i
this : IsIso i
⊢ i = 𝟙 x
[PROOFSTEP]
apply eq_id_of_isIso
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Mono i
⊢ IsIso i
[PROOFSTEP]
apply isIso_of_bijective
[GOAL]
case hf
x : SimplexCategory
i : x ⟶ x
inst✝ : Mono i
⊢ Function.Bijective (Hom.toOrderHom i).toFun
[PROOFSTEP]
dsimp
[GOAL]
case hf
x : SimplexCategory
i : x ⟶ x
inst✝ : Mono i
⊢ Function.Bijective ↑(Hom.toOrderHom i)
[PROOFSTEP]
rw [Fintype.bijective_iff_injective_and_card i.toOrderHom, ← mono_iff_injective, eq_self_iff_true, and_true_iff]
[GOAL]
case hf
x : SimplexCategory
i : x ⟶ x
inst✝ : Mono i
⊢ Mono i
[PROOFSTEP]
infer_instance
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
⊢ i = 𝟙 x
[PROOFSTEP]
suffices IsIso i by
haveI := this
apply eq_id_of_isIso
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
this : IsIso i
⊢ i = 𝟙 x
[PROOFSTEP]
haveI := this
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
this✝ this : IsIso i
⊢ i = 𝟙 x
[PROOFSTEP]
apply eq_id_of_isIso
[GOAL]
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
⊢ IsIso i
[PROOFSTEP]
apply isIso_of_bijective
[GOAL]
case hf
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
⊢ Function.Bijective (Hom.toOrderHom i).toFun
[PROOFSTEP]
dsimp
[GOAL]
case hf
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
⊢ Function.Bijective ↑(Hom.toOrderHom i)
[PROOFSTEP]
rw [Fintype.bijective_iff_surjective_and_card i.toOrderHom, ← epi_iff_surjective, eq_self_iff_true, and_true_iff]
[GOAL]
case hf
x : SimplexCategory
i : x ⟶ x
inst✝ : Epi i
⊢ Epi i
[PROOFSTEP]
infer_instance
[GOAL]
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
⊢ ∃ i, θ = σ i
[PROOFSTEP]
rcases eq_σ_comp_of_not_injective θ
(by
by_contra h
simpa using le_of_mono (mono_iff_injective.mpr h)) with
⟨i, θ', h⟩
[GOAL]
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
⊢ ¬Function.Injective ↑(Hom.toOrderHom θ)
[PROOFSTEP]
by_contra h
[GOAL]
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
h : Function.Injective ↑(Hom.toOrderHom θ)
⊢ False
[PROOFSTEP]
simpa using le_of_mono (mono_iff_injective.mpr h)
[GOAL]
case intro.intro
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
i : Fin (n + 1)
θ' : [n] ⟶ [n]
h : θ = σ i ≫ θ'
⊢ ∃ i, θ = σ i
[PROOFSTEP]
use i
[GOAL]
case h
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
i : Fin (n + 1)
θ' : [n] ⟶ [n]
h : θ = σ i ≫ θ'
⊢ θ = σ i
[PROOFSTEP]
haveI : Epi (σ i ≫ θ') := by
rw [← h]
infer_instance
[GOAL]
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
i : Fin (n + 1)
θ' : [n] ⟶ [n]
h : θ = σ i ≫ θ'
⊢ Epi (σ i ≫ θ')
[PROOFSTEP]
rw [← h]
[GOAL]
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
i : Fin (n + 1)
θ' : [n] ⟶ [n]
h : θ = σ i ≫ θ'
⊢ Epi θ
[PROOFSTEP]
infer_instance
[GOAL]
case h
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
i : Fin (n + 1)
θ' : [n] ⟶ [n]
h : θ = σ i ≫ θ'
this : Epi (σ i ≫ θ')
⊢ θ = σ i
[PROOFSTEP]
haveI := CategoryTheory.epi_of_epi (σ i) θ'
[GOAL]
case h
n : ℕ
θ : [n + 1] ⟶ [n]
inst✝ : Epi θ
i : Fin (n + 1)
θ' : [n] ⟶ [n]
h : θ = σ i ≫ θ'
this✝ : Epi (σ i ≫ θ')
this : Epi θ'
⊢ θ = σ i
[PROOFSTEP]
rw [h, eq_id_of_epi θ', Category.comp_id]
[GOAL]
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
⊢ ∃ i, θ = δ i
[PROOFSTEP]
rcases eq_comp_δ_of_not_surjective θ
(by
by_contra h
simpa using le_of_epi (epi_iff_surjective.mpr h)) with
⟨i, θ', h⟩
[GOAL]
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
⊢ ¬Function.Surjective ↑(Hom.toOrderHom θ)
[PROOFSTEP]
by_contra h
[GOAL]
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
h : Function.Surjective ↑(Hom.toOrderHom θ)
⊢ False
[PROOFSTEP]
simpa using le_of_epi (epi_iff_surjective.mpr h)
[GOAL]
case intro.intro
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
i : Fin (n + 2)
θ' : [n] ⟶ [n]
h : θ = θ' ≫ δ i
⊢ ∃ i, θ = δ i
[PROOFSTEP]
use i
[GOAL]
case h
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
i : Fin (n + 2)
θ' : [n] ⟶ [n]
h : θ = θ' ≫ δ i
⊢ θ = δ i
[PROOFSTEP]
haveI : Mono (θ' ≫ δ i) := by
rw [← h]
infer_instance
[GOAL]
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
i : Fin (n + 2)
θ' : [n] ⟶ [n]
h : θ = θ' ≫ δ i
⊢ Mono (θ' ≫ δ i)
[PROOFSTEP]
rw [← h]
[GOAL]
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
i : Fin (n + 2)
θ' : [n] ⟶ [n]
h : θ = θ' ≫ δ i
⊢ Mono θ
[PROOFSTEP]
infer_instance
[GOAL]
case h
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
i : Fin (n + 2)
θ' : [n] ⟶ [n]
h : θ = θ' ≫ δ i
this : Mono (θ' ≫ δ i)
⊢ θ = δ i
[PROOFSTEP]
haveI := CategoryTheory.mono_of_mono θ' (δ i)
[GOAL]
case h
n : ℕ
θ : [n] ⟶ [n + 1]
inst✝ : Mono θ
i : Fin (n + 2)
θ' : [n] ⟶ [n]
h : θ = θ' ≫ δ i
this✝ : Mono (θ' ≫ δ i)
this : Mono θ'
⊢ θ = δ i
[PROOFSTEP]
rw [h, eq_id_of_mono θ', Category.id_comp]
[GOAL]
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
hi : Mono i
hi' : Δ ≠ Δ'
⊢ len Δ' < len Δ
[PROOFSTEP]
rcases lt_or_eq_of_le (len_le_of_mono hi) with (h | h)
[GOAL]
case inl
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
hi : Mono i
hi' : Δ ≠ Δ'
h : len Δ' < len Δ
⊢ len Δ' < len Δ
[PROOFSTEP]
exact h
[GOAL]
case inr
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
hi : Mono i
hi' : Δ ≠ Δ'
h : len Δ' = len Δ
⊢ len Δ' < len Δ
[PROOFSTEP]
exfalso
[GOAL]
case inr.h
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
hi : Mono i
hi' : Δ ≠ Δ'
h : len Δ' = len Δ
⊢ False
[PROOFSTEP]
exact hi' (by ext; exact h.symm)
[GOAL]
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
hi : Mono i
hi' : Δ ≠ Δ'
h : len Δ' = len Δ
⊢ Δ = Δ'
[PROOFSTEP]
ext
[GOAL]
case a
Δ' Δ : SimplexCategory
i : Δ' ⟶ Δ
hi : Mono i
hi' : Δ ≠ Δ'
h : len Δ' = len Δ
⊢ len Δ = len Δ'
[PROOFSTEP]
exact h.symm
[GOAL]
Δ Δ' Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e : Δ ⟶ Δ'
inst✝¹ : Epi e
i : Δ' ⟶ Δ''
inst✝ : Mono i
fac : e ≫ i = φ
⊢ image φ = Δ'
[PROOFSTEP]
haveI := strongEpi_of_epi e
[GOAL]
Δ Δ' Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e : Δ ⟶ Δ'
inst✝¹ : Epi e
i : Δ' ⟶ Δ''
inst✝ : Mono i
fac : e ≫ i = φ
this : StrongEpi e
⊢ image φ = Δ'
[PROOFSTEP]
let e := image.isoStrongEpiMono e i fac
[GOAL]
Δ Δ' Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e✝ : Δ ⟶ Δ'
inst✝¹ : Epi e✝
i : Δ' ⟶ Δ''
inst✝ : Mono i
fac : e✝ ≫ i = φ
this : StrongEpi e✝
e : Δ' ≅ image φ := image.isoStrongEpiMono e✝ i fac
⊢ image φ = Δ'
[PROOFSTEP]
ext
[GOAL]
case a
Δ Δ' Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e✝ : Δ ⟶ Δ'
inst✝¹ : Epi e✝
i : Δ' ⟶ Δ''
inst✝ : Mono i
fac : e✝ ≫ i = φ
this : StrongEpi e✝
e : Δ' ≅ image φ := image.isoStrongEpiMono e✝ i fac
⊢ len (image φ) = len Δ'
[PROOFSTEP]
exact le_antisymm (len_le_of_epi (inferInstance : Epi e.hom)) (len_le_of_mono (inferInstance : Mono e.hom))
[GOAL]
Δ Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e : Δ ⟶ image φ
inst✝¹ : Epi e
i : image φ ⟶ Δ''
inst✝ : Mono i
fac : e ≫ i = φ
⊢ image.ι φ = i
[PROOFSTEP]
haveI := strongEpi_of_epi e
[GOAL]
Δ Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e : Δ ⟶ image φ
inst✝¹ : Epi e
i : image φ ⟶ Δ''
inst✝ : Mono i
fac : e ≫ i = φ
this : StrongEpi e
⊢ image.ι φ = i
[PROOFSTEP]
rw [← image.isoStrongEpiMono_hom_comp_ι e i fac, SimplexCategory.eq_id_of_isIso (image.isoStrongEpiMono e i fac).hom,
Category.id_comp]
[GOAL]
Δ Δ'' : SimplexCategory
φ : Δ ⟶ Δ''
e : Δ ⟶ image φ
inst✝¹ : Epi e
i : image φ ⟶ Δ''
inst✝ : Mono i
fac : e ≫ i = φ
⊢ factorThruImage φ = e
[PROOFSTEP]
rw [← cancel_mono i, fac, ← image_ι_eq fac, image.fac]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.SimplexCategory", "llama_tokens": 78573} |
[GOAL]
α : Type u_1
inst✝ : Primcodable α
p : α → Prop
⊢ ∀ (a : α), p a ↔ p (id a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → β
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ q (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
a : α
h : p a
⊢ r ((g ∘ f) a)
[PROOFSTEP]
erw [← h₂, ← h₁]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → β
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ q (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
a : α
h : p a
⊢ p a
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → β
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ q (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
a : α
h : r ((g ∘ f) a)
⊢ p a
[PROOFSTEP]
rwa [h₁, h₂]
[GOAL]
α : Type u_1
inst✝ : Primcodable α
p : α → Prop
⊢ ∀ (a : α), p a ↔ p (id a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → β
c₁ : Computable f
i₁ : Injective f
h₁ : ∀ (a : α), p a ↔ q (f a)
g : β → γ
c₂ : Computable g
i₂ : Injective g
h₂ : ∀ (a : β), q a ↔ r (g a)
a : α
h : p a
⊢ r ((g ∘ f) a)
[PROOFSTEP]
erw [← h₂, ← h₁]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → β
c₁ : Computable f
i₁ : Injective f
h₁ : ∀ (a : α), p a ↔ q (f a)
g : β → γ
c₂ : Computable g
i₂ : Injective g
h₂ : ∀ (a : β), q a ↔ r (g a)
a : α
h : p a
⊢ p a
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → β
c₁ : Computable f
i₁ : Injective f
h₁ : ∀ (a : α), p a ↔ q (f a)
g : β → γ
c₂ : Computable g
i₂ : Injective g
h₂ : ∀ (a : β), q a ↔ r (g a)
a : α
h : r ((g ∘ f) a)
⊢ p a
[PROOFSTEP]
rwa [h₁, h₂]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
e : α ≃ β
q : β → Prop
h : Computable ↑e.symm
⊢ q ≤₁ (q ∘ ↑e)
[PROOFSTEP]
convert OneOneReducible.of_equiv _ h
[GOAL]
case h.e'_5
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
e : α ≃ β
q : β → Prop
h : Computable ↑e.symm
⊢ q = (q ∘ ↑e) ∘ ↑e.symm
[PROOFSTEP]
funext
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
e : α ≃ β
q : β → Prop
h : Computable ↑e.symm
x✝ : β
⊢ q x✝ = ((q ∘ ↑e) ∘ ↑e.symm) x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
p : α → Prop
q : β → Prop
h₁ : p ≤₀ q
h₂ : ComputablePred q
⊢ ComputablePred p
[PROOFSTEP]
rcases h₁ with ⟨f, c, hf⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
p : α → Prop
q : β → Prop
h₂ : ComputablePred q
f : α → β
c : Computable f
hf : ∀ (a : α), p a ↔ q (f a)
⊢ ComputablePred p
[PROOFSTEP]
rw [show p = fun a => q (f a) from Set.ext hf]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
p : α → Prop
q : β → Prop
h₂ : ComputablePred q
f : α → β
c : Computable f
hf : ∀ (a : α), p a ↔ q (f a)
⊢ ComputablePred fun a => q (f a)
[PROOFSTEP]
rcases computable_iff.1 h₂ with ⟨g, hg, rfl⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
p : α → Prop
f : α → β
c : Computable f
g : β → Bool
hg : Computable g
h₂ : ComputablePred fun a => g a = true
hf : ∀ (a : α), p a ↔ (fun a => g a = true) (f a)
⊢ ComputablePred fun a => (fun a => g a = true) (f a)
[PROOFSTEP]
exact ⟨by infer_instance, by simpa using hg.comp c⟩
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
p : α → Prop
f : α → β
c : Computable f
g : β → Bool
hg : Computable g
h₂ : ComputablePred fun a => g a = true
hf : ∀ (a : α), p a ↔ (fun a => g a = true) (f a)
⊢ DecidablePred fun a => (fun a => g a = true) (f a)
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
p : α → Prop
f : α → β
c : Computable f
g : β → Bool
hg : Computable g
h₂ : ComputablePred fun a => g a = true
hf : ∀ (a : α), p a ↔ (fun a => g a = true) (f a)
⊢ Computable fun a => decide ((fun a => (fun a => g a = true) (f a)) a)
[PROOFSTEP]
simpa using hg.comp c
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → γ
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ r (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
x : α ⊕ β
⊢ (p ⊕' q) x ↔ r ((f ⊕' g) x)
[PROOFSTEP]
cases x <;> [apply h₁; apply h₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → γ
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ r (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
x : α ⊕ β
⊢ (p ⊕' q) x ↔ r ((f ⊕' g) x)
[PROOFSTEP]
cases x
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → γ
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ r (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
val✝ : α
⊢ (p ⊕' q) (Sum.inl val✝) ↔ r ((f ⊕' g) (Sum.inl val✝))
[PROOFSTEP]
apply h₁
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
p : α → Prop
q : β → Prop
r : γ → Prop
f : α → γ
c₁ : Computable f
h₁ : ∀ (a : α), p a ↔ r (f a)
g : β → γ
c₂ : Computable g
h₂ : ∀ (a : β), q a ↔ r (g a)
val✝ : β
⊢ (p ⊕' q) (Sum.inr val✝) ↔ r ((f ⊕' g) (Sum.inr val✝))
[PROOFSTEP]
apply h₂
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p : Set α
⊢ ∀ (a : α), p a ↔ toNat p (Encodable.encode a)
[PROOFSTEP]
simp [toNat, setOf]
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p : Set α
⊢ ManyOneEquiv (toNat p) p
[PROOFSTEP]
simp [ManyOneEquiv]
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p : Set α
q : Set β
⊢ ManyOneEquiv (toNat p) (toNat q) ↔ ManyOneEquiv p q
[PROOFSTEP]
simp [ManyOneEquiv]
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ d₂ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
p : Set ℕ
q₁ q₂ : ℕ → Prop
hq : ManyOneEquiv q₁ q₂
⊢ ManyOneEquiv p p
[PROOFSTEP]
rfl
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ d₂ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
⊢ ∀ (p q : ℕ → Prop),
ManyOneEquiv p q →
(fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p =
(fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) q
[PROOFSTEP]
intro p₁ p₂ hp
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ d₂ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
p₁ p₂ : ℕ → Prop
hp : ManyOneEquiv p₁ p₂
⊢ (fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₁ =
(fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₂
[PROOFSTEP]
induction d₂ using ManyOneDegree.ind_on
[GOAL]
case h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
p₁ p₂ : ℕ → Prop
hp : ManyOneEquiv p₁ p₂
p✝ : Set ℕ
⊢ (fun p => ManyOneDegree.liftOn (of p✝) (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₁ =
(fun p => ManyOneDegree.liftOn (of p✝) (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₂
[PROOFSTEP]
apply h
[GOAL]
case h.a
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
p₁ p₂ : ℕ → Prop
hp : ManyOneEquiv p₁ p₂
p✝ : Set ℕ
⊢ ManyOneEquiv p₁ p₂
case h.a
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
p₁ p₂ : ℕ → Prop
hp : ManyOneEquiv p₁ p₂
p✝ : Set ℕ
⊢ ManyOneEquiv (toNat p✝) (toNat p✝)
[PROOFSTEP]
assumption
[GOAL]
case h.a
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
φ : Sort ?u.72115
d₁ : ManyOneDegree
f : Set ℕ → Set ℕ → φ
h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂
p₁ p₂ : ℕ → Prop
hp : ManyOneEquiv p₁ p₂
p✝ : Set ℕ
⊢ ManyOneEquiv (toNat p✝) (toNat p✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p : α → Prop
q : β → Prop
⊢ of p = of q ↔ ManyOneEquiv p q
[PROOFSTEP]
rw [of, of, Quotient.eq'']
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p : α → Prop
q : β → Prop
⊢ Setoid.r (toNat p) (toNat q) ↔ ManyOneEquiv p q
[PROOFSTEP]
unfold Setoid.r
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p : α → Prop
q : β → Prop
⊢ { r := ManyOneEquiv, iseqv := proof_1 }.1 (toNat p) (toNat q) ↔ ManyOneEquiv p q
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d : ManyOneDegree
⊢ d ≤ d
[PROOFSTEP]
induction d using ManyOneDegree.ind_on
[GOAL]
case h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p✝ : Set ℕ
⊢ of p✝ ≤ of p✝
[PROOFSTEP]
simp
[GOAL]
case h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p✝ : Set ℕ
⊢ p✝ ≤₀ p✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ : ManyOneDegree
⊢ d₁ ≤ d₂ → d₂ ≤ d₁ → d₁ = d₂
[PROOFSTEP]
induction d₁ using ManyOneDegree.ind_on
[GOAL]
case h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₂ : ManyOneDegree
p✝ : Set ℕ
⊢ of p✝ ≤ d₂ → d₂ ≤ of p✝ → of p✝ = d₂
[PROOFSTEP]
induction d₂ using ManyOneDegree.ind_on
[GOAL]
case h.h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p✝¹ p✝ : Set ℕ
⊢ of p✝¹ ≤ of p✝ → of p✝ ≤ of p✝¹ → of p✝¹ = of p✝
[PROOFSTEP]
intro hp hq
[GOAL]
case h.h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p✝¹ p✝ : Set ℕ
hp : of p✝¹ ≤ of p✝
hq : of p✝ ≤ of p✝¹
⊢ of p✝¹ = of p✝
[PROOFSTEP]
simp_all only [ManyOneEquiv, of_le_of, of_eq_of, true_and_iff]
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ d₃ : ManyOneDegree
⊢ d₁ ≤ d₂ → d₂ ≤ d₃ → d₁ ≤ d₃
[PROOFSTEP]
induction d₁ using ManyOneDegree.ind_on
[GOAL]
case h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₂ d₃ : ManyOneDegree
p✝ : Set ℕ
⊢ of p✝ ≤ d₂ → d₂ ≤ d₃ → of p✝ ≤ d₃
[PROOFSTEP]
induction d₂ using ManyOneDegree.ind_on
[GOAL]
case h.h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₃ : ManyOneDegree
p✝¹ p✝ : Set ℕ
⊢ of p✝¹ ≤ of p✝ → of p✝ ≤ d₃ → of p✝¹ ≤ d₃
[PROOFSTEP]
induction d₃ using ManyOneDegree.ind_on
[GOAL]
case h.h.h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p✝² p✝¹ p✝ : Set ℕ
⊢ of p✝² ≤ of p✝¹ → of p✝¹ ≤ of p✝ → of p✝² ≤ of p✝
[PROOFSTEP]
apply ManyOneReducible.trans
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ : ManyOneDegree
⊢ ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop),
ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → (fun a b => of (a ⊕' b)) p₁ q₁ = (fun a b => of (a ⊕' b)) p₂ q₂
[PROOFSTEP]
rintro a b c d ⟨hl₁, hr₁⟩ ⟨hl₂, hr₂⟩
[GOAL]
case intro.intro
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ : ManyOneDegree
a b c d : ℕ → Prop
hl₁ : a ≤₀ b
hr₁ : b ≤₀ a
hl₂ : c ≤₀ d
hr₂ : d ≤₀ c
⊢ (fun a b => of (a ⊕' b)) a c = (fun a b => of (a ⊕' b)) b d
[PROOFSTEP]
rw [of_eq_of]
[GOAL]
case intro.intro
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ : ManyOneDegree
a b c d : ℕ → Prop
hl₁ : a ≤₀ b
hr₁ : b ≤₀ a
hl₂ : c ≤₀ d
hr₂ : d ≤₀ c
⊢ ManyOneEquiv (a ⊕' c) (b ⊕' d)
[PROOFSTEP]
exact
⟨disjoin_manyOneReducible (hl₁.trans OneOneReducible.disjoin_left.to_many_one)
(hl₂.trans OneOneReducible.disjoin_right.to_many_one),
disjoin_manyOneReducible (hr₁.trans OneOneReducible.disjoin_left.to_many_one)
(hr₂.trans OneOneReducible.disjoin_right.to_many_one)⟩
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ d₃ : ManyOneDegree
⊢ d₁ + d₂ ≤ d₃ ↔ d₁ ≤ d₃ ∧ d₂ ≤ d₃
[PROOFSTEP]
induction d₁ using ManyOneDegree.ind_on
[GOAL]
case h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₂ d₃ : ManyOneDegree
p✝ : Set ℕ
⊢ of p✝ + d₂ ≤ d₃ ↔ of p✝ ≤ d₃ ∧ d₂ ≤ d₃
[PROOFSTEP]
induction d₂ using ManyOneDegree.ind_on
[GOAL]
case h.h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₃ : ManyOneDegree
p✝¹ p✝ : Set ℕ
⊢ of p✝¹ + of p✝ ≤ d₃ ↔ of p✝¹ ≤ d₃ ∧ of p✝ ≤ d₃
[PROOFSTEP]
induction d₃ using ManyOneDegree.ind_on
[GOAL]
case h.h.h
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
p✝² p✝¹ p✝ : Set ℕ
⊢ of p✝² + of p✝¹ ≤ of p✝ ↔ of p✝² ≤ of p✝ ∧ of p✝¹ ≤ of p✝
[PROOFSTEP]
simpa only [← add_of, of_le_of] using disjoin_le
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ : ManyOneDegree
⊢ d₁ + ?m.117648 d₁ d₂ ≤ d₁ + d₂
[PROOFSTEP]
rfl
[GOAL]
α : Type u
inst✝⁵ : Primcodable α
inst✝⁴ : Inhabited α
β : Type v
inst✝³ : Primcodable β
inst✝² : Inhabited β
γ : Type w
inst✝¹ : Primcodable γ
inst✝ : Inhabited γ
d₁ d₂ : ManyOneDegree
⊢ ?m.117829 d₁ d₂ + d₂ ≤ d₁ + d₂
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Computability.Reduce", "llama_tokens": 9456} |
{"mathlib_filename": "Mathlib.Util.AtomM", "llama_tokens": 0} |
|
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous reflTransSymmAux
[PROOFSTEP]
refine' continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _
[GOAL]
case refine'_1
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x.snd
[PROOFSTEP]
continuity
[GOAL]
case refine'_2
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 1 / 2
[PROOFSTEP]
continuity
[GOAL]
case refine'_3
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x.fst * 2 * ↑x.snd
[PROOFSTEP]
continuity
[GOAL]
case refine'_4
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x.fst * (2 - 2 * ↑x.snd)
[PROOFSTEP]
continuity
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I × ↑I), ↑x.snd = 1 / 2 → ↑x.fst * 2 * ↑x.snd = ↑x.fst * (2 - 2 * ↑x.snd)
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
hx : ↑x.snd = 1 / 2
⊢ ↑x.fst * 2 * ↑x.snd = ↑x.fst * (2 - 2 * ↑x.snd)
[PROOFSTEP]
rw [hx, mul_assoc]
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
hx : ↑x.snd = 1 / 2
⊢ ↑x.fst * (2 * (1 / 2)) = ↑x.fst * (2 - 2 * (1 / 2))
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
⊢ reflTransSymmAux x ∈ I
[PROOFSTEP]
dsimp only [reflTransSymmAux]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
⊢ (if ↑x.snd ≤ 1 / 2 then ↑x.fst * 2 * ↑x.snd else ↑x.fst * (2 - 2 * ↑x.snd)) ∈ I
[PROOFSTEP]
split_ifs
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ ↑x.fst * 2 * ↑x.snd ∈ I
[PROOFSTEP]
constructor
[GOAL]
case pos.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.fst * 2 * ↑x.snd
[PROOFSTEP]
apply mul_nonneg
[GOAL]
case pos.left.ha
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.fst * 2
[PROOFSTEP]
apply mul_nonneg
[GOAL]
case pos.left.ha.ha
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.fst
[PROOFSTEP]
unit_interval
[GOAL]
case pos.left.ha.hb
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
case pos.left.hb
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.snd
[PROOFSTEP]
unit_interval
[GOAL]
case pos.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ ↑x.fst * 2 * ↑x.snd ≤ 1
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case pos.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ ↑x.fst * (2 * ↑x.snd) ≤ 1
[PROOFSTEP]
apply mul_le_one
[GOAL]
case pos.right.ha
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ ↑x.fst ≤ 1
[PROOFSTEP]
unit_interval
[GOAL]
case pos.right.hb'
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ 2 * ↑x.snd
[PROOFSTEP]
apply mul_nonneg
[GOAL]
case pos.right.hb'.ha
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ 2
[PROOFSTEP]
norm_num
[GOAL]
case pos.right.hb'.hb
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.snd
[PROOFSTEP]
unit_interval
[GOAL]
case pos.right.hb
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ↑x.snd ≤ 1 / 2
⊢ 2 * ↑x.snd ≤ 1
[PROOFSTEP]
linarith
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ ↑x.fst * (2 - 2 * ↑x.snd) ∈ I
[PROOFSTEP]
constructor
[GOAL]
case neg.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.fst * (2 - 2 * ↑x.snd)
[PROOFSTEP]
apply mul_nonneg
[GOAL]
case neg.left.ha
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ 0 ≤ ↑x.fst
[PROOFSTEP]
unit_interval
[GOAL]
case neg.left.hb
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ 0 ≤ 2 - 2 * ↑x.snd
[PROOFSTEP]
linarith [unitInterval.nonneg x.2, unitInterval.le_one x.2]
[GOAL]
case neg.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ ↑x.fst * (2 - 2 * ↑x.snd) ≤ 1
[PROOFSTEP]
apply mul_le_one
[GOAL]
case neg.right.ha
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ ↑x.fst ≤ 1
[PROOFSTEP]
unit_interval
[GOAL]
case neg.right.hb'
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ 0 ≤ 2 - 2 * ↑x.snd
[PROOFSTEP]
linarith [unitInterval.nonneg x.2, unitInterval.le_one x.2]
[GOAL]
case neg.right.hb
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I × ↑I
h✝ : ¬↑x.snd ≤ 1 / 2
⊢ 2 - 2 * ↑x.snd ≤ 1
[PROOFSTEP]
linarith [unitInterval.nonneg x.2, unitInterval.le_one x.2]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ Continuous fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }
[PROOFSTEP]
continuity
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ ∀ (x : ↑I),
ContinuousMap.toFun
(ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (0, x) =
↑(Path.refl x₀).toContinuousMap x
[PROOFSTEP]
simp [reflTransSymmAux]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
⊢ ContinuousMap.toFun
(ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (1, x) =
↑(Path.trans p (Path.symm p)).toContinuousMap x
[PROOFSTEP]
dsimp only [reflTransSymmAux, Path.coe_toContinuousMap, Path.trans]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
⊢ ↑p { val := if ↑x ≤ 1 / 2 then ↑1 * 2 * ↑x else ↑1 * (2 - 2 * ↑x), property := (_ : reflTransSymmAux (1, x) ∈ I) } =
↑(ContinuousMap.mk
((fun t => if t ≤ 1 / 2 then extend p (2 * t) else extend (Path.symm p) (2 * t - 1)) ∘ Subtype.val))
x
[PROOFSTEP]
change _ = ite _ _ _
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
⊢ ↑p { val := if ↑x ≤ 1 / 2 then ↑1 * 2 * ↑x else ↑1 * (2 - 2 * ↑x), property := (_ : reflTransSymmAux (1, x) ∈ I) } =
if ↑x ≤ 1 / 2 then extend p (2 * ↑x) else extend (Path.symm p) (2 * ↑x - 1)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ↑x ≤ 1 / 2
⊢ ↑p { val := ↑1 * 2 * ↑x, property := (_ : (fun x => x ∈ I) (↑1 * 2 * ↑x)) } = extend p (2 * ↑x)
[PROOFSTEP]
rw [Path.extend, Set.IccExtend_of_mem]
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ↑x ≤ 1 / 2
⊢ ↑p { val := ↑1 * 2 * ↑x, property := (_ : (fun x => x ∈ I) (↑1 * 2 * ↑x)) } =
↑p { val := 2 * ↑x, property := ?pos.hx✝ }
[PROOFSTEP]
norm_num
[GOAL]
case pos.hx
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ↑x ≤ 1 / 2
⊢ 2 * ↑x ∈ Set.Icc 0 1
[PROOFSTEP]
rw [unitInterval.mul_pos_mem_iff zero_lt_two]
[GOAL]
case pos.hx
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ↑x ≤ 1 / 2
⊢ ↑x ∈ Set.Icc 0 (1 / 2)
[PROOFSTEP]
exact ⟨unitInterval.nonneg x, h⟩
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ ↑p { val := ↑1 * (2 - 2 * ↑x), property := (_ : (fun x => x ∈ I) (↑1 * (2 - 2 * ↑x))) } =
extend (Path.symm p) (2 * ↑x - 1)
[PROOFSTEP]
rw [Path.symm, Path.extend, Set.IccExtend_of_mem]
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ ↑p { val := ↑1 * (2 - 2 * ↑x), property := (_ : (fun x => x ∈ I) (↑1 * (2 - 2 * ↑x))) } =
↑{ toContinuousMap := ContinuousMap.mk (↑p ∘ σ),
source' := (_ : ContinuousMap.toFun (ContinuousMap.mk (↑p ∘ σ)) 0 = x₁),
target' := (_ : ContinuousMap.toFun (ContinuousMap.mk (↑p ∘ σ)) 1 = x₀) }
{ val := 2 * ↑x - 1, property := ?neg.hx✝ }
[PROOFSTEP]
simp only [Set.Icc.coe_one, one_mul, coe_mk_mk, Function.comp_apply]
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ ↑p { val := 2 - 2 * ↑x, property := (_ : (fun x => x ∈ I) (2 - 2 * ↑x)) } =
↑p (σ { val := 2 * ↑x - 1, property := ?neg.hx✝ })
[PROOFSTEP]
congr 1
[GOAL]
case neg.h.e_6.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ { val := 2 - 2 * ↑x, property := (_ : (fun x => x ∈ I) (2 - 2 * ↑x)) } = σ { val := 2 * ↑x - 1, property := ?neg.hx✝ }
[PROOFSTEP]
ext
-- Porting note: norm_num ignores arguments.
[GOAL]
case neg.h.e_6.h.a
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ ↑{ val := 2 - 2 * ↑x, property := (_ : (fun x => x ∈ I) (2 - 2 * ↑x)) } =
↑(σ { val := 2 * ↑x - 1, property := ?neg.hx✝ })
[PROOFSTEP]
simp [sub_sub_eq_add_sub]
[GOAL]
case neg.h.e_6.h.a
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ 2 = 1 + 1
[PROOFSTEP]
norm_num
[GOAL]
case neg.hx
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ 2 * ↑x - 1 ∈ Set.Icc 0 1
[PROOFSTEP]
rw [unitInterval.two_mul_sub_one_mem_iff]
[GOAL]
case neg.hx
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x : ↑I
h : ¬↑x ≤ 1 / 2
⊢ ↑x ∈ Set.Icc (1 / 2) 1
[PROOFSTEP]
exact ⟨(not_le.1 h).le, unitInterval.le_one x⟩
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x ∈ {0, 1}
⊢ ↑(ContinuousMap.mk fun x =>
ContinuousMap.toFun
{
toContinuousMap :=
ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) },
map_zero_left :=
(_ :
∀ (a : ↑I),
↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀),
map_one_left :=
(_ :
∀ (x : ↑I),
ContinuousMap.toFun
(ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) })
(1, x) =
↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap
(t, x))
x =
↑(Path.refl x₀).toContinuousMap x ∧
↑(ContinuousMap.mk fun x =>
ContinuousMap.toFun
{
toContinuousMap :=
ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) },
map_zero_left :=
(_ :
∀ (a : ↑I),
↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀),
map_one_left :=
(_ :
∀ (x : ↑I),
ContinuousMap.toFun
(ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) })
(1, x) =
↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap
(t, x))
x =
↑(Path.trans p (Path.symm p)).toContinuousMap x
[PROOFSTEP]
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at hx
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0 ∨ x = 1
⊢ ↑(ContinuousMap.mk fun x =>
ContinuousMap.toFun
{
toContinuousMap :=
ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) },
map_zero_left :=
(_ :
∀ (a : ↑I),
↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀),
map_one_left :=
(_ :
∀ (x : ↑I),
ContinuousMap.toFun
(ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) })
(1, x) =
↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap
(t, x))
x =
↑(Path.refl x₀).toContinuousMap x ∧
↑(ContinuousMap.mk fun x =>
ContinuousMap.toFun
{
toContinuousMap :=
ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) },
map_zero_left :=
(_ :
∀ (a : ↑I),
↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀),
map_one_left :=
(_ :
∀ (x : ↑I),
ContinuousMap.toFun
(ContinuousMap.mk fun x =>
↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) })
(1, x) =
↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap
(t, x))
x =
↑(Path.trans p (Path.symm p)).toContinuousMap x
[PROOFSTEP]
simp only [ContinuousMap.coe_mk, coe_toContinuousMap, Path.refl_apply]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0 ∨ x = 1
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
cases hx with
| inl hx| inr hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0 ∨ x = 1
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
cases hx with
| inl hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
| inr hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0 ∨ x = 1
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
cases hx with
| inl hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
| inr hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
[GOAL]
case inl
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
| inl hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
[GOAL]
case inl
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
rw [hx]
[GOAL]
case inl
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0
⊢ ↑p { val := reflTransSymmAux (t, 0), property := (_ : reflTransSymmAux (t, 0) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, 0), property := (_ : reflTransSymmAux (t, 0) ∈ I) } =
↑(Path.trans p (Path.symm p)) 0
[PROOFSTEP]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
[GOAL]
case inl
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 0
⊢ ↑p { val := if 0 ≤ 2 then 0 else ↑t * 2, property := (_ : (fun x => x ∈ I) (if 0 ≤ 2 then 0 else ↑t * 2)) } = x₀
[PROOFSTEP]
norm_num
[GOAL]
case inr
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 1
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
| inr hx =>
rw [hx]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
norm_num
[GOAL]
case inr
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 1
⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } =
↑(Path.trans p (Path.symm p)) x
[PROOFSTEP]
rw [hx]
[GOAL]
case inr
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 1
⊢ ↑p { val := reflTransSymmAux (t, 1), property := (_ : reflTransSymmAux (t, 1) ∈ I) } = x₀ ∧
↑p { val := reflTransSymmAux (t, 1), property := (_ : reflTransSymmAux (t, 1) ∈ I) } =
↑(Path.trans p (Path.symm p)) 1
[PROOFSTEP]
simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero,
sub_self, Path.source, Path.target, and_self]
[GOAL]
case inr
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
t x : ↑I
hx : x = 1
⊢ ↑p { val := if 1 ≤ 2⁻¹ then ↑t * 2 else 0, property := (_ : (fun x => x ∈ I) (if 1 ≤ 2⁻¹ then ↑t * 2 else 0)) } = x₀
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous transReflReparamAux
[PROOFSTEP]
refine' continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _ <;> [continuity; continuity;
continuity; continuity; skip]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous transReflReparamAux
[PROOFSTEP]
refine' continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _
[GOAL]
case refine'_1
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x
[PROOFSTEP]
continuity
[GOAL]
case refine'_2
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 1 / 2
[PROOFSTEP]
continuity
[GOAL]
case refine'_3
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 2 * ↑x
[PROOFSTEP]
continuity
[GOAL]
case refine'_4
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 1
[PROOFSTEP]
continuity
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I), ↑x = 1 / 2 → 2 * ↑x = 1
[PROOFSTEP]
skip
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I), ↑x = 1 / 2 → 2 * ↑x = 1
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I
hx : ↑x = 1 / 2
⊢ 2 * ↑x = 1
[PROOFSTEP]
simp [hx]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
⊢ transReflReparamAux t ∈ I
[PROOFSTEP]
unfold transReflReparamAux
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
⊢ (if ↑t ≤ 1 / 2 then 2 * ↑t else 1) ∈ I
[PROOFSTEP]
split_ifs
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ 2 * ↑t ∈ I
[PROOFSTEP]
constructor
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 1 ∈ I
[PROOFSTEP]
constructor
[GOAL]
case pos.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ 0 ≤ 2 * ↑t
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case pos.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ↑t ≤ 1 / 2
⊢ 2 * ↑t ≤ 1
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case neg.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 0 ≤ 1
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case neg.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ¬↑t ≤ 1 / 2
⊢ 1 ≤ 1
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ transReflReparamAux 0 = 0
[PROOFSTEP]
simp [transReflReparamAux]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ 2 < 0 → False
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ transReflReparamAux 1 = 1
[PROOFSTEP]
simp [transReflReparamAux]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ 1 ≤ 2⁻¹ → False
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ Continuous fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }
[PROOFSTEP]
continuity
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ Path.trans p (Path.refl x₁) =
Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) })
(_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) })
(_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)
(_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1)
[PROOFSTEP]
ext
[GOAL]
case a.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
⊢ ↑(Path.trans p (Path.refl x₁)) x✝ =
↑(Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) })
(_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) })
(_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)
(_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1))
x✝
[PROOFSTEP]
unfold transReflReparamAux
[GOAL]
case a.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
⊢ ↑(Path.trans p (Path.refl x₁)) x✝ =
↑(Path.reparam p (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) })
(_ :
Continuous fun x =>
{ val := if ↑x ≤ 1 / 2 then 2 * ↑x else 1, property := (_ : transReflReparamAux x ∈ I) })
(_ :
(fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0)
(_ :
(fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1))
x✝
[PROOFSTEP]
simp only [Path.trans_apply, not_le, coe_reparam, Function.comp_apply, one_div, Path.refl_apply]
[GOAL]
case a.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
⊢ (if h : ↑x✝ ≤ 2⁻¹ then ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } else x₁) =
↑p
{ val := if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1, property := (_ : (fun x => x ∈ I) (if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1)) }
[PROOFSTEP]
split_ifs
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
h✝¹ : ↑x✝ ≤ 2⁻¹
h✝ : ↑x✝ ≤ 2⁻¹
⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } =
↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) }
[PROOFSTEP]
rfl
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
h✝¹ : ↑x✝ ≤ 2⁻¹
h✝ : ¬↑x✝ ≤ 2⁻¹
⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } =
↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) }
[PROOFSTEP]
rfl
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
h✝¹ : ¬↑x✝ ≤ 2⁻¹
h✝ : ↑x✝ ≤ 2⁻¹
⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) }
[PROOFSTEP]
simp
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
x✝ : ↑I
h✝¹ : ¬↑x✝ ≤ 2⁻¹
h✝ : ¬↑x✝ ≤ 2⁻¹
⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) }
[PROOFSTEP]
simp
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ Continuous fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }
[PROOFSTEP]
continuity
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ Path.symm (Path.trans (Path.symm p) (Path.refl x₀)) = Path.trans (Path.refl x₀) p
[PROOFSTEP]
simp
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
p : Path x₀ x₁
⊢ Path.symm (Path.symm p) = p
[PROOFSTEP]
simp
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous transAssocReparamAux
[PROOFSTEP]
refine'
continuous_if_le _ _ (Continuous.continuousOn _)
(continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _).continuousOn _ <;>
[continuity; continuity; continuity; continuity; continuity; continuity; continuity; skip; skip]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous transAssocReparamAux
[PROOFSTEP]
refine'
continuous_if_le _ _ (Continuous.continuousOn _)
(continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _).continuousOn _
[GOAL]
case refine'_1
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x
[PROOFSTEP]
continuity
[GOAL]
case refine'_2
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 1 / 4
[PROOFSTEP]
continuity
[GOAL]
case refine'_3
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 2 * ↑x
[PROOFSTEP]
continuity
[GOAL]
case refine'_4
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x
[PROOFSTEP]
continuity
[GOAL]
case refine'_5
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 1 / 2
[PROOFSTEP]
continuity
[GOAL]
case refine'_6
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => ↑x + 1 / 4
[PROOFSTEP]
continuity
[GOAL]
case refine'_7
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ Continuous fun x => 1 / 2 * (↑x + 1)
[PROOFSTEP]
continuity
[GOAL]
case refine'_8
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I), ↑x = 1 / 2 → ↑x + 1 / 4 = 1 / 2 * (↑x + 1)
[PROOFSTEP]
skip
[GOAL]
case refine'_9
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I), ↑x = 1 / 4 → 2 * ↑x = if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1)
[PROOFSTEP]
skip
[GOAL]
case refine'_8
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I), ↑x = 1 / 2 → ↑x + 1 / 4 = 1 / 2 * (↑x + 1)
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_8
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I
hx : ↑x = 1 / 2
⊢ ↑x + 1 / 4 = 1 / 2 * (↑x + 1)
[PROOFSTEP]
simp [hx]
[GOAL]
case refine'_8
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I
hx : ↑x = 1 / 2
⊢ 2⁻¹ + 4⁻¹ = 2⁻¹ * (2⁻¹ + 1)
[PROOFSTEP]
norm_num
[GOAL]
case refine'_9
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ ∀ (x : ↑I), ↑x = 1 / 4 → 2 * ↑x = if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1)
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_9
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I
hx : ↑x = 1 / 4
⊢ 2 * ↑x = if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1)
[PROOFSTEP]
simp [hx]
[GOAL]
case refine'_9
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x : ↑I
hx : ↑x = 1 / 4
⊢ 2 * 4⁻¹ = if 4⁻¹ ≤ 2⁻¹ then 4⁻¹ + 4⁻¹ else 2⁻¹ * (4⁻¹ + 1)
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
⊢ transAssocReparamAux t ∈ I
[PROOFSTEP]
unfold transAssocReparamAux
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
⊢ (if ↑t ≤ 1 / 4 then 2 * ↑t else if ↑t ≤ 1 / 2 then ↑t + 1 / 4 else 1 / 2 * (↑t + 1)) ∈ I
[PROOFSTEP]
split_ifs
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ↑t ≤ 1 / 4
⊢ 2 * ↑t ∈ I
[PROOFSTEP]
constructor
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝¹ : ¬↑t ≤ 1 / 4
h✝ : ↑t ≤ 1 / 2
⊢ ↑t + 1 / 4 ∈ I
[PROOFSTEP]
constructor
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝¹ : ¬↑t ≤ 1 / 4
h✝ : ¬↑t ≤ 1 / 2
⊢ 1 / 2 * (↑t + 1) ∈ I
[PROOFSTEP]
constructor
[GOAL]
case pos.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ↑t ≤ 1 / 4
⊢ 0 ≤ 2 * ↑t
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case pos.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝ : ↑t ≤ 1 / 4
⊢ 2 * ↑t ≤ 1
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case pos.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝¹ : ¬↑t ≤ 1 / 4
h✝ : ↑t ≤ 1 / 2
⊢ 0 ≤ ↑t + 1 / 4
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case pos.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝¹ : ¬↑t ≤ 1 / 4
h✝ : ↑t ≤ 1 / 2
⊢ ↑t + 1 / 4 ≤ 1
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case neg.left
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝¹ : ¬↑t ≤ 1 / 4
h✝ : ¬↑t ≤ 1 / 2
⊢ 0 ≤ 1 / 2 * (↑t + 1)
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
case neg.right
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
t : ↑I
h✝¹ : ¬↑t ≤ 1 / 4
h✝ : ¬↑t ≤ 1 / 2
⊢ 1 / 2 * (↑t + 1) ≤ 1
[PROOFSTEP]
linarith [unitInterval.le_one t, unitInterval.nonneg t]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ transAssocReparamAux 0 = 0
[PROOFSTEP]
simp [transAssocReparamAux]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ 4 < 0 → (if 0 ≤ 2 then 4⁻¹ else 2⁻¹) = 0
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ transAssocReparamAux 1 = 1
[PROOFSTEP]
simp [transAssocReparamAux]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
⊢ (if 1 ≤ 4⁻¹ then 2 else if 1 ≤ 2⁻¹ then 1 + 4⁻¹ else 2⁻¹ * (1 + 1)) = 1
[PROOFSTEP]
norm_num
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
⊢ Continuous fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }
[PROOFSTEP]
continuity
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
⊢ Path.trans (Path.trans p q) r =
Path.reparam (Path.trans p (Path.trans q r))
(fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) })
(_ : Continuous fun x => { val := transAssocReparamAux x, property := (_ : transAssocReparamAux x ∈ I) })
(_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 0 = 0)
(_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 1 = 1)
[PROOFSTEP]
ext x
[GOAL]
case a.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
⊢ ↑(Path.trans (Path.trans p q) r) x =
↑(Path.reparam (Path.trans p (Path.trans q r))
(fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) })
(_ : Continuous fun x => { val := transAssocReparamAux x, property := (_ : transAssocReparamAux x ∈ I) })
(_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 0 = 0)
(_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 1 = 1))
x
[PROOFSTEP]
simp only [transAssocReparamAux, Path.trans_apply, mul_inv_cancel_left₀, not_le, Function.comp_apply, Ne.def,
not_false_iff, bit0_eq_zero, one_ne_zero, mul_ite, Subtype.coe_mk, Path.coe_reparam]
-- TODO: why does split_ifs not reduce the ifs??????
[GOAL]
case a.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
⊢ (if h : ↑x ≤ 1 / 2 then
if h_1 : 2 * ↑x ≤ 1 / 2 then
↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) }
else
↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) }
else ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) }) =
if h : (if ↑x ≤ 1 / 4 then 2 * ↑x else if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1)) ≤ 1 / 2 then
↑p
{ val := if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1)),
property :=
(_ :
(fun x => x ∈ I)
(if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1)))) }
else
if h_1 :
(if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1 ≤
1 / 2 then
↑q
{
val :=
2 *
((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) -
1),
property :=
(_ :
2 *
↑{
val :=
(if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) -
1,
property :=
(_ :
(fun x => x ∈ I)
((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) -
1)) } ∈
I) }
else
↑r
{
val :=
2 *
((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) -
1) -
1,
property :=
(_ :
2 *
↑{
val :=
(if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) -
1,
property :=
(_ :
(fun x => x ∈ I)
((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x)
else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) -
1)) } -
1 ∈
I) }
[PROOFSTEP]
split_ifs with h₁ h₂ h₃ h₄ h₅
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ↑x ≤ 1 / 4
⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } =
↑p { val := 2 * (2 * ↑x), property := (_ : (fun x => x ∈ I) (2 * (2 * ↑x))) }
[PROOFSTEP]
rfl
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ¬↑x ≤ 1 / 4
h₄ : ↑x + 1 / 4 ≤ 1 / 2
⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } =
↑p { val := 2 * (↑x + 1 / 4), property := (_ : (fun x => x ∈ I) (2 * (↑x + 1 / 4))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ¬↑x ≤ 1 / 4
h₄ : ↑x + 1 / 4 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ¬↑x ≤ 1 / 4
h₄ : ¬↑x + 1 / 4 ≤ 1 / 2
h₅ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } =
↑q { val := 2 * (2 * (↑x + 1 / 4) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ¬↑x ≤ 1 / 4
h₄ : ¬↑x + 1 / 4 ≤ 1 / 2
h₅ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ¬↑x ≤ 1 / 4
h₄ : ¬↑x + 1 / 4 ≤ 1 / 2
h₅ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } =
↑r { val := 2 * (2 * (↑x + 1 / 4) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1) - 1)) }
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : 2 * ↑x ≤ 1 / 2
h₃ : ¬↑x ≤ 1 / 4
h₄ : ¬↑x + 1 / 4 ≤ 1 / 2
h₅ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝¹ : ↑x ≤ 1 / 4
h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } =
↑q { val := 2 * (2 * (2 * ↑x) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝¹ : ↑x ≤ 1 / 4
h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝¹ : ↑x ≤ 1 / 4
h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } =
↑r { val := 2 * (2 * (2 * ↑x) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1) - 1)) }
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝¹ : ↑x ≤ 1 / 4
h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝¹ : ¬↑x ≤ 1 / 4
h✝ : ↑x + 1 / 4 ≤ 1 / 2
⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } =
↑p { val := 2 * (↑x + 1 / 4), property := (_ : (fun x => x ∈ I) (2 * (↑x + 1 / 4))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝¹ : ¬↑x ≤ 1 / 4
h✝ : ↑x + 1 / 4 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2
h✝ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } =
↑q { val := 2 * (2 * (↑x + 1 / 4) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1))) }
[PROOFSTEP]
have h : 2 * (2 * (x : ℝ)) - 1 = 2 * (2 * (↑x + 1 / 4) - 1) := by linarith
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2
h✝ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ 2 * (2 * ↑x) - 1 = 2 * (2 * (↑x + 1 / 4) - 1)
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2
h✝ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
h : 2 * (2 * ↑x) - 1 = 2 * (2 * (↑x + 1 / 4) - 1)
⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } =
↑q { val := 2 * (2 * (↑x + 1 / 4) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1))) }
[PROOFSTEP]
simp [h₂, h₁, h, dif_neg (show ¬False from id), dif_pos True.intro, if_false, if_true]
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2
h✝ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } =
↑r { val := 2 * (2 * (↑x + 1 / 4) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1) - 1)) }
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ↑x ≤ 1 / 2
h₂ : ¬2 * ↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2
h✝ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝¹ : ↑x ≤ 1 / 4
h✝ : 2 * ↑x ≤ 1 / 2
⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } =
↑p { val := 2 * (2 * ↑x), property := (_ : (fun x => x ∈ I) (2 * (2 * ↑x))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝¹ : ↑x ≤ 1 / 4
h✝ : 2 * ↑x ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ↑x ≤ 1 / 4
h✝¹ : ¬2 * ↑x ≤ 1 / 2
h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } =
↑q { val := 2 * (2 * (2 * ↑x) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ↑x ≤ 1 / 4
h✝¹ : ¬2 * ↑x ≤ 1 / 2
h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ↑x ≤ 1 / 4
h✝¹ : ¬2 * ↑x ≤ 1 / 2
h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } =
↑r { val := 2 * (2 * (2 * ↑x) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1) - 1)) }
[PROOFSTEP]
exfalso
[GOAL]
case neg.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ↑x ≤ 1 / 4
h✝¹ : ¬2 * ↑x ≤ 1 / 2
h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝¹ : ¬↑x ≤ 1 / 4
h✝ : 1 / 2 * (↑x + 1) ≤ 1 / 2
⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } =
↑p { val := 2 * (1 / 2 * (↑x + 1)), property := (_ : (fun x => x ∈ I) (2 * (1 / 2 * (↑x + 1)))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝¹ : ¬↑x ≤ 1 / 4
h✝ : 1 / 2 * (↑x + 1) ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case pos
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2
h✝ : 2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2
⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } =
↑q
{ val := 2 * (2 * (1 / 2 * (↑x + 1)) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (1 / 2 * (↑x + 1)) - 1))) }
[PROOFSTEP]
exfalso
[GOAL]
case pos.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2
h✝ : 2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2
h✝ : ¬2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2
⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } =
↑r
{ val := 2 * (2 * (1 / 2 * (↑x + 1)) - 1) - 1,
property := (_ : (fun x => x ∈ I) (2 * (2 * (1 / 2 * (↑x + 1)) - 1) - 1)) }
[PROOFSTEP]
congr
[GOAL]
case neg.h.e_6.h.e_val.e_a.e_a
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
x : ↑I
h₁ : ¬↑x ≤ 1 / 2
h✝² : ¬↑x ≤ 1 / 4
h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2
h✝ : ¬2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2
⊢ ↑x = 2 * (1 / 2 * (↑x + 1)) - 1
[PROOFSTEP]
ring
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X
p : Path x₀ x₁
q : Path x₁ x₂
r : Path x₂ x₃
⊢ Continuous fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }
[PROOFSTEP]
continuity
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x y : FundamentalGroupoid X
p : x ⟶ y
⊢ ∀ (a b : Path x y),
a ≈ b →
(fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) a =
(fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) b
[PROOFSTEP]
rintro a b ⟨h⟩
[GOAL]
case intro
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x y : FundamentalGroupoid X
p : x ⟶ y
a b : Path x y
h : Path.Homotopy a b
⊢ (fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) a =
(fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) b
[PROOFSTEP]
simp only
[GOAL]
case intro
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x y : FundamentalGroupoid X
p : x ⟶ y
a b : Path x y
h : Path.Homotopy a b
⊢ Quotient.mk (Path.Homotopic.setoid y x) (Path.symm a) = Quotient.mk (Path.Homotopic.setoid y x) (Path.symm b)
[PROOFSTEP]
rw [Quotient.eq]
[GOAL]
case intro
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
x y : FundamentalGroupoid X
p : x ⟶ y
a b : Path x y
h : Path.Homotopy a b
⊢ Path.symm a ≈ Path.symm b
[PROOFSTEP]
exact ⟨h.symm₂⟩
[GOAL]
X✝¹ : Type u
Y✝¹ : Type v
inst✝¹ : TopologicalSpace X✝¹
inst✝ : TopologicalSpace Y✝¹
x₀ x₁ : X✝¹
X✝ Y✝ : TopCat
f : X✝ ⟶ Y✝
X Y : ↑((fun X => Bundled.mk (FundamentalGroupoid ↑X)) X✝)
p : X ⟶ Y
⊢ ↑f X ⟶ ↑f Y
[PROOFSTEP]
exact Path.Homotopic.Quotient.mapFn p f
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ : TopCat
f : X✝ ⟶ Y✝
x y z : ↑((fun X => Bundled.mk (FundamentalGroupoid ↑X)) X✝)
p : x ⟶ y
q : y ⟶ z
⊢ { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map (p ≫ q) =
{ obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map p ≫
{ obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map q
[PROOFSTEP]
refine' Quotient.inductionOn₂ p q fun a b => _
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ : TopCat
f : X✝ ⟶ Y✝
x y z : ↑((fun X => Bundled.mk (FundamentalGroupoid ↑X)) X✝)
p : x ⟶ y
q : y ⟶ z
a : Path x y
b : Path y z
⊢ { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map
(Quotient.mk (Path.Homotopic.setoid x y) a ≫ Quotient.mk (Path.Homotopic.setoid y z) b) =
{ obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map
(Quotient.mk (Path.Homotopic.setoid x y) a) ≫
{ obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map
(Quotient.mk (Path.Homotopic.setoid y z) b)
[PROOFSTEP]
simp only [comp_eq, ← Path.Homotopic.map_lift, ← Path.Homotopic.comp_lift, Path.map_trans]
[GOAL]
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
⊢ { obj := fun X => Bundled.mk (FundamentalGroupoid ↑X),
map := fun {X Y} f =>
CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map
(𝟙 X) =
𝟙
({ obj := fun X => Bundled.mk (FundamentalGroupoid ↑X),
map := fun {X Y} f =>
CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.obj
X)
[PROOFSTEP]
simp only
[GOAL]
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
⊢ CategoryTheory.Functor.mk { obj := ↑(𝟙 X), map := fun {X_1 Y} p => Path.Homotopic.Quotient.mapFn p (𝟙 X) } =
𝟙 (Bundled.mk (FundamentalGroupoid ↑X))
[PROOFSTEP]
change _ = (⟨_, _, _⟩ : FundamentalGroupoid X ⥤ FundamentalGroupoid X)
[GOAL]
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
⊢ CategoryTheory.Functor.mk { obj := ↑(𝟙 X), map := fun {X_1 Y} p => Path.Homotopic.Quotient.mapFn p (𝟙 X) } =
CategoryTheory.Functor.mk { obj := fun X => X, map := fun {X_1 Y} f => f }
[PROOFSTEP]
congr
[GOAL]
case e_toPrefunctor.e_map
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
⊢ (fun {X_1 Y} p => Path.Homotopic.Quotient.mapFn p (𝟙 X)) = fun {X_1 Y} f => f
[PROOFSTEP]
ext x y p
[GOAL]
case e_toPrefunctor.e_map.h.h.h
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
x y : FundamentalGroupoid ↑X
p : x ⟶ y
⊢ Path.Homotopic.Quotient.mapFn p (𝟙 X) = p
[PROOFSTEP]
refine' Quotient.inductionOn p fun q => _
[GOAL]
case e_toPrefunctor.e_map.h.h.h
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
x y : FundamentalGroupoid ↑X
p : x ⟶ y
q : Path x y
⊢ Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) (𝟙 X) =
Quotient.mk (Path.Homotopic.setoid x y) q
[PROOFSTEP]
rw [← Path.Homotopic.map_lift]
[GOAL]
case e_toPrefunctor.e_map.h.h.h
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
x y : FundamentalGroupoid ↑X
p : x ⟶ y
q : Path x y
⊢ Quotient.mk (Path.Homotopic.setoid (↑(𝟙 X) x) (↑(𝟙 X) y)) (Path.map q (_ : Continuous ↑(𝟙 X))) =
Quotient.mk (Path.Homotopic.setoid x y) q
[PROOFSTEP]
conv_rhs => rw [← q.map_id]
[GOAL]
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
x y : FundamentalGroupoid ↑X
p : x ⟶ y
q : Path x y
| Quotient.mk (Path.Homotopic.setoid x y) q
[PROOFSTEP]
rw [← q.map_id]
[GOAL]
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
x y : FundamentalGroupoid ↑X
p : x ⟶ y
q : Path x y
| Quotient.mk (Path.Homotopic.setoid x y) q
[PROOFSTEP]
rw [← q.map_id]
[GOAL]
X✝ : Type u
Y : Type v
inst✝¹ : TopologicalSpace X✝
inst✝ : TopologicalSpace Y
x₀ x₁ : X✝
X : TopCat
x y : FundamentalGroupoid ↑X
p : x ⟶ y
q : Path x y
| Quotient.mk (Path.Homotopic.setoid x y) q
[PROOFSTEP]
rw [← q.map_id]
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ Z✝ : TopCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun X => Bundled.mk (FundamentalGroupoid ↑X),
map := fun {X Y} f =>
CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map
(f ≫ g) =
{ obj := fun X => Bundled.mk (FundamentalGroupoid ↑X),
map := fun {X Y} f =>
CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map
f ≫
{ obj := fun X => Bundled.mk (FundamentalGroupoid ↑X),
map := fun {X Y} f =>
CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map
g
[PROOFSTEP]
simp only
[GOAL]
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ Z✝ : TopCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ CategoryTheory.Functor.mk { obj := ↑(f ≫ g), map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p (f ≫ g) } =
CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f } ≫
CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }
[PROOFSTEP]
congr
[GOAL]
case e_toPrefunctor.e_map
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ Z✝ : TopCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ (fun {X Y} p => Path.Homotopic.Quotient.mapFn p (f ≫ g)) = fun {X Y} f_1 =>
(CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }).map
((CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }).map f_1)
[PROOFSTEP]
ext x y p
[GOAL]
case e_toPrefunctor.e_map.h.h.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ Z✝ : TopCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
x y : FundamentalGroupoid ↑X✝
p : x ⟶ y
⊢ Path.Homotopic.Quotient.mapFn p (f ≫ g) =
(CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }).map
((CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }).map p)
[PROOFSTEP]
refine' Quotient.inductionOn p fun q => _
[GOAL]
case e_toPrefunctor.e_map.h.h.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ Z✝ : TopCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
x y : FundamentalGroupoid ↑X✝
p : x ⟶ y
q : Path x y
⊢ Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) (f ≫ g) =
(CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }).map
((CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }).map
(Quotient.mk (Path.Homotopic.setoid x y) q))
[PROOFSTEP]
simp only [Quotient.map_mk, Path.map_map, Quotient.eq']
[GOAL]
case e_toPrefunctor.e_map.h.h.h
X : Type u
Y : Type v
inst✝¹ : TopologicalSpace X
inst✝ : TopologicalSpace Y
x₀ x₁ : X
X✝ Y✝ Z✝ : TopCat
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
x y : FundamentalGroupoid ↑X✝
p : x ⟶ y
q : Path x y
⊢ Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) (f ≫ g) =
Path.Homotopic.Quotient.mapFn (Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) f) g
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.AlgebraicTopology.FundamentalGroupoid.Basic", "llama_tokens": 31694} |
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
s : σ
S : Set σ
a : α
⊢ s ∈ stepSet M S a ↔ ∃ t, t ∈ S ∧ s ∈ step M t a
[PROOFSTEP]
simp [stepSet]
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
a : α
⊢ stepSet M ∅ a = ∅
[PROOFSTEP]
simp [stepSet]
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
S : Set σ
x : List α
a : α
⊢ evalFrom M S (x ++ [a]) = stepSet M (evalFrom M S x) a
[PROOFSTEP]
simp only [evalFrom, List.foldl_append, List.foldl_cons, List.foldl_nil]
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
x : List α
⊢ x ∈ accepts M ↔ ∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x
[PROOFSTEP]
rfl
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
⊢ DFA.accepts (toDFA M) = accepts M
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u
σ σ' : Type v
M : NFA α σ
x : List α
⊢ x ∈ DFA.accepts (toDFA M) ↔ x ∈ accepts M
[PROOFSTEP]
rw [mem_accepts, DFA.mem_accepts]
[GOAL]
case h
α : Type u
σ σ' : Type v
M : NFA α σ
x : List α
⊢ DFA.evalFrom (toDFA M) (toDFA M).start x ∈ (toDFA M).accept ↔ ∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u
σ σ' : Type v
M : NFA α σ
x : List α
⊢ DFA.evalFrom (toDFA M) (toDFA M).start x ∈ (toDFA M).accept → ∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x
[PROOFSTEP]
exact fun ⟨w, h2, h3⟩ => ⟨w, h3, h2⟩
[GOAL]
case h.mpr
α : Type u
σ σ' : Type v
M : NFA α σ
x : List α
⊢ (∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x) → DFA.evalFrom (toDFA M) (toDFA M).start x ∈ (toDFA M).accept
[PROOFSTEP]
exact fun ⟨w, h2, h3⟩ => ⟨w, h3, h2⟩
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
inst✝ : Fintype σ
x : List α
hx : x ∈ accepts M
hlen : Fintype.card (Set σ) ≤ List.length x
⊢ ∃ a b c,
x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ accepts M
[PROOFSTEP]
rw [← toDFA_correct] at hx ⊢
[GOAL]
α : Type u
σ σ' : Type v
M : NFA α σ
inst✝ : Fintype σ
x : List α
hx : x ∈ DFA.accepts (toDFA M)
hlen : Fintype.card (Set σ) ≤ List.length x
⊢ ∃ a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ DFA.accepts (toDFA M)
[PROOFSTEP]
exact M.toDFA.pumping_lemma hx hlen
[GOAL]
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
start : σ
s : List α
⊢ NFA.evalFrom (toNFA M) {start} s = {evalFrom M start s}
[PROOFSTEP]
change List.foldl M.toNFA.stepSet { start } s = {List.foldl M.step start s}
[GOAL]
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
start : σ
s : List α
⊢ List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s}
[PROOFSTEP]
induction' s with a s ih generalizing start
[GOAL]
case nil
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
start✝ start : σ
⊢ List.foldl (NFA.stepSet (toNFA M)) {start} [] = {List.foldl M.step start []}
[PROOFSTEP]
tauto
[GOAL]
case cons
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
start✝ : σ
a : α
s : List α
ih : ∀ (start : σ), List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s}
start : σ
⊢ List.foldl (NFA.stepSet (toNFA M)) {start} (a :: s) = {List.foldl M.step start (a :: s)}
[PROOFSTEP]
rw [List.foldl, List.foldl, show M.toNFA.stepSet { start } a = {M.step start a} by simp [NFA.stepSet]]
[GOAL]
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
start✝ : σ
a : α
s : List α
ih : ∀ (start : σ), List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s}
start : σ
⊢ NFA.stepSet (toNFA M) {start} a = {step M start a}
[PROOFSTEP]
simp [NFA.stepSet]
[GOAL]
case cons
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
start✝ : σ
a : α
s : List α
ih : ∀ (start : σ), List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s}
start : σ
⊢ List.foldl (NFA.stepSet (toNFA M)) {step M start a} s = {List.foldl M.step (step M start a) s}
[PROOFSTEP]
tauto
[GOAL]
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
⊢ NFA.accepts (toNFA M) = accepts M
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
x : List α
⊢ x ∈ NFA.accepts (toNFA M) ↔ x ∈ accepts M
[PROOFSTEP]
rw [NFA.mem_accepts, toNFA_start, toNFA_evalFrom_match]
[GOAL]
case h
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
x : List α
⊢ (∃ S, S ∈ (toNFA M).accept ∧ S ∈ {evalFrom M M.start x}) ↔ x ∈ accepts M
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
x : List α
⊢ (∃ S, S ∈ (toNFA M).accept ∧ S ∈ {evalFrom M M.start x}) → x ∈ accepts M
[PROOFSTEP]
rintro ⟨S, hS₁, hS₂⟩
[GOAL]
case h.mp.intro.intro
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
x : List α
S : σ
hS₁ : S ∈ (toNFA M).accept
hS₂ : S ∈ {evalFrom M M.start x}
⊢ x ∈ accepts M
[PROOFSTEP]
rwa [Set.mem_singleton_iff.mp hS₂] at hS₁
[GOAL]
case h.mpr
α : Type u
σ σ' : Type v
M✝ : NFA α σ
M : DFA α σ
x : List α
⊢ x ∈ accepts M → ∃ S, S ∈ (toNFA M).accept ∧ S ∈ {evalFrom M M.start x}
[PROOFSTEP]
exact fun h => ⟨M.eval x, h, rfl⟩
| {"mathlib_filename": "Mathlib.Computability.NFA", "llama_tokens": 2508} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x✝ x : List α
⊢ x ∈ 1 ↔ x = []
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
x✝ : List α
h : x✝ ∈ []
⊢ x✝ ∈ l
[PROOFSTEP]
contradiction
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ 1 * l = l
[PROOFSTEP]
simp [mul_def, one_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ l * 1 = l
[PROOFSTEP]
simp [mul_def, one_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x : List α
n : ℕ
⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x : List α
⊢ NatCast.natCast (Nat.zero + 1) = NatCast.natCast Nat.zero + 1
[PROOFSTEP]
simp [Nat.cast, add_def, zero_def]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x : List α
n✝ : ℕ
⊢ NatCast.natCast (Nat.succ n✝ + 1) = NatCast.natCast (Nat.succ n✝) + 1
[PROOFSTEP]
simp [Nat.cast, add_def, zero_def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ ↑(map id) l = l
[PROOFSTEP]
simp [map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
g : β → γ
f : α → β
l : Language α
⊢ ↑(map g) (↑(map f) l) = ↑(map (g ∘ f)) l
[PROOFSTEP]
simp [map, image_image]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ l∗ = {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []}
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ x ∈ l∗ ↔ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []}
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ x ∈ l∗ → x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []}
[PROOFSTEP]
rintro ⟨S, rfl, h⟩
[GOAL]
case h.mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
S : List (List α)
h : ∀ (y : List α), y ∈ S → y ∈ l
⊢ join S ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []}
[PROOFSTEP]
refine'
⟨S.filter fun l ↦ ¬List.isEmpty l, by simp, fun y hy ↦ _⟩
-- Porting note: The previous code was:
-- rw [mem_filter, empty_iff_eq_nil] at hy
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
S : List (List α)
h : ∀ (y : List α), y ∈ S → y ∈ l
⊢ join S = join (filter (fun l => decide ¬isEmpty l = true) S)
[PROOFSTEP]
simp
[GOAL]
case h.mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
S : List (List α)
h : ∀ (y : List α), y ∈ S → y ∈ l
y : List α
hy : y ∈ filter (fun l => decide ¬isEmpty l = true) S
⊢ y ∈ l ∧ y ≠ []
[PROOFSTEP]
rw [mem_filter, decide_not, Bool.decide_coe, Bool.not_eq_true', ← Bool.bool_iff_false, isEmpty_iff_eq_nil] at hy
[GOAL]
case h.mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
S : List (List α)
h : ∀ (y : List α), y ∈ S → y ∈ l
y : List α
hy : y ∈ S ∧ ¬y = []
⊢ y ∈ l ∧ y ≠ []
[PROOFSTEP]
exact ⟨h y hy.1, hy.2⟩
[GOAL]
case h.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []} → x ∈ l∗
[PROOFSTEP]
rintro ⟨S, hx, h⟩
[GOAL]
case h.mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
S : List (List α)
hx : x = join S
h : ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []
⊢ x ∈ l∗
[PROOFSTEP]
exact ⟨S, hx, fun y hy ↦ (h y hy).1⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x : List α
l₁ l₂ m₁ m₂ : Language α
⊢ l₁ ≤ m₁ → l₂ ≤ m₂ → l₁ * l₂ ≤ m₁ * m₂
[PROOFSTEP]
intro h₁ h₂ x hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x✝ : List α
l₁ l₂ m₁ m₂ : Language α
h₁ : l₁ ≤ m₁
h₂ : l₂ ≤ m₂
x : List α
hx : x ∈ l₁ * l₂
⊢ x ∈ m₁ * m₂
[PROOFSTEP]
simp only [mul_def, exists_and_left, mem_image2, image_prod] at hx ⊢
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l m : Language α
a b x✝ : List α
l₁ l₂ m₁ m₂ : Language α
h₁ : l₁ ≤ m₁
h₂ : l₂ ≤ m₂
x : List α
hx : ∃ a, a ∈ l₁ ∧ ∃ x_1, x_1 ∈ l₂ ∧ a ++ x_1 = x
⊢ ∃ a, a ∈ m₁ ∧ ∃ x_1, x_1 ∈ m₂ ∧ a ++ x_1 = x
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
n : ℕ
⊢ x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
induction' n with n ihn generalizing x
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ x : List α
⊢ x ∈ l ^ Nat.zero ↔ ∃ S, x = join S ∧ length S = Nat.zero ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
simp only [mem_one, pow_zero, length_eq_zero]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ x : List α
⊢ x = [] ↔ ∃ S, x = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
constructor
[GOAL]
case zero.mp
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ x : List α
⊢ x = [] → ∃ S, x = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
rintro rfl
[GOAL]
case zero.mp
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ ∃ S, [] = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
exact ⟨[], rfl, rfl, fun _ h ↦ by contradiction⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x x✝ : List α
h : x✝ ∈ []
⊢ x✝ ∈ l
[PROOFSTEP]
contradiction
[GOAL]
case zero.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ x : List α
⊢ (∃ S, x = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l) → x = []
[PROOFSTEP]
rintro ⟨_, rfl, rfl, _⟩
[GOAL]
case zero.mpr.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
right✝ : ∀ (y : List α), y ∈ [] → y ∈ l
⊢ join [] = []
[PROOFSTEP]
rfl
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ : List α
n : ℕ
ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
x : List α
⊢ x ∈ l ^ Nat.succ n ↔ ∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
simp only [pow_succ, mem_mul, ihn]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ : List α
n : ℕ
ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
x : List α
⊢ (∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = x) ↔
∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
constructor
[GOAL]
case succ.mp
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ : List α
n : ℕ
ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
x : List α
⊢ (∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = x) →
∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
rintro ⟨a, b, ha, ⟨S, rfl, rfl, hS⟩, rfl⟩
[GOAL]
case succ.mp.intro.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a✝ b x✝ : List α
l : Language α
x a : List α
ha : a ∈ l
S : List (List α)
hS : ∀ (y : List α), y ∈ S → y ∈ l
ihn : ∀ {x : List α}, x ∈ l ^ length S ↔ ∃ S_1, x = join S_1 ∧ length S_1 = length S ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l
⊢ ∃ S_1, a ++ join S = join S_1 ∧ length S_1 = Nat.succ (length S) ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l
[PROOFSTEP]
exact ⟨a :: S, rfl, rfl, forall_mem_cons.2 ⟨ha, hS⟩⟩
[GOAL]
case succ.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝¹ : List α
l : Language α
x✝ : List α
n : ℕ
ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
x : List α
⊢ (∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l) →
∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = x
[PROOFSTEP]
rintro ⟨_ | ⟨a, S⟩, rfl, hn, hS⟩
[GOAL]
case succ.mpr.intro.nil.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
n : ℕ
ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
hn : length [] = Nat.succ n
hS : ∀ (y : List α), y ∈ [] → y ∈ l
⊢ ∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = join []
[PROOFSTEP]
cases hn
[GOAL]
case succ.mpr.intro.cons.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a✝ b x✝ : List α
l : Language α
x : List α
n : ℕ
ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l
a : List α
S : List (List α)
hn : length (a :: S) = Nat.succ n
hS : ∀ (y : List α), y ∈ a :: S → y ∈ l
⊢ ∃ a_1 b, a_1 ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a_1 ++ b = join (a :: S)
[PROOFSTEP]
cases hn
[GOAL]
case succ.mpr.intro.cons.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a✝ b x✝ : List α
l : Language α
x a : List α
S : List (List α)
hS : ∀ (y : List α), y ∈ a :: S → y ∈ l
ihn :
∀ {x : List α},
x ∈ l ^ Nat.add (length S) 0 ↔
∃ S_1, x = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l
⊢ ∃ a_1 b,
a_1 ∈ l ∧
(∃ S_1, b = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l) ∧
a_1 ++ b = join (a :: S)
[PROOFSTEP]
rw [forall_mem_cons] at hS
[GOAL]
case succ.mpr.intro.cons.intro.intro.refl
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a✝ b x✝ : List α
l : Language α
x a : List α
S : List (List α)
hS : a ∈ l ∧ ∀ (x : List α), x ∈ S → x ∈ l
ihn :
∀ {x : List α},
x ∈ l ^ Nat.add (length S) 0 ↔
∃ S_1, x = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l
⊢ ∃ a_1 b,
a_1 ∈ l ∧
(∃ S_1, b = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l) ∧
a_1 ++ b = join (a :: S)
[PROOFSTEP]
exact ⟨a, _, hS.1, ⟨S, rfl, rfl, hS.2⟩, rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ l∗ = ⨆ (i : ℕ), l ^ i
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ x ∈ l∗ ↔ x ∈ ⨆ (i : ℕ), l ^ i
[PROOFSTEP]
simp only [mem_kstar, mem_iSup, mem_pow]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ (∃ L, x = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l) ↔ ∃ i S, x = join S ∧ length S = i ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ (∃ L, x = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l) → ∃ i S, x = join S ∧ length S = i ∧ ∀ (y : List α), y ∈ S → y ∈ l
[PROOFSTEP]
rintro ⟨S, rfl, hS⟩
[GOAL]
case h.mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
S : List (List α)
hS : ∀ (y : List α), y ∈ S → y ∈ l
⊢ ∃ i S_1, join S = join S_1 ∧ length S_1 = i ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l
[PROOFSTEP]
exact ⟨_, S, rfl, rfl, hS⟩
[GOAL]
case h.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x✝ : List α
l : Language α
x : List α
⊢ (∃ i S, x = join S ∧ length S = i ∧ ∀ (y : List α), y ∈ S → y ∈ l) → ∃ L, x = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l
[PROOFSTEP]
rintro ⟨_, S, rfl, rfl, hS⟩
[GOAL]
case h.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
S : List (List α)
hS : ∀ (y : List α), y ∈ S → y ∈ l
⊢ ∃ L, join S = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l
[PROOFSTEP]
exact ⟨S, rfl, hS⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
f : α → β
l : Language α
⊢ ↑(map f) l∗ = (↑(map f) l)∗
[PROOFSTEP]
rw [kstar_eq_iSup_pow, kstar_eq_iSup_pow]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
f : α → β
l : Language α
⊢ ↑(map f) (⨆ (i : ℕ), l ^ i) = ⨆ (i : ℕ), ↑(map f) l ^ i
[PROOFSTEP]
simp_rw [← map_pow]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
f : α → β
l : Language α
⊢ ↑(map f) (⨆ (i : ℕ), l ^ i) = ⨆ (i : ℕ), ↑(map f) (l ^ i)
[PROOFSTEP]
exact image_iUnion
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ l∗ * l = l * l∗
[PROOFSTEP]
simp only [kstar_eq_iSup_pow, mul_iSup, iSup_mul, ← pow_succ, ← pow_succ']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ 1 + l * l∗ = l∗
[PROOFSTEP]
simp only [kstar_eq_iSup_pow, mul_iSup, ← pow_succ, ← pow_zero l]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ l ^ 0 + ⨆ (i : ℕ), l ^ (i + 1) = ⨆ (i : ℕ), l ^ i
[PROOFSTEP]
exact sup_iSup_nat_succ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a b x : List α
l : Language α
⊢ 1 + l∗ * l = l∗
[PROOFSTEP]
rw [mul_self_kstar_comm, one_add_self_mul_kstar_eq_kstar]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m : Language α
a✝ b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
a : Language α
l : List α
hl : l ∈ 1
⊢ ∀ (y : List α), y ∈ [] → y ∈ a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : m * l ≤ m
⊢ m * l∗ ≤ m
[PROOFSTEP]
rw [kstar_eq_iSup_pow, mul_iSup]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : m * l ≤ m
⊢ ⨆ (i : ℕ), m * l ^ i ≤ m
[PROOFSTEP]
refine' iSup_le (fun n ↦ _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : m * l ≤ m
n : ℕ
⊢ m * l ^ n ≤ m
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : m * l ≤ m
⊢ m * l ^ Nat.zero ≤ m
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : m * l ≤ m
n : ℕ
ih : m * l ^ n ≤ m
⊢ m * l ^ Nat.succ n ≤ m
[PROOFSTEP]
rw [pow_succ, ← mul_assoc m l (l ^ n)]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : m * l ≤ m
n : ℕ
ih : m * l ^ n ≤ m
⊢ m * l * l ^ n ≤ m
[PROOFSTEP]
exact le_trans (le_mul_congr h le_rfl) ih
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : l * m ≤ m
⊢ l∗ * m ≤ m
[PROOFSTEP]
rw [kstar_eq_iSup_pow, iSup_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : l * m ≤ m
⊢ ⨆ (i : ℕ), l ^ i * m ≤ m
[PROOFSTEP]
refine' iSup_le (fun n ↦ _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : l * m ≤ m
n : ℕ
⊢ l ^ n * m ≤ m
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : l * m ≤ m
⊢ l ^ Nat.zero * m ≤ m
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : l * m ≤ m
n : ℕ
ih : l ^ n * m ≤ m
⊢ l ^ Nat.succ n * m ≤ m
[PROOFSTEP]
rw [pow_succ', mul_assoc (l ^ n) l m]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
l✝ m✝ : Language α
a b x : List α
src✝¹ : Semiring (Language α) := instSemiring
src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra
l m : Language α
h : l * m ≤ m
n : ℕ
ih : l ^ n * m ≤ m
⊢ l ^ n * (l * m) ≤ m
[PROOFSTEP]
exact le_trans (le_mul_congr le_rfl h) ih
| {"mathlib_filename": "Mathlib.Computability.Language", "llama_tokens": 9142} |
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
f : Arrow C
inst✝ : ∀ (n : ℕ), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X✝ Y✝ : SimplexCategoryᵒᵖ
g : X✝ ⟶ Y✝
⊢ ∀ (j : Fin (SimplexCategory.len Y✝.unop + 1)),
(fun i => WidePullback.π (fun x => f.hom) (↑(SimplexCategory.Hom.toOrderHom g.unop) i)) j ≫ f.hom =
WidePullback.base fun x => f.hom
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
f✝ : Arrow C
inst✝² : ∀ (n : ℕ), HasWidePullback f✝.right (fun x => f✝.left) fun x => f✝.hom
f g : Arrow C
inst✝¹ : ∀ (n : ℕ), HasWidePullback f.right (fun x => f.left) fun x => f.hom
inst✝ : ∀ (n : ℕ), HasWidePullback g.right (fun x => g.left) fun x => g.hom
F : f ⟶ g
n : SimplexCategoryᵒᵖ
j : Fin (SimplexCategory.len n.unop + 1)
⊢ (fun i => WidePullback.π (fun x => f.hom) i ≫ F.left) j ≫ g.hom = (WidePullback.base fun x => f.hom) ≫ F.right
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : X ⟶ Arrow.augmentedCechNerve F
⊢ (𝟭 C).map (NatTrans.app G.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) ≫ F.hom =
(Augmented.toArrow.obj X).hom ≫ (𝟭 C).map G.right
[PROOFSTEP]
have := G.w
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : X ⟶ Arrow.augmentedCechNerve F
this : (𝟭 (SimplicialObject C)).map G.left ≫ (Arrow.augmentedCechNerve F).hom = X.hom ≫ (const C).map G.right
⊢ (𝟭 C).map (NatTrans.app G.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) ≫ F.hom =
(Augmented.toArrow.obj X).hom ≫ (𝟭 C).map G.right
[PROOFSTEP]
apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0) at this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : X ⟶ Arrow.augmentedCechNerve F
this :
NatTrans.app ((𝟭 (SimplicialObject C)).map G.left ≫ (Arrow.augmentedCechNerve F).hom)
(Opposite.op (SimplexCategory.mk 0)) =
NatTrans.app (X.hom ≫ (const C).map G.right) (Opposite.op (SimplexCategory.mk 0))
⊢ (𝟭 C).map (NatTrans.app G.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) ≫ F.hom =
(Augmented.toArrow.obj X).hom ≫ (𝟭 C).map G.right
[PROOFSTEP]
simpa using this
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x : SimplexCategoryᵒᵖ
i : Fin (SimplexCategory.len x.unop + 1)
⊢ (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom = NatTrans.app X.hom x ≫ G.right
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x : SimplexCategoryᵒᵖ
i : Fin (SimplexCategory.len x.unop + 1)
⊢ (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right
[PROOFSTEP]
erw [Category.assoc, Arrow.w, Augmented.toArrow_obj_hom, NatTrans.naturality_assoc, Functor.const_obj_map,
Category.id_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
⊢ ∀ ⦃X_1 Y : SimplexCategoryᵒᵖ⦄ (f : X_1 ⟶ Y),
X.left.map f ≫
(fun x =>
WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom =
NatTrans.app X.hom x ≫ G.right))
Y =
(fun x =>
WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom =
NatTrans.app X.hom x ≫ G.right))
X_1 ≫
(Arrow.augmentedCechNerve F).left.map f
[PROOFSTEP]
intro x y f
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
⊢ X.left.map f ≫
(fun x =>
WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom =
NatTrans.app X.hom x ≫ G.right))
y =
(fun x =>
WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom =
NatTrans.app X.hom x ≫ G.right))
x ≫
(Arrow.augmentedCechNerve F).left.map f
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
⊢ X.left.map f ≫
WidePullback.lift (NatTrans.app X.hom y ≫ G.right)
(fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len y.unop + 1)),
(X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right) =
WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫
WidePullback.lift (WidePullback.base fun x => F.hom)
(fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len y.unop + 1)),
WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom =
WidePullback.base fun x => F.hom)
[PROOFSTEP]
ext
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
j✝ : Fin (SimplexCategory.len y.unop + 1)
⊢ (X.left.map f ≫
WidePullback.lift (NatTrans.app X.hom y ≫ G.right)
(fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len y.unop + 1)),
(X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫
WidePullback.π (fun x => F.hom) j✝ =
(WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫
WidePullback.lift (WidePullback.base fun x => F.hom)
(fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len y.unop + 1)),
WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom =
WidePullback.base fun x => F.hom)) ≫
WidePullback.π (fun x => F.hom) j✝
[PROOFSTEP]
dsimp
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
j✝ : Fin (SimplexCategory.len y.unop + 1)
⊢ (X.left.map f ≫
WidePullback.lift (NatTrans.app X.hom y ≫ G.right)
(fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len y.unop + 1)),
(X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫
WidePullback.π (fun x => F.hom) j✝ =
(WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫
WidePullback.lift (WidePullback.base fun x => F.hom)
(fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len y.unop + 1)),
WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom =
WidePullback.base fun x => F.hom)) ≫
WidePullback.π (fun x => F.hom) j✝
[PROOFSTEP]
simp only [WidePullback.lift_π, Category.assoc, ← X.left.map_comp_assoc]
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
j✝ : Fin (SimplexCategory.len y.unop + 1)
⊢ X.left.map (f ≫ (SimplexCategory.const y.unop j✝).op) ≫ G.left =
X.left.map (SimplexCategory.const x.unop (↑(SimplexCategory.Hom.toOrderHom f.unop) j✝)).op ≫ G.left
[PROOFSTEP]
rfl
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
⊢ ((X.left.map f ≫
WidePullback.lift (NatTrans.app X.hom y ≫ G.right)
(fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len y.unop + 1)),
(X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫
WidePullback.base fun x => F.hom) =
(WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫
WidePullback.lift (WidePullback.base fun x => F.hom)
(fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len y.unop + 1)),
WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom =
WidePullback.base fun x => F.hom)) ≫
WidePullback.base fun x => F.hom
[PROOFSTEP]
dsimp
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
G : Augmented.toArrow.obj X ⟶ F
x y : SimplexCategoryᵒᵖ
f : x ⟶ y
⊢ ((X.left.map f ≫
WidePullback.lift (NatTrans.app X.hom y ≫ G.right)
(fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len y.unop + 1)),
(X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫
WidePullback.base fun x => F.hom) =
(WidePullback.lift (NatTrans.app X.hom x ≫ G.right)
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫
WidePullback.lift (WidePullback.base fun x => F.hom)
(fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len y.unop + 1)),
WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom =
WidePullback.base fun x => F.hom)) ≫
WidePullback.base fun x => F.hom
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
⊢ Function.LeftInverse (equivalenceRightToLeft X F) (equivalenceLeftToRight X F)
[PROOFSTEP]
intro A
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ equivalenceRightToLeft X F (equivalenceLeftToRight X F A) = A
[PROOFSTEP]
ext
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ (equivalenceRightToLeft X F (equivalenceLeftToRight X F A)).left = A.left
[PROOFSTEP]
dsimp
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ WidePullback.lift (NatTrans.app X.hom (Opposite.op (SimplexCategory.mk 0)) ≫ A.right)
(fun i => X.left.map (SimplexCategory.const (SimplexCategory.mk 0) i).op ≫ A.left)
(_ :
∀ (i : Fin (SimplexCategory.len (Opposite.op (SimplexCategory.mk 0)).unop + 1)),
(fun i => X.left.map (SimplexCategory.const (Opposite.op (SimplexCategory.mk 0)).unop i).op ≫ A.left) i ≫
F.hom =
NatTrans.app X.hom (Opposite.op (SimplexCategory.mk 0)) ≫ A.right) ≫
WidePullback.π (fun x => F.hom) 0 =
A.left
[PROOFSTEP]
erw [WidePullback.lift_π]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ X.left.map (SimplexCategory.const (SimplexCategory.mk 0) 0).op ≫ A.left = A.left
[PROOFSTEP]
nth_rw 2 [← Category.id_comp A.left]
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ X.left.map (SimplexCategory.const (SimplexCategory.mk 0) 0).op ≫ A.left = 𝟙 (Augmented.toArrow.obj X).left ≫ A.left
[PROOFSTEP]
congr 1
[GOAL]
case h₁.e_a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ X.left.map (SimplexCategory.const (SimplexCategory.mk 0) 0).op = 𝟙 (Augmented.toArrow.obj X).left
[PROOFSTEP]
convert X.left.map_id _
[GOAL]
case h.e'_2.h.h.e'_8
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ (SimplexCategory.const (SimplexCategory.mk 0) 0).op = 𝟙 (Opposite.op (SimplexCategory.mk 0))
[PROOFSTEP]
rw [← op_id]
[GOAL]
case h.e'_2.h.h.e'_8
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ (SimplexCategory.const (SimplexCategory.mk 0) 0).op = (𝟙 (SimplexCategory.mk 0)).op
[PROOFSTEP]
congr 1
[GOAL]
case h.e'_2.h.h.e'_8.e_f
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ SimplexCategory.const (SimplexCategory.mk 0) 0 = 𝟙 (SimplexCategory.mk 0)
[PROOFSTEP]
ext ⟨a, ha⟩
[GOAL]
case h.e'_2.h.h.e'_8.e_f.a.h.h.mk.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
a : ℕ
ha : a < SimplexCategory.len (SimplexCategory.mk 0) + 1
⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) =
↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha })
[PROOFSTEP]
change a < 1 at ha
[GOAL]
case h.e'_2.h.h.e'_8.e_f.a.h.h.mk.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
a : ℕ
ha : a < 1
⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) =
↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha })
[PROOFSTEP]
change 0 = a
[GOAL]
case h.e'_2.h.h.e'_8.e_f.a.h.h.mk.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
a : ℕ
ha : a < 1
⊢ 0 = a
[PROOFSTEP]
linarith
[GOAL]
case h₂
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : Augmented.toArrow.obj X ⟶ F
⊢ (equivalenceRightToLeft X F (equivalenceLeftToRight X F A)).right = A.right
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
⊢ Function.RightInverse (equivalenceRightToLeft X F) (equivalenceLeftToRight X F)
[PROOFSTEP]
intro A
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
⊢ equivalenceLeftToRight X F (equivalenceRightToLeft X F A) = A
[PROOFSTEP]
ext x : 2
[GOAL]
case h₁.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
x : SimplexCategoryᵒᵖ
⊢ NatTrans.app (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).left x = NatTrans.app A.left x
[PROOFSTEP]
refine' WidePullback.hom_ext _ _ _ (fun j => _) _
[GOAL]
case h₁.h.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
x : SimplexCategoryᵒᵖ
j : Fin (SimplexCategory.len x.unop + 1)
⊢ NatTrans.app (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).left x ≫ WidePullback.π (fun x => F.hom) j =
NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) j
[PROOFSTEP]
dsimp
[GOAL]
case h₁.h.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
x : SimplexCategoryᵒᵖ
j : Fin (SimplexCategory.len x.unop + 1)
⊢ WidePullback.lift (NatTrans.app X.hom x ≫ A.right)
(fun i =>
X.left.map (SimplexCategory.const x.unop i).op ≫
NatTrans.app A.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0)
(_ :
∀ (i : Fin (SimplexCategory.len x.unop + 1)),
(fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ (equivalenceRightToLeft X F A).left) i ≫ F.hom =
NatTrans.app X.hom x ≫ (equivalenceRightToLeft X F A).right) ≫
WidePullback.π (fun x => F.hom) j =
NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) j
[PROOFSTEP]
simp
[GOAL]
case h₁.h.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
x : SimplexCategoryᵒᵖ
j : Fin (SimplexCategory.len x.unop + 1)
⊢ NatTrans.app A.left x ≫
WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const x.unop j)) 0) =
NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) j
[PROOFSTEP]
rfl
[GOAL]
case h₁.h.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
x : SimplexCategoryᵒᵖ
⊢ (NatTrans.app (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).left x ≫ WidePullback.base fun x => F.hom) =
NatTrans.app A.left x ≫ WidePullback.base fun x => F.hom
[PROOFSTEP]
simpa using congr_app A.w.symm x
[GOAL]
case h₂
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
X : Augmented C
F : Arrow C
A : X ⟶ Arrow.augmentedCechNerve F
⊢ (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).right = A.right
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
⊢ ∀ {X' X : Augmented C} {Y : Arrow C} (f : X' ⟶ X) (g : X ⟶ augmentedCechNerve.obj Y),
↑(cechNerveEquiv X' Y).symm (f ≫ g) = Augmented.toArrow.map f ≫ ↑(cechNerveEquiv X Y).symm g
[PROOFSTEP]
dsimp [cechNerveEquiv]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
⊢ ∀ {X' X : Augmented C} {Y : Arrow C} (f : X' ⟶ X) (g : X ⟶ augmentedCechNerve.obj Y),
equivalenceRightToLeft X' Y (f ≫ g) = Augmented.toArrow.map f ≫ equivalenceRightToLeft X Y g
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
⊢ ∀ {X : Augmented C} {Y Y' : Arrow C} (f : Augmented.toArrow.obj X ⟶ Y) (g : Y ⟶ Y'),
↑(cechNerveEquiv X Y') (f ≫ g) = ↑(cechNerveEquiv X Y) f ≫ augmentedCechNerve.map g
[PROOFSTEP]
dsimp [cechNerveEquiv]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom
⊢ ∀ {X : Augmented C} {Y Y' : Arrow C} (f : Augmented.toArrow.obj X ⟶ Y) (g : Y ⟶ Y'),
equivalenceLeftToRight X Y' (f ≫ g) = equivalenceLeftToRight X Y f ≫ augmentedCechNerve.map g
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
f : Arrow C
inst✝ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom
x y : SimplexCategory
g : x ⟶ y
⊢ (fun n => widePushout f.left (fun x => f.right) fun x => f.hom) x ⟶
(fun n => widePushout f.left (fun x => f.right) fun x => f.hom) y
[PROOFSTEP]
refine'
WidePushout.desc (WidePushout.head _) (fun i => (@WidePushout.ι _ _ _ _ _ (fun _ => f.hom) ?_ (g.toOrderHom i)))
(fun j => _)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
f : Arrow C
inst✝ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom
x y : SimplexCategory
g : x ⟶ y
j : Fin (SimplexCategory.len x + 1)
⊢ f.hom ≫ (fun i => WidePushout.ι (fun x => f.hom) (↑(SimplexCategory.Hom.toOrderHom g) i)) j =
WidePushout.head fun x => f.hom
[PROOFSTEP]
erw [← WidePushout.arrow_ι]
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
f✝ : Arrow C
inst✝² : ∀ (n : ℕ), HasWidePushout f✝.left (fun x => f✝.right) fun x => f✝.hom
f g : Arrow C
inst✝¹ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom
inst✝ : ∀ (n : ℕ), HasWidePushout g.left (fun x => g.right) fun x => g.hom
F : f ⟶ g
n : SimplexCategory
i : Fin (SimplexCategory.len n + 1)
⊢ g.right ⟶ (cechConerve g).obj n
[PROOFSTEP]
apply WidePushout.ι _ i
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
f✝ : Arrow C
inst✝² : ∀ (n : ℕ), HasWidePushout f✝.left (fun x => f✝.right) fun x => f✝.hom
f g : Arrow C
inst✝¹ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom
inst✝ : ∀ (n : ℕ), HasWidePushout g.left (fun x => g.right) fun x => g.hom
F : f ⟶ g
n : SimplexCategory
i : Fin (SimplexCategory.len n + 1)
⊢ f.hom ≫ (fun i => F.right ≫ WidePushout.ι (fun x => g.hom) i) i = F.left ≫ WidePushout.head fun x => g.hom
[PROOFSTEP]
rw [← Arrow.w_assoc F, ← WidePushout.arrow_ι]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : Arrow.augmentedCechConerve F ⟶ X
⊢ (𝟭 C).map G.left ≫ (Augmented.toArrow.obj X).hom =
F.hom ≫ (𝟭 C).map (WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app G.right (SimplexCategory.mk 0))
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : Arrow.augmentedCechConerve F ⟶ X
⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) =
F.hom ≫ WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app G.right (SimplexCategory.mk 0)
[PROOFSTEP]
rw [@WidePushout.arrow_ι_assoc _ _ _ _ _ (fun (_ : Fin 1) => F.hom) (by dsimp; infer_instance)]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : Arrow.augmentedCechConerve F ⟶ X
⊢ HasWidePushout ((𝟭 C).obj F.left) (fun x => (𝟭 C).obj F.right) fun x => F.hom
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : Arrow.augmentedCechConerve F ⟶ X
⊢ HasWidePushout F.left (fun x => F.right) fun x => F.hom
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : Arrow.augmentedCechConerve F ⟶ X
⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) =
(WidePushout.head fun x => F.hom) ≫ NatTrans.app G.right (SimplexCategory.mk 0)
[PROOFSTEP]
exact congr_app G.w (SimplexCategory.mk 0)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x : SimplexCategory
⊢ ∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x
[PROOFSTEP]
rintro j
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
⊢ F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x
[PROOFSTEP]
rw [← Arrow.w_assoc G]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
⊢ G.left ≫ (Augmented.toArrow.obj X).hom ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x
[PROOFSTEP]
have t := X.hom.naturality (x.const j)
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
t :
((const C).obj X.left).map (SimplexCategory.const x j) ≫ NatTrans.app X.hom x =
NatTrans.app X.hom (SimplexCategory.mk 0) ≫ ((𝟭 (CosimplicialObject C)).obj X.right).map (SimplexCategory.const x j)
⊢ G.left ≫ (Augmented.toArrow.obj X).hom ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x
[PROOFSTEP]
dsimp at t ⊢
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
t :
𝟙 X.left ≫ NatTrans.app X.hom x = NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j)
⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j) =
G.left ≫ NatTrans.app X.hom x
[PROOFSTEP]
simp only [Category.id_comp] at t
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
t : NatTrans.app X.hom x = NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j)
⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j) =
G.left ≫ NatTrans.app X.hom x
[PROOFSTEP]
rw [← t]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
⊢ ∀ ⦃X_1 Y : SimplexCategory⦄ (f : X_1 ⟶ Y),
(Arrow.augmentedCechConerve F).right.map f ≫
(fun x =>
WidePushout.desc (G.left ≫ NatTrans.app X.hom x)
(fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j =
G.left ≫ NatTrans.app X.hom x))
Y =
(fun x =>
WidePushout.desc (G.left ≫ NatTrans.app X.hom x)
(fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j =
G.left ≫ NatTrans.app X.hom x))
X_1 ≫
X.right.map f
[PROOFSTEP]
intro x y f
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
⊢ (Arrow.augmentedCechConerve F).right.map f ≫
(fun x =>
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x))
y =
(fun x =>
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x))
x ≫
X.right.map f
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
⊢ WidePushout.desc (WidePushout.head fun x => F.hom)
(fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j =
WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i))
(_ :
∀ (j : Fin (SimplexCategory.len y + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) =
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫
X.right.map f
[PROOFSTEP]
ext
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
j✝ : Fin (SimplexCategory.len x + 1)
⊢ WidePushout.ι (fun x => F.hom) j✝ ≫
WidePushout.desc (WidePushout.head fun x => F.hom)
(fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j =
WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i))
(_ :
∀ (j : Fin (SimplexCategory.len y + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) =
WidePushout.ι (fun x => F.hom) j✝ ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫
X.right.map f
[PROOFSTEP]
dsimp
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
j✝ : Fin (SimplexCategory.len x + 1)
⊢ WidePushout.ι (fun x => F.hom) j✝ ≫
WidePushout.desc (WidePushout.head fun x => F.hom)
(fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j =
WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i))
(_ :
∀ (j : Fin (SimplexCategory.len y + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) =
WidePushout.ι (fun x => F.hom) j✝ ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫
X.right.map f
[PROOFSTEP]
simp only [WidePushout.ι_desc_assoc, WidePushout.ι_desc]
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
j✝ : Fin (SimplexCategory.len x + 1)
⊢ G.right ≫ X.right.map (SimplexCategory.const y (↑(SimplexCategory.Hom.toOrderHom f) j✝)) =
(G.right ≫ X.right.map (SimplexCategory.const x j✝)) ≫ X.right.map f
[PROOFSTEP]
rw [Category.assoc, ← X.right.map_comp]
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
j✝ : Fin (SimplexCategory.len x + 1)
⊢ G.right ≫ X.right.map (SimplexCategory.const y (↑(SimplexCategory.Hom.toOrderHom f) j✝)) =
G.right ≫ X.right.map (SimplexCategory.const x j✝ ≫ f)
[PROOFSTEP]
rfl
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
⊢ (WidePushout.head fun x => F.hom) ≫
WidePushout.desc (WidePushout.head fun x => F.hom)
(fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j =
WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i))
(_ :
∀ (j : Fin (SimplexCategory.len y + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) =
(WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫
X.right.map f
[PROOFSTEP]
dsimp
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
⊢ (WidePushout.head fun x => F.hom) ≫
WidePushout.desc (WidePushout.head fun x => F.hom)
(fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j =
WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i))
(_ :
∀ (j : Fin (SimplexCategory.len y + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) =
(WidePushout.head fun x => F.hom) ≫
WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫
X.right.map f
[PROOFSTEP]
simp only [Functor.const_obj_map, ← NatTrans.naturality, WidePushout.head_desc_assoc, WidePushout.head_desc,
Category.assoc]
[GOAL]
case a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
G : F ⟶ Augmented.toArrow.obj X
x y : SimplexCategory
f : x ⟶ y
⊢ G.left ≫ NatTrans.app X.hom y = G.left ≫ 𝟙 X.left ≫ NatTrans.app X.hom y
[PROOFSTEP]
erw [Category.id_comp]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
⊢ Function.LeftInverse (equivalenceRightToLeft F X) (equivalenceLeftToRight F X)
[PROOFSTEP]
intro A
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
⊢ equivalenceRightToLeft F X (equivalenceLeftToRight F X A) = A
[PROOFSTEP]
ext x : 2
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
⊢ (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).left = A.left
[PROOFSTEP]
rfl
[GOAL]
case h₂.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
⊢ NatTrans.app (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).right x = NatTrans.app A.right x
[PROOFSTEP]
refine' WidePushout.hom_ext _ _ _ (fun j => _) _
[GOAL]
case h₂.h.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
⊢ WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).right x =
WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app A.right x
[PROOFSTEP]
dsimp
[GOAL]
case h₂.h.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
⊢ WidePushout.ι (fun x => F.hom) j ≫
WidePushout.desc (A.left ≫ NatTrans.app X.hom x)
(fun i =>
(WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app A.right (SimplexCategory.mk 0)) ≫
X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => (equivalenceLeftToRight F X A).right ≫ X.right.map (SimplexCategory.const x i)) j =
(equivalenceLeftToRight F X A).left ≫ NatTrans.app X.hom x) =
WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app A.right x
[PROOFSTEP]
simp only [Category.assoc, ← NatTrans.naturality A.right, Arrow.augmentedCechConerve_right, SimplexCategory.len_mk,
Arrow.cechConerve_map, colimit.ι_desc, WidePushoutShape.mkCocone_ι_app, colimit.ι_desc_assoc]
[GOAL]
case h₂.h.refine'_1
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
j : Fin (SimplexCategory.len x + 1)
⊢ WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const x j)) 0) ≫
NatTrans.app A.right x =
WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app A.right x
[PROOFSTEP]
rfl
[GOAL]
case h₂.h.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
⊢ (WidePushout.head fun x => F.hom) ≫ NatTrans.app (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).right x =
(WidePushout.head fun x => F.hom) ≫ NatTrans.app A.right x
[PROOFSTEP]
dsimp
[GOAL]
case h₂.h.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
⊢ (WidePushout.head fun x => F.hom) ≫
WidePushout.desc (A.left ≫ NatTrans.app X.hom x)
(fun i =>
(WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app A.right (SimplexCategory.mk 0)) ≫
X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => (equivalenceLeftToRight F X A).right ≫ X.right.map (SimplexCategory.const x i)) j =
(equivalenceLeftToRight F X A).left ≫ NatTrans.app X.hom x) =
(WidePushout.head fun x => F.hom) ≫ NatTrans.app A.right x
[PROOFSTEP]
rw [colimit.ι_desc]
[GOAL]
case h₂.h.refine'_2
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : Arrow.augmentedCechConerve F ⟶ X
x : SimplexCategory
⊢ NatTrans.app
(WidePushoutShape.mkCocone (A.left ≫ NatTrans.app X.hom x)
(fun i =>
(WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app A.right (SimplexCategory.mk 0)) ≫
X.right.map (SimplexCategory.const x i))
(_ :
∀ (j : Fin (SimplexCategory.len x + 1)),
F.hom ≫ (fun i => (equivalenceLeftToRight F X A).right ≫ X.right.map (SimplexCategory.const x i)) j =
(equivalenceLeftToRight F X A).left ≫ NatTrans.app X.hom x)).ι
none =
(WidePushout.head fun x => F.hom) ≫ NatTrans.app A.right x
[PROOFSTEP]
exact congr_app A.w x
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
⊢ Function.RightInverse (equivalenceRightToLeft F X) (equivalenceLeftToRight F X)
[PROOFSTEP]
intro A
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ equivalenceLeftToRight F X (equivalenceRightToLeft F X A) = A
[PROOFSTEP]
ext
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ (equivalenceLeftToRight F X (equivalenceRightToLeft F X A)).left = A.left
[PROOFSTEP]
rfl
[GOAL]
case h₂
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ (equivalenceLeftToRight F X (equivalenceRightToLeft F X A)).right = A.right
[PROOFSTEP]
dsimp
[GOAL]
case h₂
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ WidePushout.ι (fun x => F.hom) 0 ≫
WidePushout.desc (A.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0))
(fun i => A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) i))
(_ :
∀ (j : Fin (SimplexCategory.len (SimplexCategory.mk 0) + 1)),
F.hom ≫ (fun i => A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) i)) j =
A.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0)) =
A.right
[PROOFSTEP]
erw [WidePushout.ι_desc]
[GOAL]
case h₂
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) 0) = A.right
[PROOFSTEP]
nth_rw 2 [← Category.comp_id A.right]
[GOAL]
case h₂
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) 0) = A.right ≫ 𝟙 (Augmented.toArrow.obj X).right
[PROOFSTEP]
congr 1
[GOAL]
case h₂.e_a
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) 0) = 𝟙 (Augmented.toArrow.obj X).right
[PROOFSTEP]
convert X.right.map_id _
[GOAL]
case h.e'_2.h.h.e'_8
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
⊢ SimplexCategory.const (SimplexCategory.mk 0) 0 = 𝟙 (SimplexCategory.mk 0)
[PROOFSTEP]
ext ⟨a, ha⟩
[GOAL]
case h.e'_2.h.h.e'_8.a.h.h.mk.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
a : ℕ
ha : a < SimplexCategory.len (SimplexCategory.mk 0) + 1
⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) =
↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha })
[PROOFSTEP]
change a < 1 at ha
[GOAL]
case h.e'_2.h.h.e'_8.a.h.h.mk.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
a : ℕ
ha : a < 1
⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) =
↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha })
[PROOFSTEP]
change 0 = a
[GOAL]
case h.e'_2.h.h.e'_8.a.h.h.mk.h
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom
F : Arrow C
X : Augmented C
A : F ⟶ Augmented.toArrow.obj X
a : ℕ
ha : a < 1
⊢ 0 = a
[PROOFSTEP]
linarith
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasTerminal C
ι : Type w
X Y : C
⊢ Unique (Y ⟶ (wideCospan ι X).obj none)
[PROOFSTEP]
dsimp [wideCospan]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
inst✝ : HasTerminal C
ι : Type w
X Y : C
⊢ Unique (Y ⟶ ⊤_ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
i j : WidePullbackShape ι
f : i ⟶ j
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map f ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
j =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
i ≫
(wideCospan ι X).map f
[PROOFSTEP]
cases f
[GOAL]
case id
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
i : WidePullbackShape ι
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id i) ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
i =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
i ≫
(wideCospan ι X).map (WidePullbackShape.Hom.id i)
[PROOFSTEP]
cases i
[GOAL]
case id.none
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id none) ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
none =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
none ≫
(wideCospan ι X).map (WidePullbackShape.Hom.id none)
case id.some
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
val✝ : ι
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id (some val✝)) ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
(some val✝) =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
(some val✝) ≫
(wideCospan ι X).map (WidePullbackShape.Hom.id (some val✝))
[PROOFSTEP]
all_goals dsimp; simp
[GOAL]
case id.none
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id none) ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
none =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
none ≫
(wideCospan ι X).map (WidePullbackShape.Hom.id none)
[PROOFSTEP]
dsimp
[GOAL]
case id.none
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
⊢ 𝟙 (∏ fun x => X) ≫ terminal.from (∏ fun x => X) = terminal.from (∏ fun x => X) ≫ (wideCospan ι X).map (𝟙 none)
[PROOFSTEP]
simp
[GOAL]
case id.some
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
val✝ : ι
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id (some val✝)) ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
(some val✝) =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
(some val✝) ≫
(wideCospan ι X).map (WidePullbackShape.Hom.id (some val✝))
[PROOFSTEP]
dsimp
[GOAL]
case id.some
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
val✝ : ι
⊢ 𝟙 (∏ fun x => X) ≫ limit.π (Discrete.functor fun x => X) { as := val✝ } =
limit.π (Discrete.functor fun x => X) { as := val✝ } ≫ (wideCospan ι X).map (𝟙 (some val✝))
[PROOFSTEP]
simp
[GOAL]
case term
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
j✝ : ι
⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.term j✝) ≫
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
none =
(fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i })
(some j✝) ≫
(wideCospan ι X).map (WidePullbackShape.Hom.term j✝)
[PROOFSTEP]
dsimp
[GOAL]
case term
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
j✝ : ι
⊢ 𝟙 (∏ fun x => X) ≫ terminal.from (∏ fun x => X) =
limit.π (Discrete.functor fun x => X) { as := j✝ } ≫ (wideCospan ι X).map (WidePullbackShape.Hom.term j✝)
[PROOFSTEP]
simp only [terminal.comp_from]
[GOAL]
case term
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
j✝ : ι
⊢ terminal.from (∏ fun x => X) =
limit.π (Discrete.functor fun x => X) { as := j✝ } ≫ (wideCospan ι X).map (WidePullbackShape.Hom.term j✝)
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
s : Cone (wideCospan ι X)
f :
s.pt ⟶
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt
h :
∀ (j : WidePullbackShape ι),
f ≫
NatTrans.app
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1
(terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i =>
limit.π (Discrete.functor fun x => X) { as := i } }.π
j =
NatTrans.app s.π j
⊢ f = (fun s => Pi.lift fun j => NatTrans.app s.π (some j)) s
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
s : Cone (wideCospan ι X)
f :
s.pt ⟶
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt
h :
∀ (j : WidePullbackShape ι),
f ≫
NatTrans.app
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1
(terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i =>
limit.π (Discrete.functor fun x => X) { as := i } }.π
j =
NatTrans.app s.π j
⊢ f = Pi.lift fun j => NatTrans.app s.π (some j)
[PROOFSTEP]
ext j
[GOAL]
case h
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
s : Cone (wideCospan ι X)
f :
s.pt ⟶
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt
h :
∀ (j : WidePullbackShape ι),
f ≫
NatTrans.app
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1
(terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i =>
limit.π (Discrete.functor fun x => X) { as := i } }.π
j =
NatTrans.app s.π j
j : ι
⊢ f ≫ Pi.π (fun x => X) j = (Pi.lift fun j => NatTrans.app s.π (some j)) ≫ Pi.π (fun x => X) j
[PROOFSTEP]
dsimp only [Limits.Pi.lift]
[GOAL]
case h
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
s : Cone (wideCospan ι X)
f :
s.pt ⟶
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt
h :
∀ (j : WidePullbackShape ι),
f ≫
NatTrans.app
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1
(terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i =>
limit.π (Discrete.functor fun x => X) { as := i } }.π
j =
NatTrans.app s.π j
j : ι
⊢ f ≫ Pi.π (fun x => X) j =
limit.lift (Discrete.functor fun b => X) (Fan.mk s.pt fun j => NatTrans.app s.π (some j)) ≫ Pi.π (fun x => X) j
[PROOFSTEP]
rw [limit.lift_π]
[GOAL]
case h
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
s : Cone (wideCospan ι X)
f :
s.pt ⟶
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt
h :
∀ (j : WidePullbackShape ι),
f ≫
NatTrans.app
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1
(terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i =>
limit.π (Discrete.functor fun x => X) { as := i } }.π
j =
NatTrans.app s.π j
j : ι
⊢ f ≫ Pi.π (fun x => X) j = NatTrans.app (Fan.mk s.pt fun j => NatTrans.app s.π (some j)).π { as := j }
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
s : Cone (wideCospan ι X)
f :
s.pt ⟶
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none))
fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt
h :
∀ (j : WidePullbackShape ι),
f ≫
NatTrans.app
{ pt := ∏ fun x => X,
π :=
NatTrans.mk fun X_1 =>
Option.casesOn X_1
(terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i =>
limit.π (Discrete.functor fun x => X) { as := i } }.π
j =
NatTrans.app s.π j
j : ι
⊢ f ≫ Pi.π (fun x => X) j = NatTrans.app s.π (some j)
[PROOFSTEP]
rw [← h (some j)]
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
⊢ HasWidePullback (Arrow.mk (terminal.from X)).right (fun x => (Arrow.mk (terminal.from X)).left) fun x =>
(Arrow.mk (terminal.from X)).hom
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
val✝ : Fintype ι
⊢ HasWidePullback (Arrow.mk (terminal.from X)).right (fun x => (Arrow.mk (terminal.from X)).left) fun x =>
(Arrow.mk (terminal.from X)).hom
[PROOFSTEP]
exact ⟨⟨wideCospan.limitCone ι X⟩⟩
[GOAL]
C : Type u
inst✝³ : Category.{v, u} C
inst✝² : HasTerminal C
ι : Type w
inst✝¹ : HasFiniteProducts C
inst✝ : Finite ι
X : C
j : ι
⊢ (limitIsoPi ι X).hom ≫ Pi.π (fun x => X) j = WidePullback.π (fun x => terminal.from X) j
[PROOFSTEP]
rw [← wideCospan.limitIsoPi_inv_comp_pi, Iso.hom_inv_id_assoc]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasTerminal C
ι : Type w
inst✝ : HasFiniteProducts C
X : C
m n : SimplexCategoryᵒᵖ
f : m ⟶ n
⊢ (Arrow.cechNerve (Arrow.mk (terminal.from X))).map f ≫
((fun m => wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left)
n).hom =
((fun m => wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left) m).hom ≫
(cechNerveTerminalFrom X).map f
[PROOFSTEP]
dsimp only [cechNerveTerminalFrom, Arrow.cechNerve]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasTerminal C
ι : Type w
inst✝ : HasFiniteProducts C
X : C
m n : SimplexCategoryᵒᵖ
f : m ⟶ n
⊢ WidePullback.lift (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom)
(fun i =>
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len n.unop + 1)),
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫
(Arrow.mk (terminal.from X)).hom =
WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) ≫
(wideCospan.limitIsoPi (Fin (SimplexCategory.len n.unop + 1)) (Arrow.mk (terminal.from X)).left).hom =
(wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫
Pi.lift fun i => Pi.π (fun x => X) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)
[PROOFSTEP]
ext ⟨j⟩
[GOAL]
case h.mk
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasTerminal C
ι : Type w
inst✝ : HasFiniteProducts C
X : C
m n : SimplexCategoryᵒᵖ
f : m ⟶ n
j : ℕ
isLt✝ : j < SimplexCategory.len n.unop + 1
⊢ (WidePullback.lift (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom)
(fun i =>
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len n.unop + 1)),
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫
(Arrow.mk (terminal.from X)).hom =
WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) ≫
(wideCospan.limitIsoPi (Fin (SimplexCategory.len n.unop + 1)) (Arrow.mk (terminal.from X)).left).hom) ≫
Pi.π (fun x => X) { val := j, isLt := isLt✝ } =
((wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫
Pi.lift fun i => Pi.π (fun x => X) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) ≫
Pi.π (fun x => X) { val := j, isLt := isLt✝ }
[PROOFSTEP]
simp only [Category.assoc, limit.lift_π, Fan.mk_π_app]
[GOAL]
case h.mk
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasTerminal C
ι : Type w
inst✝ : HasFiniteProducts C
X : C
m n : SimplexCategoryᵒᵖ
f : m ⟶ n
j : ℕ
isLt✝ : j < SimplexCategory.len n.unop + 1
⊢ WidePullback.lift (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom)
(fun i =>
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len n.unop + 1)),
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫
(Arrow.mk (terminal.from X)).hom =
WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) ≫
(wideCospan.limitIsoPi (Fin (SimplexCategory.len n.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫
Pi.π (fun x => X) { val := j, isLt := isLt✝ } =
(wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫
Pi.π (fun x => X) (↑(SimplexCategory.Hom.toOrderHom f.unop) { val := j, isLt := isLt✝ })
[PROOFSTEP]
erw [wideCospan.limitIsoPi_hom_comp_pi, wideCospan.limitIsoPi_hom_comp_pi, limit.lift_π]
[GOAL]
case h.mk
C : Type u
inst✝² : Category.{v, u} C
inst✝¹ : HasTerminal C
ι : Type w
inst✝ : HasFiniteProducts C
X : C
m n : SimplexCategoryᵒᵖ
f : m ⟶ n
j : ℕ
isLt✝ : j < SimplexCategory.len n.unop + 1
⊢ NatTrans.app
(WidePullbackShape.mkCone (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom)
(fun i =>
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i))
(_ :
∀ (j : Fin (SimplexCategory.len n.unop + 1)),
WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫
(Arrow.mk (terminal.from X)).hom =
WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom)).π
(some { val := j, isLt := isLt✝ }) =
WidePullback.π (fun x => terminal.from X) (↑(SimplexCategory.Hom.toOrderHom f.unop) { val := j, isLt := isLt✝ })
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.AlgebraicTopology.CechNerve", "llama_tokens": 30265} |
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
⊢ 0 < normBound abv bS
[PROOFSTEP]
obtain ⟨i, j, k, hijk⟩ : ∃ i j k, Algebra.leftMulMatrix bS (bS i) j k ≠ 0 :=
by
by_contra' h
obtain ⟨i⟩ := bS.index_nonempty
apply bS.ne_zero i
apply (injective_iff_map_eq_zero (Algebra.leftMulMatrix bS)).mp (Algebra.leftMulMatrix_injective bS)
ext j k
simp [h, DMatrix.zero_apply]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
⊢ ∃ i j k, ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0
[PROOFSTEP]
by_contra' h
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0
⊢ False
[PROOFSTEP]
obtain ⟨i⟩ := bS.index_nonempty
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0
i : ι
⊢ False
[PROOFSTEP]
apply bS.ne_zero i
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0
i : ι
⊢ ↑bS i = 0
[PROOFSTEP]
apply (injective_iff_map_eq_zero (Algebra.leftMulMatrix bS)).mp (Algebra.leftMulMatrix_injective bS)
[GOAL]
case intro.a
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0
i : ι
⊢ ↑(Algebra.leftMulMatrix bS) (↑bS i) = 0
[PROOFSTEP]
ext j k
[GOAL]
case intro.a.a.h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0
i j k : ι
⊢ ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = OfNat.ofNat 0 j k
[PROOFSTEP]
simp [h, DMatrix.zero_apply]
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
i j k : ι
hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0
⊢ 0 < normBound abv bS
[PROOFSTEP]
simp only [normBound, Algebra.smul_def, eq_natCast]
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
i j k : ι
hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0
⊢ 0 <
↑(Nat.factorial (Fintype.card ι)) *
(↑(Fintype.card ι) *
Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)) ^
Fintype.card ι
[PROOFSTEP]
refine' mul_pos (Int.coe_nat_pos.mpr (Nat.factorial_pos _)) _
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
i j k : ι
hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0
⊢ 0 <
(↑(Fintype.card ι) *
Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)) ^
Fintype.card ι
[PROOFSTEP]
refine' pow_pos (mul_pos (Int.coe_nat_pos.mpr (Fintype.card_pos_iff.mpr ⟨i⟩)) _) _
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
i j k : ι
hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0
⊢ 0 <
Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
[PROOFSTEP]
refine' lt_of_lt_of_le (abv.pos hijk) (Finset.le_max' _ _ _)
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
i j k : ι
hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0
⊢ ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS i) j k) ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ
[PROOFSTEP]
exact Finset.mem_image.mpr ⟨⟨i, j, k⟩, Finset.mem_univ _, rfl⟩
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ↑abv (↑(Algebra.norm R) a) ≤ normBound abv bS * y ^ Fintype.card ι
[PROOFSTEP]
conv_lhs => rw [← bS.sum_repr a]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
| ↑abv (↑(Algebra.norm R) a)
[PROOFSTEP]
rw [← bS.sum_repr a]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
| ↑abv (↑(Algebra.norm R) a)
[PROOFSTEP]
rw [← bS.sum_repr a]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
| ↑abv (↑(Algebra.norm R) a)
[PROOFSTEP]
rw [← bS.sum_repr a]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ↑abv (↑(Algebra.norm R) (∑ i : ι, ↑(↑bS.repr a) i • ↑bS i)) ≤ normBound abv bS * y ^ Fintype.card ι
[PROOFSTEP]
rw [Algebra.norm_apply, ← LinearMap.det_toMatrix bS]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ↑abv (↑(Algebra.norm R) (∑ i : ι, ↑(↑bS.repr a) i • ↑bS i)) ≤ normBound abv bS * y ^ Fintype.card ι
[PROOFSTEP]
simp only [Algebra.norm_apply, AlgHom.map_sum, AlgHom.map_smul, LinearEquiv.map_sum, LinearEquiv.map_smul,
Algebra.toMatrix_lmul_eq, normBound, smul_mul_assoc, ← mul_pow]
--Porting note: rest of proof was
-- convert Matrix.det_sum_smul_le Finset.univ _ hy using 3
-- · rw [Finset.card_univ, smul_mul_assoc, mul_comm]
-- · intro i j k
-- apply Finset.le_max'
-- exact finset.mem_image.mpr ⟨⟨i, j, k⟩, Finset.mem_univ _, rfl⟩
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ↑abv (↑LinearMap.det (∑ x : ι, ↑(↑bS.repr a) x • ↑(Algebra.lmul R S) (↑bS x))) ≤
Nat.factorial (Fintype.card ι) •
(Fintype.card ι •
(Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ) *
y)) ^
Fintype.card ι
[PROOFSTEP]
rw [← LinearMap.det_toMatrix bS]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ↑abv (Matrix.det (↑(LinearMap.toMatrix bS bS) (∑ x : ι, ↑(↑bS.repr a) x • ↑(Algebra.lmul R S) (↑bS x)))) ≤
Nat.factorial (Fintype.card ι) •
(Fintype.card ι •
(Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ) *
y)) ^
Fintype.card ι
[PROOFSTEP]
convert Matrix.det_sum_smul_le (n := ι) Finset.univ _ hy using 3
[GOAL]
case h.e'_3.h.e'_6.h.e'_6
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ↑(LinearMap.toMatrix bS bS) (∑ x : ι, ↑(↑bS.repr a) x • ↑(Algebra.lmul R S) (↑bS x)) =
∑ k : ι, ↑(↑bS.repr a) k • ?convert_1 k
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h.e'_6.h.e'_6
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ∑ x : ι, ↑(↑bS.repr a) x • ↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS x)) =
∑ x : ι, ↑(↑bS.repr a) x • ?convert_1 x
[PROOFSTEP]
rfl
[GOAL]
case h.e'_4.h.e'_6.h.e'_5
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ Fintype.card ι •
(Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ) *
y) =
Finset.card Finset.univ • y * ?convert_2
[PROOFSTEP]
rw [Finset.card_univ, smul_mul_assoc, mul_comm]
[GOAL]
case convert_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
⊢ ∀ (k i j : ι),
↑abv (↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS k)) i j) ≤
Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
[PROOFSTEP]
intro i j k
[GOAL]
case convert_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
i j k : ι
⊢ ↑abv (↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS i)) j k) ≤
Finset.max'
(Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ)
(_ :
∃ x,
x ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd))
Finset.univ)
[PROOFSTEP]
apply Finset.le_max'
[GOAL]
case convert_3.H2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
a : S
y : ℤ
hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y
i j k : ι
⊢ ↑abv (↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS i)) j k) ∈
Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ
[PROOFSTEP]
exact Finset.mem_image.mpr ⟨⟨i, j, k⟩, Finset.mem_univ _, rfl⟩
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
obtain ⟨i⟩ := bS.index_nonempty
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
have him : (Finset.univ.image fun k => abv (bS.repr a k)).Nonempty :=
⟨_, Finset.mem_image.mpr ⟨i, Finset.mem_univ _, rfl⟩⟩
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
set y' : ℤ := Finset.max' _ him with y'_def
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
have hy' : ∀ k, abv (bS.repr a k) ≤ y' := by
intro k
exact @Finset.le_max' ℤ _ _ _ (Finset.mem_image.mpr ⟨k, Finset.mem_univ _, rfl⟩)
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
⊢ ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
[PROOFSTEP]
intro k
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
k : ι
⊢ ↑abv (↑(↑bS.repr a) k) ≤ y'
[PROOFSTEP]
exact @Finset.le_max' ℤ _ _ _ (Finset.mem_image.mpr ⟨k, Finset.mem_univ _, rfl⟩)
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
have : (y' : T) < y :=
by
rw [y'_def, ← Finset.max'_image (show Monotone (_ : ℤ → T) from fun x y h => Int.cast_le.mpr h)]
apply (Finset.max'_lt_iff _ (him.image _)).mpr
simp only [Finset.mem_image, exists_prop]
rintro _ ⟨x, ⟨k, -, rfl⟩, rfl⟩
exact hy k
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
⊢ ↑y' < y
[PROOFSTEP]
rw [y'_def, ← Finset.max'_image (show Monotone (_ : ℤ → T) from fun x y h => Int.cast_le.mpr h)]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
⊢ Finset.max' (Finset.image (fun x => ↑x) (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)) ?h < y
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
⊢ Finset.Nonempty (Finset.image (fun x => ↑x) (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ))
[PROOFSTEP]
apply (Finset.max'_lt_iff _ (him.image _)).mpr
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
⊢ ∀ (y_1 : T), y_1 ∈ Finset.image (fun x => ↑x) (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) → y_1 < y
[PROOFSTEP]
simp only [Finset.mem_image, exists_prop]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
⊢ ∀ (y_1 : T), (∃ a_1, (∃ a_2, a_2 ∈ Finset.univ ∧ ↑abv (↑(↑bS.repr a) a_2) = a_1) ∧ ↑a_1 = y_1) → y_1 < y
[PROOFSTEP]
rintro _ ⟨x, ⟨k, -, rfl⟩, rfl⟩
[GOAL]
case intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
k : ι
⊢ ↑(↑abv (↑(↑bS.repr a) k)) < y
[PROOFSTEP]
exact hy k
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
have y'_nonneg : 0 ≤ y' := le_trans (abv.nonneg _) (hy' i)
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
y'_nonneg : 0 ≤ y'
⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
apply (Int.cast_le.mpr (norm_le abv bS a hy')).trans_lt
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
y'_nonneg : 0 ≤ y'
⊢ ↑(normBound abv bS * y' ^ Fintype.card ι) < ↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
simp only [Int.cast_mul, Int.cast_pow]
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
y'_nonneg : 0 ≤ y'
⊢ ↑(normBound abv bS) *
↑(Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him) ^ Fintype.card ι <
↑(normBound abv bS) * y ^ Fintype.card ι
[PROOFSTEP]
apply mul_lt_mul' le_rfl
[GOAL]
case intro.hbd
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
y'_nonneg : 0 ≤ y'
⊢ ↑(Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him) ^ Fintype.card ι < y ^ Fintype.card ι
[PROOFSTEP]
exact pow_lt_pow_of_lt_left this (Int.cast_nonneg.mpr y'_nonneg) (Fintype.card_pos_iff.mpr ⟨i⟩)
[GOAL]
case intro.hb
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
y'_nonneg : 0 ≤ y'
⊢ 0 ≤ ↑(Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him) ^ Fintype.card ι
[PROOFSTEP]
exact pow_nonneg (Int.cast_nonneg.mpr y'_nonneg) _
[GOAL]
case intro.hc
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁵ : EuclideanDomain R
inst✝¹⁴ : CommRing S
inst✝¹³ : IsDomain S
inst✝¹² : Field K
inst✝¹¹ : Field L
inst✝¹⁰ : Algebra R K
inst✝⁹ : IsFractionRing R K
inst✝⁸ : Algebra K L
inst✝⁷ : FiniteDimensional K L
inst✝⁶ : IsSeparable K L
algRL : Algebra R L
inst✝⁵ : IsScalarTower R K L
inst✝⁴ : Algebra R S
inst✝³ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝² : DecidableEq ι
inst✝¹ : Fintype ι
bS : Basis ι R S
T : Type u_6
inst✝ : LinearOrderedRing T
a : S
y : T
hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y
i : ι
him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)
y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him
hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y'
this : ↑y' < y
y'_nonneg : 0 ≤ y'
⊢ 0 < ↑(normBound abv bS)
[PROOFSTEP]
exact Int.cast_pos.mpr (normBound_pos abv bS)
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
⊢ ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
[PROOFSTEP]
classical
obtain ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩, min⟩ :=
@Int.exists_least_of_bdd (fun a => ∃ b ∈ (I : Ideal S), b ≠ (0 : S) ∧ abv (Algebra.norm R b) = a) _
(by
use 0
rintro _ ⟨b, _, _, rfl⟩
apply abv.nonneg)
(by
obtain ⟨b, b_mem, b_ne_zero⟩ := (I : Ideal S).ne_bot_iff.mp (nonZeroDivisors.coe_ne_zero I)
exact ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩⟩)
· refine' ⟨b, b_mem, b_ne_zero, _⟩
intro c hc lt
contrapose! lt with c_ne_zero
exact min _ ⟨c, hc, c_ne_zero, rfl⟩
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
⊢ ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
[PROOFSTEP]
obtain ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩, min⟩ :=
@Int.exists_least_of_bdd (fun a => ∃ b ∈ (I : Ideal S), b ≠ (0 : S) ∧ abv (Algebra.norm R b) = a) _
(by
use 0
rintro _ ⟨b, _, _, rfl⟩
apply abv.nonneg)
(by
obtain ⟨b, b_mem, b_ne_zero⟩ := (I : Ideal S).ne_bot_iff.mp (nonZeroDivisors.coe_ne_zero I)
exact ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩⟩)
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
⊢ ∃ b, ∀ (z : ℤ), (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z → b ≤ z
[PROOFSTEP]
use 0
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
⊢ ∀ (z : ℤ), (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z → 0 ≤ z
[PROOFSTEP]
rintro _ ⟨b, _, _, rfl⟩
[GOAL]
case h.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
b : S
left✝¹ : b ∈ ↑I
left✝ : b ≠ 0
⊢ 0 ≤ ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
apply abv.nonneg
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
⊢ ∃ z, (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z
[PROOFSTEP]
obtain ⟨b, b_mem, b_ne_zero⟩ := (I : Ideal S).ne_bot_iff.mp (nonZeroDivisors.coe_ne_zero I)
[GOAL]
case intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
⊢ ∃ z, (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z
[PROOFSTEP]
exact ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z
⊢ ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
[PROOFSTEP]
refine' ⟨b, b_mem, b_ne_zero, _⟩
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z
⊢ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
[PROOFSTEP]
intro c hc lt
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z
c : S
hc : c ∈ ↑I
lt : ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b)
⊢ c = 0
[PROOFSTEP]
contrapose! lt with c_ne_zero
[GOAL]
case intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁴ : EuclideanDomain R
inst✝¹³ : CommRing S
inst✝¹² : IsDomain S
inst✝¹¹ : Field K
inst✝¹⁰ : Field L
inst✝⁹ : Algebra R K
inst✝⁸ : IsFractionRing R K
inst✝⁷ : Algebra K L
inst✝⁶ : FiniteDimensional K L
inst✝⁵ : IsSeparable K L
algRL : Algebra R L
inst✝⁴ : IsScalarTower R K L
inst✝³ : Algebra R S
inst✝² : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝¹ : DecidableEq ι
inst✝ : Fintype ι
bS : Basis ι R S
I : { x // x ∈ (Ideal S)⁰ }
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z
c : S
hc : c ∈ ↑I
c_ne_zero : c ≠ 0
⊢ ↑abv (↑(Algebra.norm R) b) ≤ ↑abv (↑(Algebra.norm R) c)
[PROOFSTEP]
exact min _ ⟨c, hc, c_ne_zero, rfl⟩
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
x : R
⊢ x ∈ finsetApprox bS adm ↔ ∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x
[PROOFSTEP]
simp only [finsetApprox, Finset.mem_erase, Finset.mem_image]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
x : R
⊢ (x ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = x) ↔
∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
x : R
⊢ (x ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = x) →
∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x
[PROOFSTEP]
rintro ⟨hx, ⟨i, j⟩, _, rfl⟩
[GOAL]
case mp.intro.intro.mk.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
i j : Fin (Nat.succ (cardM bS adm))
left✝ : (i, j) ∈ Finset.univ
hx : ↑(distinctElems bS adm) (i, j).fst - ↑(distinctElems bS adm) (i, j).snd ≠ 0
⊢ ∃ i_1 j_1,
i_1 ≠ j_1 ∧
↑(distinctElems bS adm) i_1 - ↑(distinctElems bS adm) j_1 =
↑(distinctElems bS adm) (i, j).fst - ↑(distinctElems bS adm) (i, j).snd
[PROOFSTEP]
refine' ⟨i, j, _, rfl⟩
[GOAL]
case mp.intro.intro.mk.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
i j : Fin (Nat.succ (cardM bS adm))
left✝ : (i, j) ∈ Finset.univ
hx : ↑(distinctElems bS adm) (i, j).fst - ↑(distinctElems bS adm) (i, j).snd ≠ 0
⊢ i ≠ j
[PROOFSTEP]
rintro rfl
[GOAL]
case mp.intro.intro.mk.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
i : Fin (Nat.succ (cardM bS adm))
left✝ : (i, i) ∈ Finset.univ
hx : ↑(distinctElems bS adm) (i, i).fst - ↑(distinctElems bS adm) (i, i).snd ≠ 0
⊢ False
[PROOFSTEP]
simp at hx
[GOAL]
case mpr
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
x : R
⊢ (∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x) →
x ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = x
[PROOFSTEP]
rintro ⟨i, j, hij, rfl⟩
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
i j : Fin (Nat.succ (cardM bS adm))
hij : i ≠ j
⊢ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j ≠ 0 ∧
∃ a,
a ∈ Finset.univ ∧
↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd =
↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j
[PROOFSTEP]
refine' ⟨_, ⟨i, j⟩, Finset.mem_univ _, rfl⟩
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
i j : Fin (Nat.succ (cardM bS adm))
hij : i ≠ j
⊢ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j ≠ 0
[PROOFSTEP]
rw [Ne.def, sub_eq_zero]
[GOAL]
case mpr.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
i j : Fin (Nat.succ (cardM bS adm))
hij : i ≠ j
⊢ ¬↑(distinctElems bS adm) i = ↑(distinctElems bS adm) j
[PROOFSTEP]
exact fun h => hij ((distinctElems bS adm).injective h)
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have dim_pos := Fintype.card_pos_iff.mpr bS.index_nonempty
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
set ε : ℝ := normBound abv bS ^ (-1 / Fintype.card ι : ℝ) with ε_eq
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have hε : 0 < ε := Real.rpow_pos_of_pos (Int.cast_pos.mpr (normBound_pos abv bS)) _
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have ε_le : (normBound abv bS : ℝ) * (abv b • ε) ^ Fintype.card ι ≤ abv b ^ Fintype.card ι :=
by
have := normBound_pos abv bS
have := abv.nonneg b
rw [ε_eq, Algebra.smul_def, eq_intCast, mul_rpow, ← rpow_mul, div_mul_cancel, rpow_neg_one, mul_left_comm,
mul_inv_cancel, mul_one, rpow_nat_cast] <;>
try norm_cast; linarith
· exact Iff.mpr Int.cast_nonneg this
· linarith
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
[PROOFSTEP]
have := normBound_pos abv bS
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this : 0 < normBound abv bS
⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
[PROOFSTEP]
have := abv.nonneg b
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
[PROOFSTEP]
rw [ε_eq, Algebra.smul_def, eq_intCast, mul_rpow, ← rpow_mul, div_mul_cancel, rpow_neg_one, mul_left_comm,
mul_inv_cancel, mul_one, rpow_nat_cast]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ↑(normBound abv bS) ≠ 0
[PROOFSTEP]
try norm_cast; linarith
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ↑(normBound abv bS) ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ¬normBound abv bS = 0
[PROOFSTEP]
linarith
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ↑(Fintype.card ι) ≠ 0
[PROOFSTEP]
try norm_cast; linarith
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ↑(Fintype.card ι) ≠ 0
[PROOFSTEP]
norm_cast
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ ¬Fintype.card ι = 0
[PROOFSTEP]
linarith
[GOAL]
case hx
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(normBound abv bS)
[PROOFSTEP]
try norm_cast; linarith
[GOAL]
case hx
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(normBound abv bS)
[PROOFSTEP]
norm_cast
[GOAL]
case hx
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ normBound abv bS
[PROOFSTEP]
linarith
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(↑abv b)
[PROOFSTEP]
try norm_cast; linarith
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(↑abv b)
[PROOFSTEP]
norm_cast
[GOAL]
[PROOFSTEP]
linarith
[GOAL]
case h₁
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
[PROOFSTEP]
try norm_cast; linarith
[GOAL]
case h₁
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
[PROOFSTEP]
norm_cast
[GOAL]
case h₁
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(normBound abv bS) ^ ↑(Rat.divInt (Int.negSucc 0) ↑(Fintype.card ι))
[PROOFSTEP]
linarith
[GOAL]
case h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(↑abv b)
[PROOFSTEP]
exact Iff.mpr Int.cast_nonneg this
[GOAL]
case h₁
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
this✝ : 0 < normBound abv bS
this : 0 ≤ ↑abv b
⊢ 0 ≤ ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
[PROOFSTEP]
linarith
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
set μ : Fin (cardM bS adm).succ ↪ R := distinctElems bS adm with hμ
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
let s : ι →₀ R := bS.repr a
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have s_eq : ∀ i, s i = bS.repr a i := fun i => rfl
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
let qs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i / b
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
let rs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i % b
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have r_eq : ∀ j i, rs j i = μ j * s i % b := fun i j => rfl
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have μ_eq : ∀ i j, μ j * s i = b * qs j i + rs j i := by
intro i j
rw [r_eq, EuclideanDomain.div_add_mod]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
⊢ ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
[PROOFSTEP]
intro i j
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
i : ι
j : Fin (Nat.succ (cardM bS adm))
⊢ ↑μ j * ↑s i = b * qs j i + rs j i
[PROOFSTEP]
rw [r_eq, EuclideanDomain.div_add_mod]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have μ_mul_a_eq : ∀ j, μ j • a = b • ∑ i, qs j i • bS i + ∑ i, rs j i • bS i :=
by
intro j
rw [← bS.sum_repr a]
simp only [Finset.smul_sum, ← Finset.sum_add_distrib]
refine'
Finset.sum_congr rfl fun i _ =>
_
-- Porting note `← hμ, ← r_eq` and the final `← μ_eq` were not needed.
rw [← hμ, ← r_eq, ← s_eq, ← mul_smul, μ_eq, add_smul, mul_smul, ← μ_eq]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
⊢ ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
[PROOFSTEP]
intro j
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
j : Fin (Nat.succ (cardM bS adm))
⊢ ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
[PROOFSTEP]
rw [← bS.sum_repr a]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
j : Fin (Nat.succ (cardM bS adm))
⊢ ↑μ j • ∑ i : ι, ↑(↑bS.repr a) i • ↑bS i = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
[PROOFSTEP]
simp only [Finset.smul_sum, ← Finset.sum_add_distrib]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
j : Fin (Nat.succ (cardM bS adm))
⊢ ∑ x : ι, ↑(distinctElems bS adm) j • ↑(↑bS.repr a) x • ↑bS x =
∑ x : ι,
(b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x +
(↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x)
[PROOFSTEP]
refine'
Finset.sum_congr rfl fun i _ =>
_
-- Porting note `← hμ, ← r_eq` and the final `← μ_eq` were not needed.
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
j : Fin (Nat.succ (cardM bS adm))
i : ι
x✝ : i ∈ Finset.univ
⊢ ↑(distinctElems bS adm) j • ↑(↑bS.repr a) i • ↑bS i =
b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) i / b) • ↑bS i +
(↑(distinctElems bS adm) j * ↑(↑bS.repr a) i % b) • ↑bS i
[PROOFSTEP]
rw [← hμ, ← r_eq, ← s_eq, ← mul_smul, μ_eq, add_smul, mul_smul, ← μ_eq]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
obtain ⟨j, k, j_ne_k, hjk⟩ := adm.exists_approx hε hb fun j i => μ j * s i
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have hjk' : ∀ i, (abv (rs k i - rs j i) : ℝ) < abv b • ε := by simpa only [r_eq] using hjk
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
⊢ ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
[PROOFSTEP]
simpa only [r_eq] using hjk
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
let q := ∑ i, (qs k i - qs j i) • bS i
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
set r := μ k - μ j with r_eq
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
⊢ ∃ q r,
r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
refine' ⟨q, r, (mem_finsetApprox bS adm).mpr _, _⟩
[GOAL]
case intro.intro.intro.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
⊢ ∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = r
[PROOFSTEP]
exact ⟨k, j, j_ne_k.symm, rfl⟩
[GOAL]
case intro.intro.intro.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
⊢ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
have : r • a - b • q = ∑ x : ι, (rs k x • bS x - rs j x • bS x) :=
by
simp only [r_eq, sub_smul, μ_mul_a_eq, Finset.smul_sum, ← Finset.sum_add_distrib, ← Finset.sum_sub_distrib, smul_sub]
refine' Finset.sum_congr rfl fun x _ => _
ring
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
⊢ r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
[PROOFSTEP]
simp only [r_eq, sub_smul, μ_mul_a_eq, Finset.smul_sum, ← Finset.sum_add_distrib, ← Finset.sum_sub_distrib, smul_sub]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
⊢ ∑ x : ι,
(b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x +
(↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x -
(b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x +
(↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x) -
(b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x -
b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x)) =
∑ x : ι,
((↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x -
(↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x)
[PROOFSTEP]
refine' Finset.sum_congr rfl fun x _ => _
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
x : ι
x✝ : x ∈ Finset.univ
⊢ b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x +
(↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x -
(b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x +
(↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x) -
(b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x -
b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x) =
(↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x -
(↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x
[PROOFSTEP]
ring
[GOAL]
case intro.intro.intro.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
⊢ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b))
[PROOFSTEP]
rw [this, Algebra.norm_algebraMap_of_basis bS, abv.map_pow]
[GOAL]
case intro.intro.intro.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
⊢ ↑abv (↑(Algebra.norm R) (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) < ↑abv b ^ Fintype.card ι
[PROOFSTEP]
refine' Int.cast_lt.mp ((norm_lt abv bS _ fun i => lt_of_le_of_lt _ (hjk' i)).trans_le _)
[GOAL]
case intro.intro.intro.refine'_2.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
i : ι
⊢ ↑(↑abv (↑(↑bS.repr (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) i)) ≤ ↑(↑abv (rs k i - rs j i))
[PROOFSTEP]
apply le_of_eq
[GOAL]
case intro.intro.intro.refine'_2.refine'_1.a
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
i : ι
⊢ ↑(↑abv (↑(↑bS.repr (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) i)) = ↑(↑abv (rs k i - rs j i))
[PROOFSTEP]
congr
[GOAL]
case intro.intro.intro.refine'_2.refine'_1.a.e_a.h.e_6.h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
i : ι
⊢ ↑(↑bS.repr (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) i = rs k i - rs j i
[PROOFSTEP]
simp_rw [LinearEquiv.map_sum, LinearEquiv.map_sub, LinearEquiv.map_smul, Finset.sum_apply', Finsupp.sub_apply,
Finsupp.smul_apply, Finset.sum_sub_distrib, Basis.repr_self_apply, smul_eq_mul, mul_boole, Finset.sum_ite_eq',
Finset.mem_univ, if_true]
[GOAL]
case intro.intro.intro.refine'_2.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
a : S
b : R
hb : b ≠ 0
dim_pos : 0 < Fintype.card ι
ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι))
hε : 0 < ε
ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι)
μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm
hμ : μ = distinctElems bS adm
s : ι →₀ R := ↑bS.repr a
s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i
qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b
rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b
r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b
μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i
μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i
j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι))
j_ne_k : j ≠ k
hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε
hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε
q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i
r : R := ↑μ k - ↑μ j
r_eq : r = ↑μ k - ↑μ j
this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x)
⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ Fintype.card ι ≤ ↑(↑abv b ^ Fintype.card ι)
[PROOFSTEP]
exact_mod_cast ε_le
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
have inj : Function.Injective (algebraMap R L) :=
by
rw [IsScalarTower.algebraMap_eq R S L]
exact (IsIntegralClosure.algebraMap_injective S R L).comp bS.algebraMap_injective
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
⊢ Function.Injective ↑(algebraMap R L)
[PROOFSTEP]
rw [IsScalarTower.algebraMap_eq R S L]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
⊢ Function.Injective ↑(RingHom.comp (algebraMap S L) (algebraMap R S))
[PROOFSTEP]
exact (IsIntegralClosure.algebraMap_injective S R L).comp bS.algebraMap_injective
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
inj : Function.Injective ↑(algebraMap R L)
⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
obtain ⟨a', b', hb', h⟩ := IsIntegralClosure.exists_smul_eq_mul h inj a hb
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h✝ : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
inj : Function.Injective ↑(algebraMap R L)
a' : S
b' : R
hb' : b' ≠ 0
h : b' • a = b * a'
⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
obtain ⟨q, r, hr, hqr⟩ := exists_mem_finsetApprox bS adm a' hb'
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h✝ : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
inj : Function.Injective ↑(algebraMap R L)
a' : S
b' : R
hb' : b' ≠ 0
h : b' • a = b * a'
q : S
r : R
hr : r ∈ finsetApprox bS adm
hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b'))
⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
refine' ⟨q, r, hr, _⟩
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h✝ : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
inj : Function.Injective ↑(algebraMap R L)
a' : S
b' : R
hb' : b' ≠ 0
h : b' • a = b * a'
q : S
r : R
hr : r ∈ finsetApprox bS adm
hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b'))
⊢ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
refine' lt_of_mul_lt_mul_left _ (show 0 ≤ abv (Algebra.norm R (algebraMap R S b')) from abv.nonneg _)
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h✝ : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
inj : Function.Injective ↑(algebraMap R L)
a' : S
b' : R
hb' : b' ≠ 0
h : b' • a = b * a'
q : S
r : R
hr : r ∈ finsetApprox bS adm
hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b'))
⊢ ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) * ↑abv (↑(Algebra.norm R) (r • a - q * b)) <
↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) * ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
refine'
lt_of_le_of_lt (le_of_eq _)
(mul_lt_mul hqr le_rfl (abv.pos ((Algebra.norm_ne_zero_iff_of_basis bS).mpr hb)) (abv.nonneg _))
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
h✝ : Algebra.IsAlgebraic R L
a b : S
hb : b ≠ 0
inj : Function.Injective ↑(algebraMap R L)
a' : S
b' : R
hb' : b' ≠ 0
h : b' • a = b * a'
q : S
r : R
hr : r ∈ finsetApprox bS adm
hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b'))
⊢ ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) * ↑abv (↑(Algebra.norm R) (r • a - q * b)) =
↑abv (↑(Algebra.norm R) (r • a' - b' • q)) * ↑abv (↑(Algebra.norm R) b)
[PROOFSTEP]
rw [← abv.map_mul, ← MonoidHom.map_mul, ← abv.map_mul, ← MonoidHom.map_mul, ← Algebra.smul_def, smul_sub b', sub_mul,
smul_comm, h, mul_comm b a', Algebra.smul_mul_assoc r a' b, Algebra.smul_mul_assoc b' q b]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
⊢ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ≠ 0
[PROOFSTEP]
refine' mt ((injective_iff_map_eq_zero _).mp bS.algebraMap_injective _) _
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
⊢ ¬∏ m in finsetApprox bS adm, m = 0
[PROOFSTEP]
simp only [Finset.prod_eq_zero_iff, not_exists]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
⊢ ∀ (x : R), ¬(x ∈ finsetApprox bS adm ∧ x = 0)
[PROOFSTEP]
rintro x ⟨hx, rfl⟩
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
hx : 0 ∈ finsetApprox bS adm
⊢ False
[PROOFSTEP]
exact finsetApprox.zero_not_mem bS adm hx
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑J
[PROOFSTEP]
set M := ∏ m in finsetApprox bS adm, m
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J
[PROOFSTEP]
have hM : algebraMap R S M ≠ 0 := prod_finsetApprox_ne_zero bS adm
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J
[PROOFSTEP]
obtain ⟨b, b_mem, b_ne_zero, b_min⟩ := exists_min abv I
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J
[PROOFSTEP]
suffices Ideal.span { b } ∣ Ideal.span {algebraMap _ _ M} * I.1
by
obtain ⟨J, hJ⟩ := this
refine' ⟨⟨J, _⟩, _, _⟩
· rw [mem_nonZeroDivisors_iff_ne_zero]
rintro rfl
rw [Ideal.zero_eq_bot, Ideal.mul_bot] at hJ
exact hM (Ideal.span_singleton_eq_bot.mp (I.2 _ hJ))
· rw [ClassGroup.mk0_eq_mk0_iff]
exact ⟨algebraMap _ _ M, b, hM, b_ne_zero, hJ⟩
rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← Ideal.span_le, ← Ideal.dvd_iff_le]
refine' (mul_dvd_mul_iff_left _).mp _
swap; · exact mt Ideal.span_singleton_eq_bot.mp b_ne_zero
rw [Subtype.coe_mk, Ideal.dvd_iff_le, ← hJ, mul_comm]
apply Ideal.mul_mono le_rfl
rw [Ideal.span_le, Set.singleton_subset_iff]
exact b_mem
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
this : Ideal.span {b} ∣ Ideal.span {↑(algebraMap R S) M} * ↑I
⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J
[PROOFSTEP]
obtain ⟨J, hJ⟩ := this
[GOAL]
case intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J
[PROOFSTEP]
refine' ⟨⟨J, _⟩, _, _⟩
[GOAL]
case intro.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ J ∈ (Ideal S)⁰
[PROOFSTEP]
rw [mem_nonZeroDivisors_iff_ne_zero]
[GOAL]
case intro.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ J ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
case intro.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * 0
⊢ False
[PROOFSTEP]
rw [Ideal.zero_eq_bot, Ideal.mul_bot] at hJ
[GOAL]
case intro.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = ⊥
⊢ False
[PROOFSTEP]
exact hM (Ideal.span_singleton_eq_bot.mp (I.2 _ hJ))
[GOAL]
case intro.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ↑mk0 I = ↑mk0 { val := J, property := (_ : J ∈ (Ideal S)⁰) }
[PROOFSTEP]
rw [ClassGroup.mk0_eq_mk0_iff]
[GOAL]
case intro.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ∃ x y _hx _hy, Ideal.span {x} * ↑I = Ideal.span {y} * ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) }
[PROOFSTEP]
exact ⟨algebraMap _ _ M, b, hM, b_ne_zero, hJ⟩
[GOAL]
case intro.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ↑(algebraMap R S) M ∈ ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) }
[PROOFSTEP]
rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← Ideal.span_le, ← Ideal.dvd_iff_le]
[GOAL]
case intro.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } ∣ Ideal.span {↑(algebraMap R S) M}
[PROOFSTEP]
refine' (mul_dvd_mul_iff_left _).mp _
[GOAL]
case intro.refine'_3.refine'_1
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ Ideal ((fun x => S) M)
case intro.refine'_3.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ?intro.refine'_3.refine'_1 ≠ 0
case intro.refine'_3.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ?intro.refine'_3.refine'_1 * ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } ∣
?intro.refine'_3.refine'_1 * Ideal.span {↑(algebraMap R S) M}
[PROOFSTEP]
swap
[GOAL]
case intro.refine'_3.refine'_2
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ ?intro.refine'_3.refine'_1 ≠ 0
[PROOFSTEP]
exact mt Ideal.span_singleton_eq_bot.mp b_ne_zero
[GOAL]
case intro.refine'_3.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ Ideal.span {b} * ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } ∣ Ideal.span {b} * Ideal.span {↑(algebraMap R S) M}
[PROOFSTEP]
rw [Subtype.coe_mk, Ideal.dvd_iff_le, ← hJ, mul_comm]
[GOAL]
case intro.refine'_3.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ Ideal.span {↑(algebraMap R S) M} * Ideal.span {b} ≤ Ideal.span {↑(algebraMap R S) M} * ↑I
[PROOFSTEP]
apply Ideal.mul_mono le_rfl
[GOAL]
case intro.refine'_3.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ Ideal.span {b} ≤ ↑I
[PROOFSTEP]
rw [Ideal.span_le, Set.singleton_subset_iff]
[GOAL]
case intro.refine'_3.refine'_3
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
J : Ideal S
hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J
⊢ b ∈ ↑↑I
[PROOFSTEP]
exact b_mem
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
⊢ Ideal.span {b} ∣ Ideal.span {↑(algebraMap R S) M} * ↑I
[PROOFSTEP]
rw [Ideal.dvd_iff_le, Ideal.mul_le]
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
⊢ ∀ (r : (fun x => S) M), r ∈ Ideal.span {↑(algebraMap R S) M} → ∀ (s : (fun x => S) M), s ∈ ↑I → r * s ∈ Ideal.span {b}
[PROOFSTEP]
intro r' hr' a ha
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : r' ∈ Ideal.span {↑(algebraMap R S) M}
a : S
ha : a ∈ ↑I
⊢ r' * a ∈ Ideal.span {b}
[PROOFSTEP]
rw [Ideal.mem_span_singleton] at hr' ⊢
[GOAL]
case intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : ↑(algebraMap R S) M ∣ r'
a : S
ha : a ∈ ↑I
⊢ b ∣ r' * a
[PROOFSTEP]
obtain ⟨q, r, r_mem, lt⟩ := exists_mem_finset_approx' L bS adm h a b_ne_zero
[GOAL]
case intro.intro.intro.intro.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : ↑(algebraMap R S) M ∣ r'
a : S
ha : a ∈ ↑I
q : S
r : R
r_mem : r ∈ finsetApprox bS adm
lt : ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
⊢ b ∣ r' * a
[PROOFSTEP]
apply @dvd_of_mul_left_dvd _ _ q
[GOAL]
case intro.intro.intro.intro.intro.intro.h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : ↑(algebraMap R S) M ∣ r'
a : S
ha : a ∈ ↑I
q : S
r : R
r_mem : r ∈ finsetApprox bS adm
lt : ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b)
⊢ q * b ∣ r' * a
[PROOFSTEP]
simp only [Algebra.smul_def] at lt
[GOAL]
case intro.intro.intro.intro.intro.intro.h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : ↑(algebraMap R S) M ∣ r'
a : S
ha : a ∈ ↑I
q : S
r : R
r_mem : r ∈ finsetApprox bS adm
lt : ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) r * a - q * b)) < ↑abv (↑(Algebra.norm R) b)
⊢ q * b ∣ r' * a
[PROOFSTEP]
rw [← sub_eq_zero.mp (b_min _ (I.1.sub_mem (I.1.mul_mem_left _ ha) (I.1.mul_mem_left _ b_mem)) lt)]
[GOAL]
case intro.intro.intro.intro.intro.intro.h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : ↑(algebraMap R S) M ∣ r'
a : S
ha : a ∈ ↑I
q : S
r : R
r_mem : r ∈ finsetApprox bS adm
lt : ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) r * a - q * b)) < ↑abv (↑(Algebra.norm R) b)
⊢ ↑(algebraMap R S) r * a ∣ r' * a
[PROOFSTEP]
refine' mul_dvd_mul_right (dvd_trans (RingHom.map_dvd _ _) hr') _
[GOAL]
case intro.intro.intro.intro.intro.intro.h
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : { x // x ∈ (Ideal S)⁰ }
M : R := ∏ m in finsetApprox bS adm, m
hM : ↑(algebraMap R S) M ≠ 0
b : S
b_mem : b ∈ ↑I
b_ne_zero : b ≠ 0
b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0
r' : S
hr' : ↑(algebraMap R S) M ∣ r'
a : S
ha : a ∈ ↑I
q : S
r : R
r_mem : r ∈ finsetApprox bS adm
lt : ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) r * a - q * b)) < ↑abv (↑(Algebra.norm R) b)
⊢ r ∣ M
[PROOFSTEP]
exact Multiset.dvd_prod (Multiset.mem_map.mpr ⟨_, r_mem, rfl⟩)
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
⊢ Function.Surjective (mkMMem bS adm)
[PROOFSTEP]
intro I'
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I' : ClassGroup S
⊢ ∃ a, mkMMem bS adm a = I'
[PROOFSTEP]
obtain ⟨⟨I, hI⟩, rfl⟩ := ClassGroup.mk0_surjective I'
[GOAL]
case intro.mk
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : Ideal S
hI : I ∈ (Ideal S)⁰
⊢ ∃ a, mkMMem bS adm a = ↑mk0 { val := I, property := hI }
[PROOFSTEP]
obtain ⟨J, mk0_eq_mk0, J_dvd⟩ := exists_mk0_eq_mk0 L bS adm h ⟨I, hI⟩
[GOAL]
case intro.mk.intro.intro
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : Ideal S
hI : I ∈ (Ideal S)⁰
J : { x // x ∈ (Ideal S)⁰ }
mk0_eq_mk0 : ↑mk0 { val := I, property := hI } = ↑mk0 J
J_dvd : ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑J
⊢ ∃ a, mkMMem bS adm a = ↑mk0 { val := I, property := hI }
[PROOFSTEP]
exact ⟨⟨J, J_dvd⟩, mk0_eq_mk0.symm⟩
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
⊢ Ideal.span {↑(algebraMap R S) (∏ m in finsetApprox bS adm, m)} ≠ 0
[PROOFSTEP]
rw [Ne.def, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
⊢ ¬↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) = 0
[PROOFSTEP]
exact prod_finsetApprox_ne_zero bS adm
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : Ideal S
⊢ Ideal.span {↑(algebraMap R S) (∏ m in finsetApprox bS adm, m)} ≤ I ↔
↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑(Equiv.refl (Ideal S)) I
[PROOFSTEP]
rw [Equiv.refl_apply, Ideal.span_le, Set.singleton_subset_iff]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁷ : EuclideanDomain R
inst✝¹⁶ : CommRing S
inst✝¹⁵ : IsDomain S
inst✝¹⁴ : Field K
inst✝¹³ : Field L
inst✝¹² : Algebra R K
inst✝¹¹ : IsFractionRing R K
inst✝¹⁰ : Algebra K L
inst✝⁹ : FiniteDimensional K L
inst✝⁸ : IsSeparable K L
algRL : Algebra R L
inst✝⁷ : IsScalarTower R K L
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝⁴ : DecidableEq ι
inst✝³ : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝² : Infinite R
inst✝¹ : DecidableEq R
inst✝ : IsDedekindDomain S
h : Algebra.IsAlgebraic R L
I : Ideal S
⊢ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑I ↔ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ I
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
letI := Classical.decEq L
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this : DecidableEq L := Classical.decEq L
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
letI := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝ : DecidableEq L := Classical.decEq L
this : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
letI := IsIntegralClosure.isDedekindDomain R K L S
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝¹ : DecidableEq L := Classical.decEq L
this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
choose s b hb_int using FiniteDimensional.exists_is_basis_integral R K L
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝¹ : DecidableEq L := Classical.decEq L
this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x)
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
have : LinearIndependent R ((Algebra.traceForm K L).dualBasis (traceForm_nondegenerate K L) b) :=
by
refine' (Basis.linearIndependent _).restrict_scalars _
simp only [Algebra.smul_def, mul_one]
apply IsFractionRing.injective
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝¹ : DecidableEq L := Classical.decEq L
this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x)
⊢ LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b)
[PROOFSTEP]
refine' (Basis.linearIndependent _).restrict_scalars _
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝¹ : DecidableEq L := Classical.decEq L
this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x)
⊢ Function.Injective fun r => r • 1
[PROOFSTEP]
simp only [Algebra.smul_def, mul_one]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝¹ : DecidableEq L := Classical.decEq L
this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x)
⊢ Function.Injective fun r => ↑(algebraMap R K) r
[PROOFSTEP]
apply IsFractionRing.injective
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b)
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
obtain ⟨n, b⟩ := Submodule.basisOfPidOfLESpan this (IsIntegralClosure.range_le_span_dualBasis S b hb_int)
[GOAL]
case mk
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b✝ : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝)
n : ℕ
b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) }
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
let f : (S ⧸ LinearMap.ker (LinearMap.restrictScalars R (Algebra.linearMap S L))) ≃ₗ[R] S :=
by
rw [LinearMap.ker_eq_bot.mpr]
· exact Submodule.quotEquivOfEqBot _ rfl
· exact IsIntegralClosure.algebraMap_injective _ R _
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b✝ : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝)
n : ℕ
b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) }
⊢ (S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S
[PROOFSTEP]
rw [LinearMap.ker_eq_bot.mpr]
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b✝ : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝)
n : ℕ
b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) }
⊢ (S ⧸ ⊥) ≃ₗ[R] S
[PROOFSTEP]
exact Submodule.quotEquivOfEqBot _ rfl
[GOAL]
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b✝ : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝)
n : ℕ
b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) }
⊢ Function.Injective ↑(↑R (Algebra.linearMap S L))
[PROOFSTEP]
exact IsIntegralClosure.algebraMap_injective _ R _
[GOAL]
case mk
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b✝ : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝)
n : ℕ
b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) }
f : (S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S :=
Eq.mpr (_ : ((S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S) = ((S ⧸ ⊥) ≃ₗ[R] S))
(Submodule.quotEquivOfEqBot ⊥ (_ : ⊥ = ⊥))
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
let bS := b.map ((LinearMap.quotKerEquivRange _).symm ≪≫ₗ f)
[GOAL]
case mk
R : Type u_1
S : Type u_2
K : Type u_3
L : Type u_4
inst✝¹⁶ : EuclideanDomain R
inst✝¹⁵ : CommRing S
inst✝¹⁴ : IsDomain S
inst✝¹³ : Field K
inst✝¹² : Field L
inst✝¹¹ : Algebra R K
inst✝¹⁰ : IsFractionRing R K
inst✝⁹ : Algebra K L
inst✝⁸ : FiniteDimensional K L
inst✝⁷ : IsSeparable K L
algRL : Algebra R L
inst✝⁶ : IsScalarTower R K L
inst✝⁵ : Algebra R S
inst✝⁴ : Algebra S L
ist : IsScalarTower R S L
iic : IsIntegralClosure S R L
abv : AbsoluteValue R ℤ
ι : Type u_5
inst✝³ : DecidableEq ι
inst✝² : Fintype ι
bS✝ : Basis ι R S
adm : AbsoluteValue.IsAdmissible abv
inst✝¹ : Infinite R
inst✝ : DecidableEq R
this✝² : DecidableEq L := Classical.decEq L
this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S
this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S
s : Finset L
b✝ : Basis { x // x ∈ s } K L
hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x)
this :
LinearIndependent R
↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝)
n : ℕ
b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) }
f : (S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S :=
Eq.mpr (_ : ((S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S) = ((S ⧸ ⊥) ≃ₗ[R] S))
(Submodule.quotEquivOfEqBot ⊥ (_ : ⊥ = ⊥))
bS : Basis (Fin n) R S :=
Basis.map b (LinearEquiv.trans (LinearEquiv.symm (LinearMap.quotKerEquivRange (↑R (Algebra.linearMap S L)))) f)
⊢ Fintype (ClassGroup S)
[PROOFSTEP]
exact
fintypeOfAdmissibleOfAlgebraic L bS adm
(fun x => (IsFractionRing.isAlgebraic_iff R K L).mpr (Algebra.isAlgebraic_of_finite K _ x))
| {"mathlib_filename": "Mathlib.NumberTheory.ClassNumber.Finite", "llama_tokens": 109339} |
{"mathlib_filename": "Mathlib.Util.AddRelatedDecl", "llama_tokens": 0} |
|
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
s : σ
x : List α
a : α
⊢ evalFrom M s (x ++ [a]) = step M (evalFrom M s x) a
[PROOFSTEP]
simp only [evalFrom, List.foldl_append, List.foldl_cons, List.foldl_nil]
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
x : List α
⊢ x ∈ accepts M ↔ evalFrom M M.start x ∈ M.accept
[PROOFSTEP]
rfl
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
⊢ ∃ q a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card σ ∧
b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t
[PROOFSTEP]
obtain ⟨n, m, hneq, heq⟩ :=
Fintype.exists_ne_map_eq_of_card_lt (fun n : Fin (Fintype.card σ + 1) => M.evalFrom s (x.take n)) (by norm_num)
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
⊢ Fintype.card σ < Fintype.card (Fin (Fintype.card σ + 1))
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
⊢ ∃ q a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card σ ∧
b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t
[PROOFSTEP]
wlog hle : (n : ℕ) ≤ m
[GOAL]
case intro.intro.intro.inr
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
this :
∀ {α : Type u} {σ : Type v} (M : DFA α σ) [inst : Fintype σ] {x : List α} {s t : σ},
Fintype.card σ ≤ List.length x →
evalFrom M s x = t →
∀ (n m : Fin (Fintype.card σ + 1)),
n ≠ m →
evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) →
↑n ≤ ↑m →
∃ q a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card σ ∧
b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t
hle : ¬↑n ≤ ↑m
⊢ ∃ q a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card σ ∧
b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t
[PROOFSTEP]
exact this _ hlen hx _ _ hneq.symm heq.symm (le_of_not_le hle)
[GOAL]
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
⊢ ∃ q a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card σ ∧
b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t
[PROOFSTEP]
have hm : (m : ℕ) ≤ Fintype.card σ := Fin.is_le m
[GOAL]
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ ∃ q a b c,
x = a ++ b ++ c ∧
List.length a + List.length b ≤ Fintype.card σ ∧
b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t
[PROOFSTEP]
refine' ⟨M.evalFrom s ((x.take m).take n), (x.take m).take n, (x.take m).drop n, x.drop m, _, _, _, by rfl, _⟩
[GOAL]
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ evalFrom M s (List.take (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x))
[PROOFSTEP]
rfl
[GOAL]
case refine'_1
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ x = List.take (↑n) (List.take (↑m) x) ++ List.drop (↑n) (List.take (↑m) x) ++ List.drop (↑m) x
[PROOFSTEP]
rw [List.take_append_drop, List.take_append_drop]
[GOAL]
case refine'_2
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ List.length (List.take (↑n) (List.take (↑m) x)) + List.length (List.drop (↑n) (List.take (↑m) x)) ≤ Fintype.card σ
[PROOFSTEP]
simp only [List.length_drop, List.length_take]
[GOAL]
case refine'_2
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ min (↑n) (min (↑m) (List.length x)) + (min (↑m) (List.length x) - ↑n) ≤ Fintype.card σ
[PROOFSTEP]
rw [min_eq_left (hm.trans hlen), min_eq_left hle, add_tsub_cancel_of_le hle]
[GOAL]
case refine'_2
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ ↑m ≤ Fintype.card σ
[PROOFSTEP]
exact hm
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ List.drop (↑n) (List.take (↑m) x) ≠ []
[PROOFSTEP]
intro h
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
⊢ False
[PROOFSTEP]
have hlen' := congr_arg List.length h
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : List.length (List.drop (↑n) (List.take (↑m) x)) = List.length []
⊢ False
[PROOFSTEP]
simp only [List.length_drop, List.length, List.length_take] at hlen'
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : min (↑m) (List.length x) - ↑n = 0
⊢ False
[PROOFSTEP]
rw [min_eq_left, tsub_eq_zero_iff_le] at hlen'
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : ↑m ≤ ↑n
⊢ False
[PROOFSTEP]
apply hneq
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : ↑m ≤ ↑n
⊢ n = m
[PROOFSTEP]
apply le_antisymm
[GOAL]
case refine'_3.a
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : ↑m ≤ ↑n
⊢ n ≤ m
case refine'_3.a
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : ↑m ≤ ↑n
⊢ m ≤ n
[PROOFSTEP]
assumption'
[GOAL]
case refine'_3
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
h : List.drop (↑n) (List.take (↑m) x) = []
hlen' : min (↑m) (List.length x) - ↑n = 0
⊢ ↑m ≤ List.length x
[PROOFSTEP]
exact hm.trans hlen
[GOAL]
case refine'_4
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) =
evalFrom M s (List.take (↑n) (List.take (↑m) x)) ∧
evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑m) x) = t
[PROOFSTEP]
have hq : M.evalFrom (M.evalFrom s ((x.take m).take n)) ((x.take m).drop n) = M.evalFrom s ((x.take m).take n) := by
rw [List.take_take, min_eq_left hle, ← evalFrom_of_append, heq, ← min_eq_left hle, ← List.take_take, min_eq_left hle,
List.take_append_drop]
[GOAL]
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) =
evalFrom M s (List.take (↑n) (List.take (↑m) x))
[PROOFSTEP]
rw [List.take_take, min_eq_left hle, ← evalFrom_of_append, heq, ← min_eq_left hle, ← List.take_take, min_eq_left hle,
List.take_append_drop]
[GOAL]
case refine'_4
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
hq :
evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) =
evalFrom M s (List.take (↑n) (List.take (↑m) x))
⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) =
evalFrom M s (List.take (↑n) (List.take (↑m) x)) ∧
evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑m) x) = t
[PROOFSTEP]
use hq
[GOAL]
case right
α✝ : Type u
σ✝ : Type v
M✝ : DFA α✝ σ✝
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
s t : σ
hlen : Fintype.card σ ≤ List.length x
hx : evalFrom M s x = t
n m : Fin (Fintype.card σ + 1)
hneq : n ≠ m
heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x)
hle : ↑n ≤ ↑m
hm : ↑m ≤ Fintype.card σ
hq :
evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) =
evalFrom M s (List.take (↑n) (List.take (↑m) x))
⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑m) x) = t
[PROOFSTEP]
rwa [← hq, ← evalFrom_of_append, ← evalFrom_of_append, ← List.append_assoc, List.take_append_drop,
List.take_append_drop]
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
x y : List α
s : σ
hx : evalFrom M s x = s
hy : y ∈ {x}∗
⊢ evalFrom M s y = s
[PROOFSTEP]
rw [Language.mem_kstar] at hy
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
x y : List α
s : σ
hx : evalFrom M s x = s
hy : ∃ L, y = List.join L ∧ ∀ (y : List α), y ∈ L → y ∈ {x}
⊢ evalFrom M s y = s
[PROOFSTEP]
rcases hy with ⟨S, rfl, hS⟩
[GOAL]
case intro.intro
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S : List (List α)
hS : ∀ (y : List α), y ∈ S → y ∈ {x}
⊢ evalFrom M s (List.join S) = s
[PROOFSTEP]
induction' S with a S ih
[GOAL]
case intro.intro.nil
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S : List (List α)
hS✝ : ∀ (y : List α), y ∈ S → y ∈ {x}
hS : ∀ (y : List α), y ∈ [] → y ∈ {x}
⊢ evalFrom M s (List.join []) = s
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.cons
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S✝ : List (List α)
hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x}
a : List α
S : List (List α)
ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s
hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x}
⊢ evalFrom M s (List.join (a :: S)) = s
[PROOFSTEP]
have ha := hS a (List.mem_cons_self _ _)
[GOAL]
case intro.intro.cons
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S✝ : List (List α)
hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x}
a : List α
S : List (List α)
ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s
hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x}
ha : a ∈ {x}
⊢ evalFrom M s (List.join (a :: S)) = s
[PROOFSTEP]
rw [Set.mem_singleton_iff] at ha
[GOAL]
case intro.intro.cons
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S✝ : List (List α)
hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x}
a : List α
S : List (List α)
ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s
hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x}
ha : a = x
⊢ evalFrom M s (List.join (a :: S)) = s
[PROOFSTEP]
rw [List.join, evalFrom_of_append, ha, hx]
[GOAL]
case intro.intro.cons
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S✝ : List (List α)
hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x}
a : List α
S : List (List α)
ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s
hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x}
ha : a = x
⊢ evalFrom M s (List.join S) = s
[PROOFSTEP]
apply ih
[GOAL]
case intro.intro.cons
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S✝ : List (List α)
hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x}
a : List α
S : List (List α)
ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s
hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x}
ha : a = x
⊢ ∀ (y : List α), y ∈ S → y ∈ {x}
[PROOFSTEP]
intro z hz
[GOAL]
case intro.intro.cons
α : Type u
σ : Type v
M : DFA α σ
x : List α
s : σ
hx : evalFrom M s x = s
S✝ : List (List α)
hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x}
a : List α
S : List (List α)
ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s
hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x}
ha : a = x
z : List α
hz : z ∈ S
⊢ z ∈ {x}
[PROOFSTEP]
exact hS z (List.mem_cons_of_mem a hz)
[GOAL]
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx : x ∈ accepts M
hlen : Fintype.card σ ≤ List.length x
⊢ ∃ a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ accepts M
[PROOFSTEP]
obtain ⟨_, a, b, c, hx, hlen, hnil, rfl, hb, hc⟩ := M.evalFrom_split hlen rfl
[GOAL]
case intro.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
⊢ ∃ a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ accepts M
[PROOFSTEP]
use a, b, c, hx, hlen, hnil
[GOAL]
case right
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
⊢ {a} * {b}∗ * {c} ≤ accepts M
[PROOFSTEP]
intro y hy
[GOAL]
case right
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
y : List α
hy : y ∈ {a} * {b}∗ * {c}
⊢ y ∈ accepts M
[PROOFSTEP]
rw [Language.mem_mul] at hy
[GOAL]
case right
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
y : List α
hy : ∃ a_1 b_1, a_1 ∈ {a} * {b}∗ ∧ b_1 ∈ {c} ∧ a_1 ++ b_1 = y
⊢ y ∈ accepts M
[PROOFSTEP]
rcases hy with ⟨ab, c', hab, hc', rfl⟩
[GOAL]
case right.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
ab c' : List α
hab : ab ∈ {a} * {b}∗
hc' : c' ∈ {c}
⊢ ab ++ c' ∈ accepts M
[PROOFSTEP]
rw [Language.mem_mul] at hab
[GOAL]
case right.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
ab c' : List α
hab : ∃ a_1 b_1, a_1 ∈ {a} ∧ b_1 ∈ {b}∗ ∧ a_1 ++ b_1 = ab
hc' : c' ∈ {c}
⊢ ab ++ c' ∈ accepts M
[PROOFSTEP]
rcases hab with ⟨a', b', ha', hb', rfl⟩
[GOAL]
case right.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
c' : List α
hc' : c' ∈ {c}
a' b' : List α
ha' : a' ∈ {a}
hb' : b' ∈ {b}∗
⊢ a' ++ b' ++ c' ∈ accepts M
[PROOFSTEP]
rw [Set.mem_singleton_iff] at ha' hc'
[GOAL]
case right.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
a b c : List α
hx : x = a ++ b ++ c
hlen : List.length a + List.length b ≤ Fintype.card σ
hnil : b ≠ []
hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a
hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x
c' : List α
hc' : c' = c
a' b' : List α
ha' : a' = a
hb' : b' ∈ {b}∗
⊢ a' ++ b' ++ c' ∈ accepts M
[PROOFSTEP]
substs ha' hc'
[GOAL]
case right.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
b : List α
hnil : b ≠ []
c' a' b' : List α
hb' : b' ∈ {b}∗
hlen : List.length a' + List.length b ≤ Fintype.card σ
hb : evalFrom M (evalFrom M ?m.8103 a') b = evalFrom M ?m.8103 a'
hx : x = a' ++ b ++ c'
hc : evalFrom M (evalFrom M ?m.8103 a') c' = evalFrom M ?m.8103 x
⊢ a' ++ b' ++ c' ∈ accepts M
[PROOFSTEP]
have h := M.evalFrom_of_pow hb hb'
[GOAL]
case right.intro.intro.intro.intro.intro.intro.intro.intro
α : Type u
σ : Type v
M : DFA α σ
inst✝ : Fintype σ
x : List α
hx✝ : x ∈ accepts M
hlen✝ : Fintype.card σ ≤ List.length x
b : List α
hnil : b ≠ []
c' a' b' : List α
hb' : b' ∈ {b}∗
hlen : List.length a' + List.length b ≤ Fintype.card σ
hb : evalFrom M (evalFrom M ?m.8103 a') b = evalFrom M ?m.8103 a'
hx : x = a' ++ b ++ c'
hc : evalFrom M (evalFrom M ?m.8103 a') c' = evalFrom M ?m.8103 x
h : evalFrom M (evalFrom M ?m.8103 a') b' = evalFrom M ?m.8103 a'
⊢ a' ++ b' ++ c' ∈ accepts M
[PROOFSTEP]
rwa [mem_accepts, evalFrom_of_append, evalFrom_of_append, h, hc]
| {"mathlib_filename": "Mathlib.Computability.DFA", "llama_tokens": 11463} |
[GOAL]
α : Type u
e : Encoding α
⊢ Function.Injective e.encode
[PROOFSTEP]
refine' fun _ _ h => Option.some_injective _ _
[GOAL]
α : Type u
e : Encoding α
x✝¹ x✝ : α
h : encode e x✝¹ = encode e x✝
⊢ some x✝¹ = some x✝
[PROOFSTEP]
rw [← e.decode_encode, ← e.decode_encode, h]
[GOAL]
⊢ Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}
[PROOFSTEP]
decide
[GOAL]
⊢ ∀ (x : Γ'),
x ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
intro
[GOAL]
x✝ : Γ'
⊢ x✝ ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
cases_type* Γ' Bool
[GOAL]
case blank
⊢ blank ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
decide
[GOAL]
case bit.false
⊢ bit false ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
decide
[GOAL]
case bit.true
⊢ bit true ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
decide
[GOAL]
case bra
⊢ bra ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
decide
[GOAL]
case ket
⊢ ket ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
decide
[GOAL]
case comma
⊢ comma ∈
{ val := {blank, bit true, bit false, bra, ket, comma},
nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) }
[PROOFSTEP]
decide
[GOAL]
⊢ ∀ (n : PosNum), decodePosNum (encodePosNum n) = n
[PROOFSTEP]
intro n
[GOAL]
n : PosNum
⊢ decodePosNum (encodePosNum n) = n
[PROOFSTEP]
induction' n with m hm m hm
[GOAL]
case one
⊢ decodePosNum (encodePosNum PosNum.one) = PosNum.one
[PROOFSTEP]
unfold encodePosNum decodePosNum
[GOAL]
case bit1
m : PosNum
hm : decodePosNum (encodePosNum m) = m
⊢ decodePosNum (encodePosNum (PosNum.bit1 m)) = PosNum.bit1 m
[PROOFSTEP]
unfold encodePosNum decodePosNum
[GOAL]
case bit0
m : PosNum
hm : decodePosNum (encodePosNum m) = m
⊢ decodePosNum (encodePosNum (PosNum.bit0 m)) = PosNum.bit0 m
[PROOFSTEP]
unfold encodePosNum decodePosNum
[GOAL]
case one
⊢ (if [] = [] then PosNum.one else PosNum.bit1 (decodePosNum [])) = PosNum.one
[PROOFSTEP]
rfl
[GOAL]
case bit1
m : PosNum
hm : decodePosNum (encodePosNum m) = m
⊢ (if encodePosNum m = [] then PosNum.one else PosNum.bit1 (decodePosNum (encodePosNum m))) = PosNum.bit1 m
[PROOFSTEP]
rw [hm]
[GOAL]
case bit1
m : PosNum
hm : decodePosNum (encodePosNum m) = m
⊢ (if encodePosNum m = [] then PosNum.one else PosNum.bit1 m) = PosNum.bit1 m
[PROOFSTEP]
exact if_neg (encodePosNum_nonempty m)
[GOAL]
case bit0
m : PosNum
hm : decodePosNum (encodePosNum m) = m
⊢ PosNum.bit0 (decodePosNum (encodePosNum m)) = PosNum.bit0 m
[PROOFSTEP]
exact congr_arg PosNum.bit0 hm
[GOAL]
⊢ ∀ (n : Num), decodeNum (encodeNum n) = n
[PROOFSTEP]
intro n
[GOAL]
n : Num
⊢ decodeNum (encodeNum n) = n
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
⊢ decodeNum (encodeNum Num.zero) = Num.zero
[PROOFSTEP]
unfold encodeNum decodeNum
[GOAL]
case pos
n : PosNum
⊢ decodeNum (encodeNum (Num.pos n)) = Num.pos n
[PROOFSTEP]
unfold encodeNum decodeNum
[GOAL]
case zero
⊢ (if
(match Num.zero with
| Num.zero => []
| Num.pos n => encodePosNum n) =
[] then
Num.zero
else
↑(decodePosNum
(match Num.zero with
| Num.zero => []
| Num.pos n => encodePosNum n))) =
Num.zero
[PROOFSTEP]
rfl
[GOAL]
case pos
n : PosNum
⊢ (if
(match Num.pos n with
| Num.zero => []
| Num.pos n => encodePosNum n) =
[] then
Num.zero
else
↑(decodePosNum
(match Num.pos n with
| Num.zero => []
| Num.pos n => encodePosNum n))) =
Num.pos n
[PROOFSTEP]
rw [decode_encodePosNum n]
[GOAL]
case pos
n : PosNum
⊢ (if
(match Num.pos n with
| Num.zero => []
| Num.pos n => encodePosNum n) =
[] then
Num.zero
else ↑n) =
Num.pos n
[PROOFSTEP]
rw [PosNum.cast_to_num]
[GOAL]
case pos
n : PosNum
⊢ (if
(match Num.pos n with
| Num.zero => []
| Num.pos n => encodePosNum n) =
[] then
Num.zero
else Num.pos n) =
Num.pos n
[PROOFSTEP]
exact if_neg (encodePosNum_nonempty n)
[GOAL]
⊢ ∀ (n : ℕ), decodeNat (encodeNat n) = n
[PROOFSTEP]
intro n
[GOAL]
n : ℕ
⊢ decodeNat (encodeNat n) = n
[PROOFSTEP]
conv_rhs => rw [← Num.to_of_nat n]
[GOAL]
n : ℕ
| n
[PROOFSTEP]
rw [← Num.to_of_nat n]
[GOAL]
n : ℕ
| n
[PROOFSTEP]
rw [← Num.to_of_nat n]
[GOAL]
n : ℕ
| n
[PROOFSTEP]
rw [← Num.to_of_nat n]
[GOAL]
n : ℕ
⊢ decodeNat (encodeNat n) = ↑↑n
[PROOFSTEP]
exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n)
[GOAL]
x : ℕ
⊢ decodeNat (List.map sectionΓ'Bool ((fun x => List.map inclusionBoolΓ' (encodeNat x)) x)) = x
[PROOFSTEP]
rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat]
[GOAL]
α : Type u
e : Encoding α
inst✝ : Encodable e.Γ
⊢ #α ≤ ℵ₀
[PROOFSTEP]
refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _)
[GOAL]
α : Type u
e : Encoding α
inst✝ : Encodable e.Γ
⊢ lift #(List e.Γ) ≤ lift ℵ₀
[PROOFSTEP]
simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0]
[GOAL]
α : Type u
e : Encoding α
inst✝ : Encodable e.Γ
⊢ #(List e.Γ) ≤ ℵ₀
[PROOFSTEP]
cases' isEmpty_or_nonempty e.Γ with h h
[GOAL]
case inl
α : Type u
e : Encoding α
inst✝ : Encodable e.Γ
h : IsEmpty e.Γ
⊢ #(List e.Γ) ≤ ℵ₀
[PROOFSTEP]
simp only [Cardinal.mk_le_aleph0]
[GOAL]
case inr
α : Type u
e : Encoding α
inst✝ : Encodable e.Γ
h : Nonempty e.Γ
⊢ #(List e.Γ) ≤ ℵ₀
[PROOFSTEP]
rw [Cardinal.mk_list_eq_aleph0]
| {"mathlib_filename": "Mathlib.Computability.Encoding", "llama_tokens": 2592} |
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
χ : MulChar R R'
ψ : AddChar R R'
a : Rˣ
⊢ ↑χ ↑a * gaussSum χ (mulShift ψ ↑a) = gaussSum χ ψ
[PROOFSTEP]
simp only [gaussSum, mulShift_apply, Finset.mul_sum]
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
χ : MulChar R R'
ψ : AddChar R R'
a : Rˣ
⊢ ∑ x : R, ↑χ ↑a * (↑χ x * ↑ψ (↑a * x)) = ∑ x : R, ↑χ x * ↑ψ x
[PROOFSTEP]
simp_rw [← mul_assoc, ← map_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
χ : MulChar R R'
ψ : AddChar R R'
a : Rˣ
⊢ ∑ x : R, ↑χ (↑a * x) * ↑ψ (↑a * x) = ∑ x : R, ↑χ x * ↑ψ x
[PROOFSTEP]
exact Fintype.sum_bijective _ a.mulLeft_bijective _ _ fun x => rfl
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
b : R
⊢ ∑ a : R, ↑χ (a * b⁻¹) * ↑ψ (a - b) = ∑ c : R, ↑χ c * ↑ψ (b * (c - 1))
[PROOFSTEP]
cases' eq_or_ne b 0 with hb hb
[GOAL]
case inl
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
b : R
hb : b = 0
⊢ ∑ a : R, ↑χ (a * b⁻¹) * ↑ψ (a - b) = ∑ c : R, ↑χ c * ↑ψ (b * (c - 1))
[PROOFSTEP]
simp only [hb, inv_zero, mul_zero, MulChar.map_zero, zero_mul, Finset.sum_const_zero, map_zero_one, mul_one]
[GOAL]
case inl
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
b : R
hb : b = 0
⊢ 0 = ∑ x : R, ↑χ x
[PROOFSTEP]
exact (hχ.sum_eq_zero).symm
[GOAL]
case inr
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
b : R
hb : b ≠ 0
⊢ ∑ a : R, ↑χ (a * b⁻¹) * ↑ψ (a - b) = ∑ c : R, ↑χ c * ↑ψ (b * (c - 1))
[PROOFSTEP]
refine' (Fintype.sum_bijective _ (mulLeft_bijective₀ b hb) _ _ fun x => _).symm
[GOAL]
case inr
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
b : R
hb : b ≠ 0
x : R
⊢ ↑χ x * ↑ψ (b * (x - 1)) = ↑χ ((fun x x_1 => x * x_1) b x * b⁻¹) * ↑ψ ((fun x x_1 => x * x_1) b x - b)
[PROOFSTEP]
rw [mul_assoc, mul_comm x, ← mul_assoc, mul_inv_cancel hb, one_mul, mul_sub, mul_one]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ gaussSum χ ψ * gaussSum χ⁻¹ ψ⁻¹ = ↑(Fintype.card R)
[PROOFSTEP]
simp only [gaussSum, AddChar.inv_apply, Finset.sum_mul, Finset.mul_sum, MulChar.inv_apply']
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R)
[PROOFSTEP]
conv =>
lhs; congr; next => skip
ext; congr; next => skip
ext
rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
-- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R)
[PROOFSTEP]
lhs; congr; next => skip
ext; congr; next => skip
ext
rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
-- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R)
[PROOFSTEP]
lhs; congr; next => skip
ext; congr; next => skip
ext
rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
-- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R)
[PROOFSTEP]
lhs
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x))
[PROOFSTEP]
congr
[GOAL]
case s
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| Finset.univ
case f
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| fun x => ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x))
[PROOFSTEP]
next => skip
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| Finset.univ
[PROOFSTEP]
skip
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| Finset.univ
[PROOFSTEP]
skip
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| Finset.univ
[PROOFSTEP]
skip
[GOAL]
case f
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
| fun x => ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x))
[PROOFSTEP]
ext
[GOAL]
case f.h
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| ∑ x : R, ↑χ x * ↑ψ x * (↑χ x✝⁻¹ * ↑ψ (-x✝))
[PROOFSTEP]
congr
[GOAL]
case f.h.s
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| Finset.univ
case f.h.f
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| fun x => ↑χ x * ↑ψ x * (↑χ x✝⁻¹ * ↑ψ (-x✝))
[PROOFSTEP]
next => skip
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| Finset.univ
[PROOFSTEP]
skip
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| Finset.univ
[PROOFSTEP]
skip
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| Finset.univ
[PROOFSTEP]
skip
[GOAL]
case f.h.f
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝ : R
| fun x => ↑χ x * ↑ψ x * (↑χ x✝⁻¹ * ↑ψ (-x✝))
[PROOFSTEP]
ext
[GOAL]
case f.h.f.h
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
x✝¹ x✝ : R
| ↑χ x✝ * ↑ψ x✝ * (↑χ x✝¹⁻¹ * ↑ψ (-x✝¹))
[PROOFSTEP]
rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
-- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ ∑ x : R, ∑ x_1 : R, ↑χ (x_1 * x⁻¹) * ↑ψ (x_1 - x) = ↑(Fintype.card R)
[PROOFSTEP]
simp_rw [gaussSum_mul_aux hχ ψ]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ (x * (x_1 - 1)) = ↑(Fintype.card R)
[PROOFSTEP]
rw [Finset.sum_comm]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ ∑ y : R, ∑ x : R, ↑χ y * ↑ψ (x * (y - 1)) = ↑(Fintype.card R)
[PROOFSTEP]
classical
-- to get `[DecidableEq R]` for `sum_mulShift`
simp_rw [← Finset.mul_sum, sum_mulShift _ hψ, sub_eq_zero, apply_ite, Nat.cast_zero, mul_zero]
rw [Finset.sum_ite_eq' Finset.univ (1 : R)]
simp only [Finset.mem_univ, map_one, one_mul, if_true]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ ∑ y : R, ∑ x : R, ↑χ y * ↑ψ (x * (y - 1)) = ↑(Fintype.card R)
[PROOFSTEP]
simp_rw [← Finset.mul_sum, sum_mulShift _ hψ, sub_eq_zero, apply_ite, Nat.cast_zero, mul_zero]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ (∑ x : R, if x = 1 then ↑χ x * ↑(Fintype.card R) else 0) = ↑(Fintype.card R)
[PROOFSTEP]
rw [Finset.sum_ite_eq' Finset.univ (1 : R)]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : MulChar.IsNontrivial χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ (if 1 ∈ Finset.univ then ↑χ 1 * ↑(Fintype.card R) else 0) = ↑(Fintype.card R)
[PROOFSTEP]
simp only [Finset.mem_univ, map_one, one_mul, if_true]
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
[PROOFSTEP]
rw [pow_two, ← gaussSum_mul_gaussSum_eq_card hχ₁ hψ, hχ₂.inv, mul_rotate']
[GOAL]
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ gaussSum χ ψ * gaussSum χ ψ = gaussSum χ ψ * (gaussSum χ ψ⁻¹ * ↑χ (-1))
[PROOFSTEP]
congr
[GOAL]
case e_a
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ gaussSum χ ψ = gaussSum χ ψ⁻¹ * ↑χ (-1)
[PROOFSTEP]
rw [mul_comm, ← gaussSum_mulShift _ _ (-1 : Rˣ), inv_mulShift]
[GOAL]
case e_a
R : Type u
inst✝³ : Field R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
ψ : AddChar R R'
hψ : IsPrimitive ψ
⊢ ↑χ ↑(-1) * gaussSum χ (mulShift ψ ↑(-1)) = ↑χ (-1) * gaussSum χ (mulShift ψ (-1))
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
χ : MulChar R R'
ψ : AddChar R R'
⊢ gaussSum χ ψ ^ p = gaussSum (χ ^ p) (ψ ^ p)
[PROOFSTEP]
rw [← frobenius_def, gaussSum, gaussSum, map_sum]
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
χ : MulChar R R'
ψ : AddChar R R'
⊢ ∑ x : R, ↑(frobenius R' p) (↑χ x * ↑ψ x) = ∑ a : R, ↑(χ ^ p) a * ↑(ψ ^ p) a
[PROOFSTEP]
simp_rw [pow_apply' χ fp.1.pos, map_mul, frobenius_def]
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
χ : MulChar R R'
ψ : AddChar R R'
⊢ ∑ x : R, ↑χ x ^ p * ↑ψ x ^ p = ∑ x : R, ↑χ x ^ p * ↑(ψ ^ p) x
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
⊢ gaussSum χ ψ ^ p = ↑χ ↑p * gaussSum χ ψ
[PROOFSTEP]
rw [gaussSum_frob, pow_mulShift, hχ.pow_char p, ← gaussSum_mulShift χ ψ hp.unit, ← mul_assoc, hp.unit_spec, ← pow_two, ←
pow_apply' _ (by norm_num : 0 < 2), hχ.sq_eq_one, ← hp.unit_spec, one_apply_coe, one_mul]
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
n : ℕ
hp : IsUnit ↑p
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
⊢ gaussSum χ ψ ^ p ^ n = ↑χ (↑p ^ n) * gaussSum χ ψ
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
⊢ gaussSum χ ψ ^ p ^ Nat.zero = ↑χ (↑p ^ Nat.zero) * gaussSum χ ψ
[PROOFSTEP]
rw [pow_zero, pow_one, pow_zero, MulChar.map_one, one_mul]
[GOAL]
case succ
R : Type u
inst✝² : CommRing R
inst✝¹ : Fintype R
R' : Type v
inst✝ : CommRing R'
p : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
n : ℕ
ih : gaussSum χ ψ ^ p ^ n = ↑χ (↑p ^ n) * gaussSum χ ψ
⊢ gaussSum χ ψ ^ p ^ Nat.succ n = ↑χ (↑p ^ Nat.succ n) * gaussSum χ ψ
[PROOFSTEP]
rw [pow_succ, mul_comm p, pow_mul, ih, mul_pow, hχ.gaussSum_frob _ hp, ← mul_assoc, pow_succ, mul_comm (p : R), map_mul,
← pow_apply' χ fp.1.pos ((p : R) ^ n), hχ.pow_char p]
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
⊢ (↑χ (-1) * ↑(Fintype.card R)) ^ (p ^ n / 2) = ↑χ (↑p ^ n)
[PROOFSTEP]
have : gaussSum χ ψ ≠ 0 := by
intro hf; rw [hf, zero_pow (by norm_num : 0 < 2), eq_comm, mul_eq_zero] at hg
exact
not_isUnit_prime_of_dvd_card p
((CharP.cast_eq_zero_iff R' p _).mp <| hg.resolve_left (isUnit_one.neg.map χ).ne_zero) hp
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
⊢ gaussSum χ ψ ≠ 0
[PROOFSTEP]
intro hf
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
hf : gaussSum χ ψ = 0
⊢ False
[PROOFSTEP]
rw [hf, zero_pow (by norm_num : 0 < 2), eq_comm, mul_eq_zero] at hg
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : 0 ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
hf : gaussSum χ ψ = 0
⊢ 0 < 2
[PROOFSTEP]
norm_num
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : ↑χ (-1) = 0 ∨ ↑(Fintype.card R) = 0
hf : gaussSum χ ψ = 0
⊢ False
[PROOFSTEP]
exact
not_isUnit_prime_of_dvd_card p ((CharP.cast_eq_zero_iff R' p _).mp <| hg.resolve_left (isUnit_one.neg.map χ).ne_zero)
hp
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
this : gaussSum χ ψ ≠ 0
⊢ (↑χ (-1) * ↑(Fintype.card R)) ^ (p ^ n / 2) = ↑χ (↑p ^ n)
[PROOFSTEP]
rw [← hg]
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
this : gaussSum χ ψ ≠ 0
⊢ (gaussSum χ ψ ^ 2) ^ (p ^ n / 2) = ↑χ (↑p ^ n)
[PROOFSTEP]
apply mul_right_cancel₀ this
[GOAL]
R : Type u
inst✝³ : CommRing R
inst✝² : Fintype R
R' : Type v
inst✝¹ : CommRing R'
inst✝ : IsDomain R'
χ : MulChar R R'
hχ : IsQuadratic χ
ψ : AddChar R R'
p n : ℕ
fp : Fact (Nat.Prime p)
hch : CharP R' p
hp : IsUnit ↑p
hp' : p ≠ 2
hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R)
this : gaussSum χ ψ ≠ 0
⊢ (gaussSum χ ψ ^ 2) ^ (p ^ n / 2) * gaussSum χ ψ = ↑χ (↑p ^ n) * gaussSum χ ψ
[PROOFSTEP]
rw [← hχ.gaussSum_frob_iter p n hp ψ, ← pow_mul, mul_comm, ← pow_succ,
Nat.two_mul_div_two_add_one_of_odd (fp.1.eq_two_or_odd'.resolve_left hp').pow]
[GOAL]
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F')
[PROOFSTEP]
obtain ⟨n, hp, hc⟩ := FiniteField.card F (ringChar F)
[GOAL]
case intro.intro
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F')
[PROOFSTEP]
obtain ⟨n', hp', hc'⟩ := FiniteField.card F' (ringChar F')
[GOAL]
case intro.intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F')
[PROOFSTEP]
let ψ := primitiveCharFiniteField F F' hch₁
[GOAL]
case intro.intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F')
[PROOFSTEP]
set FF' := CyclotomicField ψ.n F' with FF'_def
[GOAL]
case intro.intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F')
[PROOFSTEP]
have hchar := Algebra.ringChar_eq F' FF'
[GOAL]
case intro.intro.intro.intro
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F')
[PROOFSTEP]
apply (algebraMap F' FF').injective
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
⊢ ↑(algebraMap F' FF') ((↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2)) =
↑(algebraMap F' FF') (↑χ ↑(Fintype.card F'))
[PROOFSTEP]
rw [map_pow, map_mul, map_natCast, hc', hchar, Nat.cast_pow]
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
⊢ (↑(algebraMap F' FF') (↑χ (-1)) * ↑(Fintype.card F)) ^ (ringChar FF' ^ ↑n' / 2) =
↑(algebraMap F' FF') (↑χ (↑(ringChar FF') ^ ↑n'))
[PROOFSTEP]
simp only [← MulChar.ringHomComp_apply]
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')) ^ ↑n')
[PROOFSTEP]
haveI := Fact.mk hp'
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
this : Fact (Nat.Prime (ringChar F'))
⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')) ^ ↑n')
[PROOFSTEP]
haveI := Fact.mk (hchar.subst hp')
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
this✝ : Fact (Nat.Prime (ringChar F'))
this : Fact (Nat.Prime (ringChar FF'))
⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')) ^ ↑n')
[PROOFSTEP]
rw [Ne, ← Nat.prime_dvd_prime_iff_eq hp' hp, ← isUnit_iff_not_dvd_char, hchar] at hch₁
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁✝ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁✝
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
hch₁ : IsUnit ↑(ringChar FF')
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
this✝ : Fact (Nat.Prime (ringChar F'))
this : Fact (Nat.Prime (ringChar FF'))
⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n')
[PROOFSTEP]
have :=
Char.card_pow_char_pow (hχ₂.comp (algebraMap F' FF')) ψ.char (ringChar FF') n' hch₁ (hchar ▸ hch₂)
(gaussSum_sq (hχ₁.comp <| RingHom.injective _) (hχ₂.comp _) ψ.prim)
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁✝ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁✝
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
hch₁ : IsUnit ↑(ringChar FF')
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
this✝¹ : Fact (Nat.Prime (ringChar F'))
this✝ : Fact (Nat.Prime (ringChar FF'))
this :
(↑(ringHomComp χ (algebraMap F' FF')) (-1) * ↑(Fintype.card F)) ^ (ringChar FF' ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' FF')) (↑(ringChar FF') ^ ↑n')
⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n')
[PROOFSTEP]
simp_rw [FF'_def] at this
[GOAL]
case intro.intro.intro.intro.a
R : Type u
inst✝⁷ : CommRing R
inst✝⁶ : Fintype R
R' : Type v
inst✝⁵ : CommRing R'
inst✝⁴ : IsDomain R'
F : Type u_1
inst✝³ : Field F
inst✝² : Fintype F
F' : Type u_2
inst✝¹ : Field F'
inst✝ : Fintype F'
χ : MulChar F F'
hχ₁ : MulChar.IsNontrivial χ
hχ₂ : IsQuadratic χ
hch₁✝ : ringChar F' ≠ ringChar F
hch₂ : ringChar F' ≠ 2
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
n' : ℕ+
hp' : Nat.Prime (ringChar F')
hc' : Fintype.card F' = ringChar F' ^ ↑n'
ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁✝
FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F'
hch₁ : IsUnit ↑(ringChar FF')
FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F'
hchar : ringChar F' = ringChar FF'
this✝¹ : Fact (Nat.Prime (ringChar F'))
this✝ : Fact (Nat.Prime (ringChar FF'))
this :
(↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n')
⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(-1) *
↑(Fintype.card F)) ^
(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) =
↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')))
(↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n')
[PROOFSTEP]
exact this
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hp2 : ∀ n : ℕ, (2 ^ n : F) ≠ 0 := fun n => pow_ne_zero n (Ring.two_ne_zero hF)
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
obtain ⟨n, hp, hc⟩ :=
FiniteField.card F
(ringChar F)
-- we work in `FF`, the eighth cyclotomic field extension of `F`
-- Porting note: was
-- let FF := (Polynomial.cyclotomic 8 F).SplittingField
-- but we want to unify with `CyclotomicField` below.
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
let FF := CyclotomicField 8 F
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
haveI : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) := Polynomial.IsSplittingField.splittingField _
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
haveI : FiniteDimensional F FF := Polynomial.IsSplittingField.finiteDimensional FF (Polynomial.cyclotomic 8 F)
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this : FiniteDimensional F FF
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
haveI : Fintype FF := FiniteDimensional.fintypeOfFintype F FF
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝¹ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝ : FiniteDimensional F FF
this : Fintype FF
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hchar := Algebra.ringChar_eq F FF
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝¹ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝ : FiniteDimensional F FF
this : Fintype FF
hchar : ringChar F = ringChar FF
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have FFp := hchar.subst hp
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝¹ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝ : FiniteDimensional F FF
this : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
haveI := Fact.mk FFp
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hFF := ne_of_eq_of_ne hchar.symm hF
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hu : IsUnit (ringChar FF : ZMod 8) :=
by
rw [isUnit_iff_not_dvd_char, ringChar_zmod_n]
rw [Ne, ← Nat.prime_dvd_prime_iff_eq FFp Nat.prime_two] at hFF
change ¬_ ∣ 2 ^ 3
exact mt FFp.dvd_of_dvd_pow hFF
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
⊢ IsUnit ↑(ringChar FF)
[PROOFSTEP]
rw [isUnit_iff_not_dvd_char, ringChar_zmod_n]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
⊢ ¬ringChar FF ∣ 8
[PROOFSTEP]
rw [Ne, ← Nat.prime_dvd_prime_iff_eq FFp Nat.prime_two] at hFF
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ¬ringChar FF ∣ 2
⊢ ¬ringChar FF ∣ 8
[PROOFSTEP]
change ¬_ ∣ 2 ^ 3
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ¬ringChar FF ∣ 2
⊢ ¬ringChar FF ∣ 2 ^ 3
[PROOFSTEP]
exact mt FFp.dvd_of_dvd_pow hFF
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
let ψ₈ : PrimitiveAddChar (ZMod 8) F :=
primitiveZModChar 8 F
(by convert hp2 3 using 1; norm_cast)
-- Porting note: unifying this is very slow, so only do it once.
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
⊢ ↑↑8 ≠ 0
[PROOFSTEP]
convert hp2 3 using 1
[GOAL]
case h.e'_2
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
⊢ ↑↑8 = 2 ^ 3
[PROOFSTEP]
norm_cast
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
let ψ₈char : AddChar (ZMod 8) FF := ψ₈.char
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
let τ : FF := ψ₈char 1
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have τ_spec : τ ^ 4 = -1 := by
refine (sq_eq_one_iff.1 ?_).resolve_left ?_
· rw [← pow_mul, ← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim]
decide
· rw [← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim]
decide
-- we consider `χ₈` as a multiplicative character `ℤ/8ℤ → FF`
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
⊢ τ ^ 4 = -1
[PROOFSTEP]
refine (sq_eq_one_iff.1 ?_).resolve_left ?_
[GOAL]
case refine_1
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
⊢ (τ ^ 4) ^ 2 = 1
[PROOFSTEP]
rw [← pow_mul, ← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim]
[GOAL]
case refine_1
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
⊢ (4 * 2) • 1 = 0
[PROOFSTEP]
decide
[GOAL]
case refine_2
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
⊢ ¬τ ^ 4 = 1
[PROOFSTEP]
rw [← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim]
[GOAL]
case refine_2
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
⊢ ¬4 • 1 = 0
[PROOFSTEP]
decide
-- we consider `χ₈` as a multiplicative character `ℤ/8ℤ → FF`
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
let χ := χ₈.ringHomComp (Int.castRingHom FF)
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hχ : χ (-1) = 1 := Int.cast_one
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hq : IsQuadratic χ :=
isQuadratic_χ₈.comp
_
-- we now show that the Gauss sum of `χ` and `ψ₈` has the relevant property
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have hg : gaussSum χ ψ₈char ^ 2 = χ (-1) * Fintype.card (ZMod 8) :=
by
have _ := congr_arg (· ^ 2) (Fin.sum_univ_eight fun x => (χ₈ x : FF) * τ ^ x.1)
have h₁ : (fun i : Fin 8 => ↑(χ₈ i) * τ ^ i.val) = (fun a : ZMod 8 => χ a * ↑(ψ₈char a)) := by
-- Porting note: original proof
-- ext; congr; apply pow_oneext (x : Fin 8); rw [← map_nsmul_pow ψ₈char]; congr 2;
rw [Nat.smul_one_eq_coe, Fin.cast_val_eq_self x]
have h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) :=
by ring
have h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = ↑8 := by rw [τ_spec]; norm_num
have h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = ↑8 := by rw [← h₃, ← h₂]
have h₅ :
(↑(χ₈ 0) * τ ^ 0 + ↑(χ₈ 1) * τ ^ 1 + ↑(χ₈ 2) * τ ^ 2 + ↑(χ₈ 3) * τ ^ 3 + ↑(χ₈ 4) * τ ^ 4 + ↑(χ₈ 5) * τ ^ 5 +
↑(χ₈ 6) * τ ^ 6 +
↑(χ₈ 7) * τ ^ 7) ^
2 =
8 :=
by
-- Porting note: original proof
-- simp [← h₄, χ₈_apply, Matrix.cons_val_zero, algebraMap.coe_zero, zero_mul,
-- Matrix.cons_val_one, Matrix.head_cons, algebraMap.coe_one, Matrix.cons_vec_bit0_eq_alt0,
-- Matrix.cons_vecAppend, Matrix.cons_vecAlt0, Matrix.cons_vec_bit1_eq_alt1,
-- Matrix.cons_vecAlt1, Int.cast_neg]
simp_rw [χ₈_apply]
rw [← h₄]
dsimp only
congr
· rw [Matrix.cons_val_zero]; simp
· simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two,
pow_eq_zero_iff]
left
rw [← Int.cast_zero (R := FF)]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons]
rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two,
pow_eq_zero_iff]
left
rw [← Int.cast_zero (R := FF)]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons]
rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two,
pow_eq_zero_iff]
left
rw [← Int.cast_zero (R := FF)]
exact congr_arg Int.cast rfl
rw [gaussSum, hχ, one_mul, ZMod.card, Nat.cast_ofNat, ← h₅]
simp_rw [← h₁]
rw [Fin.sum_univ_eight]
rfl
-- this allows us to apply `card_pow_char_pow` to our situation
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
have _ := congr_arg (· ^ 2) (Fin.sum_univ_eight fun x => (χ₈ x : FF) * τ ^ x.1)
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
have h₁ : (fun i : Fin 8 => ↑(χ₈ i) * τ ^ i.val) = (fun a : ZMod 8 => χ a * ↑(ψ₈char a)) := by
-- Porting note: original proof
-- ext; congr; apply pow_oneext (x : Fin 8); rw [← map_nsmul_pow ψ₈char]; congr 2;
rw [Nat.smul_one_eq_coe, Fin.cast_val_eq_self x]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
⊢ (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
[PROOFSTEP]
ext (x : Fin 8)
[GOAL]
case h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
x : Fin 8
⊢ ↑(↑χ₈ x) * τ ^ ↑x = ↑χ x * ↑ψ₈char x
[PROOFSTEP]
rw [← map_nsmul_pow ψ₈char]
[GOAL]
case h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
x : Fin 8
⊢ ↑(↑χ₈ x) * ↑ψ₈char (↑x • 1) = ↑χ x * ↑ψ₈char x
[PROOFSTEP]
congr 2
[GOAL]
case h.e_a.e_x
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
x : Fin 8
⊢ ↑x • 1 = x
[PROOFSTEP]
rw [Nat.smul_one_eq_coe, Fin.cast_val_eq_self x]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
have h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) :=
by ring
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
⊢ (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
[PROOFSTEP]
ring
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
have h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = ↑8 := by rw [τ_spec]; norm_num
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
⊢ 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
[PROOFSTEP]
rw [τ_spec]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
⊢ 8 + (-1 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * -1 + τ ^ 2 - 8) = 8
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
have h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = ↑8 := by rw [← h₃, ← h₂]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
⊢ (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
[PROOFSTEP]
rw [← h₃, ← h₂]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
have h₅ :
(↑(χ₈ 0) * τ ^ 0 + ↑(χ₈ 1) * τ ^ 1 + ↑(χ₈ 2) * τ ^ 2 + ↑(χ₈ 3) * τ ^ 3 + ↑(χ₈ 4) * τ ^ 4 + ↑(χ₈ 5) * τ ^ 5 +
↑(χ₈ 6) * τ ^ 6 +
↑(χ₈ 7) * τ ^ 7) ^
2 =
8 :=
by
-- Porting note: original proof
-- simp [← h₄, χ₈_apply, Matrix.cons_val_zero, algebraMap.coe_zero, zero_mul,
-- Matrix.cons_val_one, Matrix.head_cons, algebraMap.coe_one, Matrix.cons_vec_bit0_eq_alt0,
-- Matrix.cons_vecAppend, Matrix.cons_vecAlt0, Matrix.cons_vec_bit1_eq_alt1,
-- Matrix.cons_vecAlt1, Int.cast_neg]
simp_rw [χ₈_apply]
rw [← h₄]
dsimp only
congr
· rw [Matrix.cons_val_zero]; simp
· simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff]
left
rw [← Int.cast_zero (R := FF)]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons]
rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff]
left
rw [← Int.cast_zero (R := FF)]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons]
rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]]
exact congr_arg Int.cast rfl
· simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff]
left
rw [← Int.cast_zero (R := FF)]
exact congr_arg Int.cast rfl
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 +
↑(↑χ₈ 6) * τ ^ 6 +
↑(↑χ₈ 7) * τ ^ 7) ^
2 =
8
[PROOFSTEP]
simp_rw [χ₈_apply]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ (↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 7) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^
2 =
8
[PROOFSTEP]
rw [← h₄]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ (↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 7) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^
2 =
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2
[PROOFSTEP]
dsimp only
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ (↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 +
↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 7) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^
2 =
(0 + 1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + 0 +
-1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 +
0 +
-1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 +
0 +
1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^
2
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 =
0
[PROOFSTEP]
rw [Matrix.cons_val_zero]
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑0 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 = 0
[PROOFSTEP]
simp
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 =
0
[PROOFSTEP]
simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff]
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 2) =
0 ∨
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ¬↑↑8 = 0))) 1 = 0
[PROOFSTEP]
left
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a.h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 2) =
0
[PROOFSTEP]
rw [← Int.cast_zero (R := FF)]
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a.h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 2) =
↑0
[PROOFSTEP]
exact congr_arg Int.cast rfl
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) = -1
[PROOFSTEP]
simp only [Matrix.vecCons]
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 3) =
-1
[PROOFSTEP]
rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ -1 = ↑(-1)
[PROOFSTEP]
simp only [Int.cast_neg, Int.cast_one]
[GOAL]
case e_a.e_a.e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 3) =
↑(-1)
[PROOFSTEP]
exact congr_arg Int.cast rfl
[GOAL]
case e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 =
0
[PROOFSTEP]
simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff]
[GOAL]
case e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 4) =
0 ∨
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ¬↑↑8 = 0))) 1 = 0
[PROOFSTEP]
left
[GOAL]
case e_a.e_a.e_a.e_a.e_a.h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 4) =
0
[PROOFSTEP]
rw [← Int.cast_zero (R := FF)]
[GOAL]
case e_a.e_a.e_a.e_a.e_a.h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 4) =
↑0
[PROOFSTEP]
exact congr_arg Int.cast rfl
[GOAL]
case e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) = -1
[PROOFSTEP]
simp only [Matrix.vecCons]
[GOAL]
case e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 5) =
-1
[PROOFSTEP]
rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ -1 = ↑(-1)
[PROOFSTEP]
simp only [Int.cast_neg, Int.cast_one]
[GOAL]
case e_a.e_a.e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 5) =
↑(-1)
[PROOFSTEP]
exact congr_arg Int.cast rfl
[GOAL]
case e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) *
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 =
0
[PROOFSTEP]
simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff]
[GOAL]
case e_a.e_a.e_a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 6) =
0 ∨
↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ¬↑↑8 = 0))) 1 = 0
[PROOFSTEP]
left
[GOAL]
case e_a.e_a.e_a.h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 6) =
0
[PROOFSTEP]
rw [← Int.cast_zero (R := FF)]
[GOAL]
case e_a.e_a.e_a.h
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 6) =
↑0
[PROOFSTEP]
exact congr_arg Int.cast rfl
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
h₅ :
(↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 +
↑(↑χ₈ 6) * τ ^ 6 +
↑(↑χ₈ 7) * τ ^ 7) ^
2 =
8
⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
[PROOFSTEP]
rw [gaussSum, hχ, one_mul, ZMod.card, Nat.cast_ofNat, ← h₅]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
h₅ :
(↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 +
↑(↑χ₈ 6) * τ ^ 6 +
↑(↑χ₈ 7) * τ ^ 7) ^
2 =
8
⊢ (∑ a : ZMod 8, ↑χ a * ↑ψ₈char a) ^ 2 =
(↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 +
↑(↑χ₈ 6) * τ ^ 6 +
↑(↑χ₈ 7) * τ ^ 7) ^
2
[PROOFSTEP]
simp_rw [← h₁]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
h₅ :
(↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 +
↑(↑χ₈ 6) * τ ^ 6 +
↑(↑χ₈ 7) * τ ^ 7) ^
2 =
8
⊢ (∑ i : ZMod 8, ↑(↑χ₈ i) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑i) ^ 2 =
(↑(↑χ₈ 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 +
↑(↑χ₈ 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 +
↑(↑χ₈ 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 +
↑(↑χ₈ 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 +
↑(↑χ₈ 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 +
↑(↑χ₈ 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 +
↑(↑χ₈ 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 +
↑(↑χ₈ 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^
2
[PROOFSTEP]
rw [Fin.sum_univ_eight]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
x✝ :
(fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) =
(fun x => x ^ 2)
(↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 +
↑(↑χ₈ 5) * τ ^ ↑5 +
↑(↑χ₈ 6) * τ ^ ↑6 +
↑(↑χ₈ 7) * τ ^ ↑7)
h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a
h₂ :
(0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 =
8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8)
h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8
h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8
h₅ :
(↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 +
↑(↑χ₈ 6) * τ ^ 6 +
↑(↑χ₈ 7) * τ ^ 7) ^
2 =
8
⊢ (↑(↑χ₈ 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑0 +
↑(↑χ₈ 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑1 +
↑(↑χ₈ 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑2 +
↑(↑χ₈ 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑3 +
↑(↑χ₈ 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑4 +
↑(↑χ₈ 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑5 +
↑(↑χ₈ 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑6 +
↑(↑χ₈ 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑7) ^
2 =
(↑(↑χ₈ 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 +
↑(↑χ₈ 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 +
↑(↑χ₈ 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 +
↑(↑χ₈ 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 +
↑(↑χ₈ 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 +
↑(↑χ₈ 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 +
↑(↑χ₈ 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 +
↑(↑χ₈ 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^
2
[PROOFSTEP]
rfl
-- this allows us to apply `card_pow_char_pow` to our situation
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
have h := Char.card_pow_char_pow (R := ZMod 8) hq ψ₈char (ringChar FF) n hu hFF hg
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : (↑χ (-1) * ↑(Fintype.card (ZMod 8))) ^ (ringChar FF ^ ↑n / 2) = ↑χ (↑(ringChar FF) ^ ↑n)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
rw [ZMod.card, ← hchar, hχ, one_mul, ← hc, ← Nat.cast_pow (ringChar F), ← hc] at h
[GOAL]
case intro.intro
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F)
⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
convert_to (8 : F) ^ (Fintype.card F / 2) = _
[GOAL]
case h.e'_2
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F)
⊢ 2 ^ (Fintype.card F / 2) = 8 ^ (Fintype.card F / 2)
[PROOFSTEP]
rw [(by norm_num : (8 : F) = 2 ^ 2 * 2), mul_pow, (FiniteField.isSquare_iff hF <| hp2 2).mp ⟨2, pow_two 2⟩, one_mul]
[GOAL]
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F)
⊢ 8 = 2 ^ 2 * 2
[PROOFSTEP]
norm_num
[GOAL]
case intro.intro.convert_2
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F)
⊢ 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
apply (algebraMap F FF).injective
[GOAL]
case intro.intro.convert_2.a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F)
⊢ ↑(algebraMap F FF) (8 ^ (Fintype.card F / 2)) = ↑(algebraMap F FF) ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
simp only [map_pow, map_ofNat, map_intCast]
[GOAL]
case intro.intro.convert_2.a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F)
⊢ 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
simp only [Nat.cast_ofNat, ringHomComp_apply, eq_intCast] at h
[GOAL]
case intro.intro.convert_2.a
F : Type u_1
inst✝¹ : Fintype F
inst✝ : Field F
hF : ringChar F ≠ 2
hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0
n : ℕ+
hp : Nat.Prime (ringChar F)
hc : Fintype.card F = ringChar F ^ ↑n
FF : Type u_1 := CyclotomicField 8 F
this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F)
this✝¹ : FiniteDimensional F FF
this✝ : Fintype FF
hchar : ringChar F = ringChar FF
FFp : Nat.Prime (ringChar FF)
this : Fact (Nat.Prime (ringChar FF))
hFF : ringChar FF ≠ 2
hu : IsUnit ↑(ringChar FF)
ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0)
ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈
τ : FF := ↑ψ₈char 1
τ_spec : τ ^ 4 = -1
χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF)
hχ : ↑χ (-1) = 1
hq : IsQuadratic χ
hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8))
h : 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
⊢ 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F))
[PROOFSTEP]
exact h
| {"mathlib_filename": "Mathlib.NumberTheory.LegendreSymbol.GaussSum", "llama_tokens": 73854} |
[GOAL]
tm : FinTM2
s : List (FinTM2.Γ tm tm.k₀)
k : tm.K
h : k = tm.k₀
⊢ List (FinTM2.Γ tm k)
[PROOFSTEP]
rw [h]
[GOAL]
tm : FinTM2
s : List (FinTM2.Γ tm tm.k₀)
k : tm.K
h : k = tm.k₀
⊢ List (FinTM2.Γ tm tm.k₀)
[PROOFSTEP]
exact s
[GOAL]
tm : FinTM2
s : List (FinTM2.Γ tm tm.k₁)
k : tm.K
h : k = tm.k₁
⊢ List (FinTM2.Γ tm k)
[PROOFSTEP]
rw [h]
[GOAL]
tm : FinTM2
s : List (FinTM2.Γ tm tm.k₁)
k : tm.K
h : k = tm.k₁
⊢ List (FinTM2.Γ tm tm.k₁)
[PROOFSTEP]
exact s
[GOAL]
σ : Type u_1
f : σ → Option σ
a b : σ
c : Option σ
h₁ : EvalsTo f a (some b)
h₂ : EvalsTo f b c
⊢ (flip bind f)^[h₂.steps + h₁.steps] (some a) = c
[PROOFSTEP]
rw [Function.iterate_add_apply, h₁.evals_in_steps, h₂.evals_in_steps]
[GOAL]
α : Type
ea : FinEncoding α
x✝ : α
⊢ { steps := 1,
evals_in_steps :=
(_ :
(flip bind
(FinTM2.step
{ tm := idComputer ea,
inputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₀ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₀),
outputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₁ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm))^[1]
(some
(initList
{ tm := idComputer ea,
inputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₀ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₀),
outputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₁ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm
(List.map
{ tm := idComputer ea,
inputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₀ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₀),
outputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₁ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.inputAlphabet.invFun
(Encoding.encode ea.toEncoding x✝)))) =
(flip bind
(FinTM2.step
{ tm := idComputer ea,
inputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₀ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₀),
outputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₁ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm))^[1]
(some
(initList
{ tm := idComputer ea,
inputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₀ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₀),
outputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₁ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm
(List.map
{ tm := idComputer ea,
inputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₀ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₀),
outputAlphabet :=
Equiv.cast
(_ :
FinTM2.Γ (idComputer ea) (idComputer ea).k₁ =
FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.inputAlphabet.invFun
(Encoding.encode ea.toEncoding x✝))))) }.steps ≤
Polynomial.eval (List.length (Encoding.encode ea.toEncoding x✝)) 1
[PROOFSTEP]
simp only [Polynomial.eval_one]
| {"mathlib_filename": "Mathlib.Computability.TMComputable", "llama_tokens": 1532} |
{"mathlib_filename": "Mathlib.Util.PiNotation", "llama_tokens": 0} |
|
[GOAL]
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x : List α
s✝ : σ
a : α
s : σ
hs : s ∈ εClosure M ∅
⊢ False
[PROOFSTEP]
induction hs
[GOAL]
case base
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x : List α
s✝¹ : σ
a : α
s s✝ : σ
a✝ : s✝ ∈ ∅
⊢ False
[PROOFSTEP]
assumption
[GOAL]
case step
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x : List α
s✝¹ : σ
a : α
s s✝ t✝ : σ
a✝¹ : t✝ ∈ step M s✝ none
a✝ : εClosure M ∅ s✝
a_ih✝ : False
⊢ False
[PROOFSTEP]
assumption
[GOAL]
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
⊢ s ∈ stepSet M S a ↔ ∃ t, t ∈ S ∧ s ∈ εClosure M (step M t (some a))
[PROOFSTEP]
simp_rw [stepSet, mem_iUnion₂, exists_prop]
[GOAL]
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x : List α
s : σ
a✝ a : α
⊢ stepSet M ∅ a = ∅
[PROOFSTEP]
simp_rw [stepSet, mem_empty_iff_false, iUnion_false, iUnion_empty]
[GOAL]
α : Type u
σ σ' : Type v
M : εNFA α σ
S✝ : Set σ
x✝ : List α
s : σ
a✝ : α
S : Set σ
x : List α
a : α
⊢ evalFrom M S (x ++ [a]) = stepSet M (evalFrom M S x) a
[PROOFSTEP]
rw [evalFrom, List.foldl_append, List.foldl_cons, List.foldl_nil]
[GOAL]
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x✝ : List α
s : σ
a : α
x : List α
⊢ evalFrom M ∅ x = ∅
[PROOFSTEP]
induction' x using List.reverseRecOn with x a ih
[GOAL]
case H0
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
⊢ evalFrom M ∅ [] = ∅
[PROOFSTEP]
rw [evalFrom_nil, εClosure_empty]
[GOAL]
case H1
α : Type u
σ σ' : Type v
M : εNFA α σ
S : Set σ
x✝ : List α
s : σ
a✝ : α
x : List α
a : α
ih : evalFrom M ∅ x = ∅
⊢ evalFrom M ∅ (x ++ [a]) = ∅
[PROOFSTEP]
rw [evalFrom_append_singleton, ih, stepSet_empty]
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s : σ
a : α
M : NFA α σ
S : Set σ
⊢ εNFA.εClosure (toεNFA M) S = S
[PROOFSTEP]
ext a
[GOAL]
case h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s : σ
a✝ : α
M : NFA α σ
S : Set σ
a : σ
⊢ a ∈ εNFA.εClosure (toεNFA M) S ↔ a ∈ S
[PROOFSTEP]
refine' ⟨_, εNFA.εClosure.base _⟩
[GOAL]
case h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s : σ
a✝ : α
M : NFA α σ
S : Set σ
a : σ
⊢ a ∈ εNFA.εClosure (toεNFA M) S → a ∈ S
[PROOFSTEP]
rintro (⟨_, h⟩ | ⟨_, _, h, _⟩)
[GOAL]
case h.base
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s : σ
a✝ : α
M : NFA α σ
S : Set σ
a : σ
h : a ∈ S
⊢ a ∈ S
[PROOFSTEP]
exact h
[GOAL]
case h.step
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s : σ
a✝¹ : α
M : NFA α σ
S : Set σ
a s✝ : σ
a✝ : εNFA.εClosure (toεNFA M) S s✝
h : a ∈ εNFA.step (toεNFA M) s✝ none
⊢ a ∈ S
[PROOFSTEP]
cases h
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
M : NFA α σ
start : Set σ
⊢ εNFA.evalFrom (toεNFA M) start = evalFrom M start
[PROOFSTEP]
rw [evalFrom, εNFA.evalFrom, toεNFA_εClosure]
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
M : NFA α σ
start : Set σ
⊢ List.foldl (εNFA.stepSet (toεNFA M)) start = List.foldl (stepSet M) start
[PROOFSTEP]
suffices εNFA.stepSet (toεNFA M) = stepSet M by rw [this]
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
M : NFA α σ
start : Set σ
this : εNFA.stepSet (toεNFA M) = stepSet M
⊢ List.foldl (εNFA.stepSet (toεNFA M)) start = List.foldl (stepSet M) start
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
M : NFA α σ
start : Set σ
⊢ εNFA.stepSet (toεNFA M) = stepSet M
[PROOFSTEP]
ext S s
[GOAL]
case h.h.h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s✝ : σ
a : α
M : NFA α σ
start S : Set σ
s : α
x✝ : σ
⊢ x✝ ∈ εNFA.stepSet (toεNFA M) S s ↔ x✝ ∈ stepSet M S s
[PROOFSTEP]
simp only [stepSet, εNFA.stepSet, exists_prop, Set.mem_iUnion]
[GOAL]
case h.h.h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s✝ : σ
a : α
M : NFA α σ
start S : Set σ
s : α
x✝ : σ
⊢ (∃ i, i ∈ S ∧ x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) i (some s))) ↔ ∃ i, i ∈ S ∧ x✝ ∈ step M i s
[PROOFSTEP]
apply exists_congr
[GOAL]
case h.h.h.h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s✝ : σ
a : α
M : NFA α σ
start S : Set σ
s : α
x✝ : σ
⊢ ∀ (a : σ), a ∈ S ∧ x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) a (some s)) ↔ a ∈ S ∧ x✝ ∈ step M a s
[PROOFSTEP]
simp only [and_congr_right_iff]
[GOAL]
case h.h.h.h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s✝ : σ
a : α
M : NFA α σ
start S : Set σ
s : α
x✝ : σ
⊢ ∀ (a : σ), a ∈ S → (x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) a (some s)) ↔ x✝ ∈ step M a s)
[PROOFSTEP]
intro _ _
[GOAL]
case h.h.h.h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s✝ : σ
a : α
M : NFA α σ
start S : Set σ
s : α
x✝ a✝¹ : σ
a✝ : a✝¹ ∈ S
⊢ x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) a✝¹ (some s)) ↔ x✝ ∈ step M a✝¹ s
[PROOFSTEP]
rw [M.toεNFA_εClosure]
[GOAL]
case h.h.h.h
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S✝ : Set σ
x : List α
s✝ : σ
a : α
M : NFA α σ
start S : Set σ
s : α
x✝ a✝¹ : σ
a✝ : a✝¹ ∈ S
⊢ x✝ ∈ εNFA.step (toεNFA M) a✝¹ (some s) ↔ x✝ ∈ step M a✝¹ s
[PROOFSTEP]
rfl
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
M : NFA α σ
⊢ εNFA.accepts (toεNFA M) = accepts M
[PROOFSTEP]
rw [εNFA.accepts, εNFA.eval, toεNFA_evalFrom_match]
[GOAL]
α : Type u
σ σ' : Type v
M✝ : εNFA α σ
S : Set σ
x : List α
s : σ
a : α
M : NFA α σ
⊢ {x | ∃ S, S ∈ (toεNFA M).accept ∧ S ∈ evalFrom M (toεNFA M).start x} = accepts M
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Computability.EpsilonNFA", "llama_tokens": 3320} |
[GOAL]
n : ℕ
⊢ ack 0 n = n + 1
[PROOFSTEP]
rw [ack]
[GOAL]
m : ℕ
⊢ ack (m + 1) 0 = ack m 1
[PROOFSTEP]
rw [ack]
[GOAL]
m n : ℕ
⊢ ack (m + 1) (n + 1) = ack m (ack (m + 1) n)
[PROOFSTEP]
rw [ack]
[GOAL]
n : ℕ
⊢ ack 1 n = n + 2
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
⊢ ack 1 zero = zero + 2
[PROOFSTEP]
rfl
[GOAL]
case succ
n : ℕ
IH : ack 1 n = n + 2
⊢ ack 1 (succ n) = succ n + 2
[PROOFSTEP]
simp [IH]
[GOAL]
n : ℕ
⊢ ack 2 n = 2 * n + 3
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
⊢ ack 2 zero = 2 * zero + 3
[PROOFSTEP]
rfl
[GOAL]
case succ
n : ℕ
IH : ack 2 n = 2 * n + 3
⊢ ack 2 (succ n) = 2 * succ n + 3
[PROOFSTEP]
simpa [mul_succ]
[GOAL]
n : ℕ
⊢ ack 3 n = 2 ^ (n + 3) - 3
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
⊢ ack 3 zero = 2 ^ (zero + 3) - 3
[PROOFSTEP]
rfl
[GOAL]
case succ
n : ℕ
IH : ack 3 n = 2 ^ (n + 3) - 3
⊢ ack 3 (succ n) = 2 ^ (succ n + 3) - 3
[PROOFSTEP]
rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ←
Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right]
[GOAL]
case succ
n : ℕ
IH : ack 3 n = 2 ^ (n + 3) - 3
⊢ 2 * 3 ≤ 2 * 2 ^ (n + 3)
[PROOFSTEP]
have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num
[GOAL]
n : ℕ
IH : ack 3 n = 2 ^ (n + 3) - 3
⊢ 2 * 3 ≤ 2 * 2 ^ 3
[PROOFSTEP]
norm_num
[GOAL]
case succ
n : ℕ
IH : ack 3 n = 2 ^ (n + 3) - 3
H : 2 * 3 ≤ 2 * 2 ^ 3
⊢ 2 * 3 ≤ 2 * 2 ^ (n + 3)
[PROOFSTEP]
apply H.trans
[GOAL]
case succ
n : ℕ
IH : ack 3 n = 2 ^ (n + 3) - 3
H : 2 * 3 ≤ 2 * 2 ^ 3
⊢ 2 * 2 ^ 3 ≤ 2 * 2 ^ (n + 3)
[PROOFSTEP]
simp [pow_le_pow]
[GOAL]
n : ℕ
⊢ 0 < ack 0 n
[PROOFSTEP]
simp
[GOAL]
m : ℕ
⊢ 0 < ack (m + 1) 0
[PROOFSTEP]
rw [ack_succ_zero]
[GOAL]
m : ℕ
⊢ 0 < ack m 1
[PROOFSTEP]
apply ack_pos
[GOAL]
m n : ℕ
⊢ 0 < ack (m + 1) (n + 1)
[PROOFSTEP]
rw [ack_succ_succ]
[GOAL]
m n : ℕ
⊢ 0 < ack m (ack (m + 1) n)
[PROOFSTEP]
apply ack_pos
[GOAL]
n : ℕ
⊢ 1 < ack (0 + 1) n
[PROOFSTEP]
simp
[GOAL]
m : ℕ
⊢ 1 < ack (m + 1 + 1) 0
[PROOFSTEP]
rw [ack_succ_zero]
[GOAL]
m : ℕ
⊢ 1 < ack (m + 1) 1
[PROOFSTEP]
apply one_lt_ack_succ_left
[GOAL]
m n : ℕ
⊢ 1 < ack (m + 1 + 1) (n + 1)
[PROOFSTEP]
rw [ack_succ_succ]
[GOAL]
m n : ℕ
⊢ 1 < ack (m + 1) (ack (m + 1 + 1) n)
[PROOFSTEP]
apply one_lt_ack_succ_left
[GOAL]
n : ℕ
⊢ 1 < ack 0 (n + 1)
[PROOFSTEP]
simp
[GOAL]
m n : ℕ
⊢ 1 < ack (m + 1) (n + 1)
[PROOFSTEP]
rw [ack_succ_succ]
[GOAL]
m n : ℕ
⊢ 1 < ack m (ack (m + 1) n)
[PROOFSTEP]
cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h
[GOAL]
case intro
m n h✝ : ℕ
h : ack (m + 1) n = succ h✝
⊢ 1 < ack m (ack (m + 1) n)
[PROOFSTEP]
rw [h]
[GOAL]
case intro
m n h✝ : ℕ
h : ack (m + 1) n = succ h✝
⊢ 1 < ack m (succ h✝)
[PROOFSTEP]
apply one_lt_ack_succ_right
[GOAL]
n₁ n₂ : ℕ
h : n₁ < n₂
⊢ ack 0 n₁ < ack 0 n₂
[PROOFSTEP]
simpa using h
[GOAL]
m n : ℕ
_h : 0 < n + 1
⊢ ack (m + 1) 0 < ack (m + 1) (n + 1)
[PROOFSTEP]
rw [ack_succ_zero, ack_succ_succ]
[GOAL]
m n : ℕ
_h : 0 < n + 1
⊢ ack m 1 < ack m (ack (m + 1) n)
[PROOFSTEP]
exact ack_strictMono_right _ (one_lt_ack_succ_left m n)
[GOAL]
m n₁ n₂ : ℕ
h : n₁ + 1 < n₂ + 1
⊢ ack (m + 1) (n₁ + 1) < ack (m + 1) (n₂ + 1)
[PROOFSTEP]
rw [ack_succ_succ, ack_succ_succ]
[GOAL]
m n₁ n₂ : ℕ
h : n₁ + 1 < n₂ + 1
⊢ ack m (ack (m + 1) n₁) < ack m (ack (m + 1) n₂)
[PROOFSTEP]
apply ack_strictMono_right _ (ack_strictMono_right _ _)
[GOAL]
m n₁ n₂ : ℕ
h : n₁ + 1 < n₂ + 1
⊢ n₁ < n₂
[PROOFSTEP]
rwa [add_lt_add_iff_right] at h
[GOAL]
n : ℕ
⊢ 0 + n < ack 0 n
[PROOFSTEP]
simp
[GOAL]
m : ℕ
⊢ m + 1 + 0 < ack (m + 1) 0
[PROOFSTEP]
simpa using add_lt_ack m 1
[GOAL]
m n : ℕ
⊢ m + 1 + n + 1 ≤ m + (m + n + 2)
[PROOFSTEP]
linarith
[GOAL]
m n : ℕ
⊢ m + n + 2 = succ (m + 1 + n)
[PROOFSTEP]
rw [succ_eq_add_one]
[GOAL]
m n : ℕ
⊢ m + n + 2 = m + 1 + n + 1
[PROOFSTEP]
ring_nf
[GOAL]
m : ℕ
_h : 0 < m + 1
⊢ ack 0 0 < ack (m + 1) 0
[PROOFSTEP]
simpa using one_lt_ack_succ_right m 0
[GOAL]
m n : ℕ
h : 0 < m + 1
⊢ ack 0 (n + 1) < ack (m + 1) (n + 1)
[PROOFSTEP]
rw [ack_zero, ack_succ_succ]
[GOAL]
m n : ℕ
h : 0 < m + 1
⊢ n + 1 + 1 < ack m (ack (m + 1) n)
[PROOFSTEP]
apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _)
[GOAL]
m n : ℕ
h : 0 < m + 1
⊢ n + 1 + 1 ≤ m + (m + 1 + n + 1)
[PROOFSTEP]
linarith
[GOAL]
m₁ m₂ : ℕ
h : m₁ + 1 < m₂ + 1
⊢ ack (m₁ + 1) 0 < ack (m₂ + 1) 0
[PROOFSTEP]
simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h)
[GOAL]
m₁ m₂ n : ℕ
h : m₁ + 1 < m₂ + 1
⊢ ack (m₁ + 1) (n + 1) < ack (m₂ + 1) (n + 1)
[PROOFSTEP]
rw [ack_succ_succ, ack_succ_succ]
[GOAL]
m₁ m₂ n : ℕ
h : m₁ + 1 < m₂ + 1
⊢ ack m₁ (ack (m₁ + 1) n) < ack m₂ (ack (m₂ + 1) n)
[PROOFSTEP]
exact
(ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h)
[GOAL]
m n : ℕ
⊢ ack m (n + 1) ≤ ack (m + 1) n
[PROOFSTEP]
cases' n with n n
[GOAL]
case zero
m : ℕ
⊢ ack m (zero + 1) ≤ ack (m + 1) zero
[PROOFSTEP]
simp
[GOAL]
case succ
m n : ℕ
⊢ ack m (succ n + 1) ≤ ack (m + 1) (succ n)
[PROOFSTEP]
rw [ack_succ_succ, succ_eq_add_one]
[GOAL]
case succ
m n : ℕ
⊢ ack m (n + 1 + 1) ≤ ack m (ack (m + 1) n)
[PROOFSTEP]
apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n)
[GOAL]
m n : ℕ
⊢ n + 1 + 1 ≤ m + 1 + n + 1
[PROOFSTEP]
linarith
[GOAL]
n : ℕ
⊢ n ^ 2 ≤ 2 ^ (n + 1) - 3
[PROOFSTEP]
induction' n with k hk
[GOAL]
case zero
⊢ zero ^ 2 ≤ 2 ^ (zero + 1) - 3
[PROOFSTEP]
norm_num
[GOAL]
case succ
k : ℕ
hk : k ^ 2 ≤ 2 ^ (k + 1) - 3
⊢ succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
[PROOFSTEP]
cases' k with k k
[GOAL]
case succ.zero
hk : zero ^ 2 ≤ 2 ^ (zero + 1) - 3
⊢ succ zero ^ 2 ≤ 2 ^ (succ zero + 1) - 3
[PROOFSTEP]
norm_num
[GOAL]
case succ.succ
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ succ (succ k) ^ 2 ≤ 2 ^ (succ (succ k) + 1) - 3
[PROOFSTEP]
rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _),
add_assoc]
[GOAL]
case succ.succ
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ (k + 1) ^ 2 + (2 * (k + 1) * 1 + 1 ^ 2) ≤ 2 ^ (k + 2) - 3 + 2 ^ (k + 2)
[PROOFSTEP]
apply Nat.add_le_add hk
[GOAL]
case succ.succ
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ 2 * (k + 1) * 1 + 1 ^ 2 ≤ 2 ^ (k + 2)
[PROOFSTEP]
norm_num
[GOAL]
case succ.succ
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ 2 * (k + 1) + 1 ≤ 2 ^ (k + 2)
[PROOFSTEP]
apply succ_le_of_lt
[GOAL]
case succ.succ.h
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ 2 * (k + 1) < 2 ^ (k + 2)
[PROOFSTEP]
rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)]
[GOAL]
case succ.succ.h
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ k + 1 < 2 ^ (k + 1)
[PROOFSTEP]
apply lt_two_pow
[GOAL]
case succ.succ.h
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ 3 ≤ 2 ^ (k + 2)
[PROOFSTEP]
rw [Nat.pow_succ, Nat.pow_succ]
[GOAL]
case succ.succ.h
k : ℕ
hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3
⊢ 3 ≤ 2 ^ k * 2 * 2
[PROOFSTEP]
linarith [one_le_pow k 2 zero_lt_two]
[GOAL]
n : ℕ
⊢ (ack 0 n + 1) ^ 2 ≤ ack (0 + 3) n
[PROOFSTEP]
simpa using sq_le_two_pow_add_one_minus_three (n + 2)
[GOAL]
m : ℕ
⊢ (ack (m + 1) 0 + 1) ^ 2 ≤ ack (m + 1 + 3) 0
[PROOFSTEP]
rw [ack_succ_zero, ack_succ_zero]
[GOAL]
m : ℕ
⊢ (ack m 1 + 1) ^ 2 ≤ ack (m + 3) 1
[PROOFSTEP]
apply ack_add_one_sq_lt_ack_add_three
[GOAL]
m n : ℕ
⊢ (ack (m + 1) (n + 1) + 1) ^ 2 ≤ ack (m + 1 + 3) (n + 1)
[PROOFSTEP]
rw [ack_succ_succ, ack_succ_succ]
[GOAL]
m n : ℕ
⊢ (ack m (ack (m + 1) n) + 1) ^ 2 ≤ ack (m + 3) (ack (m + 3 + 1) n)
[PROOFSTEP]
apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _)
[GOAL]
m n : ℕ
⊢ m + 1 ≤ m + 3 + 1
[PROOFSTEP]
linarith
[GOAL]
m n : ℕ
⊢ m ≤ m + 2
[PROOFSTEP]
linarith
[GOAL]
f : ℕ → ℕ
hf : Nat.Primrec f
⊢ ∃ m, ∀ (n : ℕ), f n < ack m n
[PROOFSTEP]
induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg
[GOAL]
case zero
f : ℕ → ℕ
⊢ ∃ m, ∀ (n : ℕ), (fun x => 0) n < ack m n
[PROOFSTEP]
exact
⟨0, ack_pos 0⟩
-- Successor function:
[GOAL]
case succ
f : ℕ → ℕ
⊢ ∃ m, ∀ (n : ℕ), succ n < ack m n
[PROOFSTEP]
refine' ⟨1, fun n => _⟩
[GOAL]
case succ
f : ℕ → ℕ
n : ℕ
⊢ succ n < ack 1 n
[PROOFSTEP]
rw [succ_eq_one_add]
[GOAL]
case succ
f : ℕ → ℕ
n : ℕ
⊢ 1 + n < ack 1 n
[PROOFSTEP]
apply add_lt_ack
[GOAL]
case left
f : ℕ → ℕ
⊢ ∃ m, ∀ (n : ℕ), (fun n => (unpair n).fst) n < ack m n
[PROOFSTEP]
refine' ⟨0, fun n => _⟩
[GOAL]
case left
f : ℕ → ℕ
n : ℕ
⊢ (fun n => (unpair n).fst) n < ack 0 n
[PROOFSTEP]
rw [ack_zero, lt_succ_iff]
[GOAL]
case left
f : ℕ → ℕ
n : ℕ
⊢ (fun n => (unpair n).fst) n ≤ n
[PROOFSTEP]
exact unpair_left_le n
[GOAL]
case right
f : ℕ → ℕ
⊢ ∃ m, ∀ (n : ℕ), (fun n => (unpair n).snd) n < ack m n
[PROOFSTEP]
refine' ⟨0, fun n => _⟩
[GOAL]
case right
f : ℕ → ℕ
n : ℕ
⊢ (fun n => (unpair n).snd) n < ack 0 n
[PROOFSTEP]
rw [ack_zero, lt_succ_iff]
[GOAL]
case right
f : ℕ → ℕ
n : ℕ
⊢ (fun n => (unpair n).snd) n ≤ n
[PROOFSTEP]
exact unpair_right_le n
[GOAL]
case pair
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHf : ∃ m, ∀ (n : ℕ), f n < ack m n
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
case comp
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHf : ∃ m, ∀ (n : ℕ), f n < ack m n
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
case prec
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHf : ∃ m, ∀ (n : ℕ), f n < ack m n
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
[PROOFSTEP]
all_goals cases' IHf with a ha; cases' IHg with b hb
[GOAL]
case pair
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHf : ∃ m, ∀ (n : ℕ), f n < ack m n
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
[PROOFSTEP]
cases' IHf with a ha
[GOAL]
case pair.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
[PROOFSTEP]
cases' IHg with b hb
[GOAL]
case comp
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHf : ∃ m, ∀ (n : ℕ), f n < ack m n
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
[PROOFSTEP]
cases' IHf with a ha
[GOAL]
case comp.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
[PROOFSTEP]
cases' IHg with b hb
[GOAL]
case prec
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHf : ∃ m, ∀ (n : ℕ), f n < ack m n
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
[PROOFSTEP]
cases' IHf with a ha
[GOAL]
case prec.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
IHg : ∃ m, ∀ (n : ℕ), g n < ack m n
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
[PROOFSTEP]
cases' IHg with b hb
[GOAL]
case pair.intro.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n
[PROOFSTEP]
refine'
⟨max a b + 3, fun n =>
(pair_lt_max_add_one_sq _ _).trans_le <|
(pow_le_pow_of_le_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩
[GOAL]
case pair.intro.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
n : ℕ
⊢ max (f n) (g n) ≤ ack (max a b) n
[PROOFSTEP]
rw [max_ack_left]
[GOAL]
case pair.intro.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
n : ℕ
⊢ max (f n) (g n) ≤ max (ack a n) (ack b n)
[PROOFSTEP]
exact max_le_max (ha n).le (hb n).le
[GOAL]
case comp.intro.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n
[PROOFSTEP]
exact
⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩
-- Primitive recursion operator:
[GOAL]
case prec.intro.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
[PROOFSTEP]
have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) :=
by
intro m n
induction' n with n IH
· apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _)
linarith
·
-- We get rid of the first `pair`.
simp only [ge_iff_le]
apply
(hb _).trans
((ack_pair_lt _ _ _).trans_le _)
-- If m is the maximum, we get a very weak inequality.
cases' lt_or_le _ m with h₁ h₁
· rw [max_eq_left h₁.le]
exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _)
rw [max_eq_right h₁]
-- We get rid of the second `pair`.
apply (ack_pair_lt _ _ _).le.trans
cases' lt_or_le _ n with h₂ h₂
· rw [max_eq_left h₂.le, add_assoc]
exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _)
rw [max_eq_right h₂]
-- We now use the inductive hypothesis, and some simple algebraic manipulation.
apply (ack_strictMono_right _ IH).le.trans
rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc]
exact
ack_mono_left _
(Nat.add_le_add (le_max_right a b) le_rfl)
-- The proof is now simple.
[GOAL]
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
⊢ ∀ {m n : ℕ}, rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
[PROOFSTEP]
intro m n
[GOAL]
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m : ℕ
⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) zero < ack (max a b + 9) (m + zero)
[PROOFSTEP]
apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _)
[GOAL]
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m : ℕ
⊢ max a b < max a b + 9
[PROOFSTEP]
linarith
[GOAL]
case succ
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) (succ n) < ack (max a b + 9) (m + succ n)
[PROOFSTEP]
simp only [ge_iff_le]
[GOAL]
case succ
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
⊢ g (pair m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) < ack (max a b + 9) (m + succ n)
[PROOFSTEP]
apply
(hb _).trans
((ack_pair_lt _ _ _).trans_le _)
-- If m is the maximum, we get a very weak inequality.
[GOAL]
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
cases' lt_or_le _ m with h₁ h₁
[GOAL]
case inl
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : ?m.127608 < m
⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
rw [max_eq_left h₁.le]
[GOAL]
case inl
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) < m
⊢ ack (b + 4) m ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _)
[GOAL]
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) < m
⊢ 4 ≤ 9
[PROOFSTEP]
norm_num
[GOAL]
case inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
rw [max_eq_right h₁]
-- We get rid of the second `pair`.
[GOAL]
case inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
⊢ ack (b + 4) (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
apply (ack_pair_lt _ _ _).le.trans
[GOAL]
case inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
cases' lt_or_le _ n with h₂ h₂
[GOAL]
case inr.inl
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : ?m.127977 < n
⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
rw [max_eq_left h₂.le, add_assoc]
[GOAL]
case inr.inl
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : rec (f m) (fun y IH => g (pair m (pair y IH))) n < n
⊢ ack (b + (4 + 4)) n ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _)
[GOAL]
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : rec (f m) (fun y IH => g (pair m (pair y IH))) n < n
⊢ 4 + 4 ≤ 9
[PROOFSTEP]
norm_num
[GOAL]
case inr.inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n
⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
rw [max_eq_right h₂]
-- We now use the inductive hypothesis, and some simple algebraic manipulation.
[GOAL]
case inr.inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n
⊢ ack (b + 4 + 4) (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
apply (ack_strictMono_right _ IH).le.trans
[GOAL]
case inr.inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n
⊢ ack (b + 4 + 4) (ack (max a b + 9) (m + n)) ≤ ack (max a b + 9) (m + succ n)
[PROOFSTEP]
rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc]
[GOAL]
case inr.inr
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
m n : ℕ
IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)
h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n
⊢ ack (b + (4 + 4)) (ack (max a b + 8 + 1) (m + n)) ≤ ack (max a b + 8) (ack (max a b + 8 + 1) (m + n))
[PROOFSTEP]
exact
ack_mono_left _
(Nat.add_le_add (le_max_right a b) le_rfl)
-- The proof is now simple.
[GOAL]
case prec.intro.intro
f✝ f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
a : ℕ
ha : ∀ (n : ℕ), f n < ack a n
b : ℕ
hb : ∀ (n : ℕ), g n < ack b n
this : ∀ {m n : ℕ}, rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n)
⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n
[PROOFSTEP]
exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩
[GOAL]
h : Nat.Primrec fun n => ack n n
⊢ False
[PROOFSTEP]
cases' exists_lt_ack_of_nat_primrec h with m hm
[GOAL]
case intro
h : Nat.Primrec fun n => ack n n
m : ℕ
hm : ∀ (n : ℕ), ack n n < ack m n
⊢ False
[PROOFSTEP]
exact (hm m).false
[GOAL]
⊢ ¬Primrec fun n => ack n n
[PROOFSTEP]
rw [Primrec.nat_iff]
[GOAL]
⊢ ¬Nat.Primrec fun n => ack n n
[PROOFSTEP]
exact not_nat_primrec_ack_self
| {"mathlib_filename": "Mathlib.Computability.Ackermann", "llama_tokens": 12949} |
[GOAL]
Ω : Type u_1
inst✝ : MeasurableSpace Ω
⊢ condCount ∅ = 0
[PROOFSTEP]
simp [condCount]
[GOAL]
Ω : Type u_1
inst✝ : MeasurableSpace Ω
s : Set Ω
⊢ ↑↑(condCount s) ∅ = 0
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
inst✝ : MeasurableSpace Ω
s t : Set Ω
h : ↑↑(condCount s) t ≠ 0
⊢ Set.Finite s
[PROOFSTEP]
by_contra hs'
[GOAL]
Ω : Type u_1
inst✝ : MeasurableSpace Ω
s t : Set Ω
h : ↑↑(condCount s) t ≠ 0
hs' : ¬Set.Finite s
⊢ False
[PROOFSTEP]
simp [condCount, cond, Measure.count_apply_infinite hs'] at h
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : Fintype Ω
s : Set Ω
⊢ ↑↑(condCount Set.univ) s = ↑↑Measure.count s / ↑(Fintype.card Ω)
[PROOFSTEP]
rw [condCount, cond_apply _ MeasurableSet.univ, ← ENNReal.div_eq_inv_mul, Set.univ_inter]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : Fintype Ω
s : Set Ω
⊢ ↑↑Measure.count s / ↑↑Measure.count Set.univ = ↑↑Measure.count s / ↑(Fintype.card Ω)
[PROOFSTEP]
congr
[GOAL]
case e_a
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : Fintype Ω
s : Set Ω
⊢ ↑↑Measure.count Set.univ = ↑(Fintype.card Ω)
[PROOFSTEP]
rw [← Finset.coe_univ, Measure.count_apply, Finset.univ.tsum_subtype' fun _ => (1 : ENNReal)]
[GOAL]
case e_a
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : Fintype Ω
s : Set Ω
⊢ (Finset.sum Finset.univ fun x => 1) = ↑(Fintype.card Ω)
[PROOFSTEP]
simp [Finset.card_univ]
[GOAL]
case e_a
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : Fintype Ω
s : Set Ω
⊢ MeasurableSet ↑Finset.univ
[PROOFSTEP]
exact (@Finset.coe_univ Ω _).symm ▸ MeasurableSet.univ
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑(condCount s) Set.univ = 1
[PROOFSTEP]
rw [condCount, cond_apply _ hs.measurableSet, Set.inter_univ, ENNReal.inv_mul_cancel]
[GOAL]
case h0
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑Measure.count s ≠ 0
[PROOFSTEP]
exact fun h => hs'.ne_empty <| Measure.empty_of_count_eq_zero h
[GOAL]
case ht
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑Measure.count s ≠ ⊤
[PROOFSTEP]
exact (Measure.count_apply_lt_top.2 hs).ne
[GOAL]
Ω : Type u_1
inst✝² : MeasurableSpace Ω
inst✝¹ : MeasurableSingletonClass Ω
ω : Ω
t : Set Ω
inst✝ : Decidable (ω ∈ t)
⊢ ↑↑(condCount {ω}) t = if ω ∈ t then 1 else 0
[PROOFSTEP]
rw [condCount, cond_apply _ (measurableSet_singleton ω), Measure.count_singleton, inv_one, one_mul]
[GOAL]
Ω : Type u_1
inst✝² : MeasurableSpace Ω
inst✝¹ : MeasurableSingletonClass Ω
ω : Ω
t : Set Ω
inst✝ : Decidable (ω ∈ t)
⊢ ↑↑Measure.count ({ω} ∩ t) = if ω ∈ t then 1 else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
Ω : Type u_1
inst✝² : MeasurableSpace Ω
inst✝¹ : MeasurableSingletonClass Ω
ω : Ω
t : Set Ω
inst✝ : Decidable (ω ∈ t)
h✝ : ω ∈ t
⊢ ↑↑Measure.count ({ω} ∩ t) = 1
[PROOFSTEP]
rw [(by simpa : ({ ω } : Set Ω) ∩ t = { ω }), Measure.count_singleton]
[GOAL]
Ω : Type u_1
inst✝² : MeasurableSpace Ω
inst✝¹ : MeasurableSingletonClass Ω
ω : Ω
t : Set Ω
inst✝ : Decidable (ω ∈ t)
h✝ : ω ∈ t
⊢ {ω} ∩ t = {ω}
[PROOFSTEP]
simpa
[GOAL]
case neg
Ω : Type u_1
inst✝² : MeasurableSpace Ω
inst✝¹ : MeasurableSingletonClass Ω
ω : Ω
t : Set Ω
inst✝ : Decidable (ω ∈ t)
h✝ : ¬ω ∈ t
⊢ ↑↑Measure.count ({ω} ∩ t) = 0
[PROOFSTEP]
rw [(by simpa : ({ ω } : Set Ω) ∩ t = ∅), Measure.count_empty]
[GOAL]
Ω : Type u_1
inst✝² : MeasurableSpace Ω
inst✝¹ : MeasurableSingletonClass Ω
ω : Ω
t : Set Ω
inst✝ : Decidable (ω ∈ t)
h✝ : ¬ω ∈ t
⊢ {ω} ∩ t = ∅
[PROOFSTEP]
simpa
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount s) (s ∩ t) = ↑↑(condCount s) t
[PROOFSTEP]
rw [condCount, cond_inter_self _ hs.measurableSet]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑(condCount s) s = 1
[PROOFSTEP]
rw [condCount, cond_apply _ hs.measurableSet, Set.inter_self, ENNReal.inv_mul_cancel]
[GOAL]
case h0
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑Measure.count s ≠ 0
[PROOFSTEP]
exact fun h => hs'.ne_empty <| Measure.empty_of_count_eq_zero h
[GOAL]
case ht
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑Measure.count s ≠ ⊤
[PROOFSTEP]
exact (Measure.count_apply_lt_top.2 hs).ne
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
ht : s ⊆ t
⊢ ↑↑(condCount s) t = 1
[PROOFSTEP]
haveI := condCount_isProbabilityMeasure hs hs'
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
ht : s ⊆ t
this : IsProbabilityMeasure (condCount s)
⊢ ↑↑(condCount s) t = 1
[PROOFSTEP]
refine' eq_of_le_of_not_lt prob_le_one _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
ht : s ⊆ t
this : IsProbabilityMeasure (condCount s)
⊢ ¬↑↑(condCount s) t < 1
[PROOFSTEP]
rw [not_lt, ← condCount_self hs hs']
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
ht : s ⊆ t
this : IsProbabilityMeasure (condCount s)
⊢ ↑↑(condCount s) s ≤ ↑↑(condCount s) t
[PROOFSTEP]
exact measure_mono ht
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
h : ↑↑(condCount s) t = 1
⊢ s ⊆ t
[PROOFSTEP]
have hsf := finite_of_condCount_ne_zero (by rw [h]; exact one_ne_zero)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
h : ↑↑(condCount s) t = 1
⊢ ↑↑(condCount ?m.9273) ?m.9274 ≠ 0
[PROOFSTEP]
rw [h]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
h : ↑↑(condCount s) t = 1
⊢ 1 ≠ 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
h : ↑↑(condCount s) t = 1
hsf : Set.Finite s
⊢ s ⊆ t
[PROOFSTEP]
rw [condCount, cond_apply _ hsf.measurableSet, mul_comm] at h
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
h : ↑↑Measure.count (s ∩ t) * (↑↑Measure.count s)⁻¹ = 1
hsf : Set.Finite s
⊢ s ⊆ t
[PROOFSTEP]
replace h := ENNReal.eq_inv_of_mul_eq_one_left h
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hsf : Set.Finite s
h : ↑↑Measure.count (s ∩ t) = (↑↑Measure.count s)⁻¹⁻¹
⊢ s ⊆ t
[PROOFSTEP]
rw [inv_inv, Measure.count_apply_finite _ hsf, Measure.count_apply_finite _ (hsf.inter_of_left _), Nat.cast_inj] at h
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hsf : Set.Finite s
h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf)
⊢ s ⊆ t
[PROOFSTEP]
suffices s ∩ t = s by exact this ▸ fun x hx => hx.2
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hsf : Set.Finite s
h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf)
this : s ∩ t = s
⊢ s ⊆ t
[PROOFSTEP]
exact this ▸ fun x hx => hx.2
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hsf : Set.Finite s
h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf)
⊢ s ∩ t = s
[PROOFSTEP]
rw [← @Set.Finite.toFinset_inj _ _ _ (hsf.inter_of_left _) hsf]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hsf : Set.Finite s
h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf)
⊢ Set.Finite.toFinset (_ : Set.Finite (s ∩ t)) = Set.Finite.toFinset hsf
[PROOFSTEP]
exact Finset.eq_of_subset_of_card_le (Set.Finite.toFinset_mono <| s.inter_subset_left t) h.ge
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount s) t = 0 ↔ s ∩ t = ∅
[PROOFSTEP]
simp [condCount, cond_apply _ hs.measurableSet, Measure.count_apply_eq_top, Set.not_infinite.2 hs,
Measure.count_apply_finite _ (hs.inter_of_left _)]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ t)) u * ↑↑(condCount s) t
[PROOFSTEP]
by_cases hst : s ∩ t = ∅
[GOAL]
case pos
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hst : s ∩ t = ∅
⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ t)) u * ↑↑(condCount s) t
[PROOFSTEP]
rw [hst, condCount_empty_meas, Measure.coe_zero, Pi.zero_apply, zero_mul, condCount_eq_zero_iff hs, ← Set.inter_assoc,
hst, Set.empty_inter]
[GOAL]
case neg
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hst : ¬s ∩ t = ∅
⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ t)) u * ↑↑(condCount s) t
[PROOFSTEP]
rw [condCount, condCount, cond_apply _ hs.measurableSet, cond_apply _ hs.measurableSet,
cond_apply _ (hs.inter_of_left _).measurableSet, mul_comm _ (Measure.count (s ∩ t)), ← mul_assoc,
mul_comm _ (Measure.count (s ∩ t)), ← mul_assoc, ENNReal.mul_inv_cancel, one_mul, mul_comm, Set.inter_assoc]
[GOAL]
case neg.h0
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hst : ¬s ∩ t = ∅
⊢ ↑↑Measure.count (s ∩ t) ≠ 0
[PROOFSTEP]
rwa [← Measure.count_eq_zero_iff] at hst
[GOAL]
case neg.ht
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
hst : ¬s ∩ t = ∅
⊢ ↑↑Measure.count (s ∩ t) ≠ ⊤
[PROOFSTEP]
exact (Measure.count_apply_lt_top.2 <| hs.inter_of_left _).ne
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u
[PROOFSTEP]
rw [← Set.inter_comm]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount s) (u ∩ t) = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u
[PROOFSTEP]
exact condCount_inter hs
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
htu : Disjoint t u
⊢ ↑↑(condCount s) (t ∪ u) = ↑↑(condCount s) t + ↑↑(condCount s) u
[PROOFSTEP]
rw [condCount, cond_apply _ hs.measurableSet, cond_apply _ hs.measurableSet, cond_apply _ hs.measurableSet,
Set.inter_union_distrib_left, measure_union, mul_add]
[GOAL]
case hd
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
htu : Disjoint t u
⊢ Disjoint (s ∩ t) (s ∩ u)
case h
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
htu : Disjoint t u
⊢ MeasurableSet (s ∩ u)
[PROOFSTEP]
exacts [htu.mono inf_le_right inf_le_right, (hs.inter_of_left _).measurableSet]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t✝ u t : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
⊢ ↑↑(condCount s) t + ↑↑(condCount s) tᶜ = 1
[PROOFSTEP]
rw [← condCount_union hs disjoint_compl_right, Set.union_compl_self,
(condCount_isProbabilityMeasure hs hs').measure_univ]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ t)) s + ↑↑(condCount t) u * ↑↑(condCount (s ∪ t)) t = ↑↑(condCount (s ∪ t)) u
[PROOFSTEP]
rcases s.eq_empty_or_nonempty with (rfl | hs')
[GOAL]
case inl
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
t u : Set Ω
ht : Set.Finite t
hs : Set.Finite ∅
hst : Disjoint ∅ t
⊢ ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ t)) ∅ + ↑↑(condCount t) u * ↑↑(condCount (∅ ∪ t)) t = ↑↑(condCount (∅ ∪ t)) u
[PROOFSTEP]
rcases t.eq_empty_or_nonempty with (rfl | ht')
[GOAL]
case inr
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ t)) s + ↑↑(condCount t) u * ↑↑(condCount (s ∪ t)) t = ↑↑(condCount (s ∪ t)) u
[PROOFSTEP]
rcases t.eq_empty_or_nonempty with (rfl | ht')
[GOAL]
case inl.inl
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
u : Set Ω
hs ht : Set.Finite ∅
hst : Disjoint ∅ ∅
⊢ ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ ∅)) ∅ + ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ ∅)) ∅ = ↑↑(condCount (∅ ∪ ∅)) u
[PROOFSTEP]
simp
[GOAL]
case inl.inr
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
t u : Set Ω
ht : Set.Finite t
hs : Set.Finite ∅
hst : Disjoint ∅ t
ht' : Set.Nonempty t
⊢ ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ t)) ∅ + ↑↑(condCount t) u * ↑↑(condCount (∅ ∪ t)) t = ↑↑(condCount (∅ ∪ t)) u
[PROOFSTEP]
simp [condCount_self ht ht']
[GOAL]
case inr.inl
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s u : Set Ω
hs : Set.Finite s
hs' : Set.Nonempty s
ht : Set.Finite ∅
hst : Disjoint s ∅
⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ ∅)) s + ↑↑(condCount ∅) u * ↑↑(condCount (s ∪ ∅)) ∅ = ↑↑(condCount (s ∪ ∅)) u
[PROOFSTEP]
simp [condCount_self hs hs']
[GOAL]
case inr.inr
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ t)) s + ↑↑(condCount t) u * ↑↑(condCount (s ∪ t)) t = ↑↑(condCount (s ∪ t)) u
[PROOFSTEP]
rw [condCount, condCount, condCount, cond_apply _ hs.measurableSet, cond_apply _ ht.measurableSet,
cond_apply _ (hs.union ht).measurableSet, cond_apply _ (hs.union ht).measurableSet,
cond_apply _ (hs.union ht).measurableSet]
[GOAL]
case inr.inr
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) +
(↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t)) =
(↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ u)
[PROOFSTEP]
conv_lhs =>
rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹,
mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s),
mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
| (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) +
(↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t))
[PROOFSTEP]
rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹,
mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s),
mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
| (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) +
(↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t))
[PROOFSTEP]
rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹,
mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s),
mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
| (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) +
(↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t))
[PROOFSTEP]
rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹,
mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s),
mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc]
[GOAL]
case inr.inr
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ ↑↑Measure.count s * (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * (↑↑Measure.count (s ∪ t))⁻¹ +
↑↑Measure.count t * (↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * (↑↑Measure.count (s ∪ t))⁻¹ =
(↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ u)
[PROOFSTEP]
rw [ENNReal.mul_inv_cancel, ENNReal.mul_inv_cancel, one_mul, one_mul, ← add_mul, ← measure_union,
Set.union_inter_distrib_right, mul_comm]
[GOAL]
case inr.inr.hd
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ Disjoint (s ∩ u) (t ∩ u)
case inr.inr.h
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ MeasurableSet (t ∩ u)
case inr.inr.h0
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ ↑↑Measure.count t ≠ 0
case inr.inr.ht
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ ↑↑Measure.count t ≠ ⊤
case inr.inr.h0
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ ↑↑Measure.count s ≠ 0
case inr.inr.ht
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t u : Set Ω
hs : Set.Finite s
ht : Set.Finite t
hst : Disjoint s t
hs' : Set.Nonempty s
ht' : Set.Nonempty t
⊢ ↑↑Measure.count s ≠ ⊤
[PROOFSTEP]
exacts [hst.mono inf_le_left inf_le_left, (ht.inter_of_left _).measurableSet, Measure.count_ne_zero ht',
(Measure.count_apply_lt_top.2 ht).ne, Measure.count_ne_zero hs', (Measure.count_apply_lt_top.2 hs).ne]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t✝ u✝ u t : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount s) uᶜ = ↑↑(condCount s) t
[PROOFSTEP]
have :
condCount s t =
(condCount (s ∩ u) t * condCount (s ∩ u ∪ s ∩ uᶜ) (s ∩ u) +
condCount (s ∩ uᶜ) t * condCount (s ∩ u ∪ s ∩ uᶜ) (s ∩ uᶜ)) :=
by
rw [condCount_disjoint_union (hs.inter_of_left _) (hs.inter_of_left _)
(disjoint_compl_right.mono inf_le_right inf_le_right),
Set.inter_union_compl]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t✝ u✝ u t : Set Ω
hs : Set.Finite s
⊢ ↑↑(condCount s) t =
↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) +
↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)
[PROOFSTEP]
rw [condCount_disjoint_union (hs.inter_of_left _) (hs.inter_of_left _)
(disjoint_compl_right.mono inf_le_right inf_le_right),
Set.inter_union_compl]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t✝ u✝ u t : Set Ω
hs : Set.Finite s
this :
↑↑(condCount s) t =
↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) +
↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)
⊢ ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount s) uᶜ = ↑↑(condCount s) t
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasurableSpace Ω
inst✝ : MeasurableSingletonClass Ω
s t✝ u✝ u t : Set Ω
hs : Set.Finite s
this :
↑↑(condCount s) t =
↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) +
↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)
⊢ ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount s) uᶜ =
↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) +
↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ)
[PROOFSTEP]
simp [condCount_inter_self hs]
| {"mathlib_filename": "Mathlib.Probability.CondCount", "llama_tokens": 10504} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 2)
hj₁ : j ≠ 0
hj₂ : n + 2 ≤ ↑j + q
⊢ φ ≫ δ X j = 0
[PROOFSTEP]
obtain ⟨i, rfl⟩ := Fin.eq_succ_of_ne_zero hj₁
[GOAL]
case intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
i : Fin (n + 1)
hj₁ : Fin.succ i ≠ 0
hj₂ : n + 2 ≤ ↑(Fin.succ i) + q
⊢ φ ≫ δ X (Fin.succ i) = 0
[PROOFSTEP]
apply v i
[GOAL]
case intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
i : Fin (n + 1)
hj₁ : Fin.succ i ≠ 0
hj₂ : n + 2 ≤ ↑(Fin.succ i) + q
⊢ n + 1 ≤ ↑i + q
[PROOFSTEP]
simp only [Fin.val_succ] at hj₂
[GOAL]
case intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
i : Fin (n + 1)
hj₁ : Fin.succ i ≠ 0
hj₂ : n + 2 ≤ ↑i + 1 + q
⊢ n + 1 ≤ ↑i + q
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish (q + 1) φ
j : Fin (n + 1)
hj : n + 1 ≤ ↑j + q
⊢ n + 1 ≤ ↑j + (q + 1)
[PROOFSTEP]
simpa only [← add_assoc] using le_add_right hj
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y Z : C
q n : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
f : Z ⟶ Y
j : Fin (n + 1)
hj : n + 1 ≤ ↑j + q
⊢ (f ≫ φ) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
rw [assoc, v j hj, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
have hnaq_shift : ∀ d : ℕ, n + d = a + d + q := by
intro d
rw [add_assoc, add_comm d, ← add_assoc, hnaq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
⊢ ∀ (d : ℕ), n + d = a + d + q
[PROOFSTEP]
intro d
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
d : ℕ
⊢ n + d = a + d + q
[PROOFSTEP]
rw [add_assoc, add_comm d, ← add_assoc, hnaq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2) (n + 1) rfl) (c_mk (n + 1) n rfl), hσ'_eq hnaq (c_mk (n + 1) n rfl),
hσ'_eq (hnaq_shift 1) (c_mk (n + 2) (n + 1) rfl)]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ φ ≫
(HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 1) n ≫
((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫
eqToHom (_ : X.obj (Opposite.op [n + 1]) = X.obj (Opposite.op [n + 1])) +
(((-1) ^ (a + 1) • σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫
eqToHom (_ : X.obj (Opposite.op [n + 1 + 1]) = X.obj (Opposite.op [n + 2]))) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1)) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
simp only [AlternatingFaceMapComplex.obj_d_eq, eqToHom_refl, comp_id, comp_sum, sum_comp, comp_add]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun j =>
φ ≫ ((-1) ^ ↑j • δ X j) ≫ ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) })) +
Finset.sum Finset.univ fun j =>
φ ≫ ((-1) ^ (a + 1) • σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ ((-1) ^ ↑j • δ X j)) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
simp only [comp_zsmul, zsmul_comp, ← assoc, ← mul_zsmul]
-- cleaning up the first sum
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑x) • (φ ≫ δ X x) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X x) =
-(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [← Fin.sum_congr' _ (hnaq_shift 2).symm, Fin.sum_trunc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X x) =
-(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
case hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ∀ (j : Fin q),
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
swap
[GOAL]
case hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ∀ (j : Fin q),
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case hf.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
suffices φ ≫ X.δ (⟨a + 2 + k, by linarith⟩ : Fin (n + 2)) = 0 by
simp only [this, Fin.natAdd_mk, Fin.castIso_mk, zero_comp, smul_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ a + 2 + k < n + 2
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
this : φ ≫ δ X { val := a + 2 + k, isLt := (_ : a + 2 + k < n + 2) } = 0
⊢ ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
simp only [this, Fin.natAdd_mk, Fin.castIso_mk, zero_comp, smul_zero]
[GOAL]
case hf.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ φ ≫ δ X { val := a + 2 + k, isLt := (_ : a + 2 + k < n + 2) } = 0
[PROOFSTEP]
convert v ⟨a + k + 1, by linarith⟩ (by rw [Fin.val_mk]; linarith)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ a + k + 1 < n + 1
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ n + 1 ≤ ↑{ val := a + k + 1, isLt := (_ : a + k + 1 < n + 1) } + q
[PROOFSTEP]
rw [Fin.val_mk]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ n + 1 ≤ a + k + 1 + q
[PROOFSTEP]
linarith
[GOAL]
case h.e'_2.h.e'_7.h.e'_5.h.e'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ a + 2 + k = ↑(Fin.succ { val := a + k + 1, isLt := (_ : a + k + 1 < n + 1) })
[PROOFSTEP]
dsimp
[GOAL]
case h.e'_2.h.e'_7.h.e'_5.h.e'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ a + 2 + k = a + k + 1 + 1
[PROOFSTEP]
linarith
-- cleaning up the second sum
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X x) =
-(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [← Fin.sum_congr' _ (hnaq_shift 3).symm, @Fin.sum_trunc _ _ (a + 3)]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun i =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i)) * (-1) ^ (a + 1)) •
(φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i))) =
-(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
case hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ∀ (j : Fin q),
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) * (-1) ^ (a + 1)) •
(φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) =
0
[PROOFSTEP]
swap
[GOAL]
case hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ∀ (j : Fin q),
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) * (-1) ^ (a + 1)) •
(φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) =
0
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case hf.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) * (-1) ^ (a + 1)) •
(φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) =
0
[PROOFSTEP]
rw [assoc, X.δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero]
[GOAL]
case hf.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ Fin.succ { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } <
↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })
[PROOFSTEP]
simp only [Fin.lt_iff_val_lt_val]
[GOAL]
case hf.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ ↑(Fin.succ { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) <
↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }))
[PROOFSTEP]
dsimp [Fin.natAdd, Fin.castIso]
[GOAL]
case hf.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ a + 1 + 1 < a + 3 + k
[PROOFSTEP]
linarith
[GOAL]
case hf.mk.hj₁
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ Fin.pred (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }))
(_ : ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) = 0 → False) ≠
0
[PROOFSTEP]
intro h
[GOAL]
case hf.mk.hj₁
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
h :
Fin.pred (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }))
(_ : ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) = 0 → False) =
0
⊢ False
[PROOFSTEP]
rw [Fin.pred_eq_iff_eq_succ, Fin.ext_iff] at h
[GOAL]
case hf.mk.hj₁
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
h : ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) = ↑(Fin.succ 0)
⊢ False
[PROOFSTEP]
dsimp [Fin.castIso] at h
[GOAL]
case hf.mk.hj₁
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
h : a + 3 + k = 1
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case hf.mk.hj₂
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ n + 2 ≤
↑(Fin.pred (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }))
(_ : ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) = 0 → False)) +
q
[PROOFSTEP]
dsimp [Fin.castIso, Fin.pred]
[GOAL]
case hf.mk.hj₂
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ n + 2 ≤ a + 3 + k - 1 + q
[PROOFSTEP]
rw [Nat.add_right_comm, Nat.add_sub_assoc (by norm_num : 1 ≤ 3)]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ 1 ≤ 3
[PROOFSTEP]
norm_num
[GOAL]
case hf.mk.hj₂
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
k : ℕ
hk : k < q
⊢ n + 2 ≤ a + k + (3 - 1) + q
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) •
(φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun i =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i)) * (-1) ^ (a + 1)) •
(φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i))) =
-(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
simp only [assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ((Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
conv_lhs =>
congr
·rw [Fin.sum_univ_castSucc]
·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| (Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
congr
·rw [Fin.sum_univ_castSucc]
·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| (Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
congr
·rw [Fin.sum_univ_castSucc]
·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| (Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
congr
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
·rw [Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
| Finset.sum Finset.univ fun x =>
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))
[PROOFSTEP]
rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ (Finset.sum Finset.univ fun i =>
((-1) ^ a *
(-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.castSucc i)))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.castSucc i))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
((-1) ^ a *
(-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.last (a + 1))))) •
φ ≫
δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.last (a + 1)))) ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } +
((Finset.sum Finset.univ fun i =>
((-1) ^
↑(↑(Fin.castIso (_ : a + 3 + q = n + 3))
(Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.castSucc i)))) *
(-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
(↑(Fin.castIso (_ : a + 3 + q = n + 3))
(Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.castSucc i))))) +
((-1) ^
↑(↑(Fin.castIso (_ : a + 3 + q = n + 3))
(Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.last (a + 1))))) *
(-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
(↑(Fin.castIso (_ : a + 3 + q = n + 3))
(Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.last (a + 1))))) +
((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.last (a + 2)))) *
(-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.last (a + 2))))) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
dsimp [Fin.castIso, Fin.castLE, Fin.castLT]
/- the purpose of the following `simplif` is to create three subgoals in order
to finish the proof -/
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ (Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑i) •
φ ≫
δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc i) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
((-1) ^ a * (-1) ^ (a + 1)) •
φ ≫
δ X
{ val := a + 1,
isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.last (a + 1)) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } +
((Finset.sum Finset.univ fun i =>
((-1) ^ ↑i * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := ↑i,
isLt :=
(_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc i)) < a + 3 + q) } < n + 3) }) +
((-1) ^ (a + 1) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := a + 1,
isLt :=
(_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.castSucc (Fin.last (a + 1))) < a + 3 + q) } < n + 3) } +
((-1) ^ (a + 2) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := a + 2,
isLt := (_ : ↑{ val := a + 2, isLt := (_ : ↑(Fin.last (a + 2)) < a + 3 + q) } < n + 3) }) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
have simplif : ∀ a b c d e f : Y ⟶ X _[n + 1], b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f :=
by
intro a b c d e f h1 h2 h3
rw [add_assoc c d e, h2, add_zero, add_comm a, add_assoc, add_comm a, h3, add_zero, h1]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
⊢ ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
[PROOFSTEP]
intro a b c d e f h1 h2 h3
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a✝ q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a✝ + q
hnaq_shift : ∀ (d : ℕ), n + d = a✝ + d + q
a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])
h1 : b = f
h2 : d + e = 0
h3 : c + a = 0
⊢ a + b + (c + d + e) = f
[PROOFSTEP]
rw [add_assoc c d e, h2, add_zero, add_comm a, add_assoc, add_comm a, h3, add_zero, h1]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ (Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑i) •
φ ≫
δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc i) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) +
((-1) ^ a * (-1) ^ (a + 1)) •
φ ≫
δ X
{ val := a + 1,
isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.last (a + 1)) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } +
((Finset.sum Finset.univ fun i =>
((-1) ^ ↑i * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := ↑i,
isLt :=
(_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc i)) < a + 3 + q) } < n + 3) }) +
((-1) ^ (a + 1) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := a + 1,
isLt :=
(_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.castSucc (Fin.last (a + 1))) < a + 3 + q) } < n + 3) } +
((-1) ^ (a + 2) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := a + 2,
isLt := (_ : ↑{ val := a + 2, isLt := (_ : ↑(Fin.last (a + 2)) < a + 3 + q) } < n + 3) }) =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
apply simplif
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ ((-1) ^ a * (-1) ^ (a + 1)) •
φ ≫
δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.last (a + 1)) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
-φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
rw [← pow_add, Odd.neg_one_pow, neg_smul, one_zsmul]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ Odd (a + (a + 1))
[PROOFSTEP]
exact ⟨a, by linarith⟩
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ a + (a + 1) = 2 * a + 1
[PROOFSTEP]
linarith
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ ((-1) ^ (a + 1) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := a + 1,
isLt :=
(_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.castSucc (Fin.last (a + 1))) < a + 3 + q) } < n + 3) } +
((-1) ^ (a + 2) * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := a + 2, isLt := (_ : ↑{ val := a + 2, isLt := (_ : ↑(Fin.last (a + 2)) < a + 3 + q) } < n + 3) } =
0
[PROOFSTEP]
rw [X.δ_comp_σ_self' (Fin.castSucc_mk _ _ _).symm, X.δ_comp_σ_succ' (Fin.succ_mk _ _ _).symm]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ ((-1) ^ (a + 1) * (-1) ^ (a + 1)) • φ ≫ 𝟙 (X.obj (Opposite.op [n + 1])) +
((-1) ^ (a + 2) * (-1) ^ (a + 1)) • φ ≫ 𝟙 (X.obj (Opposite.op [n + 1])) =
0
[PROOFSTEP]
simp only [comp_id, pow_add _ (a + 1) 1, pow_one, mul_neg, mul_one, neg_mul, neg_smul, add_right_neg]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ ((Finset.sum Finset.univ fun i =>
((-1) ^ ↑i * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := ↑i,
isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc i)) < a + 3 + q) } < n + 3) }) +
Finset.sum Finset.univ fun i =>
((-1) ^ a * (-1) ^ ↑i) •
φ ≫
δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc i) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) =
0
[PROOFSTEP]
rw [← Finset.sum_add_distrib]
[GOAL]
case a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ (Finset.sum Finset.univ fun x =>
((-1) ^ ↑x * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := ↑x,
isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc x)) < a + 3 + q) } < n + 3) } +
((-1) ^ a * (-1) ^ ↑x) •
φ ≫
δ X { val := ↑x, isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc x) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }) =
0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case a.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
⊢ ∀ (x : Fin (a + 1)),
x ∈ Finset.univ →
((-1) ^ ↑x * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := ↑x,
isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc x)) < a + 3 + q) } < n + 3) } +
((-1) ^ a * (-1) ^ ↑x) •
φ ≫
δ X { val := ↑x, isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc x) < a + 2 + q) } < n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
rintro ⟨i, hi⟩ _
[GOAL]
case a.h.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ ((-1) ^ ↑{ val := i, isLt := hi } * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := ↑{ val := i, isLt := hi },
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc (Fin.castSucc { val := i, isLt := hi })) < a + 3 + q) } <
n + 3) } +
((-1) ^ a * (-1) ^ ↑{ val := i, isLt := hi }) •
φ ≫
δ X
{ val := ↑{ val := i, isLt := hi },
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } <
n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
simp only
[GOAL]
case a.h.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ ((-1) ^ i * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := i,
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc (Fin.castSucc { val := i, isLt := hi })) < a + 3 + q) } <
n + 3) } +
((-1) ^ a * (-1) ^ i) •
φ ≫
δ X
{ val := i,
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } <
n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
have hia : (⟨i, by linarith⟩ : Fin (n + 2)) ≤ Fin.castSucc (⟨a, by linarith⟩ : Fin (n + 1)) :=
by
rw [Fin.le_iff_val_le_val]
dsimp
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ i < n + 2
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ a < n + 1
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) }
[PROOFSTEP]
rw [Fin.le_iff_val_le_val]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ ↑{ val := i, isLt := (_ : i < n + 2) } ≤ ↑(Fin.castSucc { val := a, isLt := (_ : a < n + 1) })
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
⊢ i ≤ a
[PROOFSTEP]
linarith
[GOAL]
case a.h.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
hia : { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) }
⊢ ((-1) ^ i * (-1) ^ (a + 1)) •
φ ≫
σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫
δ X
{ val := i,
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc (Fin.castSucc { val := i, isLt := hi })) < a + 3 + q) } <
n + 3) } +
((-1) ^ a * (-1) ^ i) •
φ ≫
δ X
{ val := i,
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } <
n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } =
0
[PROOFSTEP]
erw [δ_comp_σ_of_le X hia, add_eq_zero_iff_eq_neg, ← neg_zsmul]
[GOAL]
case a.h.mk
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
hia : { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) }
⊢ ((-1) ^ i * (-1) ^ (a + 1)) •
φ ≫ δ X { val := i, isLt := (_ : i < n + 2) } ≫ σ X { val := a, isLt := (_ : a < n + 1) } =
-((-1) ^ a * (-1) ^ i) •
φ ≫
δ X
{ val := i,
isLt :=
(_ :
↑{ val := ↑{ val := i, isLt := hi },
isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } <
n + 2) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) }
[PROOFSTEP]
congr 2
[GOAL]
case a.h.mk.e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n a q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hnaq : n = a + q
hnaq_shift : ∀ (d : ℕ), n + d = a + d + q
simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f
i : ℕ
hi : i < a + 1
a✝ : { val := i, isLt := hi } ∈ Finset.univ
hia : { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) }
⊢ (-1) ^ i * (-1) ^ (a + 1) = -((-1) ^ a * (-1) ^ i)
[PROOFSTEP]
ring
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0
[PROOFSTEP]
simp only [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2) (n + 1) rfl) (c_mk (n + 1) n rfl)]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
⊢ φ ≫
(HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 1) n ≫
hσ' q n (n + 1) (_ : ComplexShape.Rel c (n + 1) n) +
hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1)) =
0
[PROOFSTEP]
rw [hσ'_eq_zero hqn (c_mk (n + 1) n rfl), comp_zero, zero_add]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
⊢ φ ≫
hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1) =
0
[PROOFSTEP]
by_cases hqn' : n + 1 < q
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : n + 1 < q
⊢ φ ≫
hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1) =
0
[PROOFSTEP]
rw [hσ'_eq_zero hqn' (c_mk (n + 2) (n + 1) rfl), zero_comp, comp_zero]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ φ ≫
hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫
HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1) =
0
[PROOFSTEP]
simp only [hσ'_eq (show n + 1 = 0 + q by linarith) (c_mk (n + 2) (n + 1) rfl), pow_zero, Fin.mk_zero, one_zsmul,
eqToHom_refl, comp_id, comp_sum, AlternatingFaceMapComplex.obj_d_eq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ n + 1 = 0 + q
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ (Finset.sum Finset.univ fun j => φ ≫ σ X 0 ≫ ((-1) ^ ↑j • δ X j)) = 0
[PROOFSTEP]
rw [← Fin.sum_congr' _ (show 2 + (n + 1) = n + 1 + 2 by linarith), Fin.sum_trunc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ 2 + (n + 1) = n + 1 + 2
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ (Finset.sum Finset.univ fun i =>
φ ≫
σ X 0 ≫
((-1) ^ ↑(↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.castLE (_ : 2 ≤ 2 + (n + 1)) i)) •
δ X (↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.castLE (_ : 2 ≤ 2 + (n + 1)) i)))) =
0
[PROOFSTEP]
simp only [Fin.sum_univ_castSucc, Fin.sum_univ_zero, zero_add, Fin.last, Fin.castLE_mk, Fin.castIso_mk, Fin.castSucc_mk]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ φ ≫ σ X 0 ≫ ((-1) ^ 0 • δ X { val := 0, isLt := (_ : 0 < n + 1 + 2) }) +
φ ≫ σ X 0 ≫ ((-1) ^ 1 • δ X { val := 1, isLt := (_ : 1 < n + 1 + 2) }) =
0
[PROOFSTEP]
simp only [Fin.mk_zero, Fin.val_zero, pow_zero, one_zsmul, Fin.mk_one, Fin.val_one, pow_one, neg_smul, comp_neg]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ φ ≫ σ X 0 ≫ δ X 0 + -φ ≫ σ X 0 ≫ δ X 1 = 0
[PROOFSTEP]
erw [δ_comp_σ_self, δ_comp_σ_succ, add_right_neg]
[GOAL]
case neg.hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
⊢ ∀ (j : Fin (n + 1)),
φ ≫
σ X 0 ≫
((-1) ^ ↑(↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j)) •
δ X (↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j))) =
0
[PROOFSTEP]
intro j
[GOAL]
case neg.hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ φ ≫
σ X 0 ≫
((-1) ^ ↑(↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j)) •
δ X (↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j))) =
0
[PROOFSTEP]
dsimp [Fin.castIso, Fin.castLE, Fin.castLT]
[GOAL]
case neg.hf
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ φ ≫ σ X 0 ≫ ((-1) ^ (2 + ↑j) • δ X { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) }) = 0
[PROOFSTEP]
rw [comp_zsmul, comp_zsmul, δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero]
[GOAL]
case neg.hf.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ Fin.succ 0 < { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) }
[PROOFSTEP]
simp only [Fin.lt_iff_val_lt_val]
[GOAL]
case neg.hf.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ ↑(Fin.succ 0) < 2 + ↑j
[PROOFSTEP]
dsimp [Fin.succ]
[GOAL]
case neg.hf.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ 0 + 1 < 2 + ↑j
[PROOFSTEP]
linarith
[GOAL]
case neg.hf.hj₁
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ Fin.pred { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) }
(_ : { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } = 0 → False) ≠
0
[PROOFSTEP]
intro h
[GOAL]
case neg.hf.hj₁
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
h :
Fin.pred { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) }
(_ : { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } = 0 → False) =
0
⊢ False
[PROOFSTEP]
simp only [Fin.pred, Fin.subNat, Fin.ext_iff, Nat.succ_add_sub_one, Fin.val_zero, add_eq_zero, false_and] at h
[GOAL]
case neg.hf.hj₂
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ n + 2 ≤
↑(Fin.pred { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) }
(_ : { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } = 0 → False)) +
q
[PROOFSTEP]
simp only [Fin.pred, Fin.subNat, Nat.pred_eq_sub_one, Nat.succ_add_sub_one]
[GOAL]
case neg.hf.hj₂
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
hqn : n < q
hqn' : ¬n + 1 < q
j : Fin (n + 1)
⊢ n + 2 ≤ 1 + ↑j + q
[PROOFSTEP]
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
⊢ HigherFacesVanish (q + 1) (φ ≫ HomologicalComplex.Hom.f (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q) (n + 1))
[PROOFSTEP]
intro j hj₁
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
⊢ (φ ≫ HomologicalComplex.Hom.f (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
⊢ (φ ≫ (𝟙 (X.obj (Opposite.op [n + 1])) + HomologicalComplex.Hom.f (Hσ q) (n + 1))) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
simp only [comp_add, add_comp, comp_id]
-- when n < q, the result follows immediately from the assumption
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
by_cases hqn : n < q
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
hqn : n < q
⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
rw [v.comp_Hσ_eq_zero hqn, zero_comp, add_zero, v j (by linarith)]
-- we now assume that n≥q, and write n=a+q
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
hqn : n < q
⊢ n + 1 ≤ ↑j + q
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
hqn : ¬n < q
⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
cases' Nat.le.dest (not_lt.mp hqn) with a ha
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
hqn : ¬n < q
a : ℕ
ha : q + a = n
⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0
[PROOFSTEP]
rw [v.comp_Hσ_eq (show n = a + q by linarith), neg_comp, add_neg_eq_zero, assoc, assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
hqn : ¬n < q
a : ℕ
ha : q + a = n
⊢ n = a + q
[PROOFSTEP]
linarith
[GOAL]
case neg.intro
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
n q : ℕ
φ : Y ⟶ X.obj (Opposite.op [n + 1])
v : HigherFacesVanish q φ
j : Fin (n + 1)
hj₁ : n + 1 ≤ ↑j + (q + 1)
hqn : ¬n < q
a : ℕ
ha : q + a = n
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ n) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
cases' n with m hm
[GOAL]
case neg.intro.zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.zero + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.zero + 1)
hj₁ : Nat.zero + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.zero < q
ha : q + a = Nat.zero
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.zero + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ Nat.zero) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
simp only [Nat.eq_zero_of_add_eq_zero_left ha, Fin.eq_zero j, Fin.mk_zero, Fin.mk_one, δ_comp_σ_succ, comp_id]
[GOAL]
case neg.intro.zero
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.zero + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.zero + 1)
hj₁ : Nat.zero + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.zero < q
ha : q + a = Nat.zero
⊢ φ ≫ δ X (Fin.succ 0) = φ ≫ δ X { val := 0 + 1, isLt := (_ : 0 + 1 < Nat.zero + 2) }
[PROOFSTEP]
rfl
-- in the other case, we need to write n as m+1
-- then, we first consider the particular case j = a
[GOAL]
case neg.intro.succ
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
by_cases hj₂ : a = (j : ℕ)
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : a = ↑j
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
simp only [hj₂, Fin.eta, δ_comp_σ_succ, comp_id]
[GOAL]
case pos
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : a = ↑j
⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := ↑j + 1, isLt := (_ : ↑j + 1 < Nat.succ m + 2) }
[PROOFSTEP]
rfl
-- now, we assume j ≠ a (i.e. a < j)
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
have haj : a < j := (Ne.le_iff_lt hj₂).mp (by linarith)
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
⊢ a ≤ ↑j
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
have hj₃ := j.is_lt
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
have ham : a ≤ m := by
by_contra h
rw [not_le, ← Nat.succ_le_iff] at h
linarith
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
⊢ a ≤ m
[PROOFSTEP]
by_contra h
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
h : ¬a ≤ m
⊢ False
[PROOFSTEP]
rw [not_le, ← Nat.succ_le_iff] at h
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
h : Nat.succ m ≤ a
⊢ False
[PROOFSTEP]
linarith
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j)
[PROOFSTEP]
rw [X.δ_comp_σ_of_gt', j.pred_succ]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
δ X j ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < Fin.succ j
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < Fin.succ j
[PROOFSTEP]
swap
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < Fin.succ j
[PROOFSTEP]
rw [Fin.lt_iff_val_lt_val]
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ ↑(Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }) < ↑(Fin.succ j)
[PROOFSTEP]
simpa only [Fin.val_mk, Fin.val_succ, add_lt_add_iff_right] using haj
[GOAL]
case neg
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
δ X j ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
[PROOFSTEP]
obtain _ | ham'' := ham.lt_or_eq
[GOAL]
case neg.inl
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
δ X j ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
[PROOFSTEP]
rw [← X.δ_comp_δ''_assoc]
[GOAL]
case neg.inl
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X (Fin.succ j) ≫
δ X
(Fin.castLT { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) }
(_ : ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } < m + 2)) ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
case neg.inl.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≤ Fin.castSucc j
[PROOFSTEP]
swap
[GOAL]
case neg.inl.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≤ Fin.castSucc j
[PROOFSTEP]
rw [Fin.le_iff_val_le_val]
[GOAL]
case neg.inl.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≤ ↑(Fin.castSucc j)
[PROOFSTEP]
dsimp
[GOAL]
case neg.inl.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ a + 1 ≤ ↑j
[PROOFSTEP]
linarith
[GOAL]
case neg.inl
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X (Fin.succ j) ≫
δ X
(Fin.castLT { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) }
(_ : ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } < m + 2)) ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
[PROOFSTEP]
simp only [← assoc, v j (by linarith), zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
h✝ : a < m
⊢ Nat.succ m + 1 ≤ ↑j + q
[PROOFSTEP]
linarith
[GOAL]
case neg.inr
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫
δ X j ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
[PROOFSTEP]
rw [X.δ_comp_δ_self'_assoc]
[GOAL]
case neg.inr
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X (Fin.succ j) ≫
δ X j ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
case neg.inr.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } = Fin.castSucc j
[PROOFSTEP]
swap
[GOAL]
case neg.inr.H
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } = Fin.castSucc j
[PROOFSTEP]
ext
[GOAL]
case neg.inr.H.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } = ↑(Fin.castSucc j)
[PROOFSTEP]
dsimp
[GOAL]
case neg.inr.H.h
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ a + 1 = ↑j
[PROOFSTEP]
linarith
[GOAL]
case neg.inr
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ φ ≫ δ X (Fin.succ j) =
φ ≫
δ X (Fin.succ j) ≫
δ X j ≫
σ X
(Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }
(_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1))
[PROOFSTEP]
simp only [← assoc, v j (by linarith), zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : Preadditive C
X : SimplicialObject C
Y : C
q a m : ℕ
φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1])
v : HigherFacesVanish q φ
j : Fin (Nat.succ m + 1)
hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1)
hqn : ¬Nat.succ m < q
ha : q + a = Nat.succ m
hj₂ : ¬a = ↑j
haj : a < ↑j
hj₃ : ↑j < Nat.succ m + 1
ham : a ≤ m
ham'' : a = m
⊢ Nat.succ m + 1 ≤ ↑j + q
[PROOFSTEP]
linarith
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Faces", "llama_tokens": 44724} |
[GOAL]
f g : ℕ →. ℕ
hf : Partrec f
hg : Partrec g
⊢ ∃ h, Partrec h ∧ ∀ (a : ℕ), (∀ (x : ℕ), x ∈ h a → x ∈ f a ∨ x ∈ g a) ∧ ((h a).Dom ↔ (f a).Dom ∨ (g a).Dom)
[PROOFSTEP]
obtain ⟨cf, rfl⟩ := Code.exists_code.1 hf
[GOAL]
case intro
g : ℕ →. ℕ
hg : Partrec g
cf : Code
hf : Partrec (Code.eval cf)
⊢ ∃ h,
Partrec h ∧
∀ (a : ℕ), (∀ (x : ℕ), x ∈ h a → x ∈ Code.eval cf a ∨ x ∈ g a) ∧ ((h a).Dom ↔ (Code.eval cf a).Dom ∨ (g a).Dom)
[PROOFSTEP]
obtain ⟨cg, rfl⟩ := Code.exists_code.1 hg
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
⊢ ∃ h,
Partrec h ∧
∀ (a : ℕ),
(∀ (x : ℕ), x ∈ h a → x ∈ Code.eval cf a ∨ x ∈ Code.eval cg a) ∧
((h a).Dom ↔ (Code.eval cf a).Dom ∨ (Code.eval cg a).Dom)
[PROOFSTEP]
have : Nat.Partrec fun n => Nat.rfindOpt fun k => cf.evaln k n <|> cg.evaln k n :=
Partrec.nat_iff.1
(Partrec.rfindOpt <|
Primrec.option_orElse.to_comp.comp (Code.evaln_prim.to_comp.comp <| (snd.pair (const cf)).pair fst)
(Code.evaln_prim.to_comp.comp <| (snd.pair (const cg)).pair fst))
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
⊢ ∃ h,
Partrec h ∧
∀ (a : ℕ),
(∀ (x : ℕ), x ∈ h a → x ∈ Code.eval cf a ∨ x ∈ Code.eval cg a) ∧
((h a).Dom ↔ (Code.eval cf a).Dom ∨ (Code.eval cg a).Dom)
[PROOFSTEP]
refine' ⟨_, this, fun n => _⟩
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
⊢ (∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n) ∧
((rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom ↔
(Code.eval cf n).Dom ∨ (Code.eval cg n).Dom)
[PROOFSTEP]
suffices
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this : ?m.104784
⊢ (∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n) ∧
((rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom ↔
(Code.eval cf n).Dom ∨ (Code.eval cg n).Dom)
case this
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
⊢ ?m.104784
[PROOFSTEP]
refine' ⟨this, ⟨fun h => (this _ ⟨h, rfl⟩).imp Exists.fst Exists.fst, _⟩⟩
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
⊢ (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom →
(rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom
[PROOFSTEP]
intro h
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
h : (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom
⊢ (rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom
[PROOFSTEP]
rw [Nat.rfindOpt_dom]
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
h : (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom
⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n
[PROOFSTEP]
simp only [dom_iff_mem, Code.evaln_complete, Option.mem_def] at h
[GOAL]
case intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
h : (∃ y k, Code.evaln k cf n = Option.some y) ∨ ∃ y k, Code.evaln k cg n = Option.some y
⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n
[PROOFSTEP]
obtain ⟨x, k, e⟩ | ⟨x, k, e⟩ := h
[GOAL]
case intro.intro.inl.intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cf n = Option.some x
⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n
[PROOFSTEP]
refine' ⟨k, x, _⟩
[GOAL]
case intro.intro.inl.intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cf n = Option.some x
⊢ x ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
[PROOFSTEP]
simp only [e, Option.some_orElse, Option.mem_def]
[GOAL]
case intro.intro.inr.intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cg n = Option.some x
⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n
[PROOFSTEP]
refine' ⟨k, _⟩
[GOAL]
case intro.intro.inr.intro.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cg n = Option.some x
⊢ ∃ a, a ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
[PROOFSTEP]
cases' cf.evaln k n with y
[GOAL]
case intro.intro.inr.intro.intro.none
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cg n = Option.some x
⊢ ∃ a, a ∈ HOrElse.hOrElse Option.none fun x => Code.evaln k cg n
[PROOFSTEP]
exact ⟨x, by simp only [e, Option.mem_def, Option.none_orElse]⟩
[GOAL]
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cg n = Option.some x
⊢ x ∈ HOrElse.hOrElse Option.none fun x => Code.evaln k cg n
[PROOFSTEP]
simp only [e, Option.mem_def, Option.none_orElse]
[GOAL]
case intro.intro.inr.intro.intro.some
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cg n = Option.some x
y : ℕ
⊢ ∃ a, a ∈ HOrElse.hOrElse (Option.some y) fun x => Code.evaln k cg n
[PROOFSTEP]
exact ⟨y, by simp only [Option.some_orElse, Option.mem_def]⟩
[GOAL]
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
this :
∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
x k : ℕ
e : Code.evaln k cg n = Option.some x
y : ℕ
⊢ y ∈ HOrElse.hOrElse (Option.some y) fun x => Code.evaln k cg n
[PROOFSTEP]
simp only [Option.some_orElse, Option.mem_def]
[GOAL]
case this
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n : ℕ
⊢ ∀ (x : ℕ),
(x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
intro x h
[GOAL]
case this
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
obtain ⟨k, e⟩ := Nat.rfindOpt_spec h
[GOAL]
case this.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
e : x ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
revert e
[GOAL]
case this.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
⊢ (x ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
simp only [Option.mem_def]
[GOAL]
case this.intro
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
⊢ (HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) = Option.some x →
x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
cases' e' : cf.evaln k n with y
[GOAL]
case this.intro.none
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
e' : Code.evaln k cf n = Option.none
⊢ (HOrElse.hOrElse Option.none fun x => Code.evaln k cg n) = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
simp
[GOAL]
case this.intro.some
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k y : ℕ
e' : Code.evaln k cf n = Option.some y
⊢ (HOrElse.hOrElse (Option.some y) fun x => Code.evaln k cg n) = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
simp
[GOAL]
case this.intro.none
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
e' : Code.evaln k cf n = Option.none
⊢ Code.evaln k cg n = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
intro e
[GOAL]
case this.intro.some
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k y : ℕ
e' : Code.evaln k cf n = Option.some y
⊢ y = x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
intro e
[GOAL]
case this.intro.none
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
e' : Code.evaln k cf n = Option.none
e : Code.evaln k cg n = Option.some x
⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
exact Or.inr (Code.evaln_sound e)
[GOAL]
case this.intro.some
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k y : ℕ
e' : Code.evaln k cf n = Option.some y
e : y = x
⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
subst y
[GOAL]
case this.intro.some
cf : Code
hf : Partrec (Code.eval cf)
cg : Code
hg : Partrec (Code.eval cg)
this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
n x : ℕ
h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n
k : ℕ
e' : Code.evaln k cf n = Option.some x
⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n
[PROOFSTEP]
exact Or.inl (Code.evaln_sound e')
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
⊢ ∃ k, Partrec k ∧ ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
[PROOFSTEP]
let ⟨k, hk, H⟩ := Nat.Partrec.merge' (bind_decode₂_iff.1 hf) (bind_decode₂_iff.1 hg)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
⊢ ∃ k, Partrec k ∧ ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
[PROOFSTEP]
let k' (a : α) := (k (encode a)).bind fun n => (decode (α := σ) n : Part σ)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
⊢ ∃ k, Partrec k ∧ ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
[PROOFSTEP]
refine' ⟨k', ((nat_iff.2 hk).comp Computable.encode).bind (Computable.decode.ofOption.comp snd).to₂, fun a => _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
⊢ (∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a) ∧ ((k' a).Dom ↔ (f a).Dom ∨ (g a).Dom)
[PROOFSTEP]
suffices
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ?m.108653
⊢ (∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a) ∧ ((k' a).Dom ↔ (f a).Dom ∨ (g a).Dom)
case this
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
⊢ ?m.108653
[PROOFSTEP]
refine' ⟨this, ⟨fun h => (this _ ⟨h, rfl⟩).imp Exists.fst Exists.fst, _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
⊢ (f a).Dom ∨ (g a).Dom → (k' a).Dom
[PROOFSTEP]
intro h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
⊢ (k' a).Dom
[PROOFSTEP]
rw [bind_dom]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
⊢ ∃ h, (↑(decode (Part.get (k (encode a)) h))).Dom
[PROOFSTEP]
have hk : (k (encode a)).Dom := (H _).2.2 (by simpa only [encodek₂, bind_some, coe_some] using h)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
⊢ (Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (g a)).Dom
[PROOFSTEP]
simpa only [encodek₂, bind_some, coe_some] using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk✝ : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
hk : (k (encode a)).Dom
⊢ ∃ h, (↑(decode (Part.get (k (encode a)) h))).Dom
[PROOFSTEP]
exists hk
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk✝ : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
hk : (k (encode a)).Dom
⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom
[PROOFSTEP]
simp only [exists_prop, mem_map_iff, mem_coe, mem_bind_iff, Option.mem_def] at H
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk✝ : Nat.Partrec k
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
hk : (k (encode a)).Dom
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ f a_2 ∧ encode a = x) ∨
∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ g a_2 ∧ encode a = x) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom
[PROOFSTEP]
obtain ⟨a', _, y, _, e⟩ | ⟨a', _, y, _, e⟩ := (H _).1 _ ⟨hk, rfl⟩
[GOAL]
case inl.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk✝ : Nat.Partrec k
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
hk : (k (encode a)).Dom
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ f a_2 ∧ encode a = x) ∨
∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ g a_2 ∧ encode a = x) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
a' : α
left✝¹ : decode₂ α (encode a) = Option.some a'
y : σ
left✝ : y ∈ f a'
e : encode y = Part.get (k (encode a)) hk
⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom
[PROOFSTEP]
simp only [e.symm, encodek, coe_some, some_dom]
[GOAL]
case inr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk✝ : Nat.Partrec k
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
h : (f a).Dom ∨ (g a).Dom
hk : (k (encode a)).Dom
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ f a_2 ∧ encode a = x) ∨
∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ g a_2 ∧ encode a = x) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
a' : α
left✝¹ : decode₂ α (encode a) = Option.some a'
y : σ
left✝ : y ∈ g a'
e : encode y = Part.get (k (encode a)) hk
⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom
[PROOFSTEP]
simp only [e.symm, encodek, coe_some, some_dom]
[GOAL]
case this
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
⊢ ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
intro x h'
[GOAL]
case this
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x : σ
h' : x ∈ k' a
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
simp only [exists_prop, mem_coe, mem_bind_iff, Option.mem_def] at h'
[GOAL]
case this
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x : σ
h' : ∃ a_1, a_1 ∈ k (encode a) ∧ decode a_1 = Option.some x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
obtain ⟨n, hn, hx⟩ := h'
[GOAL]
case this.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x : σ
n : ℕ
hn : n ∈ k (encode a)
hx : decode n = Option.some x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
have := (H _).1 _ hn
[GOAL]
case this.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x : σ
n : ℕ
hn : n ∈ k (encode a)
hx : decode n = Option.some x
this :
(n ∈ Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (f a)) ∨
n ∈ Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (g a)
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
simp [mem_decode₂, encode_injective.eq_iff] at this
[GOAL]
case this.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x : σ
n : ℕ
hn : n ∈ k (encode a)
hx : decode n = Option.some x
this : (∃ a_1, a_1 ∈ f a ∧ encode a_1 = n) ∨ ∃ a_1, a_1 ∈ g a ∧ encode a_1 = n
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
obtain ⟨a', ha, rfl⟩ | ⟨a', ha, rfl⟩ := this
[GOAL]
case this.intro.intro.inl.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x a' : σ
ha : a' ∈ f a
hn : encode a' ∈ k (encode a)
hx : decode (encode a') = Option.some x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
simp only [encodek, Option.some_inj] at hx
[GOAL]
case this.intro.intro.inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x a' : σ
ha : a' ∈ g a
hn : encode a' ∈ k (encode a)
hx : decode (encode a') = Option.some x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
simp only [encodek, Option.some_inj] at hx
[GOAL]
case this.intro.intro.inl.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x a' : σ
ha : a' ∈ f a
hn : encode a' ∈ k (encode a)
hx : a' = x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
rw [hx] at ha
[GOAL]
case this.intro.intro.inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x a' : σ
ha : a' ∈ g a
hn : encode a' ∈ k (encode a)
hx : a' = x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
rw [hx] at ha
[GOAL]
case this.intro.intro.inl.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x a' : σ
ha : x ∈ f a
hn : encode a' ∈ k (encode a)
hx : a' = x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case this.intro.intro.inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
k : ℕ →. ℕ
hk : Nat.Partrec k
H :
∀ (a : ℕ),
(∀ (x : ℕ),
x ∈ k a →
(x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨
x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧
((k a).Dom ↔
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨
(Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom)
k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n)
a : α
x a' : σ
ha : x ∈ g a
hn : encode a' ∈ k (encode a)
hx : a' = x
⊢ x ∈ f a ∨ x ∈ g a
[PROOFSTEP]
exact Or.inr ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
h : x ∈ f a ∨ x ∈ g a
⊢ x ∈ k a
[PROOFSTEP]
have : (k a).Dom := (K _).2.2 (h.imp Exists.fst Exists.fst)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
h : x ∈ f a ∨ x ∈ g a
this : (k a).Dom
⊢ x ∈ k a
[PROOFSTEP]
refine' ⟨this, _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
h : x ∈ f a ∨ x ∈ g a
this : (k a).Dom
⊢ Part.get (k a) this = x
[PROOFSTEP]
cases' h with h h
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
this : (k a).Dom
h : x ∈ f a
⊢ Part.get (k a) this = x
[PROOFSTEP]
cases' (K _).1 _ ⟨this, rfl⟩ with h' h'
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
this : (k a).Dom
h : x ∈ g a
⊢ Part.get (k a) this = x
[PROOFSTEP]
cases' (K _).1 _ ⟨this, rfl⟩ with h' h'
[GOAL]
case inl.inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
this : (k a).Dom
h : x ∈ f a
h' : Part.get (k a) this ∈ f a
⊢ Part.get (k a) this = x
[PROOFSTEP]
exact mem_unique h' h
[GOAL]
case inl.inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
this : (k a).Dom
h : x ∈ f a
h' : Part.get (k a) this ∈ g a
⊢ Part.get (k a) this = x
[PROOFSTEP]
exact (H _ _ h _ h').symm
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
this : (k a).Dom
h : x ∈ g a
h' : Part.get (k a) this ∈ f a
⊢ Part.get (k a) this = x
[PROOFSTEP]
exact H _ _ h' _ h
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f g : α →. σ
hf : Partrec f
hg : Partrec g
H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y
k : α →. σ
hk : Partrec k
K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom)
a : α
x : σ
this : (k a).Dom
h : x ∈ g a
h' : Part.get (k a) this ∈ g a
⊢ Part.get (k a) this = x
[PROOFSTEP]
exact mem_unique h' h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
c : α → Bool
f g : α →. σ
hc : Computable c
hf : Partrec f
hg : Partrec g
cf : Code
ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a)
cg : Code
eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode (g a)
a : α
⊢ (Part.bind (eval (bif c a then cf else cg) (encode a)) fun b => ↑(decode (a, b).snd)) = bif c a then f a else g a
[PROOFSTEP]
cases c a
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
c : α → Bool
f g : α →. σ
hc : Computable c
hf : Partrec f
hg : Partrec g
cf : Code
ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a)
cg : Code
eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode (g a)
a : α
⊢ (Part.bind (eval (bif false then cf else cg) (encode a)) fun b => ↑(decode (a, b).snd)) = bif false then f a else g a
[PROOFSTEP]
simp [ef, eg, encodek]
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
c : α → Bool
f g : α →. σ
hc : Computable c
hf : Partrec f
hg : Partrec g
cf : Code
ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a)
cg : Code
eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode (g a)
a : α
⊢ (Part.bind (eval (bif true then cf else cg) (encode a)) fun b => ↑(decode (a, b).snd)) = bif true then f a else g a
[PROOFSTEP]
simp [ef, eg, encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β →. σ
h : α → γ →. σ
hf : Computable f
hg : Partrec₂ g
hh : Partrec₂ h
a : α
⊢ (bif Sum.casesOn (f a) (fun b => true) fun b => false then
Sum.casesOn (f a) (fun b => Part.map Option.some (g (a, b).fst (a, b).snd)) fun c => Part.some Option.none
else Sum.casesOn (f a) (fun b => Part.some Option.none) fun b => Part.map Option.some (h (a, b).fst (a, b).snd)) =
Part.map Option.some (Sum.casesOn (f a) (g a) (h a))
[PROOFSTEP]
cases f a
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β →. σ
h : α → γ →. σ
hf : Computable f
hg : Partrec₂ g
hh : Partrec₂ h
a : α
val✝ : β
⊢ (bif Sum.casesOn (Sum.inl val✝) (fun b => true) fun b => false then
Sum.casesOn (Sum.inl val✝) (fun b => Part.map Option.some (g (a, b).fst (a, b).snd)) fun c =>
Part.some Option.none
else
Sum.casesOn (Sum.inl val✝) (fun b => Part.some Option.none) fun b =>
Part.map Option.some (h (a, b).fst (a, b).snd)) =
Part.map Option.some (Sum.casesOn (Sum.inl val✝) (g a) (h a))
[PROOFSTEP]
simp only [Bool.cond_true, Bool.cond_false]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β →. σ
h : α → γ →. σ
hf : Computable f
hg : Partrec₂ g
hh : Partrec₂ h
a : α
val✝ : γ
⊢ (bif Sum.casesOn (Sum.inr val✝) (fun b => true) fun b => false then
Sum.casesOn (Sum.inr val✝) (fun b => Part.map Option.some (g (a, b).fst (a, b).snd)) fun c =>
Part.some Option.none
else
Sum.casesOn (Sum.inr val✝) (fun b => Part.some Option.none) fun b =>
Part.map Option.some (h (a, b).fst (a, b).snd)) =
Part.map Option.some (Sum.casesOn (Sum.inr val✝) (g a) (h a))
[PROOFSTEP]
simp only [Bool.cond_true, Bool.cond_false]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
f : α →. β
h : Partrec f
n : α
x✝ : Unit
⊢ x✝ ∈ Part.map (fun b => ()) (f n) ↔ x✝ ∈ Part.assert ((fun a => (f a).Dom) n) fun x => Part.some ()
[PROOFSTEP]
simp [Part.dom_iff_mem]
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
p : α → Prop
⊢ (∃ f, Computable f ∧ p = fun a => f a = true) → ComputablePred p
[PROOFSTEP]
rintro ⟨f, h, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
h : Computable f
⊢ ComputablePred fun a => f a = true
[PROOFSTEP]
exact ⟨by infer_instance, by simpa using h⟩
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
h : Computable f
⊢ DecidablePred fun a => f a = true
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
h : Computable f
⊢ Computable fun a => decide ((fun a => f a = true) a)
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
p : α → Prop
hp : ComputablePred p
⊢ ComputablePred fun a => ¬p a
[PROOFSTEP]
obtain ⟨f, hf, rfl⟩ := computable_iff.1 hp
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
⊢ ComputablePred fun a => ¬(fun a => f a = true) a
[PROOFSTEP]
exact
⟨by infer_instance,
(cond hf (const false) (const true)).of_eq fun n => by
simp
cases f n <;> rfl⟩
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
⊢ DecidablePred fun a => ¬(fun a => f a = true) a
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (bif f n then false else true) = decide ((fun a => ¬(fun a => f a = true) a) n)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (bif f n then false else true) = decide (f n = false)
[PROOFSTEP]
cases f n
[GOAL]
case false
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (bif false then false else true) = decide (false = false)
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (bif true then false else true) = decide (true = false)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
p : α → Prop
hp : ComputablePred p
⊢ RePred p
[PROOFSTEP]
obtain ⟨f, hf, rfl⟩ := computable_iff.1 hp
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
⊢ RePred fun a => f a = true
[PROOFSTEP]
unfold RePred
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
⊢ Partrec fun a => Part.assert ((fun a => f a = true) a) fun x => Part.some ()
[PROOFSTEP]
dsimp only []
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
⊢ Partrec fun a => Part.assert (f a = true) fun x => Part.some ()
[PROOFSTEP]
refine' (Partrec.cond hf (Decidable.Partrec.const' (Part.some ())) Partrec.none).of_eq fun n => Part.ext fun a => _
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
a : Unit
⊢ (a ∈ bif f n then Part.some () else Part.none) ↔ a ∈ Part.assert (f n = true) fun x => Part.some ()
[PROOFSTEP]
cases a
[GOAL]
case intro.intro.unit
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (PUnit.unit ∈ bif f n then Part.some () else Part.none) ↔ PUnit.unit ∈ Part.assert (f n = true) fun x => Part.some ()
[PROOFSTEP]
cases f n
[GOAL]
case intro.intro.unit.false
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (PUnit.unit ∈ bif false then Part.some () else Part.none) ↔
PUnit.unit ∈ Part.assert (false = true) fun x => Part.some ()
[PROOFSTEP]
simp
[GOAL]
case intro.intro.unit.true
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → Bool
hf : Computable f
hp : ComputablePred fun a => f a = true
n : α
⊢ (PUnit.unit ∈ bif true then Part.some () else Part.none) ↔
PUnit.unit ∈ Part.assert (true = true) fun x => Part.some ()
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
h : ComputablePred fun c => eval c ∈ C
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
⊢ g ∈ C
[PROOFSTEP]
cases' h with _ h
[GOAL]
case intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
⊢ g ∈ C
[PROOFSTEP]
skip
[GOAL]
case intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
⊢ g ∈ C
[PROOFSTEP]
obtain ⟨c, e⟩ :=
fixed_point₂
(Partrec.cond (h.comp fst) ((Partrec.nat_iff.2 hg).comp snd).to₂ ((Partrec.nat_iff.2 hf).comp snd).to₂).to₂
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
e :
eval c = fun b =>
bif decide ((fun c => eval c ∈ C) (c, b).fst) then (fun a b => g (a, b).snd) (c, b).fst (c, b).snd
else (fun a b => f (a, b).snd) (c, b).fst (c, b).snd
⊢ g ∈ C
[PROOFSTEP]
simp at e
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
e : eval c = fun b => if eval c ∈ C then g b else f b
⊢ g ∈ C
[PROOFSTEP]
by_cases H : eval c ∈ C
[GOAL]
case pos
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
e : eval c = fun b => if eval c ∈ C then g b else f b
H : eval c ∈ C
⊢ g ∈ C
[PROOFSTEP]
simp only [H, if_true] at e
[GOAL]
case pos
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
H : eval c ∈ C
e : eval c = fun b => g b
⊢ g ∈ C
[PROOFSTEP]
change (fun b => g b) ∈ C
[GOAL]
case pos
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
H : eval c ∈ C
e : eval c = fun b => g b
⊢ (fun b => g b) ∈ C
[PROOFSTEP]
rwa [← e]
[GOAL]
case neg
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
e : eval c = fun b => if eval c ∈ C then g b else f b
H : ¬eval c ∈ C
⊢ g ∈ C
[PROOFSTEP]
simp only [H, if_false] at e
[GOAL]
case neg
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
H : ¬eval c ∈ C
e : eval c = fun b => f b
⊢ g ∈ C
[PROOFSTEP]
rw [e] at H
[GOAL]
case neg
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set (ℕ →. ℕ)
f g : ℕ →. ℕ
hf : Nat.Partrec f
hg : Nat.Partrec g
fC : f ∈ C
w✝ : DecidablePred fun c => eval c ∈ C
h : Computable fun a => decide ((fun c => eval c ∈ C) a)
c : Code
H : ¬(fun b => f b) ∈ C
e : eval c = fun b => f b
⊢ g ∈ C
[PROOFSTEP]
contradiction
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set Code
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C)
⊢ (ComputablePred fun c => c ∈ C) ↔ C = ∅ ∨ C = Set.univ
[PROOFSTEP]
classical exact
have hC : ∀ f, f ∈ C ↔ eval f ∈ eval '' C := fun f => ⟨Set.mem_image_of_mem _, fun ⟨g, hg, e⟩ => (H _ _ e).1 hg⟩
⟨fun h =>
or_iff_not_imp_left.2 fun C0 =>
Set.eq_univ_of_forall fun cg =>
let ⟨cf, fC⟩ := Set.nonempty_iff_ne_empty.2 C0
(hC _).2 <|
rice (eval '' C) (h.of_eq hC) (Partrec.nat_iff.1 <| eval_part.comp (const cf) Computable.id)
(Partrec.nat_iff.1 <| eval_part.comp (const cg) Computable.id) ((hC _).1 fC),
fun h => by
{obtain rfl | rfl := h <;> simp [ComputablePred, Set.mem_empty_iff_false] <;>
exact ⟨by infer_instance, Computable.const _⟩
}⟩
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set Code
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C)
⊢ (ComputablePred fun c => c ∈ C) ↔ C = ∅ ∨ C = Set.univ
[PROOFSTEP]
exact
have hC : ∀ f, f ∈ C ↔ eval f ∈ eval '' C := fun f => ⟨Set.mem_image_of_mem _, fun ⟨g, hg, e⟩ => (H _ _ e).1 hg⟩
⟨fun h =>
or_iff_not_imp_left.2 fun C0 =>
Set.eq_univ_of_forall fun cg =>
let ⟨cf, fC⟩ := Set.nonempty_iff_ne_empty.2 C0
(hC _).2 <|
rice (eval '' C) (h.of_eq hC) (Partrec.nat_iff.1 <| eval_part.comp (const cf) Computable.id)
(Partrec.nat_iff.1 <| eval_part.comp (const cg) Computable.id) ((hC _).1 fC),
fun h => by
{obtain rfl | rfl := h <;> simp [ComputablePred, Set.mem_empty_iff_false] <;>
exact ⟨by infer_instance, Computable.const _⟩
}⟩
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set Code
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C)
hC : ∀ (f : Code), f ∈ C ↔ eval f ∈ eval '' C
h : C = ∅ ∨ C = Set.univ
⊢ ComputablePred fun c => c ∈ C
[PROOFSTEP]
{obtain rfl | rfl := h <;> simp [ComputablePred, Set.mem_empty_iff_false] <;>
exact ⟨by infer_instance, Computable.const _⟩
}
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
C : Set Code
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C)
hC : ∀ (f : Code), f ∈ C ↔ eval f ∈ eval '' C
h : C = ∅ ∨ C = Set.univ
⊢ ComputablePred fun c => c ∈ C
[PROOFSTEP]
obtain rfl | rfl := h
[GOAL]
case inl
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ ∅ ↔ cg ∈ ∅)
hC : ∀ (f : Code), f ∈ ∅ ↔ eval f ∈ eval '' ∅
⊢ ComputablePred fun c => c ∈ ∅
[PROOFSTEP]
simp [ComputablePred, Set.mem_empty_iff_false]
[GOAL]
case inr
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ Set.univ ↔ cg ∈ Set.univ)
hC : ∀ (f : Code), f ∈ Set.univ ↔ eval f ∈ eval '' Set.univ
⊢ ComputablePred fun c => c ∈ Set.univ
[PROOFSTEP]
simp [ComputablePred, Set.mem_empty_iff_false]
[GOAL]
case inl
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ ∅ ↔ cg ∈ ∅)
hC : ∀ (f : Code), f ∈ ∅ ↔ eval f ∈ eval '' ∅
⊢ ∃ x, Computable fun a => false
[PROOFSTEP]
exact ⟨by infer_instance, Computable.const _⟩
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ ∅ ↔ cg ∈ ∅)
hC : ∀ (f : Code), f ∈ ∅ ↔ eval f ∈ eval '' ∅
⊢ DecidablePred fun c => c ∈ ∅
[PROOFSTEP]
infer_instance
[GOAL]
case inr
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ Set.univ ↔ cg ∈ Set.univ)
hC : ∀ (f : Code), f ∈ Set.univ ↔ eval f ∈ eval '' Set.univ
⊢ ∃ x, Computable fun a => true
[PROOFSTEP]
exact ⟨by infer_instance, Computable.const _⟩
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ Set.univ ↔ cg ∈ Set.univ)
hC : ∀ (f : Code), f ∈ Set.univ ↔ eval f ∈ eval '' Set.univ
⊢ DecidablePred fun c => c ∈ Set.univ
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
⊢ Computable fun a => decide (p a)
[PROOFSTEP]
obtain ⟨k, pk, hk⟩ :=
Partrec.merge (h₁.map (Computable.const true).to₂) (h₂.map (Computable.const false).to₂)
(by
intro a x hx y hy
simp at hx hy
cases hy.1 hx.1)
[GOAL]
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
⊢ ∀ (a : α) (x : Bool),
x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) →
∀ (y : Bool), y ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) → x = y
[PROOFSTEP]
intro a x hx y hy
[GOAL]
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
a : α
x : Bool
hx : x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ())
y : Bool
hy : y ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ())
⊢ x = y
[PROOFSTEP]
simp at hx hy
[GOAL]
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
a : α
x y : Bool
hx : p a ∧ true = x
hy : ¬p a ∧ false = y
⊢ x = y
[PROOFSTEP]
cases hy.1 hx.1
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
k : α →. Bool
pk : Partrec k
hk :
∀ (a : α) (x : Bool),
x ∈ k a ↔
x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨
x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ())
⊢ Computable fun a => decide (p a)
[PROOFSTEP]
refine' Partrec.of_eq pk fun n => Part.eq_some_iff.2 _
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
k : α →. Bool
pk : Partrec k
hk :
∀ (a : α) (x : Bool),
x ∈ k a ↔
x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨
x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ())
n : α
⊢ (fun a => decide (p a)) n ∈ k n
[PROOFSTEP]
rw [hk]
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
k : α →. Bool
pk : Partrec k
hk :
∀ (a : α) (x : Bool),
x ∈ k a ↔
x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨
x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ())
n : α
⊢ (fun a => decide (p a)) n ∈ Part.map (fun b => true) (Part.assert (p n) fun x => Part.some ()) ∨
(fun a => decide (p a)) n ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) n) fun x => Part.some ())
[PROOFSTEP]
simp
[GOAL]
case intro.intro
α : Type u_1
σ : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
x✝ : RePred p ∧ RePred fun a => ¬p a
h₁ : RePred p
h₂ : RePred fun a => ¬p a
k : α →. Bool
pk : Partrec k
hk :
∀ (a : α) (x : Bool),
x ∈ k a ↔
x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨
x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ())
n : α
⊢ p n ∨ ¬p n
[PROOFSTEP]
apply Decidable.em
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
p : α → Prop
⊢ ComputablePred p ↔ RePred p ∧ RePred fun a => ¬p a
[PROOFSTEP]
classical exact computable_iff_re_compl_re
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
p : α → Prop
⊢ ComputablePred p ↔ RePred p ∧ RePred fun a => ¬p a
[PROOFSTEP]
exact computable_iff_re_compl_re
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
pf : Partrec' f
⊢ _root_.Partrec f
[PROOFSTEP]
induction pf
[GOAL]
case prim
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
a✝ : Primrec' f✝
⊢ _root_.Partrec ↑f✝
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Partrec' f✝
a✝ : ∀ (i : Fin n✝), Partrec' (g✝ i)
a_ih✝¹ : _root_.Partrec f✝
a_ih✝ : ∀ (i : Fin n✝), _root_.Partrec (g✝ i)
⊢ _root_.Partrec fun v => (mOfFn fun i => g✝ i v) >>= f✝
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Partrec' ↑f✝
a_ih✝ : _root_.Partrec ↑f✝
⊢ _root_.Partrec fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))
[PROOFSTEP]
case prim n f hf => exact hf.to_prim.to_comp
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
⊢ _root_.Partrec ↑f
[PROOFSTEP]
case prim n f hf => exact hf.to_prim.to_comp
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
⊢ _root_.Partrec ↑f
[PROOFSTEP]
exact hf.to_prim.to_comp
[GOAL]
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Partrec' f✝
a✝ : ∀ (i : Fin n✝), Partrec' (g✝ i)
a_ih✝¹ : _root_.Partrec f✝
a_ih✝ : ∀ (i : Fin n✝), _root_.Partrec (g✝ i)
⊢ _root_.Partrec fun v => (mOfFn fun i => g✝ i v) >>= f✝
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Partrec' ↑f✝
a_ih✝ : _root_.Partrec ↑f✝
⊢ _root_.Partrec fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))
[PROOFSTEP]
case comp m n f g _ _ hf hg => exact (Partrec.vector_mOfFn fun i => hg i).bind (hf.comp snd)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
a✝¹ : Partrec' f
a✝ : ∀ (i : Fin n), Partrec' (g i)
hf : _root_.Partrec f
hg : ∀ (i : Fin n), _root_.Partrec (g i)
⊢ _root_.Partrec fun v => (mOfFn fun i => g i v) >>= f
[PROOFSTEP]
case comp m n f g _ _ hf hg => exact (Partrec.vector_mOfFn fun i => hg i).bind (hf.comp snd)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
a✝¹ : Partrec' f
a✝ : ∀ (i : Fin n), Partrec' (g i)
hf : _root_.Partrec f
hg : ∀ (i : Fin n), _root_.Partrec (g i)
⊢ _root_.Partrec fun v => (mOfFn fun i => g i v) >>= f
[PROOFSTEP]
exact (Partrec.vector_mOfFn fun i => hg i).bind (hf.comp snd)
[GOAL]
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Partrec' ↑f✝
a_ih✝ : _root_.Partrec ↑f✝
⊢ _root_.Partrec fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))
[PROOFSTEP]
case rfind n f _ hf =>
have := hf.comp (vector_cons.comp snd fst)
have := ((Primrec.eq.comp _root_.Primrec.id (_root_.Primrec.const 0)).to_comp.comp this).to₂.partrec₂
exact _root_.Partrec.rfind this
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Partrec' ↑f
hf : _root_.Partrec ↑f
⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))
[PROOFSTEP]
case rfind n f _ hf =>
have := hf.comp (vector_cons.comp snd fst)
have := ((Primrec.eq.comp _root_.Primrec.id (_root_.Primrec.const 0)).to_comp.comp this).to₂.partrec₂
exact _root_.Partrec.rfind this
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Partrec' ↑f
hf : _root_.Partrec ↑f
⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))
[PROOFSTEP]
have := hf.comp (vector_cons.comp snd fst)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Partrec' ↑f
hf : _root_.Partrec ↑f
this : _root_.Partrec fun a => ↑f (a.snd ::ᵥ a.fst)
⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))
[PROOFSTEP]
have := ((Primrec.eq.comp _root_.Primrec.id (_root_.Primrec.const 0)).to_comp.comp this).to₂.partrec₂
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Partrec' ↑f
hf : _root_.Partrec ↑f
this✝ : _root_.Partrec fun a => ↑f (a.snd ::ᵥ a.fst)
this : Partrec₂ fun a => ↑fun b => decide ((fun a => id a = 0) (f ((a, b).snd ::ᵥ (a, b).fst)))
⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))
[PROOFSTEP]
exact _root_.Partrec.rfind this
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
hf : Partrec' f
v : Vector ℕ (succ n)
⊢ (mOfFn fun i => (↑fun v => Vector.get v (Fin.succ i)) v) >>= f = f (Vector.tail v)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
hf : Partrec' f
v : Vector ℕ (succ n)
⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (Vector.tail v)
[PROOFSTEP]
rw [← ofFn_get v.tail]
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
hf : Partrec' f
v : Vector ℕ (succ n)
⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (ofFn (Vector.get (Vector.tail v)))
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a
n : ℕ
f : Vector ℕ n →. ℕ
hf : Partrec' f
v : Vector ℕ (succ n)
⊢ (fun i => Vector.get v (Fin.succ i)) = Vector.get (Vector.tail v)
[PROOFSTEP]
funext i
[GOAL]
case e_a.e_a.h
n : ℕ
f : Vector ℕ n →. ℕ
hf : Partrec' f
v : Vector ℕ (succ n)
i : Fin n
⊢ Vector.get v (Fin.succ i) = Vector.get (Vector.tail v) i
[PROOFSTEP]
simp
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) →. ℕ
hf : Partrec' f
hg : Partrec' g
i : Fin (n + 1)
⊢ Partrec' ((fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i) i)
[PROOFSTEP]
refine' Fin.cases _ (fun i => _) i
[GOAL]
case refine'_1
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) →. ℕ
hf : Partrec' f
hg : Partrec' g
i : Fin (n + 1)
⊢ Partrec' ((fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i) 0)
[PROOFSTEP]
simp [*]
[GOAL]
case refine'_2
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) →. ℕ
hf : Partrec' f
hg : Partrec' g
i✝ : Fin (n + 1)
i : Fin n
⊢ Partrec' ((fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i) (Fin.succ i))
[PROOFSTEP]
simp [*]
[GOAL]
case refine'_2
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) →. ℕ
hf : Partrec' f
hg : Partrec' g
i✝ : Fin (n + 1)
i : Fin n
⊢ Partrec' fun v => Part.some (Vector.get v i)
[PROOFSTEP]
exact prim (Nat.Primrec'.get _)
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) →. ℕ
hf : Partrec' f
hg : Partrec' g
v : Vector ℕ n
⊢ (mOfFn fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i v) >>= g = Part.bind (f v) fun a => g (a ::ᵥ v)
[PROOFSTEP]
simp [mOfFn, Part.bind_assoc, pure]
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) → ℕ
hf : Partrec' f
hg : Partrec' ↑g
⊢ Partrec' fun v => Part.map (fun a => g (a ::ᵥ v)) (f v)
[PROOFSTEP]
simp [(Part.bind_some_eq_map _ _).symm]
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
g : Vector ℕ (n + 1) → ℕ
hf : Partrec' f
hg : Partrec' ↑g
⊢ Partrec' fun v => Part.bind (f v) (Part.some ∘ fun a => g (a ::ᵥ v))
[PROOFSTEP]
exact hf.bind hg
[GOAL]
n m : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ n → Vector ℕ m
hf : Partrec' ↑f
hg : Vec g
i : Fin (succ m)
⊢ Partrec' fun v => ↑(some (Vector.get ((fun v => f v ::ᵥ g v) v) 0))
[PROOFSTEP]
simpa using hf
[GOAL]
n m : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ n → Vector ℕ m
hf : Partrec' ↑f
hg : Vec g
i✝ : Fin (succ m)
i : Fin m
⊢ Partrec' fun v => ↑(some (Vector.get ((fun v => f v ::ᵥ g v) v) (Fin.succ i)))
[PROOFSTEP]
simp only [hg i, get_cons_succ]
[GOAL]
n m : ℕ
f : Vector ℕ m →. ℕ
g : Vector ℕ n → Vector ℕ m
hf : Partrec' f
hg : Vec g
v : Vector ℕ n
⊢ (mOfFn fun i => ↑(some (Vector.get (g v) i))) >>= f = f (g v)
[PROOFSTEP]
simp
[GOAL]
n : ℕ
f : ℕ →. ℕ
g : Vector ℕ n → ℕ
hf : Partrec' fun v => f (Vector.head v)
hg : Partrec' ↑g
⊢ Partrec' fun v => f (g v)
[PROOFSTEP]
simpa using hf.comp' (Partrec'.cons hg Partrec'.nil)
[GOAL]
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b : ℕ
⊢ (b ∈ Part.bind (Nat.rfind fun n_1 => Part.some (decide (1 - f (n_1 ::ᵥ v) = 0))) fun a => ↑pred (f (a ::ᵥ v))) ↔
b ∈ Nat.rfindOpt fun a => ofNat (Option ℕ) (f (a ::ᵥ v))
[PROOFSTEP]
simp only [Nat.rfindOpt, exists_prop, tsub_eq_zero_iff_le, PFun.coe_val, Part.mem_bind_iff, Part.mem_some_iff,
Option.mem_def, Part.mem_coe]
[GOAL]
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b : ℕ
⊢ (∃ a, (a ∈ Nat.rfind fun n_1 => Part.some (decide (1 ≤ f (n_1 ::ᵥ v)))) ∧ b = pred (f (a ::ᵥ v))) ↔
∃ a,
(a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))) ∧
ofNat (Option ℕ) (f (a ::ᵥ v)) = some b
[PROOFSTEP]
refine' exists_congr fun a => (and_congr (iff_of_eq _) Iff.rfl).trans (and_congr_right fun h => _)
[GOAL]
case refine'_1
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
⊢ (a ∈ Nat.rfind fun n_1 => Part.some (decide (1 ≤ f (n_1 ::ᵥ v)))) =
(a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))))
[PROOFSTEP]
congr
[GOAL]
case refine'_1.e_a.e_p
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
⊢ (fun n_1 => Part.some (decide (1 ≤ f (n_1 ::ᵥ v)))) = fun n_1 =>
↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
[PROOFSTEP]
funext n
[GOAL]
case refine'_1.e_a.e_p.h
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n✝
b a n : ℕ
⊢ Part.some (decide (1 ≤ f (n ::ᵥ v))) = ↑(some (Option.isSome (ofNat (Option ℕ) (f (n ::ᵥ v)))))
[PROOFSTEP]
cases f (n ::ᵥ v)
[GOAL]
case refine'_1.e_a.e_p.h.zero
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n✝
b a n : ℕ
⊢ Part.some (decide (1 ≤ zero)) = ↑(some (Option.isSome (ofNat (Option ℕ) zero)))
[PROOFSTEP]
simp [Nat.succ_le_succ]
[GOAL]
case refine'_1.e_a.e_p.h.succ
n✝¹ : ℕ
f : Vector ℕ (n✝¹ + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n✝¹
b a n n✝ : ℕ
⊢ Part.some (decide (1 ≤ succ n✝)) = ↑(some (Option.isSome (ofNat (Option ℕ) (succ n✝))))
[PROOFSTEP]
simp [Nat.succ_le_succ]
[GOAL]
case refine'_1.e_a.e_p.h.succ
n✝¹ : ℕ
f : Vector ℕ (n✝¹ + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n✝¹
b a n n✝ : ℕ
⊢ true = Option.isSome (ofNat (Option ℕ) (succ n✝))
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
⊢ b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b
[PROOFSTEP]
have := Nat.rfind_spec h
[GOAL]
case refine'_2
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
this : true ∈ ↑(some (Option.isSome (ofNat (Option ℕ) (f (a ::ᵥ v)))))
⊢ b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b
[PROOFSTEP]
simp only [Part.coe_some, Part.mem_some_iff] at this
[GOAL]
case refine'_2
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
this : true = Option.isSome (ofNat (Option ℕ) (f (a ::ᵥ v)))
⊢ b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b
[PROOFSTEP]
revert this
[GOAL]
case refine'_2
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
⊢ true = Option.isSome (ofNat (Option ℕ) (f (a ::ᵥ v))) →
(b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b)
[PROOFSTEP]
cases' f (a ::ᵥ v) with c
[GOAL]
case refine'_2.zero
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
⊢ true = Option.isSome (ofNat (Option ℕ) zero) → (b = pred zero ↔ ofNat (Option ℕ) zero = some b)
[PROOFSTEP]
intro this
[GOAL]
case refine'_2.succ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
c : ℕ
⊢ true = Option.isSome (ofNat (Option ℕ) (succ c)) → (b = pred (succ c) ↔ ofNat (Option ℕ) (succ c) = some b)
[PROOFSTEP]
intro this
[GOAL]
case refine'_2.zero
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
this : true = Option.isSome (ofNat (Option ℕ) zero)
⊢ b = pred zero ↔ ofNat (Option ℕ) zero = some b
[PROOFSTEP]
cases this
[GOAL]
case refine'_2.succ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
c : ℕ
this : true = Option.isSome (ofNat (Option ℕ) (succ c))
⊢ b = pred (succ c) ↔ ofNat (Option ℕ) (succ c) = some b
[PROOFSTEP]
rw [← Option.some_inj, eq_comm]
[GOAL]
case refine'_2.succ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
hf : Partrec' ↑f
v : Vector ℕ n
b a : ℕ
h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))
c : ℕ
this : true = Option.isSome (ofNat (Option ℕ) (succ c))
⊢ some (pred (succ c)) = some b ↔ ofNat (Option ℕ) (succ c) = some b
[PROOFSTEP]
rfl
[GOAL]
f : ℕ →. ℕ
hf : Partrec f
⊢ Partrec' fun v => f (Vector.head v)
[PROOFSTEP]
obtain ⟨c, rfl⟩ := exists_code.1 hf
[GOAL]
case intro
c : Code
hf : Partrec (eval c)
⊢ Partrec' fun v => eval c (Vector.head v)
[PROOFSTEP]
simpa [eval_eq_rfindOpt] using
rfindOpt <|
of_prim <|
Primrec.encode_iff.2 <|
evaln_prim.comp <|
(Primrec.vector_head.pair (_root_.Primrec.const c)).pair <| Primrec.vector_head.comp Primrec.vector_tail
[GOAL]
this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v)
n : ℕ
f : Vector ℕ n →. ℕ
hf : _root_.Partrec f
⊢ Partrec' f
[PROOFSTEP]
let g := fun n₁ => (Part.ofOption (decode (α := Vector ℕ n) n₁)).bind (fun a => Part.map encode (f a))
[GOAL]
this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v)
n : ℕ
f : Vector ℕ n →. ℕ
hf : _root_.Partrec f
g : ℕ → Part ℕ := fun n₁ => Part.bind ↑(decode n₁) fun a => Part.map encode (f a)
⊢ Partrec' f
[PROOFSTEP]
exact (comp₁ g (this g hf) (prim Nat.Primrec'.encode)).of_eq fun i => by dsimp only; simp [encodek, Part.map_id']
[GOAL]
this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v)
n : ℕ
f : Vector ℕ n →. ℕ
hf : _root_.Partrec f
g : ℕ → Part ℕ := fun n₁ => Part.bind ↑(decode n₁) fun a => Part.map encode (f a)
i : Vector ℕ n
⊢ g (encode i) = f i
[PROOFSTEP]
dsimp only
[GOAL]
this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v)
n : ℕ
f : Vector ℕ n →. ℕ
hf : _root_.Partrec f
g : ℕ → Part ℕ := fun n₁ => Part.bind ↑(decode n₁) fun a => Part.map encode (f a)
i : Vector ℕ n
⊢ (Part.bind ↑(decode (encode i)) fun a => Part.map encode (f a)) = f i
[PROOFSTEP]
simp [encodek, Part.map_id']
[GOAL]
f : ℕ →. ℕ
h : _root_.Partrec fun v => f (Vector.head v)
v : ℕ
⊢ f (Vector.head (ofFn fun i => id v)) = f v
[PROOFSTEP]
simp only [id.def, head_ofFn]
[GOAL]
f : ℕ → ℕ →. ℕ
h : _root_.Partrec fun v => f (Vector.head v) (Vector.head (Vector.tail v))
v : ℕ × ℕ
⊢ f (Vector.head (v.fst ::ᵥ v.snd ::ᵥ nil)) (Vector.head (Vector.tail (v.fst ::ᵥ v.snd ::ᵥ nil))) = f v.fst v.snd
[PROOFSTEP]
simp only [head_cons, tail_cons]
[GOAL]
m n : ℕ
f : Vector ℕ m → Vector ℕ n
h : Vec f
⊢ Computable f
[PROOFSTEP]
simpa only [ofFn_get] using vector_ofFn fun i => to_part (h i)
| {"mathlib_filename": "Mathlib.Computability.Halting", "llama_tokens": 38070} |
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hcs : ↑↑μ s ≠ 0
⊢ ↑↑(μ[|s]) Set.univ = 1
[PROOFSTEP]
rw [cond, Measure.smul_apply, Measure.restrict_apply MeasurableSet.univ, Set.univ_inter]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hcs : ↑↑μ s ≠ 0
⊢ (↑↑μ s)⁻¹ • ↑↑μ s = 1
[PROOFSTEP]
exact ENNReal.inv_mul_cancel hcs (measure_ne_top _ s)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
⊢ μ[|∅] = 0
[PROOFSTEP]
simp [cond]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsProbabilityMeasure μ
⊢ μ[|Set.univ] = μ
[PROOFSTEP]
simp [cond, measure_univ, Measure.restrict_univ]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t✝ : Set Ω
hms : MeasurableSet s
t : Set Ω
⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t)
[PROOFSTEP]
rw [cond, Measure.smul_apply, Measure.restrict_apply' hms, Set.inter_comm, smul_eq_mul]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t✝ : Set Ω
hms : MeasurableSet s
t : Set Ω
⊢ ↑↑(μ[|s]) (s ∩ t) = ↑↑(μ[|s]) t
[PROOFSTEP]
rw [cond_apply _ hms, ← Set.inter_assoc, Set.inter_self, ← cond_apply _ hms]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hcst : ↑↑(μ[|s]) t ≠ 0
⊢ 0 < ↑↑μ (s ∩ t)
[PROOFSTEP]
refine' pos_iff_ne_zero.mpr (right_ne_zero_of_mul _)
[GOAL]
case refine'_1
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hcst : ↑↑(μ[|s]) t ≠ 0
⊢ ℝ≥0∞
[PROOFSTEP]
exact (μ s)⁻¹
[GOAL]
case refine'_2
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hcst : ↑↑(μ[|s]) t ≠ 0
⊢ (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t) ≠ 0
[PROOFSTEP]
convert hcst
[GOAL]
case h.e'_2
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hcst : ↑↑(μ[|s]) t ≠ 0
⊢ (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t) = ↑↑(μ[|s]) t
[PROOFSTEP]
simp [hms, Set.inter_comm, cond]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hci : ↑↑μ (s ∩ t) ≠ 0
⊢ 0 < ↑↑(μ[|s]) t
[PROOFSTEP]
rw [cond_apply _ hms]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hci : ↑↑μ (s ∩ t) ≠ 0
⊢ 0 < (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t)
[PROOFSTEP]
refine' ENNReal.mul_pos _ hci
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hci : ↑↑μ (s ∩ t) ≠ 0
⊢ (↑↑μ s)⁻¹ ≠ 0
[PROOFSTEP]
exact ENNReal.inv_ne_zero.mpr (measure_ne_top _ _)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hmt : MeasurableSet t
hcs : ↑↑μ s ≠ ⊤
hci : ↑↑μ (s ∩ t) ≠ 0
⊢ μ[|s][|t] = μ[|s ∩ t]
[PROOFSTEP]
have hcs' : μ s ≠ 0 := (μ.toOuterMeasure.pos_of_subset_ne_zero (Set.inter_subset_left _ _) hci).ne'
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hmt : MeasurableSet t
hcs : ↑↑μ s ≠ ⊤
hci : ↑↑μ (s ∩ t) ≠ 0
hcs' : ↑↑μ s ≠ 0
⊢ μ[|s][|t] = μ[|s ∩ t]
[PROOFSTEP]
ext u
[GOAL]
case h
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
hms : MeasurableSet s
hmt : MeasurableSet t
hcs : ↑↑μ s ≠ ⊤
hci : ↑↑μ (s ∩ t) ≠ 0
hcs' : ↑↑μ s ≠ 0
u : Set Ω
a✝ : MeasurableSet u
⊢ ↑↑(μ[|s][|t]) u = ↑↑(μ[|s ∩ t]) u
[PROOFSTEP]
simp [*, hms.inter hmt, cond_apply, ← mul_assoc, ← Set.inter_assoc, ENNReal.mul_inv, mul_comm, ← mul_assoc,
ENNReal.mul_inv_cancel]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t✝ : Set Ω
hms : MeasurableSet s
hcs : ↑↑μ s ≠ 0
hcs' : ↑↑μ s ≠ ⊤
t : Set Ω
⊢ ↑↑(μ[|s]) t * ↑↑μ s = ↑↑μ (s ∩ t)
[PROOFSTEP]
rw [cond_apply μ hms t, mul_comm, ← mul_assoc, ENNReal.mul_inv_cancel hcs hcs', one_mul]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hcs : ↑↑μ s ≠ 0
hcs' : ↑↑μ sᶜ ≠ 0
⊢ ↑↑(μ[|s]) t * ↑↑μ s + ↑↑(μ[|sᶜ]) t * ↑↑μ sᶜ = ↑↑μ t
[PROOFSTEP]
rw [cond_mul_eq_inter μ hms hcs, cond_mul_eq_inter μ hms.compl hcs', Set.inter_comm _ t, Set.inter_comm _ t]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hcs : ↑↑μ s ≠ 0
hcs' : ↑↑μ sᶜ ≠ 0
⊢ ↑↑μ (t ∩ s) + ↑↑μ (t ∩ sᶜ) = ↑↑μ t
[PROOFSTEP]
exact measure_inter_add_diff t hms
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hmt : MeasurableSet t
⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑(μ[|t]) s * ↑↑μ t
[PROOFSTEP]
by_cases ht : μ t = 0
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hmt : MeasurableSet t
ht : ↑↑μ t = 0
⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑(μ[|t]) s * ↑↑μ t
[PROOFSTEP]
simp [cond, ht, Measure.restrict_apply hmt, Or.inr (measure_inter_null_of_null_left s ht)]
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
μ : Measure Ω
s t : Set Ω
inst✝ : IsFiniteMeasure μ
hms : MeasurableSet s
hmt : MeasurableSet t
ht : ¬↑↑μ t = 0
⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑(μ[|t]) s * ↑↑μ t
[PROOFSTEP]
rw [mul_assoc, cond_mul_eq_inter μ hmt ht s, Set.inter_comm, cond_apply _ hms]
| {"mathlib_filename": "Mathlib.Probability.ConditionalProbability", "llama_tokens": 2840} |
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
⊢ ∀ (a : ℕ), Acc (Nat.lbp p) a
[PROOFSTEP]
let ⟨n, pn⟩ := H
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
⊢ ∀ (a : ℕ), Acc (Nat.lbp p) a
[PROOFSTEP]
suffices ∀ m k, n ≤ k + m → Acc (lbp p) k by exact fun a => this _ _ (Nat.le_add_left _ _)
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
this : ∀ (m k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
⊢ ∀ (a : ℕ), Acc (Nat.lbp p) a
[PROOFSTEP]
exact fun a => this _ _ (Nat.le_add_left _ _)
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
⊢ ∀ (m k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
[PROOFSTEP]
intro m k kn
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m k : ℕ
kn : n ≤ k + m
⊢ Acc (Nat.lbp p) k
[PROOFSTEP]
induction' m with m IH generalizing k
[GOAL]
case zero
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m k✝ : ℕ
kn✝ : n ≤ k✝ + m
k : ℕ
kn : n ≤ k + zero
⊢ Acc (Nat.lbp p) k
[PROOFSTEP]
refine' ⟨_, fun y r => _⟩
[GOAL]
case succ
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m✝ k✝ : ℕ
kn✝ : n ≤ k✝ + m✝
m : ℕ
IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
k : ℕ
kn : n ≤ k + succ m
⊢ Acc (Nat.lbp p) k
[PROOFSTEP]
refine' ⟨_, fun y r => _⟩
[GOAL]
case zero
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m k✝ : ℕ
kn✝ : n ≤ k✝ + m
k : ℕ
kn : n ≤ k + zero
y : ℕ
r : Nat.lbp p y k
⊢ Acc (Nat.lbp p) y
[PROOFSTEP]
rcases r with ⟨rfl, a⟩
[GOAL]
case succ
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m✝ k✝ : ℕ
kn✝ : n ≤ k✝ + m✝
m : ℕ
IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
k : ℕ
kn : n ≤ k + succ m
y : ℕ
r : Nat.lbp p y k
⊢ Acc (Nat.lbp p) y
[PROOFSTEP]
rcases r with ⟨rfl, a⟩
[GOAL]
case zero.intro
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m k✝ : ℕ
kn✝ : n ≤ k✝ + m
k : ℕ
kn : n ≤ k + zero
a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1
⊢ Acc (Nat.lbp p) (k + 1)
[PROOFSTEP]
injection mem_unique pn.1 (a _ kn)
[GOAL]
case succ.intro
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m✝ k✝ : ℕ
kn✝ : n ≤ k✝ + m✝
m : ℕ
IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
k : ℕ
kn : n ≤ k + succ m
a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1
⊢ Acc (Nat.lbp p) (k + 1)
[PROOFSTEP]
exact IH _ (by rw [Nat.add_right_comm]; exact kn)
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m✝ k✝ : ℕ
kn✝ : n ≤ k✝ + m✝
m : ℕ
IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
k : ℕ
kn : n ≤ k + succ m
a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1
⊢ n ≤ k + 1 + m
[PROOFSTEP]
rw [Nat.add_right_comm]
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
n : ℕ
pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m✝ k✝ : ℕ
kn✝ : n ≤ k✝ + m✝
m : ℕ
IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k
k : ℕ
kn : n ≤ k + succ m
a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1
⊢ n ≤ k + m + 1
[PROOFSTEP]
exact kn
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
⊢ (x : ℕ) →
((y : ℕ) →
Nat.lbp p y x → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }) →
(∀ (n : ℕ), n < x → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
[PROOFSTEP]
intro m IH al
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
[PROOFSTEP]
have pm : (p m).Dom := by
rcases H with ⟨n, h₁, h₂⟩
rcases lt_trichotomy m n with (h₃ | h₃ | h₃)
· exact h₂ _ h₃
· rw [h₃]
exact h₁.fst
· injection mem_unique h₁ (al _ h₃)
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
⊢ (p m).Dom
[PROOFSTEP]
rcases H with ⟨n, h₁, h₂⟩
[GOAL]
case intro.intro
p : ℕ →. Bool
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
n : ℕ
h₁ : true ∈ p n
h₂ : ∀ (k : ℕ), k < n → (p k).Dom
⊢ (p m).Dom
[PROOFSTEP]
rcases lt_trichotomy m n with (h₃ | h₃ | h₃)
[GOAL]
case intro.intro.inl
p : ℕ →. Bool
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
n : ℕ
h₁ : true ∈ p n
h₂ : ∀ (k : ℕ), k < n → (p k).Dom
h₃ : m < n
⊢ (p m).Dom
[PROOFSTEP]
exact h₂ _ h₃
[GOAL]
case intro.intro.inr.inl
p : ℕ →. Bool
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
n : ℕ
h₁ : true ∈ p n
h₂ : ∀ (k : ℕ), k < n → (p k).Dom
h₃ : m = n
⊢ (p m).Dom
[PROOFSTEP]
rw [h₃]
[GOAL]
case intro.intro.inr.inl
p : ℕ →. Bool
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
n : ℕ
h₁ : true ∈ p n
h₂ : ∀ (k : ℕ), k < n → (p k).Dom
h₃ : m = n
⊢ (p n).Dom
[PROOFSTEP]
exact h₁.fst
[GOAL]
case intro.intro.inr.inr
p : ℕ →. Bool
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
n : ℕ
h₁ : true ∈ p n
h₂ : ∀ (k : ℕ), k < n → (p k).Dom
h₃ : n < m
⊢ (p m).Dom
[PROOFSTEP]
injection mem_unique h₁ (al _ h₃)
[GOAL]
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
[PROOFSTEP]
cases e : (p m).get pm
[GOAL]
case false
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = false
⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
[PROOFSTEP]
suffices ∀ᵉ k ≤ m, false ∈ p k from IH _ ⟨rfl, this⟩ fun n h => this _ (le_of_lt_succ h)
[GOAL]
case false
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = false
⊢ ∀ (k : ℕ), k ≤ m → false ∈ p k
[PROOFSTEP]
intro n h
[GOAL]
case false
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = false
n : ℕ
h : n ≤ m
⊢ false ∈ p n
[PROOFSTEP]
cases' h.lt_or_eq_dec with h h
[GOAL]
case false.inl
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = false
n : ℕ
h✝ : n ≤ m
h : n < m
⊢ false ∈ p n
[PROOFSTEP]
exact al _ h
[GOAL]
case false.inr
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = false
n : ℕ
h✝ : n ≤ m
h : n = m
⊢ false ∈ p n
[PROOFSTEP]
rw [h]
[GOAL]
case false.inr
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = false
n : ℕ
h✝ : n ≤ m
h : n = m
⊢ false ∈ p m
[PROOFSTEP]
exact ⟨_, e⟩
[GOAL]
case true
p : ℕ →. Bool
H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom
m : ℕ
IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
al : ∀ (n : ℕ), n < m → false ∈ p n
pm : (p m).Dom
e : Part.get (p m) pm = true
⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }
[PROOFSTEP]
exact ⟨m, ⟨_, e⟩, al⟩
[GOAL]
p : ℕ →. Bool
n : ℕ
x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m
h₁ : true ∈ p n
h₂ : ∀ {m : ℕ}, m < n → false ∈ p m
⊢ n ∈ rfind p
[PROOFSTEP]
let ⟨m, hm⟩ := dom_iff_mem.1 <| (@rfind_dom p).2 ⟨_, h₁, fun {m} mn => (h₂ mn).fst⟩
[GOAL]
p : ℕ →. Bool
n : ℕ
x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m
h₁ : true ∈ p n
h₂ : ∀ {m : ℕ}, m < n → false ∈ p m
m : ℕ
hm : m ∈ rfind p
⊢ n ∈ rfind p
[PROOFSTEP]
rcases lt_trichotomy m n with (h | h | h)
[GOAL]
case inl
p : ℕ →. Bool
n : ℕ
x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m
h₁ : true ∈ p n
h₂ : ∀ {m : ℕ}, m < n → false ∈ p m
m : ℕ
hm : m ∈ rfind p
h : m < n
⊢ n ∈ rfind p
[PROOFSTEP]
injection mem_unique (h₂ h) (rfind_spec hm)
[GOAL]
case inr.inl
p : ℕ →. Bool
n : ℕ
x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m
h₁ : true ∈ p n
h₂ : ∀ {m : ℕ}, m < n → false ∈ p m
m : ℕ
hm : m ∈ rfind p
h : m = n
⊢ n ∈ rfind p
[PROOFSTEP]
rwa [← h]
[GOAL]
case inr.inr
p : ℕ →. Bool
n : ℕ
x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m
h₁ : true ∈ p n
h₂ : ∀ {m : ℕ}, m < n → false ∈ p m
m : ℕ
hm : m ∈ rfind p
h : n < m
⊢ n ∈ rfind p
[PROOFSTEP]
injection mem_unique h₁ (rfind_min hm h)
[GOAL]
p : ℕ → Bool
m : ℕ
pm : p m = true
this : true ∈ ↑p m
n : ℕ
hn : n ∈ rfind ↑p
h : m < n
⊢ False
[PROOFSTEP]
injection mem_unique this (rfind_min hn h)
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
⊢ (rfindOpt f).Dom
[PROOFSTEP]
have h' : ∃ n, (f n).isSome := h.imp fun n => Option.isSome_iff_exists.2
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
⊢ (rfindOpt f).Dom
[PROOFSTEP]
have s := Nat.find_spec h'
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
⊢ (rfindOpt f).Dom
[PROOFSTEP]
have fd : (rfind fun n => (f n).isSome).Dom := ⟨Nat.find h', by simpa using s.symm, fun _ _ => trivial⟩
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
⊢ true ∈ (fun n => ↑(Option.some (Option.isSome (f n)))) (Nat.find h')
[PROOFSTEP]
simpa using s.symm
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom
⊢ (rfindOpt f).Dom
[PROOFSTEP]
refine' ⟨fd, _⟩
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom
⊢ ((fun b => (fun n => ↑(f n)) (Part.get (rfind fun n => ↑(Option.some (Option.isSome (f n)))) b)) fd).Dom
[PROOFSTEP]
have := rfind_spec (get_mem fd)
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom
this : true ∈ ↑(Option.some (Option.isSome (f (Part.get (rfind fun n => ↑(Option.some (Option.isSome (f n)))) fd))))
⊢ ((fun b => (fun n => ↑(f n)) (Part.get (rfind fun n => ↑(Option.some (Option.isSome (f n)))) b)) fd).Dom
[PROOFSTEP]
simp at this ⊢
[GOAL]
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom
this :
true =
Option.isSome
(f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)))
⊢ Option.isSome
(f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) =
true
[PROOFSTEP]
cases' Option.isSome_iff_exists.1 this.symm with a e
[GOAL]
case intro
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom
this :
true =
Option.isSome
(f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)))
a : α
e :
f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)) =
Option.some a
⊢ Option.isSome
(f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) =
true
[PROOFSTEP]
rw [e]
[GOAL]
case intro
α : Type u_1
f : ℕ → Option α
h : ∃ n a, a ∈ f n
h' : ∃ n, Option.isSome (f n) = true
s : Option.isSome (f (Nat.find h')) = true
fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom
this :
true =
Option.isSome
(f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)))
a : α
e :
f
(Part.get (rfind fun n => Part.some (Option.isSome (f n)))
(_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)) =
Option.some a
⊢ Option.isSome (Option.some a) = true
[PROOFSTEP]
trivial
[GOAL]
α : Type u_1
f : ℕ → Option α
H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n
a : α
x✝ : ∃ n, a ∈ f n
n : ℕ
h : a ∈ f n
⊢ a ∈ rfindOpt f
[PROOFSTEP]
have h' := rfindOpt_dom.2 ⟨_, _, h⟩
[GOAL]
α : Type u_1
f : ℕ → Option α
H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n
a : α
x✝ : ∃ n, a ∈ f n
n : ℕ
h : a ∈ f n
h' : (rfindOpt f).Dom
⊢ a ∈ rfindOpt f
[PROOFSTEP]
cases' rfindOpt_spec ⟨h', rfl⟩ with k hk
[GOAL]
case intro
α : Type u_1
f : ℕ → Option α
H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n
a : α
x✝ : ∃ n, a ∈ f n
n : ℕ
h : a ∈ f n
h' : (rfindOpt f).Dom
k : ℕ
hk : Part.get (rfindOpt f) h' ∈ f k
⊢ a ∈ rfindOpt f
[PROOFSTEP]
have := (H (le_max_left _ _) h).symm.trans (H (le_max_right _ _) hk)
[GOAL]
case intro
α : Type u_1
f : ℕ → Option α
H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n
a : α
x✝ : ∃ n, a ∈ f n
n : ℕ
h : a ∈ f n
h' : (rfindOpt f).Dom
k : ℕ
hk : Part.get (rfindOpt f) h' ∈ f k
this : Option.some a = Option.some (Part.get (rfindOpt f) h')
⊢ a ∈ rfindOpt f
[PROOFSTEP]
simp at this
[GOAL]
case intro
α : Type u_1
f : ℕ → Option α
H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n
a : α
x✝ : ∃ n, a ∈ f n
n : ℕ
h : a ∈ f n
h' : (rfindOpt f).Dom
k : ℕ
hk : Part.get (rfindOpt f) h' ∈ f k
this : a = Part.get (rfindOpt f) h'
⊢ a ∈ rfindOpt f
[PROOFSTEP]
simp [this, get_mem]
[GOAL]
f : ℕ → ℕ
hf : Nat.Primrec f
⊢ Partrec ↑f
[PROOFSTEP]
induction hf with
| zero => exact zero
| succ => exact succ
| left => exact left
| right => exact right
| pair _ _ pf pg =>
refine' (pf.pair pg).of_eq_tot fun n => _
simp [Seq.seq]
| comp _ _ pf pg =>
refine' (pf.comp pg).of_eq_tot fun n => _
simp
| prec _ _ pf pg =>
refine' (pf.prec pg).of_eq_tot fun n => _
simp only [unpaired, PFun.coe_val, bind_eq_bind]
induction n.unpair.2 with
| zero => simp
| succ m IH =>
simp only [mem_bind_iff, mem_some_iff]
exact ⟨_, IH, rfl⟩
[GOAL]
f : ℕ → ℕ
hf : Nat.Primrec f
⊢ Partrec ↑f
[PROOFSTEP]
induction hf with
| zero => exact zero
| succ => exact succ
| left => exact left
| right => exact right
| pair _ _ pf pg =>
refine' (pf.pair pg).of_eq_tot fun n => _
simp [Seq.seq]
| comp _ _ pf pg =>
refine' (pf.comp pg).of_eq_tot fun n => _
simp
| prec _ _ pf pg =>
refine' (pf.prec pg).of_eq_tot fun n => _
simp only [unpaired, PFun.coe_val, bind_eq_bind]
induction n.unpair.2 with
| zero => simp
| succ m IH =>
simp only [mem_bind_iff, mem_some_iff]
exact ⟨_, IH, rfl⟩
[GOAL]
case zero
f : ℕ → ℕ
⊢ Partrec ↑fun x => 0
[PROOFSTEP]
| zero => exact zero
[GOAL]
case zero
f : ℕ → ℕ
⊢ Partrec ↑fun x => 0
[PROOFSTEP]
exact zero
[GOAL]
case succ
f : ℕ → ℕ
⊢ Partrec ↑Nat.succ
[PROOFSTEP]
| succ => exact succ
[GOAL]
case succ
f : ℕ → ℕ
⊢ Partrec ↑Nat.succ
[PROOFSTEP]
exact succ
[GOAL]
case left
f : ℕ → ℕ
⊢ Partrec ↑fun n => (unpair n).fst
[PROOFSTEP]
| left => exact left
[GOAL]
case left
f : ℕ → ℕ
⊢ Partrec ↑fun n => (unpair n).fst
[PROOFSTEP]
exact left
[GOAL]
case right
f : ℕ → ℕ
⊢ Partrec ↑fun n => (unpair n).snd
[PROOFSTEP]
| right => exact right
[GOAL]
case right
f : ℕ → ℕ
⊢ Partrec ↑fun n => (unpair n).snd
[PROOFSTEP]
exact right
[GOAL]
case pair
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
⊢ Partrec ↑fun n => Nat.pair (f✝ n) (g✝ n)
[PROOFSTEP]
| pair _ _ pf pg =>
refine' (pf.pair pg).of_eq_tot fun n => _
simp [Seq.seq]
[GOAL]
case pair
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
⊢ Partrec ↑fun n => Nat.pair (f✝ n) (g✝ n)
[PROOFSTEP]
refine' (pf.pair pg).of_eq_tot fun n => _
[GOAL]
case pair
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n : ℕ
⊢ Nat.pair (f✝ n) (g✝ n) ∈ Seq.seq (Nat.pair <$> ↑f✝ n) fun x => ↑g✝ n
[PROOFSTEP]
simp [Seq.seq]
[GOAL]
case comp
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
⊢ Partrec ↑fun n => f✝ (g✝ n)
[PROOFSTEP]
| comp _ _ pf pg =>
refine' (pf.comp pg).of_eq_tot fun n => _
simp
[GOAL]
case comp
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
⊢ Partrec ↑fun n => f✝ (g✝ n)
[PROOFSTEP]
refine' (pf.comp pg).of_eq_tot fun n => _
[GOAL]
case comp
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n : ℕ
⊢ f✝ (g✝ n) ∈ ↑g✝ n >>= ↑f✝
[PROOFSTEP]
simp
[GOAL]
case prec
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
⊢ Partrec ↑(unpaired fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (Nat.pair z (Nat.pair y IH))) n)
[PROOFSTEP]
| prec _ _ pf pg =>
refine' (pf.prec pg).of_eq_tot fun n => _
simp only [unpaired, PFun.coe_val, bind_eq_bind]
induction n.unpair.2 with
| zero => simp
| succ m IH =>
simp only [mem_bind_iff, mem_some_iff]
exact ⟨_, IH, rfl⟩
[GOAL]
case prec
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
⊢ Partrec ↑(unpaired fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (Nat.pair z (Nat.pair y IH))) n)
[PROOFSTEP]
refine' (pf.prec pg).of_eq_tot fun n => _
[GOAL]
case prec
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n : ℕ
⊢ unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (Nat.pair z (Nat.pair y IH))) n) n ∈
unpaired
(fun a n =>
Nat.rec (↑f✝ a)
(fun y IH => do
let i ← IH
↑g✝ (Nat.pair a (Nat.pair y i)))
n)
n
[PROOFSTEP]
simp only [unpaired, PFun.coe_val, bind_eq_bind]
[GOAL]
case prec
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n : ℕ
⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) (unpair n).snd ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) (unpair n).snd
[PROOFSTEP]
induction n.unpair.2 with
| zero => simp
| succ m IH =>
simp only [mem_bind_iff, mem_some_iff]
exact ⟨_, IH, rfl⟩
[GOAL]
case prec
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n x✝ : ℕ
⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) x✝ ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) x✝
[PROOFSTEP]
induction n.unpair.2 with
| zero => simp
| succ m IH =>
simp only [mem_bind_iff, mem_some_iff]
exact ⟨_, IH, rfl⟩
[GOAL]
case prec.zero
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n : ℕ
⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) Nat.zero ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) Nat.zero
[PROOFSTEP]
| zero => simp
[GOAL]
case prec.zero
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n : ℕ
⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) Nat.zero ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case prec.succ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n m : ℕ
IH :
Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m
⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) (Nat.succ m) ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) (Nat.succ m)
[PROOFSTEP]
| succ m IH =>
simp only [mem_bind_iff, mem_some_iff]
exact ⟨_, IH, rfl⟩
[GOAL]
case prec.succ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n m : ℕ
IH :
Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m
⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) (Nat.succ m) ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) (Nat.succ m)
[PROOFSTEP]
simp only [mem_bind_iff, mem_some_iff]
[GOAL]
case prec.succ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
pf : Partrec ↑f✝
pg : Partrec ↑g✝
n m : ℕ
IH :
Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m
⊢ ∃ a,
a ∈
Nat.rec (Part.some (f✝ (unpair n).fst))
(fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m ∧
g✝
(Nat.pair (unpair n).fst
(Nat.pair m (Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m))) =
g✝ (Nat.pair (unpair n).fst (Nat.pair m a))
[PROOFSTEP]
exact ⟨_, IH, rfl⟩
[GOAL]
n a : ℕ
x✝ : a ∈ Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> (↑fun x => 1) (Nat.pair n n_1)
h : (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> (↑fun x => 1) (Nat.pair n n_1)).Dom
h✝ : Part.get (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> (↑fun x => 1) (Nat.pair n n_1)) h = a
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
f g h : ℕ →. ℕ
hf : Partrec f
hg : Partrec g
hh : Partrec h
a s : ℕ
⊢ (s ∈
(Seq.seq (Nat.pair <$> Part.some a) fun x => f a) >>=
unpaired fun a n =>
Nat.rec (g a)
(fun y IH => do
let i ← IH
h (Nat.pair a (Nat.pair y i)))
n) ↔
s ∈
Part.bind (f a) fun n =>
Nat.rec (g a)
(fun y IH => do
let i ← IH
h (Nat.pair a (Nat.pair y i)))
n
[PROOFSTEP]
simp [Seq.seq]
[GOAL]
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
n : ℕ
⊢ (Nat.rfind fun n_1 =>
(fun m => decide (m = 0)) <$> ↑(unpaired fun n m => if n = Nat.succ m then 0 else 1) (Nat.pair n n_1)) =
↑(Nat.ppred n)
[PROOFSTEP]
cases n
[GOAL]
case zero
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
⊢ (Nat.rfind fun n =>
(fun m => decide (m = 0)) <$> ↑(unpaired fun n m => if n = Nat.succ m then 0 else 1) (Nat.pair Nat.zero n)) =
↑(Nat.ppred Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
n✝ : ℕ
⊢ (Nat.rfind fun n =>
(fun m => decide (m = 0)) <$> ↑(unpaired fun n m => if n = Nat.succ m then 0 else 1) (Nat.pair (Nat.succ n✝) n)) =
↑(Nat.ppred (Nat.succ n✝))
[PROOFSTEP]
simp
[GOAL]
case zero
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
⊢ (Nat.rfind fun n => Part.some false) = Part.none
[PROOFSTEP]
exact eq_none_iff.2 fun a ⟨⟨m, h, _⟩, _⟩ => by simp [show 0 ≠ m.succ by intro h; injection h] at h
[GOAL]
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
a : ℕ
x✝ : a ∈ Nat.rfind fun n => Part.some false
m : ℕ
h : true ∈ (fun n => Part.some false) m
right✝ : ∀ (k : ℕ), k < m → ((fun n => Part.some false) k).Dom
h✝ :
Part.get (Nat.rfind fun n => Part.some false)
(_ : ∃ n, true ∈ (fun n => Part.some false) n ∧ ∀ (k : ℕ), k < n → ((fun n => Part.some false) k).Dom) =
a
⊢ False
[PROOFSTEP]
simp [show 0 ≠ m.succ by intro h; injection h] at h
[GOAL]
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
a : ℕ
x✝ : a ∈ Nat.rfind fun n => Part.some false
m : ℕ
h : true ∈ (fun n => Part.some false) m
right✝ : ∀ (k : ℕ), k < m → ((fun n => Part.some false) k).Dom
h✝ :
Part.get (Nat.rfind fun n => Part.some false)
(_ : ∃ n, true ∈ (fun n => Part.some false) n ∧ ∀ (k : ℕ), k < n → ((fun n => Part.some false) k).Dom) =
a
⊢ 0 ≠ Nat.succ m
[PROOFSTEP]
intro h
[GOAL]
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
a : ℕ
x✝ : a ∈ Nat.rfind fun n => Part.some false
m : ℕ
h✝¹ : true ∈ (fun n => Part.some false) m
right✝ : ∀ (k : ℕ), k < m → ((fun n => Part.some false) k).Dom
h✝ :
Part.get (Nat.rfind fun n => Part.some false)
(_ : ∃ n, true ∈ (fun n => Part.some false) n ∧ ∀ (k : ℕ), k < n → ((fun n => Part.some false) k).Dom) =
a
h : 0 = Nat.succ m
⊢ False
[PROOFSTEP]
injection h
[GOAL]
case succ
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
n✝ : ℕ
⊢ (Nat.rfind fun n => Part.some (decide (¬n✝ = n → False))) = Part.some n✝
[PROOFSTEP]
refine' eq_some_iff.2 _
[GOAL]
case succ
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
n✝ : ℕ
⊢ n✝ ∈ Nat.rfind fun n => Part.some (decide (¬n✝ = n → False))
[PROOFSTEP]
simp
[GOAL]
case succ
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
n✝ : ℕ
⊢ ∀ {m : ℕ}, m < n✝ → ¬(¬n✝ = m → False)
[PROOFSTEP]
intro m h
[GOAL]
case succ
this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1
n✝ m : ℕ
h : m < n✝
⊢ ¬(¬n✝ = m → False)
[PROOFSTEP]
simp [ne_of_gt h]
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → σ
hf : Primrec f
n : ℕ
⊢ (do
let n ← (↑fun n => encode (Option.map f (decode n))) n
↑(Nat.ppred n)) =
Part.bind ↑(decode n) fun a => map encode (↑f a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → σ
hf : Primrec f
n : ℕ
⊢ ↑(Nat.ppred (encode (Option.map f (decode n)))) = Part.bind ↑(decode n) fun a => Part.some (encode (f a))
[PROOFSTEP]
cases decode (α := α) n
[GOAL]
case none
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → σ
hf : Primrec f
n : ℕ
⊢ ↑(Nat.ppred (encode (Option.map f Option.none))) = Part.bind ↑Option.none fun a => Part.some (encode (f a))
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
f : α → σ
hf : Primrec f
n : ℕ
val✝ : α
⊢ ↑(Nat.ppred (encode (Option.map f (Option.some val✝)))) =
Part.bind ↑(Option.some val✝) fun a => Part.some (encode (f a))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
hf : Computable f
n : ℕ
⊢ (do
let n ← Part.bind ↑(decode n) fun a => map encode (↑f a)
↑(Nat.ppred n)) =
Part.bind ↑(decode n) fun a => map encode ((fun a => ↑(f a)) a)
[PROOFSTEP]
cases' decode (α := α) n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
hf : Computable f
n : ℕ
⊢ (do
let n ← Part.bind ↑Option.none fun a => map encode (↑f a)
↑(Nat.ppred n)) =
Part.bind ↑Option.none fun a => map encode ((fun a => ↑(f a)) a)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
hf : Computable f
n : ℕ
a : α
⊢ (do
let n ← Part.bind ↑(Option.some a) fun a => map encode (↑f a)
↑(Nat.ppred n)) =
Part.bind ↑(Option.some a) fun a => map encode ((fun a => ↑(f a)) a)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
hf : Computable f
n : ℕ
a : α
⊢ ↑(Nat.ppred (encode (f a))) = map encode ↑(f a)
[PROOFSTEP]
cases' f a with b
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
hf : Computable f
n : ℕ
a : α
⊢ ↑(Nat.ppred (encode Option.none)) = map encode ↑Option.none
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
hf : Computable f
n : ℕ
a : α
b : β
⊢ ↑(Nat.ppred (encode (Option.some b))) = map encode ↑(Option.some b)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β
g : α → γ
hf : Computable f
hg : Computable g
n : ℕ
⊢ (Seq.seq (Nat.pair <$> Part.bind ↑(decode n) fun a => map encode (↑f a)) fun x =>
Part.bind ↑(decode n) fun a => map encode (↑g a)) =
Part.bind ↑(decode n) fun a => map encode ((↑fun a => (f a, g a)) a)
[PROOFSTEP]
cases decode (α := α) n
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β
g : α → γ
hf : Computable f
hg : Computable g
n : ℕ
⊢ (Seq.seq (Nat.pair <$> Part.bind ↑Option.none fun a => map encode (↑f a)) fun x =>
Part.bind ↑Option.none fun a => map encode (↑g a)) =
Part.bind ↑Option.none fun a => map encode ((↑fun a => (f a, g a)) a)
[PROOFSTEP]
simp [Seq.seq]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β
g : α → γ
hf : Computable f
hg : Computable g
n : ℕ
val✝ : α
⊢ (Seq.seq (Nat.pair <$> Part.bind ↑(Option.some val✝) fun a => map encode (↑f a)) fun x =>
Part.bind ↑(Option.some val✝) fun a => map encode (↑g a)) =
Part.bind ↑(Option.some val✝) fun a => map encode ((↑fun a => (f a, g a)) a)
[PROOFSTEP]
simp [Seq.seq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Part.none = Part.bind ↑(decode n) fun a => map encode ((fun x => Part.none) a)
[PROOFSTEP]
cases decode (α := α) n
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Part.none = Part.bind ↑Option.none fun a => map encode ((fun x => Part.none) a)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
val✝ : α
⊢ Part.none = Part.bind ↑(Option.some val✝) fun a => map encode ((fun x => Part.none) a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. β
g : α → β →. σ
hf : Partrec f
hg : Partrec₂ g
n : ℕ
⊢ (do
let n ← Seq.seq (Nat.pair <$> Part.some n) fun x => Part.bind ↑(decode n) fun a => map encode (f a)
Part.bind ↑(decode n) fun a => map encode ((fun p => g p.fst p.snd) a)) =
Part.bind ↑(decode n) fun a => map encode ((fun a => Part.bind (f a) (g a)) a)
[PROOFSTEP]
simp [Seq.seq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. β
g : α → β →. σ
hf : Partrec f
hg : Partrec₂ g
n : ℕ
⊢ (Part.bind (Part.bind ↑(decode n) fun y => map (Nat.pair n) (map encode (f y))) fun n =>
Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
fun a => map encode (g a.fst a.snd)) =
Part.bind ↑(decode n) fun a => Part.bind (f a) fun y => map encode (g a y)
[PROOFSTEP]
cases' e : decode (α := α) n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. β
g : α → β →. σ
hf : Partrec f
hg : Partrec₂ g
n : ℕ
e : decode n = Option.none
⊢ (Part.bind (Part.bind ↑Option.none fun y => map (Nat.pair n) (map encode (f y))) fun n =>
Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
fun a => map encode (g a.fst a.snd)) =
Part.bind ↑Option.none fun a => Part.bind (f a) fun y => map encode (g a y)
[PROOFSTEP]
simp [e, encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. β
g : α → β →. σ
hf : Partrec f
hg : Partrec₂ g
n : ℕ
a : α
e : decode n = Option.some a
⊢ (Part.bind (Part.bind ↑(Option.some a) fun y => map (Nat.pair n) (map encode (f y))) fun n =>
Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
fun a => map encode (g a.fst a.snd)) =
Part.bind ↑(Option.some a) fun a => Part.bind (f a) fun y => map encode (g a y)
[PROOFSTEP]
simp [e, encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. β
g : α → β → σ
hf : Partrec f
hg : Computable₂ g
⊢ Partrec fun a => Part.map (g a) (f a)
[PROOFSTEP]
simpa [bind_some_eq_map] using @Partrec.bind _ _ _ _ _ _ _ (fun a => Part.some ∘ (g a)) hf hg
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
⊢ (Part.bind (Part.bind ↑(decode n) fun a => Part.map encode (↑f a)) fun n_1 =>
Nat.rec (Part.bind ↑(decode n) fun a => Part.map encode (g a))
(fun y IH => do
let i ← IH
Part.bind ↑(decode (Nat.pair n (Nat.pair y i))) fun a => Part.map encode ((fun p => h p.fst p.snd) a))
n_1) =
Part.bind ↑(decode n) fun a =>
Part.map encode ((fun a => Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) a)
[PROOFSTEP]
cases' e : decode (α := α) n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
e : decode n = Option.none
⊢ (Part.bind (Part.bind ↑Option.none fun a => Part.map encode (↑f a)) fun n_1 =>
Nat.rec (Part.bind ↑Option.none fun a => Part.map encode (g a))
(fun y IH => do
let i ← IH
Part.bind ↑(decode (Nat.pair n (Nat.pair y i))) fun a => Part.map encode ((fun p => h p.fst p.snd) a))
n_1) =
Part.bind ↑Option.none fun a =>
Part.map encode ((fun a => Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) a)
[PROOFSTEP]
simp [e]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
⊢ (Part.bind (Part.bind ↑(Option.some a) fun a => Part.map encode (↑f a)) fun n_1 =>
Nat.rec (Part.bind ↑(Option.some a) fun a => Part.map encode (g a))
(fun y IH => do
let i ← IH
Part.bind ↑(decode (Nat.pair n (Nat.pair y i))) fun a => Part.map encode ((fun p => h p.fst p.snd) a))
n_1) =
Part.bind ↑(Option.some a) fun a =>
Part.map encode ((fun a => Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) a)
[PROOFSTEP]
simp [e]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
⊢ Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
(f a) =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a))
[PROOFSTEP]
induction' f a with m IH
[GOAL]
case some.zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
⊢ Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
Nat.zero =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case some.succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
m : ℕ
IH :
Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
m =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m)
⊢ Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
(Nat.succ m) =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (Nat.succ m))
[PROOFSTEP]
simp
[GOAL]
case some.succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
m : ℕ
IH :
Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
m =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m)
⊢ (Part.bind
(Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
m)
fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode i)) fun a => Part.map encode (h a.fst a.snd)) =
Part.bind (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) fun y => Part.map encode (h a (m, y))
[PROOFSTEP]
rw [IH, Part.bind_map]
[GOAL]
case some.succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
m : ℕ
IH :
Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
m =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m)
⊢ (Part.bind (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) fun y =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode (encode y))) fun a => Part.map encode (h a.fst a.snd)) =
Part.bind (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) fun y => Part.map encode (h a (m, y))
[PROOFSTEP]
congr
[GOAL]
case some.succ.e_g
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
m : ℕ
IH :
Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
m =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m)
⊢ (fun y =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode (encode y))) fun a => Part.map encode (h a.fst a.snd)) =
fun y => Part.map encode (h a (m, y))
[PROOFSTEP]
funext s
[GOAL]
case some.succ.e_g.h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α →. σ
h : α → ℕ × σ →. σ
hf : Computable f
hg : Partrec g
hh : Partrec₂ h
n : ℕ
a : α
e : decode n = Option.some a
m : ℕ
IH :
Nat.rec (Part.map encode (g a))
(fun y IH =>
Part.bind IH fun i =>
Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd))
m =
Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m)
s : σ
⊢ (Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode (encode s))) fun a => Part.map encode (h a.fst a.snd)) =
Part.map encode (h a (m, s))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : β →. σ
g : α → β
hf : Partrec f
hg : Computable g
n : ℕ
⊢ (do
let n ← Part.bind ↑(decode n) fun a => Part.map encode (↑g a)
Part.bind ↑(decode n) fun a => Part.map encode (f a)) =
Part.bind ↑(decode n) fun a => Part.map encode ((fun a => f (g a)) a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : β →. σ
g : α → β
hf : Partrec f
hg : Computable g
n : ℕ
⊢ (Part.bind (Part.bind ↑(decode n) fun a => Part.some (encode (g a))) fun n =>
Part.bind ↑(decode n) fun a => Part.map encode (f a)) =
Part.bind ↑(decode n) fun a => Part.map encode (f (g a))
[PROOFSTEP]
cases' e : decode (α := α) n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : β →. σ
g : α → β
hf : Partrec f
hg : Computable g
n : ℕ
e : decode n = Option.none
⊢ (Part.bind (Part.bind ↑Option.none fun a => Part.some (encode (g a))) fun n =>
Part.bind ↑(decode n) fun a => Part.map encode (f a)) =
Part.bind ↑Option.none fun a => Part.map encode (f (g a))
[PROOFSTEP]
simp [e, encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : β →. σ
g : α → β
hf : Partrec f
hg : Computable g
n : ℕ
a : α
e : decode n = Option.some a
⊢ (Part.bind (Part.bind ↑(Option.some a) fun a => Part.some (encode (g a))) fun n =>
Part.bind ↑(decode n) fun a => Part.map encode (f a)) =
Part.bind ↑(Option.some a) fun a => Part.map encode (f (g a))
[PROOFSTEP]
simp [e, encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : ℕ →. ℕ
⊢ Partrec f ↔ Nat.Partrec f
[PROOFSTEP]
simp [Partrec, map_id']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : ℕ → ℕ →. α
h : Partrec (Nat.unpaired f)
⊢ Partrec₂ f
[PROOFSTEP]
simpa using Partrec.comp (g := fun p : ℕ × ℕ => (p.1, p.2)) h Primrec₂.pair.to_comp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n : ℕ
⊢ (Nat.rfind fun n_1 =>
(fun m => decide (m = 0)) <$>
Part.bind ↑(decode (Nat.pair n n_1)) fun a =>
Part.map encode ((fun a => Part.map (fun b => bif (a, b).snd then 0 else 1) (p a.fst a.snd)) a)) =
Part.bind ↑(decode n) fun a => Part.map encode ((fun a => Nat.rfind (p a)) a)
[PROOFSTEP]
cases' e : decode (α := α) n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n : ℕ
e : decode n = Option.none
⊢ (Nat.rfind fun n_1 =>
(fun m => decide (m = 0)) <$>
Part.bind ↑(decode (Nat.pair n n_1)) fun a =>
Part.map encode ((fun a => Part.map (fun b => bif (a, b).snd then 0 else 1) (p a.fst a.snd)) a)) =
Part.bind ↑Option.none fun a => Part.map encode ((fun a => Nat.rfind (p a)) a)
[PROOFSTEP]
simp [e, Nat.rfind_zero_none, map_id']
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n : ℕ
a : α
e : decode n = Option.some a
⊢ (Nat.rfind fun n_1 =>
(fun m => decide (m = 0)) <$>
Part.bind ↑(decode (Nat.pair n n_1)) fun a =>
Part.map encode ((fun a => Part.map (fun b => bif (a, b).snd then 0 else 1) (p a.fst a.snd)) a)) =
Part.bind ↑(Option.some a) fun a => Part.map encode ((fun a => Nat.rfind (p a)) a)
[PROOFSTEP]
simp [e, Nat.rfind_zero_none, map_id']
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n : ℕ
a : α
e : decode n = Option.some a
⊢ (Nat.rfind fun n => Part.map (fun m => decide (m = 0)) (Part.map (fun b => bif b then 0 else 1) (p a n))) =
Nat.rfind (p a)
[PROOFSTEP]
congr
[GOAL]
case some.e_p
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n : ℕ
a : α
e : decode n = Option.some a
⊢ (fun n => Part.map (fun m => decide (m = 0)) (Part.map (fun b => bif b then 0 else 1) (p a n))) = p a
[PROOFSTEP]
funext n
[GOAL]
case some.e_p.h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n✝ : ℕ
a : α
e : decode n✝ = Option.some a
n : ℕ
⊢ Part.map (fun m => decide (m = 0)) (Part.map (fun b => bif b then 0 else 1) (p a n)) = p a n
[PROOFSTEP]
simp [Part.map_map, (· ∘ ·)]
[GOAL]
case some.e_p.h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n✝ : ℕ
a : α
e : decode n✝ = Option.some a
n : ℕ
⊢ Part.map (fun x => decide ((bif x then 0 else 1) = 0)) (p a n) = p a n
[PROOFSTEP]
refine map_id' (fun b => ?_) _
[GOAL]
case some.e_p.h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n✝ : ℕ
a : α
e : decode n✝ = Option.some a
n : ℕ
b : Bool
⊢ decide ((bif b then 0 else 1) = 0) = b
[PROOFSTEP]
cases b
[GOAL]
case some.e_p.h.false
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n✝ : ℕ
a : α
e : decode n✝ = Option.some a
n : ℕ
⊢ decide ((bif false then 0 else 1) = 0) = false
[PROOFSTEP]
rfl
[GOAL]
case some.e_p.h.true
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
p : α → ℕ →. Bool
hp : Partrec₂ p
n✝ : ℕ
a : α
e : decode n✝ = Option.some a
n : ℕ
⊢ decide ((bif true then 0 else 1) = 0) = true
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
⊢ Nat.rec (↑g a) (fun y IH => Part.bind IH fun i => h (a, y, i).fst (Nat.pred (f (a, y, i).fst))) (f a) =
Nat.casesOn (f a) (Part.some (g a)) (h a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a (Nat.pred (f a))) (f a) =
Nat.rec (Part.some (g a)) (fun n n_ih => h a n) (f a)
[PROOFSTEP]
cases' f a with n
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a (Nat.pred Nat.zero)) Nat.zero =
Nat.rec (Part.some (g a)) (fun n n_ih => h a n) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a (Nat.pred (Nat.succ n))) (Nat.succ n) =
Nat.rec (Part.some (g a)) (fun n n_ih => h a n) (Nat.succ n)
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
⊢ (Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n) = h a n
[PROOFSTEP]
refine' ext fun b => ⟨fun H => _, fun H => _⟩
[GOAL]
case succ.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n
⊢ b ∈ h a n
[PROOFSTEP]
rcases mem_bind_iff.1 H with ⟨c, _, h₂⟩
[GOAL]
case succ.refine'_1.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n
c : σ
left✝ : c ∈ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n
h₂ : b ∈ h a n
⊢ b ∈ h a n
[PROOFSTEP]
exact h₂
[GOAL]
case succ.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ h a n
⊢ b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n
[PROOFSTEP]
have : ∀ m, (Nat.rec (motive := fun _ => Part σ) (Part.some (g a)) (fun y IH => IH.bind fun _ => h a n) m).Dom :=
by
intro m
induction m <;> simp [*, H.fst]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ h a n
⊢ ∀ (m : ℕ), (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) m).Dom
[PROOFSTEP]
intro m
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ h a n
m : ℕ
⊢ (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) m).Dom
[PROOFSTEP]
induction m
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ h a n
⊢ (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) Nat.zero).Dom
[PROOFSTEP]
simp [*, H.fst]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ h a n
n✝ : ℕ
n_ih✝ : (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) n✝).Dom
⊢ (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) (Nat.succ n✝)).Dom
[PROOFSTEP]
simp [*, H.fst]
[GOAL]
case succ.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ →. σ
hf : Computable f
hg : Computable g
hh : Partrec₂ h
a : α
n : ℕ
b : σ
H : b ∈ h a n
this : ∀ (m : ℕ), (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) m).Dom
⊢ b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n
[PROOFSTEP]
exact ⟨⟨this n, H.fst⟩, H.snd⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ
h : Nat.Partrec fun n => Part.bind ↑(decode₂ α n) fun a => Part.map encode (f a)
⊢ Partrec fun a => Part.map encode (f a)
[PROOFSTEP]
simpa [encodek₂] using (nat_iff.2 h).comp (@Computable.encode α _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin (n + 1) → α →. σ
hf : ∀ (i : Fin (n + 1)), Partrec (f i)
⊢ Partrec fun a => Vector.mOfFn fun i => f i a
[PROOFSTEP]
simp [Vector.mOfFn]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin (n + 1) → α →. σ
hf : ∀ (i : Fin (n + 1)), Partrec (f i)
⊢ Partrec fun a =>
Part.bind (f 0 a) fun a_1 => Part.bind (Vector.mOfFn fun i => f (Fin.succ i) a) fun v => Part.some (a_1 ::ᵥ v)
[PROOFSTEP]
exact
(hf 0).bind
(Partrec.bind ((vector_mOfFn fun i => hf i.succ).comp fst) (Primrec.vector_cons.to_comp.comp (snd.comp fst) snd))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
⊢ (Part.bind ↑(decode n) fun a =>
map encode
((fun a =>
Part.bind
(do
let n ← (↑fun n => encode (decode n)) a.snd
↑(Nat.ppred n))
↑fun b => (fun a n => Option.bind (decode n) (f a)) (a, b).fst.fst (a, b).fst.snd)
a)) =
Part.bind ↑(decode n) fun a => map encode ((↑fun p => f p.fst p.snd) a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
⊢ (Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.some (a, (Nat.unpair n).snd)) fun a =>
Part.bind ↑(Nat.ppred (encode (decode a.snd))) fun y =>
Part.some (encode (Option.bind (decode a.snd) (f a.fst)))) =
Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
fun a => Part.some (encode (f a.fst a.snd))
[PROOFSTEP]
cases decode (α := α) n.unpair.1
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
⊢ (Part.bind ↑(Option.bind Option.none fun a => Option.some (a, (Nat.unpair n).snd)) fun a =>
Part.bind ↑(Nat.ppred (encode (decode a.snd))) fun y =>
Part.some (encode (Option.bind (decode a.snd) (f a.fst)))) =
Part.bind ↑(Option.bind Option.none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a =>
Part.some (encode (f a.fst a.snd))
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
val✝ : α
⊢ (Part.bind ↑(Option.bind (Option.some val✝) fun a => Option.some (a, (Nat.unpair n).snd)) fun a =>
Part.bind ↑(Nat.ppred (encode (decode a.snd))) fun y =>
Part.some (encode (Option.bind (decode a.snd) (f a.fst)))) =
Part.bind ↑(Option.bind (Option.some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a =>
Part.some (encode (f a.fst a.snd))
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
val✝ : α
⊢ (Part.bind ↑(Nat.ppred (encode (decode (Nat.unpair n).snd))) fun y =>
Part.some (encode (Option.bind (decode (Nat.unpair n).snd) (f val✝)))) =
Part.bind ↑(Option.map (Prod.mk val✝) (decode (Nat.unpair n).snd)) fun a => Part.some (encode (f a.fst a.snd))
[PROOFSTEP]
cases decode (α := β) n.unpair.2
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
val✝ : α
⊢ (Part.bind ↑(Nat.ppred (encode Option.none)) fun y => Part.some (encode (Option.bind Option.none (f val✝)))) =
Part.bind ↑(Option.map (Prod.mk val✝) Option.none) fun a => Part.some (encode (f a.fst a.snd))
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ fun a n => Option.bind (decode n) (f a)
n : ℕ
val✝¹ : α
val✝ : β
⊢ (Part.bind ↑(Nat.ppred (encode (Option.some val✝))) fun y =>
Part.some (encode (Option.bind (Option.some val✝) (f val✝¹)))) =
Part.bind ↑(Option.map (Prod.mk val✝¹) (Option.some val✝)) fun a => Part.some (encode (f a.fst a.snd))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ f
⊢ Computable₂ fun a n => Option.bind (decode n) (f a)
[PROOFSTEP]
have :
Partrec fun a : α × ℕ =>
(encode (decode (α := β) a.2)).casesOn (some Option.none) fun n => Part.map (f a.1) (decode (α := β) n) :=
Partrec.nat_casesOn_right (h := fun (a : α × ℕ) (n : ℕ) ↦ map (fun b ↦ f a.1 b) (Part.ofOption (decode n)))
(Primrec.encdec.to_comp.comp snd) (const Option.none)
((ofOption (Computable.decode.comp snd)).map (hf.comp (fst.comp <| fst.comp fst) snd).to₂)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ f
this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)
⊢ Computable₂ fun a n => Option.bind (decode n) (f a)
[PROOFSTEP]
refine' this.of_eq fun a => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ f
this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)
a : α × ℕ
⊢ (Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)) =
(↑fun p => (fun a n => Option.bind (decode n) (f a)) p.fst p.snd) a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ f
this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)
a : α × ℕ
⊢ Nat.rec (Part.some Option.none) (fun n n_ih => map (f a.fst) ↑(decode n)) (encode (decode a.snd)) =
Part.some (Option.bind (decode a.snd) (f a.fst))
[PROOFSTEP]
cases decode (α := β) a.2
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ f
this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)
a : α × ℕ
⊢ Nat.rec (Part.some Option.none) (fun n n_ih => map (f a.fst) ↑(decode n)) (encode Option.none) =
Part.some (Option.bind Option.none (f a.fst))
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → Option σ
hf : Computable₂ f
this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)
a : α × ℕ
val✝ : β
⊢ Nat.rec (Part.some Option.none) (fun n n_ih => map (f a.fst) ↑(decode n)) (encode (Option.some val✝)) =
Part.some (Option.bind (Option.some val✝) (f a.fst))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → σ
⊢ (Computable₂ fun a n => Option.map (f a) (decode n)) ↔ Computable₂ f
[PROOFSTEP]
convert (bind_decode_iff (f := fun a => Option.some ∘ f a)).trans option_some_iff
[GOAL]
case h.e'_1.h.e'_7.h.h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β → σ
x✝¹ : α
x✝ : ℕ
⊢ Option.map (f x✝¹) (decode x✝) = Option.bind (decode x✝) (Option.some ∘ f x✝¹)
[PROOFSTEP]
apply Option.map_eq_bind
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ × σ → σ
hf : Computable f
hg : Computable g
hh : Computable₂ h
a : α
⊢ Nat.rec (↑g a) (fun y IH => Part.bind IH fun i => ↑(h a) (y, i)) (f a) =
(↑fun a => Nat.rec (g a) (fun y IH => h a (y, IH)) (f a)) a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ × σ → σ
hf : Computable f
hg : Computable g
hh : Computable₂ h
a : α
⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) (f a) =
Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) (f a))
[PROOFSTEP]
induction f a
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ × σ → σ
hf : Computable f
hg : Computable g
hh : Computable₂ h
a : α
⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) Nat.zero =
Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) Nat.zero)
[PROOFSTEP]
simp [*]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ
g : α → σ
h : α → ℕ × σ → σ
hf : Computable f
hg : Computable g
hh : Computable₂ h
a : α
n✝ : ℕ
n_ih✝ :
Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) n✝ =
Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) n✝)
⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) (Nat.succ n✝) =
Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) (Nat.succ n✝))
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
c : α → Bool
f g : α → σ
hc : Computable c
hf : Computable f
hg : Computable g
a : α
⊢ (Nat.casesOn (encode (c a)) (g a) fun b => f (a, b).fst) = bif c a then f a else g a
[PROOFSTEP]
cases c a
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
c : α → Bool
f g : α → σ
hc : Computable c
hf : Computable f
hg : Computable g
a : α
⊢ (Nat.casesOn (encode false) (g a) fun b => f (a, b).fst) = bif false then f a else g a
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
c : α → Bool
f g : α → σ
hc : Computable c
hf : Computable f
hg : Computable g
a : α
⊢ (Nat.casesOn (encode true) (g a) fun b => f (a, b).fst) = bif true then f a else g a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β → σ
ho : Computable o
hf : Computable f
hg : Computable₂ g
a : α
⊢ (Nat.casesOn (encode (o a)) (Option.some (f a)) fun n => Option.map (g a) (decode n)) =
Option.some (Option.casesOn (o a) (f a) (g a))
[PROOFSTEP]
cases o a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β → σ
ho : Computable o
hf : Computable f
hg : Computable₂ g
a : α
⊢ (Nat.casesOn (encode Option.none) (Option.some (f a)) fun n => Option.map (g a) (decode n)) =
Option.some (Option.casesOn Option.none (f a) (g a))
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β → σ
ho : Computable o
hf : Computable f
hg : Computable₂ g
a : α
val✝ : β
⊢ (Nat.casesOn (encode (Option.some val✝)) (Option.some (f a)) fun n => Option.map (g a) (decode n)) =
Option.some (Option.casesOn (Option.some val✝) (f a) (g a))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → Option σ
hf : Computable f
hg : Computable₂ g
a : α
⊢ Option.casesOn (f a) Option.none (g a) = Option.bind (f a) (g a)
[PROOFSTEP]
cases f a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → Option σ
hf : Computable f
hg : Computable₂ g
a : α
⊢ Option.casesOn Option.none Option.none (g a) = Option.bind Option.none (g a)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → Option σ
hf : Computable f
hg : Computable₂ g
a : α
val✝ : β
⊢ Option.casesOn (Option.some val✝) Option.none (g a) = Option.bind (Option.some val✝) (g a)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → σ
hf : Computable f
hg : Computable₂ g
⊢ Computable fun a => Option.map (g a) (f a)
[PROOFSTEP]
convert option_bind hf (option_some.comp₂ hg)
[GOAL]
case h.e'_5.h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → σ
hf : Computable f
hg : Computable₂ g
x✝ : α
⊢ Option.map (g x✝) (f x✝) = Option.bind (f x✝) fun b => Option.some (g x✝ b)
[PROOFSTEP]
apply Option.map_eq_bind
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β
hf : Computable f
hg : Computable g
a : α
⊢ (Option.casesOn (f a) (g a) fun b => b) = Option.getD (f a) (g a)
[PROOFSTEP]
cases f a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β
hf : Computable f
hg : Computable g
a : α
⊢ (Option.casesOn Option.none (g a) fun b => b) = Option.getD Option.none (g a)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
g : α → β
hf : Computable f
hg : Computable g
a : α
val✝ : β
⊢ (Option.casesOn (Option.some val✝) (g a) fun b => b) = Option.getD (Option.some val✝) (g a)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ → σ
hf : Computable f
hg : Computable₂ g
hh : Computable₂ h
a : α
⊢ (bif Nat.bodd (encode (f a)) then Option.map (h a) (decode (Nat.div2 (encode (f a))))
else Option.map (g a) (decode (Nat.div2 (encode (f a))))) =
Option.some (Sum.casesOn (f a) (g a) (h a))
[PROOFSTEP]
cases' f a with b c
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ → σ
hf : Computable f
hg : Computable₂ g
hh : Computable₂ h
a : α
b : β
⊢ (bif Nat.bodd (encode (Sum.inl b)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inl b))))
else Option.map (g a) (decode (Nat.div2 (encode (Sum.inl b))))) =
Option.some (Sum.casesOn (Sum.inl b) (g a) (h a))
[PROOFSTEP]
simp [Nat.div2_val]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ → σ
hf : Computable f
hg : Computable₂ g
hh : Computable₂ h
a : α
c : γ
⊢ (bif Nat.bodd (encode (Sum.inr c)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inr c))))
else Option.map (g a) (decode (Nat.div2 (encode (Sum.inr c))))) =
Option.some (Sum.casesOn (Sum.inr c) (g a) (h a))
[PROOFSTEP]
simp [Nat.div2_val]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Computable₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n)
a : α × ℕ
⊢ Nat.rec (Option.some [])
(fun y IH =>
Option.bind (a, y, IH).snd.snd fun b =>
Option.map (fun b_1 => (((a, y, IH), b), b_1).fst.snd ++ [(((a, y, IH), b), b_1).snd])
(g ((a, y, IH), b).fst.fst.fst ((a, y, IH), b).snd))
a.snd =
Option.some ((fun a n => List.map (f a) (List.range n)) a.fst a.snd)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Computable₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n)
a : α × ℕ
⊢ Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b)) a.snd =
Option.some (List.map (f a.fst) (List.range a.snd))
[PROOFSTEP]
induction' a.2 with n IH
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Computable₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n)
a : α × ℕ
⊢ Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b))
Nat.zero =
Option.some (List.map (f a.fst) (List.range Nat.zero))
[PROOFSTEP]
rfl
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Computable₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n)
a : α × ℕ
n : ℕ
IH :
Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b)) n =
Option.some (List.map (f a.fst) (List.range n))
⊢ Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b))
(Nat.succ n) =
Option.some (List.map (f a.fst) (List.range (Nat.succ n)))
[PROOFSTEP]
simp [IH, H, List.range_succ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Computable₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n)
this : Computable₂ fun a n => List.map (f a) (List.range n)
a : α × ℕ
⊢ (fun a b => List.get? (List.map (f (a, b).fst) (List.range (Nat.succ (a, b).snd))) (a, b).snd) a.fst a.snd =
Option.some (f a.fst a.snd)
[PROOFSTEP]
simp [List.get?_range (Nat.lt_succ_self a.2)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin (n + 1) → α → σ
hf : ∀ (i : Fin (n + 1)), Computable (f i)
⊢ Computable fun a => List.ofFn fun i => f i a
[PROOFSTEP]
simp [List.ofFn_succ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin (n + 1) → α → σ
hf : ∀ (i : Fin (n + 1)), Computable (f i)
⊢ Computable fun a => f 0 a :: List.ofFn fun i => f (Fin.succ i) a
[PROOFSTEP]
exact list_cons.comp (hf 0) (list_ofFn fun i => hf i.succ)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin n → α → σ
hf : ∀ (i : Fin n), Computable (f i)
a : α
⊢ (Vector.mOfFn fun i => ↑(f i) a) = (↑fun a => Vector.ofFn fun i => f i a) a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ
h : Partrec fun a => Part.map Option.some (f a)
n : ℕ
⊢ (do
let n ← Part.bind ↑(decode n) fun a => Part.map encode ((fun a => Part.map Option.some (f a)) a)
↑(Nat.ppred n)) =
Part.bind ↑(decode n) fun a => Part.map encode (f a)
[PROOFSTEP]
simp [Part.bind_assoc, ← Function.comp_apply (f := Part.some) (g := encode), bind_some_eq_map, -Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β →. σ
ho : Computable o
hf : Computable f
hg : Partrec₂ g
this : Partrec fun a => Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)
a : α
⊢ (Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)) =
Option.casesOn (o a) (Part.some (f a)) (g a)
[PROOFSTEP]
cases' o a with b
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β →. σ
ho : Computable o
hf : Computable f
hg : Partrec₂ g
this : Partrec fun a => Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)
a : α
⊢ (Nat.casesOn (encode Option.none) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)) =
Option.casesOn Option.none (Part.some (f a)) (g a)
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β →. σ
ho : Computable o
hf : Computable f
hg : Partrec₂ g
this : Partrec fun a => Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)
a : α
b : β
⊢ (Nat.casesOn (encode (Option.some b)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)) =
Option.casesOn (Option.some b) (Part.some (f a)) (g a)
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ →. σ
hf : Computable f
hg : Computable₂ g
hh : Partrec₂ h
this :
Partrec fun a =>
Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some)
(Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c =>
Part.map Option.some (h a c)
a : α
⊢ (Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some)
(Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c =>
Part.map Option.some (h a c)) =
Part.map Option.some (Sum.casesOn (f a) (fun b => Part.some (g a b)) (h a))
[PROOFSTEP]
cases f a
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ →. σ
hf : Computable f
hg : Computable₂ g
hh : Partrec₂ h
this :
Partrec fun a =>
Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some)
(Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c =>
Part.map Option.some (h a c)
a : α
val✝ : β
⊢ (Option.casesOn (Sum.casesOn (Sum.inl val✝) (fun x => Option.none) Option.some)
(Part.some (Sum.casesOn (Sum.inl val✝) (fun b => Option.some (g a b)) fun x => Option.none)) fun c =>
Part.map Option.some (h a c)) =
Part.map Option.some (Sum.casesOn (Sum.inl val✝) (fun b => Part.some (g a b)) (h a))
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ →. σ
hf : Computable f
hg : Computable₂ g
hh : Partrec₂ h
this :
Partrec fun a =>
Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some)
(Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c =>
Part.map Option.some (h a c)
a : α
val✝ : γ
⊢ (Option.casesOn (Sum.casesOn (Sum.inr val✝) (fun x => Option.none) Option.some)
(Part.some (Sum.casesOn (Sum.inr val✝) (fun b => Option.some (g a b)) fun x => Option.none)) fun c =>
Part.map Option.some (h a c)) =
Part.map Option.some (Sum.casesOn (Sum.inr val✝) (fun b => Part.some (g a b)) (h a))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β →. σ
h : α → γ → σ
hf : Computable f
hg : Partrec₂ g
hh : Computable₂ h
a : α
⊢ Sum.casesOn (Sum.casesOn (f a) (fun b => Sum.inr (a, b).snd) fun b => Sum.inl (a, b).snd) (fun b => Part.some (h a b))
(g a) =
Sum.casesOn (f a) (g a) fun c => Part.some (h a c)
[PROOFSTEP]
cases f a
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β →. σ
h : α → γ → σ
hf : Computable f
hg : Partrec₂ g
hh : Computable₂ h
a : α
val✝ : β
⊢ Sum.casesOn (Sum.casesOn (Sum.inl val✝) (fun b => Sum.inr (a, b).snd) fun b => Sum.inl (a, b).snd)
(fun b => Part.some (h a b)) (g a) =
Sum.casesOn (Sum.inl val✝) (g a) fun c => Part.some (h a c)
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β →. σ
h : α → γ → σ
hf : Computable f
hg : Partrec₂ g
hh : Computable₂ h
a : α
val✝ : γ
⊢ Sum.casesOn (Sum.casesOn (Sum.inr val✝) (fun b => Sum.inr (a, b).snd) fun b => Sum.inl (a, b).snd)
(fun b => Part.some (h a b)) (g a) =
Sum.casesOn (Sum.inr val✝) (g a) fun c => Part.some (h a c)
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
⊢ let F := fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n;
(∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n) ↔ b ∈ PFun.fix f a
[PROOFSTEP]
intro F
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
⊢ (∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n) ↔ b ∈ PFun.fix f a
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
rcases h with ⟨n, ⟨_x, h₁⟩, h₂⟩
[GOAL]
case refine'_1.intro.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
have : ∀ (m a') (_ : Sum.inr a' ∈ F a m) (_ : b ∈ PFun.fix f a'), b ∈ PFun.fix f a :=
by
intro m a' am ba
induction' m with m IH generalizing a' <;> simp at am
· rwa [← am]
rcases am with ⟨a₂, am₂, fa₂⟩
exact IH _ am₂ (PFun.mem_fix_iff.2 (Or.inr ⟨_, fa₂, ba⟩))
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
⊢ ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
[PROOFSTEP]
intro m a' am ba
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
m : ℕ
a' : α
am : Sum.inr a' ∈ F a m
ba : b ∈ PFun.fix f a'
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
induction' m with m IH generalizing a'
[GOAL]
case zero
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
m : ℕ
a'✝ : α
am✝ : Sum.inr a'✝ ∈ F a m
ba✝ : b ∈ PFun.fix f a'✝
a' : α
am : Sum.inr a' ∈ F a Nat.zero
ba : b ∈ PFun.fix f a'
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
simp at am
[GOAL]
case succ
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
m✝ : ℕ
a'✝ : α
am✝ : Sum.inr a'✝ ∈ F a m✝
ba✝ : b ∈ PFun.fix f a'✝
m : ℕ
IH : ∀ (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
a' : α
am : Sum.inr a' ∈ F a (Nat.succ m)
ba : b ∈ PFun.fix f a'
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
simp at am
[GOAL]
case zero
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
m : ℕ
a'✝ : α
am✝ : Sum.inr a'✝ ∈ F a m
ba✝ : b ∈ PFun.fix f a'✝
a' : α
ba : b ∈ PFun.fix f a'
am : a' = a
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
rwa [← am]
[GOAL]
case succ
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
m✝ : ℕ
a'✝ : α
am✝ : Sum.inr a'✝ ∈ F a m✝
ba✝ : b ∈ PFun.fix f a'✝
m : ℕ
IH : ∀ (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
a' : α
ba : b ∈ PFun.fix f a'
am :
∃ b,
Sum.inr b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) m ∧
Sum.inr a' ∈ f b
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
rcases am with ⟨a₂, am₂, fa₂⟩
[GOAL]
case succ.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
m✝ : ℕ
a'✝ : α
am : Sum.inr a'✝ ∈ F a m✝
ba✝ : b ∈ PFun.fix f a'✝
m : ℕ
IH : ∀ (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
a' : α
ba : b ∈ PFun.fix f a'
a₂ : α
am₂ :
Sum.inr a₂ ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) m
fa₂ : Sum.inr a' ∈ f a₂
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
exact IH _ am₂ (PFun.mem_fix_iff.2 (Or.inr ⟨_, fa₂, ba⟩))
[GOAL]
case refine'_1.intro.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
n : ℕ
h₂ : Sum.inl b ∈ F a n
_x : ∃ b', Sum.inl b' ∈ F a n
h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
cases n
[GOAL]
case refine'_1.intro.intro.intro.zero
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
h₂ : Sum.inl b ∈ F a Nat.zero
_x : ∃ b', Sum.inl b' ∈ F a Nat.zero
h₁ : ∀ {m : ℕ}, m < Nat.zero → ∃ b, Sum.inr b ∈ F a m
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
simp at h₂
[GOAL]
case refine'_1.intro.intro.intro.succ
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
n✝ : ℕ
h₂ : Sum.inl b ∈ F a (Nat.succ n✝)
_x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝)
h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
simp at h₂
[GOAL]
case refine'_1.intro.intro.intro.succ
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
n✝ : ℕ
_x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝)
h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m
h₂ :
Sum.inl b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ ∨
∃ b_1,
Sum.inr b_1 ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ ∧
Sum.inl b ∈ f b_1
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
rcases h₂ with (h₂ | ⟨a', am', fa'⟩)
[GOAL]
case refine'_1.intro.intro.intro.succ.inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
n✝ : ℕ
_x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝)
h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m
h₂ :
Sum.inl b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
cases' h₁ (Nat.lt_succ_self _) with a' h
[GOAL]
case refine'_1.intro.intro.intro.succ.inl.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
n✝ : ℕ
_x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝)
h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m
h₂ :
Sum.inl b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝
a' : α
h : Sum.inr a' ∈ F a n✝
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
injection mem_unique h h₂
[GOAL]
case refine'_1.intro.intro.intro.succ.inr.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a
n✝ : ℕ
_x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝)
h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m
a' : α
am' :
Sum.inr a' ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝
fa' : Sum.inl b ∈ f a'
⊢ b ∈ PFun.fix f a
[PROOFSTEP]
exact this _ _ am' (PFun.mem_fix_iff.2 (Or.inl fa'))
[GOAL]
case refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
⊢ ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n
[PROOFSTEP]
suffices
∀ (a') (_ : b ∈ PFun.fix f a') (k) (_ : Sum.inr a' ∈ F a k),
∃ n, Sum.inl b ∈ F a n ∧ ∀ m < n, ∀ (_ : k ≤ m), ∃ a₂, Sum.inr a₂ ∈ F a m
by
rcases this _ h 0 (by simp) with ⟨n, hn₁, hn₂⟩
exact ⟨_, ⟨⟨_, hn₁⟩, fun {m} mn => hn₂ m mn (Nat.zero_le _)⟩, hn₁⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
this :
∀ (a' : α),
b ∈ PFun.fix f a' →
∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
⊢ ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n
[PROOFSTEP]
rcases this _ h 0 (by simp) with ⟨n, hn₁, hn₂⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
this :
∀ (a' : α),
b ∈ PFun.fix f a' →
∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
⊢ Sum.inr a ∈ F a 0
[PROOFSTEP]
simp
[GOAL]
case intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
this :
∀ (a' : α),
b ∈ PFun.fix f a' →
∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
n : ℕ
hn₁ : Sum.inl b ∈ F a n
hn₂ : ∀ (m : ℕ), m < n → 0 ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
⊢ ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n
[PROOFSTEP]
exact ⟨_, ⟨⟨_, hn₁⟩, fun {m} mn => hn₂ m mn (Nat.zero_le _)⟩, hn₁⟩
[GOAL]
case refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
⊢ ∀ (a' : α),
b ∈ PFun.fix f a' →
∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
intro a₁ h₁
[GOAL]
case refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
⊢ ∀ (k : ℕ), Sum.inr a₁ ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
apply @PFun.fixInduction _ _ _ _ _ _ h₁
[GOAL]
case refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
⊢ ∀ (a' : α),
b ∈ PFun.fix f a' →
(∀ (a'' : α),
Sum.inr a'' ∈ f a' →
∀ (k : ℕ),
Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m) →
∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
intro a₂ h₂ IH k hk
[GOAL]
case refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
rcases PFun.mem_fix_iff.1 h₂ with (h₂ | ⟨a₃, am₃, _⟩)
[GOAL]
case refine'_2.inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂✝ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
h₂ : Sum.inl b ∈ f a₂
⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
refine' ⟨k.succ, _, fun m mk km => ⟨a₂, _⟩⟩
[GOAL]
case refine'_2.inl.refine'_1
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂✝ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
h₂ : Sum.inl b ∈ f a₂
⊢ Sum.inl b ∈ F a (Nat.succ k)
[PROOFSTEP]
simp
[GOAL]
case refine'_2.inl.refine'_1
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂✝ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
h₂ : Sum.inl b ∈ f a₂
⊢ Sum.inl b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) k ∨
∃ b_1,
Sum.inr b_1 ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) k ∧
Sum.inl b ∈ f b_1
[PROOFSTEP]
exact Or.inr ⟨_, hk, h₂⟩
[GOAL]
case refine'_2.inl.refine'_2
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂✝ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
h₂ : Sum.inl b ∈ f a₂
m : ℕ
mk : m < Nat.succ k
km : k ≤ m
⊢ Sum.inr a₂ ∈ F a m
[PROOFSTEP]
rwa [le_antisymm (Nat.le_of_lt_succ mk) km]
[GOAL]
case refine'_2.inr.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
rcases IH _ am₃ k.succ (by simp; exact ⟨_, hk, am₃⟩) with ⟨n, hn₁, hn₂⟩
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
⊢ Sum.inr a₃ ∈ F a (Nat.succ k)
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
⊢ ∃ b,
Sum.inr b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) k ∧
Sum.inr a₃ ∈ f b
[PROOFSTEP]
exact ⟨_, hk, am₃⟩
[GOAL]
case refine'_2.inr.intro.intro.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
n : ℕ
hn₁ : Sum.inl b ∈ F a n
hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
refine' ⟨n, hn₁, fun m mn km => _⟩
[GOAL]
case refine'_2.inr.intro.intro.intro.intro
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
n : ℕ
hn₁ : Sum.inl b ∈ F a n
hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
m : ℕ
mn : m < n
km : k ≤ m
⊢ ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
cases' km.lt_or_eq_dec with km km
[GOAL]
case refine'_2.inr.intro.intro.intro.intro.inl
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
n : ℕ
hn₁ : Sum.inl b ∈ F a n
hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
m : ℕ
mn : m < n
km✝ : k ≤ m
km : k < m
⊢ ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
exact hn₂ _ mn km
[GOAL]
case refine'_2.inr.intro.intro.intro.intro.inr
α✝ : Type u_1
β : Type u_2
γ : Type u_3
σ✝ : Type u_4
inst✝³ : Primcodable α✝
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ✝
α : Type u_5
σ : Type u_6
f : α →. σ ⊕ α
a : α
b : σ
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
h : b ∈ PFun.fix f a
a₁ : α
h₁ : b ∈ PFun.fix f a₁
a₂ : α
h₂ : b ∈ PFun.fix f a₂
IH :
∀ (a'' : α),
Sum.inr a'' ∈ f a₂ →
∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
k : ℕ
hk : Sum.inr a₂ ∈ F a k
a₃ : α
am₃ : Sum.inr a₃ ∈ f a₂
right✝ : b ∈ PFun.fix f a₃
n : ℕ
hn₁ : Sum.inl b ∈ F a n
hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m
m : ℕ
mn : m < n
km✝ : k ≤ m
km : k = m
⊢ ∃ a₂, Sum.inr a₂ ∈ F a m
[PROOFSTEP]
exact km ▸ ⟨_, hk⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
⊢ Partrec (PFun.fix f)
[PROOFSTEP]
let F : α → ℕ →. Sum σ α := fun a n =>
n.rec (some (Sum.inr a)) fun _ IH => IH.bind fun s => Sum.casesOn s (fun _ => Part.some s) f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
⊢ Partrec (PFun.fix f)
[PROOFSTEP]
have hF : Partrec₂ F :=
Partrec.nat_rec snd (sum_inr.comp fst).partrec
(sum_casesOn_right (snd.comp snd) (snd.comp <| snd.comp fst).to₂ (hf.comp snd).to₂).to₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
hF : Partrec₂ F
⊢ Partrec (PFun.fix f)
[PROOFSTEP]
let p a n := @Part.map _ Bool (fun s => Sum.casesOn s (fun _ => true) fun _ => false) (F a n)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
hF : Partrec₂ F
p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n)
⊢ Partrec (PFun.fix f)
[PROOFSTEP]
have hp : Partrec₂ p := hF.map ((sum_casesOn Computable.id (const true).to₂ (const false).to₂).comp snd).to₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
hF : Partrec₂ F
p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n)
hp : Partrec₂ p
⊢ Partrec (PFun.fix f)
[PROOFSTEP]
exact
(hp.rfind.bind (hF.bind (sum_casesOn_right snd snd.to₂ none.to₂).to₂).to₂).of_eq fun a =>
ext fun b => by simp; apply fix_aux f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
hF : Partrec₂ F
p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n)
hp : Partrec₂ p
a : α
b : σ
⊢ (b ∈
Part.bind (Nat.rfind (p a)) fun b =>
Part.bind (F (a, b).fst (a, b).snd) fun b_1 =>
Sum.casesOn ((a, b), b_1).snd (fun b_2 => Part.some (((a, b), b_1), b_2).snd) fun b => Part.none) ↔
b ∈ PFun.fix f a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α →. σ ⊕ α
hf : Partrec f
F : α → ℕ →. σ ⊕ α :=
fun a n =>
Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n
hF : Partrec₂ F
p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n)
hp : Partrec₂ p
a : α
b : σ
⊢ (∃ a_1,
((∃ a_2,
Sum.inl a_2 ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) a_1) ∧
∀ {m : ℕ},
m < a_1 →
∃ b,
Sum.inr b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) m) ∧
Sum.inl b ∈
Nat.rec (Part.some (Sum.inr a))
(fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) a_1) ↔
b ∈ PFun.fix f a
[PROOFSTEP]
apply fix_aux f
| {"mathlib_filename": "Mathlib.Computability.Partrec", "llama_tokens": 59602} |
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p✝ : ℕ
μ✝ : Measure Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
⊢ ℝ
[PROOFSTEP]
have m := fun (x : Ω) =>
μ[X]
-- Porting note: Lean deems `μ[(X - fun x => μ[X]) ^ p]` ambiguous
[GOAL]
Ω : Type u_1
ι : Type u_2
m✝ : MeasurableSpace Ω
X✝ : Ω → ℝ
p✝ : ℕ
μ✝ : Measure Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
m : Ω → ℝ
⊢ ℝ
[PROOFSTEP]
exact μ[(X - m) ^ p]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
hp : p ≠ 0
⊢ moment 0 p μ = 0
[PROOFSTEP]
simp only [moment, hp, zero_pow', Ne.def, not_false_iff, Pi.zero_apply, integral_const, smul_eq_mul, mul_zero]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
hp : p ≠ 0
⊢ centralMoment 0 p μ = 0
[PROOFSTEP]
simp only [centralMoment, hp, Pi.zero_apply, integral_const, smul_eq_mul, mul_zero, zero_sub, Pi.pow_apply,
Pi.neg_apply, neg_zero, zero_pow', Ne.def, not_false_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
h_int : Integrable X
⊢ centralMoment X 1 μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
simp only [centralMoment, Pi.sub_apply, pow_one]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
h_int : Integrable X
⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
rw [integral_sub h_int (integrable_const _)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
h_int : Integrable X
⊢ ∫ (a : Ω), X a ∂μ - ∫ (a : Ω), ∫ (x : Ω), X x ∂μ ∂μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
simp only [sub_mul, integral_const, smul_eq_mul, one_mul]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
⊢ centralMoment X 1 μ = 0
[PROOFSTEP]
by_cases h_int : Integrable X μ
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : Integrable X
⊢ centralMoment X 1 μ = 0
[PROOFSTEP]
rw [centralMoment_one' h_int]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : Integrable X
⊢ (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ = 0
[PROOFSTEP]
simp only [measure_univ, ENNReal.one_toReal, sub_self, zero_mul]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
⊢ centralMoment X 1 μ = 0
[PROOFSTEP]
simp only [centralMoment, Pi.sub_apply, pow_one]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = 0
[PROOFSTEP]
have : ¬Integrable (fun x => X x - integral μ X) μ :=
by
refine' fun h_sub => h_int _
have h_add : X = (fun x => X x - integral μ X) + fun _ => integral μ X := by ext1 x; simp
rw [h_add]
exact h_sub.add (integrable_const _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
⊢ ¬Integrable fun x => X x - integral μ X
[PROOFSTEP]
refine' fun h_sub => h_int _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
h_sub : Integrable fun x => X x - integral μ X
⊢ Integrable X
[PROOFSTEP]
have h_add : X = (fun x => X x - integral μ X) + fun _ => integral μ X := by ext1 x; simp
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
h_sub : Integrable fun x => X x - integral μ X
⊢ X = (fun x => X x - integral μ X) + fun x => integral μ X
[PROOFSTEP]
ext1 x
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
h_sub : Integrable fun x => X x - integral μ X
x : Ω
⊢ X x = ((fun x => X x - integral μ X) + fun x => integral μ X) x
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
h_sub : Integrable fun x => X x - integral μ X
h_add : X = (fun x => X x - integral μ X) + fun x => integral μ X
⊢ Integrable X
[PROOFSTEP]
rw [h_add]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
h_sub : Integrable fun x => X x - integral μ X
h_add : X = (fun x => X x - integral μ X) + fun x => integral μ X
⊢ Integrable ((fun x => X x - integral μ X) + fun x => integral μ X)
[PROOFSTEP]
exact h_sub.add (integrable_const _)
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
h_int : ¬Integrable X
this : ¬Integrable fun x => X x - integral μ X
⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = 0
[PROOFSTEP]
rw [integral_undef this]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ centralMoment X 2 μ = variance X μ
[PROOFSTEP]
rw [hX.variance_eq]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ centralMoment X 2 μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ mgf 0 μ t = ENNReal.toReal (↑↑μ Set.univ)
[PROOFSTEP]
simp only [mgf, Pi.zero_apply, mul_zero, exp_zero, integral_const, smul_eq_mul, mul_one]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ cgf 0 μ t = log (ENNReal.toReal (↑↑μ Set.univ))
[PROOFSTEP]
simp only [cgf, mgf_zero_fun]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ mgf X 0 t = 0
[PROOFSTEP]
simp only [mgf, integral_zero_measure]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ cgf X 0 t = 0
[PROOFSTEP]
simp only [cgf, log_zero, mgf_zero_measure]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t c : ℝ
⊢ mgf (fun x => c) μ t = ENNReal.toReal (↑↑μ Set.univ) * exp (t * c)
[PROOFSTEP]
simp only [mgf, integral_const, smul_eq_mul]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t c : ℝ
inst✝ : IsProbabilityMeasure μ
⊢ mgf (fun x => c) μ t = exp (t * c)
[PROOFSTEP]
simp only [mgf_const', measure_univ, ENNReal.one_toReal, one_mul]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
hμ : μ ≠ 0
c : ℝ
⊢ cgf (fun x => c) μ t = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c
[PROOFSTEP]
simp only [cgf, mgf_const']
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
hμ : μ ≠ 0
c : ℝ
⊢ log (ENNReal.toReal (↑↑μ Set.univ) * exp (t * c)) = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c
[PROOFSTEP]
rw [log_mul _ (exp_pos _).ne']
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
hμ : μ ≠ 0
c : ℝ
⊢ log (ENNReal.toReal (↑↑μ Set.univ)) + log (exp (t * c)) = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c
[PROOFSTEP]
rw [log_exp _]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
hμ : μ ≠ 0
c : ℝ
⊢ ENNReal.toReal (↑↑μ Set.univ) ≠ 0
[PROOFSTEP]
rw [Ne.def, ENNReal.toReal_eq_zero_iff, Measure.measure_univ_eq_zero]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
hμ : μ ≠ 0
c : ℝ
⊢ ¬(μ = 0 ∨ ↑↑μ Set.univ = ⊤)
[PROOFSTEP]
simp only [hμ, measure_ne_top μ Set.univ, or_self_iff, not_false_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
c : ℝ
⊢ cgf (fun x => c) μ t = t * c
[PROOFSTEP]
simp only [cgf, mgf_const, log_exp]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ mgf X μ 0 = ENNReal.toReal (↑↑μ Set.univ)
[PROOFSTEP]
simp only [mgf, zero_mul, exp_zero, integral_const, smul_eq_mul, mul_one]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
⊢ mgf X μ 0 = 1
[PROOFSTEP]
simp only [mgf_zero', measure_univ, ENNReal.one_toReal]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ cgf X μ 0 = log (ENNReal.toReal (↑↑μ Set.univ))
[PROOFSTEP]
simp only [cgf, mgf_zero']
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
⊢ cgf X μ 0 = 0
[PROOFSTEP]
simp only [cgf_zero', measure_univ, ENNReal.one_toReal, log_one]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hX : ¬Integrable fun ω => exp (t * X ω)
⊢ mgf X μ t = 0
[PROOFSTEP]
simp only [mgf, integral_undef hX]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hX : ¬Integrable fun ω => exp (t * X ω)
⊢ cgf X μ t = 0
[PROOFSTEP]
simp only [cgf, mgf_undef hX, log_zero]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ 0 ≤ mgf X μ t
[PROOFSTEP]
refine' integral_nonneg _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ 0 ≤ fun x => (fun ω => exp (t * X ω)) x
[PROOFSTEP]
intro ω
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
ω : Ω
⊢ OfNat.ofNat 0 ω ≤ (fun x => (fun ω => exp (t * X ω)) x) ω
[PROOFSTEP]
simp only [Pi.zero_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
ω : Ω
⊢ 0 ≤ exp (t * X ω)
[PROOFSTEP]
exact (exp_pos _).le
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
⊢ 0 < mgf X μ t
[PROOFSTEP]
simp_rw [mgf]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
⊢ 0 < ∫ (x : Ω), exp (t * X x) ∂μ
[PROOFSTEP]
have : ∫ x : Ω, exp (t * X x) ∂μ = ∫ x : Ω in Set.univ, exp (t * X x) ∂μ := by simp only [Measure.restrict_univ]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
⊢ ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
[PROOFSTEP]
simp only [Measure.restrict_univ]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
⊢ 0 < ∫ (x : Ω), exp (t * X x) ∂μ
[PROOFSTEP]
rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
⊢ 0 < ↑↑μ ((Function.support fun x => exp (t * X x)) ∩ Set.univ)
[PROOFSTEP]
have h_eq_univ : (Function.support fun x : Ω => exp (t * X x)) = Set.univ :=
by
ext1 x
simp only [Function.mem_support, Set.mem_univ, iff_true_iff]
exact (exp_pos _).ne'
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
⊢ (Function.support fun x => exp (t * X x)) = Set.univ
[PROOFSTEP]
ext1 x
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
x : Ω
⊢ (x ∈ Function.support fun x => exp (t * X x)) ↔ x ∈ Set.univ
[PROOFSTEP]
simp only [Function.mem_support, Set.mem_univ, iff_true_iff]
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
x : Ω
⊢ exp (t * X x) ≠ 0
[PROOFSTEP]
exact (exp_pos _).ne'
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ
⊢ 0 < ↑↑μ ((Function.support fun x => exp (t * X x)) ∩ Set.univ)
[PROOFSTEP]
rw [h_eq_univ, Set.inter_univ _]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ
⊢ 0 < ↑↑μ Set.univ
[PROOFSTEP]
refine' Ne.bot_lt _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ
⊢ ↑↑μ Set.univ ≠ ⊥
[PROOFSTEP]
simp only [hμ, ENNReal.bot_eq_zero, Ne.def, Measure.measure_univ_eq_zero, not_false_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
⊢ 0 ≤ᵐ[Measure.restrict μ Set.univ] fun x => exp (t * X x)
[PROOFSTEP]
refine' eventually_of_forall fun x => _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
x : Ω
⊢ OfNat.ofNat 0 x ≤ (fun x => exp (t * X x)) x
[PROOFSTEP]
rw [Pi.zero_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
x : Ω
⊢ 0 ≤ (fun x => exp (t * X x)) x
[PROOFSTEP]
exact (exp_pos _).le
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
hμ : μ ≠ 0
h_int_X : Integrable fun ω => exp (t * X ω)
this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ
⊢ IntegrableOn (fun x => exp (t * X x)) Set.univ
[PROOFSTEP]
rwa [integrableOn_univ]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ mgf (-X) μ t = mgf X μ (-t)
[PROOFSTEP]
simp_rw [mgf, Pi.neg_apply, mul_neg, neg_mul]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
⊢ cgf (-X) μ t = cgf X μ (-t)
[PROOFSTEP]
simp_rw [cgf, mgf_neg]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t✝ : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
s t : ℝ
⊢ IndepFun (fun ω => exp (s * X ω)) fun ω => exp (t * Y ω)
[PROOFSTEP]
have h_meas : ∀ t, Measurable fun x => exp (t * x) := fun t => (measurable_id'.const_mul t).exp
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t✝ : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
s t : ℝ
h_meas : ∀ (t : ℝ), Measurable fun x => exp (t * x)
⊢ IndepFun (fun ω => exp (s * X ω)) fun ω => exp (t * Y ω)
[PROOFSTEP]
change IndepFun ((fun x => exp (s * x)) ∘ X) ((fun x => exp (t * x)) ∘ Y) μ
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t✝ : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
s t : ℝ
h_meas : ∀ (t : ℝ), Measurable fun x => exp (t * x)
⊢ IndepFun ((fun x => exp (s * x)) ∘ X) ((fun x => exp (t * x)) ∘ Y)
[PROOFSTEP]
exact IndepFun.comp h_indep (h_meas s) (h_meas t)
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ
hY : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ
⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
[PROOFSTEP]
simp_rw [mgf, Pi.add_apply, mul_add, exp_add]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ
hY : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ
⊢ ∫ (x : Ω), exp (t * X x) * exp (t * Y x) ∂μ = (∫ (x : Ω), exp (t * X x) ∂μ) * ∫ (x : Ω), exp (t * Y x) ∂μ
[PROOFSTEP]
exact (h_indep.exp_mul t t).integral_mul hX hY
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
[PROOFSTEP]
have A : Continuous fun x : ℝ => exp (t * x) := by continuity
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
⊢ Continuous fun x => exp (t * x)
[PROOFSTEP]
continuity
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
A : Continuous fun x => exp (t * x)
⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
[PROOFSTEP]
have h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ := A.aestronglyMeasurable.comp_aemeasurable hX.aemeasurable
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
A : Continuous fun x => exp (t * x)
h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ
⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
[PROOFSTEP]
have h'Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ := A.aestronglyMeasurable.comp_aemeasurable hY.aemeasurable
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
A : Continuous fun x => exp (t * x)
h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ
h'Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ
⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t
[PROOFSTEP]
exact h_indep.mgf_add h'X h'Y
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
h_int_X : Integrable fun ω => exp (t * X ω)
h_int_Y : Integrable fun ω => exp (t * Y ω)
⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t
[PROOFSTEP]
by_cases hμ : μ = 0
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
h_int_X : Integrable fun ω => exp (t * X ω)
h_int_Y : Integrable fun ω => exp (t * Y ω)
hμ : μ = 0
⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t
[PROOFSTEP]
simp [hμ]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
h_int_X : Integrable fun ω => exp (t * X ω)
h_int_Y : Integrable fun ω => exp (t * Y ω)
hμ : ¬μ = 0
⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t
[PROOFSTEP]
simp only [cgf, h_indep.mgf_add h_int_X.aestronglyMeasurable h_int_Y.aestronglyMeasurable]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
h_int_X : Integrable fun ω => exp (t * X ω)
h_int_Y : Integrable fun ω => exp (t * Y ω)
hμ : ¬μ = 0
⊢ log (mgf X μ t * mgf Y μ t) = log (mgf X μ t) + log (mgf Y μ t)
[PROOFSTEP]
exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne'
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_int_X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ
h_int_Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * (X + Y) ω)) μ
[PROOFSTEP]
simp_rw [Pi.add_apply, mul_add, exp_add]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_int_X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ
h_int_Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * X ω) * exp (t * Y ω)) μ
[PROOFSTEP]
exact AEStronglyMeasurable.mul h_int_X h_int_Y
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ
[PROOFSTEP]
classical
induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int
· simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero]
exact aestronglyMeasurable_const
· have : ∀ i : ι, i ∈ s → AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi =>
h_int i (mem_insert_of_mem hi)
specialize h_rec this
rw [sum_insert hi_notin_s]
apply aestronglyMeasurable_exp_mul_add (h_int i (mem_insert_self _ _)) h_rec
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ
[PROOFSTEP]
induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int
[GOAL]
case empty
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
h_int : ∀ (i : ι), i ∈ ∅ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum ∅ (fun i => X i) ω)) μ
[PROOFSTEP]
simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero]
[GOAL]
case empty
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
h_int : ∀ (i : ι), i ∈ ∅ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
⊢ AEStronglyMeasurable (fun ω => 1) μ
[PROOFSTEP]
exact aestronglyMeasurable_const
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_rec :
(∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ) →
AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ
[PROOFSTEP]
have : ∀ i : ι, i ∈ s → AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi =>
h_int i (mem_insert_of_mem hi)
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_rec :
(∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ) →
AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ
this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ
[PROOFSTEP]
specialize h_rec this
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ
this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
h_rec : AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ
[PROOFSTEP]
rw [sum_insert hi_notin_s]
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X : ι → Ω → ℝ
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ
this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
h_rec : AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ
⊢ AEStronglyMeasurable (fun ω => exp (t * (X i + ∑ x in s, X x) ω)) μ
[PROOFSTEP]
apply aestronglyMeasurable_exp_mul_add (h_int i (mem_insert_self _ _)) h_rec
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
h_int_X : Integrable fun ω => exp (t * X ω)
h_int_Y : Integrable fun ω => exp (t * Y ω)
⊢ Integrable fun ω => exp (t * (X + Y) ω)
[PROOFSTEP]
simp_rw [Pi.add_apply, mul_add, exp_add]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
X Y : Ω → ℝ
h_indep : IndepFun X Y
h_int_X : Integrable fun ω => exp (t * X ω)
h_int_Y : Integrable fun ω => exp (t * Y ω)
⊢ Integrable fun ω => exp (t * X ω) * exp (t * Y ω)
[PROOFSTEP]
exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
⊢ Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
[PROOFSTEP]
classical
induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int
· simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero]
exact integrable_const _
· have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi)
specialize h_rec this
rw [sum_insert hi_notin_s]
refine' IndepFun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec
exact (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
⊢ Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
[PROOFSTEP]
induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int
[GOAL]
case empty
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
h_int : ∀ (i : ι), i ∈ ∅ → Integrable fun ω => exp (t * X i ω)
⊢ Integrable fun ω => exp (t * Finset.sum ∅ (fun i => X i) ω)
[PROOFSTEP]
simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero]
[GOAL]
case empty
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
h_int : ∀ (i : ι), i ∈ ∅ → Integrable fun ω => exp (t * X i ω)
⊢ Integrable fun ω => 1
[PROOFSTEP]
exact integrable_const _
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_rec :
(∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)) → Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω)
⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)
[PROOFSTEP]
have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi)
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_rec :
(∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)) → Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω)
this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)
[PROOFSTEP]
specialize h_rec this
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω)
this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)
[PROOFSTEP]
rw [sum_insert hi_notin_s]
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω)
this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
⊢ Integrable fun ω => exp (t * (X i + ∑ x in s, X x) ω)
[PROOFSTEP]
refine' IndepFun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s✝ : Finset ι
h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω)
this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω)
⊢ IndepFun (X i) (∑ x in s, X x)
[PROOFSTEP]
exact (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
⊢ mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t
[PROOFSTEP]
classical
induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int
· simp only [sum_empty, mgf_zero_fun, measure_univ, ENNReal.one_toReal, prod_empty]
· have h_int' : ∀ i : ι, AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i =>
((h_meas i).const_mul t).exp.aestronglyMeasurable
rw [sum_insert hi_notin_s,
IndepFun.mgf_add (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int' i)
(aestronglyMeasurable_exp_mul_sum fun i _ => h_int' i),
h_rec, prod_insert hi_notin_s]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
⊢ mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t
[PROOFSTEP]
induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int
[GOAL]
case empty
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
⊢ mgf (∑ i in ∅, X i) μ t = ∏ i in ∅, mgf (X i) μ t
[PROOFSTEP]
simp only [sum_empty, mgf_zero_fun, measure_univ, ENNReal.one_toReal, prod_empty]
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_rec : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t
⊢ mgf (∑ i in insert i s, X i) μ t = ∏ i in insert i s, mgf (X i) μ t
[PROOFSTEP]
have h_int' : ∀ i : ι, AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i =>
((h_meas i).const_mul t).exp.aestronglyMeasurable
[GOAL]
case insert
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
i : ι
s : Finset ι
hi_notin_s : ¬i ∈ s
h_rec : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t
h_int' : ∀ (i : ι), AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ
⊢ mgf (∑ i in insert i s, X i) μ t = ∏ i in insert i s, mgf (X i) μ t
[PROOFSTEP]
rw [sum_insert hi_notin_s,
IndepFun.mgf_add (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int' i)
(aestronglyMeasurable_exp_mul_sum fun i _ => h_int' i),
h_rec, prod_insert hi_notin_s]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
⊢ cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t
[PROOFSTEP]
simp_rw [cgf]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
⊢ log (mgf (∑ i in s, X i) μ t) = ∑ x in s, log (mgf (X x) μ t)
[PROOFSTEP]
rw [← log_prod _ _ fun j hj => ?_]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
⊢ log (mgf (∑ i in s, X i) μ t) = log (∏ i in s, mgf (X i) μ t)
[PROOFSTEP]
rw [h_indep.mgf_sum h_meas]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X✝ : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsProbabilityMeasure μ
X : ι → Ω → ℝ
h_indep : iIndepFun (fun i => inferInstance) X
h_meas : ∀ (i : ι), Measurable (X i)
s : Finset ι
h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)
j : ι
hj : j ∈ s
⊢ mgf (X j) μ t ≠ 0
[PROOFSTEP]
exact (mgf_pos (h_int j hj)).ne'
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t
[PROOFSTEP]
cases' ht.eq_or_lt with ht_zero_eq ht_pos
[GOAL]
case inl
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_zero_eq : 0 = t
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t
[PROOFSTEP]
rw [ht_zero_eq.symm]
[GOAL]
case inl
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_zero_eq : 0 = t
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-0 * ε) * mgf X μ 0
[PROOFSTEP]
simp only [neg_zero, zero_mul, exp_zero, mgf_zero', one_mul]
[GOAL]
case inl
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_zero_eq : 0 = t
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ ENNReal.toReal (↑↑μ Set.univ)
[PROOFSTEP]
rw [ENNReal.toReal_le_toReal (measure_ne_top μ _) (measure_ne_top μ _)]
[GOAL]
case inl
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_zero_eq : 0 = t
⊢ ↑↑μ {ω | ε ≤ X ω} ≤ ↑↑μ Set.univ
[PROOFSTEP]
exact measure_mono (Set.subset_univ _)
[GOAL]
case inr
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t
[PROOFSTEP]
calc
(μ {ω | ε ≤ X ω}).toReal = (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal :=
by
congr with ω
simp only [Set.mem_setOf_eq, exp_le_exp, gt_iff_lt]
exact ⟨fun h => mul_le_mul_of_nonneg_left h ht_pos.le, fun h => le_of_mul_le_mul_left h ht_pos⟩
_ ≤ (exp (t * ε))⁻¹ * μ[fun ω => exp (t * X ω)] :=
by
have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] :=
mul_meas_ge_le_integral_of_nonneg (fun x => (exp_pos _).le) h_int _
rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)]
_ = exp (-t * ε) * mgf X μ t := by rw [neg_mul, exp_neg]; rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) = ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)})
[PROOFSTEP]
congr with ω
[GOAL]
case e_a.e_a.h
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
ω : Ω
⊢ ω ∈ {ω | ε ≤ X ω} ↔ ω ∈ {ω | exp (t * ε) ≤ exp (t * X ω)}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, exp_le_exp, gt_iff_lt]
[GOAL]
case e_a.e_a.h
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
ω : Ω
⊢ ε ≤ X ω ↔ t * ε ≤ t * X ω
[PROOFSTEP]
exact ⟨fun h => mul_le_mul_of_nonneg_left h ht_pos.le, fun h => le_of_mul_le_mul_left h ht_pos⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
⊢ ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ
[PROOFSTEP]
have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] :=
mul_meas_ge_le_integral_of_nonneg (fun x => (exp_pos _).le) h_int _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
this : exp (t * ε) * ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ
⊢ ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ
[PROOFSTEP]
rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
⊢ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ = exp (-t * ε) * mgf X μ t
[PROOFSTEP]
rw [neg_mul, exp_neg]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
ht_pos : 0 < t
⊢ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ = (exp (t * ε))⁻¹ * mgf X μ t
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (-t * ε) * mgf X μ t
[PROOFSTEP]
rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (- -t * -ε) * mgf (-X) μ (-t)
[PROOFSTEP]
refine' Eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _)
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) = ENNReal.toReal (↑↑μ {ω | -ε ≤ (-X) ω})
[PROOFSTEP]
congr with ω
[GOAL]
case refine'_1.e_a.e_a.h
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
ω : Ω
⊢ ω ∈ {ω | X ω ≤ ε} ↔ ω ∈ {ω | -ε ≤ (-X) ω}
[PROOFSTEP]
simp only [Pi.neg_apply, neg_le_neg_iff]
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ Integrable fun ω => exp (-t * (-X) ω)
[PROOFSTEP]
simp_rw [Pi.neg_apply, neg_mul_neg]
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ Integrable fun ω => exp (t * X ω)
[PROOFSTEP]
exact h_int
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε + cgf X μ t)
[PROOFSTEP]
refine' (measure_ge_le_exp_mul_mgf ε ht h_int).trans _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε + cgf X μ t)
[PROOFSTEP]
rw [exp_add]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : 0 ≤ t
h_int : Integrable fun ω => exp (t * X ω)
⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε) * exp (cgf X μ t)
[PROOFSTEP]
exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (-t * ε + cgf X μ t)
[PROOFSTEP]
refine' (measure_le_le_exp_mul_mgf ε ht h_int).trans _
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε + cgf X μ t)
[PROOFSTEP]
rw [exp_add]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : MeasurableSpace Ω
X : Ω → ℝ
p : ℕ
μ : Measure Ω
t : ℝ
inst✝ : IsFiniteMeasure μ
ε : ℝ
ht : t ≤ 0
h_int : Integrable fun ω => exp (t * X ω)
⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε) * exp (cgf X μ t)
[PROOFSTEP]
exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le
| {"mathlib_filename": "Mathlib.Probability.Moments", "llama_tokens": 24496} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = false
[PROOFSTEP]
induction x
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
⊢ rmatch 0 [] = false
[PROOFSTEP]
simp [rmatch, matchEpsilon, *]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b head✝ : α
tail✝ : List α
tail_ih✝ : rmatch 0 tail✝ = false
⊢ rmatch 0 (head✝ :: tail✝) = false
[PROOFSTEP]
simp [rmatch, matchEpsilon, *]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x = []
[PROOFSTEP]
induction x
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
⊢ rmatch 1 [] = true ↔ [] = []
[PROOFSTEP]
simp [rmatch, matchEpsilon, *]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b head✝ : α
tail✝ : List α
tail_ih✝ : rmatch 1 tail✝ = true ↔ tail✝ = []
⊢ rmatch 1 (head✝ :: tail✝) = true ↔ head✝ :: tail✝ = []
[PROOFSTEP]
simp [rmatch, matchEpsilon, *]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a : α
x : List α
⊢ rmatch (char a) x = true ↔ x = [a]
[PROOFSTEP]
cases' x with _ x
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a : α
⊢ rmatch (char a) [] = true ↔ [] = [a]
[PROOFSTEP]
exact of_decide_eq_true rfl
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ : α
x : List α
⊢ rmatch (char a) (head✝ :: x) = true ↔ head✝ :: x = [a]
[PROOFSTEP]
cases' x with head tail
[GOAL]
case cons.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ : α
⊢ rmatch (char a) [head✝] = true ↔ [head✝] = [a]
[PROOFSTEP]
rw [rmatch, deriv]
[GOAL]
case cons.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ : α
⊢ rmatch (if a = head✝ then 1 else 0) [] = true ↔ [head✝] = [a]
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ : α
h✝ : a = head✝
⊢ rmatch 1 [] = true ↔ [head✝] = [a]
[PROOFSTEP]
tauto
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ : α
h✝ : ¬a = head✝
⊢ rmatch 0 [] = true ↔ [head✝] = [a]
[PROOFSTEP]
simp [List.singleton_inj]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ : α
h✝ : ¬a = head✝
⊢ ¬head✝ = a
[PROOFSTEP]
tauto
[GOAL]
case cons.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ head : α
tail : List α
⊢ rmatch (char a) (head✝ :: head :: tail) = true ↔ head✝ :: head :: tail = [a]
[PROOFSTEP]
rw [rmatch, rmatch, deriv]
[GOAL]
case cons.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ head : α
tail : List α
⊢ rmatch (deriv (if a = head✝ then 1 else 0) head) tail = true ↔ head✝ :: head :: tail = [a]
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ head : α
tail : List α
h : a = head✝
⊢ rmatch (deriv 1 head) tail = true ↔ head✝ :: head :: tail = [a]
[PROOFSTEP]
simp only [deriv_one, zero_rmatch, cons.injEq, and_false]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b a head✝ head : α
tail : List α
h : ¬a = head✝
⊢ rmatch (deriv 0 head) tail = true ↔ head✝ :: head :: tail = [a]
[PROOFSTEP]
simp only [deriv_zero, zero_rmatch, cons.injEq, and_false]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
x : List α
⊢ rmatch (P + Q) x = true ↔ rmatch P x = true ∨ rmatch Q x = true
[PROOFSTEP]
induction' x with _ _ ih generalizing P Q
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
⊢ rmatch (P + Q) [] = true ↔ rmatch P [] = true ∨ rmatch Q [] = true
[PROOFSTEP]
simp only [rmatch, matchEpsilon, Bool.or_coe_iff]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (P + Q) (head✝ :: tail✝) = true ↔ rmatch P (head✝ :: tail✝) = true ∨ rmatch Q (head✝ :: tail✝) = true
[PROOFSTEP]
repeat' rw [rmatch]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (P + Q) (head✝ :: tail✝) = true ↔ rmatch P (head✝ :: tail✝) = true ∨ rmatch Q (head✝ :: tail✝) = true
[PROOFSTEP]
rw [rmatch]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch P (head✝ :: tail✝) = true ∨ rmatch Q (head✝ :: tail✝) = true
[PROOFSTEP]
rw [rmatch]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch Q (head✝ :: tail✝) = true
[PROOFSTEP]
rw [rmatch]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch (deriv Q head✝) tail✝ = true
[PROOFSTEP]
rw [rmatch]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch (deriv Q head✝) tail✝ = true
[PROOFSTEP]
rw [deriv_add]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ : RegularExpression α
head✝ : α
tail✝ : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true
P Q : RegularExpression α
⊢ rmatch (deriv P head✝ + deriv Q head✝) tail✝ = true ↔
rmatch (deriv P head✝) tail✝ = true ∨ rmatch (deriv Q head✝) tail✝ = true
[PROOFSTEP]
exact ih _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
x : List α
⊢ rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
induction' x with a x ih generalizing P Q
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
⊢ rmatch (P * Q) [] = true ↔ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [rmatch]
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
⊢ matchEpsilon (P * Q) = true ↔ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
simp only [matchEpsilon]
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
⊢ (matchEpsilon P && matchEpsilon Q) = true ↔ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
constructor
[GOAL]
case nil.mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
⊢ (matchEpsilon P && matchEpsilon Q) = true → ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
intro h
[GOAL]
case nil.mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h : (matchEpsilon P && matchEpsilon Q) = true
⊢ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
refine' ⟨[], [], rfl, _⟩
[GOAL]
case nil.mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h : (matchEpsilon P && matchEpsilon Q) = true
⊢ rmatch P [] = true ∧ rmatch Q [] = true
[PROOFSTEP]
rw [rmatch, rmatch]
[GOAL]
case nil.mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h : (matchEpsilon P && matchEpsilon Q) = true
⊢ matchEpsilon P = true ∧ matchEpsilon Q = true
[PROOFSTEP]
rwa [Bool.and_coe_iff] at h
[GOAL]
case nil.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
⊢ (∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) → (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
rintro ⟨t, u, h₁, h₂⟩
[GOAL]
case nil.mpr.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
t u : List α
h₁ : [] = t ++ u
h₂ : rmatch P t = true ∧ rmatch Q u = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
cases' List.append_eq_nil.1 h₁.symm with ht hu
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
t u : List α
h₁ : [] = t ++ u
h₂ : rmatch P t = true ∧ rmatch Q u = true
ht : t = []
hu : u = []
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
subst ht
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
u : List α
hu : u = []
h₁ : [] = [] ++ u
h₂ : rmatch P [] = true ∧ rmatch Q u = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
subst hu
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h₁ : [] = [] ++ []
h₂ : rmatch P [] = true ∧ rmatch Q [] = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
repeat' rw [rmatch] at h₂
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h₁ : [] = [] ++ []
h₂ : rmatch P [] = true ∧ rmatch Q [] = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
rw [rmatch] at h₂
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h₁ : [] = [] ++ []
h₂ : matchEpsilon P = true ∧ rmatch Q [] = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
rw [rmatch] at h₂
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h₁ : [] = [] ++ []
h₂ : matchEpsilon P = true ∧ matchEpsilon Q = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
rw [rmatch] at h₂
[GOAL]
case nil.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P✝ Q✝ P Q : RegularExpression α
h₁ : [] = [] ++ []
h₂ : matchEpsilon P = true ∧ matchEpsilon Q = true
⊢ (matchEpsilon P && matchEpsilon Q) = true
[PROOFSTEP]
simp [h₂]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
⊢ rmatch (P * Q) (a :: x) = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [rmatch]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
⊢ rmatch (deriv (P * Q) a) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
simp [deriv]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
⊢ rmatch (if matchEpsilon P = true then deriv P a * Q + deriv Q a else deriv P a * Q) x = true ↔
∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
split_ifs with hepsilon
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
⊢ rmatch (deriv P a * Q + deriv Q a) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [add_rmatch_iff, ih]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true ↔
∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
constructor
[GOAL]
case pos.mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true →
∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rintro (⟨t, u, _⟩ | h)
[GOAL]
case pos.mp.inl.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
t u : List α
h✝ : x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
⊢ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
exact ⟨a :: t, u, by tauto⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
t u : List α
h✝ : x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
⊢ a :: x = a :: t ++ u ∧ rmatch P (a :: t) = true ∧ rmatch Q u = true
[PROOFSTEP]
tauto
[GOAL]
case pos.mp.inr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
h : rmatch (deriv Q a) x = true
⊢ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
exact ⟨[], a :: x, rfl, hepsilon, h⟩
[GOAL]
case pos.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
⊢ (∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) →
(∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true
[PROOFSTEP]
rintro ⟨t, u, h, hP, hQ⟩
[GOAL]
case pos.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
t u : List α
h : a :: x = t ++ u
hP : rmatch P t = true
hQ : rmatch Q u = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true
[PROOFSTEP]
cases' t with b t
[GOAL]
case pos.mpr.intro.intro.intro.intro.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
h : a :: x = [] ++ u
hP : rmatch P [] = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true
[PROOFSTEP]
right
[GOAL]
case pos.mpr.intro.intro.intro.intro.nil.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
h : a :: x = [] ++ u
hP : rmatch P [] = true
⊢ rmatch (deriv Q a) x = true
[PROOFSTEP]
rw [List.nil_append] at h
[GOAL]
case pos.mpr.intro.intro.intro.intro.nil.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
h : a :: x = u
hP : rmatch P [] = true
⊢ rmatch (deriv Q a) x = true
[PROOFSTEP]
rw [← h] at hQ
[GOAL]
case pos.mpr.intro.intro.intro.intro.nil.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q (a :: x) = true
h : a :: x = u
hP : rmatch P [] = true
⊢ rmatch (deriv Q a) x = true
[PROOFSTEP]
exact hQ
[GOAL]
case pos.mpr.intro.intro.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a :: x = b :: t ++ u
hP : rmatch P (b :: t) = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true
[PROOFSTEP]
left
[GOAL]
case pos.mpr.intro.intro.intro.intro.cons.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a :: x = b :: t ++ u
hP : rmatch P (b :: t) = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [List.cons_append, List.cons_eq_cons] at h
[GOAL]
case pos.mpr.intro.intro.intro.intro.cons.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch P (b :: t) = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
refine' ⟨t, u, h.2, _, hQ⟩
[GOAL]
case pos.mpr.intro.intro.intro.intro.cons.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch P (b :: t) = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
rw [rmatch] at hP
[GOAL]
case pos.mpr.intro.intro.intro.intro.cons.h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch (deriv P b) t = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
convert hP
[GOAL]
case h.e'_2.h.e'_3.h.e'_4
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch (deriv P b) t = true
⊢ a = b
[PROOFSTEP]
exact h.1
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
⊢ rmatch (deriv P a * Q) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [ih]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ↔
∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
constructor
[GOAL]
case neg.mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) →
∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rintro ⟨t, u, h, hP, hQ⟩
[GOAL]
case neg.mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
⊢ (∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) →
∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
rintro ⟨t, u, h, hP, hQ⟩
[GOAL]
case neg.mp.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
t u : List α
h : x = t ++ u
hP : rmatch (deriv P a) t = true
hQ : rmatch Q u = true
⊢ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
exact ⟨a :: t, u, by tauto⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
t u : List α
h : x = t ++ u
hP : rmatch (deriv P a) t = true
hQ : rmatch Q u = true
⊢ a :: x = a :: t ++ u ∧ rmatch P (a :: t) = true ∧ rmatch Q u = true
[PROOFSTEP]
tauto
[GOAL]
case neg.mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
t u : List α
h : a :: x = t ++ u
hP : rmatch P t = true
hQ : rmatch Q u = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
cases' t with b t
[GOAL]
case neg.mpr.intro.intro.intro.intro.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
h : a :: x = [] ++ u
hP : rmatch P [] = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
contradiction
[GOAL]
case neg.mpr.intro.intro.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a :: x = b :: t ++ u
hP : rmatch P (b :: t) = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [List.cons_append, List.cons_eq_cons] at h
[GOAL]
case neg.mpr.intro.intro.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch P (b :: t) = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true
[PROOFSTEP]
refine' ⟨t, u, h.2, _, hQ⟩
[GOAL]
case neg.mpr.intro.intro.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch P (b :: t) = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
rw [rmatch] at hP
[GOAL]
case neg.mpr.intro.intro.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch (deriv P b) t = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
convert hP
[GOAL]
case h.e'_2.h.e'_3.h.e'_4
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P✝ Q✝ : RegularExpression α
a : α
x : List α
ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
P Q : RegularExpression α
hepsilon : ¬matchEpsilon P = true
u : List α
hQ : rmatch Q u = true
b : α
t : List α
h : a = b ∧ x = t ++ u
hP : rmatch (deriv P b) t = true
⊢ a = b
[PROOFSTEP]
exact h.1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
have A : ∀ m n : ℕ, n < m + n + 1 := by
intro m n
convert add_lt_add_of_le_of_lt (add_le_add (zero_le m) (le_refl n)) zero_lt_one
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
⊢ ∀ (m n : ℕ), n < m + n + 1
[PROOFSTEP]
intro m n
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
m n : ℕ
⊢ n < m + n + 1
[PROOFSTEP]
convert add_lt_add_of_le_of_lt (add_le_add (zero_le m) (le_refl n)) zero_lt_one
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
m n : ℕ
⊢ n = 0 + n + 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
A : ∀ (m n : ℕ), n < m + n + 1
⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
have IH := fun t (_h : List.length t < List.length x) => star_rmatch_iff P t
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length x →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
clear star_rmatch_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length x →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length x →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ rmatch (star P) x = true → ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
cases' x with a x
[GOAL]
case mp.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length [] →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ rmatch (star P) [] = true → ∃ S, [] = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
intro _h
[GOAL]
case mp.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length [] →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
_h : rmatch (star P) [] = true
⊢ ∃ S, [] = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
use[]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length [] →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
_h : rmatch (star P) [] = true
⊢ [] = join [] ∧ ∀ (t : List α), t ∈ [] → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
dsimp
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length [] →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
_h : rmatch (star P) [] = true
⊢ [] = [] ∧ ∀ (t : List α), t ∈ [] → ¬t = [] ∧ rmatch P t = true
[PROOFSTEP]
tauto
[GOAL]
case mp.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ rmatch (star P) (a :: x) = true → ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
rw [rmatch, deriv, mul_rmatch_iff]
[GOAL]
case mp.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true) →
∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
rintro ⟨t, u, hs, ht, hu⟩
[GOAL]
case mp.cons.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hu : rmatch (star P) u = true
⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
have hwf : u.length < (List.cons a x).length :=
by
rw [hs, List.length_cons, List.length_append]
apply A
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hu : rmatch (star P) u = true
⊢ length u < length (a :: x)
[PROOFSTEP]
rw [hs, List.length_cons, List.length_append]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hu : rmatch (star P) u = true
⊢ length u < Nat.succ (length t + length u)
[PROOFSTEP]
apply A
[GOAL]
case mp.cons.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hu : rmatch (star P) u = true
hwf : length u < length (a :: x)
⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
rw [IH _ hwf] at hu
[GOAL]
case mp.cons.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hu : ∃ S, u = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
hwf : length u < length (a :: x)
⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
rcases hu with ⟨S', hsum, helem⟩
[GOAL]
case mp.cons.intro.intro.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
use(a :: t) :: S'
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ a :: x = join ((a :: t) :: S') ∧ ∀ (t_1 : List α), t_1 ∈ (a :: t) :: S' → t_1 ≠ [] ∧ rmatch P t_1 = true
[PROOFSTEP]
constructor
[GOAL]
case h.left
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ a :: x = join ((a :: t) :: S')
[PROOFSTEP]
simp [hs, hsum]
[GOAL]
case h.right
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ ∀ (t_1 : List α), t_1 ∈ (a :: t) :: S' → t_1 ≠ [] ∧ rmatch P t_1 = true
[PROOFSTEP]
intro t' ht'
[GOAL]
case h.right
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
t' : List α
ht' : t' ∈ (a :: t) :: S'
⊢ t' ≠ [] ∧ rmatch P t' = true
[PROOFSTEP]
cases ht'
[GOAL]
case h.right.head
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ a :: t ≠ [] ∧ rmatch P (a :: t) = true
case h.right.tail
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝¹ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
t' : List α
a✝ : Mem t' S'
⊢ t' ≠ [] ∧ rmatch P t' = true
[PROOFSTEP]
case head ht' =>
simp only [ne_eq, not_false_iff, true_and, rmatch]
exact ht
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
ht' b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ a :: t ≠ [] ∧ rmatch P (a :: t) = true
[PROOFSTEP]
case head ht' =>
simp only [ne_eq, not_false_iff, true_and, rmatch]
exact ht
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
ht' b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ a :: t ≠ [] ∧ rmatch P (a :: t) = true
[PROOFSTEP]
simp only [ne_eq, not_false_iff, true_and, rmatch]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
ht' b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
exact ht
[GOAL]
case h.right.tail
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝¹ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
t' : List α
a✝ : Mem t' S'
⊢ t' ≠ [] ∧ rmatch P t' = true
[PROOFSTEP]
case tail ht' => exact helem t' ht'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
t' : List α
ht' : Mem t' S'
⊢ t' ≠ [] ∧ rmatch P t' = true
[PROOFSTEP]
case tail ht' => exact helem t' ht'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t u : List α
hs : x = t ++ u
ht : rmatch (deriv P a) t = true
hwf : length u < length (a :: x)
S' : List (List α)
hsum : u = join S'
helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true
t' : List α
ht' : Mem t' S'
⊢ t' ≠ [] ∧ rmatch P t' = true
[PROOFSTEP]
exact helem t' ht'
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length x →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) → rmatch (star P) x = true
[PROOFSTEP]
rintro ⟨S, hsum, helem⟩
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
A : ∀ (m n : ℕ), n < m + n + 1
IH :
∀ (t : List α),
length t < length x →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
S : List (List α)
hsum : x = join S
helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
⊢ rmatch (star P) x = true
[PROOFSTEP]
cases' x with a x
[GOAL]
case mpr.intro.intro.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
S : List (List α)
helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
IH :
∀ (t : List α),
length t < length [] →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
hsum : [] = join S
⊢ rmatch (star P) [] = true
[PROOFSTEP]
rfl
[GOAL]
case mpr.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
S : List (List α)
helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
hsum : a :: x = join S
⊢ rmatch (star P) (a :: x) = true
[PROOFSTEP]
rw [rmatch, deriv, mul_rmatch_iff]
[GOAL]
case mpr.intro.intro.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
S : List (List α)
helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
hsum : a :: x = join S
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
cases' S with t' U
[GOAL]
case mpr.intro.intro.cons.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
helem : ∀ (t : List α), t ∈ [] → t ≠ [] ∧ rmatch P t = true
hsum : a :: x = join []
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
exact ⟨[], [], by tauto⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
helem : ∀ (t : List α), t ∈ [] → t ≠ [] ∧ rmatch P t = true
hsum : a :: x = join []
⊢ x = [] ++ [] ∧ rmatch (deriv P a) [] = true ∧ rmatch (star P) [] = true
[PROOFSTEP]
tauto
[GOAL]
case mpr.intro.intro.cons.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
t' : List α
U : List (List α)
helem : ∀ (t : List α), t ∈ t' :: U → t ≠ [] ∧ rmatch P t = true
hsum : a :: x = join (t' :: U)
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
cases' t' with b t
[GOAL]
case mpr.intro.intro.cons.cons.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
helem : ∀ (t : List α), t ∈ [] :: U → t ≠ [] ∧ rmatch P t = true
hsum : a :: x = join ([] :: U)
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
simp only [forall_eq_or_imp, List.mem_cons] at helem
[GOAL]
case mpr.intro.intro.cons.cons.nil
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
hsum : a :: x = join ([] :: U)
helem : ([] ≠ [] ∧ rmatch P [] = true) ∧ ∀ (a : List α), a ∈ U → a ≠ [] ∧ rmatch P a = true
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
simp only [eq_self_iff_true, not_true, Ne.def, false_and_iff] at helem
[GOAL]
case mpr.intro.intro.cons.cons.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a :: x = join ((b :: t) :: U)
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
simp only [List.join, List.cons_append, List.cons_eq_cons] at hsum
[GOAL]
case mpr.intro.intro.cons.cons.cons
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true
[PROOFSTEP]
refine' ⟨t, U.join, hsum.2, _, _⟩
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
specialize helem (b :: t) (by simp)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ b :: t ∈ (b :: t) :: U
[PROOFSTEP]
simp
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
hsum : a = b ∧ x = t ++ join U
helem : b :: t ≠ [] ∧ rmatch P (b :: t) = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
rw [rmatch] at helem
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
hsum : a = b ∧ x = t ++ join U
helem : b :: t ≠ [] ∧ rmatch (deriv P b) t = true
⊢ rmatch (deriv P a) t = true
[PROOFSTEP]
convert helem.2
[GOAL]
case h.e'_2.h.e'_3.h.e'_4
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
hsum : a = b ∧ x = t ++ join U
helem : b :: t ≠ [] ∧ rmatch (deriv P b) t = true
⊢ a = b
[PROOFSTEP]
exact hsum.1
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ rmatch (star P) (join U) = true
[PROOFSTEP]
have hwf : U.join.length < (List.cons a x).length :=
by
rw [hsum.1, hsum.2]
simp only [List.length_append, List.length_join, List.length]
apply A
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ length (join U) < length (a :: x)
[PROOFSTEP]
rw [hsum.1, hsum.2]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ length (join U) < length (b :: (t ++ join U))
[PROOFSTEP]
simp only [List.length_append, List.length_join, List.length]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
⊢ sum (map length U) < length t + sum (map length U) + 1
[PROOFSTEP]
apply A
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
hwf : length (join U) < length (a :: x)
⊢ rmatch (star P) (join U) = true
[PROOFSTEP]
rw [IH _ hwf]
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t : List α
helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true
hsum : a = b ∧ x = t ++ join U
hwf : length (join U) < length (a :: x)
⊢ ∃ S, join U = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true
[PROOFSTEP]
refine' ⟨U, rfl, fun t h => helem t _⟩
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t✝ : List α
helem : ∀ (t : List α), t ∈ (b :: t✝) :: U → t ≠ [] ∧ rmatch P t = true
hsum : a = b ∧ x = t✝ ++ join U
hwf : length (join U) < length (a :: x)
t : List α
h : t ∈ U
⊢ t ∈ (b :: t✝) :: U
[PROOFSTEP]
right
[GOAL]
case mpr.intro.intro.cons.cons.cons.refine'_2.a
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b✝ : α
P : RegularExpression α
A : ∀ (m n : ℕ), n < m + n + 1
a : α
x : List α
IH :
∀ (t : List α),
length t < length (a :: x) →
(rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true)
U : List (List α)
b : α
t✝ : List α
helem : ∀ (t : List α), t ∈ (b :: t✝) :: U → t ≠ [] ∧ rmatch P t = true
hsum : a = b ∧ x = t✝ ++ join U
hwf : length (join U) < length (a :: x)
t : List α
h : t ∈ U
⊢ Mem t U
[PROOFSTEP]
assumption
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
⊢ ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P : RegularExpression α
x : List α
⊢ rmatch P x = true ↔ x ∈ matches' P
[PROOFSTEP]
induction P generalizing x
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch zero x = true ↔ x ∈ matches' zero
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
all_goals
try rw [zero_def]
try rw [one_def]
try rw [plus_def]
try rw [comp_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch zero x = true ↔ x ∈ matches' zero
[PROOFSTEP]
try rw [zero_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch zero x = true ↔ x ∈ matches' zero
[PROOFSTEP]
rw [zero_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
try rw [one_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
rw [one_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
try rw [plus_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
rw [plus_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
try rw [comp_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
rw [comp_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon
[PROOFSTEP]
try rw [zero_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon
[PROOFSTEP]
rw [zero_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon
[PROOFSTEP]
try rw [one_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon
[PROOFSTEP]
rw [one_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
[PROOFSTEP]
try rw [plus_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
[PROOFSTEP]
rw [plus_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
[PROOFSTEP]
try rw [comp_def]
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
[PROOFSTEP]
rw [comp_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
try rw [zero_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
rw [zero_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
try rw [one_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
rw [one_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
try rw [plus_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
rw [plus_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
try rw [comp_def]
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
rw [comp_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
[PROOFSTEP]
try rw [zero_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
[PROOFSTEP]
rw [zero_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
[PROOFSTEP]
try rw [one_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
[PROOFSTEP]
rw [one_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
[PROOFSTEP]
try rw [plus_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝)
[PROOFSTEP]
rw [plus_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
[PROOFSTEP]
try rw [comp_def]
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
[PROOFSTEP]
rw [comp_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
try rw [zero_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
rw [zero_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
try rw [one_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
rw [one_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
try rw [plus_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
rw [plus_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
try rw [comp_def]
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝)
[PROOFSTEP]
rw [comp_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
try rw [zero_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
rw [zero_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
try rw [one_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
rw [one_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
try rw [plus_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
rw [plus_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
try rw [comp_def]
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
rw [comp_def]
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝)
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case zero =>
rw [zero_rmatch]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
case zero =>
rw [zero_rmatch]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 0 x = true ↔ x ∈ matches' 0
[PROOFSTEP]
rw [zero_rmatch]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ false = true ↔ x ∈ matches' 0
[PROOFSTEP]
tauto
[GOAL]
case epsilon
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝)
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case epsilon =>
rw [one_rmatch_iff]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
[PROOFSTEP]
case epsilon =>
rw [one_rmatch_iff]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ rmatch 1 x = true ↔ x ∈ matches' 1
[PROOFSTEP]
rw [one_rmatch_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
x : List α
⊢ x = [] ↔ x ∈ matches' 1
[PROOFSTEP]
rfl
[GOAL]
case char
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝)
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case char =>
rw [char_rmatch_iff]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
case char =>
rw [char_rmatch_iff]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
rw [char_rmatch_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b a✝ : α
x : List α
⊢ x = [a✝] ↔ x ∈ matches' (char a✝)
[PROOFSTEP]
rfl
[GOAL]
case plus
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝)
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case plus _ _ ih₁ ih₂ =>
rw [add_rmatch_iff, ih₁, ih₂]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
ih₁ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
ih₂ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
[PROOFSTEP]
case plus _ _ ih₁ ih₂ =>
rw [add_rmatch_iff, ih₁, ih₂]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
ih₁ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
ih₂ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝)
[PROOFSTEP]
rw [add_rmatch_iff, ih₁, ih₂]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
ih₁ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
ih₂ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ x ∈ matches' a✝¹ ∨ x ∈ matches' a✝ ↔ x ∈ matches' (a✝¹ + a✝)
[PROOFSTEP]
rfl
[GOAL]
case comp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝¹ a✝ : RegularExpression α
a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝)
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case comp P Q ih₁
ih₂ =>
simp only [mul_rmatch_iff, comp_def, Language.mul_def, exists_and_left, Set.mem_image2, Set.image_prod]
constructor
· rintro ⟨x, y, hsum, hmatch₁, hmatch₂⟩
rw [ih₁] at hmatch₁
rw [ih₂] at hmatch₂
exact ⟨x, y, hmatch₁, hmatch₂, hsum.symm⟩
· rintro ⟨x, y, hmatch₁, hmatch₂, hsum⟩
rw [← ih₁] at hmatch₁
rw [← ih₂] at hmatch₂
exact ⟨x, y, hsum.symm, hmatch₁, hmatch₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x : List α
⊢ rmatch (P * Q) x = true ↔ x ∈ matches' (P * Q)
[PROOFSTEP]
case comp P Q ih₁
ih₂ =>
simp only [mul_rmatch_iff, comp_def, Language.mul_def, exists_and_left, Set.mem_image2, Set.image_prod]
constructor
· rintro ⟨x, y, hsum, hmatch₁, hmatch₂⟩
rw [ih₁] at hmatch₁
rw [ih₂] at hmatch₂
exact ⟨x, y, hmatch₁, hmatch₂, hsum.symm⟩
· rintro ⟨x, y, hmatch₁, hmatch₂, hsum⟩
rw [← ih₁] at hmatch₁
rw [← ih₂] at hmatch₂
exact ⟨x, y, hsum.symm, hmatch₁, hmatch₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x : List α
⊢ rmatch (P * Q) x = true ↔ x ∈ matches' (P * Q)
[PROOFSTEP]
simp only [mul_rmatch_iff, comp_def, Language.mul_def, exists_and_left, Set.mem_image2, Set.image_prod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x : List α
⊢ (∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) ↔ x ∈ matches' (P * Q)
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x : List α
⊢ (∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) → x ∈ matches' (P * Q)
[PROOFSTEP]
rintro ⟨x, y, hsum, hmatch₁, hmatch₂⟩
[GOAL]
case mp.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x✝ x y : List α
hsum : x✝ = x ++ y
hmatch₁ : rmatch P x = true
hmatch₂ : rmatch Q y = true
⊢ x✝ ∈ matches' (P * Q)
[PROOFSTEP]
rw [ih₁] at hmatch₁
[GOAL]
case mp.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x✝ x y : List α
hsum : x✝ = x ++ y
hmatch₁ : x ∈ matches' P
hmatch₂ : rmatch Q y = true
⊢ x✝ ∈ matches' (P * Q)
[PROOFSTEP]
rw [ih₂] at hmatch₂
[GOAL]
case mp.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x✝ x y : List α
hsum : x✝ = x ++ y
hmatch₁ : x ∈ matches' P
hmatch₂ : y ∈ matches' Q
⊢ x✝ ∈ matches' (P * Q)
[PROOFSTEP]
exact ⟨x, y, hmatch₁, hmatch₂, hsum.symm⟩
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x : List α
⊢ x ∈ matches' (P * Q) → ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rintro ⟨x, y, hmatch₁, hmatch₂, hsum⟩
[GOAL]
case mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x✝ x y : List α
hmatch₁ : x ∈ matches' P
hmatch₂ : y ∈ matches' Q
hsum : (fun x x_1 => x ++ x_1) x y = x✝
⊢ ∃ t u, x✝ = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [← ih₁] at hmatch₁
[GOAL]
case mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x✝ x y : List α
hmatch₁ : rmatch P x = true
hmatch₂ : y ∈ matches' Q
hsum : (fun x x_1 => x ++ x_1) x y = x✝
⊢ ∃ t u, x✝ = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
rw [← ih₂] at hmatch₂
[GOAL]
case mpr.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
P Q : RegularExpression α
ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P
ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q
x✝ x y : List α
hmatch₁ : rmatch P x = true
hmatch₂ : rmatch Q y = true
hsum : (fun x x_1 => x ++ x_1) x y = x✝
⊢ ∃ t u, x✝ = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true
[PROOFSTEP]
exact ⟨x, y, hsum.symm, hmatch₁, hmatch₂⟩
[GOAL]
case star
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case star _ ih =>
rw [star_rmatch_iff]
simp only [ne_eq, matches', Language.kstar_def_nonempty, mem_setOf_eq]
constructor
all_goals
rintro ⟨S, hx, hS⟩
refine' ⟨S, hx, _⟩
intro y
specialize hS y
· rw [← ih y]
tauto
· rw [ih y]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
case star _ ih =>
rw [star_rmatch_iff]
simp only [ne_eq, matches', Language.kstar_def_nonempty, mem_setOf_eq]
constructor
all_goals
rintro ⟨S, hx, hS⟩
refine' ⟨S, hx, _⟩
intro y
specialize hS y
· rw [← ih y]
tauto
· rw [ih y]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
rw [star_rmatch_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch a✝ t = true) ↔ x ∈ matches' (star a✝)
[PROOFSTEP]
simp only [ne_eq, matches', Language.kstar_def_nonempty, mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true) ↔
x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []}
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true) →
x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []}
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} →
∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
[PROOFSTEP]
all_goals
rintro ⟨S, hx, hS⟩
refine' ⟨S, hx, _⟩
intro y
specialize hS y
[GOAL]
case mp
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true) →
x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []}
[PROOFSTEP]
rintro ⟨S, hx, hS⟩
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
hS : ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []}
[PROOFSTEP]
refine' ⟨S, hx, _⟩
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
hS : ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
⊢ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
[PROOFSTEP]
intro y
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
hS : ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
y : List α
⊢ y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
[PROOFSTEP]
specialize hS y
[GOAL]
case mpr
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} →
∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
[PROOFSTEP]
rintro ⟨S, hx, hS⟩
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
hS : ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
⊢ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
[PROOFSTEP]
refine' ⟨S, hx, _⟩
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
hS : ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
⊢ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true
[PROOFSTEP]
intro y
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
hS : ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
y : List α
⊢ y ∈ S → ¬y = [] ∧ rmatch a✝ y = true
[PROOFSTEP]
specialize hS y
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
y : List α
hS : y ∈ S → ¬y = [] ∧ rmatch a✝ y = true
⊢ y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
[PROOFSTEP]
rw [← ih y]
[GOAL]
case mp.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
y : List α
hS : y ∈ S → ¬y = [] ∧ rmatch a✝ y = true
⊢ y ∈ S → rmatch a✝ y = true ∧ ¬y = []
[PROOFSTEP]
tauto
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
y : List α
hS : y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
⊢ y ∈ S → ¬y = [] ∧ rmatch a✝ y = true
[PROOFSTEP]
rw [ih y]
[GOAL]
case mpr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
a✝ : RegularExpression α
ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝
x : List α
S : List (List α)
hx : x = join S
y : List α
hS : y ∈ S → y ∈ matches' a✝ ∧ ¬y = []
⊢ y ∈ S → ¬y = [] ∧ y ∈ matches' a✝
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
P : RegularExpression α
⊢ map f (P ^ 0) = map f P ^ 0
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
P : RegularExpression α
⊢ 1 = map f P ^ 0
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
R S : RegularExpression α
⊢ map id (R + S) = R + S
[PROOFSTEP]
simp_rw [map, map_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
R S : RegularExpression α
⊢ map id (R * S) = R * S
[PROOFSTEP]
simp_rw [map, map_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
R : RegularExpression α
⊢ map id (star R) = star R
[PROOFSTEP]
simp_rw [map, map_id]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
g : β → γ
f : α → β
R S : RegularExpression α
⊢ map g (map f (R + S)) = map (g ∘ f) (R + S)
[PROOFSTEP]
simp only [map, Function.comp_apply, map_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
g : β → γ
f : α → β
R S : RegularExpression α
⊢ map g (map f (R * S)) = map (g ∘ f) (R * S)
[PROOFSTEP]
simp only [map, Function.comp_apply, map_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
g : β → γ
f : α → β
R : RegularExpression α
⊢ map g (map f (star R)) = map (g ∘ f) (star R)
[PROOFSTEP]
simp only [map, Function.comp_apply, map_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
f : α → β
a : α
⊢ matches' (map f (char a)) = ↑(Language.map f) (matches' (char a))
[PROOFSTEP]
rw [eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a✝ b : α
f : α → β
a : α
⊢ ↑(Language.map f) (matches' (char a)) = matches' (map f (char a))
[PROOFSTEP]
exact image_singleton
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R S : RegularExpression α
⊢ matches' (map f (R + S)) = ↑(Language.map f) (matches' (R + S))
[PROOFSTEP]
simp only [matches'_map, map, matches'_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R S : RegularExpression α
⊢ ↑(Language.map f) (matches' R) + ↑(Language.map f) (matches' S) = ↑(Language.map f) (matches' R + matches' S)
[PROOFSTEP]
rw [map_add]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R S : RegularExpression α
⊢ matches' (map f (R * S)) = ↑(Language.map f) (matches' (R * S))
[PROOFSTEP]
simp only [matches'_map, map, matches'_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R S : RegularExpression α
⊢ ↑(Language.map f) (matches' R) * ↑(Language.map f) (matches' S) = ↑(Language.map f) (matches' R * matches' S)
[PROOFSTEP]
rw [map_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R : RegularExpression α
⊢ matches' (map f (star R)) = ↑(Language.map f) (matches' (star R))
[PROOFSTEP]
simp_rw [map, matches', matches'_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R : RegularExpression α
⊢ (↑(Language.map f) (matches' R))∗ = ↑(Language.map f) (matches' R)∗
[PROOFSTEP]
rw [Language.kstar_eq_iSup_pow, Language.kstar_eq_iSup_pow]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R : RegularExpression α
⊢ ⨆ (i : ℕ), ↑(Language.map f) (matches' R) ^ i = ↑(Language.map f) (⨆ (i : ℕ), matches' R ^ i)
[PROOFSTEP]
simp_rw [← map_pow]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
dec : DecidableEq α
a b : α
f : α → β
R : RegularExpression α
⊢ ⨆ (i : ℕ), ↑(Language.map f) (matches' R ^ i) = ↑(Language.map f) (⨆ (i : ℕ), matches' R ^ i)
[PROOFSTEP]
exact image_iUnion.symm
| {"mathlib_filename": "Mathlib.Computability.RegularExpressions", "llama_tokens": 46594} |
{"mathlib_filename": "Mathlib.Probability.Notation", "llama_tokens": 0} |
|
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : Preorder ι
u✝ v : ι → Ω → β
f : Filtration ι m
inst✝¹ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝ : BorelSpace β
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
⊢ Adapted (natural u hum) u
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : Preorder ι
u✝ v : ι → Ω → β
f : Filtration ι m
inst✝¹ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝ : BorelSpace β
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
i : ι
⊢ StronglyMeasurable (u i)
[PROOFSTEP]
refine' StronglyMeasurable.mono _ (le_iSup₂_of_le i (le_refl i) le_rfl)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : Preorder ι
u✝ v : ι → Ω → β
f : Filtration ι m
inst✝¹ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝ : BorelSpace β
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
i : ι
⊢ StronglyMeasurable (u i)
[PROOFSTEP]
rw [stronglyMeasurable_iff_measurable_separable]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : Preorder ι
u✝ v : ι → Ω → β
f : Filtration ι m
inst✝¹ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝ : BorelSpace β
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
i : ι
⊢ Measurable (u i) ∧ IsSeparable (Set.range (u i))
[PROOFSTEP]
exact ⟨measurable_iff_comap_le.2 le_rfl, (hum i).isSeparable_range⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : TopologicalSpace β
inst✝¹ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝ : MeasurableSpace ι
h : ProgMeasurable f u
⊢ Adapted f u
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : TopologicalSpace β
inst✝¹ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝ : MeasurableSpace ι
h : ProgMeasurable f u
i : ι
⊢ StronglyMeasurable (u i)
[PROOFSTEP]
have : u i = (fun p : Set.Iic i × Ω => u p.1 p.2) ∘ fun x => (⟨i, Set.mem_Iic.mpr le_rfl⟩, x) := rfl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : TopologicalSpace β
inst✝¹ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝ : MeasurableSpace ι
h : ProgMeasurable f u
i : ι
this : u i = (fun p => u (↑p.fst) p.snd) ∘ fun x => ({ val := i, property := (_ : i ∈ Set.Iic i) }, x)
⊢ StronglyMeasurable (u i)
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : TopologicalSpace β
inst✝¹ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝ : MeasurableSpace ι
h : ProgMeasurable f u
i : ι
this : u i = (fun p => u (↑p.fst) p.snd) ∘ fun x => ({ val := i, property := (_ : i ∈ Set.Iic i) }, x)
⊢ StronglyMeasurable ((fun p => u (↑p.fst) p.snd) ∘ fun x => ({ val := i, property := (_ : i ∈ Set.Iic i) }, x))
[PROOFSTEP]
exact (h i).comp_measurable measurable_prod_mk_left
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝³ : MeasurableSpace ι
t : ι → Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : BorelSpace ι
inst✝ : MetrizableSpace ι
h : ProgMeasurable f u
ht : ProgMeasurable f t
ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i
⊢ ProgMeasurable f fun i ω => u (t i ω) ω
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝³ : MeasurableSpace ι
t : ι → Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : BorelSpace ι
inst✝ : MetrizableSpace ι
h : ProgMeasurable f u
ht : ProgMeasurable f t
ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i
i : ι
⊢ StronglyMeasurable fun p => (fun i ω => u (t i ω) ω) (↑p.fst) p.snd
[PROOFSTEP]
have :
(fun p : ↥(Set.Iic i) × Ω => u (t (p.fst : ι) p.snd) p.snd) =
(fun p : ↥(Set.Iic i) × Ω => u (p.fst : ι) p.snd) ∘ fun p : ↥(Set.Iic i) × Ω =>
(⟨t (p.fst : ι) p.snd, Set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd) :=
rfl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝³ : MeasurableSpace ι
t : ι → Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : BorelSpace ι
inst✝ : MetrizableSpace ι
h : ProgMeasurable f u
ht : ProgMeasurable f t
ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i
i : ι
this :
(fun p => u (t (↑p.fst) p.snd) p.snd) =
(fun p => u (↑p.fst) p.snd) ∘ fun p =>
({ val := t (↑p.fst) p.snd, property := (_ : t (↑p.fst) p.snd ∈ Set.Iic i) }, p.snd)
⊢ StronglyMeasurable fun p => (fun i ω => u (t i ω) ω) (↑p.fst) p.snd
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝³ : MeasurableSpace ι
t : ι → Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : BorelSpace ι
inst✝ : MetrizableSpace ι
h : ProgMeasurable f u
ht : ProgMeasurable f t
ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i
i : ι
this :
(fun p => u (t (↑p.fst) p.snd) p.snd) =
(fun p => u (↑p.fst) p.snd) ∘ fun p =>
({ val := t (↑p.fst) p.snd, property := (_ : t (↑p.fst) p.snd ∈ Set.Iic i) }, p.snd)
⊢ StronglyMeasurable
((fun p => u (↑p.fst) p.snd) ∘ fun p =>
({ val := t (↑p.fst) p.snd, property := (_ : t (↑p.fst) p.snd ∈ Set.Iic i) }, p.snd))
[PROOFSTEP]
exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁴ : TopologicalSpace β
inst✝³ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝² : MeasurableSpace ι
γ : Type u_4
inst✝¹ : CommMonoid β
inst✝ : ContinuousMul β
U : γ → ι → Ω → β
s : Finset γ
h : ∀ (c : γ), c ∈ s → ProgMeasurable f (U c)
⊢ ProgMeasurable f fun i a => ∏ c in s, U c i a
[PROOFSTEP]
convert ProgMeasurable.finset_prod' h using 1
[GOAL]
case h.e'_9
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁴ : TopologicalSpace β
inst✝³ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝² : MeasurableSpace ι
γ : Type u_4
inst✝¹ : CommMonoid β
inst✝ : ContinuousMul β
U : γ → ι → Ω → β
s : Finset γ
h : ∀ (c : γ), c ∈ s → ProgMeasurable f (U c)
⊢ (fun i a => ∏ c in s, U c i a) = ∏ c in s, U c
[PROOFSTEP]
ext (i a)
[GOAL]
case h.e'_9.h.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁴ : TopologicalSpace β
inst✝³ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
inst✝² : MeasurableSpace ι
γ : Type u_4
inst✝¹ : CommMonoid β
inst✝ : ContinuousMul β
U : γ → ι → Ω → β
s : Finset γ
h : ∀ (c : γ), c ∈ s → ProgMeasurable f (U c)
i : ι
a : Ω
⊢ ∏ c in s, U c i a = Finset.prod s (fun c => U c) i a
[PROOFSTEP]
simp only [Finset.prod_apply]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
h_tendsto : Tendsto U fltr (𝓝 u)
⊢ ProgMeasurable f u
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
h_tendsto : Tendsto U fltr (𝓝 u)
i : ι
⊢ StronglyMeasurable fun p => u (↑p.fst) p.snd
[PROOFSTEP]
apply @stronglyMeasurable_of_tendsto (Set.Iic i × Ω) β γ (MeasurableSpace.prod _ (f i)) _ _ fltr _ _ _ _ fun l => h l i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
h_tendsto : Tendsto U fltr (𝓝 u)
i : ι
⊢ Tendsto (fun l p => U l (↑p.fst) p.snd) fltr (𝓝 fun p => u (↑p.fst) p.snd)
[PROOFSTEP]
rw [tendsto_pi_nhds] at h_tendsto ⊢
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
h_tendsto : ∀ (x : ι), Tendsto (fun i => U i x) fltr (𝓝 (u x))
i : ι
⊢ ∀ (x : ↑(Set.Iic i) × Ω), Tendsto (fun i_1 => U i_1 (↑x.fst) x.snd) fltr (𝓝 (u (↑x.fst) x.snd))
[PROOFSTEP]
intro x
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
h_tendsto : ∀ (x : ι), Tendsto (fun i => U i x) fltr (𝓝 (u x))
i : ι
x : ↑(Set.Iic i) × Ω
⊢ Tendsto (fun i_1 => U i_1 (↑x.fst) x.snd) fltr (𝓝 (u (↑x.fst) x.snd))
[PROOFSTEP]
specialize h_tendsto x.fst
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
i : ι
x : ↑(Set.Iic i) × Ω
h_tendsto : Tendsto (fun i_1 => U i_1 ↑x.fst) fltr (𝓝 (u ↑x.fst))
⊢ Tendsto (fun i_1 => U i_1 (↑x.fst) x.snd) fltr (𝓝 (u (↑x.fst) x.snd))
[PROOFSTEP]
rw [tendsto_nhds] at h_tendsto ⊢
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : Preorder ι
u v : ι → Ω → β
f : Filtration ι m
γ : Type u_4
inst✝³ : MeasurableSpace ι
inst✝² : PseudoMetrizableSpace β
fltr : Filter γ
inst✝¹ : NeBot fltr
inst✝ : IsCountablyGenerated fltr
U : γ → ι → Ω → β
h : ∀ (l : γ), ProgMeasurable f (U l)
i : ι
x : ↑(Set.Iic i) × Ω
h_tendsto : ∀ (s : Set (Ω → β)), IsOpen s → u ↑x.fst ∈ s → (fun i_1 => U i_1 ↑x.fst) ⁻¹' s ∈ fltr
⊢ ∀ (s : Set β), IsOpen s → u (↑x.fst) x.snd ∈ s → (fun i_1 => U i_1 (↑x.fst) x.snd) ⁻¹' s ∈ fltr
[PROOFSTEP]
exact fun s hs h_mem => h_tendsto {g | g x.snd ∈ s} (hs.preimage (continuous_apply x.snd)) h_mem
| {"mathlib_filename": "Mathlib.Probability.Process.Adapted", "llama_tokens": 5596} |
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ
[PROOFSTEP]
by_cases hfint : Integrable f μ
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Integrable f
⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ
case neg
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : ¬Integrable f
⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ
[PROOFSTEP]
swap
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : ¬Integrable f
⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ
[PROOFSTEP]
rw [condexp_undef hfint, integral_undef hfint]
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : ¬Integrable f
⊢ 0 =ᵐ[μ] fun x => 0
[PROOFSTEP]
rfl
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Integrable f
⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ
[PROOFSTEP]
refine'
(ae_eq_condexp_of_forall_set_integral_eq hle₂ hfint (fun s _ hs => integrableOn_const.2 (Or.inr hs))
(fun s hms hs => _) stronglyMeasurable_const.aeStronglyMeasurable').symm
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Integrable f
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ ∫ (x : Ω) in s, ∫ (x : Ω), f x ∂μ ∂μ = ∫ (x : Ω) in s, f x ∂μ
[PROOFSTEP]
rw [set_integral_const]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Integrable f
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ
[PROOFSTEP]
rw [← memℒp_one_iff_integrable] at hfint
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ
[PROOFSTEP]
refine' Memℒp.induction_stronglyMeasurable hle₁ ENNReal.one_ne_top _ _ _ _ hfint _
[GOAL]
case pos.refine'_1
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ AEStronglyMeasurable' m₁ f μ
[PROOFSTEP]
exact ⟨f, hf, EventuallyEq.rfl⟩
[GOAL]
case pos.refine'_2
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ ∀ (c : E) ⦃s_1 : Set Ω⦄,
MeasurableSet s_1 →
↑↑μ s_1 < ⊤ →
ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), Set.indicator s_1 (fun x => c) x ∂μ =
∫ (x : Ω) in s, Set.indicator s_1 (fun x => c) x ∂μ
[PROOFSTEP]
intro c t hmt _
[GOAL]
case pos.refine'_2
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
c : E
t : Set Ω
hmt : MeasurableSet t
a✝ : ↑↑μ t < ⊤
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), Set.indicator t (fun x => c) x ∂μ =
∫ (x : Ω) in s, Set.indicator t (fun x => c) x ∂μ
[PROOFSTEP]
rw [Indep_iff] at hindp
[GOAL]
case pos.refine'_2
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
c : E
t : Set Ω
hmt : MeasurableSet t
a✝ : ↑↑μ t < ⊤
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), Set.indicator t (fun x => c) x ∂μ =
∫ (x : Ω) in s, Set.indicator t (fun x => c) x ∂μ
[PROOFSTEP]
rw [integral_indicator (hle₁ _ hmt), set_integral_const, smul_smul, ← ENNReal.toReal_mul, mul_comm, ← hindp _ _ hmt hms,
set_integral_indicator (hle₁ _ hmt), set_integral_const, Set.inter_comm]
[GOAL]
case pos.refine'_3
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ ∀ ⦃f g : Ω → E⦄,
Disjoint (Function.support f) (Function.support g) →
Memℒp f 1 →
Memℒp g 1 →
StronglyMeasurable f →
StronglyMeasurable g →
ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ →
ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), g x ∂μ = ∫ (x : Ω) in s, g x ∂μ →
ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), (f + g) x ∂μ = ∫ (x : Ω) in s, (f + g) x ∂μ
[PROOFSTEP]
intro u v _ huint hvint hu hv hu_eq hv_eq
[GOAL]
case pos.refine'_3
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
u v : Ω → E
a✝ : Disjoint (Function.support u) (Function.support v)
huint : Memℒp u 1
hvint : Memℒp v 1
hu : StronglyMeasurable u
hv : StronglyMeasurable v
hu_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ
hv_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), v x ∂μ = ∫ (x : Ω) in s, v x ∂μ
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), (u + v) x ∂μ = ∫ (x : Ω) in s, (u + v) x ∂μ
[PROOFSTEP]
rw [memℒp_one_iff_integrable] at huint hvint
[GOAL]
case pos.refine'_3
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
u v : Ω → E
a✝ : Disjoint (Function.support u) (Function.support v)
huint : Integrable u
hvint : Integrable v
hu : StronglyMeasurable u
hv : StronglyMeasurable v
hu_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ
hv_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), v x ∂μ = ∫ (x : Ω) in s, v x ∂μ
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), (u + v) x ∂μ = ∫ (x : Ω) in s, (u + v) x ∂μ
[PROOFSTEP]
rw [integral_add' huint hvint, smul_add, hu_eq, hv_eq, integral_add' huint.integrableOn hvint.integrableOn]
[GOAL]
case pos.refine'_4
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ IsClosed {f | ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), ↑↑↑f x ∂μ = ∫ (x : Ω) in s, ↑↑↑f x ∂μ}
[PROOFSTEP]
have heq₁ :
(fun f : lpMeas E ℝ m₁ 1 μ => ∫ x, (f : Ω → E) x ∂μ) = (fun f : Lp E 1 μ => ∫ x, f x ∂μ) ∘ Submodule.subtypeL _ :=
by
refine' funext fun f => integral_congr_ae _
simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype]; norm_cast
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
[PROOFSTEP]
refine' funext fun f => integral_congr_ae _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f✝
hindp : Indep m₁ m₂
hfint : Memℒp f✝ 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
f : { x // x ∈ lpMeas E ℝ m₁ 1 μ }
⊢ (fun x => ↑↑↑f x) =ᵐ[μ] fun x => ↑↑(↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f) x
[PROOFSTEP]
simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f✝
hindp : Indep m₁ m₂
hfint : Memℒp f✝ 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
f : { x // x ∈ lpMeas E ℝ m₁ 1 μ }
⊢ (fun x => ↑↑↑f x) =ᵐ[μ] fun x => ↑↑↑f x
[PROOFSTEP]
norm_cast
[GOAL]
case pos.refine'_4
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ IsClosed {f | ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), ↑↑↑f x ∂μ = ∫ (x : Ω) in s, ↑↑↑f x ∂μ}
[PROOFSTEP]
have heq₂ :
(fun f : lpMeas E ℝ m₁ 1 μ => ∫ x in s, (f : Ω → E) x ∂μ) =
(fun f : Lp E 1 μ => ∫ x in s, f x ∂μ) ∘ Submodule.subtypeL _ :=
by
refine' funext fun f => integral_congr_ae (ae_restrict_of_ae _)
simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype]
exact eventually_of_forall fun _ => (by trivial)
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
[PROOFSTEP]
refine' funext fun f => integral_congr_ae (ae_restrict_of_ae _)
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f✝
hindp : Indep m₁ m₂
hfint : Memℒp f✝ 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
f : { x // x ∈ lpMeas E ℝ m₁ 1 μ }
⊢ ∀ᵐ (x : Ω) ∂μ, (fun x => ↑↑↑f x) x = (fun x => ↑↑(↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f) x) x
[PROOFSTEP]
simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f✝
hindp : Indep m₁ m₂
hfint : Memℒp f✝ 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
f : { x // x ∈ lpMeas E ℝ m₁ 1 μ }
⊢ ∀ᵐ (x : Ω) ∂μ, True
[PROOFSTEP]
exact eventually_of_forall fun _ => (by trivial)
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f✝
hindp : Indep m₁ m₂
hfint : Memℒp f✝ 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
f : { x // x ∈ lpMeas E ℝ m₁ 1 μ }
x✝ : Ω
⊢ True
[PROOFSTEP]
trivial
[GOAL]
case pos.refine'_4
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
heq₂ :
(fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ IsClosed {f | ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), ↑↑↑f x ∂μ = ∫ (x : Ω) in s, ↑↑↑f x ∂μ}
[PROOFSTEP]
refine' isClosed_eq (Continuous.const_smul _ _) _
[GOAL]
case pos.refine'_4.refine'_1
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
heq₂ :
(fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ Continuous fun f => ∫ (x : Ω), ↑↑↑f x ∂μ
[PROOFSTEP]
rw [heq₁]
[GOAL]
case pos.refine'_4.refine'_1
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
heq₂ :
(fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ Continuous ((fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)))
[PROOFSTEP]
exact continuous_integral.comp (ContinuousLinearMap.continuous _)
[GOAL]
case pos.refine'_4.refine'_2
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
heq₂ :
(fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ Continuous fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ
[PROOFSTEP]
rw [heq₂]
[GOAL]
case pos.refine'_4.refine'_2
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
heq₂ :
(fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))
⊢ Continuous ((fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)))
[PROOFSTEP]
exact (continuous_set_integral _).comp (ContinuousLinearMap.continuous _)
[GOAL]
case pos.refine'_5
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
⊢ ∀ ⦃f g : Ω → E⦄,
f =ᵐ[μ] g →
Memℒp f 1 →
ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ →
ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), g x ∂μ = ∫ (x : Ω) in s, g x ∂μ
[PROOFSTEP]
intro u v huv _ hueq
[GOAL]
case pos.refine'_5
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
u v : Ω → E
huv : u =ᵐ[μ] v
a✝ : Memℒp u 1
hueq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ
⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), v x ∂μ = ∫ (x : Ω) in s, v x ∂μ
[PROOFSTEP]
rwa [← integral_congr_ae huv, ← (set_integral_congr_ae (hle₂ _ hms) _ : ∫ x in s, u x ∂μ = ∫ x in s, v x ∂μ)]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
m₁ m₂ m : MeasurableSpace Ω
μ : Measure Ω
f : Ω → E
hle₁ : m₁ ≤ m
hle₂ : m₂ ≤ m
inst✝ : SigmaFinite (Measure.trim μ hle₂)
hf : StronglyMeasurable f
hindp : Indep m₁ m₂
hfint : Memℒp f 1
s : Set Ω
hms : MeasurableSet s
hs : ↑↑μ s < ⊤
u v : Ω → E
huv : u =ᵐ[μ] v
a✝ : Memℒp u 1
hueq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ
⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ s → u x = v x
[PROOFSTEP]
filter_upwards [huv] with x hx _ using hx
| {"mathlib_filename": "Mathlib.Probability.ConditionalExpectation", "llama_tokens": 10870} |
[GOAL]
μ : Measure ℝ
inst✝ : IsProbabilityMeasure μ
x : ℝ
⊢ ENNReal.ofReal (↑(cdf μ) x) = ↑↑μ (Iic x)
[PROOFSTEP]
have h := lintegral_condCdf ((Measure.dirac Unit.unit).prod μ) x
[GOAL]
μ : Measure ℝ
inst✝ : IsProbabilityMeasure μ
x : ℝ
h :
∫⁻ (a : Unit),
ENNReal.ofReal
(↑(condCdf (Measure.prod (Measure.dirac ()) μ) a) x) ∂Measure.fst (Measure.prod (Measure.dirac ()) μ) =
↑↑(Measure.prod (Measure.dirac ()) μ) (univ ×ˢ Iic x)
⊢ ENNReal.ofReal (↑(cdf μ) x) = ↑↑μ (Iic x)
[PROOFSTEP]
simpa only [MeasureTheory.Measure.fst_prod, Measure.prod_prod, measure_univ, one_mul, lintegral_dirac] using h
[GOAL]
μ : Measure ℝ
inst✝ : IsProbabilityMeasure μ
x : ℝ
⊢ ↑(cdf μ) x = ENNReal.toReal (↑↑μ (Iic x))
[PROOFSTEP]
rw [← ofReal_cdf μ x, ENNReal.toReal_ofReal (cdf_nonneg μ x)]
[GOAL]
μ : Measure ℝ
⊢ IsProbabilityMeasure (StieltjesFunction.measure (cdf μ))
[PROOFSTEP]
constructor
[GOAL]
case measure_univ
μ : Measure ℝ
⊢ ↑↑(StieltjesFunction.measure (cdf μ)) univ = 1
[PROOFSTEP]
simp only [StieltjesFunction.measure_univ _ (tendsto_cdf_atBot μ) (tendsto_cdf_atTop μ), sub_zero, ENNReal.ofReal_one]
[GOAL]
μ : Measure ℝ
inst✝ : IsProbabilityMeasure μ
⊢ StieltjesFunction.measure (cdf μ) = μ
[PROOFSTEP]
refine Measure.ext_of_Iic (cdf μ).measure μ (fun a ↦ ?_)
[GOAL]
μ : Measure ℝ
inst✝ : IsProbabilityMeasure μ
a : ℝ
⊢ ↑↑(StieltjesFunction.measure (cdf μ)) (Iic a) = ↑↑μ (Iic a)
[PROOFSTEP]
rw [StieltjesFunction.measure_Iic _ (tendsto_cdf_atBot μ), sub_zero, ofReal_cdf]
[GOAL]
f : StieltjesFunction
hf0 : Tendsto (↑f) atBot (𝓝 0)
hf1 : Tendsto (↑f) atTop (𝓝 1)
⊢ cdf (StieltjesFunction.measure f) = f
[PROOFSTEP]
refine (cdf f.measure).eq_of_measure_of_tendsto_atBot f ?_ (tendsto_cdf_atBot _) hf0
[GOAL]
f : StieltjesFunction
hf0 : Tendsto (↑f) atBot (𝓝 0)
hf1 : Tendsto (↑f) atTop (𝓝 1)
⊢ StieltjesFunction.measure (cdf (StieltjesFunction.measure f)) = StieltjesFunction.measure f
[PROOFSTEP]
have h_prob : IsProbabilityMeasure f.measure := ⟨by rw [f.measure_univ hf0 hf1, sub_zero, ENNReal.ofReal_one]⟩
[GOAL]
f : StieltjesFunction
hf0 : Tendsto (↑f) atBot (𝓝 0)
hf1 : Tendsto (↑f) atTop (𝓝 1)
⊢ ↑↑(StieltjesFunction.measure f) univ = 1
[PROOFSTEP]
rw [f.measure_univ hf0 hf1, sub_zero, ENNReal.ofReal_one]
[GOAL]
f : StieltjesFunction
hf0 : Tendsto (↑f) atBot (𝓝 0)
hf1 : Tendsto (↑f) atTop (𝓝 1)
h_prob : IsProbabilityMeasure (StieltjesFunction.measure f)
⊢ StieltjesFunction.measure (cdf (StieltjesFunction.measure f)) = StieltjesFunction.measure f
[PROOFSTEP]
exact measure_cdf f.measure
[GOAL]
μ ν : Measure ℝ
inst✝¹ : IsProbabilityMeasure μ
inst✝ : IsProbabilityMeasure ν
h : cdf μ = cdf ν
⊢ μ = ν
[PROOFSTEP]
rw [← measure_cdf μ, ← measure_cdf ν, h]
[GOAL]
μ ν : Measure ℝ
inst✝¹ : IsProbabilityMeasure μ
inst✝ : IsProbabilityMeasure ν
h : μ = ν
⊢ cdf μ = cdf ν
[PROOFSTEP]
rw [h]
| {"mathlib_filename": "Mathlib.Probability.Cdf", "llama_tokens": 1371} |
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hf : ∀ (i : ι), StronglyMeasurable (f i)
hfi : iIndepFun (fun x => mβ) f
hij : i < j
⊢ Indep (MeasurableSpace.comap (f j) mβ) (↑(Filtration.natural f hf) i)
[PROOFSTEP]
suffices
Indep (⨆ k ∈ ({ j } : Set ι), MeasurableSpace.comap (f k) mβ) (⨆ k ∈ {k | k ≤ i}, MeasurableSpace.comap (f k) mβ) μ by
rwa [iSup_singleton] at this
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hf : ∀ (i : ι), StronglyMeasurable (f i)
hfi : iIndepFun (fun x => mβ) f
hij : i < j
this :
Indep (⨆ (k : ι) (_ : k ∈ {j}), MeasurableSpace.comap (f k) mβ)
(⨆ (k : ι) (_ : k ∈ {k | k ≤ i}), MeasurableSpace.comap (f k) mβ)
⊢ Indep (MeasurableSpace.comap (f j) mβ) (↑(Filtration.natural f hf) i)
[PROOFSTEP]
rwa [iSup_singleton] at this
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hf : ∀ (i : ι), StronglyMeasurable (f i)
hfi : iIndepFun (fun x => mβ) f
hij : i < j
⊢ Indep (⨆ (k : ι) (_ : k ∈ {j}), MeasurableSpace.comap (f k) mβ)
(⨆ (k : ι) (_ : k ∈ {k | k ≤ i}), MeasurableSpace.comap (f k) mβ)
[PROOFSTEP]
exact indep_iSup_of_disjoint (fun k => (hf k).measurable.comap_le) hfi (by simpa)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hf : ∀ (i : ι), StronglyMeasurable (f i)
hfi : iIndepFun (fun x => mβ) f
hij : i < j
⊢ Disjoint {j} {k | k ≤ i}
[PROOFSTEP]
simpa
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hsm : ∀ (n : ι), MeasurableSet (s n)
hs : iIndepSet s
hij : i < j
⊢ μ[Set.indicator (s j) fun x => 1|↑(filtrationOfSet hsm) i] =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j))
[PROOFSTEP]
rw [Filtration.filtrationOfSet_eq_natural (β := ℝ) hsm]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hsm : ∀ (n : ι), MeasurableSet (s n)
hs : iIndepSet s
hij : i < j
⊢ μ[Set.indicator (s j) fun x =>
1|↑(Filtration.natural (fun i => Set.indicator (s i) fun x => 1)
(_ : ∀ (i : ι), StronglyMeasurable (Set.indicator (s i) 1)))
i] =ᵐ[μ]
fun x => ENNReal.toReal (↑↑μ (s j))
[PROOFSTEP]
refine' (iIndepFun.condexp_natural_ae_eq_of_lt _ hs.iIndepFun_indicator hij).trans _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hsm : ∀ (n : ι), MeasurableSet (s n)
hs : iIndepSet s
hij : i < j
⊢ (fun x => ∫ (x : Ω), Set.indicator (s j) (fun _ω => 1) x ∂μ) =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j))
[PROOFSTEP]
simp only [integral_indicator_const _ (hsm _), Algebra.id.smul_eq_mul, mul_one]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s : ι → Set Ω
hsm : ∀ (n : ι), MeasurableSet (s n)
hs : iIndepSet s
hij : i < j
⊢ (fun x => ENNReal.toReal (↑↑μ (s j))) =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j))
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
⊢ ↑↑μ (limsup s atTop) = 1
[PROOFSTEP]
rw [measure_congr
(eventuallyEq_set.2 (ae_mem_limsup_atTop_iff μ <| measurableSet_filtrationOfSet' hsm) :
(limsup s atTop : Set Ω) =ᵐ[μ]
{ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[(s (k + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm k]) ω) atTop
atTop})]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
⊢ ↑↑μ
{ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop
atTop} =
1
[PROOFSTEP]
suffices
{ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[(s (k + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm k]) ω) atTop
atTop} =ᵐ[μ]
Set.univ
by rw [measure_congr this, measure_univ]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
{ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop
atTop} =ᵐ[μ]
Set.univ
⊢ ↑↑μ
{ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop
atTop} =
1
[PROOFSTEP]
rw [measure_congr this, measure_univ]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
⊢ {ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop
atTop} =ᵐ[μ]
Set.univ
[PROOFSTEP]
have : ∀ᵐ ω ∂μ, ∀ n, (μ[(s (n + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm n]) ω = _ :=
ae_all_iff.2 fun n => hs.condexp_indicator_filtrationOfSet_ae_eq hsm n.lt_succ_self
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
⊢ {ω |
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop
atTop} =ᵐ[μ]
Set.univ
[PROOFSTEP]
filter_upwards [this] with ω hω
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
⊢ setOf
(fun ω =>
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop
atTop)
ω =
Set.univ ω
[PROOFSTEP]
refine' eq_true (_ : Tendsto _ _ _)
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
⊢ Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop
[PROOFSTEP]
simp_rw [hω]
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
⊢ Tendsto (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) atTop atTop
[PROOFSTEP]
have htends : Tendsto (fun n => ∑ k in Finset.range n, μ (s (k + 1))) atTop (𝓝 ∞) :=
by
rw [← ENNReal.tsum_add_one_eq_top hs' (measure_ne_top _ _)]
exact ENNReal.tendsto_nat_tsum _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
⊢ Tendsto (fun n => ∑ k in Finset.range n, ↑↑μ (s (k + 1))) atTop (𝓝 ⊤)
[PROOFSTEP]
rw [← ENNReal.tsum_add_one_eq_top hs' (measure_ne_top _ _)]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
⊢ Tendsto (fun n => ∑ k in Finset.range n, ↑↑μ (s (k + 1))) atTop (𝓝 (∑' (n : ℕ), ↑↑μ (s (n + 1))))
[PROOFSTEP]
exact ENNReal.tendsto_nat_tsum _
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : Tendsto (fun n => ∑ k in Finset.range n, ↑↑μ (s (k + 1))) atTop (𝓝 ⊤)
⊢ Tendsto (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) atTop atTop
[PROOFSTEP]
rw [ENNReal.tendsto_nhds_top_iff_nnreal] at htends
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
⊢ Tendsto (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) atTop atTop
[PROOFSTEP]
refine' tendsto_atTop_atTop_of_monotone' _ _
[GOAL]
case h.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
⊢ Monotone fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))
[PROOFSTEP]
refine' monotone_nat_of_le_succ fun n => _
[GOAL]
case h.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
n : ℕ
⊢ ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))) ≤
∑ x in Finset.range (n + 1), ENNReal.toReal (↑↑μ (s (x + 1)))
[PROOFSTEP]
rw [← sub_nonneg, Finset.sum_range_succ_sub_sum]
[GOAL]
case h.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
n : ℕ
⊢ 0 ≤ ENNReal.toReal (↑↑μ (s (n + 1)))
[PROOFSTEP]
exact ENNReal.toReal_nonneg
[GOAL]
case h.refine'_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
⊢ ¬BddAbove (Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))))
[PROOFSTEP]
rintro ⟨B, hB⟩
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
hB : B ∈ upperBounds (Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))))
⊢ False
[PROOFSTEP]
refine' not_eventually.2 (frequently_of_forall fun n => _) (htends B.toNNReal)
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
hB : B ∈ upperBounds (Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))))
n : ℕ
⊢ ¬↑(Real.toNNReal B) < ∑ k in Finset.range n, ↑↑μ (s (k + 1))
[PROOFSTEP]
rw [mem_upperBounds] at hB
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B
n : ℕ
⊢ ¬↑(Real.toNNReal B) < ∑ k in Finset.range n, ↑↑μ (s (k + 1))
[PROOFSTEP]
specialize hB (∑ k : ℕ in Finset.range n, μ (s (k + 1))).toReal _
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B
n : ℕ
⊢ ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ∈
Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))
[PROOFSTEP]
refine' ⟨n, _⟩
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B
n : ℕ
⊢ (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) n =
ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1)))
[PROOFSTEP]
rw [ENNReal.toReal_sum]
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B
n : ℕ
⊢ ∀ (a : ℕ), a ∈ Finset.range n → ↑↑μ (s (a + 1)) ≠ ⊤
[PROOFSTEP]
exact fun _ _ => measure_ne_top _ _
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
n : ℕ
hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B
⊢ ¬↑(Real.toNNReal B) < ∑ k in Finset.range n, ↑↑μ (s (k + 1))
[PROOFSTEP]
rw [not_lt, ← ENNReal.toReal_le_toReal (ENNReal.sum_lt_top _).ne ENNReal.coe_ne_top]
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
n : ℕ
hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B
⊢ ENNReal.toReal (∑ a in Finset.range n, ↑↑μ (s (a + 1))) ≤ ENNReal.toReal ↑(Real.toNNReal B)
[PROOFSTEP]
exact hB.trans (by simp)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
n : ℕ
hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B
⊢ B ≤ ENNReal.toReal ↑(Real.toNNReal B)
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
ι : Type u_2
β : Type u_3
inst✝² : LinearOrder ι
mβ : MeasurableSpace β
inst✝¹ : NormedAddCommGroup β
inst✝ : BorelSpace β
f : ι → Ω → β
i j : ι
s✝ : ι → Set Ω
s : ℕ → Set Ω
hsm : ∀ (n : ℕ), MeasurableSet (s n)
hs : iIndepSet s
hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤
this :
∀ᵐ (ω : Ω) ∂μ,
∀ (n : ℕ),
(μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω
ω : Ω
hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1)))
htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1))
B : ℝ
n : ℕ
hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B
⊢ ∀ (a : ℕ), a ∈ Finset.range n → ↑↑μ (s (a + 1)) ≠ ⊤
[PROOFSTEP]
exact fun _ _ => measure_ne_top _ _
| {"mathlib_filename": "Mathlib.Probability.BorelCantelli", "llama_tokens": 14358} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
u : γ → δ
h : IdentDistrib f g
hu : AEMeasurable u
⊢ AEMeasurable (u ∘ g)
[PROOFSTEP]
rw [h.map_eq] at hu
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
u : γ → δ
h : IdentDistrib f g
hu : AEMeasurable u
⊢ AEMeasurable (u ∘ g)
[PROOFSTEP]
exact hu.comp_aemeasurable h.aemeasurable_snd
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
u : γ → δ
h : IdentDistrib f g
hu : AEMeasurable u
⊢ Measure.map (u ∘ f) μ = Measure.map (u ∘ g) ν
[PROOFSTEP]
rw [← AEMeasurable.map_map_of_aemeasurable hu h.aemeasurable_fst, ←
AEMeasurable.map_map_of_aemeasurable _ h.aemeasurable_snd, h.map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
u : γ → δ
h : IdentDistrib f g
hu : AEMeasurable u
⊢ AEMeasurable u
[PROOFSTEP]
rwa [← h.map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
h : IdentDistrib f g
s : Set γ
hs : MeasurableSet s
⊢ ↑↑μ (f ⁻¹' s) = ↑↑ν (g ⁻¹' s)
[PROOFSTEP]
rw [← Measure.map_apply_of_aemeasurable h.aemeasurable_fst hs, ←
Measure.map_apply_of_aemeasurable h.aemeasurable_snd hs, h.map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
h : IdentDistrib f g
p : γ → Prop
pmeas : MeasurableSet {x | p x}
hp : ∀ᵐ (x : α) ∂μ, p (f x)
⊢ ∀ᵐ (x : β) ∂ν, p (g x)
[PROOFSTEP]
apply (ae_map_iff h.aemeasurable_snd pmeas).1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
h : IdentDistrib f g
p : γ → Prop
pmeas : MeasurableSet {x | p x}
hp : ∀ᵐ (x : α) ∂μ, p (f x)
⊢ ∀ᵐ (y : γ) ∂Measure.map g ν, p y
[PROOFSTEP]
rw [← h.map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
h : IdentDistrib f g
p : γ → Prop
pmeas : MeasurableSet {x | p x}
hp : ∀ᵐ (x : α) ∂μ, p (f x)
⊢ ∀ᵐ (y : γ) ∂Measure.map f μ, p y
[PROOFSTEP]
exact (ae_map_iff h.aemeasurable_fst pmeas).2 hp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : TopologicalSpace γ
inst✝¹ : MetrizableSpace γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable g ν
[PROOFSTEP]
refine' aestronglyMeasurable_iff_aemeasurable_separable.2 ⟨h.aemeasurable_snd, _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : TopologicalSpace γ
inst✝¹ : MetrizableSpace γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
⊢ ∃ t, IsSeparable t ∧ ∀ᵐ (x : β) ∂ν, g x ∈ t
[PROOFSTEP]
rcases(aestronglyMeasurable_iff_aemeasurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : TopologicalSpace γ
inst✝¹ : MetrizableSpace γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ ∃ t, IsSeparable t ∧ ∀ᵐ (x : β) ∂ν, g x ∈ t
[PROOFSTEP]
refine' ⟨closure t, t_sep.closure, _⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : TopologicalSpace γ
inst✝¹ : MetrizableSpace γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ ∀ᵐ (x : β) ∂ν, g x ∈ closure t
[PROOFSTEP]
apply h.ae_mem_snd isClosed_closure.measurableSet
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : TopologicalSpace γ
inst✝¹ : MetrizableSpace γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ ∀ᵐ (x : α) ∂μ, f x ∈ closure t
[PROOFSTEP]
filter_upwards [ht] with x hx using subset_closure hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁷ : MeasurableSpace α
inst✝⁶ : MeasurableSpace β
inst✝⁵ : MeasurableSpace γ
inst✝⁴ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝³ : ConditionallyCompleteLinearOrder γ
inst✝² : TopologicalSpace γ
inst✝¹ : OpensMeasurableSpace γ
inst✝ : OrderClosedTopology γ
h : IdentDistrib f g
⊢ essSup f μ = essSup g ν
[PROOFSTEP]
have I : ∀ a, μ {x : α | a < f x} = ν {x : β | a < g x} := fun a => h.measure_mem_eq measurableSet_Ioi
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁷ : MeasurableSpace α
inst✝⁶ : MeasurableSpace β
inst✝⁵ : MeasurableSpace γ
inst✝⁴ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝³ : ConditionallyCompleteLinearOrder γ
inst✝² : TopologicalSpace γ
inst✝¹ : OpensMeasurableSpace γ
inst✝ : OrderClosedTopology γ
h : IdentDistrib f g
I : ∀ (a : γ), ↑↑μ {x | a < f x} = ↑↑ν {x | a < g x}
⊢ essSup f μ = essSup g ν
[PROOFSTEP]
simp_rw [essSup_eq_sInf, I]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ≥0∞
g : β → ℝ≥0∞
h : IdentDistrib f g
⊢ ∫⁻ (x : α), f x ∂μ = ∫⁻ (x : β), g x ∂ν
[PROOFSTEP]
change ∫⁻ x, id (f x) ∂μ = ∫⁻ x, id (g x) ∂ν
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ≥0∞
g : β → ℝ≥0∞
h : IdentDistrib f g
⊢ ∫⁻ (x : α), id (f x) ∂μ = ∫⁻ (x : β), id (g x) ∂ν
[PROOFSTEP]
rw [← lintegral_map' aemeasurable_id h.aemeasurable_fst, ← lintegral_map' aemeasurable_id h.aemeasurable_snd, h.map_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν
[PROOFSTEP]
by_cases hf : AEStronglyMeasurable f μ
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν
[PROOFSTEP]
have A : AEStronglyMeasurable id (Measure.map f μ) :=
by
rw [aestronglyMeasurable_iff_aemeasurable_separable]
rcases(aestronglyMeasurable_iff_aemeasurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩
refine' ⟨aemeasurable_id, ⟨closure t, t_sep.closure, _⟩⟩
rw [ae_map_iff h.aemeasurable_fst]
· filter_upwards [ht] with x hx using subset_closure hx
· exact isClosed_closure.measurableSet
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable id (Measure.map f μ)
[PROOFSTEP]
rw [aestronglyMeasurable_iff_aemeasurable_separable]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
⊢ AEMeasurable id ∧ ∃ t, IsSeparable t ∧ ∀ᵐ (x : γ) ∂Measure.map f μ, id x ∈ t
[PROOFSTEP]
rcases(aestronglyMeasurable_iff_aemeasurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ AEMeasurable id ∧ ∃ t, IsSeparable t ∧ ∀ᵐ (x : γ) ∂Measure.map f μ, id x ∈ t
[PROOFSTEP]
refine' ⟨aemeasurable_id, ⟨closure t, t_sep.closure, _⟩⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ ∀ᵐ (x : γ) ∂Measure.map f μ, id x ∈ closure t
[PROOFSTEP]
rw [ae_map_iff h.aemeasurable_fst]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ ∀ᵐ (x : α) ∂μ, id (f x) ∈ closure t
[PROOFSTEP]
filter_upwards [ht] with x hx using subset_closure hx
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
t : Set γ
t_sep : IsSeparable t
ht : ∀ᵐ (x : α) ∂μ, f x ∈ t
⊢ MeasurableSet {x | id x ∈ closure t}
[PROOFSTEP]
exact isClosed_closure.measurableSet
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
A : AEStronglyMeasurable id (Measure.map f μ)
⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν
[PROOFSTEP]
change ∫ x, id (f x) ∂μ = ∫ x, id (g x) ∂ν
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
A : AEStronglyMeasurable id (Measure.map f μ)
⊢ ∫ (x : α), id (f x) ∂μ = ∫ (x : β), id (g x) ∂ν
[PROOFSTEP]
rw [← integral_map h.aemeasurable_fst A]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
A : AEStronglyMeasurable id (Measure.map f μ)
⊢ ∫ (y : γ), id y ∂Measure.map f μ = ∫ (x : β), id (g x) ∂ν
[PROOFSTEP]
rw [h.map_eq] at A
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : AEStronglyMeasurable f μ
A : AEStronglyMeasurable id (Measure.map g ν)
⊢ ∫ (y : γ), id y ∂Measure.map f μ = ∫ (x : β), id (g x) ∂ν
[PROOFSTEP]
rw [← integral_map h.aemeasurable_snd A, h.map_eq]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : ¬AEStronglyMeasurable f μ
⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν
[PROOFSTEP]
rw [integral_non_aestronglyMeasurable hf]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : ¬AEStronglyMeasurable f μ
⊢ 0 = ∫ (x : β), g x ∂ν
[PROOFSTEP]
rw [h.aestronglyMeasurable_iff] at hf
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁶ : MeasurableSpace α
inst✝⁵ : MeasurableSpace β
inst✝⁴ : MeasurableSpace γ
inst✝³ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝² : NormedAddCommGroup γ
inst✝¹ : NormedSpace ℝ γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : ¬AEStronglyMeasurable g ν
⊢ 0 = ∫ (x : β), g x ∂ν
[PROOFSTEP]
rw [integral_non_aestronglyMeasurable hf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
⊢ snorm f p μ = snorm g p ν
[PROOFSTEP]
by_cases h0 : p = 0
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : p = 0
⊢ snorm f p μ = snorm g p ν
[PROOFSTEP]
simp [h0]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
⊢ snorm f p μ = snorm g p ν
[PROOFSTEP]
by_cases h_top : p = ∞
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : p = ⊤
⊢ snorm f p μ = snorm g p ν
[PROOFSTEP]
simp only [h_top, snorm, snormEssSup, ENNReal.top_ne_zero, eq_self_iff_true, if_true, if_false]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : p = ⊤
⊢ essSup (fun x => ↑‖f x‖₊) μ = essSup (fun x => ↑‖g x‖₊) ν
[PROOFSTEP]
apply essSup_eq
[GOAL]
case pos.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : p = ⊤
⊢ IdentDistrib (fun x => ↑‖f x‖₊) fun x => ↑‖g x‖₊
[PROOFSTEP]
exact h.comp (measurable_coe_nnreal_ennreal.comp measurable_nnnorm)
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : ¬p = ⊤
⊢ snorm f p μ = snorm g p ν
[PROOFSTEP]
simp only [snorm_eq_snorm' h0 h_top, snorm', one_div]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : ¬p = ⊤
⊢ (∫⁻ (a : α), ↑‖f a‖₊ ^ ENNReal.toReal p ∂μ) ^ (ENNReal.toReal p)⁻¹ =
(∫⁻ (a : β), ↑‖g a‖₊ ^ ENNReal.toReal p ∂ν) ^ (ENNReal.toReal p)⁻¹
[PROOFSTEP]
congr 1
[GOAL]
case neg.e_a
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : ¬p = ⊤
⊢ ∫⁻ (a : α), ↑‖f a‖₊ ^ ENNReal.toReal p ∂μ = ∫⁻ (a : β), ↑‖g a‖₊ ^ ENNReal.toReal p ∂ν
[PROOFSTEP]
apply lintegral_eq
[GOAL]
case neg.e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : OpensMeasurableSpace γ
h : IdentDistrib f g
p : ℝ≥0∞
h0 : ¬p = 0
h_top : ¬p = ⊤
⊢ IdentDistrib (fun x => ↑‖f x‖₊ ^ ENNReal.toReal p) fun x => ↑‖g x‖₊ ^ ENNReal.toReal p
[PROOFSTEP]
exact h.comp (Measurable.pow_const (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) p.toReal)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : BorelSpace γ
p : ℝ≥0∞
h : IdentDistrib f g
hf : Memℒp f p
⊢ Memℒp g p
[PROOFSTEP]
refine' ⟨h.aestronglyMeasurable_snd hf.aestronglyMeasurable, _⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : BorelSpace γ
p : ℝ≥0∞
h : IdentDistrib f g
hf : Memℒp f p
⊢ snorm g p ν < ⊤
[PROOFSTEP]
rw [← h.snorm_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : BorelSpace γ
p : ℝ≥0∞
h : IdentDistrib f g
hf : Memℒp f p
⊢ snorm f p μ < ⊤
[PROOFSTEP]
exact hf.2
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : Integrable f
⊢ Integrable g
[PROOFSTEP]
rw [← memℒp_one_iff_integrable] at hf ⊢
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁵ : MeasurableSpace α
inst✝⁴ : MeasurableSpace β
inst✝³ : MeasurableSpace γ
inst✝² : MeasurableSpace δ
μ : Measure α
ν : Measure β
f : α → γ
g : β → γ
inst✝¹ : NormedAddCommGroup γ
inst✝ : BorelSpace γ
h : IdentDistrib f g
hf : Memℒp f 1
⊢ Memℒp g 1
[PROOFSTEP]
exact h.memℒp_snd hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ
g : β → ℝ
h : IdentDistrib f g
⊢ evariance f μ = evariance g ν
[PROOFSTEP]
convert (h.sub_const (∫ x, f x ∂μ)).nnnorm.coe_nnreal_ennreal.sq.lintegral_eq
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ
g : β → ℝ
h : IdentDistrib f g
⊢ evariance g ν = ∫⁻ (x : β), ↑‖g x - ∫ (x : α), f x ∂μ‖₊ ^ 2 ∂ν
[PROOFSTEP]
rw [h.integral_eq]
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ
g : β → ℝ
h : IdentDistrib f g
⊢ evariance g ν = ∫⁻ (x : β), ↑‖g x - ∫ (x : β), g x ∂ν‖₊ ^ 2 ∂ν
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ
g : β → ℝ
h : IdentDistrib f g
⊢ variance f μ = variance g ν
[PROOFSTEP]
rw [variance, h.evariance_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSpace β
inst✝¹ : MeasurableSpace γ
inst✝ : MeasurableSpace δ
μ : Measure α
ν : Measure β
f✝ : α → γ
g✝ : β → γ
f : α → ℝ
g : β → ℝ
h : IdentDistrib f g
⊢ ENNReal.toReal (evariance g ν) = variance g ν
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
⊢ UniformIntegrable f p μ
[PROOFSTEP]
refine' uniformIntegrable_of' hp hp' hfmeas fun ε hε => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε
[PROOFSTEP]
by_cases hι : Nonempty ι
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : ¬Nonempty ι
⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : ¬Nonempty ι
⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε
[PROOFSTEP]
exact ⟨0, fun i => False.elim (hι <| Nonempty.intro i)⟩
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε
[PROOFSTEP]
obtain ⟨C, hC₁, hC₂⟩ := hℒp.snorm_indicator_norm_ge_pos_le μ (hfmeas _) hε
[GOAL]
case pos.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε
[PROOFSTEP]
refine' ⟨⟨C, hC₁.le⟩, fun i => le_trans (le_of_eq _) hC₂⟩
[GOAL]
case pos.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
⊢ snorm (Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i)) p μ =
snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ
[PROOFSTEP]
have :
{x : α | (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ‖f i x‖₊}.indicator (f i) =
(fun x : E => if (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ‖x‖₊ then x else 0) ∘ f i :=
by
ext x
simp only [Set.indicator, Set.mem_setOf_eq]; norm_cast
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
⊢ Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
x : α
⊢ Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) x =
((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i) x
[PROOFSTEP]
simp only [Set.indicator, Set.mem_setOf_eq]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
x : α
⊢ (if { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊ then f i x else 0) =
((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i) x
[PROOFSTEP]
norm_cast
[GOAL]
case pos.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ snorm (Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i)) p μ =
snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ
[PROOFSTEP]
simp_rw [coe_nnnorm, this]
[GOAL]
case pos.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ snorm ((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i) p μ =
snorm (Set.indicator {x | C ≤ ‖f j x‖} (f j)) p μ
[PROOFSTEP]
rw [← snorm_map_measure _ (hf i).aemeasurable_fst, (hf i).map_eq, snorm_map_measure _ (hf j).aemeasurable_fst]
[GOAL]
case pos.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ snorm ((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f j) p μ =
snorm (Set.indicator {x | C ≤ ‖f j x‖} (f j)) p μ
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f j) μ)
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f i) μ)
[PROOFSTEP]
all_goals exact_mod_cast aestronglyMeasurable_id.indicator (measurableSet_le measurable_const measurable_nnnorm)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f j) μ)
[PROOFSTEP]
exact_mod_cast aestronglyMeasurable_id.indicator (measurableSet_le measurable_const measurable_nnnorm)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hfmeas : ∀ (i : ι), StronglyMeasurable (f i)
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
ε : ℝ
hε : 0 < ε
hι : Nonempty ι
C : ℝ
hC₁ : 0 < C
hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε
i : ι
this :
Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) =
(fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i
⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f i) μ)
[PROOFSTEP]
exact_mod_cast aestronglyMeasurable_id.indicator (measurableSet_le measurable_const measurable_nnnorm)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
⊢ UniformIntegrable f p μ
[PROOFSTEP]
have hfmeas : ∀ i, AEStronglyMeasurable (f i) μ := fun i => (hf i).aestronglyMeasurable_iff.2 hℒp.1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ
⊢ UniformIntegrable f p μ
[PROOFSTEP]
set g : ι → α → E := fun i => (hfmeas i).choose
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ
g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ)
⊢ UniformIntegrable f p μ
[PROOFSTEP]
have hgmeas : ∀ i, StronglyMeasurable (g i) := fun i => (Exists.choose_spec <| hfmeas i).1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ
g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ)
hgmeas : ∀ (i : ι), StronglyMeasurable (g i)
⊢ UniformIntegrable f p μ
[PROOFSTEP]
have hgeq : ∀ i, g i =ᵐ[μ] f i := fun i => (Exists.choose_spec <| hfmeas i).2.symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ
g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ)
hgmeas : ∀ (i : ι), StronglyMeasurable (g i)
hgeq : ∀ (i : ι), g i =ᵐ[μ] f i
⊢ UniformIntegrable f p μ
[PROOFSTEP]
have hgℒp : Memℒp (g j) p μ := hℒp.ae_eq (hgeq j).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝⁸ : MeasurableSpace α
inst✝⁷ : MeasurableSpace β
inst✝⁶ : MeasurableSpace γ
inst✝⁵ : MeasurableSpace δ
E : Type u_5
inst✝⁴ : MeasurableSpace E
inst✝³ : NormedAddCommGroup E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
μ : Measure α
inst✝ : IsFiniteMeasure μ
ι : Type u_6
f : ι → α → E
j : ι
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
hℒp : Memℒp (f j) p
hf : ∀ (i : ι), IdentDistrib (f i) (f j)
hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ
g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ)
hgmeas : ∀ (i : ι), StronglyMeasurable (g i)
hgeq : ∀ (i : ι), g i =ᵐ[μ] f i
hgℒp : Memℒp (g j) p
⊢ UniformIntegrable f p μ
[PROOFSTEP]
exact
UniformIntegrable.ae_eq
(Memℒp.uniformIntegrable_of_identDistrib_aux hp hp' hgℒp hgmeas fun i =>
(IdentDistrib.of_ae_eq (hgmeas i).aemeasurable (hgeq i)).trans
((hf i).trans <| IdentDistrib.of_ae_eq (hfmeas j).aemeasurable (hgeq j).symm))
hgeq
| {"mathlib_filename": "Mathlib.Probability.IdentDistrib", "llama_tokens": 22697} |
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f g : Filtration ι m
h : ↑f = ↑g
⊢ f = g
[PROOFSTEP]
cases f
[GOAL]
case mk
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
g : Filtration ι m
seq✝ : ι → MeasurableSpace Ω
mono'✝ : Monotone seq✝
le'✝ : ∀ (i : ι), seq✝ i ≤ m
h : ↑{ seq := seq✝, mono' := mono'✝, le' := le'✝ } = ↑g
⊢ { seq := seq✝, mono' := mono'✝, le' := le'✝ } = g
[PROOFSTEP]
cases g
[GOAL]
case mk.mk
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
seq✝¹ : ι → MeasurableSpace Ω
mono'✝¹ : Monotone seq✝¹
le'✝¹ : ∀ (i : ι), seq✝¹ i ≤ m
seq✝ : ι → MeasurableSpace Ω
mono'✝ : Monotone seq✝
le'✝ : ∀ (i : ι), seq✝ i ≤ m
h : ↑{ seq := seq✝¹, mono' := mono'✝¹, le' := le'✝¹ } = ↑{ seq := seq✝, mono' := mono'✝, le' := le'✝ }
⊢ { seq := seq✝¹, mono' := mono'✝¹, le' := le'✝¹ } = { seq := seq✝, mono' := mono'✝, le' := le'✝ }
[PROOFSTEP]
congr
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
⊢ (fun i => sSup ((fun f => ↑f i) '' s)) i ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
refine' sSup_le fun m' hm' => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
m' : MeasurableSpace Ω
hm' : m' ∈ (fun f => ↑f i) '' s
⊢ m' ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
rw [Set.mem_image] at hm'
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
m' : MeasurableSpace Ω
hm' : ∃ x, x ∈ s ∧ ↑x i = m'
⊢ m' ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
obtain ⟨f, hf_mem, hfm'⟩ := hm'
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
m' : MeasurableSpace Ω
f : Filtration ι m
hf_mem : f ∈ s
hfm' : ↑f i = m'
⊢ m' ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
rw [← hfm']
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
m' : MeasurableSpace Ω
f : Filtration ι m
hf_mem : f ∈ s
hfm' : ↑f i = m'
⊢ ↑f i ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
refine' (f.mono hij).trans _
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
m' : MeasurableSpace Ω
f : Filtration ι m
hf_mem : f ∈ s
hfm' : ↑f i = m'
⊢ ↑f j ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
have hfj_mem : f j ∈ (fun g : Filtration ι m => g j) '' s := ⟨f, hf_mem, rfl⟩
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
m' : MeasurableSpace Ω
f : Filtration ι m
hf_mem : f ∈ s
hfm' : ↑f i = m'
hfj_mem : ↑f j ∈ (fun g => ↑g j) '' s
⊢ ↑f j ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j
[PROOFSTEP]
exact le_sSup hfj_mem
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
⊢ (fun i => sSup ((fun f => ↑f i) '' s)) i ≤ m
[PROOFSTEP]
refine' sSup_le fun m' hm' => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
m' : MeasurableSpace Ω
hm' : m' ∈ (fun f => ↑f i) '' s
⊢ m' ≤ m
[PROOFSTEP]
rw [Set.mem_image] at hm'
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
m' : MeasurableSpace Ω
hm' : ∃ x, x ∈ s ∧ ↑x i = m'
⊢ m' ≤ m
[PROOFSTEP]
obtain ⟨f, _, hfm'⟩ := hm'
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
m' : MeasurableSpace Ω
f : Filtration ι m
left✝ : f ∈ s
hfm' : ↑f i = m'
⊢ m' ≤ m
[PROOFSTEP]
rw [← hfm']
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
m' : MeasurableSpace Ω
f : Filtration ι m
left✝ : f ∈ s
hfm' : ↑f i = m'
⊢ ↑f i ≤ m
[PROOFSTEP]
exact f.le i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤
(fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j
[PROOFSTEP]
by_cases h_nonempty : Set.Nonempty s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤
(fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : ¬Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤
(fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j
[PROOFSTEP]
swap
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : ¬Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤
(fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j
[PROOFSTEP]
simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤
(fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j
[PROOFSTEP]
simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : Set.Nonempty s
⊢ ∀ (a : Filtration ι m), a ∈ s → sInf ((fun f => ↑f i) '' s) ≤ ↑a j
[PROOFSTEP]
refine' fun f hf_mem => le_trans _ (f.mono hij)
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : Set.Nonempty s
f : Filtration ι m
hf_mem : f ∈ s
⊢ sInf ((fun f => ↑f i) '' s) ≤ ↑f i
[PROOFSTEP]
have hfi_mem : f i ∈ (fun g : Filtration ι m => g i) '' s := ⟨f, hf_mem, rfl⟩
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i j : ι
hij : i ≤ j
h_nonempty : Set.Nonempty s
f : Filtration ι m
hf_mem : f ∈ s
hfi_mem : ↑f i ∈ (fun g => ↑g i) '' s
⊢ sInf ((fun f => ↑f i) '' s) ≤ ↑f i
[PROOFSTEP]
exact sInf_le hfi_mem
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m
[PROOFSTEP]
by_cases h_nonempty : Set.Nonempty s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
h_nonempty : Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
h_nonempty : ¬Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m
[PROOFSTEP]
swap
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
h_nonempty : ¬Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m
[PROOFSTEP]
simp only [h_nonempty, if_false, le_refl]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
h_nonempty : Set.Nonempty s
⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m
[PROOFSTEP]
simp only [h_nonempty, if_true]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
h_nonempty : Set.Nonempty s
⊢ sInf ((fun f => ↑f i) '' s) ≤ m
[PROOFSTEP]
obtain ⟨f, hf_mem⟩ := h_nonempty
[GOAL]
case pos.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
i : ι
f : Filtration ι m
hf_mem : f ∈ s
⊢ sInf ((fun f => ↑f i) '' s) ≤ m
[PROOFSTEP]
exact le_trans (sInf_le ⟨f, hf_mem, rfl⟩) (f.le i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → b ≤ f
i : ι
m' : MeasurableSpace Ω
hm' : m' ∈ (fun f => ↑f i) '' s
⊢ m' ≤ ↑f i
[PROOFSTEP]
obtain ⟨g, hg_mem, hfm'⟩ := hm'
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → b ≤ f
i : ι
m' : MeasurableSpace Ω
g : Filtration ι m
hg_mem : g ∈ s
hfm' : (fun f => ↑f i) g = m'
⊢ m' ≤ ↑f i
[PROOFSTEP]
rw [← hfm']
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → b ≤ f
i : ι
m' : MeasurableSpace Ω
g : Filtration ι m
hg_mem : g ∈ s
hfm' : (fun f => ↑f i) g = m'
⊢ (fun f => ↑f i) g ≤ ↑f i
[PROOFSTEP]
exact h_forall g hg_mem i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
hf_mem : f ∈ s
i : ι
⊢ ↑(sInf s) i ≤ ↑f i
[PROOFSTEP]
have hs : s.Nonempty := ⟨f, hf_mem⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
hf_mem : f ∈ s
i : ι
hs : Set.Nonempty s
⊢ ↑(sInf s) i ≤ ↑f i
[PROOFSTEP]
simp only [sInf_def, hs, if_true]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
hf_mem : f ∈ s
i : ι
hs : Set.Nonempty s
⊢ sInf ((fun f => ↑f i) '' s) ≤ ↑f i
[PROOFSTEP]
exact sInf_le ⟨f, hf_mem, rfl⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
⊢ ↑f i ≤ ↑(sInf s) i
[PROOFSTEP]
by_cases hs : s.Nonempty
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
hs : Set.Nonempty s
⊢ ↑f i ≤ ↑(sInf s) i
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
hs : ¬Set.Nonempty s
⊢ ↑f i ≤ ↑(sInf s) i
[PROOFSTEP]
swap
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
hs : ¬Set.Nonempty s
⊢ ↑f i ≤ ↑(sInf s) i
[PROOFSTEP]
simp only [sInf_def, hs, if_false]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
hs : ¬Set.Nonempty s
⊢ ↑f i ≤ m
[PROOFSTEP]
exact f.le i
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
hs : Set.Nonempty s
⊢ ↑f i ≤ ↑(sInf s) i
[PROOFSTEP]
simp only [sInf_def, hs, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
s : Set (Filtration ι m)
f : Filtration ι m
h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b
i : ι
hs : Set.Nonempty s
⊢ ∀ (a : Filtration ι m), a ∈ s → ↑f i ≤ ↑a i
[PROOFSTEP]
exact fun g hg_mem => h_forall g hg_mem i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
μ : Measure Ω
f : Filtration ι m
inst✝ : IsFiniteMeasure μ
n : ι
⊢ SigmaFinite (Measure.trim μ (_ : ↑f n ≤ m))
[PROOFSTEP]
infer_instance
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : MetrizableSpace β
mβ : MeasurableSpace β
inst✝¹ : BorelSpace β
inst✝ : Preorder ι
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
i : ι
⊢ (fun i => ⨆ (j : ι) (_ : j ≤ i), MeasurableSpace.comap (u j) mβ) i ≤ m
[PROOFSTEP]
refine' iSup₂_le _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : MetrizableSpace β
mβ : MeasurableSpace β
inst✝¹ : BorelSpace β
inst✝ : Preorder ι
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
i : ι
⊢ ∀ (i_1 : ι), i_1 ≤ i → MeasurableSpace.comap (u i_1) mβ ≤ m
[PROOFSTEP]
rintro j _ s ⟨t, ht, rfl⟩
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : TopologicalSpace β
inst✝² : MetrizableSpace β
mβ : MeasurableSpace β
inst✝¹ : BorelSpace β
inst✝ : Preorder ι
u : ι → Ω → β
hum : ∀ (i : ι), StronglyMeasurable (u i)
i j : ι
j✝ : j ≤ i
t : Set β
ht : MeasurableSet t
⊢ MeasurableSet (u j ⁻¹' t)
[PROOFSTEP]
exact (hum j).measurable ht
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
⊢ filtrationOfSet hsm =
natural (fun i => Set.indicator (s i) fun x => 1) (_ : ∀ (i : ι), StronglyMeasurable (Set.indicator (s i) 1))
[PROOFSTEP]
simp [natural, filtrationOfSet, measurableSpace_iSup_eq]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
⊢ (fun i => MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t}) = fun i =>
MeasurableSpace.generateFrom {s_1 | ∃ n, MeasurableSet s_1}
[PROOFSTEP]
ext1 i
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
⊢ MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t} = MeasurableSpace.generateFrom {s_1 | ∃ n, MeasurableSet s_1}
[PROOFSTEP]
refine' le_antisymm (generateFrom_le _) (generateFrom_le _)
[GOAL]
case h.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
⊢ ∀ (t : Set Ω), t ∈ {t | ∃ j, j ≤ i ∧ s j = t} → MeasurableSet t
[PROOFSTEP]
rintro _ ⟨j, hij, rfl⟩
[GOAL]
case h.refine'_1.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i j : ι
hij : j ≤ i
⊢ MeasurableSet (s j)
[PROOFSTEP]
refine' measurableSet_generateFrom ⟨j, measurableSet_generateFrom ⟨hij, _⟩⟩
[GOAL]
case h.refine'_1.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i j : ι
hij : j ≤ i
⊢ MeasurableSet (s j)
[PROOFSTEP]
rw [comap_eq_generateFrom]
[GOAL]
case h.refine'_1.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i j : ι
hij : j ≤ i
⊢ MeasurableSet (s j)
[PROOFSTEP]
refine' measurableSet_generateFrom ⟨{1}, measurableSet_singleton 1, _⟩
[GOAL]
case h.refine'_1.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i j : ι
hij : j ≤ i
⊢ (Set.indicator (s j) fun x => 1) ⁻¹' {1} = s j
[PROOFSTEP]
ext x
[GOAL]
case h.refine'_1.intro.intro.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i j : ι
hij : j ≤ i
x : Ω
⊢ x ∈ (Set.indicator (s j) fun x => 1) ⁻¹' {1} ↔ x ∈ s j
[PROOFSTEP]
simp [Set.indicator_const_preimage_eq_union]
[GOAL]
case h.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
⊢ ∀ (t : Set Ω), t ∈ {s_1 | ∃ n, MeasurableSet s_1} → MeasurableSet t
[PROOFSTEP]
rintro t ⟨n, ht⟩
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t : Set Ω
n : ι
ht : MeasurableSet t
⊢ MeasurableSet t
[PROOFSTEP]
suffices
MeasurableSpace.generateFrom
{t | n ≤ i ∧ MeasurableSet[MeasurableSpace.comap ((s n).indicator (fun _ => 1 : Ω → β)) mβ] t} ≤
MeasurableSpace.generateFrom {t | ∃ (j : ι), j ≤ i ∧ s j = t}
by exact this _ ht
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t : Set Ω
n : ι
ht : MeasurableSet t
this :
MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet t} ≤ MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t}
⊢ MeasurableSet t
[PROOFSTEP]
exact this _ ht
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t : Set Ω
n : ι
ht : MeasurableSet t
⊢ MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet t} ≤ MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t}
[PROOFSTEP]
refine' generateFrom_le _
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t : Set Ω
n : ι
ht : MeasurableSet t
⊢ ∀ (t : Set Ω), t ∈ {t | n ≤ i ∧ MeasurableSet t} → MeasurableSet t
[PROOFSTEP]
rintro t ⟨hn, u, _, hu'⟩
[GOAL]
case h.refine'_2.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
⊢ MeasurableSet t
[PROOFSTEP]
obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β)
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u ∈ {∅}
⊢ MeasurableSet t
[PROOFSTEP]
pick_goal 4
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u ∈ {∅}
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ
⊢ MeasurableSet t
[PROOFSTEP]
rw [Set.mem_singleton_iff] at heq
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n
⊢ MeasurableSet t
case h.refine'_2.intro.intro.intro.intro.inr.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ
⊢ MeasurableSet t
[PROOFSTEP]
all_goals rw [heq] at hu' ; rw [← hu']
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅
⊢ MeasurableSet t
[PROOFSTEP]
rw [heq] at hu'
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : ∅ = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅
⊢ MeasurableSet t
[PROOFSTEP]
rw [← hu']
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ
⊢ MeasurableSet t
[PROOFSTEP]
rw [heq] at hu'
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : Set.univ = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ
⊢ MeasurableSet t
[PROOFSTEP]
rw [← hu']
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n
⊢ MeasurableSet t
[PROOFSTEP]
rw [heq] at hu'
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : s n = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n
⊢ MeasurableSet t
[PROOFSTEP]
rw [← hu']
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ
⊢ MeasurableSet t
[PROOFSTEP]
rw [heq] at hu'
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (s n)ᶜ = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ
⊢ MeasurableSet t
[PROOFSTEP]
rw [← hu']
[GOAL]
case h.refine'_2.intro.intro.intro.intro.inr.inr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : ∅ = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅
⊢ MeasurableSet ∅
case h.refine'_2.intro.intro.intro.intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : Set.univ = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ
⊢ MeasurableSet Set.univ
case h.refine'_2.intro.intro.intro.intro.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : s n = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n
⊢ MeasurableSet (s n)
case h.refine'_2.intro.intro.intro.intro.inr.inr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
inst✝¹ : MulZeroOneClass β
inst✝ : Nontrivial β
s : ι → Set Ω
hsm : ∀ (i : ι), MeasurableSet (s i)
i : ι
t✝ : Set Ω
n : ι
ht : MeasurableSet t✝
t : Set Ω
hn : n ≤ i
u : Set β
left✝ : MeasurableSet u
hu' : (s n)ᶜ = t
heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ
⊢ MeasurableSet (s n)ᶜ
[PROOFSTEP]
exacts [measurableSet_empty _, MeasurableSet.univ, measurableSet_generateFrom ⟨n, hn, rfl⟩,
MeasurableSet.compl (measurableSet_generateFrom ⟨n, hn, rfl⟩)]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
E : Type u_4
inst✝¹ : Zero E
inst✝ : TopologicalSpace E
ℱ : Filtration ι m
f : ι → Ω → E
μ : Measure Ω
⊢ StronglyMeasurable (limitProcess f ℱ μ)
[PROOFSTEP]
rw [limitProcess]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
E : Type u_4
inst✝¹ : Zero E
inst✝ : TopologicalSpace E
ℱ : Filtration ι m
f : ι → Ω → E
μ : Measure Ω
⊢ StronglyMeasurable
(if h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) then Classical.choose h
else 0)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
E : Type u_4
inst✝¹ : Zero E
inst✝ : TopologicalSpace E
ℱ : Filtration ι m
f : ι → Ω → E
μ : Measure Ω
h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ StronglyMeasurable (Classical.choose h)
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : TopologicalSpace β
inst✝⁴ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝³ : BorelSpace β
inst✝² : Preorder ι
E : Type u_4
inst✝¹ : Zero E
inst✝ : TopologicalSpace E
ℱ : Filtration ι m
f : ι → Ω → E
μ : Measure Ω
h : ¬∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ StronglyMeasurable 0
[PROOFSTEP]
exacts [(Classical.choose_spec h).1, stronglyMeasurable_zero]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : TopologicalSpace β
inst✝⁵ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝⁴ : BorelSpace β
inst✝³ : Preorder ι
E : Type u_4
inst✝² : Zero E
inst✝¹ : TopologicalSpace E
ℱ✝ : Filtration ι m
f✝ : ι → Ω → E
μ : Measure Ω
R : ℝ≥0
p : ℝ≥0∞
F : Type u_5
inst✝ : NormedAddCommGroup F
ℱ : Filtration ℕ m
f : ℕ → Ω → F
hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R
⊢ Memℒp (limitProcess f ℱ μ) p
[PROOFSTEP]
rw [limitProcess]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : TopologicalSpace β
inst✝⁵ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝⁴ : BorelSpace β
inst✝³ : Preorder ι
E : Type u_4
inst✝² : Zero E
inst✝¹ : TopologicalSpace E
ℱ✝ : Filtration ι m
f✝ : ι → Ω → E
μ : Measure Ω
R : ℝ≥0
p : ℝ≥0∞
F : Type u_5
inst✝ : NormedAddCommGroup F
ℱ : Filtration ℕ m
f : ℕ → Ω → F
hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R
⊢ Memℒp
(if h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) then Classical.choose h
else 0)
p
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : TopologicalSpace β
inst✝⁵ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝⁴ : BorelSpace β
inst✝³ : Preorder ι
E : Type u_4
inst✝² : Zero E
inst✝¹ : TopologicalSpace E
ℱ✝ : Filtration ι m
f✝ : ι → Ω → E
μ : Measure Ω
R : ℝ≥0
p : ℝ≥0∞
F : Type u_5
inst✝ : NormedAddCommGroup F
ℱ : Filtration ℕ m
f : ℕ → Ω → F
hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R
h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ Memℒp (Classical.choose h) p
[PROOFSTEP]
refine'
⟨StronglyMeasurable.aestronglyMeasurable ((Classical.choose_spec h).1.mono (sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)),
lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (Classical.choose_spec h).2)
(lt_of_le_of_lt _ (ENNReal.coe_lt_top : ↑R < ∞))⟩
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : TopologicalSpace β
inst✝⁵ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝⁴ : BorelSpace β
inst✝³ : Preorder ι
E : Type u_4
inst✝² : Zero E
inst✝¹ : TopologicalSpace E
ℱ✝ : Filtration ι m
f✝ : ι → Ω → E
μ : Measure Ω
R : ℝ≥0
p : ℝ≥0∞
F : Type u_5
inst✝ : NormedAddCommGroup F
ℱ : Filtration ℕ m
f : ℕ → Ω → F
hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R
h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ liminf (fun n => snorm (f n) p μ) atTop ≤ ↑R
[PROOFSTEP]
simp_rw [liminf_eq, eventually_atTop]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : TopologicalSpace β
inst✝⁵ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝⁴ : BorelSpace β
inst✝³ : Preorder ι
E : Type u_4
inst✝² : Zero E
inst✝¹ : TopologicalSpace E
ℱ✝ : Filtration ι m
f✝ : ι → Ω → E
μ : Measure Ω
R : ℝ≥0
p : ℝ≥0∞
F : Type u_5
inst✝ : NormedAddCommGroup F
ℱ : Filtration ℕ m
f : ℕ → Ω → F
hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R
h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ sSup {a | ∃ a_1, ∀ (b : ℕ), b ≥ a_1 → a ≤ snorm (f b) p μ} ≤ ↑R
[PROOFSTEP]
exact sSup_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _)
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : TopologicalSpace β
inst✝⁵ : MetrizableSpace β
mβ : MeasurableSpace β
inst✝⁴ : BorelSpace β
inst✝³ : Preorder ι
E : Type u_4
inst✝² : Zero E
inst✝¹ : TopologicalSpace E
ℱ✝ : Filtration ι m
f✝ : ι → Ω → E
μ : Measure Ω
R : ℝ≥0
p : ℝ≥0∞
F : Type u_5
inst✝ : NormedAddCommGroup F
ℱ : Filtration ℕ m
f : ℕ → Ω → F
hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R
h : ¬∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ Memℒp 0 p
[PROOFSTEP]
exact zero_memℒp
| {"mathlib_filename": "Mathlib.Probability.Process.Filtration", "llama_tokens": 20816} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
μ ν : Measure α
κ : { x // x ∈ kernel α β }
⊢ Measure.bind (μ + ν) ↑κ = Measure.bind μ ↑κ + Measure.bind ν ↑κ
[PROOFSTEP]
ext1 s hs
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
μ ν : Measure α
κ : { x // x ∈ kernel α β }
s : Set β
hs : MeasurableSet s
⊢ ↑↑(Measure.bind (μ + ν) ↑κ) s = ↑↑(Measure.bind μ ↑κ + Measure.bind ν ↑κ) s
[PROOFSTEP]
rw [Measure.bind_apply hs (kernel.measurable _), lintegral_add_measure, Measure.coe_add, Pi.add_apply,
Measure.bind_apply hs (kernel.measurable _), Measure.bind_apply hs (kernel.measurable _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
μ : Measure α
r : ℝ≥0∞
⊢ Measure.bind (r • μ) ↑κ = r • Measure.bind μ ↑κ
[PROOFSTEP]
ext1 s hs
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
μ : Measure α
r : ℝ≥0∞
s : Set β
hs : MeasurableSet s
⊢ ↑↑(Measure.bind (r • μ) ↑κ) s = ↑↑(r • Measure.bind μ ↑κ) s
[PROOFSTEP]
rw [Measure.bind_apply hs (kernel.measurable _), lintegral_smul_measure, Measure.coe_smul, Pi.smul_apply,
Measure.bind_apply hs (kernel.measurable _), smul_eq_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
μ : Measure α
⊢ const α (Measure.bind μ ↑κ) = κ ∘ₖ const α μ
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
μ : Measure α
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(const α (Measure.bind μ ↑κ)) a) s = ↑↑(↑(κ ∘ₖ const α μ) a) s
[PROOFSTEP]
simp_rw [comp_apply' _ _ _ hs, const_apply, Measure.bind_apply hs (kernel.measurable _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
μ : Measure α
a : α
⊢ ↑(κ ∘ₖ const α μ) a = Measure.bind μ ↑κ
[PROOFSTEP]
rw [← const_apply (μ.bind κ) a, const_bind_eq_comp_const κ μ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ η : { x // x ∈ kernel α α }
μ : Measure α
hκ : Invariant κ μ
⊢ κ ∘ₖ const α μ = const α μ
[PROOFSTEP]
rw [← const_bind_eq_comp_const κ μ, hκ.def]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ η : { x // x ∈ kernel α α }
μ : Measure α
inst✝ : IsSFiniteKernel κ
hκ : Invariant κ μ
hη : Invariant η μ
⊢ Invariant (κ ∘ₖ η) μ
[PROOFSTEP]
cases' isEmpty_or_nonempty α with _ hα
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ η : { x // x ∈ kernel α α }
μ : Measure α
inst✝ : IsSFiniteKernel κ
hκ : Invariant κ μ
hη : Invariant η μ
h✝ : IsEmpty α
⊢ Invariant (κ ∘ₖ η) μ
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ η : { x // x ∈ kernel α α }
μ : Measure α
inst✝ : IsSFiniteKernel κ
hκ : Invariant κ μ
hη : Invariant η μ
hα : Nonempty α
⊢ Invariant (κ ∘ₖ η) μ
[PROOFSTEP]
simp_rw [Invariant, ← comp_const_apply_eq_bind (κ ∘ₖ η) μ hα.some, comp_assoc, hη.comp_const, hκ.comp_const,
const_apply]
| {"mathlib_filename": "Mathlib.Probability.Kernel.Invariance", "llama_tokens": 1772} |
[GOAL]
n : ℕ
⊢ Nat.pair (unpair n).fst (unpair n).snd = id n
[PROOFSTEP]
simp
[GOAL]
f : ℕ → ℕ
m : ℕ
hf : Nat.Primrec f
n : ℕ
⊢ unpaired (fun z n => Nat.rec m (fun y IH => f (unpair (Nat.pair z (Nat.pair y IH))).snd) n) (Nat.pair 0 (id n)) =
Nat.rec m (fun y IH => f (Nat.pair y IH)) n
[PROOFSTEP]
simp
[GOAL]
f : ℕ → ℕ
m : ℕ
hf : Nat.Primrec f
⊢ ∀ (n : ℕ), Nat.rec m (fun y IH => f (unpair (Nat.pair y IH)).fst) n = Nat.casesOn n m f
[PROOFSTEP]
simp
[GOAL]
f g : ℕ → ℕ
hf : Nat.Primrec f
hg : Nat.Primrec g
n : ℕ
⊢ unpaired
(fun z n =>
Nat.rec (f z)
(fun y IH =>
g
(Nat.pair (unpair (Nat.pair z (Nat.pair y IH))).fst
(unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).fst))
n)
n =
unpaired (fun z n => Nat.casesOn n (f z) fun y => g (Nat.pair z y)) n
[PROOFSTEP]
simp
[GOAL]
n : ℕ
⊢ Nat.pair (unpair n).snd (unpair n).fst = unpaired (swap Nat.pair) n
[PROOFSTEP]
simp
[GOAL]
f : ℕ → ℕ → ℕ
hf : Nat.Primrec (unpaired f)
n : ℕ
⊢ unpaired f (unpaired (swap Nat.pair) n) = unpaired (swap f) n
[PROOFSTEP]
simp
[GOAL]
n : ℕ
⊢ Nat.casesOn n 0 id = Nat.pred n
[PROOFSTEP]
cases n
[GOAL]
case zero
⊢ Nat.casesOn Nat.zero 0 id = Nat.pred Nat.zero
[PROOFSTEP]
simp [*]
[GOAL]
case succ
n✝ : ℕ
⊢ Nat.casesOn (succ n✝) 0 id = Nat.pred (succ n✝)
[PROOFSTEP]
simp [*]
[GOAL]
p : ℕ
⊢ unpaired (fun z n => Nat.rec (id z) (fun y IH => succ (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd) n) p =
unpaired (fun x x_1 => x + x_1) p
[PROOFSTEP]
simp
[GOAL]
p : ℕ
⊢ Nat.rec (unpair p).fst (fun y IH => succ IH) (unpair p).snd = (unpair p).fst + (unpair p).snd
[PROOFSTEP]
induction p.unpair.2
[GOAL]
case zero
p : ℕ
⊢ Nat.rec (unpair p).fst (fun y IH => succ IH) Nat.zero = (unpair p).fst + Nat.zero
[PROOFSTEP]
simp [*, add_succ]
[GOAL]
case succ
p n✝ : ℕ
n_ih✝ : Nat.rec (unpair p).fst (fun y IH => succ IH) n✝ = (unpair p).fst + n✝
⊢ Nat.rec (unpair p).fst (fun y IH => succ IH) (succ n✝) = (unpair p).fst + succ n✝
[PROOFSTEP]
simp [*, add_succ]
[GOAL]
p : ℕ
⊢ unpaired (fun z n => Nat.rec (id z) (fun y IH => Nat.pred (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd) n)
p =
unpaired (fun x x_1 => x - x_1) p
[PROOFSTEP]
simp
[GOAL]
p : ℕ
⊢ Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) (unpair p).snd = (unpair p).fst - (unpair p).snd
[PROOFSTEP]
induction p.unpair.2
[GOAL]
case zero
p : ℕ
⊢ Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) Nat.zero = (unpair p).fst - Nat.zero
[PROOFSTEP]
simp [*, sub_succ]
[GOAL]
case succ
p n✝ : ℕ
n_ih✝ : Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) n✝ = (unpair p).fst - n✝
⊢ Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) (succ n✝) = (unpair p).fst - succ n✝
[PROOFSTEP]
simp [*, sub_succ]
[GOAL]
p : ℕ
⊢ unpaired
(fun z n =>
Nat.rec 0
(fun y IH =>
unpaired (fun x x_1 => x + x_1)
(Nat.pair (unpair (Nat.pair z (Nat.pair y IH))).fst
(unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd))
n)
p =
unpaired (fun x x_1 => x * x_1) p
[PROOFSTEP]
simp
[GOAL]
p : ℕ
⊢ Nat.rec 0 (fun y IH => (unpair p).fst + IH) (unpair p).snd = (unpair p).fst * (unpair p).snd
[PROOFSTEP]
induction p.unpair.2
[GOAL]
case zero
p : ℕ
⊢ Nat.rec 0 (fun y IH => (unpair p).fst + IH) Nat.zero = (unpair p).fst * Nat.zero
[PROOFSTEP]
simp [*, mul_succ, add_comm _ (unpair p).fst]
[GOAL]
case succ
p n✝ : ℕ
n_ih✝ : Nat.rec 0 (fun y IH => (unpair p).fst + IH) n✝ = (unpair p).fst * n✝
⊢ Nat.rec 0 (fun y IH => (unpair p).fst + IH) (succ n✝) = (unpair p).fst * succ n✝
[PROOFSTEP]
simp [*, mul_succ, add_comm _ (unpair p).fst]
[GOAL]
p : ℕ
⊢ unpaired
(fun z n =>
Nat.rec 1
(fun y IH =>
unpaired (fun x x_1 => x * x_1)
(Nat.pair (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd
(unpair (Nat.pair z (Nat.pair y IH))).fst))
n)
p =
unpaired (fun x x_1 => x ^ x_1) p
[PROOFSTEP]
simp
[GOAL]
p : ℕ
⊢ Nat.rec 1 (fun y IH => IH * (unpair p).fst) (unpair p).snd = (unpair p).fst ^ (unpair p).snd
[PROOFSTEP]
induction p.unpair.2
[GOAL]
case zero
p : ℕ
⊢ Nat.rec 1 (fun y IH => IH * (unpair p).fst) Nat.zero = (unpair p).fst ^ Nat.zero
[PROOFSTEP]
simp [*, pow_succ]
[GOAL]
case succ
p n✝ : ℕ
n_ih✝ : Nat.rec 1 (fun y IH => IH * (unpair p).fst) n✝ = (unpair p).fst ^ n✝
⊢ Nat.rec 1 (fun y IH => IH * (unpair p).fst) (succ n✝) = (unpair p).fst ^ succ n✝
[PROOFSTEP]
simp [*, pow_succ]
[GOAL]
α : Type ?u.12281
inst✝ : Denumerable α
⊢ ∀ (n : ℕ), Nat.succ n = encode (decode n)
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.13346
β : Type ?u.13353
inst✝ : Primcodable α
e : β ≃ α
src✝ : Encodable β := Encodable.ofEquiv α e
n : ℕ
⊢ encode (decode n) = encode (decode n)
[PROOFSTEP]
rw [decode_ofEquiv]
[GOAL]
α : Type ?u.13346
β : Type ?u.13353
inst✝ : Primcodable α
e : β ≃ α
src✝ : Encodable β := Encodable.ofEquiv α e
n : ℕ
⊢ encode (decode n) = encode (Option.map (↑e.symm) (decode n))
[PROOFSTEP]
cases (@decode α _ n)
[GOAL]
case none
α : Type ?u.13346
β : Type ?u.13353
inst✝ : Primcodable α
e : β ≃ α
src✝ : Encodable β := Encodable.ofEquiv α e
n : ℕ
⊢ encode none = encode (Option.map (↑e.symm) none)
[PROOFSTEP]
simp [encode_ofEquiv]
[GOAL]
case some
α : Type ?u.13346
β : Type ?u.13353
inst✝ : Primcodable α
e : β ≃ α
src✝ : Encodable β := Encodable.ofEquiv α e
n : ℕ
val✝ : α
⊢ encode (some val✝) = encode (Option.map (↑e.symm) (some val✝))
[PROOFSTEP]
simp [encode_ofEquiv]
[GOAL]
n : ℕ
⊢ (Nat.casesOn n 1 fun x => 0) = encode (decode n)
[PROOFSTEP]
cases n
[GOAL]
case zero
⊢ (Nat.casesOn Nat.zero 1 fun x => 0) = encode (decode Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
n✝ : ℕ
⊢ (Nat.casesOn (Nat.succ n✝) 1 fun x => 0) = encode (decode (Nat.succ n✝))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
h : Primcodable α
n : ℕ
⊢ (Nat.casesOn n 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode n)
[PROOFSTEP]
cases n with
| zero => rfl
| succ n =>
rw [decode_option_succ]
cases H : @decode α _ n <;> simp [H]
[GOAL]
α : Type u_1
h : Primcodable α
n : ℕ
⊢ (Nat.casesOn n 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode n)
[PROOFSTEP]
cases n with
| zero => rfl
| succ n =>
rw [decode_option_succ]
cases H : @decode α _ n <;> simp [H]
[GOAL]
case zero
α : Type u_1
h : Primcodable α
⊢ (Nat.casesOn Nat.zero 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (decode Nat.zero)
[PROOFSTEP]
| zero => rfl
[GOAL]
case zero
α : Type u_1
h : Primcodable α
⊢ (Nat.casesOn Nat.zero 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (decode Nat.zero)
[PROOFSTEP]
rfl
[GOAL]
case succ
α : Type u_1
h : Primcodable α
n : ℕ
⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (decode (Nat.succ n))
[PROOFSTEP]
| succ n =>
rw [decode_option_succ]
cases H : @decode α _ n <;> simp [H]
[GOAL]
case succ
α : Type u_1
h : Primcodable α
n : ℕ
⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (decode (Nat.succ n))
[PROOFSTEP]
rw [decode_option_succ]
[GOAL]
case succ
α : Type u_1
h : Primcodable α
n : ℕ
⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (Option.map some (decode n))
[PROOFSTEP]
cases H : @decode α _ n
[GOAL]
case succ.none
α : Type u_1
h : Primcodable α
n : ℕ
H : decode n = none
⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (Option.map some none)
[PROOFSTEP]
simp [H]
[GOAL]
case succ.some
α : Type u_1
h : Primcodable α
n : ℕ
val✝ : α
H : decode n = some val✝
⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) =
encode (Option.map some (some val✝))
[PROOFSTEP]
simp [H]
[GOAL]
n✝ n : ℕ
⊢ (Nat.casesOn (n + 2) 1 fun x => Nat.casesOn x 2 fun x => 0) = encode (decode (n + 2))
[PROOFSTEP]
rw [decode_ge_two]
[GOAL]
n✝ n : ℕ
⊢ (Nat.casesOn (n + 2) 1 fun x => Nat.casesOn x 2 fun x => 0) = encode none
[PROOFSTEP]
simp
[GOAL]
case h
n✝ n : ℕ
⊢ 2 ≤ n + 2
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
n : ℕ
⊢ encode (decode n) = encode (Option.map encode (decode n))
[PROOFSTEP]
cases @decode α _ n
[GOAL]
case none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
n : ℕ
⊢ encode none = encode (Option.map encode none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
n : ℕ
val✝ : α
⊢ encode (some val✝) = encode (Option.map encode (some val✝))
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
σ : Type u_3
inst✝⁴ : Primcodable α✝
inst✝³ : Primcodable β✝
inst✝² : Primcodable σ
α : Type u_4
β : Type u_5
inst✝¹ : Denumerable α
inst✝ : Primcodable β
f : α → β
h : Primrec f
n : ℕ
⊢ Nat.pred (encode (Option.map f (decode n))) = encode (f (ofNat α n))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
σ : Type u_3
inst✝⁴ : Primcodable α✝
inst✝³ : Primcodable β✝
inst✝² : Primcodable σ
α : Type u_4
β : Type u_5
inst✝¹ : Denumerable α
inst✝ : Primcodable β
f : α → β
h : Nat.Primrec fun n => encode (f (ofNat α n))
n : ℕ
⊢ Nat.succ (encode (f (ofNat α n))) = encode (Option.map f (decode n))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
n : ℕ
⊢ (Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some (decode n))
[PROOFSTEP]
cases @decode α _ n
[GOAL]
case none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
n : ℕ
⊢ (Nat.casesOn (encode none) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some none)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
n : ℕ
val✝ : α
⊢ (Nat.casesOn (encode (some val✝)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some (some val✝))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
x : σ
n : ℕ
⊢ (Nat.casesOn (encode (decode n)) 0 fun x_1 => Nat.succ (encode x)) = encode (Option.map (fun x_1 => x) (decode n))
[PROOFSTEP]
cases @decode α _ n
[GOAL]
case none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
x : σ
n : ℕ
⊢ (Nat.casesOn (encode none) 0 fun x_1 => Nat.succ (encode x)) = encode (Option.map (fun x_1 => x) none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
x : σ
n : ℕ
val✝ : α
⊢ (Nat.casesOn (encode (some val✝)) 0 fun x_1 => Nat.succ (encode x)) = encode (Option.map (fun x_1 => x) (some val✝))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
⊢ ∀ (n : ℕ), encode (decode n) = encode (Option.map id (decode n))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : β → σ
g : α → β
hf : Primrec f
hg : Primrec g
n : ℕ
⊢ (Nat.casesOn (encode (decode n)) 0 fun n =>
encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) =
encode (Option.map (fun a => f (g a)) (decode n))
[PROOFSTEP]
cases @decode α _ n
[GOAL]
case none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : β → σ
g : α → β
hf : Primrec f
hg : Primrec g
n : ℕ
⊢ (Nat.casesOn (encode none) 0 fun n => encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) =
encode (Option.map (fun a => f (g a)) none)
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : β → σ
g : α → β
hf : Primrec f
hg : Primrec g
n : ℕ
val✝ : α
⊢ (Nat.casesOn (encode (some val✝)) 0 fun n =>
encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) =
encode (Option.map (fun a => f (g a)) (some val✝))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → σ
h : Primrec fun a => encode (f a)
n : ℕ
⊢ encode (Option.map (fun a => encode (f a)) (decode n)) = encode (Option.map f (decode n))
[PROOFSTEP]
cases @decode α _ n
[GOAL]
case none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → σ
h : Primrec fun a => encode (f a)
n : ℕ
⊢ encode (Option.map (fun a => encode (f a)) none) = encode (Option.map f none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → σ
h : Primrec fun a => encode (f a)
n : ℕ
val✝ : α
⊢ encode (Option.map (fun a => encode (f a)) (some val✝)) = encode (Option.map f (some val✝))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β✝ : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β✝
inst✝ : Primcodable σ
β : Type u_4
e : β ≃ α
this : Primcodable β := Primcodable.ofEquiv α e
⊢ Primrec fun a => encode (↑e (↑e.symm a))
[PROOFSTEP]
simp [Primrec.encode]
[GOAL]
α : Type u_1
β✝ : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β✝
inst✝ : Primcodable σ
β : Type u_4
e : β ≃ α
f : σ → β
this : Primcodable β := Primcodable.ofEquiv α e
h : Primrec fun a => ↑e (f a)
a : σ
⊢ ↑e.symm (↑e (f a)) = f a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β✝ : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β✝
inst✝ : Primcodable σ
β : Type u_4
e : β ≃ α
f : σ → α
this : Primcodable β := Primcodable.ofEquiv α e
h : Primrec fun a => ↑e.symm (f a)
a : σ
⊢ ↑e (↑e.symm (f a)) = f a
[PROOFSTEP]
simp
[GOAL]
α : Type ?u.29317
β : Type ?u.29320
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.unpaired
(fun z n =>
Nat.casesOn n 0 fun y =>
Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.succ (Nat.pair z y))
(Nat.pair (Nat.unpair (Nat.pair z y)).snd (encode (decode (Nat.unpair (Nat.pair z y)).fst))))
(Nat.pair (Nat.unpair n).snd (encode (decode (Nat.unpair n).fst))) =
encode (decode n)
[PROOFSTEP]
simp [Nat.unpaired]
[GOAL]
α : Type ?u.29317
β : Type ?u.29320
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ (Nat.pair n_1 n)) (encode (decode (Nat.unpair n).snd)))
(encode (decode (Nat.unpair n).fst)) =
encode (Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
[PROOFSTEP]
cases @decode α _ n.unpair.1
[GOAL]
case none
α : Type ?u.29317
β : Type ?u.29320
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ (Nat.pair n_1 n)) (encode (decode (Nat.unpair n).snd)))
(encode none) =
encode (Option.bind none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
[PROOFSTEP]
simp
[GOAL]
case some
α : Type ?u.29317
β : Type ?u.29320
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ (Nat.pair n_1 n)) (encode (decode (Nat.unpair n).snd)))
(encode (some val✝)) =
encode (Option.bind (some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))
[PROOFSTEP]
cases @decode β _ n.unpair.2
[GOAL]
case some.none
α : Type ?u.29317
β : Type ?u.29320
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n n_ih => Nat.rec 0 (fun n_1 n_ih => Nat.succ (Nat.pair n n_1)) (encode none)) (encode (some val✝)) =
encode (Option.bind (some val✝) fun a => Option.map (Prod.mk a) none)
[PROOFSTEP]
simp
[GOAL]
case some.some
α : Type ?u.29317
β : Type ?u.29320
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝¹ : α
val✝ : β
⊢ Nat.rec 0 (fun n n_ih => Nat.rec 0 (fun n_1 n_ih => Nat.succ (Nat.pair n n_1)) (encode (some val✝)))
(encode (some val✝¹)) =
encode (Option.bind (some val✝¹) fun a => Option.map (Prod.mk a) (some val✝))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.unpaired
(fun z n =>
Nat.casesOn n 0 fun y =>
Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.succ (Nat.unpair (Nat.pair z y)).fst)
(Nat.pair (Nat.unpair (Nat.pair z y)).snd (encode (decode (Nat.unpair (Nat.pair z y)).fst))))
(Nat.pair (Nat.unpair n).snd (encode (decode (Nat.unpair n).fst))) =
encode (Option.map Prod.fst (decode n))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n_1) (encode (decode (Nat.unpair n).snd)))
(encode (decode (Nat.unpair n).fst)) =
encode
(Option.map Prod.fst
(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)))
[PROOFSTEP]
cases @decode α _ n.unpair.1
[GOAL]
case none
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n_1) (encode (decode (Nat.unpair n).snd)))
(encode none) =
encode (Option.map Prod.fst (Option.bind none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)))
[PROOFSTEP]
simp
[GOAL]
case some
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n_1) (encode (decode (Nat.unpair n).snd)))
(encode (some val✝)) =
encode (Option.map Prod.fst (Option.bind (some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)))
[PROOFSTEP]
simp
[GOAL]
case some
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n n_ih => Nat.succ (encode val✝)) (encode (decode (Nat.unpair n).snd)) =
encode (Option.map (Function.const β val✝) (decode (Nat.unpair n).snd))
[PROOFSTEP]
cases @decode β _ n.unpair.2
[GOAL]
case some.none
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n n_ih => Nat.succ (encode val✝)) (encode none) = encode (Option.map (Function.const β val✝) none)
[PROOFSTEP]
simp
[GOAL]
case some.some
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝¹ : α
val✝ : β
⊢ Nat.rec 0 (fun n n_ih => Nat.succ (encode val✝¹)) (encode (some val✝)) =
encode (Option.map (Function.const β val✝¹) (some val✝))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.unpaired
(fun z n =>
Nat.casesOn n 0 fun y =>
Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.succ (Nat.unpair (Nat.pair z y)).snd)
(Nat.pair (Nat.unpair (Nat.pair z y)).snd (encode (decode (Nat.unpair (Nat.pair z y)).fst))))
(Nat.pair (Nat.unpair n).snd (encode (decode (Nat.unpair n).fst))) =
encode (Option.map Prod.snd (decode n))
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd)))
(encode (decode (Nat.unpair n).fst)) =
encode
(Option.map Prod.snd
(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)))
[PROOFSTEP]
cases @decode α _ n.unpair.1
[GOAL]
case none
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd))) (encode none) =
encode (Option.map Prod.snd (Option.bind none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)))
[PROOFSTEP]
simp
[GOAL]
case some
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd)))
(encode (some val✝)) =
encode (Option.map Prod.snd (Option.bind (some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)))
[PROOFSTEP]
simp
[GOAL]
case some
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd)) = encode (decode (Nat.unpair n).snd)
[PROOFSTEP]
cases @decode β _ n.unpair.2
[GOAL]
case some.none
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ Nat.rec 0 (fun n n_ih => Nat.succ n) (encode none) = encode none
[PROOFSTEP]
simp
[GOAL]
case some.some
α✝ : Type u_1
σ : Type u_2
inst✝³ : Primcodable α✝
inst✝² : Primcodable σ
α : Type u_3
β : Type u_4
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝¹ : α
val✝ : β
⊢ Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (some val✝)) = encode (some val✝)
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u_1
σ : Type u_2
inst✝⁴ : Primcodable α✝
inst✝³ : Primcodable σ
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
f : α → β
g : α → γ
hf : Primrec f
hg : Primrec g
n : ℕ
⊢ (Nat.casesOn (encode (decode n)) 0 fun n =>
Nat.succ (Nat.pair (Nat.pred (encode (Option.map f (decode n)))) (Nat.pred (encode (Option.map g (decode n)))))) =
encode (Option.map (fun a => (f a, g a)) (decode n))
[PROOFSTEP]
cases @decode α _ n
[GOAL]
case none
α✝ : Type u_1
σ : Type u_2
inst✝⁴ : Primcodable α✝
inst✝³ : Primcodable σ
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
f : α → β
g : α → γ
hf : Primrec f
hg : Primrec g
n : ℕ
⊢ (Nat.casesOn (encode none) 0 fun n =>
Nat.succ (Nat.pair (Nat.pred (encode (Option.map f (decode n)))) (Nat.pred (encode (Option.map g (decode n)))))) =
encode (Option.map (fun a => (f a, g a)) none)
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α✝ : Type u_1
σ : Type u_2
inst✝⁴ : Primcodable α✝
inst✝³ : Primcodable σ
α : Type u_3
β : Type u_4
γ : Type u_5
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable γ
f : α → β
g : α → γ
hf : Primrec f
hg : Primrec g
n : ℕ
val✝ : α
⊢ (Nat.casesOn (encode (some val✝)) 0 fun n =>
Nat.succ (Nat.pair (Nat.pred (encode (Option.map f (decode n)))) (Nat.pred (encode (Option.map g (decode n)))))) =
encode (Option.map (fun a => (f a, g a)) (some val✝))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
n : ℕ
⊢ ((Nat.unpair n).fst, (Nat.unpair n).snd) = Nat.unpair n
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
a : α
l : List α
n : ℕ
⊢ (Nat.casesOn n (Nat.succ (encode a)) fun n => encode (List.get? l (ofNat ℕ n))) =
encode (List.get? (a :: l) (ofNat ℕ n))
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
a : α
l : List α
⊢ (Nat.casesOn Nat.zero (Nat.succ (encode a)) fun n => encode (List.get? l (ofNat ℕ n))) =
encode (List.get? (a :: l) (ofNat ℕ Nat.zero))
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
σ : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable σ
a : α
l : List α
n✝ : ℕ
⊢ (Nat.casesOn (Nat.succ n✝) (Nat.succ (encode a)) fun n => encode (List.get? l (ofNat ℕ n))) =
encode (List.get? (a :: l) (ofNat ℕ (Nat.succ n✝)))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f g : α → β → σ
hg : Primrec₂ f
H : ∀ (a : α) (b : β), f a b = g a b
⊢ f = g
[PROOFSTEP]
funext a b
[GOAL]
case h.h
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f g : α → β → σ
hg : Primrec₂ f
H : ∀ (a : α) (b : β), f a b = g a b
a : α
b : β
⊢ f a b = g a b
[PROOFSTEP]
apply H
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
⊢ Primrec₂ Nat.pair
[PROOFSTEP]
simp [Primrec₂, Primrec]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
⊢ Nat.Primrec fun n => Nat.succ n
[PROOFSTEP]
constructor
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : ℕ → ℕ → α
h : Primrec (Nat.unpaired f)
⊢ Primrec₂ f
[PROOFSTEP]
simpa using h.comp natPair
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
σ✝ : Type u_3
inst✝⁵ : Primcodable α✝
inst✝⁴ : Primcodable β✝
inst✝³ : Primcodable σ✝
α : Type u_4
β : Type u_5
σ : Type u_6
inst✝² : Denumerable α
inst✝¹ : Denumerable β
inst✝ : Primcodable σ
f : α → β → σ
⊢ (Primrec fun n => f (ofNat (α × β) n).fst (ofNat (α × β) n).snd) ↔
Primrec (Nat.unpaired fun m n => f (ofNat α m) (ofNat β n))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
⊢ Primrec (Function.uncurry f) ↔ Primrec₂ f
[PROOFSTEP]
rw [show Function.uncurry f = fun p : α × β => f p.1 p.2 from funext fun ⟨a, b⟩ => rfl]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
⊢ (Primrec fun p => f p.fst p.snd) ↔ Primrec₂ f
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α × β → σ
⊢ Primrec₂ (Function.curry f) ↔ Primrec f
[PROOFSTEP]
rw [← uncurry, Function.uncurry_curry]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
⊢ Primrec₂ f ↔
Nat.Primrec (Nat.unpaired fun m n => encode (Option.bind (decode m) fun a => Option.map (f a) (decode n)))
[PROOFSTEP]
have :
∀ (a : Option α) (b : Option β),
Option.map (fun p : α × β => f p.1 p.2) (Option.bind a fun a : α => Option.map (Prod.mk a) b) =
Option.bind a fun a => Option.map (f a) b :=
fun a b => by cases a <;> cases b <;> rfl
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
a : Option α
b : Option β
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind a fun a => Option.map (Prod.mk a) b) =
Option.bind a fun a => Option.map (f a) b
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
b : Option β
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind none fun a => Option.map (Prod.mk a) b) =
Option.bind none fun a => Option.map (f a) b
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
b : Option β
val✝ : α
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind (some val✝) fun a => Option.map (Prod.mk a) b) =
Option.bind (some val✝) fun a => Option.map (f a) b
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind none fun a => Option.map (Prod.mk a) none) =
Option.bind none fun a => Option.map (f a) none
[PROOFSTEP]
rfl
[GOAL]
case none.some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
val✝ : β
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind none fun a => Option.map (Prod.mk a) (some val✝)) =
Option.bind none fun a => Option.map (f a) (some val✝)
[PROOFSTEP]
rfl
[GOAL]
case some.none
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
val✝ : α
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind (some val✝) fun a => Option.map (Prod.mk a) none) =
Option.bind (some val✝) fun a => Option.map (f a) none
[PROOFSTEP]
rfl
[GOAL]
case some.some
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
val✝¹ : α
val✝ : β
⊢ Option.map (fun p => f p.fst p.snd) (Option.bind (some val✝¹) fun a => Option.map (Prod.mk a) (some val✝)) =
Option.bind (some val✝¹) fun a => Option.map (f a) (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
f : α → β → σ
this :
∀ (a : Option α) (b : Option β),
Option.map (fun p => f p.fst p.snd) (Option.bind a fun a => Option.map (Prod.mk a) b) =
Option.bind a fun a => Option.map (f a) b
⊢ Primrec₂ f ↔
Nat.Primrec (Nat.unpaired fun m n => encode (Option.bind (decode m) fun a => Option.map (f a) (decode n)))
[PROOFSTEP]
simp [Primrec₂, Primrec, this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
⊢ Nat.unpaired
(fun z n =>
Nat.casesOn n 0 fun y =>
Nat.unpaired
(fun z n =>
Nat.rec (encode (Option.map f (decode z)))
(fun y IH =>
encode
(Option.map (fun p => g p.fst p.snd)
(decode
(Nat.pair (Nat.unpair (Nat.pair z (Nat.pair y IH))).fst
(Nat.pair (Nat.unpair (Nat.unpair (Nat.pair z (Nat.pair y IH))).snd).fst
(Nat.pred (Nat.unpair (Nat.unpair (Nat.pair z (Nat.pair y IH))).snd).snd))))))
n)
(Nat.pair (Nat.unpair (Nat.pair z y)).snd (Nat.unpair (Nat.unpair (Nat.pair z y)).fst).snd))
(Nat.pair (id n) (encode (decode (Nat.unpair n).fst))) =
Nat.unpaired
(fun m n =>
encode
(Option.bind (decode m) fun a => Option.map (fun n => Nat.rec (f a) (fun n IH => g a (n, IH)) n) (decode n)))
n
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
⊢ Nat.rec 0
(fun n_1 n_ih =>
Nat.rec (encode (Option.map f (decode n_1)))
(fun y IH =>
encode
(Option.map (fun p => g p.fst p.snd)
(Option.bind (decode n_1) fun a => Option.map (Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))))
(Nat.unpair n).snd)
(encode (decode (Nat.unpair n).fst)) =
encode
(Option.bind (decode (Nat.unpair n).fst) fun a =>
some (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd))
[PROOFSTEP]
cases' @decode α _ n.unpair.1 with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
⊢ Nat.rec 0
(fun n_1 n_ih =>
Nat.rec (encode (Option.map f (decode n_1)))
(fun y IH =>
encode
(Option.map (fun p => g p.fst p.snd)
(Option.bind (decode n_1) fun a => Option.map (Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))))
(Nat.unpair n).snd)
(encode none) =
encode (Option.bind none fun a => some (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd))
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
a : α
⊢ Nat.rec 0
(fun n_1 n_ih =>
Nat.rec (encode (Option.map f (decode n_1)))
(fun y IH =>
encode
(Option.map (fun p => g p.fst p.snd)
(Option.bind (decode n_1) fun a => Option.map (Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))))
(Nat.unpair n).snd)
(encode (some a)) =
encode (Option.bind (some a) fun a => some (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd))
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
a : α
⊢ Nat.rec (Nat.succ (encode (f a)))
(fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))
(Nat.unpair n).snd =
Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd))
[PROOFSTEP]
induction' n.unpair.2 with m
[GOAL]
case some.zero
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
a : α
⊢ Nat.rec (Nat.succ (encode (f a)))
(fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))
Nat.zero =
Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) Nat.zero))
[PROOFSTEP]
simp [encodek]
[GOAL]
case some.succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
a : α
m : ℕ
n_ih✝ :
Nat.rec (Nat.succ (encode (f a)))
(fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) m =
Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) m))
⊢ Nat.rec (Nat.succ (encode (f a)))
(fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))
(Nat.succ m) =
Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.succ m)))
[PROOFSTEP]
simp [encodek]
[GOAL]
case some.succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β
g : α → ℕ × β → β
hf : Primrec f
hg : Primrec₂ g
n : ℕ
a : α
m : ℕ
n_ih✝ :
Nat.rec (Nat.succ (encode (f a)))
(fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) m =
Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) m))
⊢ encode
(Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk m)
(decode
(Nat.pred
(Nat.rec (Nat.succ (encode (f a)))
(fun y IH =>
encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))
m)))) =
Nat.succ (encode (g a (m, Nat.rec (f a) (fun n IH => g a (n, IH)) m)))
[PROOFSTEP]
simp [*, encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → ℕ
g : α → β
h : α → β → β
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
a : α
⊢ Nat.rec (g a) (fun n IH => h a (n, IH).snd) (f a) = (h a)^[f a] (g a)
[PROOFSTEP]
induction f a
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → ℕ
g : α → β
h : α → β → β
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
a : α
⊢ Nat.rec (g a) (fun n IH => h a (n, IH).snd) Nat.zero = (h a)^[Nat.zero] (g a)
[PROOFSTEP]
simp [*, -Function.iterate_succ, Function.iterate_succ']
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → ℕ
g : α → β
h : α → β → β
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
a : α
n✝ : ℕ
n_ih✝ : Nat.rec (g a) (fun n IH => h a (n, IH).snd) n✝ = (h a)^[n✝] (g a)
⊢ Nat.rec (g a) (fun n IH => h a (n, IH).snd) (Nat.succ n✝) = (h a)^[Nat.succ n✝] (g a)
[PROOFSTEP]
simp [*, -Function.iterate_succ, Function.iterate_succ']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β → σ
ho : Primrec o
hf : Primrec f
hg : Primrec₂ g
a : α
⊢ (Nat.casesOn (encode (o a)) (encode (f a)) fun b =>
Nat.pred (encode (Option.bind (decode (encode (a, b).fst)) fun a => Option.map (g a) (decode b)))) =
encode (Option.casesOn (o a) (f a) (g a))
[PROOFSTEP]
cases' o a with b
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β → σ
ho : Primrec o
hf : Primrec f
hg : Primrec₂ g
a : α
⊢ (Nat.casesOn (encode none) (encode (f a)) fun b =>
Nat.pred (encode (Option.bind (decode (encode (a, b).fst)) fun a => Option.map (g a) (decode b)))) =
encode (Option.casesOn none (f a) (g a))
[PROOFSTEP]
simp [encodek]
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
o : α → Option β
f : α → σ
g : α → β → σ
ho : Primrec o
hf : Primrec f
hg : Primrec₂ g
a : α
b : β
⊢ (Nat.casesOn (encode (some b)) (encode (f a)) fun b =>
Nat.pred (encode (Option.bind (decode (encode (a, b).fst)) fun a => Option.map (g a) (decode b)))) =
encode (Option.casesOn (some b) (f a) (g a))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → Option σ
hf : Primrec f
hg : Primrec₂ g
a : α
⊢ Option.casesOn (f a) none (g a) = Option.bind (f a) (g a)
[PROOFSTEP]
cases f a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → Option σ
hf : Primrec f
hg : Primrec₂ g
a : α
⊢ Option.casesOn none none (g a) = Option.bind none (g a)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → Option σ
hf : Primrec f
hg : Primrec₂ g
a : α
val✝ : β
⊢ Option.casesOn (some val✝) none (g a) = Option.bind (some val✝) (g a)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → σ
hf : Primrec f
hg : Primrec₂ g
x : α
⊢ (Option.bind (f x) fun b => some (g x b)) = Option.map (g x) (f x)
[PROOFSTEP]
cases f x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → σ
hf : Primrec f
hg : Primrec₂ g
x : α
⊢ (Option.bind none fun b => some (g x b)) = Option.map (g x) none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → Option β
g : α → β → σ
hf : Primrec f
hg : Primrec₂ g
x : α
val✝ : β
⊢ (Option.bind (some val✝) fun b => some (g x b)) = Option.map (g x) (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : Inhabited α
o : Option α
⊢ (Option.casesOn (id o) default fun b => b) = Option.iget o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : Inhabited α
⊢ (Option.casesOn (id none) default fun b => b) = Option.iget none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : Inhabited α
val✝ : α
⊢ (Option.casesOn (id (some val✝)) default fun b => b) = Option.iget (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
o : Option α
⊢ (Option.casesOn (id o) false fun b => true) = Option.isSome o
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
⊢ (Option.casesOn (id none) false fun b => true) = Option.isSome none
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
val✝ : α
⊢ (Option.casesOn (id (some val✝)) false fun b => true) = Option.isSome (some val✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × α
o : Option α
a : α
⊢ (Option.casesOn ((fun a x => a) (o, a).fst (o, a).snd) ((fun x b => b) (o, a).fst (o, a).snd) fun b => b) =
Option.getD (o, a).fst (o, a).snd
[PROOFSTEP]
cases o
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × α
a : α
⊢ (Option.casesOn ((fun a x => a) (none, a).fst (none, a).snd) ((fun x b => b) (none, a).fst (none, a).snd) fun b =>
b) =
Option.getD (none, a).fst (none, a).snd
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × α
a val✝ : α
⊢ (Option.casesOn ((fun a x => a) (some val✝, a).fst (some val✝, a).snd)
((fun x b => b) (some val✝, a).fst (some val✝, a).snd) fun b => b) =
Option.getD (some val✝, a).fst (some val✝, a).snd
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β → Option σ
h : Primrec₂ fun a n => Option.bind (decode n) (f a)
⊢ Primrec₂ f
[PROOFSTEP]
simpa [encodek] using h.comp fst ((@Primrec.encode β _).comp snd)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β → σ
⊢ (Primrec₂ fun a n => Option.map (f a) (decode n)) ↔ Primrec₂ f
[PROOFSTEP]
simp only [Option.map_eq_bind]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → β → σ
⊢ (Primrec₂ fun a n => Option.bind (decode n) (some ∘ f a)) ↔ Primrec₂ f
[PROOFSTEP]
exact bind_decode_iff.trans Primrec₂.option_some_iff
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
c : α → Bool
f g : α → σ
hc : Primrec c
hf : Primrec f
hg : Primrec g
a : α
⊢ (Nat.casesOn (encode (c a)) (g a) fun b => f (a, b).fst) = bif c a then f a else g a
[PROOFSTEP]
cases c a
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
c : α → Bool
f g : α → σ
hc : Primrec c
hf : Primrec f
hg : Primrec g
a : α
⊢ (Nat.casesOn (encode false) (g a) fun b => f (a, b).fst) = bif false then f a else g a
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
c : α → Bool
f g : α → σ
hc : Primrec c
hf : Primrec f
hg : Primrec g
a : α
⊢ (Nat.casesOn (encode true) (g a) fun b => f (a, b).fst) = bif true then f a else g a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
c : α → Prop
inst✝ : DecidablePred c
f g : α → σ
hc : PrimrecPred c
hf : Primrec f
hg : Primrec g
⊢ Primrec fun a => if c a then f a else g a
[PROOFSTEP]
simpa using cond hc hf hg
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
p : ℕ × ℕ
⊢ (Nat.casesOn ((fun x x_1 => x - x_1) p.fst p.snd) true fun b => false) =
(fun a b => decide ((fun x x_1 => x ≤ x_1) a b)) p.fst p.snd
[PROOFSTEP]
dsimp [swap]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
p : ℕ × ℕ
⊢ Nat.rec true (fun n n_ih => false) (p.fst - p.snd) = decide (p.fst ≤ p.snd)
[PROOFSTEP]
cases' e : p.1 - p.2 with n
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
p : ℕ × ℕ
e : p.fst - p.snd = Nat.zero
⊢ Nat.rec true (fun n n_ih => false) Nat.zero = decide (p.fst ≤ p.snd)
[PROOFSTEP]
simp [tsub_eq_zero_iff_le.1 e]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
p : ℕ × ℕ
n : ℕ
e : p.fst - p.snd = Nat.succ n
⊢ Nat.rec true (fun n n_ih => false) (Nat.succ n) = decide (p.fst ≤ p.snd)
[PROOFSTEP]
simp [not_le.2 (Nat.lt_of_sub_eq_succ e)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : Bool → α
b : Bool
⊢ (bif id b then f true else f false) = f b
[PROOFSTEP]
cases b
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : Bool → α
⊢ (bif id false then f true else f false) = f false
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : Bool → α
⊢ (bif id true then f true else f false) = f true
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : Bool → Bool → α
x✝ : Bool × Bool
a b : Bool
⊢ (bif (a, b).fst then f true (a, b).snd else f false (a, b).snd) = f (a, b).fst (a, b).snd
[PROOFSTEP]
cases a
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : Bool → Bool → α
x✝ : Bool × Bool
b : Bool
⊢ (bif (false, b).fst then f true (false, b).snd else f false (false, b).snd) = f (false, b).fst (false, b).snd
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : Bool → Bool → α
x✝ : Bool × Bool
b : Bool
⊢ (bif (true, b).fst then f true (true, b).snd else f false (true, b).snd) = f (true, b).fst (true, b).snd
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
n : α
⊢ (!decide (p n)) = decide ((fun a => ¬p a) n)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁶ : Primcodable α
inst✝⁵ : Primcodable β
inst✝⁴ : Primcodable γ
inst✝³ : Primcodable δ
inst✝² : Primcodable σ
p q : α → Prop
inst✝¹ : DecidablePred p
inst✝ : DecidablePred q
hp : PrimrecPred p
hq : PrimrecPred q
n : α
⊢ (decide (p n) && decide (q n)) = decide ((fun a => p a ∧ q a) n)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁶ : Primcodable α
inst✝⁵ : Primcodable β
inst✝⁴ : Primcodable γ
inst✝³ : Primcodable δ
inst✝² : Primcodable σ
p q : α → Prop
inst✝¹ : DecidablePred p
inst✝ : DecidablePred q
hp : PrimrecPred p
hq : PrimrecPred q
n : α
⊢ (decide (p n) || decide (q n)) = decide ((fun a => p a ∨ q a) n)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : DecidableEq α
a : ℕ × ℕ
⊢ (fun x x_1 => x ≤ x_1) a.fst a.snd ∧ (fun x x_1 => x ≤ x_1) a.snd a.fst ↔ (fun a b => a = b) a.fst a.snd
[PROOFSTEP]
simp [le_antisymm_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
p : ℕ × ℕ
⊢ ¬p.snd ≤ p.fst ↔ (fun x x_1 => x < x_1) p.fst p.snd
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
o₁ o₂ : Option α
⊢ (Option.casesOn (o₁, o₂).fst (o₁, o₂).snd fun b => ((o₁, o₂), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (o₁, o₂).fst (o₁, o₂).snd
[PROOFSTEP]
cases o₁
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
o₂ : Option α
⊢ (Option.casesOn (none, o₂).fst (none, o₂).snd fun b => ((none, o₂), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (none, o₂).fst (none, o₂).snd
[PROOFSTEP]
cases o₂
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
o₂ : Option α
val✝ : α
⊢ (Option.casesOn (some val✝, o₂).fst (some val✝, o₂).snd fun b => ((some val✝, o₂), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (some val✝, o₂).fst (some val✝, o₂).snd
[PROOFSTEP]
cases o₂
[GOAL]
case none.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
⊢ (Option.casesOn (none, none).fst (none, none).snd fun b => ((none, none), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (none, none).fst (none, none).snd
[PROOFSTEP]
rfl
[GOAL]
case none.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
val✝ : α
⊢ (Option.casesOn (none, some val✝).fst (none, some val✝).snd fun b => ((none, some val✝), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (none, some val✝).fst (none, some val✝).snd
[PROOFSTEP]
rfl
[GOAL]
case some.none
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
val✝ : α
⊢ (Option.casesOn (some val✝, none).fst (some val✝, none).snd fun b => ((some val✝, none), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (some val✝, none).fst (some val✝, none).snd
[PROOFSTEP]
rfl
[GOAL]
case some.some
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
x✝ : Option α × Option α
val✝¹ val✝ : α
⊢ (Option.casesOn (some val✝¹, some val✝).fst (some val✝¹, some val✝).snd fun b =>
((some val✝¹, some val✝), b).fst.fst) =
(fun x x_1 => HOrElse.hOrElse x fun x => x_1) (some val✝¹, some val✝).fst (some val✝¹, some val✝).snd
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
⊢ Primrec₂ fun p a => encode a
[PROOFSTEP]
exact encode_iff.mpr snd
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
⊢ Primrec₂ fun p a => p.fst
[PROOFSTEP]
exact fst.comp fst
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
p : α → β → Bool
hp : Primrec₂ p
a : β
l : List β
n : α
⊢ (bif p (id n) a then 0 else Nat.succ (List.findIdx (p n) l)) = List.findIdx (p n) (a :: l)
[PROOFSTEP]
simp [List.findIdx_cons]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : Fintype α
f : α → σ
l : List α
left✝ : List.Nodup l
m : ∀ (x : α), x ∈ l
⊢ Primrec fun a => some (f a)
[PROOFSTEP]
haveI := decidableEqOfEncodable α
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : Fintype α
f : α → σ
l : List α
left✝ : List.Nodup l
m : ∀ (x : α), x ∈ l
this : DecidableEq α
⊢ Primrec fun a => some (f a)
[PROOFSTEP]
refine ((list_get?₁ (l.map f)).comp (list_indexOf₁ l)).of_eq fun a => ?_
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
inst✝ : Fintype α
f : α → σ
l : List α
left✝ : List.Nodup l
m : ∀ (x : α), x ∈ l
this : DecidableEq α
a : α
⊢ List.get? (List.map f l) (List.indexOf a l) = some (f a)
[PROOFSTEP]
rw [List.get?_map, List.indexOf_get? (m a), Option.map_some']
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
f : α → ℕ
p : α → ℕ → Prop
inst✝ : (x : α) → (n : ℕ) → Decidable (p x n)
hf : Primrec f
hp : PrimrecRel p
x : α
⊢ Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) (f x) =
Nat.findGreatest (p x) (f x)
[PROOFSTEP]
induction f x
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
f : α → ℕ
p : α → ℕ → Prop
inst✝ : (x : α) → (n : ℕ) → Decidable (p x n)
hf : Primrec f
hp : PrimrecRel p
x : α
⊢ Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) Nat.zero =
Nat.findGreatest (p x) Nat.zero
[PROOFSTEP]
simp [Nat.findGreatest, *]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁵ : Primcodable α
inst✝⁴ : Primcodable β
inst✝³ : Primcodable γ
inst✝² : Primcodable δ
inst✝¹ : Primcodable σ
f : α → ℕ
p : α → ℕ → Prop
inst✝ : (x : α) → (n : ℕ) → Decidable (p x n)
hf : Primrec f
hp : PrimrecRel p
x : α
n✝ : ℕ
n_ih✝ :
Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) n✝ = Nat.findGreatest (p x) n✝
⊢ Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) (Nat.succ n✝) =
Nat.findGreatest (p x) (Nat.succ n✝)
[PROOFSTEP]
simp [Nat.findGreatest, *]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → ℕ
h₁ : PrimrecBounded f
h₂ : PrimrecRel fun a b => f a = b
⊢ Primrec f
[PROOFSTEP]
rcases h₁ with ⟨g, pg, hg : ∀ x, f x ≤ g x⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → ℕ
h₂ : PrimrecRel fun a b => f a = b
g : α → ℕ
pg : Primrec g
hg : ∀ (x : α), f x ≤ g x
⊢ Primrec f
[PROOFSTEP]
refine (nat_findGreatest pg h₂).of_eq fun n => ?_
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
f : α → ℕ
h₂ : PrimrecRel fun a b => f a = b
g : α → ℕ
pg : Primrec g
hg : ∀ (x : α), f x ≤ g x
n : α
⊢ Nat.findGreatest (fun b => f n = b) (g n) = f n
[PROOFSTEP]
exact (Nat.findGreatest_spec (P := fun b => f n = b) (hg n) rfl).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
⊢ Primrec₂ fun x x_1 => x / x_1
[PROOFSTEP]
refine of_graph ⟨_, fst, fun p => Nat.div_le_self _ _⟩ ?_
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
⊢ PrimrecRel fun a b => (fun x x_1 => x / x_1) a.fst a.snd = b
[PROOFSTEP]
have : PrimrecRel fun (a : ℕ × ℕ) (b : ℕ) => (a.2 = 0 ∧ b = 0) ∨ (0 < a.2 ∧ b * a.2 ≤ a.1 ∧ a.1 < (b + 1) * a.2) :=
PrimrecPred.or (.and (const 0 |> Primrec.eq.comp (fst |> snd.comp)) (const 0 |> Primrec.eq.comp snd))
(.and (nat_lt.comp (const 0) (fst |> snd.comp)) <|
.and (nat_le.comp (nat_mul.comp snd (fst |> snd.comp)) (fst |> fst.comp))
(nat_lt.comp (fst.comp fst) (nat_mul.comp (Primrec.succ.comp snd) (snd.comp fst))))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
⊢ PrimrecRel fun a b => (fun x x_1 => x / x_1) a.fst a.snd = b
[PROOFSTEP]
refine this.of_eq ?_
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
⊢ ∀ (a : ℕ × ℕ) (b : ℕ),
a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd ↔ (fun x x_1 => x / x_1) a.fst a.snd = b
[PROOFSTEP]
rintro ⟨a, k⟩ q
[GOAL]
case mk
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
a k q : ℕ
⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔
(fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q
[PROOFSTEP]
if H : k = 0 then simp [H, eq_comm]
else
have : q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k := by
rw [le_antisymm_iff, ← (@Nat.lt_succ _ q), Nat.le_div_iff_mul_le' (Nat.pos_of_ne_zero H),
Nat.div_lt_iff_lt_mul' (Nat.pos_of_ne_zero H)]
simpa [H, zero_lt_iff, eq_comm (b := q)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
a k q : ℕ
H : k = 0
⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔
(fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q
[PROOFSTEP]
simp [H, eq_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
a k q : ℕ
H : ¬k = 0
⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔
(fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q
[PROOFSTEP]
have : q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k := by
rw [le_antisymm_iff, ← (@Nat.lt_succ _ q), Nat.le_div_iff_mul_le' (Nat.pos_of_ne_zero H),
Nat.div_lt_iff_lt_mul' (Nat.pos_of_ne_zero H)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
a k q : ℕ
H : ¬k = 0
⊢ q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k
[PROOFSTEP]
rw [le_antisymm_iff, ← (@Nat.lt_succ _ q), Nat.le_div_iff_mul_le' (Nat.pos_of_ne_zero H),
Nat.div_lt_iff_lt_mul' (Nat.pos_of_ne_zero H)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
this✝ : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd
a k q : ℕ
H : ¬k = 0
this : q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k
⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔
(fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q
[PROOFSTEP]
simpa [H, zero_lt_iff, eq_comm (b := q)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
m n : ℕ
⊢ (m, n).fst - (m, n).snd * (fun x x_1 => x / x_1) (m, n).fst (m, n).snd = m % n
[PROOFSTEP]
apply Nat.sub_eq_of_eq_add
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
m n : ℕ
⊢ (m, n).fst = m % n + (m, n).snd * (fun x x_1 => x / x_1) (m, n).fst (m, n).snd
[PROOFSTEP]
simp [add_comm (m % n), Nat.div_add_mod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
n : ℕ
⊢ (id n % 2 == 1) = Nat.bodd n
[PROOFSTEP]
cases H : n.bodd
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
n : ℕ
H : Nat.bodd n = false
⊢ (id n % 2 == 1) = false
[PROOFSTEP]
simp [Nat.mod_two_of_bodd, H]
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
σ : Type u_5
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable δ
inst✝ : Primcodable σ
n : ℕ
H : Nat.bodd n = true
⊢ (id n % 2 == 1) = true
[PROOFSTEP]
simp [Nat.mod_two_of_bodd, H]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → β × List β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this✝ : Primcodable (List β) := prim H
this : Primrec fun a => Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a)))
a : α
⊢ Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a))) =
some (List.casesOn (f a) (g a) fun b l => h a (b, l))
[PROOFSTEP]
cases' f a with b l
[GOAL]
case nil
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → β × List β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this✝ : Primcodable (List β) := prim H
this : Primrec fun a => Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a)))
a : α
⊢ Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode [])) =
some (List.casesOn [] (g a) fun b l => h a (b, l))
[PROOFSTEP]
simp [encodek]
[GOAL]
case cons
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → β × List β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this✝ : Primcodable (List β) := prim H
this : Primrec fun a => Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a)))
a : α
b : β
l : List β
⊢ Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (b :: l))) =
some (List.casesOn (b :: l) (g a) fun b l => h a (b, l))
[PROOFSTEP]
simp [encodek]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
letI := prim H
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
let G (a : α) (IH : σ × List β) : σ × List β := List.casesOn IH.2 IH fun b l => (h a (IH.1, b), l)
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
have hG : Primrec₂ G :=
list_casesOn' H (snd.comp snd) snd <|
to₂ <| pair (hh.comp (fst.comp fst) <| pair ((fst.comp snd).comp fst) (fst.comp snd)) (snd.comp snd)
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
let F := fun (a : α) (n : ℕ) => (G a)^[n] (g a, f a)
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
have hF : Primrec fun a => (F a (encode (f a))).1 := (fst.comp <| nat_iterate (encode_iff.2 hf) (pair hg hf) <| hG)
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
suffices : ∀ a n, F a n = (((f a).take n).foldl (fun s b => h a (s, b)) (g a), (f a).drop n)
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this✝ : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
this : ∀ (a : α) (n : ℕ), F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a))
⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
refine hF.of_eq fun a => ?_
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this✝ : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
this : ∀ (a : α) (n : ℕ), F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a))
a : α
⊢ (F a (encode (f a))).fst = List.foldl (fun s b => h a (s, b)) (g a) (f a)
[PROOFSTEP]
rw [this, List.take_all_of_le (length_le_encode _)]
[GOAL]
case this
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
⊢ ∀ (a : α) (n : ℕ), F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a))
[PROOFSTEP]
introv
[GOAL]
case this
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
n : ℕ
⊢ F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a))
[PROOFSTEP]
dsimp only
[GOAL]
case this
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
n : ℕ
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (g a, f a) =
(List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a))
[PROOFSTEP]
generalize f a = l
[GOAL]
case this
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
n : ℕ
l : List β
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (g a, l) =
(List.foldl (fun s b => h a (s, b)) (g a) (List.take n l), List.drop n l)
[PROOFSTEP]
generalize g a = x
[GOAL]
case this
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
n : ℕ
l : List β
x : σ
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l)
[PROOFSTEP]
induction' n with n IH generalizing l x
[GOAL]
case this.zero
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
l✝ : List β
x✝ : σ
l : List β
x : σ
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[Nat.zero] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take Nat.zero l), List.drop Nat.zero l)
[PROOFSTEP]
rfl
[GOAL]
case this.succ
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
l✝ : List β
x✝ : σ
n : ℕ
IH :
∀ (l : List β) (x : σ),
(fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l)
l : List β
x : σ
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[Nat.succ n] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) l), List.drop (Nat.succ n) l)
[PROOFSTEP]
simp
[GOAL]
case this.succ
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
l✝ : List β
x✝ : σ
n : ℕ
IH :
∀ (l : List β) (x : σ),
(fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l)
l : List β
x : σ
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n]
(List.rec (x, l) (fun head tail tail_ih => (h a (x, head), tail)) l) =
(List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) l), List.drop (Nat.succ n) l)
[PROOFSTEP]
cases' l with b l
[GOAL]
case this.succ.nil
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
l : List β
x✝ : σ
n : ℕ
IH :
∀ (l : List β) (x : σ),
(fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l)
x : σ
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n]
(List.rec (x, []) (fun head tail tail_ih => (h a (x, head), tail)) []) =
(List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) []), List.drop (Nat.succ n) [])
[PROOFSTEP]
simp [IH]
[GOAL]
case this.succ.cons
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
f : α → List β
g : α → σ
h : α → σ × β → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
this : Primcodable (List β) := prim H
G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l)
hG : Primrec₂ G
F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a)
hF : Primrec fun a => (F a (encode (f a))).fst
a : α
l✝ : List β
x✝ : σ
n : ℕ
IH :
∀ (l : List β) (x : σ),
(fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) =
(List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l)
x : σ
b : β
l : List β
⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n]
(List.rec (x, b :: l) (fun head tail tail_ih => (h a (x, head), tail)) (b :: l)) =
(List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) (b :: l)), List.drop (Nat.succ n) (b :: l))
[PROOFSTEP]
simp [IH]
[GOAL]
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
this : Primcodable (List β) := prim H
l : List β
⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r l = List.reverseAux l r
[PROOFSTEP]
induction l
[GOAL]
case nil
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
this : Primcodable (List β) := prim H
⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r [] = List.reverseAux [] r
[PROOFSTEP]
simp [*, List.reverseAux]
[GOAL]
case cons
α : Type u_1
β : Type u_2
σ : Type u_3
inst✝² : Primcodable α
inst✝¹ : Primcodable β
inst✝ : Primcodable σ
H : Nat.Primrec fun n => encode (decode n)
this : Primcodable (List β) := prim H
head✝ : β
tail✝ : List β
tail_ih✝ : ∀ (r : List β), List.foldl (fun s b => b :: s) r tail✝ = List.reverseAux tail✝ r
⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r (head✝ :: tail✝) = List.reverseAux (head✝ :: tail✝) r
[PROOFSTEP]
simp [*, List.reverseAux]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode
(bif Nat.bodd n then Option.map (fun b => 2 * encode (n, b).snd + 1) (decode (Nat.div2 n))
else Option.map (fun b => 2 * encode (n, b).snd) (decode (Nat.div2 n))) =
encode (decodeSum n)
[PROOFSTEP]
simp [decodeSum]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode
(bif Nat.bodd n then Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n))
else Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) =
encode
(match (Nat.bodd n, Nat.div2 n) with
| (false, m) => Option.map Sum.inl (decode m)
| (fst, m) => Option.map Sum.inr (decode m))
[PROOFSTEP]
cases Nat.bodd n
[GOAL]
case false
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode
(bif false then Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n))
else Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) =
encode
(match (false, Nat.div2 n) with
| (false, m) => Option.map Sum.inl (decode m)
| (fst, m) => Option.map Sum.inr (decode m))
[PROOFSTEP]
simp [decodeSum]
[GOAL]
case true
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode
(bif true then Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n))
else Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) =
encode
(match (true, Nat.div2 n) with
| (false, m) => Option.map Sum.inl (decode m)
| (fst, m) => Option.map Sum.inr (decode m))
[PROOFSTEP]
simp [decodeSum]
[GOAL]
case false
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode (Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) = encode (Option.map Sum.inl (decode (Nat.div2 n)))
[PROOFSTEP]
cases @decode α _ n.div2
[GOAL]
case false.none
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode (Option.map (fun b => 2 * encode b) none) = encode (Option.map Sum.inl none)
[PROOFSTEP]
rfl
[GOAL]
case false.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : α
⊢ encode (Option.map (fun b => 2 * encode b) (some val✝)) = encode (Option.map Sum.inl (some val✝))
[PROOFSTEP]
rfl
[GOAL]
case true
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode (Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n))) =
encode (Option.map Sum.inr (decode (Nat.div2 n)))
[PROOFSTEP]
cases @decode β _ n.div2
[GOAL]
case true.none
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
⊢ encode (Option.map (fun b => 2 * encode b + 1) none) = encode (Option.map Sum.inr none)
[PROOFSTEP]
rfl
[GOAL]
case true.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
n : ℕ
val✝ : β
⊢ encode (Option.map (fun b => 2 * encode b + 1) (some val✝)) = encode (Option.map Sum.inr (some val✝))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n : ℕ
⊢ encode
(List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))) =
encode (decode n)
[PROOFSTEP]
rw [List.foldl_reverse]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n : ℕ
⊢ encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) n)) =
encode (decode n)
[PROOFSTEP]
apply Nat.case_strong_induction_on n
[GOAL]
case hz
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n : ℕ
⊢ encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) 0)) =
encode (decode 0)
[PROOFSTEP]
simp
[GOAL]
case hi
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n : ℕ
⊢ ∀ (n : ℕ),
(∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)) →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.succ n))) =
encode (decode (Nat.succ n))
[PROOFSTEP]
intro n IH
[GOAL]
case hi
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
⊢ encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.succ n))) =
encode (decode (Nat.succ n))
[PROOFSTEP]
simp
[GOAL]
case hi
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
⊢ encode
(Option.bind (decode (Nat.unpair n).fst) fun a =>
Option.map (List.cons (encode a))
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.unpair n).snd))) =
encode (Seq.seq (Option.map (fun x x_1 => x :: x_1) (decode (Nat.unpair n).fst)) fun x => decode (Nat.unpair n).snd)
[PROOFSTEP]
cases' @decode α _ n.unpair.1 with a
[GOAL]
case hi.none
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
⊢ encode
(Option.bind none fun a =>
Option.map (List.cons (encode a))
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.unpair n).snd))) =
encode (Seq.seq (Option.map (fun x x_1 => x :: x_1) none) fun x => decode (Nat.unpair n).snd)
[PROOFSTEP]
rfl
[GOAL]
case hi.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
⊢ encode
(Option.bind (some a) fun a =>
Option.map (List.cons (encode a))
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.unpair n).snd))) =
encode (Seq.seq (Option.map (fun x x_1 => x :: x_1) (some a)) fun x => decode (Nat.unpair n).snd)
[PROOFSTEP]
simp only [decode_eq_ofNat, Option.some.injEq, Option.some_bind, Option.map_some']
[GOAL]
case hi.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
⊢ encode
(Option.map (List.cons (encode a))
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.unpair n).snd))) =
encode (Seq.seq (some fun x => a :: x) fun x => decode (Nat.unpair n).snd)
[PROOFSTEP]
suffices :
∀ (o : Option (List ℕ)) (p) (_ : encode o = encode p),
encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p)
[GOAL]
case hi.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝¹ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this✝ :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
this :
∀ (o : Option (List ℕ)) (p : Option (List α)),
encode o = encode p → encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p)
⊢ encode
(Option.map (List.cons (encode a))
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) (Nat.unpair n).snd))) =
encode (Seq.seq (some fun x => a :: x) fun x => decode (Nat.unpair n).snd)
case this
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
⊢ ∀ (o : Option (List ℕ)) (p : Option (List α)),
encode o = encode p → encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p)
[PROOFSTEP]
exact this _ _ (IH _ (Nat.unpair_right_le n))
[GOAL]
case this
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
⊢ ∀ (o : Option (List ℕ)) (p : Option (List α)),
encode o = encode p → encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p)
[PROOFSTEP]
intro o p IH
[GOAL]
case this
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
o : Option (List ℕ)
p : Option (List α)
IH : encode o = encode p
⊢ encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p)
[PROOFSTEP]
cases o
[GOAL]
case this.none
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
p : Option (List α)
IH : encode none = encode p
⊢ encode (Option.map (List.cons (encode a)) none) = encode (Option.map (List.cons a) p)
[PROOFSTEP]
cases p
[GOAL]
case this.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
p : Option (List α)
val✝ : List ℕ
IH : encode (some val✝) = encode p
⊢ encode (Option.map (List.cons (encode a)) (some val✝)) = encode (Option.map (List.cons a) p)
[PROOFSTEP]
cases p
[GOAL]
case this.none.none
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
IH : encode none = encode none
⊢ encode (Option.map (List.cons (encode a)) none) = encode (Option.map (List.cons a) none)
[PROOFSTEP]
rfl
[GOAL]
case this.none.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
val✝ : List α
IH : encode none = encode (some val✝)
⊢ encode (Option.map (List.cons (encode a)) none) = encode (Option.map (List.cons a) (some val✝))
[PROOFSTEP]
injection IH
[GOAL]
case this.some.none
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
val✝ : List ℕ
IH : encode (some val✝) = encode none
⊢ encode (Option.map (List.cons (encode a)) (some val✝)) = encode (Option.map (List.cons a) none)
[PROOFSTEP]
injection IH
[GOAL]
case this.some.some
α : Type u_1
β : Type u_2
inst✝¹ : Primcodable α
inst✝ : Primcodable β
H : Nat.Primrec fun n => encode (decode n) := prim
this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o
this :
Primrec fun n =>
List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some [])
(List.reverse (ofNat (List ℕ) n))
n✝ n : ℕ
IH✝ :
∀ (m : ℕ),
m ≤ n →
encode
(List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some [])
(ofNat (List ℕ) m)) =
encode (decode m)
a : α
val✝¹ : List ℕ
val✝ : List α
IH : encode (some val✝¹) = encode (some val✝)
⊢ encode (Option.map (List.cons (encode a)) (some val✝¹)) = encode (Option.map (List.cons a) (some val✝))
[PROOFSTEP]
exact congr_arg (fun k => (Nat.pair (encode a) k).succ.succ) (Nat.succ.inj IH)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ → σ
hf : Primrec f
hg : Primrec₂ g
hh : Primrec₂ h
a : α
⊢ (bif Nat.bodd (encode (f a)) then Option.map (h a) (decode (Nat.div2 (encode (f a))))
else Option.map (g a) (decode (Nat.div2 (encode (f a))))) =
some (Sum.casesOn (f a) (g a) (h a))
[PROOFSTEP]
cases' f a with b c
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ → σ
hf : Primrec f
hg : Primrec₂ g
hh : Primrec₂ h
a : α
b : β
⊢ (bif Nat.bodd (encode (Sum.inl b)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inl b))))
else Option.map (g a) (decode (Nat.div2 (encode (Sum.inl b))))) =
some (Sum.casesOn (Sum.inl b) (g a) (h a))
[PROOFSTEP]
simp [Nat.div2_val, encodek]
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → β ⊕ γ
g : α → β → σ
h : α → γ → σ
hf : Primrec f
hg : Primrec₂ g
hh : Primrec₂ h
a : α
c : γ
⊢ (bif Nat.bodd (encode (Sum.inr c)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inr c))))
else Option.map (g a) (decode (Nat.div2 (encode (Sum.inr c))))) =
some (Sum.casesOn (Sum.inr c) (g a) (h a))
[PROOFSTEP]
simp [Nat.div2_val, encodek]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
a : α
⊢ List.foldl (fun s b => h (a, s, b).fst ((a, s, b).snd.snd, (a, s, b).snd.fst)) (g a) (List.reverse (f a)) =
List.foldr (fun b s => h a (b, s)) (g a) (f a)
[PROOFSTEP]
simp [List.foldl_reverse]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l : List α
⊢ (List.casesOn (id l) none fun b l_1 => some (l, b, l_1).snd.fst) = List.head? l
[PROOFSTEP]
cases l
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
⊢ (List.casesOn (id []) none fun b l => some ([], b, l).snd.fst) = List.head? []
[PROOFSTEP]
rfl
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
head✝ : α
tail✝ : List α
⊢ (List.casesOn (id (head✝ :: tail✝)) none fun b l => some (head✝ :: tail✝, b, l).snd.fst) = List.head? (head✝ :: tail✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l : List α
⊢ (List.casesOn (id l) [] fun b l_1 => (l, b, l_1).snd.snd) = List.tail l
[PROOFSTEP]
cases l
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
⊢ (List.casesOn (id []) [] fun b l => ([], b, l).snd.snd) = List.tail []
[PROOFSTEP]
rfl
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
head✝ : α
tail✝ : List α
⊢ (List.casesOn (id (head✝ :: tail✝)) [] fun b l => (head✝ :: tail✝, b, l).snd.snd) = List.tail (head✝ :: tail✝)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × List β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a)
this : Primrec F
a : α
⊢ (F a).snd = List.recOn (f a) (g a) fun b l IH => h a (b, l, IH)
[PROOFSTEP]
suffices F a = (f a, List.recOn (f a) (g a) fun b l IH => h a (b, l, IH)) by rw [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × List β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a)
this✝ : Primrec F
a : α
this : F a = (f a, List.recOn (f a) (g a) fun b l IH => h a (b, l, IH))
⊢ (F a).snd = List.recOn (f a) (g a) fun b l IH => h a (b, l, IH)
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × List β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a)
this : Primrec F
a : α
⊢ F a = (f a, List.recOn (f a) (g a) fun b l IH => h a (b, l, IH))
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × List β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a)
this : Primrec F
a : α
⊢ List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) =
(f a, List.rec (g a) (fun b l IH => h a (b, l, IH)) (f a))
[PROOFSTEP]
induction' f a with b l IH
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × List β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a)
this : Primrec F
a : α
⊢ List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) [] = ([], List.rec (g a) (fun b l IH => h a (b, l, IH)) [])
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → σ
h : α → β × List β × σ → σ
hf : Primrec f
hg : Primrec g
hh : Primrec₂ h
F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a)
this : Primrec F
a : α
b : β
l : List β
IH : List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) l = (l, List.rec (g a) (fun b l IH => h a (b, l, IH)) l)
⊢ List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (b :: l) =
(b :: l, List.rec (g a) (fun b l IH => h a (b, l, IH)) (b :: l))
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
l : List α
n : ℕ
⊢ Sum.casesOn (F (l, n).fst (l, n).snd) (fun x => none) some = List.get? l n
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
l : List α
n : ℕ
⊢ Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) l) =
List.get? l n
[PROOFSTEP]
symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
l : List α
n : ℕ
⊢ List.get? l n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) l)
[PROOFSTEP]
induction' l with a l IH generalizing n
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n✝ n : ℕ
⊢ List.get? [] n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) [])
[PROOFSTEP]
rfl
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n✝ : ℕ
a : α
l : List α
IH :
∀ (n : ℕ),
List.get? l n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) l)
n : ℕ
⊢ List.get? (a :: l) n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) (a :: l))
[PROOFSTEP]
cases' n with n
[GOAL]
case cons.zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n : ℕ
a : α
l : List α
IH :
∀ (n : ℕ),
List.get? l n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) l)
⊢ List.get? (a :: l) Nat.zero =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl Nat.zero) (a :: l))
[PROOFSTEP]
dsimp
[GOAL]
case cons.zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n : ℕ
a : α
l : List α
IH :
∀ (n : ℕ),
List.get? l n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) l)
⊢ some a =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inr a) l)
[PROOFSTEP]
clear IH
[GOAL]
case cons.zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n : ℕ
a : α
l : List α
⊢ some a =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inr a) l)
[PROOFSTEP]
induction' l with _ l IH
[GOAL]
case cons.zero.nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n : ℕ
a : α
⊢ some a =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inr a) [])
[PROOFSTEP]
simp [*]
[GOAL]
case cons.zero.cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n : ℕ
a head✝ : α
l : List α
IH :
some a =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inr a) l)
⊢ some a =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inr a) (head✝ :: l))
[PROOFSTEP]
simp [*]
[GOAL]
case cons.succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
F : List α → ℕ → ℕ ⊕ α :=
fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l
hF : Primrec₂ F
this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some
n✝ : ℕ
a : α
l : List α
IH :
∀ (n : ℕ),
List.get? l n =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl n) l)
n : ℕ
⊢ List.get? (a :: l) (Nat.succ n) =
Sum.rec (fun val => none) (fun val => some val)
(List.foldl
(fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s)
(Sum.inl (Nat.succ n)) (a :: l))
[PROOFSTEP]
apply IH
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
d : α
⊢ Primrec₂ fun l n => List.getD l n d
[PROOFSTEP]
simp only [List.getD_eq_getD_get?]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
d : α
⊢ Primrec₂ fun l n => Option.getD (List.get? l n) d
[PROOFSTEP]
exact option_getD.comp₂ list_get? (const _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l₁ l₂ : List α
⊢ List.foldr (fun b s => ((l₁, l₂), b, s).snd.fst :: ((l₁, l₂), b, s).snd.snd) (l₁, l₂).snd (l₁, l₂).fst = l₁ ++ l₂
[PROOFSTEP]
induction l₁
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l₂ : List α
⊢ List.foldr (fun b s => (([], l₂), b, s).snd.fst :: (([], l₂), b, s).snd.snd) ([], l₂).snd ([], l₂).fst = [] ++ l₂
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l₂ : List α
head✝ : α
tail✝ : List α
tail_ih✝ :
List.foldr (fun b s => ((tail✝, l₂), b, s).snd.fst :: ((tail✝, l₂), b, s).snd.snd) (tail✝, l₂).snd (tail✝, l₂).fst =
tail✝ ++ l₂
⊢ List.foldr (fun b s => ((head✝ :: tail✝, l₂), b, s).snd.fst :: ((head✝ :: tail✝, l₂), b, s).snd.snd)
(head✝ :: tail✝, l₂).snd (head✝ :: tail✝, l₂).fst =
head✝ :: tail✝ ++ l₂
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → β → σ
hf : Primrec f
hg : Primrec₂ g
a : α
⊢ List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] (f a) = List.map (g a) (f a)
[PROOFSTEP]
induction f a
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → β → σ
hf : Primrec f
hg : Primrec₂ g
a : α
⊢ List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] [] = List.map (g a) []
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
g : α → β → σ
hf : Primrec f
hg : Primrec₂ g
a : α
head✝ : β
tail✝ : List β
tail_ih✝ :
List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] tail✝ = List.map (g a) tail✝
⊢ List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] (head✝ :: tail✝) =
List.map (g a) (head✝ :: tail✝)
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Nat.rec [] (fun n_1 IH => (n, n_1, IH).snd.snd ++ [(n, n_1, IH).snd.fst]) (id n) = List.range n
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Nat.rec [] (fun n IH => IH ++ [n]) n = List.range n
[PROOFSTEP]
induction n
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
⊢ Nat.rec [] (fun n IH => IH ++ [n]) Nat.zero = List.range Nat.zero
[PROOFSTEP]
simp [*, List.range_succ]
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n✝ : ℕ
n_ih✝ : Nat.rec [] (fun n IH => IH ++ [n]) n✝ = List.range n✝
⊢ Nat.rec [] (fun n IH => IH ++ [n]) (Nat.succ n✝) = List.range (Nat.succ n✝)
[PROOFSTEP]
simp [*, List.range_succ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l : List (List α)
⊢ List.foldr (fun b s => (fun x x_1 => x ++ x_1) (l, b, s).snd.fst (l, b, s).snd.snd) [] (id l) = List.join l
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l : List (List α)
⊢ List.foldr (fun b s => b ++ s) [] l = List.join l
[PROOFSTEP]
induction l
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
⊢ List.foldr (fun b s => b ++ s) [] [] = List.join []
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
head✝ : List α
tail✝ : List (List α)
tail_ih✝ : List.foldr (fun b s => b ++ s) [] tail✝ = List.join tail✝
⊢ List.foldr (fun b s => b ++ s) [] (head✝ :: tail✝) = List.join (head✝ :: tail✝)
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l : List α
⊢ List.foldr (fun b s => (fun a b => Nat.succ (a, b).snd.snd) (l, b, s).fst (l, b, s).snd) 0 (id l) = List.length l
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
l : List α
⊢ List.foldr (fun b s => Nat.succ s) 0 l = List.length l
[PROOFSTEP]
induction l
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
⊢ List.foldr (fun b s => Nat.succ s) 0 [] = List.length []
[PROOFSTEP]
simp [*]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
head✝ : α
tail✝ : List α
tail_ih✝ : List.foldr (fun b s => Nat.succ s) 0 tail✝ = List.length tail✝
⊢ List.foldr (fun b s => Nat.succ s) 0 (head✝ :: tail✝) = List.length (head✝ :: tail✝)
[PROOFSTEP]
simp [*]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
p : α → β → Bool
hf : Primrec f
hp : Primrec₂ p
a : α
⊢ List.foldr (fun b s => bif p (a, b, s).fst (a, b, s).snd.fst then 0 else Nat.succ (a, b, s).snd.snd) 0 (f a) =
List.findIdx (p a) (f a)
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
p : α → β → Bool
hf : Primrec f
hp : Primrec₂ p
a : α
⊢ List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 (f a) = List.findIdx (p a) (f a)
[PROOFSTEP]
induction f a
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
p : α → β → Bool
hf : Primrec f
hp : Primrec₂ p
a : α
⊢ List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 [] = List.findIdx (p a) []
[PROOFSTEP]
simp [List.findIdx_cons, *]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → List β
p : α → β → Bool
hf : Primrec f
hp : Primrec₂ p
a : α
head✝ : β
tail✝ : List β
tail_ih✝ : List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 tail✝ = List.findIdx (p a) tail✝
⊢ List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 (head✝ :: tail✝) = List.findIdx (p a) (head✝ :: tail✝)
[PROOFSTEP]
simp [List.findIdx_cons, *]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Primrec₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n)
a : α
n : ℕ
⊢ Nat.rec (some [])
(fun n IH =>
Option.bind (a, n, IH).snd.snd fun b =>
Option.map (fun b_1 => (((a, n, IH), b), b_1).fst.snd ++ [(((a, n, IH), b), b_1).snd])
(g ((a, n, IH), b).fst.fst ((a, n, IH), b).snd))
n =
some (List.map (f a) (List.range n))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Primrec₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n)
a : α
n : ℕ
⊢ Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) n =
some (List.map (f a) (List.range n))
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Primrec₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n)
a : α
⊢ Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) Nat.zero =
some (List.map (f a) (List.range Nat.zero))
[PROOFSTEP]
rfl
[GOAL]
case succ
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Primrec₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n)
a : α
n : ℕ
IH :
Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) n =
some (List.map (f a) (List.range n))
⊢ Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) (Nat.succ n) =
some (List.map (f a) (List.range (Nat.succ n)))
[PROOFSTEP]
simp [IH, H, List.range_succ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → ℕ → σ
g : α → List σ → Option σ
hg : Primrec₂ g
H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n)
this : Primrec₂ fun a n => List.map (f a) (List.range n)
a : α
n : ℕ
⊢ List.get? (List.map (f (a, n).fst) (List.range (Nat.succ (a, n).snd))) (a, n).snd = some (f a n)
[PROOFSTEP]
simp [List.get?_range (Nat.lt_succ_self n)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
⊢ encode (Option.bind (decode n) fun a => Option.guard p a) =
encode
(Option.bind (decode n) fun a =>
if h : (fun a => (fun a => p a) a) a then some { val := a, property := h } else none)
[PROOFSTEP]
cases' @decode α _ n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
⊢ encode (Option.bind none fun a => Option.guard p a) =
encode
(Option.bind none fun a => if h : (fun a => (fun a => p a) a) a then some { val := a, property := h } else none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
a : α
⊢ encode (Option.bind (some a) fun a => Option.guard p a) =
encode
(Option.bind (some a) fun a =>
if h : (fun a => (fun a => p a) a) a then some { val := a, property := h } else none)
[PROOFSTEP]
dsimp [Option.guard]
[GOAL]
case some
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
a : α
⊢ encode (if p a then some a else none) = encode (if h : p a then some { val := a, property := h } else none)
[PROOFSTEP]
by_cases h : p a
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
a : α
h : p a
⊢ encode (if p a then some a else none) = encode (if h : p a then some { val := a, property := h } else none)
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
a : α
h : ¬p a
⊢ encode (if p a then some a else none) = encode (if h : p a then some { val := a, property := h } else none)
[PROOFSTEP]
simp [h]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝² : Primcodable α
inst✝¹ : Primcodable β
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a
n : ℕ
a : α
h : p a
⊢ encode a = encode { val := a, property := (_ : p a) }
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
⊢ Primrec Subtype.val
[PROOFSTEP]
letI := Primcodable.subtype hp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primcodable (Subtype p) := Primcodable.subtype hp
⊢ Primrec Subtype.val
[PROOFSTEP]
refine' (@Primcodable.prim (Subtype p)).of_eq fun n => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primcodable (Subtype p) := Primcodable.subtype hp
n : ℕ
⊢ encode (decode n) = encode (Option.map Subtype.val (decode n))
[PROOFSTEP]
rcases@decode (Subtype p) _ n with (_ | ⟨a, h⟩)
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primcodable (Subtype p) := Primcodable.subtype hp
n : ℕ
⊢ encode none = encode (Option.map Subtype.val none)
[PROOFSTEP]
rfl
[GOAL]
case some.mk
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : α → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
this : Primcodable (Subtype p) := Primcodable.subtype hp
n : ℕ
a : α
h : p a
⊢ encode (some { val := a, property := h }) = encode (Option.map Subtype.val (some { val := a, property := h }))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f
[PROOFSTEP]
letI := Primcodable.subtype hp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
this : Primcodable (Subtype p) := Primcodable.subtype hp
⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f
[PROOFSTEP]
refine' ⟨fun h => _, fun hf => subtype_val.comp hf⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
this : Primcodable (Subtype p) := Primcodable.subtype hp
h : Primrec fun a => ↑(f a)
⊢ Primrec f
[PROOFSTEP]
refine' Nat.Primrec.of_eq h fun n => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
this : Primcodable (Subtype p) := Primcodable.subtype hp
h : Primrec fun a => ↑(f a)
n : ℕ
⊢ encode (Option.map (fun a => ↑(f a)) (decode n)) = encode (Option.map f (decode n))
[PROOFSTEP]
cases' @decode α _ n with a
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
this : Primcodable (Subtype p) := Primcodable.subtype hp
h : Primrec fun a => ↑(f a)
n : ℕ
⊢ encode (Option.map (fun a => ↑(f a)) none) = encode (Option.map f none)
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
this : Primcodable (Subtype p) := Primcodable.subtype hp
h : Primrec fun a => ↑(f a)
n : ℕ
a : α
⊢ encode (Option.map (fun a => ↑(f a)) (some a)) = encode (Option.map f (some a))
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝⁴ : Primcodable α
inst✝³ : Primcodable β
inst✝² : Primcodable γ
inst✝¹ : Primcodable σ
p : β → Prop
inst✝ : DecidablePred p
hp : PrimrecPred p
f : α → Subtype p
this : Primcodable (Subtype p) := Primcodable.subtype hp
h : Primrec fun a => ↑(f a)
n : ℕ
a : α
⊢ Nat.succ (encode ↑(f a)) = encode (some (f a))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
h : ∀ (a : α), Option.isSome (f a) = true
⊢ Primrec f → Primrec fun a => Option.get (f a) (_ : Option.isSome (f a) = true)
[PROOFSTEP]
intro hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
h : ∀ (a : α), Option.isSome (f a) = true
hf : Primrec f
⊢ Primrec fun a => Option.get (f a) (_ : Option.isSome (f a) = true)
[PROOFSTEP]
refine' (Nat.Primrec.pred.comp hf).of_eq fun n => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
h : ∀ (a : α), Option.isSome (f a) = true
hf : Primrec f
n : ℕ
⊢ Nat.pred (encode (Option.map f (decode n))) =
encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) (decode n))
[PROOFSTEP]
generalize hx : @decode α _ n = x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
h : ∀ (a : α), Option.isSome (f a) = true
hf : Primrec f
n : ℕ
x : Option α
hx : decode n = x
⊢ Nat.pred (encode (Option.map f x)) =
encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) x)
[PROOFSTEP]
cases x
[GOAL]
case none
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
h : ∀ (a : α), Option.isSome (f a) = true
hf : Primrec f
n : ℕ
hx : decode n = none
⊢ Nat.pred (encode (Option.map f none)) =
encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) none)
[PROOFSTEP]
simp
[GOAL]
case some
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
f : α → Option β
h : ∀ (a : α), Option.isSome (f a) = true
hf : Primrec f
n : ℕ
val✝ : α
hx : decode n = some val✝
⊢ Nat.pred (encode (Option.map f (some val✝))) =
encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) (some val✝))
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : α → Fin n
⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f
[PROOFSTEP]
letI : Primcodable { a // id a < n } := Primcodable.subtype (nat_lt.comp .id (const _))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : α → Fin n
this : Primcodable { a // id a < n } := Primcodable.subtype (_ : PrimrecPred fun a => id a < n)
⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f
[PROOFSTEP]
exact (Iff.trans (by rfl) subtype_val_iff).trans (of_equiv_iff _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : α → Fin n
this : Primcodable { a // id a < n } := Primcodable.subtype (_ : PrimrecPred fun a => id a < n)
⊢ (Primrec fun a => ↑(f a)) ↔ Primrec fun a => ↑(↑Fin.equivSubtype (f a))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Primrec fun a => ↑(Fin.succ a)
[PROOFSTEP]
simp [succ.comp fin_val]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Primrec fun a => Vector.toList (a.fst ::ᵥ a.snd)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
⊢ Primrec fun a => a.fst :: Vector.toList a.snd
[PROOFSTEP]
exact list_cons.comp fst (vector_toList_iff.2 snd)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
x✝ : Vector α n
l : List α
h : List.length l = n
⊢ List.tail (Vector.toList { val := l, property := h }) = Vector.toList (Vector.tail { val := l, property := h })
[PROOFSTEP]
cases l
[GOAL]
case nil
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
x✝ : Vector α n
h : List.length [] = n
⊢ List.tail (Vector.toList { val := [], property := h }) = Vector.toList (Vector.tail { val := [], property := h })
[PROOFSTEP]
rfl
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
x✝ : Vector α n
head✝ : α
tail✝ : List α
h : List.length (head✝ :: tail✝) = n
⊢ List.tail (Vector.toList { val := head✝ :: tail✝, property := h }) =
Vector.toList (Vector.tail { val := head✝ :: tail✝, property := h })
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
a : Vector α n × Fin n
⊢ List.get? (Vector.toList a.fst) ↑a.snd = some (Vector.get a.fst a.snd)
[PROOFSTEP]
rw [Vector.get_eq_get, ← List.get?_eq_get]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
a : Vector α n × Fin n
⊢ List.get? (Vector.toList a.fst) ↑a.snd =
List.get? (Vector.toList a.fst) ↑(↑(Fin.castIso (_ : n = List.length (Vector.toList a.fst))) a.snd)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin (n + 1) → α → σ
hf : ∀ (i : Fin (n + 1)), Primrec (f i)
⊢ Primrec fun a => List.ofFn fun i => f i a
[PROOFSTEP]
simp [List.ofFn_succ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin (n + 1) → α → σ
hf : ∀ (i : Fin (n + 1)), Primrec (f i)
⊢ Primrec fun a => f 0 a :: List.ofFn fun i => f (Fin.succ i) a
[PROOFSTEP]
exact list_cons.comp (hf 0) (list_ofFn fun i => hf i.succ)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin n → α → σ
hf : ∀ (i : Fin n), Primrec (f i)
⊢ Primrec fun a => Vector.toList (Vector.ofFn fun i => f i a)
[PROOFSTEP]
simp [list_ofFn hf]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
x✝ : (Fin n → σ) × Fin n
v : Fin n → σ
i : Fin n
⊢ Vector.get (Vector.ofFn (v, i).fst) (v, i).snd = id (v, i).fst (v, i).snd
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : Fin n → α → σ
h : ∀ (i : Fin n), Primrec (f i)
a : Fin n × α
⊢ Vector.get (Vector.ofFn fun i => f i a.snd) a.fst = f a.fst a.snd
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : α → Fin n → σ
h : Primrec₂ f
a : α
⊢ Vector.get (Vector.ofFn fun i => f a i) = f a
[PROOFSTEP]
funext i
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
σ : Type u_4
inst✝³ : Primcodable α
inst✝² : Primcodable β
inst✝¹ : Primcodable γ
inst✝ : Primcodable σ
n : ℕ
f : α → Fin n → σ
h : Primrec₂ f
a : α
i : Fin n
⊢ Vector.get (Vector.ofFn fun i => f a i) i = f a i
[PROOFSTEP]
simp
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
pf : Primrec' f
⊢ Primrec f
[PROOFSTEP]
induction pf
[GOAL]
case zero
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun x => 0
case succ
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun v => Nat.succ (head v)
case get
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
i✝ : Fin n✝
⊢ Primrec fun v => Vector.get v i✝
case comp
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Primrec' f✝
a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i)
a_ih✝¹ : Primrec f✝
a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i)
⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a)
case prec
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Primrec' f✝
a✝ : Primrec' g✝
a_ih✝¹ : Primrec f✝
a_ih✝ : Primrec g✝
⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
case zero => exact .const 0
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun x => 0
[PROOFSTEP]
case zero => exact .const 0
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun x => 0
[PROOFSTEP]
exact .const 0
[GOAL]
case succ
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun v => Nat.succ (head v)
case get
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
i✝ : Fin n✝
⊢ Primrec fun v => Vector.get v i✝
case comp
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Primrec' f✝
a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i)
a_ih✝¹ : Primrec f✝
a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i)
⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a)
case prec
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Primrec' f✝
a✝ : Primrec' g✝
a_ih✝¹ : Primrec f✝
a_ih✝ : Primrec g✝
⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
case succ => exact _root_.Primrec.succ.comp .vector_head
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun v => Nat.succ (head v)
[PROOFSTEP]
case succ => exact _root_.Primrec.succ.comp .vector_head
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
⊢ Primrec fun v => Nat.succ (head v)
[PROOFSTEP]
exact _root_.Primrec.succ.comp .vector_head
[GOAL]
case get
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
i✝ : Fin n✝
⊢ Primrec fun v => Vector.get v i✝
case comp
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Primrec' f✝
a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i)
a_ih✝¹ : Primrec f✝
a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i)
⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a)
case prec
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Primrec' f✝
a✝ : Primrec' g✝
a_ih✝¹ : Primrec f✝
a_ih✝ : Primrec g✝
⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
case get n i => exact Primrec.vector_get.comp .id (.const i)
[GOAL]
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
n : ℕ
i : Fin n
⊢ Primrec fun v => Vector.get v i
[PROOFSTEP]
case get n i => exact Primrec.vector_get.comp .id (.const i)
[GOAL]
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
n : ℕ
i : Fin n
⊢ Primrec fun v => Vector.get v i
[PROOFSTEP]
exact Primrec.vector_get.comp .id (.const i)
[GOAL]
case comp
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Primrec' f✝
a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i)
a_ih✝¹ : Primrec f✝
a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i)
⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a)
case prec
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Primrec' f✝
a✝ : Primrec' g✝
a_ih✝¹ : Primrec f✝
a_ih✝ : Primrec g✝
⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
case comp m n f g _ _ hf hg => exact hf.comp (.vector_ofFn fun i => hg i)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
m n : ℕ
f : Vector ℕ n → ℕ
g : Fin n → Vector ℕ m → ℕ
a✝¹ : Primrec' f
a✝ : ∀ (i : Fin n), Primrec' (g i)
hf : Primrec f
hg : ∀ (i : Fin n), Primrec (g i)
⊢ Primrec fun a => f (ofFn fun i => g i a)
[PROOFSTEP]
case comp m n f g _ _ hf hg => exact hf.comp (.vector_ofFn fun i => hg i)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
m n : ℕ
f : Vector ℕ n → ℕ
g : Fin n → Vector ℕ m → ℕ
a✝¹ : Primrec' f
a✝ : ∀ (i : Fin n), Primrec' (g i)
hf : Primrec f
hg : ∀ (i : Fin n), Primrec (g i)
⊢ Primrec fun a => f (ofFn fun i => g i a)
[PROOFSTEP]
exact hf.comp (.vector_ofFn fun i => hg i)
[GOAL]
case prec
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Primrec' f✝
a✝ : Primrec' g✝
a_ih✝¹ : Primrec f✝
a_ih✝ : Primrec g✝
⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
case prec n f g _ _ hf hg =>
exact
.nat_rec' .vector_head (hf.comp Primrec.vector_tail)
(hg.comp <|
Primrec.vector_cons.comp (Primrec.fst.comp .snd) <|
Primrec.vector_cons.comp (Primrec.snd.comp .snd) <| (@Primrec.vector_tail _ _ (n + 1)).comp .fst).to₂
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Primrec' f
a✝ : Primrec' g
hf : Primrec f
hg : Primrec g
⊢ Primrec fun v => Nat.rec (f (tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
case prec n f g _ _ hf hg =>
exact
.nat_rec' .vector_head (hf.comp Primrec.vector_tail)
(hg.comp <|
Primrec.vector_cons.comp (Primrec.fst.comp .snd) <|
Primrec.vector_cons.comp (Primrec.snd.comp .snd) <| (@Primrec.vector_tail _ _ (n + 1)).comp .fst).to₂
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Primrec' f
a✝ : Primrec' g
hf : Primrec f
hg : Primrec g
⊢ Primrec fun v => Nat.rec (f (tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ tail v)) (head v)
[PROOFSTEP]
exact
.nat_rec' .vector_head (hf.comp Primrec.vector_tail)
(hg.comp <|
Primrec.vector_cons.comp (Primrec.fst.comp .snd) <|
Primrec.vector_cons.comp (Primrec.snd.comp .snd) <| (@Primrec.vector_tail _ _ (n + 1)).comp .fst).to₂
[GOAL]
n : ℕ
v : Vector ℕ (Nat.succ n)
⊢ Vector.get v 0 = Vector.head v
[PROOFSTEP]
simp [get_zero]
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
v : Vector ℕ (Nat.succ n)
⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (Vector.tail v)
[PROOFSTEP]
rw [← ofFn_get v.tail]
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
v : Vector ℕ (Nat.succ n)
⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (ofFn (Vector.get (Vector.tail v)))
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
v : Vector ℕ (Nat.succ n)
⊢ (fun i => Vector.get v (Fin.succ i)) = Vector.get (Vector.tail v)
[PROOFSTEP]
funext i
[GOAL]
case e_a.e_a.h
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
v : Vector ℕ (Nat.succ n)
i : Fin n
⊢ Vector.get v (Fin.succ i) = Vector.get (Vector.tail v) i
[PROOFSTEP]
simp
[GOAL]
n m : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ n → Vector ℕ m
hf : Primrec' f
hg : Vec g
i : Fin (Nat.succ m)
⊢ Primrec' fun v => Vector.get ((fun v => f v ::ᵥ g v) v) 0
[PROOFSTEP]
simp [*]
[GOAL]
n m : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ n → Vector ℕ m
hf : Primrec' f
hg : Vec g
i✝ : Fin (Nat.succ m)
i : Fin m
⊢ Primrec' fun v => Vector.get ((fun v => f v ::ᵥ g v) v) (Fin.succ i)
[PROOFSTEP]
simp [hg i]
[GOAL]
n m : ℕ
f : Vector ℕ m → ℕ
g : Vector ℕ n → Vector ℕ m
hf : Primrec' f
hg : Vec g
v : Vector ℕ n
⊢ f (ofFn fun i => Vector.get (g v) i) = f (g v)
[PROOFSTEP]
simp
[GOAL]
f : ℕ → ℕ → ℕ
hf : Primrec' fun v => f (Vector.head v) (Vector.head (Vector.tail v))
n : ℕ
g h : Vector ℕ n → ℕ
hg : Primrec' g
hh : Primrec' h
⊢ Primrec' fun v => f (g v) (h v)
[PROOFSTEP]
simpa using hf.comp' (hg.cons <| hh.cons Primrec'.nil)
[GOAL]
n : ℕ
f g : Vector ℕ n → ℕ
h : Vector ℕ (n + 2) → ℕ
hf : Primrec' f
hg : Primrec' g
hh : Primrec' h
⊢ Primrec' fun v => Nat.rec (g v) (fun y IH => h (y ::ᵥ IH ::ᵥ v)) (f v)
[PROOFSTEP]
simpa using comp' (prec hg hh) (hf.cons idv)
[GOAL]
v : Vector ℕ (Nat.succ 0)
⊢ Nat.rec 0 (fun y IH => Vector.head (y ::ᵥ IH ::ᵥ v)) (Vector.head v) = Nat.pred (Vector.head v)
[PROOFSTEP]
simp
[GOAL]
v : Vector ℕ (Nat.succ 0)
⊢ Nat.rec 0 (fun y IH => y) (Vector.head v) = Nat.pred (Vector.head v)
[PROOFSTEP]
cases v.head
[GOAL]
case zero
v : Vector ℕ (Nat.succ 0)
⊢ Nat.rec 0 (fun y IH => y) Nat.zero = Nat.pred Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case succ
v : Vector ℕ (Nat.succ 0)
n✝ : ℕ
⊢ Nat.rec 0 (fun y IH => y) (Nat.succ n✝) = Nat.pred (Nat.succ n✝)
[PROOFSTEP]
rfl
[GOAL]
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ (Vector.head (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v))))
(Vector.head v) =
Vector.head v + Vector.head (Vector.tail v)
[PROOFSTEP]
simp
[GOAL]
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) (Vector.head v) =
Vector.head v + Vector.head (Vector.tail v)
[PROOFSTEP]
induction v.head
[GOAL]
case zero
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) Nat.zero = Nat.zero + Vector.head (Vector.tail v)
[PROOFSTEP]
simp [*, Nat.succ_add]
[GOAL]
case succ
v : Vector ℕ (Nat.succ 0 + 1)
n✝ : ℕ
n_ih✝ : Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) n✝ = n✝ + Vector.head (Vector.tail v)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) (Nat.succ n✝) =
Nat.succ n✝ + Vector.head (Vector.tail v)
[PROOFSTEP]
simp [*, Nat.succ_add]
[GOAL]
⊢ Primrec' fun v => Vector.head v - Vector.head (Vector.tail v)
[PROOFSTEP]
suffices
[GOAL]
this : ?m.372029
⊢ Primrec' fun v => Vector.head v - Vector.head (Vector.tail v)
case this ⊢ ?m.372029
[PROOFSTEP]
simpa using comp₂ (fun a b => b - a) this (tail head) head
[GOAL]
case this
⊢ Primrec' fun v => (fun a b => b - a) (Vector.head v) (Vector.head (Vector.tail v))
[PROOFSTEP]
refine' (prec head (pred.comp₁ _ (tail head))).of_eq fun v => _
[GOAL]
case this
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred (Vector.head (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v))))
(Vector.head v) =
(fun a b => b - a) (Vector.head v) (Vector.head (Vector.tail v))
[PROOFSTEP]
simp
[GOAL]
case this
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) (Vector.head v) =
Vector.head (Vector.tail v) - Vector.head v
[PROOFSTEP]
induction v.head
[GOAL]
case this.zero
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) Nat.zero = Vector.head (Vector.tail v) - Nat.zero
[PROOFSTEP]
simp [*, Nat.sub_succ]
[GOAL]
case this.succ
v : Vector ℕ (Nat.succ 0 + 1)
n✝ : ℕ
n_ih✝ : Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) n✝ = Vector.head (Vector.tail v) - n✝
⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) (Nat.succ n✝) =
Vector.head (Vector.tail v) - Nat.succ n✝
[PROOFSTEP]
simp [*, Nat.sub_succ]
[GOAL]
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec 0
(fun y IH =>
Vector.head (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v))) +
Vector.head (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v)))
(Vector.head v) =
Vector.head v * Vector.head (Vector.tail v)
[PROOFSTEP]
simp
[GOAL]
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) (Vector.head v) = Vector.head v * Vector.head (Vector.tail v)
[PROOFSTEP]
induction v.head
[GOAL]
case zero
v : Vector ℕ (Nat.succ 0 + 1)
⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) Nat.zero = Nat.zero * Vector.head (Vector.tail v)
[PROOFSTEP]
simp [*, Nat.succ_mul]
[GOAL]
case succ
v : Vector ℕ (Nat.succ 0 + 1)
n✝ : ℕ
n_ih✝ : Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) n✝ = n✝ * Vector.head (Vector.tail v)
⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) (Nat.succ n✝) = Nat.succ n✝ * Vector.head (Vector.tail v)
[PROOFSTEP]
simp [*, Nat.succ_mul]
[GOAL]
case succ
v : Vector ℕ (Nat.succ 0 + 1)
n✝ : ℕ
n_ih✝ : Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) n✝ = n✝ * Vector.head (Vector.tail v)
⊢ Vector.head (Vector.tail v) + n✝ * Vector.head (Vector.tail v) =
n✝ * Vector.head (Vector.tail v) + Vector.head (Vector.tail v)
[PROOFSTEP]
rw [add_comm]
[GOAL]
n : ℕ
a b f g : Vector ℕ n → ℕ
ha : Primrec' a
hb : Primrec' b
hf : Primrec' f
hg : Primrec' g
v : Vector ℕ n
⊢ Nat.rec (g v) (fun y IH => f (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ v)))) (b v - a v) =
if a v < b v then f v else g v
[PROOFSTEP]
cases e : b v - a v
[GOAL]
case zero
n : ℕ
a b f g : Vector ℕ n → ℕ
ha : Primrec' a
hb : Primrec' b
hf : Primrec' f
hg : Primrec' g
v : Vector ℕ n
e : b v - a v = Nat.zero
⊢ Nat.rec (g v) (fun y IH => f (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ v)))) Nat.zero = if a v < b v then f v else g v
[PROOFSTEP]
simp [not_lt.2 (tsub_eq_zero_iff_le.mp e)]
[GOAL]
case succ
n : ℕ
a b f g : Vector ℕ n → ℕ
ha : Primrec' a
hb : Primrec' b
hf : Primrec' f
hg : Primrec' g
v : Vector ℕ n
n✝ : ℕ
e : b v - a v = Nat.succ n✝
⊢ Nat.rec (g v) (fun y IH => f (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ v)))) (Nat.succ n✝) =
if a v < b v then f v else g v
[PROOFSTEP]
simp [Nat.lt_of_sub_eq_succ e]
[GOAL]
v : Vector ℕ 0
⊢ 0 = encode v
[PROOFSTEP]
rw [v.eq_nil]
[GOAL]
v : Vector ℕ 0
⊢ 0 = encode nil
[PROOFSTEP]
rfl
[GOAL]
⊢ Primrec' fun v => Nat.sqrt (Vector.head v)
[PROOFSTEP]
suffices H : ∀ n : ℕ, n.sqrt = n.rec 0 fun x y => if x.succ < y.succ * y.succ then y else y.succ
[GOAL]
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
⊢ Primrec' fun v => Nat.sqrt (Vector.head v)
[PROOFSTEP]
simp [H]
[GOAL]
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
⊢ Primrec' fun v =>
Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (Vector.head v)
[PROOFSTEP]
have :=
@prec' 1 _ _
(fun v => by have x := v.head; have y := v.tail.head; exact if x.succ < y.succ * y.succ then y else y.succ) head
(const 0) ?_
[GOAL]
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
v : Vector ℕ (1 + 2)
⊢ ℕ
[PROOFSTEP]
have x := v.head
[GOAL]
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
v : Vector ℕ (1 + 2)
x : ℕ
⊢ ℕ
[PROOFSTEP]
have y := v.tail.head
[GOAL]
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
v : Vector ℕ (1 + 2)
x y : ℕ
⊢ ℕ
[PROOFSTEP]
exact if x.succ < y.succ * y.succ then y else y.succ
[GOAL]
case refine_2
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
this :
Primrec' fun v =>
Nat.rec 0
(fun y IH =>
(fun v =>
let_fun x := Vector.head v;
let_fun y := Vector.head (Vector.tail v);
if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y)
(y ::ᵥ IH ::ᵥ v))
(Vector.head v)
⊢ Primrec' fun v =>
Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (Vector.head v)
[PROOFSTEP]
exact this
[GOAL]
case refine_1
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
⊢ Primrec' fun v =>
let_fun x := Vector.head v;
let_fun y := Vector.head (Vector.tail v);
if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y
[PROOFSTEP]
have x1 : @Primrec' 3 fun v => v.head.succ := succ.comp₁ _ head
[GOAL]
case refine_1
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
x1 : Primrec' fun v => Nat.succ (Vector.head v)
⊢ Primrec' fun v =>
let_fun x := Vector.head v;
let_fun y := Vector.head (Vector.tail v);
if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y
[PROOFSTEP]
have y1 : @Primrec' 3 fun v => v.tail.head.succ := succ.comp₁ _ (tail head)
[GOAL]
case refine_1
H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
x1 : Primrec' fun v => Nat.succ (Vector.head v)
y1 : Primrec' fun v => Nat.succ (Vector.head (Vector.tail v))
⊢ Primrec' fun v =>
let_fun x := Vector.head v;
let_fun y := Vector.head (Vector.tail v);
if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y
[PROOFSTEP]
exact if_lt x1 (mul.comp₂ _ y1 y1) (tail head) y1
[GOAL]
case H
⊢ ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
[PROOFSTEP]
introv
[GOAL]
case H
n : ℕ
⊢ Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
[PROOFSTEP]
symm
[GOAL]
case H
n : ℕ
⊢ Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n
[PROOFSTEP]
induction' n with n IH
[GOAL]
case H.zero
⊢ Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) Nat.zero = Nat.sqrt Nat.zero
[PROOFSTEP]
simp
[GOAL]
case H.succ
n : ℕ
IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n
⊢ Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (Nat.succ n) =
Nat.sqrt (Nat.succ n)
[PROOFSTEP]
dsimp
[GOAL]
case H.succ
n : ℕ
IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n
⊢ (if
Nat.succ n <
Nat.succ (Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n) *
Nat.succ (Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n) then
Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n
else Nat.succ (Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n)) =
Nat.sqrt (Nat.succ n)
[PROOFSTEP]
rw [IH]
[GOAL]
case H.succ
n : ℕ
IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n
⊢ (if Nat.succ n < Nat.succ (Nat.sqrt n) * Nat.succ (Nat.sqrt n) then Nat.sqrt n else Nat.succ (Nat.sqrt n)) =
Nat.sqrt (Nat.succ n)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
n : ℕ
IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n
h : Nat.succ n < Nat.succ (Nat.sqrt n) * Nat.succ (Nat.sqrt n)
⊢ Nat.sqrt n = Nat.sqrt (Nat.succ n)
[PROOFSTEP]
exact le_antisymm (Nat.sqrt_le_sqrt (Nat.le_succ _)) (Nat.lt_succ_iff.1 <| Nat.sqrt_lt.2 h)
[GOAL]
case neg
n : ℕ
IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n
h : ¬Nat.succ n < Nat.succ (Nat.sqrt n) * Nat.succ (Nat.sqrt n)
⊢ Nat.succ (Nat.sqrt n) = Nat.sqrt (Nat.succ n)
[PROOFSTEP]
exact Nat.eq_sqrt.2 ⟨not_lt.1 h, Nat.sqrt_lt.1 <| Nat.lt_succ_iff.2 <| Nat.sqrt_succ_le_succ_sqrt _⟩
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
⊢ Primrec' fun v => (unpair (f v)).fst
[PROOFSTEP]
have s := sqrt.comp₁ _ hf
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
⊢ Primrec' fun v => (unpair (f v)).fst
[PROOFSTEP]
have fss := sub.comp₂ _ hf (mul.comp₂ _ s s)
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
⊢ Primrec' fun v => (unpair (f v)).fst
[PROOFSTEP]
refine' (if_lt fss s fss s).of_eq fun v => _
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then f v - Nat.sqrt (f v) * Nat.sqrt (f v)
else Nat.sqrt (f v)) =
(unpair (f v)).fst
[PROOFSTEP]
simp [Nat.unpair]
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then f v - Nat.sqrt (f v) * Nat.sqrt (f v)
else Nat.sqrt (f v)) =
(if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then
(f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v))
else (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v))).fst
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
h✝ : f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v)
⊢ f v - Nat.sqrt (f v) * Nat.sqrt (f v) = (f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v)).fst
[PROOFSTEP]
rfl
[GOAL]
case neg
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
h✝ : ¬f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v)
⊢ Nat.sqrt (f v) = (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)).fst
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
⊢ Primrec' fun v => (unpair (f v)).snd
[PROOFSTEP]
have s := sqrt.comp₁ _ hf
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
⊢ Primrec' fun v => (unpair (f v)).snd
[PROOFSTEP]
have fss := sub.comp₂ _ hf (mul.comp₂ _ s s)
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
⊢ Primrec' fun v => (unpair (f v)).snd
[PROOFSTEP]
refine' (if_lt fss s s (sub.comp₂ _ fss s)).of_eq fun v => _
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then Nat.sqrt (f v)
else f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)) =
(unpair (f v)).snd
[PROOFSTEP]
simp [Nat.unpair]
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then Nat.sqrt (f v)
else f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)) =
(if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then
(f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v))
else (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v))).snd
[PROOFSTEP]
split_ifs
[GOAL]
case pos
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
h✝ : f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v)
⊢ Nat.sqrt (f v) = (f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v)).snd
[PROOFSTEP]
rfl
[GOAL]
case neg
n : ℕ
f : Vector ℕ n → ℕ
hf : Primrec' f
s : Primrec' fun v => Nat.sqrt (f v)
fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v)
v : Vector ℕ n
h✝ : ¬f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v)
⊢ f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v) =
(Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)).snd
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
hf : Nat.Primrec f
⊢ Primrec' fun v => f (Vector.head v)
[PROOFSTEP]
induction hf
[GOAL]
case zero
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun x => 0) (Vector.head v)
case succ
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => Nat.succ (Vector.head v)
case left
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v)
case right
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v)
case pair
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v)
case comp
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v)
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case zero => exact const 0
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun x => 0) (Vector.head v)
[PROOFSTEP]
case zero => exact const 0
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun x => 0) (Vector.head v)
[PROOFSTEP]
exact const 0
[GOAL]
case succ
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => Nat.succ (Vector.head v)
case left
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v)
case right
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v)
case pair
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v)
case comp
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v)
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case succ => exact succ
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => Nat.succ (Vector.head v)
[PROOFSTEP]
case succ => exact succ
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => Nat.succ (Vector.head v)
[PROOFSTEP]
exact succ
[GOAL]
case left
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v)
case right
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v)
case pair
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v)
case comp
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v)
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case left => exact unpair₁ head
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v)
[PROOFSTEP]
case left => exact unpair₁ head
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v)
[PROOFSTEP]
exact unpair₁ head
[GOAL]
case right
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v)
case pair
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v)
case comp
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v)
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case right => exact unpair₂ head
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v)
[PROOFSTEP]
case right => exact unpair₂ head
[GOAL]
n : ℕ
f✝ : Vector ℕ n → ℕ
f : ℕ → ℕ
⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v)
[PROOFSTEP]
exact unpair₂ head
[GOAL]
case pair
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v)
case comp
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v)
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case pair f g _ _ hf hg => exact natPair.comp₂ _ hf hg
[GOAL]
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f✝ f g : ℕ → ℕ
a✝¹ : Nat.Primrec f
a✝ : Nat.Primrec g
hf : Primrec' fun v => f (Vector.head v)
hg : Primrec' fun v => g (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f n) (g n)) (Vector.head v)
[PROOFSTEP]
case pair f g _ _ hf hg => exact natPair.comp₂ _ hf hg
[GOAL]
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f✝ f g : ℕ → ℕ
a✝¹ : Nat.Primrec f
a✝ : Nat.Primrec g
hf : Primrec' fun v => f (Vector.head v)
hg : Primrec' fun v => g (Vector.head v)
⊢ Primrec' fun v => (fun n => pair (f n) (g n)) (Vector.head v)
[PROOFSTEP]
exact natPair.comp₂ _ hf hg
[GOAL]
case comp
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v)
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case comp f g _ _ hf hg => exact hf.comp₁ _ hg
[GOAL]
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f✝ f g : ℕ → ℕ
a✝¹ : Nat.Primrec f
a✝ : Nat.Primrec g
hf : Primrec' fun v => f (Vector.head v)
hg : Primrec' fun v => g (Vector.head v)
⊢ Primrec' fun v => (fun n => f (g n)) (Vector.head v)
[PROOFSTEP]
case comp f g _ _ hf hg => exact hf.comp₁ _ hg
[GOAL]
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f✝ f g : ℕ → ℕ
a✝¹ : Nat.Primrec f
a✝ : Nat.Primrec g
hf : Primrec' fun v => f (Vector.head v)
hg : Primrec' fun v => g (Vector.head v)
⊢ Primrec' fun v => (fun n => f (g n)) (Vector.head v)
[PROOFSTEP]
exact hf.comp₁ _ hg
[GOAL]
case prec
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f f✝ g✝ : ℕ → ℕ
a✝¹ : Nat.Primrec f✝
a✝ : Nat.Primrec g✝
a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v)
a_ih✝ : Primrec' fun v => g✝ (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case prec f g _ _ hf hg =>
simpa using
prec' (unpair₂ head) (hf.comp₁ _ (unpair₁ head))
(hg.comp₁ _ <| natPair.comp₂ _ (unpair₁ <| tail <| tail head) (natPair.comp₂ _ head (tail head)))
[GOAL]
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f✝ f g : ℕ → ℕ
a✝¹ : Nat.Primrec f
a✝ : Nat.Primrec g
hf : Primrec' fun v => f (Vector.head v)
hg : Primrec' fun v => g (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f z) (fun y IH => g (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
case prec f g _ _ hf hg =>
simpa using
prec' (unpair₂ head) (hf.comp₁ _ (unpair₁ head))
(hg.comp₁ _ <| natPair.comp₂ _ (unpair₁ <| tail <| tail head) (natPair.comp₂ _ head (tail head)))
[GOAL]
n : ℕ
f✝¹ : Vector ℕ n → ℕ
f✝ f g : ℕ → ℕ
a✝¹ : Nat.Primrec f
a✝ : Nat.Primrec g
hf : Primrec' fun v => f (Vector.head v)
hg : Primrec' fun v => g (Vector.head v)
⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f z) (fun y IH => g (pair z (pair y IH))) n) (Vector.head v)
[PROOFSTEP]
simpa using
prec' (unpair₂ head) (hf.comp₁ _ (unpair₁ head))
(hg.comp₁ _ <| natPair.comp₂ _ (unpair₁ <| tail <| tail head) (natPair.comp₂ _ head (tail head)))
[GOAL]
n : ℕ
f : Vector ℕ n → ℕ
this : ∀ (f : ℕ → ℕ), Nat.Primrec f → Primrec' fun v => f (Vector.head v)
hf : Primrec f
i : Vector ℕ n
⊢ Nat.pred ((fun m => encode (Option.map f (decode m))) (encode i)) = f i
[PROOFSTEP]
simp [encodek]
[GOAL]
f : ℕ → ℕ
h : Primrec fun v => f (Vector.head v)
v : ℕ
⊢ f (Vector.head (ofFn fun i => id v)) = f v
[PROOFSTEP]
simp
[GOAL]
f : ℕ → ℕ → ℕ
h : Primrec fun v => f (Vector.head v) (Vector.head (Vector.tail v))
v : ℕ × ℕ
⊢ f (Vector.head (v.fst ::ᵥ v.snd ::ᵥ nil)) (Vector.head (Vector.tail (v.fst ::ᵥ v.snd ::ᵥ nil))) = f v.fst v.snd
[PROOFSTEP]
simp
[GOAL]
m n : ℕ
f : Vector ℕ m → Vector ℕ n
h : Vec f
⊢ Primrec f
[PROOFSTEP]
simpa using Primrec.vector_ofFn fun i => to_prim (h i)
| {"mathlib_filename": "Mathlib.Computability.Primrec", "llama_tokens": 85962} |
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_meas_f : Measurable f
⊢ ∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
revert f
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
⊢ ∀ {f : Ω → ℝ≥0∞},
Measurable f →
∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
have h_mul_indicator : ∀ g, Measurable g → Measurable fun a => g a * T.indicator (fun _ => c) a := fun g h_mg =>
h_mg.mul (measurable_const.indicator h_meas_T)
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
⊢ ∀ {f : Ω → ℝ≥0∞},
Measurable f →
∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
apply @Measurable.ennreal_induction _ Mf
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
⊢ ∀ (c_1 : ℝ≥0∞) ⦃s : Set Ω⦄,
MeasurableSet s →
∫⁻ (ω : Ω), indicator s (fun x => c_1) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), indicator s (fun x => c_1) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
intro c' s' h_meas_s'
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
c' : ℝ≥0∞
s' : Set Ω
h_meas_s' : MeasurableSet s'
⊢ ∫⁻ (ω : Ω), indicator s' (fun x => c') ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), indicator s' (fun x => c') ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
simp_rw [← inter_indicator_mul]
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
c' : ℝ≥0∞
s' : Set Ω
h_meas_s' : MeasurableSet s'
⊢ ∫⁻ (ω : Ω), indicator (s' ∩ T) (fun x => c' * c) ω ∂μ =
(∫⁻ (ω : Ω), indicator s' (fun x => c') ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
rw [lintegral_indicator _ (MeasurableSet.inter (hMf _ h_meas_s') h_meas_T), lintegral_indicator _ (hMf _ h_meas_s'),
lintegral_indicator _ h_meas_T]
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
c' : ℝ≥0∞
s' : Set Ω
h_meas_s' : MeasurableSet s'
⊢ ∫⁻ (a : Ω) in s' ∩ T, c' * c ∂μ = (∫⁻ (a : Ω) in s', c' ∂μ) * ∫⁻ (a : Ω) in T, c ∂μ
[PROOFSTEP]
simp only [measurable_const, lintegral_const, univ_inter, lintegral_const_mul, MeasurableSet.univ,
Measure.restrict_apply]
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
c' : ℝ≥0∞
s' : Set Ω
h_meas_s' : MeasurableSet s'
⊢ c' * c * ↑↑μ (s' ∩ T) = c' * ↑↑μ s' * (c * ↑↑μ T)
[PROOFSTEP]
rw [IndepSets_iff] at h_ind
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : ∀ (t1 t2 : Set Ω), t1 ∈ {s | MeasurableSet s} → t2 ∈ {T} → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
c' : ℝ≥0∞
s' : Set Ω
h_meas_s' : MeasurableSet s'
⊢ c' * c * ↑↑μ (s' ∩ T) = c' * ↑↑μ s' * (c * ↑↑μ T)
[PROOFSTEP]
rw [mul_mul_mul_comm, h_ind s' T h_meas_s' (Set.mem_singleton _)]
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
⊢ ∀ ⦃f g : Ω → ℝ≥0∞⦄,
Disjoint (Function.support f) (Function.support g) →
Measurable f →
Measurable g →
∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ →
∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ →
∫⁻ (ω : Ω), (f + g) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), (f + g) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
intro f' g _ h_meas_f' _ h_ind_f' h_ind_g
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f' g : Ω → ℝ≥0∞
a✝¹ : Disjoint (Function.support f') (Function.support g)
h_meas_f' : Measurable f'
a✝ : Measurable g
h_ind_f' :
∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_ind_g :
∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
⊢ ∫⁻ (ω : Ω), (f' + g) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), (f' + g) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
have h_measM_f' : Measurable f' := h_meas_f'.mono hMf le_rfl
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f' g : Ω → ℝ≥0∞
a✝¹ : Disjoint (Function.support f') (Function.support g)
h_meas_f' : Measurable f'
a✝ : Measurable g
h_ind_f' :
∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_ind_g :
∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f' : Measurable f'
⊢ ∫⁻ (ω : Ω), (f' + g) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), (f' + g) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
simp_rw [Pi.add_apply, right_distrib]
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f' g : Ω → ℝ≥0∞
a✝¹ : Disjoint (Function.support f') (Function.support g)
h_meas_f' : Measurable f'
a✝ : Measurable g
h_ind_f' :
∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_ind_g :
∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f' : Measurable f'
⊢ ∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω + g ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f' ω + g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
rw [lintegral_add_left (h_mul_indicator _ h_measM_f'), lintegral_add_left h_measM_f', right_distrib, h_ind_f', h_ind_g]
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
⊢ ∀ ⦃f : ℕ → Ω → ℝ≥0∞⦄,
(∀ (n : ℕ), Measurable (f n)) →
Monotone f →
(∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ) →
∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
intro f h_meas_f h_mono_f h_ind_f
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f : ℕ → Ω → ℝ≥0∞
h_meas_f : ∀ (n : ℕ), Measurable (f n)
h_mono_f : Monotone f
h_ind_f :
∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
⊢ ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
have h_measM_f : ∀ n, Measurable (f n) := fun n => (h_meas_f n).mono hMf le_rfl
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f : ℕ → Ω → ℝ≥0∞
h_meas_f : ∀ (n : ℕ), Measurable (f n)
h_mono_f : Monotone f
h_ind_f :
∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f : ∀ (n : ℕ), Measurable (f n)
⊢ ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
simp_rw [ENNReal.iSup_mul]
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f : ℕ → Ω → ℝ≥0∞
h_meas_f : ∀ (n : ℕ), Measurable (f n)
h_mono_f : Monotone f
h_ind_f :
∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f : ∀ (n : ℕ), Measurable (f n)
⊢ ∫⁻ (ω : Ω), ⨆ (i : ℕ), f i ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), ⨆ (n : ℕ), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
rw [lintegral_iSup h_measM_f h_mono_f, lintegral_iSup, ENNReal.iSup_mul]
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f : ℕ → Ω → ℝ≥0∞
h_meas_f : ∀ (n : ℕ), Measurable (f n)
h_mono_f : Monotone f
h_ind_f :
∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f : ∀ (n : ℕ), Measurable (f n)
⊢ ⨆ (n : ℕ), ∫⁻ (a : Ω), f n a * indicator T (fun x => c) a ∂μ =
⨆ (i : ℕ), (∫⁻ (a : Ω), f i a ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
[PROOFSTEP]
simp_rw [← h_ind_f]
[GOAL]
case h_iSup.hf
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f : ℕ → Ω → ℝ≥0∞
h_meas_f : ∀ (n : ℕ), Measurable (f n)
h_mono_f : Monotone f
h_ind_f :
∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f : ∀ (n : ℕ), Measurable (f n)
⊢ ∀ (n : ℕ), Measurable fun ω => f n ω * indicator T (fun x => c) ω
[PROOFSTEP]
exact fun n => h_mul_indicator _ (h_measM_f n)
[GOAL]
case h_iSup.h_mono
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
c : ℝ≥0∞
T : Set Ω
h_meas_T : MeasurableSet T
h_ind : IndepSets {s | MeasurableSet s} {T}
h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a
f : ℕ → Ω → ℝ≥0∞
h_meas_f : ∀ (n : ℕ), Measurable (f n)
h_mono_f : Monotone f
h_ind_f :
∀ (n : ℕ),
∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ =
(∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ
h_measM_f : ∀ (n : ℕ), Measurable (f n)
⊢ Monotone fun i ω => f i ω * indicator T (fun x => c) ω
[PROOFSTEP]
exact fun m n h_le a => mul_le_mul_right' (h_mono_f h_le a) _
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_meas_g : Measurable g
⊢ ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
[PROOFSTEP]
revert g
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
⊢ ∀ {g : Ω → ℝ≥0∞}, Measurable g → ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
[PROOFSTEP]
have h_measM_f : Measurable f := h_meas_f.mono hMf le_rfl
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
⊢ ∀ {g : Ω → ℝ≥0∞}, Measurable g → ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
[PROOFSTEP]
apply @Measurable.ennreal_induction _ Mg
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
⊢ ∀ (c : ℝ≥0∞) ⦃s : Set Ω⦄,
MeasurableSet s →
∫⁻ (ω : Ω), f ω * indicator s (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator s (fun x => c) ω ∂μ
[PROOFSTEP]
intro c s h_s
[GOAL]
case h_ind
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
c : ℝ≥0∞
s : Set Ω
h_s : MeasurableSet s
⊢ ∫⁻ (ω : Ω), f ω * indicator s (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator s (fun x => c) ω ∂μ
[PROOFSTEP]
apply lintegral_mul_indicator_eq_lintegral_mul_lintegral_indicator hMf _ (hMg _ h_s) _ h_meas_f
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
c : ℝ≥0∞
s : Set Ω
h_s : MeasurableSet s
⊢ IndepSets {s | MeasurableSet s} {s}
[PROOFSTEP]
apply indepSets_of_indepSets_of_le_right h_ind
[GOAL]
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
c : ℝ≥0∞
s : Set Ω
h_s : MeasurableSet s
⊢ {s} ⊆ {s | MeasurableSet s}
[PROOFSTEP]
rwa [singleton_subset_iff]
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
⊢ ∀ ⦃f_1 g : Ω → ℝ≥0∞⦄,
Disjoint (Function.support f_1) (Function.support g) →
Measurable f_1 →
Measurable g →
∫⁻ (ω : Ω), f ω * f_1 ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f_1 ω ∂μ →
∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ →
∫⁻ (ω : Ω), f ω * (f_1 + g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (f_1 + g) ω ∂μ
[PROOFSTEP]
intro f' g _ h_measMg_f' _ h_ind_f' h_ind_g'
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' g : Ω → ℝ≥0∞
a✝¹ : Disjoint (Function.support f') (Function.support g)
h_measMg_f' : Measurable f'
a✝ : Measurable g
h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ
h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
⊢ ∫⁻ (ω : Ω), f ω * (f' + g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (f' + g) ω ∂μ
[PROOFSTEP]
have h_measM_f' : Measurable f' := h_measMg_f'.mono hMg le_rfl
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' g : Ω → ℝ≥0∞
a✝¹ : Disjoint (Function.support f') (Function.support g)
h_measMg_f' : Measurable f'
a✝ : Measurable g
h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ
h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
h_measM_f' : Measurable f'
⊢ ∫⁻ (ω : Ω), f ω * (f' + g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (f' + g) ω ∂μ
[PROOFSTEP]
simp_rw [Pi.add_apply, left_distrib]
[GOAL]
case h_add
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' g : Ω → ℝ≥0∞
a✝¹ : Disjoint (Function.support f') (Function.support g)
h_measMg_f' : Measurable f'
a✝ : Measurable g
h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ
h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
h_measM_f' : Measurable f'
⊢ ∫⁻ (ω : Ω), f ω * f' ω + f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω + g ω ∂μ
[PROOFSTEP]
rw [lintegral_add_left h_measM_f', lintegral_add_left (h_measM_f.mul h_measM_f'), left_distrib, h_ind_f', h_ind_g']
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
⊢ ∀ ⦃f_1 : ℕ → Ω → ℝ≥0∞⦄,
(∀ (n : ℕ), Measurable (f_1 n)) →
Monotone f_1 →
(∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f_1 n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f_1 n ω ∂μ) →
∫⁻ (ω : Ω), f ω * (fun x => ⨆ (n : ℕ), f_1 n x) ω ∂μ =
(∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f_1 n x) ω ∂μ
[PROOFSTEP]
intro f' h_meas_f' h_mono_f' h_ind_f'
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' : ℕ → Ω → ℝ≥0∞
h_meas_f' : ∀ (n : ℕ), Measurable (f' n)
h_mono_f' : Monotone f'
h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ
⊢ ∫⁻ (ω : Ω), f ω * (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ =
(∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ
[PROOFSTEP]
have h_measM_f' : ∀ n, Measurable (f' n) := fun n => (h_meas_f' n).mono hMg le_rfl
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' : ℕ → Ω → ℝ≥0∞
h_meas_f' : ∀ (n : ℕ), Measurable (f' n)
h_mono_f' : Monotone f'
h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ
h_measM_f' : ∀ (n : ℕ), Measurable (f' n)
⊢ ∫⁻ (ω : Ω), f ω * (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ =
(∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ
[PROOFSTEP]
simp_rw [ENNReal.mul_iSup]
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' : ℕ → Ω → ℝ≥0∞
h_meas_f' : ∀ (n : ℕ), Measurable (f' n)
h_mono_f' : Monotone f'
h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ
h_measM_f' : ∀ (n : ℕ), Measurable (f' n)
⊢ ∫⁻ (ω : Ω), ⨆ (i : ℕ), f ω * f' i ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), ⨆ (n : ℕ), f' n ω ∂μ
[PROOFSTEP]
rw [lintegral_iSup, lintegral_iSup h_measM_f' h_mono_f', ENNReal.mul_iSup]
[GOAL]
case h_iSup
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' : ℕ → Ω → ℝ≥0∞
h_meas_f' : ∀ (n : ℕ), Measurable (f' n)
h_mono_f' : Monotone f'
h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ
h_measM_f' : ∀ (n : ℕ), Measurable (f' n)
⊢ ⨆ (n : ℕ), ∫⁻ (a : Ω), f a * f' n a ∂μ = ⨆ (i : ℕ), (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (a : Ω), f' i a ∂μ
[PROOFSTEP]
simp_rw [← h_ind_f']
[GOAL]
case h_iSup.hf
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' : ℕ → Ω → ℝ≥0∞
h_meas_f' : ∀ (n : ℕ), Measurable (f' n)
h_mono_f' : Monotone f'
h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ
h_measM_f' : ∀ (n : ℕ), Measurable (f' n)
⊢ ∀ (n : ℕ), Measurable fun ω => f ω * f' n ω
[PROOFSTEP]
exact fun n => h_measM_f.mul (h_measM_f' n)
[GOAL]
case h_iSup.h_mono
Ω : Type u_1
mΩ✝ : MeasurableSpace Ω
μ✝ : Measure Ω
f : Ω → ℝ≥0∞
X Y : Ω → ℝ
Mf Mg mΩ : MeasurableSpace Ω
μ : Measure Ω
hMf : Mf ≤ mΩ
hMg : Mg ≤ mΩ
h_ind : Indep Mf Mg
h_meas_f : Measurable f
h_measM_f : Measurable f
f' : ℕ → Ω → ℝ≥0∞
h_meas_f' : ∀ (n : ℕ), Measurable (f' n)
h_mono_f' : Monotone f'
h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ
h_measM_f' : ∀ (n : ℕ), Measurable (f' n)
⊢ Monotone fun i ω => f ω * f' i ω
[PROOFSTEP]
exact fun n m (h_le : n ≤ m) a => mul_le_mul_left' (h_mono_f' h_le a) _
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
h_meas_f : AEMeasurable f
h_meas_g : AEMeasurable g
h_indep_fun : IndepFun f g
⊢ ∫⁻ (ω : Ω), (f * g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
[PROOFSTEP]
have fg_ae : f * g =ᵐ[μ] h_meas_f.mk _ * h_meas_g.mk _ := h_meas_f.ae_eq_mk.mul h_meas_g.ae_eq_mk
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
h_meas_f : AEMeasurable f
h_meas_g : AEMeasurable g
h_indep_fun : IndepFun f g
fg_ae : f * g =ᵐ[μ] AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g
⊢ ∫⁻ (ω : Ω), (f * g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ
[PROOFSTEP]
rw [lintegral_congr_ae h_meas_f.ae_eq_mk, lintegral_congr_ae h_meas_g.ae_eq_mk, lintegral_congr_ae fg_ae]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
h_meas_f : AEMeasurable f
h_meas_g : AEMeasurable g
h_indep_fun : IndepFun f g
fg_ae : f * g =ᵐ[μ] AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g
⊢ ∫⁻ (a : Ω), (AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g) a ∂μ =
(∫⁻ (a : Ω), AEMeasurable.mk f h_meas_f a ∂μ) * ∫⁻ (a : Ω), AEMeasurable.mk g h_meas_g a ∂μ
[PROOFSTEP]
apply lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun h_meas_f.measurable_mk h_meas_g.measurable_mk
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
h_meas_f : AEMeasurable f
h_meas_g : AEMeasurable g
h_indep_fun : IndepFun f g
fg_ae : f * g =ᵐ[μ] AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g
⊢ IndepFun (AEMeasurable.mk f h_meas_f) (AEMeasurable.mk g h_meas_g)
[PROOFSTEP]
exact h_indep_fun.ae_eq h_meas_f.ae_eq_mk h_meas_g.ae_eq_mk
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
⊢ Integrable (X * Y)
[PROOFSTEP]
let nX : Ω → ENNReal := fun a => ‖X a‖₊
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
⊢ Integrable (X * Y)
[PROOFSTEP]
let nY : Ω → ENNReal := fun a => ‖Y a‖₊
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
⊢ Integrable (X * Y)
[PROOFSTEP]
have hXY' : IndepFun (fun a => ‖X a‖₊) (fun a => ‖Y a‖₊) μ := hXY.comp measurable_nnnorm measurable_nnnorm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
⊢ Integrable (X * Y)
[PROOFSTEP]
have hXY'' : IndepFun nX nY μ := hXY'.comp measurable_coe_nnreal_ennreal measurable_coe_nnreal_ennreal
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
hXY'' : IndepFun nX nY
⊢ Integrable (X * Y)
[PROOFSTEP]
have hnX : AEMeasurable nX μ := hX.1.aemeasurable.nnnorm.coe_nnreal_ennreal
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
hXY'' : IndepFun nX nY
hnX : AEMeasurable nX
⊢ Integrable (X * Y)
[PROOFSTEP]
have hnY : AEMeasurable nY μ := hY.1.aemeasurable.nnnorm.coe_nnreal_ennreal
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
hXY'' : IndepFun nX nY
hnX : AEMeasurable nX
hnY : AEMeasurable nY
⊢ Integrable (X * Y)
[PROOFSTEP]
have hmul : ∫⁻ a, nX a * nY a ∂μ = (∫⁻ a, nX a ∂μ) * ∫⁻ a, nY a ∂μ :=
lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun' hnX hnY hXY''
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
hXY'' : IndepFun nX nY
hnX : AEMeasurable nX
hnY : AEMeasurable nY
hmul : ∫⁻ (a : Ω), nX a * nY a ∂μ = (∫⁻ (a : Ω), nX a ∂μ) * ∫⁻ (a : Ω), nY a ∂μ
⊢ Integrable (X * Y)
[PROOFSTEP]
refine' ⟨hX.1.mul hY.1, _⟩
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
hXY'' : IndepFun nX nY
hnX : AEMeasurable nX
hnY : AEMeasurable nY
hmul : ∫⁻ (a : Ω), nX a * nY a ∂μ = (∫⁻ (a : Ω), nX a ∂μ) * ∫⁻ (a : Ω), nY a ∂μ
⊢ HasFiniteIntegral (X * Y)
[PROOFSTEP]
simp_rw [HasFiniteIntegral, Pi.mul_apply, nnnorm_mul, ENNReal.coe_mul, hmul]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊
nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊
hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊
hXY'' : IndepFun nX nY
hnX : AEMeasurable nX
hnY : AEMeasurable nY
hmul : ∫⁻ (a : Ω), nX a * nY a ∂μ = (∫⁻ (a : Ω), nX a ∂μ) * ∫⁻ (a : Ω), nY a ∂μ
⊢ (∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ) * ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ < ⊤
[PROOFSTEP]
exact ENNReal.mul_lt_top hX.2.ne hY.2.ne
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
⊢ Integrable X
[PROOFSTEP]
refine' ⟨hX, _⟩
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
⊢ HasFiniteIntegral X
[PROOFSTEP]
have I : (∫⁻ ω, ‖Y ω‖₊ ∂μ) ≠ 0 := fun H ↦
by
have I : (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hY.ennnorm).1 H
apply h'Y
filter_upwards [I] with ω hω
simpa using hω
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0
⊢ False
[PROOFSTEP]
have I : (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hY.ennnorm).1 H
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0
I : (fun ω => ↑‖Y ω‖₊) =ᵐ[μ] 0
⊢ False
[PROOFSTEP]
apply h'Y
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0
I : (fun ω => ↑‖Y ω‖₊) =ᵐ[μ] 0
⊢ Y =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [I] with ω hω
[GOAL]
case h
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0
I : (fun ω => ↑‖Y ω‖₊) =ᵐ[μ] 0
ω : Ω
hω : ↑‖Y ω‖₊ = OfNat.ofNat 0 ω
⊢ Y ω = OfNat.ofNat 0 ω
[PROOFSTEP]
simpa using hω
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
⊢ HasFiniteIntegral X
[PROOFSTEP]
refine lt_top_iff_ne_top.2 fun H => ?_
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
⊢ False
[PROOFSTEP]
have J : IndepFun (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) μ :=
by
have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal
apply IndepFun.comp hXY M M
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
[PROOFSTEP]
have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
M : Measurable fun x => ↑‖x‖₊
⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
[PROOFSTEP]
apply IndepFun.comp hXY M M
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
⊢ False
[PROOFSTEP]
have A : (∫⁻ ω, ‖X ω * Y ω‖₊ ∂μ) < ∞ := h'XY.2
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
A : ∫⁻ (ω : Ω), ↑‖X ω * Y ω‖₊ ∂μ < ⊤
⊢ False
[PROOFSTEP]
simp only [nnnorm_mul, ENNReal.coe_mul] at A
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
A : ∫⁻ (ω : Ω), ↑‖X ω‖₊ * ↑‖Y ω‖₊ ∂μ < ⊤
⊢ False
[PROOFSTEP]
rw [lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun'' hX.ennnorm hY.ennnorm J, H] at A
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'Y : ¬Y =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
A : ⊤ * ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ < ⊤
⊢ False
[PROOFSTEP]
simp only [ENNReal.top_mul I] at A
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
⊢ Integrable Y
[PROOFSTEP]
refine' ⟨hY, _⟩
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
⊢ HasFiniteIntegral Y
[PROOFSTEP]
have I : (∫⁻ ω, ‖X ω‖₊ ∂μ) ≠ 0 := fun H ↦
by
have I : (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hX.ennnorm).1 H
apply h'X
filter_upwards [I] with ω hω
simpa using hω
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0
⊢ False
[PROOFSTEP]
have I : (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hX.ennnorm).1 H
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0
I : (fun ω => ↑‖X ω‖₊) =ᵐ[μ] 0
⊢ False
[PROOFSTEP]
apply h'X
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0
I : (fun ω => ↑‖X ω‖₊) =ᵐ[μ] 0
⊢ X =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [I] with ω hω
[GOAL]
case h
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0
I : (fun ω => ↑‖X ω‖₊) =ᵐ[μ] 0
ω : Ω
hω : ↑‖X ω‖₊ = OfNat.ofNat 0 ω
⊢ X ω = OfNat.ofNat 0 ω
[PROOFSTEP]
simpa using hω
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
⊢ HasFiniteIntegral Y
[PROOFSTEP]
refine lt_top_iff_ne_top.2 fun H => ?_
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
⊢ False
[PROOFSTEP]
have J : IndepFun (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) μ :=
by
have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal
apply IndepFun.comp hXY M M
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
[PROOFSTEP]
have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
M : Measurable fun x => ↑‖x‖₊
⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
[PROOFSTEP]
apply IndepFun.comp hXY M M
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
⊢ False
[PROOFSTEP]
have A : (∫⁻ ω, ‖X ω * Y ω‖₊ ∂μ) < ∞ := h'XY.2
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
A : ∫⁻ (ω : Ω), ↑‖X ω * Y ω‖₊ ∂μ < ⊤
⊢ False
[PROOFSTEP]
simp only [nnnorm_mul, ENNReal.coe_mul] at A
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
A : ∫⁻ (ω : Ω), ↑‖X ω‖₊ * ↑‖Y ω‖₊ ∂μ < ⊤
⊢ False
[PROOFSTEP]
rw [lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun'' hX.ennnorm hY.ennnorm J, H] at A
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X✝ Y✝ : Ω → ℝ
β : Type u_2
inst✝² : MeasurableSpace β
X Y : Ω → β
inst✝¹ : NormedDivisionRing β
inst✝ : BorelSpace β
hXY : IndepFun X Y
h'XY : Integrable (X * Y)
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0
H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤
J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊
A : (∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ) * ⊤ < ⊤
⊢ False
[PROOFSTEP]
simp only [ENNReal.mul_top I] at A
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have h1 : AEMeasurable (fun a => ENNReal.ofReal (X a)) μ := ENNReal.measurable_ofReal.comp_aemeasurable hXm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have h2 : AEMeasurable (fun a => ENNReal.ofReal (Y a)) μ := ENNReal.measurable_ofReal.comp_aemeasurable hYm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have h3 : AEMeasurable (X * Y) μ := hXm.mul hYm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
h3 : AEMeasurable (X * Y)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have h4 : 0 ≤ᵐ[μ] X * Y := ae_of_all _ fun ω => mul_nonneg (hXp ω) (hYp ω)
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
h3 : AEMeasurable (X * Y)
h4 : 0 ≤ᵐ[μ] X * Y
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
rw [integral_eq_lintegral_of_nonneg_ae (ae_of_all _ hXp) hXm.aestronglyMeasurable,
integral_eq_lintegral_of_nonneg_ae (ae_of_all _ hYp) hYm.aestronglyMeasurable,
integral_eq_lintegral_of_nonneg_ae h4 h3.aestronglyMeasurable]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
h3 : AEMeasurable (X * Y)
h4 : 0 ≤ᵐ[μ] X * Y
⊢ ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal ((X * Y) a) ∂μ) =
ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal (X a) ∂μ) * ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal (Y a) ∂μ)
[PROOFSTEP]
simp_rw [← ENNReal.toReal_mul, Pi.mul_apply, ENNReal.ofReal_mul (hXp _)]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
h3 : AEMeasurable (X * Y)
h4 : 0 ≤ᵐ[μ] X * Y
⊢ ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal (X a) * ENNReal.ofReal (Y a) ∂μ) =
ENNReal.toReal ((∫⁻ (a : Ω), ENNReal.ofReal (X a) ∂μ) * ∫⁻ (a : Ω), ENNReal.ofReal (Y a) ∂μ)
[PROOFSTEP]
congr
[GOAL]
case e_a
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
h3 : AEMeasurable (X * Y)
h4 : 0 ≤ᵐ[μ] X * Y
⊢ ∫⁻ (a : Ω), ENNReal.ofReal (X a) * ENNReal.ofReal (Y a) ∂μ =
(∫⁻ (a : Ω), ENNReal.ofReal (X a) ∂μ) * ∫⁻ (a : Ω), ENNReal.ofReal (Y a) ∂μ
[PROOFSTEP]
apply lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun' h1 h2
[GOAL]
case e_a
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hXp : 0 ≤ X
hYp : 0 ≤ Y
hXm : AEMeasurable X
hYm : AEMeasurable Y
h1 : AEMeasurable fun a => ENNReal.ofReal (X a)
h2 : AEMeasurable fun a => ENNReal.ofReal (Y a)
h3 : AEMeasurable (X * Y)
h4 : 0 ≤ᵐ[μ] X * Y
⊢ IndepFun (fun a => ENNReal.ofReal (X a)) fun a => ENNReal.ofReal (Y a)
[PROOFSTEP]
exact hXY.comp ENNReal.measurable_ofReal ENNReal.measurable_ofReal
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
let pos : ℝ → ℝ := fun x => max x 0
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
let neg : ℝ → ℝ := fun x => max (-x) 0
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have posm : Measurable pos := measurable_id'.max measurable_const
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have negm : Measurable neg := measurable_id'.neg.max measurable_const
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
let Xp := pos ∘ X
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
let Xm := neg ∘ X
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
let Yp := pos ∘ Y
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
let Ym := neg ∘ Y
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hXpm : X = Xp - Xm := funext fun ω => (max_zero_sub_max_neg_zero_eq_self (X ω)).symm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hYpm : Y = Yp - Ym := funext fun ω => (max_zero_sub_max_neg_zero_eq_self (Y ω)).symm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hp1 : 0 ≤ Xm := fun ω => le_max_right _ _
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hp2 : 0 ≤ Xp := fun ω => le_max_right _ _
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hp3 : 0 ≤ Ym := fun ω => le_max_right _ _
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hp4 : 0 ≤ Yp := fun ω => le_max_right _ _
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hm1 : AEMeasurable Xm μ := hX.1.aemeasurable.neg.max aemeasurable_const
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hm2 : AEMeasurable Xp μ := hX.1.aemeasurable.max aemeasurable_const
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hm3 : AEMeasurable Ym μ := hY.1.aemeasurable.neg.max aemeasurable_const
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hm4 : AEMeasurable Yp μ := hY.1.aemeasurable.max aemeasurable_const
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hv1 : Integrable Xm μ := hX.neg_part
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hv2 : Integrable Xp μ := hX.pos_part
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hv3 : Integrable Ym μ := hY.neg_part
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hv4 : Integrable Yp μ := hY.pos_part
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hi1 : IndepFun Xm Ym μ := hXY.comp negm negm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hi2 : IndepFun Xp Ym μ := hXY.comp posm negm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hi3 : IndepFun Xm Yp μ := hXY.comp negm posm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hi4 : IndepFun Xp Yp μ := hXY.comp posm posm
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hl1 : Integrable (Xm * Ym) μ := hi1.integrable_mul hv1 hv3
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hl2 : Integrable (Xp * Ym) μ := hi2.integrable_mul hv2 hv3
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hl3 : Integrable (Xm * Yp) μ := hi3.integrable_mul hv1 hv4
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
hl3 : Integrable (Xm * Yp)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hl4 : Integrable (Xp * Yp) μ := hi4.integrable_mul hv2 hv4
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
hl3 : Integrable (Xm * Yp)
hl4 : Integrable (Xp * Yp)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hl5 : Integrable (Xp * Yp - Xm * Yp) μ := hl4.sub hl3
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
hl3 : Integrable (Xm * Yp)
hl4 : Integrable (Xp * Yp)
hl5 : Integrable (Xp * Yp - Xm * Yp)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have hl6 : Integrable (Xp * Ym - Xm * Ym) μ := hl2.sub hl1
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
hl3 : Integrable (Xm * Yp)
hl4 : Integrable (Xp * Yp)
hl5 : Integrable (Xp * Yp - Xm * Yp)
hl6 : Integrable (Xp * Ym - Xm * Ym)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
rw [hXpm, hYpm, mul_sub, sub_mul, sub_mul]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
hl3 : Integrable (Xm * Yp)
hl4 : Integrable (Xp * Yp)
hl5 : Integrable (Xp * Yp - Xm * Yp)
hl6 : Integrable (Xp * Ym - Xm * Ym)
⊢ integral μ (Xp * Yp - Xm * Yp - (Xp * Ym - Xm * Ym)) = integral μ (Xp - Xm) * integral μ (Yp - Ym)
[PROOFSTEP]
rw [integral_sub' hl5 hl6, integral_sub' hl4 hl3, integral_sub' hl2 hl1, integral_sub' hv2 hv1, integral_sub' hv4 hv3,
hi1.integral_mul_of_nonneg hp1 hp3 hm1 hm3, hi2.integral_mul_of_nonneg hp2 hp3 hm2 hm3,
hi3.integral_mul_of_nonneg hp1 hp4 hm1 hm4, hi4.integral_mul_of_nonneg hp2 hp4 hm2 hm4]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : Integrable X
hY : Integrable Y
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
Xp : Ω → ℝ := pos ∘ X
Xm : Ω → ℝ := neg ∘ X
Yp : Ω → ℝ := pos ∘ Y
Ym : Ω → ℝ := neg ∘ Y
hXpm : X = Xp - Xm
hYpm : Y = Yp - Ym
hp1 : 0 ≤ Xm
hp2 : 0 ≤ Xp
hp3 : 0 ≤ Ym
hp4 : 0 ≤ Yp
hm1 : AEMeasurable Xm
hm2 : AEMeasurable Xp
hm3 : AEMeasurable Ym
hm4 : AEMeasurable Yp
hv1 : Integrable Xm
hv2 : Integrable Xp
hv3 : Integrable Ym
hv4 : Integrable Yp
hi1 : IndepFun Xm Ym
hi2 : IndepFun Xp Ym
hi3 : IndepFun Xm Yp
hi4 : IndepFun Xp Yp
hl1 : Integrable (Xm * Ym)
hl2 : Integrable (Xp * Ym)
hl3 : Integrable (Xm * Yp)
hl4 : Integrable (Xp * Yp)
hl5 : Integrable (Xp * Yp - Xm * Yp)
hl6 : Integrable (Xp * Ym - Xm * Ym)
⊢ integral μ Xp * integral μ Yp - integral μ Xm * integral μ Yp -
(integral μ Xp * integral μ Ym - integral μ Xm * integral μ Ym) =
(∫ (a : Ω), Xp a ∂μ - ∫ (a : Ω), Xm a ∂μ) * (∫ (a : Ω), Yp a ∂μ - ∫ (a : Ω), Ym a ∂μ)
[PROOFSTEP]
ring
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
by_cases h'X : X =ᵐ[μ] 0
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : X =ᵐ[μ] 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have h' : X * Y =ᵐ[μ] 0 := by
filter_upwards [h'X] with ω hω
simp [hω]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : X =ᵐ[μ] 0
⊢ X * Y =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [h'X] with ω hω
[GOAL]
case h
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : X =ᵐ[μ] 0
ω : Ω
hω : X ω = OfNat.ofNat 0 ω
⊢ (X * Y) ω = OfNat.ofNat 0 ω
[PROOFSTEP]
simp [hω]
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : X =ᵐ[μ] 0
h' : X * Y =ᵐ[μ] 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
simp only [integral_congr_ae h'X, integral_congr_ae h', Pi.zero_apply, integral_const, Algebra.id.smul_eq_mul, mul_zero,
zero_mul]
[GOAL]
case neg
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
by_cases h'Y : Y =ᵐ[μ] 0
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : Y =ᵐ[μ] 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have h' : X * Y =ᵐ[μ] 0 := by
filter_upwards [h'Y] with ω hω
simp [hω]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : Y =ᵐ[μ] 0
⊢ X * Y =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [h'Y] with ω hω
[GOAL]
case h
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : Y =ᵐ[μ] 0
ω : Ω
hω : Y ω = OfNat.ofNat 0 ω
⊢ (X * Y) ω = OfNat.ofNat 0 ω
[PROOFSTEP]
simp [hω]
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : Y =ᵐ[μ] 0
h' : X * Y =ᵐ[μ] 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
simp only [integral_congr_ae h'Y, integral_congr_ae h', Pi.zero_apply, integral_const, Algebra.id.smul_eq_mul, mul_zero,
zero_mul]
[GOAL]
case neg
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
by_cases h : Integrable (X * Y) μ
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : Integrable (X * Y)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have HX : Integrable X μ := hXY.integrable_left_of_integrable_mul h hX hY h'Y
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : Integrable (X * Y)
HX : Integrable X
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
have HY : Integrable Y μ := hXY.integrable_right_of_integrable_mul h hX hY h'X
[GOAL]
case pos
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : Integrable (X * Y)
HX : Integrable X
HY : Integrable Y
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
exact hXY.integral_mul_of_integrable HX HY
[GOAL]
case neg
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
⊢ integral μ (X * Y) = integral μ X * integral μ Y
[PROOFSTEP]
rw [integral_undef h]
[GOAL]
case neg
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
⊢ 0 = integral μ X * integral μ Y
[PROOFSTEP]
have I : ¬(Integrable X μ ∧ Integrable Y μ) := by
rintro ⟨HX, HY⟩
exact h (hXY.integrable_mul HX HY)
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
⊢ ¬(Integrable X ∧ Integrable Y)
[PROOFSTEP]
rintro ⟨HX, HY⟩
[GOAL]
case intro
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
HX : Integrable X
HY : Integrable Y
⊢ False
[PROOFSTEP]
exact h (hXY.integrable_mul HX HY)
[GOAL]
case neg
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
I : ¬(Integrable X ∧ Integrable Y)
⊢ 0 = integral μ X * integral μ Y
[PROOFSTEP]
rw [not_and_or] at I
[GOAL]
case neg
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
I : ¬Integrable X ∨ ¬Integrable Y
⊢ 0 = integral μ X * integral μ Y
[PROOFSTEP]
cases' I with I I
[GOAL]
case neg.inl
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
I : ¬Integrable X
⊢ 0 = integral μ X * integral μ Y
[PROOFSTEP]
simp [integral_undef I]
[GOAL]
case neg.inr
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f g : Ω → ℝ≥0∞
X Y : Ω → ℝ
hXY : IndepFun X Y
hX : AEStronglyMeasurable X μ
hY : AEStronglyMeasurable Y μ
h'X : ¬X =ᵐ[μ] 0
h'Y : ¬Y =ᵐ[μ] 0
h : ¬Integrable (X * Y)
I : ¬Integrable Y
⊢ 0 = integral μ X * integral μ Y
[PROOFSTEP]
simp [integral_undef I]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
inst✝ : IsFiniteMeasure μ
β : Type u_2
β' : Type u_3
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
f : Ω → β
g : Ω → β'
hfm : Measurable f
hgm : Measurable g
⊢ IndepFun f g ↔
∀ {φ : β → ℝ} {ψ : β' → ℝ},
Measurable φ →
Measurable ψ →
Integrable (φ ∘ f) → Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g)
[PROOFSTEP]
refine' ⟨fun hfg _ _ hφ hψ => IndepFun.integral_mul_of_integrable (hfg.comp hφ hψ), _⟩
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
inst✝ : IsFiniteMeasure μ
β : Type u_2
β' : Type u_3
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
f : Ω → β
g : Ω → β'
hfm : Measurable f
hgm : Measurable g
⊢ (∀ {φ : β → ℝ} {ψ : β' → ℝ},
Measurable φ →
Measurable ψ →
Integrable (φ ∘ f) →
Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g)) →
IndepFun f g
[PROOFSTEP]
rw [IndepFun_iff]
[GOAL]
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
inst✝ : IsFiniteMeasure μ
β : Type u_2
β' : Type u_3
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
f : Ω → β
g : Ω → β'
hfm : Measurable f
hgm : Measurable g
⊢ (∀ {φ : β → ℝ} {ψ : β' → ℝ},
Measurable φ →
Measurable ψ →
Integrable (φ ∘ f) →
Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g)) →
∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
[PROOFSTEP]
rintro h _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩
[GOAL]
case intro.intro.intro.intro
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
inst✝ : IsFiniteMeasure μ
β : Type u_2
β' : Type u_3
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
f : Ω → β
g : Ω → β'
hfm : Measurable f
hgm : Measurable g
h :
∀ {φ : β → ℝ} {ψ : β' → ℝ},
Measurable φ →
Measurable ψ →
Integrable (φ ∘ f) → Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g)
A : Set β
hA : MeasurableSet A
B : Set β'
hB : MeasurableSet B
⊢ ↑↑μ (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑μ (f ⁻¹' A) * ↑↑μ (g ⁻¹' B)
[PROOFSTEP]
specialize
h (measurable_one.indicator hA) (measurable_one.indicator hB)
((integrable_const 1).indicator (hfm.comp measurable_id hA))
((integrable_const 1).indicator (hgm.comp measurable_id hB))
[GOAL]
case intro.intro.intro.intro
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
inst✝ : IsFiniteMeasure μ
β : Type u_2
β' : Type u_3
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
f : Ω → β
g : Ω → β'
hfm : Measurable f
hgm : Measurable g
A : Set β
hA : MeasurableSet A
B : Set β'
hB : MeasurableSet B
h : integral μ (indicator A 1 ∘ f * indicator B 1 ∘ g) = integral μ (indicator A 1 ∘ f) * integral μ (indicator B 1 ∘ g)
⊢ ↑↑μ (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑μ (f ⁻¹' A) * ↑↑μ (g ⁻¹' B)
[PROOFSTEP]
rwa [← ENNReal.toReal_eq_toReal (measure_ne_top μ _), ENNReal.toReal_mul, ←
integral_indicator_one ((hfm hA).inter (hgm hB)), ← integral_indicator_one (hfm hA), ←
integral_indicator_one (hgm hB), Set.inter_indicator_one]
[GOAL]
case intro.intro.intro.intro
Ω : Type u_1
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ g✝ : Ω → ℝ≥0∞
X Y : Ω → ℝ
inst✝ : IsFiniteMeasure μ
β : Type u_2
β' : Type u_3
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
f : Ω → β
g : Ω → β'
hfm : Measurable f
hgm : Measurable g
A : Set β
hA : MeasurableSet A
B : Set β'
hB : MeasurableSet B
h : integral μ (indicator A 1 ∘ f * indicator B 1 ∘ g) = integral μ (indicator A 1 ∘ f) * integral μ (indicator B 1 ∘ g)
⊢ ↑↑μ (f ⁻¹' A) * ↑↑μ (g ⁻¹' B) ≠ ⊤
[PROOFSTEP]
exact ENNReal.mul_ne_top (measure_ne_top μ _) (measure_ne_top μ _)
| {"mathlib_filename": "Mathlib.Probability.Integration", "llama_tokens": 46445} |
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
⊢ hitting u s n m ω = m
[PROOFSTEP]
simp_rw [hitting]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) = m
[PROOFSTEP]
have h_not : ¬∃ (j : ι) (_ : j ∈ Set.Icc n m), u j ω ∈ s :=
by
push_neg
intro j
rw [Set.Icc_eq_empty_of_lt h]
simp only [Set.mem_empty_iff_false, IsEmpty.forall_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
⊢ ¬∃ j x, u j ω ∈ s
[PROOFSTEP]
push_neg
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
⊢ ∀ (j : ι), j ∈ Set.Icc n m → ¬u j ω ∈ s
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
j : ι
⊢ j ∈ Set.Icc n m → ¬u j ω ∈ s
[PROOFSTEP]
rw [Set.Icc_eq_empty_of_lt h]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
j : ι
⊢ j ∈ ∅ → ¬u j ω ∈ s
[PROOFSTEP]
simp only [Set.mem_empty_iff_false, IsEmpty.forall_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
h_not : ¬∃ j x, u j ω ∈ s
⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) = m
[PROOFSTEP]
simp only [exists_prop] at h_not
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h : m < n
h_not : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) = m
[PROOFSTEP]
simp only [h_not, if_false]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
⊢ hitting u s n m ω ≤ m
[PROOFSTEP]
cases' le_or_lt n m with h_le h_lt
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_le : n ≤ m
⊢ hitting u s n m ω ≤ m
[PROOFSTEP]
simp only [hitting]
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_le : n ≤ m
⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) ≤ m
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_le : n ≤ m
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ m
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h
[GOAL]
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_le : n ≤ m
j : ι
hj₁ : j ∈ Set.Icc n m
hj₂ : u j ω ∈ s
⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ m
[PROOFSTEP]
change j ∈ {i | u i ω ∈ s} at hj₂
[GOAL]
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_le : n ≤ m
j : ι
hj₁ : j ∈ Set.Icc n m
hj₂ : j ∈ {i | u i ω ∈ s}
⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ m
[PROOFSTEP]
exact (csInf_le (BddBelow.inter_of_left bddBelow_Icc) (Set.mem_inter hj₁ hj₂)).trans hj₁.2
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_le : n ≤ m
h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ m ≤ m
[PROOFSTEP]
exact le_rfl
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
ω : Ω
h_lt : m < n
⊢ hitting u s n m ω ≤ m
[PROOFSTEP]
rw [hitting_of_lt h_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
⊢ ¬u k ω ∈ s
[PROOFSTEP]
classical
intro h
have hexists : ∃ j ∈ Set.Icc n m, u j ω ∈ s
refine' ⟨k, ⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩
refine' not_le.2 hk₁ _
simp_rw [hitting, if_pos hexists]
exact csInf_le bddBelow_Icc.inter_of_left ⟨⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
⊢ ¬u k ω ∈ s
[PROOFSTEP]
intro h
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
h : u k ω ∈ s
⊢ False
[PROOFSTEP]
have hexists : ∃ j ∈ Set.Icc n m, u j ω ∈ s
[GOAL]
case hexists
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
h : u k ω ∈ s
⊢ ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
h : u k ω ∈ s
hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ False
[PROOFSTEP]
refine' ⟨k, ⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
h : u k ω ∈ s
hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ False
[PROOFSTEP]
refine' not_le.2 hk₁ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
h : u k ω ∈ s
hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ hitting u s n m ω ≤ k
[PROOFSTEP]
simp_rw [hitting, if_pos hexists]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m k : ι
hk₁ : k < hitting u s n m ω
hk₂ : n ≤ k
h : u k ω ∈ s
hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ k
[PROOFSTEP]
exact csInf_le bddBelow_Icc.inter_of_left ⟨⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
⊢ hitting u s n m ω = m ↔ (∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s) → sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
rw [hitting, ite_eq_right_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
hmn : m ≤ n
⊢ hitting u s n m ω = m
[PROOFSTEP]
obtain rfl | h := le_iff_eq_or_lt.1 hmn
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
⊢ hitting u s m m ω = m
[PROOFSTEP]
rw [hitting, ite_eq_right_iff, forall_exists_index]
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
⊢ ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
conv => intro; rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
| ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
intro; rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
| ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
intro; rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
| ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
intro
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
x✝ : ι
| x✝ ∈ Set.Icc m m ∧ u x✝ ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp]
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i : ι
ω : Ω
m : ι
hmn : m ≤ m
⊢ ∀ (x : ι), m ≤ x → x ≤ m → u x ω ∈ s → sInf ({m} ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
intro i hi₁ hi₂ hi
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i✝ : ι
ω : Ω
m : ι
hmn : m ≤ m
i : ι
hi₁ : m ≤ i
hi₂ : i ≤ m
hi : u i ω ∈ s
⊢ sInf ({m} ∩ {i | u i ω ∈ s}) = m
[PROOFSTEP]
rw [Set.inter_eq_left_iff_subset.2, csInf_singleton]
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
i✝ : ι
ω : Ω
m : ι
hmn : m ≤ m
i : ι
hi₁ : m ≤ i
hi₂ : i ≤ m
hi : u i ω ∈ s
⊢ {m} ⊆ {i | u i ω ∈ s}
[PROOFSTEP]
exact Set.singleton_subset_iff.2 (le_antisymm hi₂ hi₁ ▸ hi)
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
hmn : m ≤ n
h : m < n
⊢ hitting u s n m ω = m
[PROOFSTEP]
exact hitting_of_lt h
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
⊢ n ≤ hitting u s n m ω
[PROOFSTEP]
simp only [hitting]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
⊢ n ≤ if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ n ≤ sInf (Set.Icc n m ∩ {i | u i ω ∈ s})
[PROOFSTEP]
refine' le_csInf _ fun b hb => _
[GOAL]
case pos.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
[PROOFSTEP]
obtain ⟨k, hk_Icc, hk_s⟩ := h
[GOAL]
case pos.refine'_1.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
k : ι
hk_Icc : k ∈ Set.Icc n m
hk_s : u k ω ∈ s
⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
[PROOFSTEP]
exact ⟨k, hk_Icc, hk_s⟩
[GOAL]
case pos.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
b : ι
hb : b ∈ Set.Icc n m ∩ {i | u i ω ∈ s}
⊢ n ≤ b
[PROOFSTEP]
rw [Set.mem_inter_iff] at hb
[GOAL]
case pos.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
b : ι
hb : b ∈ Set.Icc n m ∧ b ∈ {i | u i ω ∈ s}
⊢ n ≤ b
[PROOFSTEP]
exact hb.1.1
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω✝ : Ω
m : ι
hnm : n ≤ m
ω : Ω
h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ n ≤ m
[PROOFSTEP]
exact hnm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ n ≤ hitting u s n m ω
[PROOFSTEP]
refine' le_hitting _ ω
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ n ≤ m
[PROOFSTEP]
by_contra h
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h : ¬n ≤ m
⊢ False
[PROOFSTEP]
rw [Set.Icc_eq_empty_of_lt (not_le.mp h)] at h_exists
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
h_exists : ∃ j, j ∈ ∅ ∧ u j ω ∈ s
h : ¬n ≤ m
⊢ False
[PROOFSTEP]
simp at h_exists
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ u (hitting u s n m ω) ω ∈ s
[PROOFSTEP]
simp_rw [hitting, if_pos h_exists]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
have h_nonempty : (Set.Icc n m ∩ {i : ι | u i ω ∈ s}).Nonempty :=
by
obtain ⟨k, hk₁, hk₂⟩ := h_exists
exact ⟨k, Set.mem_inter hk₁ hk₂⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
[PROOFSTEP]
obtain ⟨k, hk₁, hk₂⟩ := h_exists
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m k : ι
hk₁ : k ∈ Set.Icc n m
hk₂ : u k ω ∈ s
⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
[PROOFSTEP]
exact ⟨k, Set.mem_inter hk₁ hk₂⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h_nonempty : Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
have h_mem := csInf_mem h_nonempty
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h_nonempty : Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
h_mem : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∩ {i | u i ω ∈ s}
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
rw [Set.mem_inter_iff] at h_mem
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h_nonempty : Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s})
h_mem : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∧ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ {i | u i ω ∈ s}
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
exact h_mem.2
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
hl : hitting u s n m ω < m
⊢ u (hitting u s n m ω) ω ∈ s
[PROOFSTEP]
by_cases h : ∃ j ∈ Set.Icc n m, u j ω ∈ s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
hl : hitting u s n m ω < m
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ u (hitting u s n m ω) ω ∈ s
[PROOFSTEP]
exact hitting_mem_set h
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
hl : hitting u s n m ω < m
h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ u (hitting u s n m ω) ω ∈ s
[PROOFSTEP]
simp_rw [hitting, if_neg h] at hl
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
hl : m < m
⊢ u (hitting u s n m ω) ω ∈ s
[PROOFSTEP]
exact False.elim (hl.ne rfl)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
hin : n ≤ i
him : i ≤ m
his : u i ω ∈ s
⊢ hitting u s n m ω ≤ i
[PROOFSTEP]
have h_exists : ∃ k ∈ Set.Icc n m, u k ω ∈ s := ⟨i, ⟨hin, him⟩, his⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
hin : n ≤ i
him : i ≤ m
his : u i ω ∈ s
h_exists : ∃ k, k ∈ Set.Icc n m ∧ u k ω ∈ s
⊢ hitting u s n m ω ≤ i
[PROOFSTEP]
simp_rw [hitting, if_pos h_exists]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m : ι
hin : n ≤ i
him : i ≤ m
his : u i ω ∈ s
h_exists : ∃ k, k ∈ Set.Icc n m ∧ u k ω ∈ s
⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ i
[PROOFSTEP]
exact csInf_le (BddBelow.inter_of_left bddBelow_Icc) (Set.mem_inter ⟨hin, him⟩ his)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ hitting u s n m ω ≤ i → ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
intro h'
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ (∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s) → hitting u s n m ω ≤ i
[PROOFSTEP]
intro h'
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : hitting u s n m ω ≤ i
⊢ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h_exists, h'⟩, hitting_mem_set h_exists⟩
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
⊢ hitting u s n m ω ≤ i
[PROOFSTEP]
have h'' : ∃ k ∈ Set.Icc n (min m i), u k ω ∈ s :=
by
obtain ⟨k₁, hk₁_mem, hk₁_s⟩ := h_exists
obtain ⟨k₂, hk₂_mem, hk₂_s⟩ := h'
refine' ⟨min k₁ k₂, ⟨le_min hk₁_mem.1 hk₂_mem.1, min_le_min hk₁_mem.2 hk₂_mem.2⟩, _⟩
exact min_rec' (fun j => u j ω ∈ s) hk₁_s hk₂_s
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
⊢ ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s
[PROOFSTEP]
obtain ⟨k₁, hk₁_mem, hk₁_s⟩ := h_exists
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
k₁ : ι
hk₁_mem : k₁ ∈ Set.Icc n m
hk₁_s : u k₁ ω ∈ s
⊢ ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s
[PROOFSTEP]
obtain ⟨k₂, hk₂_mem, hk₂_s⟩ := h'
[GOAL]
case intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m k₁ : ι
hk₁_mem : k₁ ∈ Set.Icc n m
hk₁_s : u k₁ ω ∈ s
k₂ : ι
hk₂_mem : k₂ ∈ Set.Icc n i
hk₂_s : u k₂ ω ∈ s
⊢ ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s
[PROOFSTEP]
refine' ⟨min k₁ k₂, ⟨le_min hk₁_mem.1 hk₂_mem.1, min_le_min hk₁_mem.2 hk₂_mem.2⟩, _⟩
[GOAL]
case intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m k₁ : ι
hk₁_mem : k₁ ∈ Set.Icc n m
hk₁_s : u k₁ ω ∈ s
k₂ : ι
hk₂_mem : k₂ ∈ Set.Icc n i
hk₂_s : u k₂ ω ∈ s
⊢ u (min k₁ k₂) ω ∈ s
[PROOFSTEP]
exact min_rec' (fun j => u j ω ∈ s) hk₁_s hk₂_s
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
h'' : ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s
⊢ hitting u s n m ω ≤ i
[PROOFSTEP]
obtain ⟨k, hk₁, hk₂⟩ := h''
[GOAL]
case mpr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
k : ι
hk₁ : k ∈ Set.Icc n (min m i)
hk₂ : u k ω ∈ s
⊢ hitting u s n m ω ≤ i
[PROOFSTEP]
refine' le_trans _ (hk₁.2.trans (min_le_right _ _))
[GOAL]
case mpr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m : ι
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
k : ι
hk₁ : k ∈ Set.Icc n (min m i)
hk₂ : u k ω ∈ s
⊢ hitting u s n m ω ≤ k
[PROOFSTEP]
exact hitting_le_of_mem hk₁.1 (hk₁.2.trans (min_le_left _ _)) hk₂
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i < m
⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
by_cases h_exists : ∃ j ∈ Set.Icc n m, u j ω ∈ s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i < m
h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
rw [hitting_le_iff_of_exists h_exists]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i < m
h_exists : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
simp_rw [hitting, if_neg h_exists]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i < m
h_exists : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ m ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
push_neg at h_exists
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i < m
h_exists : ∀ (j : ι), j ∈ Set.Icc n m → ¬u j ω ∈ s
⊢ m ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s
[PROOFSTEP]
simp only [not_le.mpr hi, Set.mem_Icc, false_iff_iff, not_exists, not_and, and_imp]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i < m
h_exists : ∀ (j : ι), j ∈ Set.Icc n m → ¬u j ω ∈ s
⊢ ∀ (x : ι), n ≤ x → x ≤ i → ¬u x ω ∈ s
[PROOFSTEP]
exact fun k hkn hki => h_exists k ⟨hkn, hki.trans hi.le⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
⊢ hitting u s n m ω < i ↔ ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
⊢ hitting u s n m ω < i → ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s
[PROOFSTEP]
intro h'
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
⊢ (∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s) → hitting u s n m ω < i
[PROOFSTEP]
intro h'
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
h' : hitting u s n m ω < i
⊢ ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s
[PROOFSTEP]
have h : ∃ j ∈ Set.Icc n m, u j ω ∈ s := by
by_contra h
simp_rw [hitting, if_neg h, ← not_le] at h'
exact h' hi
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
h' : hitting u s n m ω < i
⊢ ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
[PROOFSTEP]
by_contra h
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
h' : hitting u s n m ω < i
h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ False
[PROOFSTEP]
simp_rw [hitting, if_neg h, ← not_le] at h'
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
h' : ¬i ≤ m
⊢ False
[PROOFSTEP]
exact h' hi
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
h' : hitting u s n m ω < i
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s
[PROOFSTEP]
exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h, h'⟩, hitting_mem_set h⟩
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
h' : ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s
⊢ hitting u s n m ω < i
[PROOFSTEP]
obtain ⟨k, hk₁, hk₂⟩ := h'
[GOAL]
case mpr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
k : ι
hk₁ : k ∈ Set.Ico n i
hk₂ : u k ω ∈ s
⊢ hitting u s n m ω < i
[PROOFSTEP]
refine' lt_of_le_of_lt _ hk₁.2
[GOAL]
case mpr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
m i : ι
hi : i ≤ m
k : ι
hk₁ : k ∈ Set.Ico n i
hk₂ : u k ω ∈ s
⊢ hitting u s n m ω ≤ k
[PROOFSTEP]
exact hitting_le_of_mem hk₁.1 (hk₁.2.le.trans hi) hk₂
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
h' : ∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
⊢ hitting u s n m₁ ω = hitting u s n m₂ ω
[PROOFSTEP]
simp only [hitting, if_pos h']
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
h' : ∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) =
if ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s then sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) else m₂
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h'
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) =
if ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s then sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) else m₂
[PROOFSTEP]
rw [if_pos]
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) = sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s})
[PROOFSTEP]
refine'
le_antisymm _
(csInf_le_csInf bddBelow_Icc.inter_of_left ⟨j, hj₁, hj₂⟩
(Set.inter_subset_inter_left _ (Set.Icc_subset_Icc_right h)))
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s})
[PROOFSTEP]
refine' le_csInf ⟨j, Set.Icc_subset_Icc_right h hj₁, hj₂⟩ fun i hi => _
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
i : ι
hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i
[PROOFSTEP]
by_cases hi' : i ≤ m₁
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
i : ι
hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}
hi' : i ≤ m₁
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i
[PROOFSTEP]
exact csInf_le bddBelow_Icc.inter_of_left ⟨⟨hi.1.1, hi'⟩, hi.2⟩
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
i : ι
hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}
hi' : ¬i ≤ m₁
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i
[PROOFSTEP]
change j ∈ {i | u i ω ∈ s} at hj₂
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
i : ι
hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}
hi' : ¬i ≤ m₁
hj₂ : j ∈ {i | u i ω ∈ s}
⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i
[PROOFSTEP]
exact ((csInf_le bddBelow_Icc.inter_of_left ⟨hj₁, hj₂⟩).trans (hj₁.2.trans le_rfl)).trans (le_of_lt (not_le.1 hi'))
[GOAL]
case intro.intro.hc
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
h : m₁ ≤ m₂
j : ι
hj₁ : j ∈ Set.Icc n m₁
hj₂ : u j ω ∈ s
⊢ ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s
[PROOFSTEP]
exact ⟨j, ⟨hj₁.1, hj₁.2.trans h⟩, hj₂⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
⊢ hitting u s n m₁ ω ≤ hitting u s n m₂ ω
[PROOFSTEP]
by_cases h : ∃ j ∈ Set.Icc n m₁, u j ω ∈ s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
⊢ hitting u s n m₁ ω ≤ hitting u s n m₂ ω
[PROOFSTEP]
exact (hitting_eq_hitting_of_exists hm h).le
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
⊢ hitting u s n m₁ ω ≤ hitting u s n m₂ ω
[PROOFSTEP]
simp_rw [hitting, if_neg h]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
⊢ m₁ ≤ if ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s then sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) else m₂
[PROOFSTEP]
split_ifs with h'
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
h' : ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s
⊢ m₁ ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s})
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h'
[GOAL]
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
⊢ m₁ ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s})
[PROOFSTEP]
refine' le_csInf ⟨j, hj₁, hj₂⟩ _
[GOAL]
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
⊢ ∀ (b : ι), b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} → m₁ ≤ b
[PROOFSTEP]
by_contra hneg
[GOAL]
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
hneg : ¬∀ (b : ι), b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} → m₁ ≤ b
⊢ False
[PROOFSTEP]
push_neg at hneg
[GOAL]
case pos.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
hneg : ∃ b, b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} ∧ b < m₁
⊢ False
[PROOFSTEP]
obtain ⟨i, hi₁, hi₂⟩ := hneg
[GOAL]
case pos.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i✝ : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
j : ι
hj₁ : j ∈ Set.Icc n m₂
hj₂ : u j ω ∈ s
i : ι
hi₁ : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s}
hi₂ : i < m₁
⊢ False
[PROOFSTEP]
exact h ⟨i, ⟨hi₁.1.1, hi₂.le⟩, hi₁.2⟩
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : ConditionallyCompleteLinearOrder ι
u : ι → Ω → β
s : Set β
n i : ι
ω : Ω
m₁ m₂ : ι
hm : m₁ ≤ m₂
h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s
h' : ¬∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s
⊢ m₁ ≤ m₂
[PROOFSTEP]
exact hm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
⊢ IsStoppingTime f (hitting u s n n')
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i}
[PROOFSTEP]
cases' le_or_lt n' i with hi hi
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : n' ≤ i
⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i}
[PROOFSTEP]
have h_le : ∀ ω, hitting u s n n' ω ≤ i := fun x => (hitting_le x).trans hi
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : n' ≤ i
h_le : ∀ (ω : Ω), hitting u s n n' ω ≤ i
⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i}
[PROOFSTEP]
simp [h_le]
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : i < n'
⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i}
[PROOFSTEP]
have h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ j ∈ Set.Icc n i, u j ⁻¹' s :=
by
ext x
rw [Set.mem_setOf_eq, hitting_le_iff_of_lt _ hi]
simp only [Set.mem_Icc, exists_prop, Set.mem_iUnion, Set.mem_preimage]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : i < n'
⊢ {ω | hitting u s n n' ω ≤ i} = ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s
[PROOFSTEP]
ext x
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : i < n'
x : Ω
⊢ x ∈ {ω | hitting u s n n' ω ≤ i} ↔ x ∈ ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s
[PROOFSTEP]
rw [Set.mem_setOf_eq, hitting_le_iff_of_lt _ hi]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : i < n'
x : Ω
⊢ (∃ j, j ∈ Set.Icc n i ∧ u j x ∈ s) ↔ x ∈ ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s
[PROOFSTEP]
simp only [Set.mem_Icc, exists_prop, Set.mem_iUnion, Set.mem_preimage]
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : i < n'
h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s
⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i}
[PROOFSTEP]
rw [h_set_eq_Union]
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : ConditionallyCompleteLinearOrder ι
inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁴ : Countable ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
s : Set β
n n' : ι
hu : Adapted f u
hs : MeasurableSet s
i : ι
hi : i < n'
h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s
⊢ MeasurableSet (⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s)
[PROOFSTEP]
exact MeasurableSet.iUnion fun j => MeasurableSet.iUnion fun hj => f.mono hj.2 _ ((hu j).measurable hs)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
n m : ι
ω : Ω
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ stoppedValue u (hitting u s n m) ω ∈ s
[PROOFSTEP]
simp only [stoppedValue, hitting, if_pos h]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
n m : ι
ω : Ω
h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
n m : ι
ω : Ω
j : ι
hj₁ : j ∈ Set.Icc n m
hj₂ : u j ω ∈ s
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
have : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∩ {i | u i ω ∈ s} :=
csInf_mem (Set.nonempty_of_mem ⟨hj₁, hj₂⟩)
[GOAL]
case intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrder ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
n m : ι
ω : Ω
j : ι
hj₁ : j ∈ Set.Icc n m
hj₂ : u j ω ∈ s
this : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∩ {i | u i ω ∈ s}
⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s
[PROOFSTEP]
exact this.2
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
⊢ IsStoppingTime f fun x => hitting u s (τ x) N x
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
⊢ MeasurableSet {ω | (fun x => hitting u s (τ x) N x) ω ≤ n}
[PROOFSTEP]
have h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ i ≤ n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} :=
by
ext x
simp [← exists_or, ← or_and_right, le_or_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
⊢ {x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
[PROOFSTEP]
ext x
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
x : Ω
⊢ x ∈ {x | hitting u s (τ x) N x ≤ n} ↔
x ∈
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
[PROOFSTEP]
simp [← exists_or, ← or_and_right, le_or_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
⊢ MeasurableSet {ω | (fun x => hitting u s (τ x) N x) ω ≤ n}
[PROOFSTEP]
have h₂ : ⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅ :=
by
ext x
simp only [gt_iff_lt, Set.mem_iUnion, Set.mem_inter_iff, Set.mem_setOf_eq, exists_prop, Set.mem_empty_iff_false,
iff_false_iff, not_exists, not_and, not_le]
rintro m hm rfl
exact lt_of_lt_of_le hm (le_hitting (hτbdd _) _)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
⊢ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅
[PROOFSTEP]
ext x
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
x : Ω
⊢ x ∈ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} ↔ x ∈ ∅
[PROOFSTEP]
simp only [gt_iff_lt, Set.mem_iUnion, Set.mem_inter_iff, Set.mem_setOf_eq, exists_prop, Set.mem_empty_iff_false,
iff_false_iff, not_exists, not_and, not_le]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
x : Ω
⊢ ∀ (x_1 : ι), n < x_1 → τ x = x_1 → n < hitting u s x_1 N x
[PROOFSTEP]
rintro m hm rfl
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
x : Ω
hm : n < τ x
⊢ n < hitting u s (τ x) N x
[PROOFSTEP]
exact lt_of_lt_of_le hm (le_hitting (hτbdd _) _)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
h₂ : ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅
⊢ MeasurableSet {ω | (fun x => hitting u s (τ x) N x) ω ≤ n}
[PROOFSTEP]
rw [h₁, h₂, Set.union_empty]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : ConditionallyCompleteLinearOrder ι
inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1
inst✝⁷ : Countable ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : OrderTopology ι
inst✝⁴ : FirstCountableTopology ι
inst✝³ : TopologicalSpace β
inst✝² : PseudoMetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
f : Filtration ι m
u : ι → Ω → β
τ : Ω → ι
hτ : IsStoppingTime f τ
N : ι
hτbdd : ∀ (x : Ω), τ x ≤ N
s : Set β
hs : MeasurableSet s
hf : Adapted f u
n : ι
h₁ :
{x | hitting u s (τ x) N x ≤ n} =
(⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪
⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}
h₂ : ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅
⊢ MeasurableSet (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n})
[PROOFSTEP]
exact
MeasurableSet.iUnion fun i =>
MeasurableSet.iUnion fun hi => (f.mono hi _ (hτ.measurableSet_eq i)).inter (hitting_isStoppingTime hf hs n)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : CompleteLattice ι
u : ι → Ω → β
s : Set β
f : Filtration ι m
ω : Ω
⊢ hitting u s ⊥ ⊤ ω = sInf {i | u i ω ∈ s}
[PROOFSTEP]
simp only [hitting, Set.mem_Icc, bot_le, le_top, and_self_iff, exists_true_left, Set.Icc_bot, Set.Iic_top,
Set.univ_inter, ite_eq_left_iff, not_exists]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : CompleteLattice ι
u : ι → Ω → β
s : Set β
f : Filtration ι m
ω : Ω
⊢ (∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s)) → ⊤ = sInf {i | u i ω ∈ s}
[PROOFSTEP]
intro h_nmem_s
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : CompleteLattice ι
u : ι → Ω → β
s : Set β
f : Filtration ι m
ω : Ω
h_nmem_s : ∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s)
⊢ ⊤ = sInf {i | u i ω ∈ s}
[PROOFSTEP]
symm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : CompleteLattice ι
u : ι → Ω → β
s : Set β
f : Filtration ι m
ω : Ω
h_nmem_s : ∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s)
⊢ sInf {i | u i ω ∈ s} = ⊤
[PROOFSTEP]
rw [sInf_eq_top]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : CompleteLattice ι
u : ι → Ω → β
s : Set β
f : Filtration ι m
ω : Ω
h_nmem_s : ∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s)
⊢ ∀ (a : ι), a ∈ {i | u i ω ∈ s} → a = ⊤
[PROOFSTEP]
simp only [Set.mem_univ, true_and] at h_nmem_s
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : CompleteLattice ι
u : ι → Ω → β
s : Set β
f : Filtration ι m
ω : Ω
h_nmem_s : ∀ (x : ι), ¬u x ω ∈ s
⊢ ∀ (a : ι), a ∈ {i | u i ω ∈ s} → a = ⊤
[PROOFSTEP]
exact fun i hi_mem_s => absurd hi_mem_s (h_nmem_s i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrderBot ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
f : Filtration ℕ m
i n : ι
ω : Ω
hx : ∃ j, j ≤ n ∧ u j ω ∈ s
⊢ hitting u s ⊥ n ω ≤ i ↔ ∃ j, j ≤ i ∧ u j ω ∈ s
[PROOFSTEP]
cases' lt_or_le i n with hi hi
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrderBot ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
f : Filtration ℕ m
i n : ι
ω : Ω
hx : ∃ j, j ≤ n ∧ u j ω ∈ s
hi : i < n
⊢ hitting u s ⊥ n ω ≤ i ↔ ∃ j, j ≤ i ∧ u j ω ∈ s
[PROOFSTEP]
rw [hitting_le_iff_of_lt _ hi]
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrderBot ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
f : Filtration ℕ m
i n : ι
ω : Ω
hx : ∃ j, j ≤ n ∧ u j ω ∈ s
hi : i < n
⊢ (∃ j, j ∈ Set.Icc ⊥ i ∧ u j ω ∈ s) ↔ ∃ j, j ≤ i ∧ u j ω ∈ s
[PROOFSTEP]
simp
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrderBot ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
f : Filtration ℕ m
i n : ι
ω : Ω
hx : ∃ j, j ≤ n ∧ u j ω ∈ s
hi : n ≤ i
⊢ hitting u s ⊥ n ω ≤ i ↔ ∃ j, j ≤ i ∧ u j ω ∈ s
[PROOFSTEP]
simp only [(hitting_le ω).trans hi, true_iff_iff]
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrderBot ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
f : Filtration ℕ m
i n : ι
ω : Ω
hx : ∃ j, j ≤ n ∧ u j ω ∈ s
hi : n ≤ i
⊢ ∃ j, j ≤ i ∧ u j ω ∈ s
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := hx
[GOAL]
case inr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : ConditionallyCompleteLinearOrderBot ι
inst✝ : IsWellOrder ι fun x x_1 => x < x_1
u : ι → Ω → β
s : Set β
f : Filtration ℕ m
i n : ι
ω : Ω
hi : n ≤ i
j : ι
hj₁ : j ≤ n
hj₂ : u j ω ∈ s
⊢ ∃ j, j ≤ i ∧ u j ω ∈ s
[PROOFSTEP]
exact ⟨j, hj₁.trans hi, hj₂⟩
| {"mathlib_filename": "Mathlib.Probability.Process.HittingTime", "llama_tokens": 31825} |
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
h : ¬HasPDF X ℙ
⊢ pdf X ℙ = 0
[PROOFSTEP]
simp only [pdf, dif_neg h]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
h : pdf X ℙ ≠ 0
⊢ HasPDF X ℙ
[PROOFSTEP]
by_contra hpdf
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
h : pdf X ℙ ≠ 0
hpdf : ¬HasPDF X ℙ
⊢ False
[PROOFSTEP]
simp [pdf, hpdf] at h
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
h : pdf X ℙ ≠ 0
⊢ Measurable X
[PROOFSTEP]
by_contra hX
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
h : pdf X ℙ ≠ 0
hX : ¬Measurable X
⊢ False
[PROOFSTEP]
exact h (pdf_eq_zero_of_not_measurable hX)
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
⊢ Measurable (pdf X ℙ)
[PROOFSTEP]
unfold pdf
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
⊢ Measurable (if hX : HasPDF X ℙ then Classical.choose (_ : ∃ f, Measurable f ∧ map X ℙ = withDensity μ f) else 0)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
h : HasPDF X ℙ
⊢ Measurable (Classical.choose (_ : ∃ f, Measurable f ∧ map X ℙ = withDensity μ f))
case neg
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
h : ¬HasPDF X ℙ
⊢ Measurable 0
[PROOFSTEP]
exacts [(Classical.choose_spec h.1.2).1, measurable_zero]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
hX : HasPDF X ℙ
⊢ map X ℙ = withDensity μ (pdf X ℙ)
[PROOFSTEP]
simp only [pdf, dif_pos hX]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
hX : HasPDF X ℙ
⊢ map X ℙ = withDensity μ (Classical.choose (_ : ∃ f, Measurable f ∧ map X ℙ = withDensity μ f))
[PROOFSTEP]
exact (Classical.choose_spec hX.pdf'.2).2
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : autoParam (Measure E) _auto✝
hX : HasPDF X ℙ
s : Set E
hs : MeasurableSet s
⊢ ↑↑(map X ℙ) s = ∫⁻ (x : E) in s, pdf X ℙ x ∂μ
[PROOFSTEP]
rw [← withDensity_apply _ hs, map_eq_withDensity_pdf X ℙ μ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
inst✝ : HasPDF X ℙ
⊢ ∫⁻ (x : E), pdf X ℙ x ∂μ = ↑↑ℙ Set.univ
[PROOFSTEP]
rw [← set_lintegral_univ, ← map_eq_set_lintegral_pdf X ℙ μ MeasurableSet.univ,
Measure.map_apply (HasPDF.measurable X ℙ μ) MeasurableSet.univ, Set.preimage_univ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ✝ : Measure E
inst✝ : IsFiniteMeasure ℙ
μ : Measure E
X : Ω → E
⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤
[PROOFSTEP]
by_cases hpdf : HasPDF X ℙ μ
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ✝ : Measure E
inst✝ : IsFiniteMeasure ℙ
μ : Measure E
X : Ω → E
hpdf : HasPDF X ℙ
⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤
[PROOFSTEP]
haveI := hpdf
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ✝ : Measure E
inst✝ : IsFiniteMeasure ℙ
μ : Measure E
X : Ω → E
hpdf this : HasPDF X ℙ
⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤
[PROOFSTEP]
refine' ae_lt_top (measurable_pdf X ℙ μ) _
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ✝ : Measure E
inst✝ : IsFiniteMeasure ℙ
μ : Measure E
X : Ω → E
hpdf this : HasPDF X ℙ
⊢ ∫⁻ (x : E), pdf X ℙ x ∂μ ≠ ⊤
[PROOFSTEP]
rw [lintegral_eq_measure_univ]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ✝ : Measure E
inst✝ : IsFiniteMeasure ℙ
μ : Measure E
X : Ω → E
hpdf this : HasPDF X ℙ
⊢ ↑↑ℙ Set.univ ≠ ⊤
[PROOFSTEP]
exact (measure_lt_top _ _).ne
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ✝ : Measure E
inst✝ : IsFiniteMeasure ℙ
μ : Measure E
X : Ω → E
hpdf : ¬HasPDF X ℙ
⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤
[PROOFSTEP]
simp [pdf, hpdf]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
⊢ (Integrable fun x => f (X x)) ↔ Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
erw [← integrable_map_measure hf.aestronglyMeasurable (HasPDF.measurable X ℙ μ).aemeasurable,
map_eq_withDensity_pdf X ℙ μ, integrable_withDensity_iff (measurable_pdf _ _ _) ae_lt_top]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
⊢ ∫ (x : E), f x * ENNReal.toReal (pdf X ℙ x) ∂μ = ∫ (x : Ω), f (X x) ∂ℙ
[PROOFSTEP]
by_cases hpdf : Integrable (fun x => f x * (pdf X ℙ μ x).toReal) μ
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ∫ (x : E), f x * ENNReal.toReal (pdf X ℙ x) ∂μ = ∫ (x : Ω), f (X x) ∂ℙ
[PROOFSTEP]
rw [← integral_map (HasPDF.measurable X ℙ μ).aemeasurable hf.aestronglyMeasurable, map_eq_withDensity_pdf X ℙ μ,
integral_eq_lintegral_pos_part_sub_lintegral_neg_part hpdf, integral_eq_lintegral_pos_part_sub_lintegral_neg_part,
lintegral_withDensity_eq_lintegral_mul _ (measurable_pdf X ℙ μ) hf.neg.ennreal_ofReal,
lintegral_withDensity_eq_lintegral_mul _ (measurable_pdf X ℙ μ) hf.ennreal_ofReal]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ENNReal.toReal (∫⁻ (a : E), ENNReal.ofReal (f a * ENNReal.toReal (pdf X ℙ a)) ∂μ) -
ENNReal.toReal (∫⁻ (a : E), ENNReal.ofReal (-(f a * ENNReal.toReal (pdf X ℙ a))) ∂μ) =
ENNReal.toReal (∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ) -
ENNReal.toReal (∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ)
[PROOFSTEP]
congr 2
[GOAL]
case pos.e_a.e_a
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ∫⁻ (a : E), ENNReal.ofReal (f a * ENNReal.toReal (pdf X ℙ a)) ∂μ =
∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ
[PROOFSTEP]
have : ∀ x, ENNReal.ofReal (f x * (pdf X ℙ μ x).toReal) = ENNReal.ofReal (pdf X ℙ μ x).toReal * ENNReal.ofReal (f x) :=
fun x ↦ by rw [mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
x : E
⊢ ENNReal.ofReal (f x * ENNReal.toReal (pdf X ℙ x)) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (f x)
[PROOFSTEP]
rw [mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg]
[GOAL]
case pos.e_a.e_a
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
this :
∀ (x : E),
ENNReal.ofReal (f x * ENNReal.toReal (pdf X ℙ x)) =
ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (f x)
⊢ ∫⁻ (a : E), ENNReal.ofReal (f a * ENNReal.toReal (pdf X ℙ a)) ∂μ =
∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ
[PROOFSTEP]
simp_rw [this]
[GOAL]
case pos.e_a.e_a
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
this :
∀ (x : E),
ENNReal.ofReal (f x * ENNReal.toReal (pdf X ℙ x)) =
ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (f x)
⊢ ∫⁻ (a : E), ENNReal.ofReal (ENNReal.toReal (pdf X ℙ a)) * ENNReal.ofReal (f a) ∂μ =
∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ
[PROOFSTEP]
exact lintegral_congr_ae (Filter.EventuallyEq.mul ofReal_toReal_ae_eq (ae_eq_refl _))
[GOAL]
case pos.e_a.e_a
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ∫⁻ (a : E), ENNReal.ofReal (-(f a * ENNReal.toReal (pdf X ℙ a))) ∂μ =
∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ
[PROOFSTEP]
have :
∀ x, ENNReal.ofReal (-(f x * (pdf X ℙ μ x).toReal)) = ENNReal.ofReal (pdf X ℙ μ x).toReal * ENNReal.ofReal (-f x) :=
by
intro x
rw [neg_mul_eq_neg_mul, mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ∀ (x : E),
ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) =
ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x)
[PROOFSTEP]
intro x
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
x : E
⊢ ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) =
ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x)
[PROOFSTEP]
rw [neg_mul_eq_neg_mul, mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg]
[GOAL]
case pos.e_a.e_a
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
this :
∀ (x : E),
ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) =
ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x)
⊢ ∫⁻ (a : E), ENNReal.ofReal (-(f a * ENNReal.toReal (pdf X ℙ a))) ∂μ =
∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ
[PROOFSTEP]
simp_rw [this]
[GOAL]
case pos.e_a.e_a
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
this :
∀ (x : E),
ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) =
ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x)
⊢ ∫⁻ (a : E), ENNReal.ofReal (ENNReal.toReal (pdf X ℙ a)) * ENNReal.ofReal (-f a) ∂μ =
∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ
[PROOFSTEP]
exact lintegral_congr_ae (Filter.EventuallyEq.mul ofReal_toReal_ae_eq (ae_eq_refl _))
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ Integrable fun y => f y
[PROOFSTEP]
refine' ⟨hf.aestronglyMeasurable, _⟩
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ HasFiniteIntegral fun y => f y
[PROOFSTEP]
rw [HasFiniteIntegral, lintegral_withDensity_eq_lintegral_mul _ (measurable_pdf _ _ _) hf.nnnorm.coe_nnreal_ennreal]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ∫⁻ (a : E), (pdf X ℙ * fun x => ↑‖f x‖₊) a ∂μ < ⊤
[PROOFSTEP]
have : (fun x => (pdf X ℙ μ * fun x => (‖f x‖₊ : ℝ≥0∞)) x) =ᵐ[μ] fun x => ‖f x * (pdf X ℙ μ x).toReal‖₊ :=
by
simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul]
rw [smul_eq_mul, mul_comm]
refine' Filter.EventuallyEq.mul (ae_eq_refl _) (ae_eq_trans ofReal_toReal_ae_eq.symm _)
simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ (fun x => (pdf X ℙ * fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ (fun x => (pdf X ℙ • fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x‖₊ * ↑‖ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
rw [smul_eq_mul, mul_comm]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ (fun x => ((fun x => ↑‖f x‖₊) * pdf X ℙ) x) =ᶠ[ae μ] fun x => ↑‖f x‖₊ * ↑‖ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
refine' Filter.EventuallyEq.mul (ae_eq_refl _) (ae_eq_trans ofReal_toReal_ae_eq.symm _)
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ (fun x => ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae μ] fun x => ↑‖ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
this : (fun x => (pdf X ℙ * fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊
⊢ ∫⁻ (a : E), (pdf X ℙ * fun x => ↑‖f x‖₊) a ∂μ < ⊤
[PROOFSTEP]
rw [lintegral_congr_ae this]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
this : (fun x => (pdf X ℙ * fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊
⊢ ∫⁻ (a : E), ↑‖f a * ENNReal.toReal (pdf X ℙ a)‖₊ ∂μ < ⊤
[PROOFSTEP]
exact hpdf.2
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : ¬Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ∫ (x : E), f x * ENNReal.toReal (pdf X ℙ x) ∂μ = ∫ (x : Ω), f (X x) ∂ℙ
[PROOFSTEP]
rw [integral_undef hpdf, integral_undef]
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝¹ : IsFiniteMeasure ℙ
X : Ω → E
inst✝ : HasPDF X ℙ
f : E → ℝ
hf : Measurable f
hpdf : ¬Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x)
⊢ ¬Integrable fun x => f (X x)
[PROOFSTEP]
rwa [← integrable_iff_integrable_mul_pdf hf] at hpdf
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
inst✝ : HasPDF X ℙ
⊢ map X ℙ ≪ μ
[PROOFSTEP]
rw [map_eq_withDensity_pdf X ℙ μ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
inst✝ : HasPDF X ℙ
⊢ withDensity μ (pdf X ℙ) ≪ μ
[PROOFSTEP]
exact withDensity_absolutelyContinuous _ _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX' : HasPDF X ℙ
⊢ Measurable (0, pdf X ℙ).snd ∧ (0, pdf X ℙ).fst ⟂ₘ μ ∧ map X ℙ = (0, pdf X ℙ).fst + withDensity μ (0, pdf X ℙ).snd
[PROOFSTEP]
simp only [zero_add, measurable_pdf X ℙ μ, true_and_iff, MutuallySingular.zero_left, map_eq_withDensity_pdf X ℙ μ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
⊢ HasPDF X ℙ ↔ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
⊢ HasPDF X ℙ → Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ
[PROOFSTEP]
intro hX'
[GOAL]
case mp
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX' : HasPDF X ℙ
⊢ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ
[PROOFSTEP]
exact ⟨hX'.pdf'.1, haveLebesgueDecomposition_of_hasPDF, map_absolutelyContinuous⟩
[GOAL]
case mpr
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
⊢ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ → HasPDF X ℙ
[PROOFSTEP]
rintro ⟨hX, h_decomp, h⟩
[GOAL]
case mpr.intro.intro
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX : Measurable X
h_decomp : HaveLebesgueDecomposition (map X ℙ) μ
h : map X ℙ ≪ μ
⊢ HasPDF X ℙ
[PROOFSTEP]
haveI := h_decomp
[GOAL]
case mpr.intro.intro
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX : Measurable X
h_decomp : HaveLebesgueDecomposition (map X ℙ) μ
h : map X ℙ ≪ μ
this : HaveLebesgueDecomposition (map X ℙ) μ
⊢ HasPDF X ℙ
[PROOFSTEP]
refine' ⟨⟨hX, (Measure.map X ℙ).rnDeriv μ, measurable_rnDeriv _ _, _⟩⟩
[GOAL]
case mpr.intro.intro
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX : Measurable X
h_decomp : HaveLebesgueDecomposition (map X ℙ) μ
h : map X ℙ ≪ μ
this : HaveLebesgueDecomposition (map X ℙ) μ
⊢ map X ℙ = withDensity μ (rnDeriv (map X ℙ) μ)
[PROOFSTEP]
rwa [withDensity_rnDeriv_eq]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX : Measurable X
⊢ HasPDF X ℙ ↔ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ
[PROOFSTEP]
rw [hasPDF_iff]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → E
hX : Measurable X
⊢ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ ↔
HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ
[PROOFSTEP]
simp only [hX, true_and]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
⊢ HasPDF (g ∘ X) ℙ
[PROOFSTEP]
rw [hasPDF_iff, ← map_map hg.measurable (HasPDF.measurable X ℙ μ)]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
⊢ Measurable (g ∘ X) ∧ HaveLebesgueDecomposition (map g (map X ℙ)) ν ∧ map g (map X ℙ) ≪ ν
[PROOFSTEP]
refine' ⟨hg.measurable.comp (HasPDF.measurable X ℙ μ), hmap, _⟩
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
⊢ map g (map X ℙ) ≪ ν
[PROOFSTEP]
rw [map_eq_withDensity_pdf X ℙ μ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
⊢ map g (withDensity μ (pdf X ℙ)) ≪ ν
[PROOFSTEP]
refine' AbsolutelyContinuous.mk fun s hsm hs => _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
s : Set F
hsm : MeasurableSet s
hs : ↑↑ν s = 0
⊢ ↑↑(map g (withDensity μ (pdf X ℙ))) s = 0
[PROOFSTEP]
rw [map_apply hg.measurable hsm, withDensity_apply _ (hg.measurable hsm)]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
s : Set F
hsm : MeasurableSet s
hs : ↑↑ν s = 0
⊢ ∫⁻ (a : E) in g ⁻¹' s, pdf X ℙ a ∂μ = 0
[PROOFSTEP]
have := hg.absolutelyContinuous hs
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
s : Set F
hsm : MeasurableSet s
hs : ↑↑ν s = 0
this : ↑↑(map g μ) s = 0
⊢ ∫⁻ (a : E) in g ⁻¹' s, pdf X ℙ a ∂μ = 0
[PROOFSTEP]
rw [map_apply hg.measurable hsm] at this
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝² : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
F : Type u_3
inst✝¹ : MeasurableSpace F
ν : Measure F
X : Ω → E
inst✝ : HasPDF X ℙ
g : E → F
hg : QuasiMeasurePreserving g
hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν
s : Set F
hsm : MeasurableSet s
hs : ↑↑ν s = 0
this : ↑↑μ (g ⁻¹' s) = 0
⊢ ∫⁻ (a : E) in g ⁻¹' s, pdf X ℙ a ∂μ = 0
[PROOFSTEP]
exact set_lintegral_measure_zero _ _ this
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Measurable X
⊢ HasPDF X ℙ ↔ map X ℙ ≪ volume
[PROOFSTEP]
rw [hasPDF_iff_of_measurable hX]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Measurable X
⊢ HaveLebesgueDecomposition (map X ℙ) volume ∧ map X ℙ ≪ volume ↔ map X ℙ ≪ volume
[PROOFSTEP]
exact and_iff_right inferInstance
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
⊢ HasPDF X ℙ ↔ Measurable X ∧ map X ℙ ≪ volume
[PROOFSTEP]
by_cases hX : Measurable X
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Measurable X
⊢ HasPDF X ℙ ↔ Measurable X ∧ map X ℙ ≪ volume
[PROOFSTEP]
rw [Real.hasPDF_iff_of_measurable hX, iff_and_self]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Measurable X
⊢ map X ℙ ≪ volume → Measurable X
[PROOFSTEP]
exact fun _ => hX
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : ¬Measurable X
⊢ HasPDF X ℙ ↔ Measurable X ∧ map X ℙ ≪ volume
[PROOFSTEP]
exact ⟨fun h => False.elim (hX h.pdf'.1), fun h => False.elim (hX h.1)⟩
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
⊢ HasFiniteIntegral fun x => f x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
rw [HasFiniteIntegral]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
⊢ ∫⁻ (a : ℝ), ↑‖f a * ENNReal.toReal (pdf X ℙ a)‖₊ < ⊤
[PROOFSTEP]
have : (fun x => ↑‖f x‖₊ * g x) =ᵐ[volume] fun x => ‖f x * (pdf X ℙ volume x).toReal‖₊ :=
by
refine'
ae_eq_trans
(Filter.EventuallyEq.mul (ae_eq_refl fun x => (‖f x‖₊ : ℝ≥0∞)) (ae_eq_trans hg.symm ofReal_toReal_ae_eq.symm)) _
simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul, smul_eq_mul]
refine' Filter.EventuallyEq.mul (ae_eq_refl _) _
simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
⊢ (fun x => ↑‖f x‖₊ * g x) =ᶠ[ae volume] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
refine'
ae_eq_trans
(Filter.EventuallyEq.mul (ae_eq_refl fun x => (‖f x‖₊ : ℝ≥0∞)) (ae_eq_trans hg.symm ofReal_toReal_ae_eq.symm)) _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
⊢ (fun x => ↑‖f x‖₊ * ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae volume] fun x =>
↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul, smul_eq_mul]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
⊢ (fun x => ↑‖f x‖₊ * ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae volume] fun x =>
↑‖f x‖₊ * ↑‖ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
refine' Filter.EventuallyEq.mul (ae_eq_refl _) _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
⊢ (fun x => ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae volume] fun x => ↑‖ENNReal.toReal (pdf X ℙ x)‖₊
[PROOFSTEP]
simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
f : ℝ → ℝ
g : ℝ → ℝ≥0∞
hg : pdf X ℙ =ᶠ[ae volume] g
hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤
this : (fun x => ↑‖f x‖₊ * g x) =ᶠ[ae volume] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊
⊢ ∫⁻ (a : ℝ), ↑‖f a * ENNReal.toReal (pdf X ℙ a)‖₊ < ⊤
[PROOFSTEP]
rwa [lt_top_iff_ne_top, ← lintegral_congr_ae this]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hu : IsUniform X s ℙ
⊢ pdf X ℙ ≠ 0
[PROOFSTEP]
intro hpdf
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hu : IsUniform X s ℙ
hpdf : pdf X ℙ = 0
⊢ False
[PROOFSTEP]
simp only [IsUniform, hpdf] at hu
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
⊢ False
[PROOFSTEP]
suffices μ (s ∩ Function.support ((μ s)⁻¹ • (1 : E → ℝ≥0∞))) = 0
by
have heq : Function.support ((μ s)⁻¹ • (1 : E → ℝ≥0∞)) = Set.univ :=
by
ext x
rw [Function.mem_support]
simp [hnt]
rw [heq, Set.inter_univ] at this
exact hns this
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0
⊢ False
[PROOFSTEP]
have heq : Function.support ((μ s)⁻¹ • (1 : E → ℝ≥0∞)) = Set.univ :=
by
ext x
rw [Function.mem_support]
simp [hnt]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0
⊢ Function.support ((↑↑μ s)⁻¹ • 1) = Set.univ
[PROOFSTEP]
ext x
[GOAL]
case h
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0
x : E
⊢ x ∈ Function.support ((↑↑μ s)⁻¹ • 1) ↔ x ∈ Set.univ
[PROOFSTEP]
rw [Function.mem_support]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0
x : E
⊢ ((↑↑μ s)⁻¹ • 1) x ≠ 0 ↔ x ∈ Set.univ
[PROOFSTEP]
simp [hnt]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0
heq : Function.support ((↑↑μ s)⁻¹ • 1) = Set.univ
⊢ False
[PROOFSTEP]
rw [heq, Set.inter_univ] at this
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
this : ↑↑μ s = 0
heq : Function.support ((↑↑μ s)⁻¹ • 1) = Set.univ
⊢ False
[PROOFSTEP]
exact hns this
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hpdf : pdf X ℙ = 0
hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1)
⊢ ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0
[PROOFSTEP]
exact Set.indicator_ae_eq_zero.1 hu.symm
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
A : Set E
hA : MeasurableSet A
⊢ ↑↑ℙ (X ⁻¹' A) = ↑↑μ (s ∩ A) / ↑↑μ s
[PROOFSTEP]
haveI := hu.hasPDF hns hnt
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
A : Set E
hA : MeasurableSet A
this : HasPDF X ℙ
⊢ ↑↑ℙ (X ⁻¹' A) = ↑↑μ (s ∩ A) / ↑↑μ s
[PROOFSTEP]
rw [← Measure.map_apply (HasPDF.measurable X ℙ μ) hA, map_eq_set_lintegral_pdf X ℙ μ hA, lintegral_congr_ae hu.restrict]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
A : Set E
hA : MeasurableSet A
this : HasPDF X ℙ
⊢ ∫⁻ (a : E) in A, Set.indicator s ((↑↑μ s)⁻¹ • 1) a ∂μ = ↑↑μ (s ∩ A) / ↑↑μ s
[PROOFSTEP]
simp only [hms, hA, lintegral_indicator, Pi.smul_apply, Pi.one_apply, Algebra.id.smul_eq_mul, mul_one, lintegral_const,
restrict_apply', Set.univ_inter]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
A : Set E
hA : MeasurableSet A
this : HasPDF X ℙ
⊢ (↑↑μ s)⁻¹ * ↑↑μ (s ∩ A) = ↑↑μ (s ∩ A) / ↑↑μ s
[PROOFSTEP]
rw [ENNReal.div_eq_inv_mul]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
⊢ ↑↑ℙ Set.univ = 1
[PROOFSTEP]
have : X ⁻¹' Set.univ = Set.univ := by simp only [Set.preimage_univ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
⊢ X ⁻¹' Set.univ = Set.univ
[PROOFSTEP]
simp only [Set.preimage_univ]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m✝ : MeasurableSpace Ω
ℙ✝ : Measure Ω
μ✝ : Measure E
m : MeasurableSpace Ω
X : Ω → E
ℙ : Measure Ω
μ : Measure E
s : Set E
hns : ↑↑μ s ≠ 0
hnt : ↑↑μ s ≠ ⊤
hms : MeasurableSet s
hu : IsUniform X s ℙ
this : X ⁻¹' Set.univ = Set.univ
⊢ ↑↑ℙ Set.univ = 1
[PROOFSTEP]
rw [← this, hu.measure_preimage hns hnt hms MeasurableSet.univ, Set.inter_univ, ENNReal.div_self hns hnt]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
by_cases hsupp : volume s = ∞
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
have : pdf X ℙ =ᵐ[volume] 0 := by
refine' ae_eq_trans huX _
simp [hsupp, ae_eq_refl]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
⊢ pdf X ℙ =ᶠ[ae volume] 0
[PROOFSTEP]
refine' ae_eq_trans huX _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
⊢ Set.indicator s ((↑↑volume s)⁻¹ • 1) =ᶠ[ae volume] 0
[PROOFSTEP]
simp [hsupp, ae_eq_refl]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
this : pdf X ℙ =ᶠ[ae volume] 0
⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
refine' Integrable.congr (integrable_zero _ _ _) _
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
this : pdf X ℙ =ᶠ[ae volume] 0
⊢ (fun x => 0) =ᶠ[ae volume] fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
rw [(by simp : (fun x => 0 : ℝ → ℝ) = fun x => x * (0 : ℝ≥0∞).toReal)]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
this : pdf X ℙ =ᶠ[ae volume] 0
⊢ (fun x => 0) = fun x => x * ENNReal.toReal 0
[PROOFSTEP]
simp
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ↑↑volume s = ⊤
this : pdf X ℙ =ᶠ[ae volume] 0
⊢ (fun x => x * ENNReal.toReal 0) =ᶠ[ae volume] fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
refine' Filter.EventuallyEq.mul (ae_eq_refl _) (Filter.EventuallyEq.fun_comp this.symm ENNReal.toReal)
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
constructor
-- porting note: `refine` was failing, don't know why
[GOAL]
case neg.left
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
⊢ AEStronglyMeasurable (fun x => x * ENNReal.toReal (pdf X ℙ x)) volume
[PROOFSTEP]
exact aestronglyMeasurable_id.mul (measurable_pdf X ℙ).aemeasurable.ennreal_toReal.aestronglyMeasurable
[GOAL]
case neg.right
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
⊢ HasFiniteIntegral fun x => x * ENNReal.toReal (pdf X ℙ x)
[PROOFSTEP]
refine' hasFiniteIntegral_mul huX _
[GOAL]
case neg.right
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
⊢ ∫⁻ (x : ℝ), ↑‖x‖₊ * Set.indicator s ((↑↑volume s)⁻¹ • 1) x ≠ ⊤
[PROOFSTEP]
set ind := (volume s)⁻¹ • (1 : ℝ → ℝ≥0∞)
[GOAL]
case neg.right
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1
⊢ ∫⁻ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x ≠ ⊤
[PROOFSTEP]
have : ∀ x, ↑‖x‖₊ * s.indicator ind x = s.indicator (fun x => ‖x‖₊ * ind x) x := fun x =>
(s.indicator_mul_right (fun x => ↑‖x‖₊) ind).symm
[GOAL]
case neg.right
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1
this : ∀ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x = Set.indicator s (fun x => ↑‖x‖₊ * ind x) x
⊢ ∫⁻ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x ≠ ⊤
[PROOFSTEP]
simp only [this, lintegral_indicator _ hms, mul_one, Algebra.id.smul_eq_mul, Pi.one_apply, Pi.smul_apply]
[GOAL]
case neg.right
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1
this : ∀ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x = Set.indicator s (fun x => ↑‖x‖₊ * ind x) x
⊢ ∫⁻ (x : ℝ) in s, ↑‖x‖₊ * (↑↑volume s)⁻¹ ≠ ⊤
[PROOFSTEP]
rw [lintegral_mul_const _ measurable_nnnorm.coe_nnreal_ennreal]
[GOAL]
case neg.right
Ω : Type u_1
E : Type u_2
inst✝¹ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
inst✝ : IsFiniteMeasure ℙ
hcs : IsCompact s
huX : IsUniform X s ℙ
hsupp : ¬↑↑volume s = ⊤
ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1
this : ∀ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x = Set.indicator s (fun x => ↑‖x‖₊ * ind x) x
⊢ (∫⁻ (a : ℝ) in s, ↑‖a‖₊) * (↑↑volume s)⁻¹ ≠ ⊤
[PROOFSTEP]
refine'
(ENNReal.mul_lt_top (set_lintegral_lt_top_of_isCompact hsupp hcs continuous_nnnorm).ne
(ENNReal.inv_lt_top.2 (pos_iff_ne_zero.mpr hns)).ne).ne
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
⊢ ∫ (x : Ω), X x ∂ℙ = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
haveI := hasPDF hns hnt huX
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this : HasPDF X ℙ
⊢ ∫ (x : Ω), X x ∂ℙ = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
haveI := huX.isProbabilityMeasure hns hnt hms
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
⊢ ∫ (x : Ω), X x ∂ℙ = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
rw [← integral_mul_eq_integral]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
⊢ ∫ (x : ℝ), x * ENNReal.toReal (pdf (fun x => X x) ℙ x) = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
rw [integral_congr_ae (Filter.EventuallyEq.mul (ae_eq_refl _) (pdf_toReal_ae_eq huX))]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
⊢ ∫ (a : ℝ), a * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) a) =
ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
have :
∀ x,
x * (s.indicator ((volume s)⁻¹ • (1 : ℝ → ℝ≥0∞)) x).toReal =
x * s.indicator ((volume s)⁻¹.toReal • (1 : ℝ → ℝ)) x :=
by
refine' fun x => congr_arg ((· * ·) x) _
by_cases hx : x ∈ s
· simp [Set.indicator_of_mem hx]
· simp [Set.indicator_of_not_mem hx]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
⊢ ∀ (x : ℝ),
x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) =
x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
[PROOFSTEP]
refine' fun x => congr_arg ((· * ·) x) _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
x : ℝ
⊢ ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
[PROOFSTEP]
by_cases hx : x ∈ s
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
x : ℝ
hx : x ∈ s
⊢ ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
[PROOFSTEP]
simp [Set.indicator_of_mem hx]
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝ : HasPDF X ℙ
this : IsProbabilityMeasure ℙ
x : ℝ
hx : ¬x ∈ s
⊢ ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
[PROOFSTEP]
simp [Set.indicator_of_not_mem hx]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝¹ : HasPDF X ℙ
this✝ : IsProbabilityMeasure ℙ
this :
∀ (x : ℝ),
x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) =
x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
⊢ ∫ (a : ℝ), a * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) a) =
ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
simp_rw [this, ← s.indicator_mul_right fun x => x, integral_indicator hms]
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝¹ : HasPDF X ℙ
this✝ : IsProbabilityMeasure ℙ
this :
∀ (x : ℝ),
x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) =
x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
⊢ ∫ (a : ℝ) in s, a * (ENNReal.toReal (↑↑volume s)⁻¹ • 1) a = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
change ∫ x in s, x * (volume s)⁻¹.toReal • (1 : ℝ) = _
[GOAL]
Ω : Type u_1
E : Type u_2
inst✝ : MeasurableSpace E
m : MeasurableSpace Ω
ℙ : Measure Ω
μ : Measure E
X : Ω → ℝ
s : Set ℝ
hms : MeasurableSet s
hns : ↑↑volume s ≠ 0
hnt : ↑↑volume s ≠ ⊤
huX : IsUniform X s ℙ
this✝¹ : HasPDF X ℙ
this✝ : IsProbabilityMeasure ℙ
this :
∀ (x : ℝ),
x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) =
x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x
⊢ ∫ (x : ℝ) in s, x * ENNReal.toReal (↑↑volume s)⁻¹ • 1 = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x
[PROOFSTEP]
rw [integral_mul_right, mul_comm, smul_eq_mul, mul_one]
| {"mathlib_filename": "Mathlib.Probability.Density", "llama_tokens": 25906} |
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
⊢ Category.{?u.61, max u v} (SimplicialObject C)
[PROOFSTEP]
dsimp only [SimplicialObject]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
⊢ Category.{?u.61, max u v} (SimplexCategoryᵒᵖ ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (SimplicialObject C)
[PROOFSTEP]
dsimp [SimplicialObject]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (SimplexCategoryᵒᵖ ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (SimplicialObject C)
[PROOFSTEP]
dsimp [SimplicialObject]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (SimplexCategoryᵒᵖ ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : SimplicialObject C
f g : X ⟶ Y
h : ∀ (n : SimplexCategoryᵒᵖ), NatTrans.app f n = NatTrans.app g n
⊢ f.app = g.app
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : SimplicialObject C
f g : X ⟶ Y
h : ∀ (n : SimplexCategoryᵒᵖ), NatTrans.app f n = NatTrans.app g n
x✝ : SimplexCategoryᵒᵖ
⊢ NatTrans.app f x✝ = NatTrans.app g x✝
[PROOFSTEP]
apply h
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n m : ℕ
h : n = m
⊢ op [n] = op [m]
[PROOFSTEP]
congr
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
h : n = n
⊢ eqToIso X h = Iso.refl (X.obj (op [n]))
[PROOFSTEP]
ext
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
h : n = n
⊢ (eqToIso X h).hom = (Iso.refl (X.obj (op [n]))).hom
[PROOFSTEP]
simp [eqToIso]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
⊢ δ X (Fin.succ j) ≫ δ X i = δ X (Fin.castSucc i) ≫ δ X j
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
⊢ X.map (SimplexCategory.δ (Fin.succ j)).op ≫ X.map (SimplexCategory.δ i).op =
X.map (SimplexCategory.δ (Fin.castSucc i)).op ≫ X.map (SimplexCategory.δ j).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
hj : j = 0
⊢ False
[PROOFSTEP]
simp [hj, Fin.not_lt_zero] at H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ δ X j ≫ δ X i = δ X (Fin.castSucc i) ≫ δ X (Fin.pred j (_ : j = 0 → False))
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ X.map (SimplexCategory.δ j).op ≫ X.map (SimplexCategory.δ i).op =
X.map (SimplexCategory.δ (Fin.castSucc i)).op ≫ X.map (SimplexCategory.δ (Fin.pred j (_ : j = 0 → False))).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ' H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ δ X (Fin.succ j) ≫ δ X (Fin.castLT i (_ : ↑i < n + 2)) = δ X i ≫ δ X j
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ X.map (SimplexCategory.δ (Fin.succ j)).op ≫ X.map (SimplexCategory.δ (Fin.castLT i (_ : ↑i < n + 2))).op =
X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.δ j).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ'' H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
⊢ δ X (Fin.castSucc i) ≫ δ X i = δ X (Fin.succ i) ≫ δ X i
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
⊢ X.map (SimplexCategory.δ (Fin.castSucc i)).op ≫ X.map (SimplexCategory.δ i).op =
X.map (SimplexCategory.δ (Fin.succ i)).op ≫ X.map (SimplexCategory.δ i).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ_self]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
j : Fin (n + 3)
i : Fin (n + 2)
H : j = Fin.castSucc i
⊢ δ X j ≫ δ X i = δ X (Fin.succ i) ≫ δ X i
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
⊢ δ X (Fin.castSucc i) ≫ δ X i = δ X (Fin.succ i) ≫ δ X i
[PROOFSTEP]
rw [δ_comp_δ_self]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : i ≤ Fin.castSucc j
⊢ σ X (Fin.succ j) ≫ δ X (Fin.castSucc i) = δ X i ≫ σ X j
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : i ≤ Fin.castSucc j
⊢ X.map (SimplexCategory.σ (Fin.succ j)).op ≫ X.map (SimplexCategory.δ (Fin.castSucc i)).op =
X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.σ j).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_le H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ σ X i ≫ δ X (Fin.castSucc i) = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ X.map (SimplexCategory.σ i).op ≫ X.map (SimplexCategory.δ (Fin.castSucc i)).op = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_self, op_id, X.map_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
j : Fin (n + 2)
i : Fin (n + 1)
H : j = Fin.castSucc i
⊢ σ X i ≫ δ X j = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ σ X i ≫ δ X (Fin.castSucc i) = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
rw [δ_comp_σ_self]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ σ X i ≫ δ X (Fin.succ i) = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ X.map (SimplexCategory.σ i).op ≫ X.map (SimplexCategory.δ (Fin.succ i)).op = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_succ, op_id, X.map_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
j : Fin (n + 2)
i : Fin (n + 1)
H : j = Fin.succ i
⊢ σ X i ≫ δ X j = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ σ X i ≫ δ X (Fin.succ i) = 𝟙 (X.obj (op [n]))
[PROOFSTEP]
rw [δ_comp_σ_succ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : Fin.castSucc j < i
⊢ σ X (Fin.castSucc j) ≫ δ X (Fin.succ i) = δ X i ≫ σ X j
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : Fin.castSucc j < i
⊢ X.map (SimplexCategory.σ (Fin.castSucc j)).op ≫ X.map (SimplexCategory.δ (Fin.succ i)).op =
X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.σ j).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
hi : i = 0
⊢ False
[PROOFSTEP]
simp only [Fin.not_lt_zero, hi] at H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ σ X j ≫ δ X i = δ X (Fin.pred i (_ : i = 0 → False)) ≫ σ X (Fin.castLT j (_ : ↑j < n + 1))
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ X.map (SimplexCategory.σ j).op ≫ X.map (SimplexCategory.δ i).op =
X.map (SimplexCategory.δ (Fin.pred i (_ : i = 0 → False))).op ≫
X.map (SimplexCategory.σ (Fin.castLT j (_ : ↑j < n + 1))).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt' H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i j : Fin (n + 1)
H : i ≤ j
⊢ σ X j ≫ σ X (Fin.castSucc i) = σ X i ≫ σ X (Fin.succ j)
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
i j : Fin (n + 1)
H : i ≤ j
⊢ X.map (SimplexCategory.σ j).op ≫ X.map (SimplexCategory.σ (Fin.castSucc i)).op =
X.map (SimplexCategory.σ i).op ≫ X.map (SimplexCategory.σ (Fin.succ j)).op
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.σ_comp_σ H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
⊢ Category.{?u.68325, max u v} (Truncated C n)
[PROOFSTEP]
dsimp [Truncated]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
n : ℕ
⊢ Category.{?u.68325, max u v} ((SimplexCategory.Truncated n)ᵒᵖ ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : SimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (Truncated C n)
[PROOFSTEP]
dsimp [Truncated]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : SimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J ((SimplexCategory.Truncated n)ᵒᵖ ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : SimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (Truncated C n)
[PROOFSTEP]
dsimp [Truncated]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : SimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J ((SimplexCategory.Truncated n)ᵒᵖ ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
⊢ Category.{?u.76503, max u v} (Augmented C)
[PROOFSTEP]
dsimp only [Augmented]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
⊢ Category.{?u.76503, max u v} (Comma (𝟭 (SimplicialObject C)) (const C))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ (𝟭 C).map (NatTrans.app (drop.map η) (op [0])) ≫
((fun X => { left := (drop.obj X).obj (op [0]), right := point.obj X, hom := NatTrans.app X.hom (op [0]) })
Y✝).hom =
((fun X => { left := (drop.obj X).obj (op [0]), right := point.obj X, hom := NatTrans.app X.hom (op [0]) })
X✝).hom ≫
(𝟭 C).map (point.map η)
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ NatTrans.app η.left (op [0]) ≫ NatTrans.app Y✝.hom (op [0]) = NatTrans.app X✝.hom (op [0]) ≫ η.right
[PROOFSTEP]
rw [← NatTrans.comp_app]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ NatTrans.app (η.left ≫ Y✝.hom) (op [0]) = NatTrans.app X✝.hom (op [0]) ≫ η.right
[PROOFSTEP]
erw [η.w]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : SimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ NatTrans.app (X✝.hom ≫ (const C).map η.right) (op [0]) = NatTrans.app X✝.hom (op [0]) ≫ η.right
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ : SimplicialObject C
X Y : Augmented C
f : X ⟶ Y
⊢ NatTrans.app (drop.map f) (op [0]) ≫ NatTrans.app Y.hom (op [0]) = NatTrans.app X.hom (op [0]) ≫ point.map f
[PROOFSTEP]
convert congr_app f.w (op (SimplexCategory.mk 0))
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u_1
inst✝ : Category.{?u.105136, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ (𝟭 (SimplicialObject D)).map (whiskerRight η.left F) ≫
((fun X =>
{ left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X),
hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom })
Y✝).hom =
((fun X =>
{ left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X),
hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom })
X✝).hom ≫
(const D).map (F.map η.right)
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u_1
inst✝ : Category.{?u.105136, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategoryᵒᵖ
⊢ NatTrans.app
((𝟭 (SimplicialObject D)).map (whiskerRight η.left F) ≫
((fun X =>
{ left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X),
hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom })
Y✝).hom)
n✝ =
NatTrans.app
(((fun X =>
{ left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X),
hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom })
X✝).hom ≫
(const D).map (F.map η.right))
n✝
[PROOFSTEP]
dsimp [whiskerRight]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u_1
inst✝ : Category.{?u.105136, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategoryᵒᵖ
⊢ F.map (NatTrans.app η.left n✝) ≫ F.map (NatTrans.app Y✝.hom n✝) ≫ 𝟙 (F.obj Y✝.right) =
(F.map (NatTrans.app X✝.hom n✝) ≫ 𝟙 (F.obj X✝.right)) ≫ F.map η.right
[PROOFSTEP]
simp only [Category.comp_id, ← F.map_comp, ← NatTrans.comp_app]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u_1
inst✝ : Category.{?u.105136, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategoryᵒᵖ
⊢ F.map (NatTrans.app (η.left ≫ Y✝.hom) n✝) = F.map (NatTrans.app X✝.hom n✝ ≫ η.right)
[PROOFSTEP]
erw [η.w]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u_1
inst✝ : Category.{?u.105136, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategoryᵒᵖ
⊢ F.map (NatTrans.app (X✝.hom ≫ (const C).map η.right) n✝) = F.map (NatTrans.app X✝.hom n✝ ≫ η.right)
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
A : Augmented C
⊢ (𝟭 (SimplicialObject D)).map (whiskerLeft (drop.obj A) η) ≫ ((whiskeringObj C D Y✝).obj A).hom =
((whiskeringObj C D X✝).obj A).hom ≫ (const D).map (NatTrans.app η (point.obj A))
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
A : Augmented C
n : SimplexCategoryᵒᵖ
⊢ NatTrans.app ((𝟭 (SimplicialObject D)).map (whiskerLeft (drop.obj A) η) ≫ ((whiskeringObj C D Y✝).obj A).hom) n =
NatTrans.app (((whiskeringObj C D X✝).obj A).hom ≫ (const D).map (NatTrans.app η (point.obj A))) n
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
A : Augmented C
n : SimplexCategoryᵒᵖ
⊢ NatTrans.app η (A.left.obj n) ≫ Y✝.map (NatTrans.app A.hom n) ≫ 𝟙 (Y✝.obj A.right) =
(X✝.map (NatTrans.app A.hom n) ≫ 𝟙 (X✝.obj A.right)) ≫ NatTrans.app η A.right
[PROOFSTEP]
rw [Category.comp_id, Category.comp_id, η.naturality]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ Z✝ : C ⥤ D
x✝¹ : X✝ ⟶ Y✝
x✝ : Y✝ ⟶ Z✝
⊢ { obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
(x✝¹ ≫ x✝) =
{ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
x✝¹ ≫
{ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
x✝
[PROOFSTEP]
ext
[GOAL]
case w.h.h₁.h
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ Z✝ : C ⥤ D
x✝² : X✝ ⟶ Y✝
x✝¹ : Y✝ ⟶ Z✝
x✝ : Augmented C
n✝ : SimplexCategoryᵒᵖ
⊢ NatTrans.app
(NatTrans.app
({ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A =>
CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
(x✝² ≫ x✝¹))
x✝).left
n✝ =
NatTrans.app
(NatTrans.app
({ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A =>
CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
x✝² ≫
{ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A =>
CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
x✝¹)
x✝).left
n✝
[PROOFSTEP]
rfl
[GOAL]
case w.h.h₂
C : Type u
inst✝¹ : Category.{v, u} C
X : SimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ Z✝ : C ⥤ D
x✝² : X✝ ⟶ Y✝
x✝¹ : Y✝ ⟶ Z✝
x✝ : Augmented C
⊢ (NatTrans.app
({ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
(x✝² ≫ x✝¹))
x✝).right =
(NatTrans.app
({ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A =>
CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
x✝² ≫
{ obj := whiskeringObj C D,
map := fun {X Y} η =>
NatTrans.mk fun A =>
CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map
x✝¹)
x✝).right
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : SimplicialObject C
X₀ : C
f : X.obj (op [0]) ⟶ X₀
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f
⊢ ∀ ⦃X_1 Y : SimplexCategoryᵒᵖ⦄ (f_1 : X_1 ⟶ Y),
((𝟭 (SimplicialObject C)).obj X).map f_1 ≫ (fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) Y =
(fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) X_1 ≫ ((const C).obj X₀).map f_1
[PROOFSTEP]
intro i j g
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : SimplicialObject C
X₀ : C
f : X.obj (op [0]) ⟶ X₀
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f
i j : SimplexCategoryᵒᵖ
g : i ⟶ j
⊢ ((𝟭 (SimplicialObject C)).obj X).map g ≫ (fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) j =
(fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) i ≫ ((const C).obj X₀).map g
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : SimplicialObject C
X₀ : C
f : X.obj (op [0]) ⟶ X₀
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f
i j : SimplexCategoryᵒᵖ
g : i ⟶ j
⊢ X.map g ≫ X.map (SimplexCategory.const j.unop 0).op ≫ f = (X.map (SimplexCategory.const i.unop 0).op ≫ f) ≫ 𝟙 X₀
[PROOFSTEP]
rw [← g.op_unop]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : SimplicialObject C
X₀ : C
f : X.obj (op [0]) ⟶ X₀
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f
i j : SimplexCategoryᵒᵖ
g : i ⟶ j
⊢ X.map g.unop.op ≫ X.map (SimplexCategory.const j.unop 0).op ≫ f =
(X.map (SimplexCategory.const i.unop 0).op ≫ f) ≫ 𝟙 X₀
[PROOFSTEP]
simpa only [← X.map_comp, ← Category.assoc, Category.comp_id, ← op_comp] using w _ _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : SimplicialObject C
X₀ : C
f : X.obj (op [0]) ⟶ X₀
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f
⊢ NatTrans.app (augment X X₀ f w).hom (op [0]) = f
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : SimplicialObject C
X₀ : C
f : X.obj (op [0]) ⟶ X₀
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f
⊢ X.map (SimplexCategory.const [0] 0).op ≫ f = f
[PROOFSTEP]
rw [SimplexCategory.hom_zero_zero ([0].const 0), op_id, X.map_id, Category.id_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
⊢ Category.{?u.208707, max u v} (CosimplicialObject C)
[PROOFSTEP]
dsimp only [CosimplicialObject]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
⊢ Category.{?u.208707, max u v} (SimplexCategory ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (CosimplicialObject C)
[PROOFSTEP]
dsimp [CosimplicialObject]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (SimplexCategory ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (CosimplicialObject C)
[PROOFSTEP]
dsimp [CosimplicialObject]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (SimplexCategory ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X Y : CosimplicialObject C
f g : X ⟶ Y
h : ∀ (n : SimplexCategory), NatTrans.app f n = NatTrans.app g n
⊢ f.app = g.app
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X Y : CosimplicialObject C
f g : X ⟶ Y
h : ∀ (n : SimplexCategory), NatTrans.app f n = NatTrans.app g n
x✝ : SimplexCategory
⊢ NatTrans.app f x✝ = NatTrans.app g x✝
[PROOFSTEP]
apply h
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n m : ℕ
h : n = m
⊢ [n] = [m]
[PROOFSTEP]
rw [h]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
h : n = n
⊢ eqToIso X h = Iso.refl (X.obj [n])
[PROOFSTEP]
ext
[GOAL]
case w
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
h : n = n
⊢ (eqToIso X h).hom = (Iso.refl (X.obj [n])).hom
[PROOFSTEP]
simp [eqToIso]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
⊢ δ X i ≫ δ X (Fin.succ j) = δ X j ≫ δ X (Fin.castSucc i)
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i j : Fin (n + 2)
H : i ≤ j
⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ (Fin.succ j)) =
X.map (SimplexCategory.δ j) ≫ X.map (SimplexCategory.δ (Fin.castSucc i))
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.δ_comp_δ H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
hj : j = 0
⊢ False
[PROOFSTEP]
simp only [hj, Fin.not_lt_zero] at H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ δ X i ≫ δ X j = δ X (Fin.pred j (_ : j = 0 → False)) ≫ δ X (Fin.castSucc i)
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : Fin.castSucc i < j
⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ j) =
X.map (SimplexCategory.δ (Fin.pred j (_ : j = 0 → False))) ≫ X.map (SimplexCategory.δ (Fin.castSucc i))
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ' H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ δ X (Fin.castLT i (_ : ↑i < n + 2)) ≫ δ X (Fin.succ j) = δ X j ≫ δ X i
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : i ≤ Fin.castSucc j
⊢ X.map (SimplexCategory.δ (Fin.castLT i (_ : ↑i < n + 2))) ≫ X.map (SimplexCategory.δ (Fin.succ j)) =
X.map (SimplexCategory.δ j) ≫ X.map (SimplexCategory.δ i)
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ'' H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
⊢ δ X i ≫ δ X (Fin.castSucc i) = δ X i ≫ δ X (Fin.succ i)
[PROOFSTEP]
dsimp [δ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ (Fin.castSucc i)) =
X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ (Fin.succ i))
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.δ_comp_δ_self]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 3)
H : j = Fin.castSucc i
⊢ δ X i ≫ δ X j = δ X i ≫ δ X (Fin.succ i)
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
⊢ δ X i ≫ δ X (Fin.castSucc i) = δ X i ≫ δ X (Fin.succ i)
[PROOFSTEP]
rw [δ_comp_δ_self]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : i ≤ Fin.castSucc j
⊢ δ X (Fin.castSucc i) ≫ σ X (Fin.succ j) = σ X j ≫ δ X i
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : i ≤ Fin.castSucc j
⊢ X.map (SimplexCategory.δ (Fin.castSucc i)) ≫ X.map (SimplexCategory.σ (Fin.succ j)) =
X.map (SimplexCategory.σ j) ≫ X.map (SimplexCategory.δ i)
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.δ_comp_σ_of_le H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ δ X (Fin.castSucc i) ≫ σ X i = 𝟙 (X.obj [n])
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ X.map (SimplexCategory.δ (Fin.castSucc i)) ≫ X.map (SimplexCategory.σ i) = 𝟙 (X.obj [n])
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.δ_comp_σ_self, X.map_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
j : Fin (n + 2)
i : Fin (n + 1)
H : j = Fin.castSucc i
⊢ δ X j ≫ σ X i = 𝟙 (X.obj [n])
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ δ X (Fin.castSucc i) ≫ σ X i = 𝟙 (X.obj [n])
[PROOFSTEP]
rw [δ_comp_σ_self]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ δ X (Fin.succ i) ≫ σ X i = 𝟙 (X.obj [n])
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ X.map (SimplexCategory.δ (Fin.succ i)) ≫ X.map (SimplexCategory.σ i) = 𝟙 (X.obj [n])
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.δ_comp_σ_succ, X.map_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
j : Fin (n + 2)
i : Fin (n + 1)
H : j = Fin.succ i
⊢ δ X j ≫ σ X i = 𝟙 (X.obj [n])
[PROOFSTEP]
subst H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 1)
⊢ δ X (Fin.succ i) ≫ σ X i = 𝟙 (X.obj [n])
[PROOFSTEP]
rw [δ_comp_σ_succ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : Fin.castSucc j < i
⊢ δ X (Fin.succ i) ≫ σ X (Fin.castSucc j) = σ X j ≫ δ X i
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 2)
j : Fin (n + 1)
H : Fin.castSucc j < i
⊢ X.map (SimplexCategory.δ (Fin.succ i)) ≫ X.map (SimplexCategory.σ (Fin.castSucc j)) =
X.map (SimplexCategory.σ j) ≫ X.map (SimplexCategory.δ i)
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.δ_comp_σ_of_gt H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
hi : i = 0
⊢ False
[PROOFSTEP]
simp only [Fin.not_lt_zero, hi] at H
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ δ X i ≫ σ X j = σ X (Fin.castLT j (_ : ↑j < n + 1)) ≫ δ X (Fin.pred i (_ : i = 0 → False))
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i : Fin (n + 3)
j : Fin (n + 2)
H : Fin.succ j < i
⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.σ j) =
X.map (SimplexCategory.σ (Fin.castLT j (_ : ↑j < n + 1))) ≫
X.map (SimplexCategory.δ (Fin.pred i (_ : i = 0 → False)))
[PROOFSTEP]
simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt' H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i j : Fin (n + 1)
H : i ≤ j
⊢ σ X (Fin.castSucc i) ≫ σ X j = σ X (Fin.succ j) ≫ σ X i
[PROOFSTEP]
dsimp [δ, σ]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
i j : Fin (n + 1)
H : i ≤ j
⊢ X.map (SimplexCategory.σ (Fin.castSucc i)) ≫ X.map (SimplexCategory.σ j) =
X.map (SimplexCategory.σ (Fin.succ j)) ≫ X.map (SimplexCategory.σ i)
[PROOFSTEP]
simp only [← X.map_comp, SimplexCategory.σ_comp_σ H]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
⊢ Category.{?u.295628, max u v} (Truncated C n)
[PROOFSTEP]
dsimp [Truncated]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
⊢ Category.{?u.295628, max u v} (SimplexCategory.Truncated n ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (Truncated C n)
[PROOFSTEP]
dsimp [Truncated]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasLimitsOfShape J C
⊢ HasLimitsOfShape J (SimplexCategory.Truncated n ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (Truncated C n)
[PROOFSTEP]
dsimp [Truncated]
[GOAL]
C : Type u
inst✝² : Category.{v, u} C
X : CosimplicialObject C
n : ℕ
J : Type v
inst✝¹ : SmallCategory J
inst✝ : HasColimitsOfShape J C
⊢ HasColimitsOfShape J (SimplexCategory.Truncated n ⥤ C)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
⊢ Category.{?u.303800, max u v} (Augmented C)
[PROOFSTEP]
dsimp only [Augmented]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
⊢ Category.{?u.303800, max u v} (Comma (const C) (𝟭 (CosimplicialObject C)))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ (𝟭 C).map (point.map η) ≫
((fun X => { left := point.obj X, right := (drop.obj X).obj [0], hom := NatTrans.app X.hom [0] }) Y✝).hom =
((fun X => { left := point.obj X, right := (drop.obj X).obj [0], hom := NatTrans.app X.hom [0] }) X✝).hom ≫
(𝟭 C).map (NatTrans.app (drop.map η) [0])
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ η.left ≫ NatTrans.app Y✝.hom [0] = NatTrans.app X✝.hom [0] ≫ NatTrans.app η.right [0]
[PROOFSTEP]
rw [← NatTrans.comp_app]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ η.left ≫ NatTrans.app Y✝.hom [0] = NatTrans.app (X✝.hom ≫ η.right) [0]
[PROOFSTEP]
erw [← η.w]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : CosimplicialObject C
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ η.left ≫ NatTrans.app Y✝.hom [0] = NatTrans.app ((const C).map η.left ≫ Y✝.hom) [0]
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u_1
inst✝ : Category.{?u.334362, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
⊢ (const D).map (F.map η.left) ≫
((fun X =>
{ left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X),
hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F })
Y✝).hom =
((fun X =>
{ left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X),
hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F })
X✝).hom ≫
(𝟭 (CosimplicialObject D)).map (whiskerRight η.right F)
[PROOFSTEP]
ext
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u_1
inst✝ : Category.{?u.334362, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategory
⊢ NatTrans.app
((const D).map (F.map η.left) ≫
((fun X =>
{ left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X),
hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F })
Y✝).hom)
n✝ =
NatTrans.app
(((fun X =>
{ left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X),
hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F })
X✝).hom ≫
(𝟭 (CosimplicialObject D)).map (whiskerRight η.right F))
n✝
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u_1
inst✝ : Category.{?u.334362, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategory
⊢ F.map η.left ≫ 𝟙 (F.obj Y✝.left) ≫ F.map (NatTrans.app Y✝.hom n✝) =
(𝟙 (F.obj X✝.left) ≫ F.map (NatTrans.app X✝.hom n✝)) ≫ F.map (NatTrans.app η.right n✝)
[PROOFSTEP]
rw [Category.id_comp, Category.id_comp, ← F.map_comp, ← F.map_comp, ← NatTrans.comp_app]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u_1
inst✝ : Category.{?u.334362, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategory
⊢ F.map (η.left ≫ NatTrans.app Y✝.hom n✝) = F.map (NatTrans.app (X✝.hom ≫ η.right) n✝)
[PROOFSTEP]
erw [← η.w]
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u_1
inst✝ : Category.{?u.334362, u_1} D
F : C ⥤ D
X✝ Y✝ : Augmented C
η : X✝ ⟶ Y✝
n✝ : SimplexCategory
⊢ F.map (η.left ≫ NatTrans.app Y✝.hom n✝) = F.map (NatTrans.app ((const C).map η.left ≫ Y✝.hom) n✝)
[PROOFSTEP]
rfl
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
A : Augmented C
⊢ (const D).map (NatTrans.app η (point.obj A)) ≫ ((whiskeringObj C D Y✝).obj A).hom =
((whiskeringObj C D X✝).obj A).hom ≫ (𝟭 (CosimplicialObject D)).map (whiskerLeft (drop.obj A) η)
[PROOFSTEP]
ext n
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
A : Augmented C
n : SimplexCategory
⊢ NatTrans.app ((const D).map (NatTrans.app η (point.obj A)) ≫ ((whiskeringObj C D Y✝).obj A).hom) n =
NatTrans.app (((whiskeringObj C D X✝).obj A).hom ≫ (𝟭 (CosimplicialObject D)).map (whiskerLeft (drop.obj A) η)) n
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
A : Augmented C
n : SimplexCategory
⊢ NatTrans.app η A.left ≫ 𝟙 (Y✝.obj A.left) ≫ Y✝.map (NatTrans.app A.hom n) =
(𝟙 (X✝.obj A.left) ≫ X✝.map (NatTrans.app A.hom n)) ≫ NatTrans.app η (A.right.obj n)
[PROOFSTEP]
rw [Category.id_comp, Category.id_comp, η.naturality]
[GOAL]
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
x✝¹ x✝ : Augmented C
f : x✝¹ ⟶ x✝
⊢ (whiskeringObj C D X✝).map f ≫
(fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝ =
(fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝¹ ≫
(whiskeringObj C D Y✝).map f
[PROOFSTEP]
ext
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
x✝¹ x✝ : Augmented C
f : x✝¹ ⟶ x✝
⊢ ((whiskeringObj C D X✝).map f ≫
(fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝).left =
((fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝¹ ≫
(whiskeringObj C D Y✝).map f).left
[PROOFSTEP]
dsimp
[GOAL]
case h₂.h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
x✝¹ x✝ : Augmented C
f : x✝¹ ⟶ x✝
n✝ : SimplexCategory
⊢ NatTrans.app
((whiskeringObj C D X✝).map f ≫
(fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝).right
n✝ =
NatTrans.app
((fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝¹ ≫
(whiskeringObj C D Y✝).map f).right
n✝
[PROOFSTEP]
dsimp
[GOAL]
case h₁
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
x✝¹ x✝ : Augmented C
f : x✝¹ ⟶ x✝
⊢ X✝.map f.left ≫ NatTrans.app η x✝.left = NatTrans.app η x✝¹.left ≫ Y✝.map f.left
[PROOFSTEP]
simp
[GOAL]
case h₂.h
C : Type u
inst✝¹ : Category.{v, u} C
X : CosimplicialObject C
D : Type u'
inst✝ : Category.{v', u'} D
X✝ Y✝ : C ⥤ D
η : X✝ ⟶ Y✝
x✝¹ x✝ : Augmented C
f : x✝¹ ⟶ x✝
n✝ : SimplexCategory
⊢ X✝.map (NatTrans.app f.right n✝) ≫ NatTrans.app η (x✝.right.obj n✝) =
NatTrans.app η (x✝¹.right.obj n✝) ≫ Y✝.map (NatTrans.app f.right n✝)
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : CosimplicialObject C
X₀ : C
f : X₀ ⟶ X.obj [0]
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂
⊢ ∀ ⦃X_1 Y : SimplexCategory⦄ (f_1 : X_1 ⟶ Y),
((const C).obj X₀).map f_1 ≫ (fun i => f ≫ X.map (SimplexCategory.const i 0)) Y =
(fun i => f ≫ X.map (SimplexCategory.const i 0)) X_1 ≫ ((𝟭 (CosimplicialObject C)).obj X).map f_1
[PROOFSTEP]
intro i j g
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : CosimplicialObject C
X₀ : C
f : X₀ ⟶ X.obj [0]
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂
i j : SimplexCategory
g : i ⟶ j
⊢ ((const C).obj X₀).map g ≫ (fun i => f ≫ X.map (SimplexCategory.const i 0)) j =
(fun i => f ≫ X.map (SimplexCategory.const i 0)) i ≫ ((𝟭 (CosimplicialObject C)).obj X).map g
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : CosimplicialObject C
X₀ : C
f : X₀ ⟶ X.obj [0]
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂
i j : SimplexCategory
g : i ⟶ j
⊢ 𝟙 X₀ ≫ f ≫ X.map (SimplexCategory.const j 0) = (f ≫ X.map (SimplexCategory.const i 0)) ≫ X.map g
[PROOFSTEP]
simpa [← X.map_comp] using w _ _ _
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : CosimplicialObject C
X₀ : C
f : X₀ ⟶ X.obj [0]
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂
⊢ NatTrans.app (augment X X₀ f w).hom [0] = f
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ X : CosimplicialObject C
X₀ : C
f : X₀ ⟶ X.obj [0]
w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂
⊢ f ≫ X.map (SimplexCategory.const [0] 0) = f
[PROOFSTEP]
rw [SimplexCategory.hom_zero_zero ([0].const 0), X.map_id, Category.comp_id]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Augmented C
⊢ (CosimplicialObject.Augmented.leftOp (rightOp X)).right = X.right
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X : Augmented Cᵒᵖ
⊢ (SimplicialObject.Augmented.rightOp (leftOp X)).left = X.left
[PROOFSTEP]
simp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
⊢ (CosimplicialObject.const Cᵒᵖ).map f.unop.right.op ≫ ((fun X => SimplicialObject.Augmented.rightOp X.unop) Y✝).hom =
((fun X => SimplicialObject.Augmented.rightOp X.unop) X✝).hom ≫
(𝟭 (CosimplicialObject Cᵒᵖ)).map (NatTrans.rightOp f.unop.left)
[PROOFSTEP]
ext x
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategory
⊢ NatTrans.app
((CosimplicialObject.const Cᵒᵖ).map f.unop.right.op ≫
((fun X => SimplicialObject.Augmented.rightOp X.unop) Y✝).hom)
x =
NatTrans.app
(((fun X => SimplicialObject.Augmented.rightOp X.unop) X✝).hom ≫
(𝟭 (CosimplicialObject Cᵒᵖ)).map (NatTrans.rightOp f.unop.left))
x
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategory
⊢ f.unop.right.op ≫ (NatTrans.app Y✝.unop.hom (op x)).op =
(NatTrans.app X✝.unop.hom (op x)).op ≫ (NatTrans.app f.unop.left (op x)).op
[PROOFSTEP]
simp_rw [← op_comp]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategory
⊢ (NatTrans.app Y✝.unop.hom (op x) ≫ f.unop.right).op =
(NatTrans.app f.unop.left (op x) ≫ NatTrans.app X✝.unop.hom (op x)).op
[PROOFSTEP]
congr 1
[GOAL]
case h.e_f
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategory
⊢ NatTrans.app Y✝.unop.hom (op x) ≫ f.unop.right = NatTrans.app f.unop.left (op x) ≫ NatTrans.app X✝.unop.hom (op x)
[PROOFSTEP]
exact (congr_app f.unop.w (op x)).symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ
f : X✝ ⟶ Y✝
⊢ (𝟭 (SimplicialObject C)).map (NatTrans.leftOp f.right) ≫ (CosimplicialObject.Augmented.leftOp X✝).hom =
(CosimplicialObject.Augmented.leftOp Y✝).hom ≫ (SimplicialObject.const C).map f.left.unop
[PROOFSTEP]
ext x
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategoryᵒᵖ
⊢ NatTrans.app ((𝟭 (SimplicialObject C)).map (NatTrans.leftOp f.right) ≫ (CosimplicialObject.Augmented.leftOp X✝).hom)
x =
NatTrans.app ((CosimplicialObject.Augmented.leftOp Y✝).hom ≫ (SimplicialObject.const C).map f.left.unop) x
[PROOFSTEP]
dsimp
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategoryᵒᵖ
⊢ (NatTrans.app f.right x.unop).unop ≫ (NatTrans.app X✝.hom x.unop).unop =
(NatTrans.app Y✝.hom x.unop).unop ≫ f.left.unop
[PROOFSTEP]
simp_rw [← unop_comp]
[GOAL]
case h
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategoryᵒᵖ
⊢ (NatTrans.app X✝.hom x.unop ≫ NatTrans.app f.right x.unop).unop = (f.left ≫ NatTrans.app Y✝.hom x.unop).unop
[PROOFSTEP]
congr 1
[GOAL]
case h.e_f
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ
f : X✝ ⟶ Y✝
x : SimplexCategoryᵒᵖ
⊢ NatTrans.app X✝.hom x.unop ≫ NatTrans.app f.right x.unop = f.left ≫ NatTrans.app Y✝.hom x.unop
[PROOFSTEP]
exact (congr_app f.w (unop x)).symm
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
⊢ (𝟭 (SimplicialObject.Augmented C)ᵒᵖ).map f ≫
((fun X => Iso.op (SimplicialObject.Augmented.rightOpLeftOpIso X.unop)) Y✝).hom =
((fun X => Iso.op (SimplicialObject.Augmented.rightOpLeftOpIso X.unop)) X✝).hom ≫
(simplicialToCosimplicialAugmented C ⋙ cosimplicialToSimplicialAugmented C).map f
[PROOFSTEP]
dsimp
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
⊢ f ≫ (SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom.op =
(SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom.op ≫
(CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.left)) f.unop.right).op
[PROOFSTEP]
rw [← f.op_unop]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
⊢ f.unop.op ≫ (SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom.op =
(SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom.op ≫
(CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.op.unop.left)) f.unop.op.unop.right).op
[PROOFSTEP]
simp_rw [← op_comp]
[GOAL]
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
⊢ ((SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom ≫ f.unop).op =
(CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.op.unop.left)) f.unop.op.unop.right ≫
(SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom).op
[PROOFSTEP]
congr 1
[GOAL]
case e_f
C : Type u
inst✝ : Category.{v, u} C
X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ
f : X✝ ⟶ Y✝
⊢ (SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom ≫ f.unop =
CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.op.unop.left)) f.unop.op.unop.right ≫
(SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.AlgebraicTopology.SimplicialObject", "llama_tokens": 23094} |
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : IndepSet t t
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
rw [IndepSet_iff] at h_indep
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
specialize
h_indep t t (measurableSet_generateFrom (Set.mem_singleton t)) (measurableSet_generateFrom (Set.mem_singleton t))
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
by_cases h0 : μ t = 0
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t
h0 : ↑↑μ t = 0
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
exact Or.inl h0
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t
h0 : ¬↑↑μ t = 0
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
by_cases h_top : μ t = ∞
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t
h0 : ¬↑↑μ t = 0
h_top : ↑↑μ t = ⊤
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
exact Or.inr (Or.inr h_top)
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t
h0 : ¬↑↑μ t = 0
h_top : ¬↑↑μ t = ⊤
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
rw [← one_mul (μ (t ∩ t)), Set.inter_self, ENNReal.mul_eq_mul_right h0 h_top] at h_indep
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
t : Set Ω
h_indep : 1 = ↑↑μ t
h0 : ¬↑↑μ t = 0
h_top : ¬↑↑μ t = ⊤
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
[PROOFSTEP]
exact Or.inr (Or.inl h_indep.symm)
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
t : Set Ω
h_indep : IndepSet t t
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1
[PROOFSTEP]
have h_0_1_top := measure_eq_zero_or_one_or_top_of_indepSet_self h_indep
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
t : Set Ω
h_indep : IndepSet t t
h_0_1_top : ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤
⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1
[PROOFSTEP]
simpa [measure_ne_top μ] using h_0_1_top
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
t : Set ι
ht : p t
⊢ Indep (⨆ (n : ι) (_ : n ∈ t), s n) (limsup s f)
[PROOFSTEP]
refine' indep_of_indep_of_le_right (indep_biSup_compl h_le h_indep t) _
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
t : Set ι
ht : p t
⊢ limsup s f ≤ ⨆ (n : ι) (_ : n ∈ tᶜ), s n
[PROOFSTEP]
refine' limsSup_le_of_le (by isBoundedDefault) _
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
t : Set ι
ht : p t
⊢ IsCobounded (fun x x_1 => x ≤ x_1) (map s f)
[PROOFSTEP]
isBoundedDefault
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
t : Set ι
ht : p t
⊢ ∀ᶠ (n : MeasurableSpace Ω) in map s f, n ≤ ⨆ (n : ι) (_ : n ∈ tᶜ), s n
[PROOFSTEP]
simp only [Set.mem_compl_iff, eventually_map]
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
t : Set ι
ht : p t
⊢ ∀ᶠ (a : ι) in f, s a ≤ ⨆ (n : ι) (_ : ¬n ∈ t), s n
[PROOFSTEP]
exact eventually_of_mem (hf t ht) le_iSup₂
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
⊢ Indep (⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n) (limsup s f)
[PROOFSTEP]
refine' indep_iSup_of_directed_le _ _ _ _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
⊢ ∀ (i : α), Indep (⨆ (n : ι) (_ : n ∈ ns i), s n) (limsup s f)
[PROOFSTEP]
exact fun a => indep_biSup_limsup h_le h_indep hf (hnsp a)
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
⊢ ∀ (i : α), ⨆ (n : ι) (_ : n ∈ ns i), s n ≤ m0
[PROOFSTEP]
exact fun a => iSup₂_le fun n _ => h_le n
[GOAL]
case refine'_3
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
⊢ limsup s f ≤ m0
[PROOFSTEP]
exact limsup_le_iSup.trans (iSup_le h_le)
[GOAL]
case refine'_4
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n
[PROOFSTEP]
intro a b
[GOAL]
case refine'_4
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
a b : α
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) a) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z) ∧
(fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) b) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z)
[PROOFSTEP]
obtain ⟨c, hc⟩ := hns a b
[GOAL]
case refine'_4.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
a b c : α
hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c)
⊢ ∃ z,
(fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) a) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z) ∧
(fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) b) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z)
[PROOFSTEP]
refine' ⟨c, _, _⟩
[GOAL]
case refine'_4.intro.refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
a b c : α
hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c)
⊢ (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) a) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) c)
[PROOFSTEP]
refine' iSup_mono fun n => iSup_mono' fun hn => ⟨_, le_rfl⟩
[GOAL]
case refine'_4.intro.refine'_2
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
a b c : α
hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c)
⊢ (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) b) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) c)
[PROOFSTEP]
refine' iSup_mono fun n => iSup_mono' fun hn => ⟨_, le_rfl⟩
[GOAL]
case refine'_4.intro.refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
a b c : α
hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c)
n : ι
hn : n ∈ ns a
⊢ n ∈ ns c
[PROOFSTEP]
exact hc.1 hn
[GOAL]
case refine'_4.intro.refine'_2
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
a b c : α
hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c)
n : ι
hn : n ∈ ns b
⊢ n ∈ ns c
[PROOFSTEP]
exact hc.2 hn
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
⊢ Indep (⨆ (n : ι), s n) (limsup s f)
[PROOFSTEP]
suffices (⨆ a, ⨆ n ∈ ns a, s n) = ⨆ n, s n by
rw [← this]
exact indep_iSup_directed_limsup h_le h_indep hf hns hnsp
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
this : ⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n = ⨆ (n : ι), s n
⊢ Indep (⨆ (n : ι), s n) (limsup s f)
[PROOFSTEP]
rw [← this]
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
this : ⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n = ⨆ (n : ι), s n
⊢ Indep (⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n) (limsup s f)
[PROOFSTEP]
exact indep_iSup_directed_limsup h_le h_indep hf hns hnsp
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
⊢ ⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n = ⨆ (n : ι), s n
[PROOFSTEP]
rw [iSup_comm]
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
⊢ ⨆ (j : ι) (i : α) (_ : j ∈ ns i), s j = ⨆ (n : ι), s n
[PROOFSTEP]
refine' iSup_congr fun n => _
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
n : ι
⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = s n
[PROOFSTEP]
have h : ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ _ : ∃ i, n ∈ ns i, s n := by rw [iSup_exists]
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
n : ι
⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ (_ : ∃ i, n ∈ ns i), s n
[PROOFSTEP]
rw [iSup_exists]
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
n : ι
h : ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ (_ : ∃ i, n ∈ ns i), s n
⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = s n
[PROOFSTEP]
haveI : Nonempty (∃ i : α, n ∈ ns i) := ⟨hns_univ n⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
α : Type u_3
p : Set ι → Prop
f : Filter ι
ns : α → Set ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
hf : ∀ (t : Set ι), p t → tᶜ ∈ f
hns : Directed (fun x x_1 => x ≤ x_1) ns
hnsp : ∀ (a : α), p (ns a)
hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a
n : ι
h : ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ (_ : ∃ i, n ∈ ns i), s n
this : Nonempty (∃ i, n ∈ ns i)
⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = s n
[PROOFSTEP]
rw [h, iSup_const]
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
⊢ Indep (limsup s atTop) (limsup s atTop)
[PROOFSTEP]
let ns : ι → Set ι := Set.Iic
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
⊢ Indep (limsup s atTop) (limsup s atTop)
[PROOFSTEP]
have hnsp : ∀ i, BddAbove (ns i) := fun i => bddAbove_Iic
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
⊢ Indep (limsup s atTop) (limsup s atTop)
[PROOFSTEP]
refine' indep_limsup_self h_le h_indep _ _ hnsp _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
⊢ ∀ (t : Set ι), BddAbove t → tᶜ ∈ atTop
[PROOFSTEP]
simp only [mem_atTop_sets, ge_iff_le, Set.mem_compl_iff, BddAbove, upperBounds, Set.Nonempty]
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
⊢ ∀ (t : Set ι), (∃ x, x ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}) → ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t
[PROOFSTEP]
rintro t ⟨a, ha⟩
[GOAL]
case refine'_1.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}
⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t
[PROOFSTEP]
obtain ⟨b, hb⟩ : ∃ b, a < b := exists_gt a
[GOAL]
case refine'_1.intro.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}
b : ι
hb : a < b
⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t
[PROOFSTEP]
refine' ⟨b, fun c hc hct => _⟩
[GOAL]
case refine'_1.intro.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}
b : ι
hb : a < b
c : ι
hc : b ≤ c
hct : c ∈ t
⊢ False
[PROOFSTEP]
suffices : ∀ i ∈ t, i < c
[GOAL]
case refine'_1.intro.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}
b : ι
hb : a < b
c : ι
hc : b ≤ c
hct : c ∈ t
this : ∀ (i : ι), i ∈ t → i < c
⊢ False
case this
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}
b : ι
hb : a < b
c : ι
hc : b ≤ c
hct : c ∈ t
⊢ ∀ (i : ι), i ∈ t → i < c
[PROOFSTEP]
exact lt_irrefl c (this c hct)
[GOAL]
case this
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}
b : ι
hb : a < b
c : ι
hc : b ≤ c
hct : c ∈ t
⊢ ∀ (i : ι), i ∈ t → i < c
[PROOFSTEP]
exact fun i hi => (ha hi).trans_lt (hb.trans_le hc)
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ns a
[PROOFSTEP]
exact Monotone.directed_le fun i j hij k hki => le_trans hki hij
[GOAL]
case refine'_3
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeSup ι
inst✝¹ : NoMaxOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Iic
hnsp : ∀ (i : ι), BddAbove (ns i)
⊢ ∀ (n : ι), ∃ a, n ∈ ns a
[PROOFSTEP]
exact fun n => ⟨n, le_rfl⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
⊢ Indep (limsup s atBot) (limsup s atBot)
[PROOFSTEP]
let ns : ι → Set ι := Set.Ici
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
⊢ Indep (limsup s atBot) (limsup s atBot)
[PROOFSTEP]
have hnsp : ∀ i, BddBelow (ns i) := fun i => bddBelow_Ici
[GOAL]
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
⊢ Indep (limsup s atBot) (limsup s atBot)
[PROOFSTEP]
refine' indep_limsup_self h_le h_indep _ _ hnsp _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
⊢ ∀ (t : Set ι), BddBelow t → tᶜ ∈ atBot
[PROOFSTEP]
simp only [mem_atBot_sets, ge_iff_le, Set.mem_compl_iff, BddBelow, lowerBounds, Set.Nonempty]
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
⊢ ∀ (t : Set ι), (∃ x, x ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}) → ∃ a, ∀ (b : ι), b ≤ a → ¬b ∈ t
[PROOFSTEP]
rintro t ⟨a, ha⟩
[GOAL]
case refine'_1.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}
⊢ ∃ a, ∀ (b : ι), b ≤ a → ¬b ∈ t
[PROOFSTEP]
obtain ⟨b, hb⟩ : ∃ b, b < a := exists_lt a
[GOAL]
case refine'_1.intro.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}
b : ι
hb : b < a
⊢ ∃ a, ∀ (b : ι), b ≤ a → ¬b ∈ t
[PROOFSTEP]
refine' ⟨b, fun c hc hct => _⟩
[GOAL]
case refine'_1.intro.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}
b : ι
hb : b < a
c : ι
hc : c ≤ b
hct : c ∈ t
⊢ False
[PROOFSTEP]
suffices : ∀ i ∈ t, c < i
[GOAL]
case refine'_1.intro.intro
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}
b : ι
hb : b < a
c : ι
hc : c ≤ b
hct : c ∈ t
this : ∀ (i : ι), i ∈ t → c < i
⊢ False
case this
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}
b : ι
hb : b < a
c : ι
hc : c ≤ b
hct : c ∈ t
⊢ ∀ (i : ι), i ∈ t → c < i
[PROOFSTEP]
exact lt_irrefl c (this c hct)
[GOAL]
case this
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
t : Set ι
a : ι
ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}
b : ι
hb : b < a
c : ι
hc : c ≤ b
hct : c ∈ t
⊢ ∀ (i : ι), i ∈ t → c < i
[PROOFSTEP]
exact fun i hi => hc.trans_lt (hb.trans_le (ha hi))
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ns a
[PROOFSTEP]
exact directed_of_inf fun i j hij k hki => hij.trans hki
[GOAL]
case refine'_3
Ω : Type u_1
ι : Type u_2
m m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : IsProbabilityMeasure μ
s : ι → MeasurableSpace Ω
inst✝² : SemilatticeInf ι
inst✝¹ : NoMinOrder ι
inst✝ : Nonempty ι
h_le : ∀ (n : ι), s n ≤ m0
h_indep : iIndep s
ns : ι → Set ι := Set.Ici
hnsp : ∀ (i : ι), BddBelow (ns i)
⊢ ∀ (n : ι), ∃ a, n ∈ ns a
[PROOFSTEP]
exact fun n => ⟨n, le_rfl⟩
| {"mathlib_filename": "Mathlib.Probability.Independence.ZeroOne", "llama_tokens": 14731} |
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁷ : TopologicalSpace Ω
inst✝⁶ : MeasurableSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : BorelSpace Ω
inst✝³ : Nonempty Ω
inst✝² : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
inst✝ : MeasurableSpace β
⊢ IsMarkovKernel (condDistrib Y X μ)
[PROOFSTEP]
rw [condDistrib]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁷ : TopologicalSpace Ω
inst✝⁶ : MeasurableSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : BorelSpace Ω
inst✝³ : Nonempty Ω
inst✝² : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
inst✝ : MeasurableSpace β
⊢ IsMarkovKernel (Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hY : AEMeasurable Y
hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ)
⊢ ((∀ᵐ (a : β) ∂Measure.map X μ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(condDistrib Y X μ) a) ↔
Integrable f
[PROOFSTEP]
rw [condDistrib, ← hf.ae_integrable_condKernel_iff, Measure.fst_map_prod_mk₀ hY]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hY : AEMeasurable Y
hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ)
⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(condDistrib Y X μ) x) (Measure.map X μ)
[PROOFSTEP]
rw [← Measure.fst_map_prod_mk₀ hY, condDistrib]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hY : AEMeasurable Y
hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ)
⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) x)
(Measure.fst (Measure.map (fun a => (X a, Y a)) μ))
[PROOFSTEP]
exact hf.integral_condKernel
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : AEMeasurable X
hs : MeasurableSet s
⊢ Integrable fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)
[PROOFSTEP]
refine' integrable_toReal_of_lintegral_ne_top _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : AEMeasurable X
hs : MeasurableSet s
⊢ AEMeasurable fun a => ↑↑(↑(condDistrib Y X μ) (X a)) s
[PROOFSTEP]
exact Measurable.comp_aemeasurable (kernel.measurable_coe _ hs) hX
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : AEMeasurable X
hs : MeasurableSet s
⊢ ∫⁻ (x : α), ↑↑(↑(condDistrib Y X μ) (X x)) s ∂μ ≠ ⊤
[PROOFSTEP]
refine' ne_of_lt _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : AEMeasurable X
hs : MeasurableSet s
⊢ ∫⁻ (x : α), ↑↑(↑(condDistrib Y X μ) (X x)) s ∂μ < ⊤
[PROOFSTEP]
calc
∫⁻ a, condDistrib Y X μ (X a) s ∂μ ≤ ∫⁻ _, 1 ∂μ := lintegral_mono fun a => prob_le_one
_ = μ univ := lintegral_one
_ < ∞ := measure_lt_top _ _
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hY : AEMeasurable Y
hf_int : Integrable f
⊢ ∀ᵐ (b : β) ∂Measure.map X μ, Integrable fun ω => f (b, ω)
[PROOFSTEP]
rw [condDistrib, ← Measure.fst_map_prod_mk₀ (X := X) hY]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hY : AEMeasurable Y
hf_int : Integrable f
⊢ ∀ᵐ (b : β) ∂Measure.fst (Measure.map (fun a => (X a, Y a)) μ), Integrable fun ω => f (b, ω)
[PROOFSTEP]
exact hf_int.condKernel_ae
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hY : AEMeasurable Y
hf_int : Integrable f
⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(condDistrib Y X μ) x
[PROOFSTEP]
rw [condDistrib, ← Measure.fst_map_prod_mk₀ (X := X) hY]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hY : AEMeasurable Y
hf_int : Integrable f
⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) x
[PROOFSTEP]
exact hf_int.integral_norm_condKernel
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hY : AEMeasurable Y
hf_int : Integrable f
⊢ Integrable fun x => ‖∫ (y : Ω), f (x, y) ∂↑(condDistrib Y X μ) x‖
[PROOFSTEP]
rw [condDistrib, ← Measure.fst_map_prod_mk₀ (X := X) hY]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hY : AEMeasurable Y
hf_int : Integrable f
⊢ Integrable fun x => ‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) x‖
[PROOFSTEP]
exact hf_int.norm_integral_condKernel
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ = ↑↑μ (X ⁻¹' t ∩ Y ⁻¹' s)
[PROOFSTEP]
conv_lhs => arg 2; change (fun a => ((condDistrib Y X μ) a) s) ∘ X
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
ht : MeasurableSet t
| ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ
[PROOFSTEP]
arg 2; change (fun a => ((condDistrib Y X μ) a) s) ∘ X
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
ht : MeasurableSet t
| ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ
[PROOFSTEP]
arg 2; change (fun a => ((condDistrib Y X μ) a) s) ∘ X
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
ht : MeasurableSet t
| ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ
[PROOFSTEP]
arg 2
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
ht : MeasurableSet t
| fun a => ↑↑(↑(condDistrib Y X μ) (X a)) s
[PROOFSTEP]
change (fun a => ((condDistrib Y X μ) a) s) ∘ X
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
ht : MeasurableSet t
⊢ lintegral (Measure.restrict μ (X ⁻¹' t)) ((fun a => ↑↑(↑(condDistrib Y X μ) a) s) ∘ X) = ↑↑μ (X ⁻¹' t ∩ Y ⁻¹' s)
[PROOFSTEP]
rw [lintegral_comp (kernel.measurable_coe _ hs) hX, condDistrib, ← Measure.restrict_map hX ht, ←
Measure.fst_map_prod_mk₀ hY, set_lintegral_condKernel_eq_measure_prod _ ht hs,
Measure.map_apply_of_aemeasurable (hX.aemeasurable.prod_mk hY) (ht.prod hs), mk_preimage_prod]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
t : Set α
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ = ↑↑μ (t ∩ Y ⁻¹' s)
[PROOFSTEP]
obtain ⟨t', ht', rfl⟩ := ht
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : AEMeasurable Y
hs : MeasurableSet s
t' : Set β
ht' : MeasurableSet t'
⊢ ∫⁻ (a : α) in X ⁻¹' t', ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ = ↑↑μ (X ⁻¹' t' ∩ Y ⁻¹' s)
[PROOFSTEP]
rw [set_lintegral_preimage_condDistrib hX hY hs ht']
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
⊢ (fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)) =ᵐ[μ]
μ[indicator (Y ⁻¹' s) fun ω => 1|MeasurableSpace.comap X mβ]
[PROOFSTEP]
refine' ae_eq_condexp_of_forall_set_integral_eq hX.comap_le _ _ _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
⊢ Integrable (indicator (Y ⁻¹' s) fun ω => 1)
[PROOFSTEP]
exact (integrable_const _).indicator (hY hs)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
⊢ ∀ (s_1 : Set α),
MeasurableSet s_1 → ↑↑μ s_1 < ⊤ → IntegrableOn (fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)) s_1
[PROOFSTEP]
exact fun t _ _ => (integrable_toReal_condDistrib hX.aemeasurable hs).integrableOn
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
⊢ ∀ (s_1 : Set α),
MeasurableSet s_1 →
↑↑μ s_1 < ⊤ →
∫ (x : α) in s_1, ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X x)) s) ∂μ =
∫ (x : α) in s_1, indicator (Y ⁻¹' s) (fun ω => 1) x ∂μ
[PROOFSTEP]
intro t ht _
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
t : Set α
ht : MeasurableSet t
a✝ : ↑↑μ t < ⊤
⊢ ∫ (x : α) in t, ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X x)) s) ∂μ =
∫ (x : α) in t, indicator (Y ⁻¹' s) (fun ω => 1) x ∂μ
[PROOFSTEP]
rw [integral_toReal ((measurable_condDistrib hs).mono hX.comap_le le_rfl).aemeasurable
(eventually_of_forall fun ω => measure_lt_top (condDistrib Y X μ (X ω)) _),
integral_indicator_const _ (hY hs), Measure.restrict_apply (hY hs), smul_eq_mul, mul_one, inter_comm,
set_lintegral_condDistrib_of_measurableSet hX hY.aemeasurable hs ht]
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
⊢ AEStronglyMeasurable' (MeasurableSpace.comap X mβ) (fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)) μ
[PROOFSTEP]
refine' (Measurable.stronglyMeasurable _).aeStronglyMeasurable'
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝ : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
hX : Measurable X
hY : Measurable Y
hs : MeasurableSet s
⊢ Measurable fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)
[PROOFSTEP]
exact @Measurable.ennreal_toReal _ (mβ.comap X) _ (measurable_condDistrib hs)
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
⊢ μ[fun a => f (X a, Y a)|MeasurableSpace.comap X mβ] =ᵐ[μ] fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a)
[PROOFSTEP]
have hf_int' : Integrable (fun a => f (X a, Y a)) μ :=
(integrable_map_measure hf_int.1 (hX.aemeasurable.prod_mk hY)).mp hf_int
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
⊢ μ[fun a => f (X a, Y a)|MeasurableSpace.comap X mβ] =ᵐ[μ] fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a)
[PROOFSTEP]
refine' (ae_eq_condexp_of_forall_set_integral_eq hX.comap_le hf_int' (fun s _ _ => _) _ _).symm
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s✝ : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
s : Set α
x✝¹ : MeasurableSet s
x✝ : ↑↑μ s < ⊤
⊢ IntegrableOn (fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a)) s
[PROOFSTEP]
exact (hf_int.integral_condDistrib hX.aemeasurable hY).integrableOn
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
⊢ ∀ (s : Set α),
MeasurableSet s →
↑↑μ s < ⊤ → ∫ (x : α) in s, ∫ (y : Ω), f (X x, y) ∂↑(condDistrib Y X μ) (X x) ∂μ = ∫ (x : α) in s, f (X x, Y x) ∂μ
[PROOFSTEP]
rintro s ⟨t, ht, rfl⟩ _
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ ∫ (x : α) in X ⁻¹' t, ∫ (y : Ω), f (X x, y) ∂↑(condDistrib Y X μ) (X x) ∂μ = ∫ (x : α) in X ⁻¹' t, f (X x, Y x) ∂μ
[PROOFSTEP]
change ∫ a in X ⁻¹' t, ((fun x' => ∫ y, f (x', y) ∂(condDistrib Y X μ) x') ∘ X) a ∂μ = ∫ a in X ⁻¹' t, f (X a, Y a) ∂μ
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ ∫ (a : α) in X ⁻¹' t, ((fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x') ∘ X) a ∂μ =
∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ
[PROOFSTEP]
simp only [Function.comp_apply]
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ ∫ (a : α) in X ⁻¹' t, ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a) ∂μ = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ
[PROOFSTEP]
rw [← integral_map hX.aemeasurable (f := fun x' => ∫ y, f (x', y) ∂(condDistrib Y X μ) x')]
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ ∫ (y : β), ∫ (y_1 : Ω), f (y, y_1) ∂↑(condDistrib Y X μ) y ∂Measure.map X (Measure.restrict μ (X ⁻¹' t)) =
∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ AEStronglyMeasurable (fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x')
(Measure.map X (Measure.restrict μ (X ⁻¹' t)))
[PROOFSTEP]
swap
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ AEStronglyMeasurable (fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x')
(Measure.map X (Measure.restrict μ (X ⁻¹' t)))
[PROOFSTEP]
rw [← Measure.restrict_map hX ht]
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ AEStronglyMeasurable (fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x') (Measure.restrict (Measure.map X μ) t)
[PROOFSTEP]
exact (hf_int.1.integral_condDistrib_map hY).restrict
[GOAL]
case refine'_2.intro.intro
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t✝ : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
t : Set β
ht : MeasurableSet t
a✝ : ↑↑μ (X ⁻¹' t) < ⊤
⊢ ∫ (y : β), ∫ (y_1 : Ω), f (y, y_1) ∂↑(condDistrib Y X μ) y ∂Measure.map X (Measure.restrict μ (X ⁻¹' t)) =
∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ
[PROOFSTEP]
rw [← Measure.restrict_map hX ht, ← Measure.fst_map_prod_mk₀ hY, condDistrib,
set_integral_condKernel_univ_right ht hf_int.integrableOn,
set_integral_map (ht.prod MeasurableSet.univ) hf_int.1 (hX.aemeasurable.prod_mk hY), mk_preimage_prod, preimage_univ,
inter_univ]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf_int : Integrable f
hf_int' : Integrable fun a => f (X a, Y a)
⊢ AEStronglyMeasurable' (MeasurableSpace.comap X mβ) (fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a)) μ
[PROOFSTEP]
exact aestronglyMeasurable'_integral_condDistrib hX.aemeasurable hY hf_int.1
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ)
hf_int : Integrable fun a => f (X a, Y a)
⊢ Integrable f
[PROOFSTEP]
rwa [integrable_map_measure hf (hX.aemeasurable.prod_mk hY)]
[GOAL]
α : Type u_1
β : Type u_2
Ω : Type u_3
F : Type u_4
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
inst✝³ : NormedAddCommGroup F
mα : MeasurableSpace α
μ : Measure α
inst✝² : IsFiniteMeasure μ
X : α → β
Y : α → Ω
mβ : MeasurableSpace β
s : Set Ω
t : Set β
f : β × Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hX : Measurable X
hY : AEMeasurable Y
hf : StronglyMeasurable f
hf_int : Integrable fun a => f (X a, Y a)
⊢ Integrable f
[PROOFSTEP]
rwa [integrable_map_measure hf.aestronglyMeasurable (hX.aemeasurable.prod_mk hY)]
[GOAL]
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ)
[PROOFSTEP]
refine' ⟨fun x => hf.mk f x.2, hf.stronglyMeasurable_mk.comp_measurable measurable_snd, _⟩
[GOAL]
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
⊢ (fun x => f x.snd) =ᵐ[Measure.map (fun ω => (X ω, ω)) μ] fun x => AEStronglyMeasurable.mk f hf x.snd
[PROOFSTEP]
suffices h : Measure.QuasiMeasurePreserving Prod.snd (μ.map fun ω => (X ω, ω)) μ
[GOAL]
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
h : Measure.QuasiMeasurePreserving Prod.snd
⊢ (fun x => f x.snd) =ᵐ[Measure.map (fun ω => (X ω, ω)) μ] fun x => AEStronglyMeasurable.mk f hf x.snd
[PROOFSTEP]
exact Measure.QuasiMeasurePreserving.ae_eq h hf.ae_eq_mk
[GOAL]
case h
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
⊢ Measure.QuasiMeasurePreserving Prod.snd
[PROOFSTEP]
refine' ⟨measurable_snd, Measure.AbsolutelyContinuous.mk fun s hs hμs => _⟩
[GOAL]
case h
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
⊢ ↑↑(Measure.map Prod.snd (Measure.map (fun ω => (X ω, ω)) μ)) s = 0
[PROOFSTEP]
rw [Measure.map_apply _ hs]
[GOAL]
case h
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
⊢ Measurable Prod.snd
[PROOFSTEP]
swap
[GOAL]
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
⊢ Measurable Prod.snd
[PROOFSTEP]
exact measurable_snd
[GOAL]
case h
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0
[PROOFSTEP]
by_cases hX : AEMeasurable X μ
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : AEMeasurable X
⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0
[PROOFSTEP]
rw [Measure.map_apply_of_aemeasurable]
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : AEMeasurable X
⊢ ↑↑μ ((fun ω => (X ω, ω)) ⁻¹' (Prod.snd ⁻¹' s)) = 0
[PROOFSTEP]
rw [← univ_prod, mk_preimage_prod, preimage_univ, univ_inter, preimage_id']
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : AEMeasurable X
⊢ ↑↑μ s = 0
[PROOFSTEP]
exact hμs
[GOAL]
case pos.hf
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : AEMeasurable X
⊢ AEMeasurable fun ω => (X ω, ω)
[PROOFSTEP]
exact hX.prod_mk aemeasurable_id
[GOAL]
case pos.hs
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : AEMeasurable X
⊢ MeasurableSet (Prod.snd ⁻¹' s)
[PROOFSTEP]
exact measurable_snd hs
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : ¬AEMeasurable X
⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0
[PROOFSTEP]
rw [Measure.map_of_not_aemeasurable]
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : ¬AEMeasurable X
⊢ ↑↑0 (Prod.snd ⁻¹' s) = 0
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : ¬AEMeasurable X
⊢ ¬AEMeasurable fun ω => (X ω, ω)
[PROOFSTEP]
contrapose! hX
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F✝ : Type u_4
inst✝⁷ : TopologicalSpace Ω✝
inst✝⁶ : MeasurableSpace Ω✝
inst✝⁵ : PolishSpace Ω✝
inst✝⁴ : BorelSpace Ω✝
inst✝³ : Nonempty Ω✝
inst✝² : NormedAddCommGroup F✝
mα : MeasurableSpace α
μ✝ : Measure α
inst✝¹ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s✝ : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F✝
Ω : Type u_5
F : Type u_6
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
inst✝ : TopologicalSpace F
f : Ω → F
hf : AEStronglyMeasurable f μ
s : Set Ω
hs : MeasurableSet s
hμs : ↑↑μ s = 0
hX : AEMeasurable fun ω => (X ω, ω)
⊢ AEMeasurable X
[PROOFSTEP]
exact measurable_fst.comp_aemeasurable hX
[GOAL]
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
by_cases hX : AEMeasurable X μ
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : AEMeasurable X
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
have hf := hf_int.1.comp_snd_map_prod_mk X (mΩ := mΩ) (mβ := mβ)
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : AEMeasurable X
hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ)
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
refine' ⟨hf, _⟩
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : AEMeasurable X
hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ)
⊢ HasFiniteIntegral fun x => f x.snd
[PROOFSTEP]
rw [HasFiniteIntegral, lintegral_map' hf.ennnorm (hX.prod_mk aemeasurable_id)]
[GOAL]
case pos
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : AEMeasurable X
hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ)
⊢ ∫⁻ (a : Ω), ↑‖f (X a, a).snd‖₊ ∂μ < ⊤
[PROOFSTEP]
exact hf_int.2
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : ¬AEMeasurable X
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
rw [Measure.map_of_not_aemeasurable]
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : ¬AEMeasurable X
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : ¬AEMeasurable X
⊢ ¬AEMeasurable fun ω => (X ω, ω)
[PROOFSTEP]
contrapose! hX
[GOAL]
case neg
α : Type u_1
β : Type u_2
Ω✝ : Type u_3
F : Type u_4
inst✝⁶ : TopologicalSpace Ω✝
inst✝⁵ : MeasurableSpace Ω✝
inst✝⁴ : PolishSpace Ω✝
inst✝³ : BorelSpace Ω✝
inst✝² : Nonempty Ω✝
inst✝¹ : NormedAddCommGroup F
mα : MeasurableSpace α
μ✝ : Measure α
inst✝ : IsFiniteMeasure μ✝
X✝ : α → β
Y : α → Ω✝
mβ : MeasurableSpace β
s : Set Ω✝
t : Set β
f✝ : β × Ω✝ → F
Ω : Type u_5
mΩ : MeasurableSpace Ω
X : Ω → β
μ : Measure Ω
f : Ω → F
hf_int : Integrable f
hX : AEMeasurable fun ω => (X ω, ω)
⊢ AEMeasurable X
[PROOFSTEP]
exact measurable_fst.comp_aemeasurable hX
| {"mathlib_filename": "Mathlib.Probability.Kernel.CondDistrib", "llama_tokens": 24704} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
I : Finset ι
κ : ι → { x // x ∈ kernel α β }
a : α
⊢ ↑(∑ i in I, κ i) a = ∑ i in I, ↑(κ i) a
[PROOFSTEP]
rw [coe_finset_sum, Finset.sum_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
I : Finset ι
κ : ι → { x // x ∈ kernel α β }
a : α
s : Set β
⊢ ↑↑(↑(∑ i in I, κ i) a) s = ∑ i in I, ↑↑(↑(κ i) a) s
[PROOFSTEP]
rw [finset_sum_apply, Measure.finset_sum_apply]
[GOAL]
α✝ : Type u_1
β✝ : Type u_2
ι : Type u_3
mα✝ : MeasurableSpace α✝
mβ✝ : MeasurableSpace β✝
α : Type u_4
β : Type u_5
mα : MeasurableSpace α
mβ : MeasurableSpace β
x✝ : α
⊢ ↑↑(↑0 x✝) Set.univ ≤ 0
[PROOFSTEP]
simp only [kernel.zero_apply, Measure.coe_zero, Pi.zero_apply, le_zero_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
inst✝ : IsFiniteKernel η
⊢ IsFiniteKernel (κ + η)
[PROOFSTEP]
refine
⟨⟨IsFiniteKernel.bound κ + IsFiniteKernel.bound η,
ENNReal.add_lt_top.mpr ⟨IsFiniteKernel.bound_lt_top κ, IsFiniteKernel.bound_lt_top η⟩, fun a => ?_⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
inst✝ : IsFiniteKernel η
a : α
⊢ ↑↑(↑(κ + η) a) Set.univ ≤ bound κ + bound η
[PROOFSTEP]
exact add_le_add (kernel.measure_le_bound _ _ _) (kernel.measure_le_bound _ _ _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
⊢ κ = η ↔ ∀ (a : α) (s : Set β), MeasurableSet s → ↑↑(↑κ a) s = ↑↑(↑η a) s
[PROOFSTEP]
simp_rw [ext_iff, Measure.ext_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
h : ∀ (a : α) (f : β → ℝ≥0∞), Measurable f → ∫⁻ (b : β), f b ∂↑κ a = ∫⁻ (b : β), f b ∂↑η a
⊢ κ = η
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
h : ∀ (a : α) (f : β → ℝ≥0∞), Measurable f → ∫⁻ (b : β), f b ∂↑κ a = ∫⁻ (b : β), f b ∂↑η a
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑κ a) s = ↑↑(↑η a) s
[PROOFSTEP]
specialize h a (s.indicator fun _ => 1) (Measurable.indicator measurable_const hs)
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
a : α
s : Set β
hs : MeasurableSet s
h : ∫⁻ (b : β), Set.indicator s (fun x => 1) b ∂↑κ a = ∫⁻ (b : β), Set.indicator s (fun x => 1) b ∂↑η a
⊢ ↑↑(↑κ a) s = ↑↑(↑η a) s
[PROOFSTEP]
simp_rw [lintegral_indicator_const hs, one_mul] at h
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
a : α
s : Set β
hs : MeasurableSet s
h : ↑↑(↑κ a) s = ↑↑(↑η a) s
⊢ ↑↑(↑κ a) s = ↑↑(↑η a) s
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
h : κ = η
a : α
f : β → ℝ≥0∞
x✝ : Measurable f
⊢ ∫⁻ (b : β), f b ∂↑κ a = ∫⁻ (b : β), f b ∂↑η a
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
s : Set β
hs : MeasurableSet s
⊢ Integrable fun x => ENNReal.toReal (↑↑(↑κ x) s)
[PROOFSTEP]
refine'
Integrable.mono' (integrable_const (IsFiniteKernel.bound κ).toReal)
((kernel.measurable_coe κ hs).ennreal_toReal.aestronglyMeasurable) (ae_of_all μ <| fun x => _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
s : Set β
hs : MeasurableSet s
x : α
⊢ ‖ENNReal.toReal (↑↑(↑κ x) s)‖ ≤ ENNReal.toReal (IsFiniteKernel.bound κ)
[PROOFSTEP]
rw [Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg,
ENNReal.toReal_le_toReal (measure_ne_top _ _) (IsFiniteKernel.bound_ne_top _)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
μ : Measure α
inst✝¹ : IsFiniteMeasure μ
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
s : Set β
hs : MeasurableSet s
x : α
⊢ ↑↑(↑κ x) s ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
exact kernel.measure_le_bound _ _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
⊢ (fun a => Measure.sum fun n => ↑(κ n) a) ∈ kernel α β
[PROOFSTEP]
refine' Measure.measurable_of_measurable_coe _ fun s hs => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(Measure.sum fun n => ↑(κ n) b) s
[PROOFSTEP]
simp_rw [Measure.sum_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ∑' (i : ι), ↑↑(↑(κ i) b) s
[PROOFSTEP]
exact Measurable.ennreal_tsum fun n => kernel.measurable_coe (κ n) hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum κ) a) s = ∑' (n : ι), ↑↑(↑(κ n) a) s
[PROOFSTEP]
rw [sum_apply κ a, Measure.sum_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
⊢ (kernel.sum fun x => 0) = 0
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun x => 0) a) s = ↑↑(↑0 a) s
[PROOFSTEP]
rw [sum_apply' _ a hs]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
a : α
s : Set β
hs : MeasurableSet s
⊢ ∑' (n : ι), ↑↑(↑0 a) s = ↑↑(↑0 a) s
[PROOFSTEP]
simp only [zero_apply, Measure.coe_zero, Pi.zero_apply, tsum_zero]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → ι → { x // x ∈ kernel α β }
⊢ (kernel.sum fun n => kernel.sum (κ n)) = kernel.sum fun m => kernel.sum fun n => κ n m
[PROOFSTEP]
ext a s
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → ι → { x // x ∈ kernel α β }
a : α
s : Set β
a✝ : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun n => kernel.sum (κ n)) a) s = ↑↑(↑(kernel.sum fun m => kernel.sum fun n => κ n m) a) s
[PROOFSTEP]
simp_rw [sum_apply]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ : ι → ι → { x // x ∈ kernel α β }
a : α
s : Set β
a✝ : MeasurableSet s
⊢ ↑↑(Measure.sum fun n => Measure.sum fun n_1 => ↑(κ n n_1) a) s =
↑↑(Measure.sum fun n => Measure.sum fun n_1 => ↑(κ n_1 n) a) s
[PROOFSTEP]
rw [Measure.sum_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Fintype ι
κ : ι → { x // x ∈ kernel α β }
⊢ kernel.sum κ = ∑ i : ι, κ i
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Fintype ι
κ : ι → { x // x ∈ kernel α β }
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum κ) a) s = ↑↑(↑(∑ i : ι, κ i) a) s
[PROOFSTEP]
simp only [sum_apply' κ a hs, finset_sum_apply' _ κ a s, tsum_fintype]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ η : ι → { x // x ∈ kernel α β }
⊢ (kernel.sum fun n => κ n + η n) = kernel.sum κ + kernel.sum η
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κ η : ι → { x // x ∈ kernel α β }
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun n => κ n + η n) a) s = ↑↑(↑(kernel.sum κ + kernel.sum η) a) s
[PROOFSTEP]
simp only [coeFn_add, Pi.add_apply, sum_apply, Measure.sum_apply _ hs, Pi.add_apply, Measure.coe_add,
tsum_add ENNReal.summable ENNReal.summable]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
n : ℕ
⊢ IsFiniteKernel ((fun n => if n = 0 then κ else 0) n)
[PROOFSTEP]
simp only
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
n : ℕ
⊢ IsFiniteKernel (if n = 0 then κ else 0)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
n : ℕ
h✝ : n = 0
⊢ IsFiniteKernel κ
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
n : ℕ
h✝ : ¬n = 0
⊢ IsFiniteKernel 0
[PROOFSTEP]
exact h
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
n : ℕ
h✝ : ¬n = 0
⊢ IsFiniteKernel 0
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
⊢ κ = kernel.sum fun n => if n = 0 then κ else 0
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑κ a) s = ↑↑(↑(kernel.sum fun n => if n = 0 then κ else 0) a) s
[PROOFSTEP]
rw [kernel.sum_apply' _ _ hs]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑κ a) s = ∑' (n : ℕ), ↑↑(↑(if n = 0 then κ else 0) a) s
[PROOFSTEP]
have : (fun i => ((ite (i = 0) κ 0) a) s) = fun i => ite (i = 0) (κ a s) 0 := by ext1 i; split_ifs <;> rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
⊢ (fun i => ↑↑(↑(if i = 0 then κ else 0) a) s) = fun i => if i = 0 then ↑↑(↑κ a) s else 0
[PROOFSTEP]
ext1 i
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
i : ℕ
⊢ ↑↑(↑(if i = 0 then κ else 0) a) s = if i = 0 then ↑↑(↑κ a) s else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
i : ℕ
h✝ : i = 0
⊢ ↑↑(↑κ a) s = ↑↑(↑κ a) s
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
i : ℕ
h✝ : ¬i = 0
⊢ ↑↑(↑0 a) s = 0
[PROOFSTEP]
rfl
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
h : IsFiniteKernel κ
a : α
s : Set β
hs : MeasurableSet s
this : (fun i => ↑↑(↑(if i = 0 then κ else 0) a) s) = fun i => if i = 0 then ↑↑(↑κ a) s else 0
⊢ ↑↑(↑κ a) s = ∑' (n : ℕ), ↑↑(↑(if n = 0 then κ else 0) a) s
[PROOFSTEP]
rw [this, tsum_ite_eq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ κ : { x // x ∈ kernel α β }
h : IsSFiniteKernel κ
a : α
⊢ (Measure.sum fun n => ↑(seq κ n) a) = ↑κ a
[PROOFSTEP]
rw [← kernel.sum_apply, kernel_sum_seq κ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
⊢ IsSFiniteKernel (κ + η)
[PROOFSTEP]
refine' ⟨⟨fun n => seq κ n + seq η n, fun n => inferInstance, _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
⊢ κ + η = kernel.sum fun n => seq κ n + seq η n
[PROOFSTEP]
rw [sum_add, kernel_sum_seq κ, kernel_sum_seq η]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I : Finset ι
h : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)
⊢ IsSFiniteKernel (∑ i in I, κs i)
[PROOFSTEP]
classical
induction' I using Finset.induction with i I hi_nmem_I h_ind h
· rw [Finset.sum_empty]; infer_instance
· rw [Finset.sum_insert hi_nmem_I]
haveI : IsSFiniteKernel (κs i) := h i (Finset.mem_insert_self _ _)
have : IsSFiniteKernel (∑ x : ι in I, κs x) := h_ind fun i hiI => h i (Finset.mem_insert_of_mem hiI)
exact IsSFiniteKernel.add _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I : Finset ι
h : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)
⊢ IsSFiniteKernel (∑ i in I, κs i)
[PROOFSTEP]
induction' I using Finset.induction with i I hi_nmem_I h_ind h
[GOAL]
case empty
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I : Finset ι
h✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)
h : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i)
⊢ IsSFiniteKernel (∑ i in ∅, κs i)
[PROOFSTEP]
rw [Finset.sum_empty]
[GOAL]
case empty
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I : Finset ι
h✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)
h : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i)
⊢ IsSFiniteKernel 0
[PROOFSTEP]
infer_instance
[GOAL]
case insert
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I✝ : Finset ι
h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)
i : ι
I : Finset ι
hi_nmem_I : ¬i ∈ I
h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)
h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)
⊢ IsSFiniteKernel (∑ i in insert i I, κs i)
[PROOFSTEP]
rw [Finset.sum_insert hi_nmem_I]
[GOAL]
case insert
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I✝ : Finset ι
h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)
i : ι
I : Finset ι
hi_nmem_I : ¬i ∈ I
h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)
h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)
⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)
[PROOFSTEP]
haveI : IsSFiniteKernel (κs i) := h i (Finset.mem_insert_self _ _)
[GOAL]
case insert
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I✝ : Finset ι
h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)
i : ι
I : Finset ι
hi_nmem_I : ¬i ∈ I
h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)
h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)
this : IsSFiniteKernel (κs i)
⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)
[PROOFSTEP]
have : IsSFiniteKernel (∑ x : ι in I, κs x) := h_ind fun i hiI => h i (Finset.mem_insert_of_mem hiI)
[GOAL]
case insert
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
κs : ι → { x // x ∈ kernel α β }
I✝ : Finset ι
h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i)
i : ι
I : Finset ι
hi_nmem_I : ¬i ∈ I
h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i)
h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1)
this✝ : IsSFiniteKernel (κs i)
this : IsSFiniteKernel (∑ x in I, κs x)
⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x)
[PROOFSTEP]
exact IsSFiniteKernel.add _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
⊢ IsSFiniteKernel (kernel.sum κs)
[PROOFSTEP]
let e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
⊢ IsSFiniteKernel (kernel.sum κs)
[PROOFSTEP]
refine' ⟨⟨fun n => seq (κs (e n).1) (e n).2, inferInstance, _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
⊢ kernel.sum κs = kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd
[PROOFSTEP]
have hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) := by simp_rw [kernel_sum_seq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
⊢ kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n))
[PROOFSTEP]
simp_rw [kernel_sum_seq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n))
⊢ kernel.sum κs = kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n))
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum κs) a) s = ↑↑(↑(kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd) a) s
[PROOFSTEP]
rw [hκ_eq]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n))
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun n => kernel.sum (seq (κs n))) a) s = ↑↑(↑(kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd) a) s
[PROOFSTEP]
simp_rw [kernel.sum_apply' _ _ hs]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n))
a : α
s : Set β
hs : MeasurableSet s
⊢ ∑' (n : ι) (n_1 : ℕ), ↑↑(↑(seq (κs n) n_1) a) s =
∑' (n : ℕ), ↑↑(↑(seq (κs (↑(Denumerable.eqv (ι × ℕ)).symm n).fst) (↑(Denumerable.eqv (ι × ℕ)).symm n).snd) a) s
[PROOFSTEP]
change (∑' i, ∑' m, seq (κs i) m a s) = ∑' n, (fun im : ι × ℕ => seq (κs im.fst) im.snd a s) (e n)
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Denumerable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm
hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n))
a : α
s : Set β
hs : MeasurableSet s
⊢ ∑' (i : ι) (m : ℕ), ↑↑(↑(seq (κs i) m) a) s = ∑' (n : ℕ), (fun im => ↑↑(↑(seq (κs im.fst) im.snd) a) s) (↑e n)
[PROOFSTEP]
rw [e.tsum_eq (fun im : ι × ℕ => seq (κs im.fst) im.snd a s), tsum_prod' ENNReal.summable fun _ => ENNReal.summable]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
⊢ IsSFiniteKernel (kernel.sum κs)
[PROOFSTEP]
cases fintypeOrInfinite ι
[GOAL]
case inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
val✝ : Fintype ι
⊢ IsSFiniteKernel (kernel.sum κs)
[PROOFSTEP]
rw [sum_fintype]
[GOAL]
case inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
val✝ : Fintype ι
⊢ IsSFiniteKernel (∑ i : ι, κs i)
[PROOFSTEP]
exact IsSFiniteKernel.finset_sum Finset.univ fun i _ => hκs i
[GOAL]
case inr
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
val✝ : Infinite ι
⊢ IsSFiniteKernel (kernel.sum κs)
[PROOFSTEP]
cases nonempty_denumerable ι
[GOAL]
case inr.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
inst✝ : Countable ι
κs : ι → { x // x ∈ kernel α β }
hκs : ∀ (n : ι), IsSFiniteKernel (κs n)
val✝¹ : Infinite ι
val✝ : Denumerable ι
⊢ IsSFiniteKernel (kernel.sum κs)
[PROOFSTEP]
exact isSFiniteKernel_sum_of_denumerable hκs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
⊢ (fun a => Measure.dirac (f a)) ∈ kernel α β
[PROOFSTEP]
refine' Measure.measurable_of_measurable_coe _ fun s hs => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(Measure.dirac (f b)) s
[PROOFSTEP]
simp_rw [Measure.dirac_apply' _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => Set.indicator s 1 (f b)
[PROOFSTEP]
exact measurable_one.indicator (hf hs)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(deterministic f hf) a) s = Set.indicator s (fun x => 1) (f a)
[PROOFSTEP]
rw [deterministic]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑{ val := fun a => Measure.dirac (f a), property := (_ : Measurable fun a => Measure.dirac (f a)) } a) s =
Set.indicator s (fun x => 1) (f a)
[PROOFSTEP]
change Measure.dirac (f a) s = s.indicator 1 (f a)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(Measure.dirac (f a)) s = Set.indicator s 1 (f a)
[PROOFSTEP]
simp_rw [Measure.dirac_apply' _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
a : α
⊢ IsProbabilityMeasure (↑(deterministic f hf) a)
[PROOFSTEP]
rw [deterministic_apply hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : α → β
hf : Measurable f
a : α
⊢ IsProbabilityMeasure (Measure.dirac (f a))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : β → ℝ≥0∞
g : α → β
a : α
hg : Measurable g
hf : Measurable f
⊢ ∫⁻ (x : β), f x ∂↑(deterministic g hg) a = f (g a)
[PROOFSTEP]
rw [kernel.deterministic_apply, lintegral_dirac' _ hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : β → ℝ≥0∞
g : α → β
a : α
hg : Measurable g
inst✝ : MeasurableSingletonClass β
⊢ ∫⁻ (x : β), f x ∂↑(deterministic g hg) a = f (g a)
[PROOFSTEP]
rw [kernel.deterministic_apply, lintegral_dirac (g a) f]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : β → ℝ≥0∞
g : α → β
a : α
hg : Measurable g
hf : Measurable f
s : Set β
hs : MeasurableSet s
inst✝ : Decidable (g a ∈ s)
⊢ ∫⁻ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0
[PROOFSTEP]
rw [kernel.deterministic_apply, set_lintegral_dirac' hf hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : β → ℝ≥0∞
g : α → β
a : α
hg : Measurable g
inst✝¹ : MeasurableSingletonClass β
s : Set β
inst✝ : Decidable (g a ∈ s)
⊢ ∫⁻ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0
[PROOFSTEP]
rw [kernel.deterministic_apply, set_lintegral_dirac f s]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
E : Type u_4
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : β → E
g : α → β
a : α
hg : Measurable g
hf : StronglyMeasurable f
⊢ ∫ (x : β), f x ∂↑(deterministic g hg) a = f (g a)
[PROOFSTEP]
rw [kernel.deterministic_apply, integral_dirac' _ _ hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : β → E
g : α → β
a : α
hg : Measurable g
inst✝ : MeasurableSingletonClass β
⊢ ∫ (x : β), f x ∂↑(deterministic g hg) a = f (g a)
[PROOFSTEP]
rw [kernel.deterministic_apply, integral_dirac _ (g a)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : β → E
g : α → β
a : α
hg : Measurable g
hf : StronglyMeasurable f
s : Set β
hs : MeasurableSet s
inst✝ : Decidable (g a ∈ s)
⊢ ∫ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0
[PROOFSTEP]
rw [kernel.deterministic_apply, set_integral_dirac' hf _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : β → E
g : α → β
a : α
hg : Measurable g
inst✝¹ : MeasurableSingletonClass β
s : Set β
inst✝ : Decidable (g a ∈ s)
⊢ ∫ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0
[PROOFSTEP]
rw [kernel.deterministic_apply, set_integral_dirac f _ s]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : β → ℝ≥0∞
μ : Measure β
a : α
⊢ ∫⁻ (x : β), f x ∂↑(const α μ) a = ∫⁻ (x : β), f x ∂μ
[PROOFSTEP]
rw [kernel.const_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f : β → ℝ≥0∞
μ : Measure β
a : α
s : Set β
⊢ ∫⁻ (x : β) in s, f x ∂↑(const α μ) a = ∫⁻ (x : β) in s, f x ∂μ
[PROOFSTEP]
rw [kernel.const_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : β → E
μ : Measure β
a : α
⊢ ∫ (x : β), f x ∂↑(const α μ) a = ∫ (x : β), f x ∂μ
[PROOFSTEP]
rw [kernel.const_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : β → E
μ : Measure β
a : α
s : Set β
⊢ ∫ (x : β) in s, f x ∂↑(const α μ) a = ∫ (x : β) in s, f x ∂μ
[PROOFSTEP]
rw [kernel.const_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
hs : MeasurableSet s
⊢ (fun a => Measure.restrict (↑κ a) s) ∈ kernel α β
[PROOFSTEP]
refine' Measure.measurable_of_measurable_coe _ fun t ht => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t✝ : Set β
κ : { x // x ∈ kernel α β }
hs : MeasurableSet s
t : Set β
ht : MeasurableSet t
⊢ Measurable fun b => ↑↑(Measure.restrict (↑κ b) s) t
[PROOFSTEP]
simp_rw [Measure.restrict_apply ht]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t✝ : Set β
κ : { x // x ∈ kernel α β }
hs : MeasurableSet s
t : Set β
ht : MeasurableSet t
⊢ Measurable fun b => ↑↑(↑κ b) (t ∩ s)
[PROOFSTEP]
exact kernel.measurable_coe κ (ht.inter hs)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
hs : MeasurableSet s
a : α
ht : MeasurableSet t
⊢ ↑↑(↑(kernel.restrict κ hs) a) t = ↑↑(↑κ a) (t ∩ s)
[PROOFSTEP]
rw [restrict_apply κ hs a, Measure.restrict_apply ht]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
s t : Set β
⊢ kernel.restrict κ (_ : MeasurableSet Set.univ) = κ
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
s t : Set β
a : α
⊢ ↑(kernel.restrict κ (_ : MeasurableSet Set.univ)) a = ↑κ a
[PROOFSTEP]
rw [kernel.restrict_apply, Measure.restrict_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
hs : MeasurableSet s
a : α
f : β → ℝ≥0∞
⊢ ∫⁻ (b : β), f b ∂↑(kernel.restrict κ hs) a = ∫⁻ (b : β) in s, f b ∂↑κ a
[PROOFSTEP]
rw [restrict_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t✝ : Set β
κ : { x // x ∈ kernel α β }
hs : MeasurableSet s
a : α
f : β → ℝ≥0∞
t : Set β
⊢ ∫⁻ (b : β) in t, f b ∂↑(kernel.restrict κ hs) a = ∫⁻ (b : β) in t ∩ s, f b ∂↑κ a
[PROOFSTEP]
rw [restrict_apply, Measure.restrict_restrict' hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
s t✝ : Set β
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
f : β → E
a : α
hs : MeasurableSet s
t : Set β
⊢ ∫ (x : β) in t, f x ∂↑(kernel.restrict κ hs) a = ∫ (x : β) in t ∩ s, f x ∂↑κ a
[PROOFSTEP]
rw [restrict_apply, Measure.restrict_restrict' hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hs : MeasurableSet s
⊢ IsFiniteKernel (kernel.restrict κ hs)
[PROOFSTEP]
refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hs : MeasurableSet s
a : α
⊢ ↑↑(↑(kernel.restrict κ hs) a) Set.univ ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
rw [restrict_apply' κ hs a MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hs : MeasurableSet s
a : α
⊢ ↑↑(↑κ a) (Set.univ ∩ s) ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
exact measure_le_bound κ a _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hs : MeasurableSet s
⊢ IsSFiniteKernel (kernel.restrict κ hs)
[PROOFSTEP]
refine' ⟨⟨fun n => kernel.restrict (seq κ n) hs, inferInstance, _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hs : MeasurableSet s
⊢ kernel.restrict κ hs = kernel.sum fun n => kernel.restrict (seq κ n) hs
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
s t : Set β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hs : MeasurableSet s
a : α
⊢ ↑(kernel.restrict κ hs) a = ↑(kernel.sum fun n => kernel.restrict (seq κ n) hs) a
[PROOFSTEP]
simp_rw [sum_apply, restrict_apply, ← Measure.restrict_sum _ hs, ← sum_apply, kernel_sum_seq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
⊢ (fun a => Measure.comap f (↑κ a)) ∈ kernel α γ
[PROOFSTEP]
refine' Measure.measurable_measure.mpr fun t ht => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
t : Set γ
ht : MeasurableSet t
⊢ Measurable fun b => ↑↑(Measure.comap f (↑κ b)) t
[PROOFSTEP]
have : (fun a => Measure.comap f (κ a) t) = fun a => κ a (f '' t) :=
by
ext1 a
rw [Measure.comap_apply _ hf.injective _ _ ht]
exact fun s' hs' ↦ hf.measurableSet_image.mpr hs'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
t : Set γ
ht : MeasurableSet t
⊢ (fun a => ↑↑(Measure.comap f (↑κ a)) t) = fun a => ↑↑(↑κ a) (f '' t)
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
t : Set γ
ht : MeasurableSet t
a : α
⊢ ↑↑(Measure.comap f (↑κ a)) t = ↑↑(↑κ a) (f '' t)
[PROOFSTEP]
rw [Measure.comap_apply _ hf.injective _ _ ht]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
t : Set γ
ht : MeasurableSet t
a : α
⊢ ∀ (s : Set γ), MeasurableSet s → MeasurableSet (f '' s)
[PROOFSTEP]
exact fun s' hs' ↦ hf.measurableSet_image.mpr hs'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
t : Set γ
ht : MeasurableSet t
this : (fun a => ↑↑(Measure.comap f (↑κ a)) t) = fun a => ↑↑(↑κ a) (f '' t)
⊢ Measurable fun b => ↑↑(Measure.comap f (↑κ b)) t
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
t : Set γ
ht : MeasurableSet t
this : (fun a => ↑↑(Measure.comap f (↑κ a)) t) = fun a => ↑↑(↑κ a) (f '' t)
⊢ Measurable fun a => ↑↑(↑κ a) (f '' t)
[PROOFSTEP]
exact kernel.measurable_coe _ (hf.measurableSet_image.mpr ht)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
a : α
t : Set γ
ht : MeasurableSet t
⊢ ↑↑(↑(comapRight κ hf) a) t = ↑↑(↑κ a) (f '' t)
[PROOFSTEP]
rw [comapRight_apply, Measure.comap_apply _ hf.injective (fun s => hf.measurableSet_image.mpr) _ ht]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1
⊢ IsMarkovKernel (kernel.comapRight κ hf)
[PROOFSTEP]
refine' ⟨fun a => ⟨_⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1
a : α
⊢ ↑↑(↑(kernel.comapRight κ hf) a) Set.univ = 1
[PROOFSTEP]
rw [comapRight_apply' κ hf a MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1
a : α
⊢ ↑↑(↑κ a) (f '' Set.univ) = 1
[PROOFSTEP]
simp only [Set.image_univ, Subtype.range_coe_subtype, Set.setOf_mem_eq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
hf : MeasurableEmbedding f
hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1
a : α
⊢ ↑↑(↑κ a) (Set.range f) = 1
[PROOFSTEP]
exact hκ a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf : MeasurableEmbedding f
⊢ IsFiniteKernel (kernel.comapRight κ hf)
[PROOFSTEP]
refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf : MeasurableEmbedding f
a : α
⊢ ↑↑(↑(kernel.comapRight κ hf) a) Set.univ ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
rw [comapRight_apply' κ hf a .univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf : MeasurableEmbedding f
a : α
⊢ ↑↑(↑κ a) (f '' Set.univ) ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
exact measure_le_bound κ a _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
⊢ IsSFiniteKernel (comapRight κ hf)
[PROOFSTEP]
refine' ⟨⟨fun n => comapRight (seq κ n) hf, inferInstance, _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
⊢ comapRight κ hf = kernel.sum fun n => comapRight (seq κ n) hf
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
⊢ ↑(comapRight κ hf) a = ↑(kernel.sum fun n => comapRight (seq κ n) hf) a
[PROOFSTEP]
rw [sum_apply]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
⊢ ↑(comapRight κ hf) a = Measure.sum fun n => ↑(comapRight (seq κ n) hf) a
[PROOFSTEP]
simp_rw [comapRight_apply _ hf]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
⊢ Measure.comap f (↑κ a) = Measure.sum fun n => Measure.comap f (↑(seq κ n) a)
[PROOFSTEP]
have : (Measure.sum fun n => Measure.comap f (seq κ n a)) = Measure.comap f (Measure.sum fun n => seq κ n a) :=
by
ext1 t ht
rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht, Measure.sum_apply _ ht,
Measure.sum_apply _ (hf.measurableSet_image.mpr ht)]
congr with n : 1
rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
⊢ (Measure.sum fun n => Measure.comap f (↑(seq κ n) a)) = Measure.comap f (Measure.sum fun n => ↑(seq κ n) a)
[PROOFSTEP]
ext1 t ht
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
t : Set γ
ht : MeasurableSet t
⊢ ↑↑(Measure.sum fun n => Measure.comap f (↑(seq κ n) a)) t = ↑↑(Measure.comap f (Measure.sum fun n => ↑(seq κ n) a)) t
[PROOFSTEP]
rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht, Measure.sum_apply _ ht,
Measure.sum_apply _ (hf.measurableSet_image.mpr ht)]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
t : Set γ
ht : MeasurableSet t
⊢ ∑' (i : ℕ), ↑↑(Measure.comap f (↑(seq κ i) a)) t = ∑' (i : ℕ), ↑↑(↑(seq κ i) a) (f '' t)
[PROOFSTEP]
congr with n : 1
[GOAL]
case h.e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
t : Set γ
ht : MeasurableSet t
n : ℕ
⊢ ↑↑(Measure.comap f (↑(seq κ n) a)) t = ↑↑(↑(seq κ n) a) (f '' t)
[PROOFSTEP]
rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
γ : Type u_4
mγ : MeasurableSpace γ
f : γ → β
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : MeasurableEmbedding f
a : α
this : (Measure.sum fun n => Measure.comap f (↑(seq κ n) a)) = Measure.comap f (Measure.sum fun n => ↑(seq κ n) a)
⊢ Measure.comap f (↑κ a) = Measure.sum fun n => Measure.comap f (↑(seq κ n) a)
[PROOFSTEP]
rw [this, measure_sum_seq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
t : Set β
⊢ ↑↑(↑(piecewise hs κ η) a) t = if a ∈ s then ↑↑(↑κ a) t else ↑↑(↑η a) t
[PROOFSTEP]
rw [piecewise_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
t : Set β
⊢ ↑↑(if a ∈ s then ↑κ a else ↑η a) t = if a ∈ s then ↑↑(↑κ a) t else ↑↑(↑η a) t
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
t : Set β
h✝ : a ∈ s
⊢ ↑↑(↑κ a) t = ↑↑(↑κ a) t
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
t : Set β
h✝ : ¬a ∈ s
⊢ ↑↑(↑η a) t = ↑↑(↑η a) t
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsMarkovKernel κ
inst✝ : IsMarkovKernel η
⊢ IsMarkovKernel (kernel.piecewise hs κ η)
[PROOFSTEP]
refine' ⟨fun a => ⟨_⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsMarkovKernel κ
inst✝ : IsMarkovKernel η
a : α
⊢ ↑↑(↑(kernel.piecewise hs κ η) a) Set.univ = 1
[PROOFSTEP]
rw [piecewise_apply', measure_univ, measure_univ, ite_self]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsFiniteKernel κ
inst✝ : IsFiniteKernel η
⊢ IsFiniteKernel (kernel.piecewise hs κ η)
[PROOFSTEP]
refine' ⟨⟨max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η), _, fun a => _⟩⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsFiniteKernel κ
inst✝ : IsFiniteKernel η
⊢ max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η) < ⊤
[PROOFSTEP]
exact max_lt (IsFiniteKernel.bound_lt_top κ) (IsFiniteKernel.bound_lt_top η)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsFiniteKernel κ
inst✝ : IsFiniteKernel η
a : α
⊢ ↑↑(↑(kernel.piecewise hs κ η) a) Set.univ ≤ max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η)
[PROOFSTEP]
rw [piecewise_apply']
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsFiniteKernel κ
inst✝ : IsFiniteKernel η
a : α
⊢ (if a ∈ s then ↑↑(↑κ a) Set.univ else ↑↑(↑η a) Set.univ) ≤ max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η)
[PROOFSTEP]
exact (ite_le_sup _ _ _).trans (sup_le_sup (measure_le_bound _ _ _) (measure_le_bound _ _ _))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
⊢ IsSFiniteKernel (piecewise hs κ η)
[PROOFSTEP]
refine' ⟨⟨fun n => piecewise hs (seq κ n) (seq η n), inferInstance, _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
⊢ piecewise hs κ η = kernel.sum fun n => piecewise hs (seq κ n) (seq η n)
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
a : α
⊢ ↑(piecewise hs κ η) a = ↑(kernel.sum fun n => piecewise hs (seq κ n) (seq η n)) a
[PROOFSTEP]
simp_rw [sum_apply, kernel.piecewise_apply]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
a : α
⊢ (if a ∈ s then ↑κ a else ↑η a) = Measure.sum fun n => if a ∈ s then ↑(seq κ n) a else ↑(seq η n) a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
a : α
h✝ : a ∈ s
⊢ ↑κ a = Measure.sum fun n => ↑(seq κ n) a
[PROOFSTEP]
exact (measure_sum_seq _ a).symm
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
a : α
h✝ : ¬a ∈ s
⊢ ↑η a = Measure.sum fun n => ↑(seq η n) a
[PROOFSTEP]
exact (measure_sum_seq _ a).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
⊢ ∫⁻ (b : β), g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫⁻ (b : β), g b ∂↑κ a else ∫⁻ (b : β), g b ∂↑η a
[PROOFSTEP]
simp_rw [piecewise_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
⊢ (∫⁻ (b : β), g b ∂if a ∈ s then ↑κ a else ↑η a) = if a ∈ s then ∫⁻ (b : β), g b ∂↑κ a else ∫⁻ (b : β), g b ∂↑η a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
h✝ : a ∈ s
⊢ ∫⁻ (b : β), g b ∂↑κ a = ∫⁻ (b : β), g b ∂↑κ a
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
h✝ : ¬a ∈ s
⊢ ∫⁻ (b : β), g b ∂↑η a = ∫⁻ (b : β), g b ∂↑η a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
t : Set β
⊢ ∫⁻ (b : β) in t, g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫⁻ (b : β) in t, g b ∂↑κ a else ∫⁻ (b : β) in t, g b ∂↑η a
[PROOFSTEP]
simp_rw [piecewise_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
t : Set β
⊢ (∫⁻ (b : β) in t, g b ∂if a ∈ s then ↑κ a else ↑η a) =
if a ∈ s then ∫⁻ (b : β) in t, g b ∂↑κ a else ∫⁻ (b : β) in t, g b ∂↑η a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
t : Set β
h✝ : a ∈ s
⊢ ∫⁻ (b : β) in t, g b ∂↑κ a = ∫⁻ (b : β) in t, g b ∂↑κ a
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝ : DecidablePred fun x => x ∈ s
a : α
g : β → ℝ≥0∞
t : Set β
h✝ : ¬a ∈ s
⊢ ∫⁻ (b : β) in t, g b ∂↑η a = ∫⁻ (b : β) in t, g b ∂↑η a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
⊢ ∫ (b : β), g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫ (b : β), g b ∂↑κ a else ∫ (b : β), g b ∂↑η a
[PROOFSTEP]
simp_rw [piecewise_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
⊢ (∫ (b : β), g b ∂if a ∈ s then ↑κ a else ↑η a) = if a ∈ s then ∫ (b : β), g b ∂↑κ a else ∫ (b : β), g b ∂↑η a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
h✝ : a ∈ s
⊢ ∫ (b : β), g b ∂↑κ a = ∫ (b : β), g b ∂↑κ a
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
h✝ : ¬a ∈ s
⊢ ∫ (b : β), g b ∂↑η a = ∫ (b : β), g b ∂↑η a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
t : Set β
⊢ ∫ (b : β) in t, g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a
[PROOFSTEP]
simp_rw [piecewise_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
t : Set β
⊢ (∫ (b : β) in t, g b ∂if a ∈ s then ↑κ a else ↑η a) =
if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
t : Set β
h✝ : a ∈ s
⊢ ∫ (b : β) in t, g b ∂↑κ a = ∫ (b : β) in t, g b ∂↑κ a
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ η : { x // x ∈ kernel α β }
s : Set α
hs : MeasurableSet s
inst✝² : DecidablePred fun x => x ∈ s
E : Type u_4
inst✝¹ : NormedAddCommGroup E
inst✝ : NormedSpace ℝ E
a : α
g : β → E
t : Set β
h✝ : ¬a ∈ s
⊢ ∫ (b : β) in t, g b ∂↑η a = ∫ (b : β) in t, g b ∂↑η a
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Probability.Kernel.Basic", "llama_tokens": 28761} |
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
π : ι → Set (Set Ω)
μ : Measure Ω
⊢ iIndepSets π ↔
∀ (s : Finset ι) {f : ι → Set Ω},
(∀ (i : ι), i ∈ s → f i ∈ π i) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i)
[PROOFSTEP]
simp only [iIndepSets, kernel.iIndepSets, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
s1 s2 : Set (Set Ω)
μ : Measure Ω
⊢ IndepSets s1 s2 ↔ ∀ (t1 t2 : Set Ω), t1 ∈ s1 → t2 ∈ s2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
[PROOFSTEP]
simp only [IndepSets, kernel.IndepSets, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : ι → MeasurableSpace Ω
inst✝ : MeasurableSpace Ω
μ : Measure Ω
⊢ iIndep m ↔ iIndepSets fun x => {s | MeasurableSet s}
[PROOFSTEP]
simp only [iIndep, iIndepSets, kernel.iIndep]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : ι → MeasurableSpace Ω
inst✝ : MeasurableSpace Ω
μ : Measure Ω
⊢ iIndep m ↔
∀ (s : Finset ι) {f : ι → Set Ω},
(∀ (i : ι), i ∈ s → MeasurableSet (f i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i)
[PROOFSTEP]
simp only [iIndep_iff_iIndepSets, iIndepSets_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m : ι → MeasurableSpace Ω
inst✝ : MeasurableSpace Ω
μ : Measure Ω
⊢ (∀ (s : Finset ι) {f : ι → Set Ω},
(∀ (i : ι), i ∈ s → f i ∈ {s | MeasurableSet s}) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i)) ↔
∀ (s : Finset ι) {f : ι → Set Ω},
(∀ (i : ι), i ∈ s → MeasurableSet (f i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i)
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m₁ m₂ inst✝ : MeasurableSpace Ω
μ : Measure Ω
⊢ Indep m₁ m₂ ↔ IndepSets {s | MeasurableSet s} {s | MeasurableSet s}
[PROOFSTEP]
simp only [Indep, IndepSets, kernel.Indep]
[GOAL]
Ω : Type u_1
ι : Type u_2
m₁ m₂ inst✝ : MeasurableSpace Ω
μ : Measure Ω
⊢ Indep m₁ m₂ ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
[PROOFSTEP]
rw [Indep_iff_IndepSets, IndepSets_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m₁ m₂ inst✝ : MeasurableSpace Ω
μ : Measure Ω
⊢ (∀ (t1 t2 : Set Ω), t1 ∈ {s | MeasurableSet s} → t2 ∈ {s | MeasurableSet s} → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2) ↔
∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
s : ι → Set Ω
μ : Measure Ω
⊢ iIndepSet s ↔ iIndep fun i => generateFrom {s i}
[PROOFSTEP]
simp only [iIndepSet, iIndep, kernel.iIndepSet]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
s : ι → Set Ω
μ : Measure Ω
⊢ iIndepSet s ↔
∀ (s' : Finset ι) {f : ι → Set Ω},
(∀ (i : ι), i ∈ s' → MeasurableSet (f i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s'), f i) = ∏ i in s', ↑↑μ (f i)
[PROOFSTEP]
simp only [iIndepSet_iff_iIndep, iIndep_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
s t : Set Ω
μ : Measure Ω
⊢ IndepSet s t ↔ Indep (generateFrom {s}) (generateFrom {t})
[PROOFSTEP]
simp only [IndepSet, Indep, kernel.IndepSet]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
s t : Set Ω
μ : Measure Ω
⊢ IndepSet s t ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
[PROOFSTEP]
simp only [IndepSet_iff_Indep, Indep_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
β : ι → Type u_3
m : (x : ι) → MeasurableSpace (β x)
f : (x : ι) → Ω → β x
μ : Measure Ω
⊢ iIndepFun m f ↔ iIndep fun x => MeasurableSpace.comap (f x) (m x)
[PROOFSTEP]
simp only [iIndepFun, iIndep, kernel.iIndepFun]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
β : ι → Type u_3
m : (x : ι) → MeasurableSpace (β x)
f : (x : ι) → Ω → β x
μ : Measure Ω
⊢ iIndepFun m f ↔
∀ (s : Finset ι) {f' : ι → Set Ω},
(∀ (i : ι), i ∈ s → MeasurableSet (f' i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f' i) = ∏ i in s, ↑↑μ (f' i)
[PROOFSTEP]
simp only [iIndepFun_iff_iIndep, iIndep_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : MeasurableSpace Ω
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
f : Ω → β
g : Ω → γ
μ : Measure Ω
⊢ IndepFun f g ↔ Indep (MeasurableSpace.comap f mβ) (MeasurableSpace.comap g mγ)
[PROOFSTEP]
simp only [IndepFun, Indep, kernel.IndepFun]
[GOAL]
Ω : Type u_1
ι : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : MeasurableSpace Ω
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
f : Ω → β
g : Ω → γ
μ : Measure Ω
⊢ IndepFun f g ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2
[PROOFSTEP]
rw [IndepFun_iff_Indep, Indep_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
inst✝ : MeasurableSpace Ω
s t : Set Ω
μ : Measure Ω
⊢ IndepSets {s} {t} ↔ ↑↑μ (s ∩ t) = ↑↑μ s * ↑↑μ t
[PROOFSTEP]
simp only [IndepSets, kernel.indepSets_singleton_iff, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → β
g : Ω → β'
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
⊢ IndepFun f g ↔
∀ (s : Set β) (t : Set β'),
MeasurableSet s → MeasurableSet t → ↑↑μ (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑μ (f ⁻¹' s) * ↑↑μ (g ⁻¹' t)
[PROOFSTEP]
simp only [IndepFun, kernel.indepFun_iff_measure_inter_preimage_eq_mul, ae_dirac_eq, Filter.eventually_pure,
kernel.const_apply]
[GOAL]
Ω : Type u_1
ι✝ : Type u_2
β✝ : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → β✝
g : Ω → β'
ι : Type u_7
β : ι → Type u_8
m : (x : ι) → MeasurableSpace (β x)
f : (i : ι) → Ω → β i
⊢ iIndepFun m f ↔
∀ (S : Finset ι) {sets : (i : ι) → Set (β i)},
(∀ (i : ι), i ∈ S → MeasurableSet (sets i)) →
↑↑μ (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑μ (f i ⁻¹' sets i)
[PROOFSTEP]
simp only [iIndepFun, kernel.iIndepFun_iff_measure_inter_preimage_eq_mul, ae_dirac_eq, Filter.eventually_pure,
kernel.const_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → β
g : Ω → β'
mβ : MeasurableSpace β
mβ' : MeasurableSpace β'
inst✝ : IsProbabilityMeasure μ
hf : Measurable f
hg : Measurable g
⊢ IndepFun f g ↔ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t)
[PROOFSTEP]
simp only [IndepFun, IndepSet, kernel.indepFun_iff_indepSet_preimage hf hg, ae_dirac_eq, Filter.eventually_pure,
kernel.const_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → β
g✝ : Ω → β'
mβ : MeasurableSpace β
f g f' g' : Ω → β
hfg : IndepFun f g
hf : f =ᵐ[μ] f'
hg : g =ᵐ[μ] g'
⊢ IndepFun f' g'
[PROOFSTEP]
refine kernel.IndepFun.ae_eq hfg ?_ ?_
[GOAL]
case refine_1
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → β
g✝ : Ω → β'
mβ : MeasurableSpace β
f g f' g' : Ω → β
hfg : IndepFun f g
hf : f =ᵐ[μ] f'
hg : g =ᵐ[μ] g'
⊢ ∀ᵐ (a : Unit) ∂Measure.dirac (), f =ᵐ[↑(kernel.const Unit μ) a] f'
[PROOFSTEP]
simp only [ae_dirac_eq, Filter.eventually_pure, kernel.const_apply]
[GOAL]
case refine_2
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → β
g✝ : Ω → β'
mβ : MeasurableSpace β
f g f' g' : Ω → β
hfg : IndepFun f g
hf : f =ᵐ[μ] f'
hg : g =ᵐ[μ] g'
⊢ ∀ᵐ (a : Unit) ∂Measure.dirac (), g =ᵐ[↑(kernel.const Unit μ) a] g'
[PROOFSTEP]
simp only [ae_dirac_eq, Filter.eventually_pure, kernel.const_apply]
[GOAL]
case refine_1
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → β
g✝ : Ω → β'
mβ : MeasurableSpace β
f g f' g' : Ω → β
hfg : IndepFun f g
hf : f =ᵐ[μ] f'
hg : g =ᵐ[μ] g'
⊢ f =ᵐ[μ] f'
case refine_2
Ω : Type u_1
ι : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
mΩ : MeasurableSpace Ω
μ : Measure Ω
f✝ : Ω → β
g✝ : Ω → β'
mβ : MeasurableSpace β
f g f' g' : Ω → β
hfg : IndepFun f g
hf : f =ᵐ[μ] f'
hg : g =ᵐ[μ] g'
⊢ g =ᵐ[μ] g'
[PROOFSTEP]
exacts [hf, hg]
| {"mathlib_filename": "Mathlib.Probability.Independence.Basic", "llama_tokens": 4345} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
⊢ HasFiniteIntegral fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))
[PROOFSTEP]
let t := toMeasurable ((κ ⊗ₖ η) a) s
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
⊢ HasFiniteIntegral fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))
[PROOFSTEP]
simp_rw [HasFiniteIntegral, ennnorm_eq_ofReal toReal_nonneg]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
⊢ ∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s))) ∂↑κ a < ⊤
[PROOFSTEP]
calc
∫⁻ b, ENNReal.ofReal (η (a, b) (Prod.mk b ⁻¹' s)).toReal ∂κ a
_ ≤ ∫⁻ b, η (a, b) (Prod.mk b ⁻¹' t) ∂κ a := by
refine' lintegral_mono_ae _
filter_upwards [ae_kernel_lt_top a h2s] with b hb
rw [ofReal_toReal hb.ne]
exact measure_mono (preimage_mono (subset_toMeasurable _ _))
_ ≤ (κ ⊗ₖ η) a t := (le_compProd_apply _ _ _ _)
_ = (κ ⊗ₖ η) a s := (measure_toMeasurable s)
_ < ⊤ := h2s.lt_top
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
⊢ ∫⁻ (b : β), ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))) ∂↑κ a ≤
∫⁻ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ∂↑κ a
[PROOFSTEP]
refine' lintegral_mono_ae _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
⊢ ∀ᵐ (a_1 : β) ∂↑κ a,
ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s))) ≤ ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' t)
[PROOFSTEP]
filter_upwards [ae_kernel_lt_top a h2s] with b hb
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
b : β
hb : ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
⊢ ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))) ≤
↑↑(↑η (a, b)) (Prod.mk b ⁻¹' toMeasurable (↑(κ ⊗ₖ η) a) s)
[PROOFSTEP]
rw [ofReal_toReal hb.ne]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
b : β
hb : ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
⊢ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' toMeasurable (↑(κ ⊗ₖ η) a) s)
[PROOFSTEP]
exact measure_mono (preimage_mono (subset_toMeasurable _ _))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
⊢ Integrable fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
⊢ AEStronglyMeasurable (fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))) (↑κ a)
[PROOFSTEP]
exact (measurable_kernel_prod_mk_left' hs a).ennreal_toReal.aestronglyMeasurable
[GOAL]
case right
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
⊢ HasFiniteIntegral fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))
[PROOFSTEP]
exact hasFiniteIntegral_prod_mk_left a h2s
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁴ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝³ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝² : IsSFiniteKernel η
a : α
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : β × γ → E
hf : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ (fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x)) =ᵐ[↑κ a] fun x => ∫ (y : γ), AEStronglyMeasurable.mk f hf (x, y) ∂↑η (a, x)
[PROOFSTEP]
filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with _ hx using integral_congr_ae hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝³ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝² : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝¹ : IsSFiniteKernel η
a : α
δ : Type u_5
inst✝ : TopologicalSpace δ
f : β × γ → δ
hf : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ ∀ᵐ (x : β) ∂↑κ a, AEStronglyMeasurable (fun y => f (x, y)) (↑η (a, x))
[PROOFSTEP]
filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with x hx using
⟨fun y => hf.mk f (x, y), hf.stronglyMeasurable_mk.comp_measurable measurable_prod_mk_left, hx⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
⊢ HasFiniteIntegral f ↔
(∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)) ∧
HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x)
[PROOFSTEP]
simp only [HasFiniteIntegral]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
⊢ ∫⁻ (a : β × γ), ↑‖f a‖₊ ∂↑(κ ⊗ₖ η) a < ⊤ ↔
(∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧
∫⁻ (a_1 : β), ↑‖∫ (y : γ), ‖f (a_1, y)‖ ∂↑η (a, a_1)‖₊ ∂↑κ a < ⊤
[PROOFSTEP]
rw [kernel.lintegral_compProd _ _ _ h1f.ennnorm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔
(∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧
∫⁻ (a_1 : β), ↑‖∫ (y : γ), ‖f (a_1, y)‖ ∂↑η (a, a_1)‖₊ ∂↑κ a < ⊤
[PROOFSTEP]
have : ∀ x, ∀ᵐ y ∂η (a, x), 0 ≤ ‖f (x, y)‖ := fun x => eventually_of_forall fun y => norm_nonneg _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔
(∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧
∫⁻ (a_1 : β), ↑‖∫ (y : γ), ‖f (a_1, y)‖ ∂↑η (a, a_1)‖₊ ∂↑κ a < ⊤
[PROOFSTEP]
simp_rw [integral_eq_lintegral_of_nonneg_ae (this _)
(h1f.norm.comp_measurable measurable_prod_mk_left).aestronglyMeasurable,
ennnorm_eq_ofReal toReal_nonneg, ofReal_norm_eq_coe_nnnorm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔
(∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧
∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) ∂↑κ a < ⊤
[PROOFSTEP]
have : ∀ {p q r : Prop} (_ : r → p), (r ↔ p ∧ q) ↔ p → (r ↔ q) := fun {p q r} h1 => by
rw [← and_congr_right_iff, and_iff_right_of_imp h1]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
p q r : Prop
h1 : r → p
⊢ (r ↔ p ∧ q) ↔ p → (r ↔ q)
[PROOFSTEP]
rw [← and_congr_right_iff, and_iff_right_of_imp h1]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔
(∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧
∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) ∂↑κ a < ⊤
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
⊢ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) →
(∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔
∫⁻ (a_2 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_2, a)‖₊ ∂↑η (a, a_2))) ∂↑κ a < ⊤)
[PROOFSTEP]
intro h2f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔
∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) ∂↑κ a < ⊤
[PROOFSTEP]
rw [lintegral_congr_ae]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ (fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) =ᵐ[↑κ a] fun a_1 =>
ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1)))
[PROOFSTEP]
refine' h2f.mp _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ ∀ᵐ (x : β) ∂↑κ a,
∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ →
(fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) x =
(fun a_2 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_2, a)‖₊ ∂↑η (a, a_2)))) x
[PROOFSTEP]
apply eventually_of_forall
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ ∀ (x : β),
∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ →
(fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) x =
(fun a_2 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_2, a)‖₊ ∂↑η (a, a_2)))) x
[PROOFSTEP]
intro x hx
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
x : β
hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ (fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) x =
(fun a_1 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1)))) x
[PROOFSTEP]
dsimp only
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
x : β
hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ ∫⁻ (c : γ), ↑‖f (x, c)‖₊ ∂↑η (a, x) = ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x)))
[PROOFSTEP]
rw [ofReal_toReal]
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
x : β
hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) ≠ ⊤
[PROOFSTEP]
rw [← lt_top_iff_ne_top]
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
x : β
hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
⊢ ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
[PROOFSTEP]
exact hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ → ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
[PROOFSTEP]
intro h2f
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤
⊢ ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤
[PROOFSTEP]
refine' ae_lt_top _ h2f.ne
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : StronglyMeasurable f
this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖
this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q))
h2f : ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤
⊢ Measurable fun x => ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x)
[PROOFSTEP]
exact h1f.ennnorm.lintegral_kernel_prod_right''
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ HasFiniteIntegral f ↔
(∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)) ∧
HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x)
[PROOFSTEP]
rw [hasFiniteIntegral_congr h1f.ae_eq_mk, hasFiniteIntegral_compProd_iff h1f.stronglyMeasurable_mk]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ ((∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ∧
HasFiniteIntegral fun x => ∫ (y : γ), ‖AEStronglyMeasurable.mk f h1f (x, y)‖ ∂↑η (a, x)) ↔
(∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)) ∧
HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x)
[PROOFSTEP]
apply and_congr
[GOAL]
case h₁
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ (∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ↔
∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)
[PROOFSTEP]
apply eventually_congr
[GOAL]
case h₁.h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ ∀ᵐ (x : β) ∂↑κ a,
(HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ↔ HasFiniteIntegral fun y => f (x, y)
[PROOFSTEP]
filter_upwards [ae_ae_of_ae_compProd h1f.ae_eq_mk.symm]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ ∀ (a_1 : β),
(∀ᵐ (c : γ) ∂↑η (a, a_1), AEStronglyMeasurable.mk f h1f (a_1, c) = f (a_1, c)) →
((HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (a_1, y)) ↔ HasFiniteIntegral fun y => f (a_1, y))
[PROOFSTEP]
intro x hx
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
x : β
hx : ∀ᵐ (c : γ) ∂↑η (a, x), AEStronglyMeasurable.mk f h1f (x, c) = f (x, c)
⊢ (HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ↔ HasFiniteIntegral fun y => f (x, y)
[PROOFSTEP]
exact hasFiniteIntegral_congr hx
[GOAL]
case h₂
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ (HasFiniteIntegral fun x => ∫ (y : γ), ‖AEStronglyMeasurable.mk f h1f (x, y)‖ ∂↑η (a, x)) ↔
HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x)
[PROOFSTEP]
apply hasFiniteIntegral_congr
[GOAL]
case h₂.h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ (fun x => ∫ (y : γ), ‖AEStronglyMeasurable.mk f h1f (x, y)‖ ∂↑η (a, x)) =ᵐ[↑κ a] fun x =>
∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x)
[PROOFSTEP]
filter_upwards [ae_ae_of_ae_compProd h1f.ae_eq_mk.symm] with _ hx using integral_congr_ae (EventuallyEq.fun_comp hx _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝² : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → E
hf : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a)
⊢ Integrable f ↔ (∀ᵐ (x : β) ∂↑κ a, Integrable fun y => f (x, y)) ∧ Integrable fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x)
[PROOFSTEP]
simp only [Integrable, hasFiniteIntegral_compProd_iff' hf, hf.norm.integral_kernel_compProd, hf, hf.compProd_mk_left,
eventually_and, true_and_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → E'
hf : Integrable f
hg : Integrable g
⊢ ∫ (x : β), F (∫ (y : γ), f (x, y) + g (x, y) ∂↑η (a, x)) ∂↑κ a =
∫ (x : β), F (∫ (y : γ), f (x, y) ∂↑η (a, x) + ∫ (y : γ), g (x, y) ∂↑η (a, x)) ∂↑κ a
[PROOFSTEP]
refine' integral_congr_ae _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → E'
hf : Integrable f
hg : Integrable g
⊢ (fun x => F (∫ (y : γ), f (x, y) + g (x, y) ∂↑η (a, x))) =ᵐ[↑κ a] fun x =>
F (∫ (y : γ), f (x, y) ∂↑η (a, x) + ∫ (y : γ), g (x, y) ∂↑η (a, x))
[PROOFSTEP]
filter_upwards [hf.compProd_mk_left_ae, hg.compProd_mk_left_ae] with _ h2f h2g
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → E'
hf : Integrable f
hg : Integrable g
a✝ : β
h2f : Integrable fun y => f (a✝, y)
h2g : Integrable fun y => g (a✝, y)
⊢ F (∫ (y : γ), f (a✝, y) + g (a✝, y) ∂↑η (a, a✝)) =
F (∫ (y : γ), f (a✝, y) ∂↑η (a, a✝) + ∫ (y : γ), g (a✝, y) ∂↑η (a, a✝))
[PROOFSTEP]
simp [integral_add h2f h2g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → E'
hf : Integrable f
hg : Integrable g
⊢ ∫ (x : β), F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x)) ∂↑κ a =
∫ (x : β), F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x)) ∂↑κ a
[PROOFSTEP]
refine' integral_congr_ae _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → E'
hf : Integrable f
hg : Integrable g
⊢ (fun x => F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x))) =ᵐ[↑κ a] fun x =>
F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x))
[PROOFSTEP]
filter_upwards [hf.compProd_mk_left_ae, hg.compProd_mk_left_ae] with _ h2f h2g
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → E'
hf : Integrable f
hg : Integrable g
a✝ : β
h2f : Integrable fun y => f (a✝, y)
h2g : Integrable fun y => g (a✝, y)
⊢ F (∫ (y : γ), f (a✝, y) - g (a✝, y) ∂↑η (a, a✝)) =
F (∫ (y : γ), f (a✝, y) ∂↑η (a, a✝) - ∫ (y : γ), g (a✝, y) ∂↑η (a, a✝))
[PROOFSTEP]
simp [integral_sub h2f h2g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → ℝ≥0∞
hf : Integrable f
hg : Integrable g
⊢ ∫⁻ (x : β), F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x)) ∂↑κ a =
∫⁻ (x : β), F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x)) ∂↑κ a
[PROOFSTEP]
refine' lintegral_congr_ae _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → ℝ≥0∞
hf : Integrable f
hg : Integrable g
⊢ (fun x => F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x))) =ᵐ[↑κ a] fun x =>
F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x))
[PROOFSTEP]
filter_upwards [hf.compProd_mk_left_ae, hg.compProd_mk_left_ae] with _ h2f h2g
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
F : E → ℝ≥0∞
hf : Integrable f
hg : Integrable g
a✝ : β
h2f : Integrable fun y => f (a✝, y)
h2g : Integrable fun y => g (a✝, y)
⊢ F (∫ (y : γ), f (a✝, y) - g (a✝, y) ∂↑η (a, a✝)) =
F (∫ (y : γ), f (a✝, y) ∂↑η (a, a✝) - ∫ (y : γ), g (a✝, y) ∂↑η (a, a✝))
[PROOFSTEP]
simp [integral_sub h2f h2g]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ Continuous fun f => ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
rw [continuous_iff_continuousAt]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ ∀ (x : { x // x ∈ Lp E 1 }), ContinuousAt (fun f => ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a) x
[PROOFSTEP]
intro g
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ ContinuousAt (fun f => ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a) g
[PROOFSTEP]
refine'
tendsto_integral_of_L1 _ (L1.integrable_coeFn g).integral_compProd
(eventually_of_forall fun h => (L1.integrable_coeFn h).integral_compProd) _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ Tendsto (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) ∂↑η (a, x) - ∫ (y : γ), ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) (𝓝 g)
(𝓝 0)
[PROOFSTEP]
simp_rw [← kernel.lintegral_fn_integral_sub (fun x => (‖x‖₊ : ℝ≥0∞)) (L1.integrable_coeFn _) (L1.integrable_coeFn g)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ Tendsto (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) - ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) (𝓝 g) (𝓝 0)
[PROOFSTEP]
refine' tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds _ (fun i => zero_le _) _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ { x // x ∈ Lp E 1 } → ℝ≥0∞
[PROOFSTEP]
exact fun i => ∫⁻ x, ∫⁻ y, ‖i (x, y) - g (x, y)‖₊ ∂η (a, x) ∂κ a
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0)
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) - ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) ≤ fun i =>
∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
swap
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) - ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) ≤ fun i =>
∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
exact fun i => lintegral_mono fun x => ennnorm_integral_le_lintegral_ennnorm _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0)
[PROOFSTEP]
show Tendsto (fun i : β × γ →₁[(κ ⊗ₖ η) a] E => ∫⁻ x, ∫⁻ y : γ, ‖i (x, y) - g (x, y)‖₊ ∂η (a, x) ∂κ a) (𝓝 g) (𝓝 0)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0)
[PROOFSTEP]
have :
∀ i : (MeasureTheory.Lp (α := β × γ) E 1 (((κ ⊗ₖ η) a) : Measure (β × γ))),
Measurable fun z => (‖i z - g z‖₊ : ℝ≥0∞) :=
fun i => ((Lp.stronglyMeasurable i).sub (Lp.stronglyMeasurable g)).ennnorm
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊
⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0)
[PROOFSTEP]
simp_rw [← kernel.lintegral_compProd _ _ _ (this _), ← L1.ofReal_norm_sub_eq_lintegral, ← ofReal_zero]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊
⊢ Tendsto (fun i => ENNReal.ofReal ‖i - g‖) (𝓝 g) (𝓝 (ENNReal.ofReal 0))
[PROOFSTEP]
refine' (continuous_ofReal.tendsto 0).comp _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊
⊢ Tendsto (fun i => ‖i - g‖) (𝓝 g) (𝓝 0)
[PROOFSTEP]
rw [← tendsto_iff_norm_tendsto_zero]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
g : { x // x ∈ Lp E 1 }
this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊
⊢ Tendsto (fun i => i) (𝓝 g) (𝓝 g)
[PROOFSTEP]
exact tendsto_id
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ ∀ {f : β × γ → E}, Integrable f → ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
apply Integrable.induction
[GOAL]
case h_ind
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ ∀ (c : E) ⦃s : Set (β × γ)⦄,
MeasurableSet s →
↑↑(↑(κ ⊗ₖ η) a) s < ⊤ →
∫ (z : β × γ), indicator s (fun x => c) z ∂↑(κ ⊗ₖ η) a =
∫ (x : β), ∫ (y : γ), indicator s (fun x => c) (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
intro c s hs h2s
[GOAL]
case h_ind
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ∫ (z : β × γ), indicator s (fun x => c) z ∂↑(κ ⊗ₖ η) a =
∫ (x : β), ∫ (y : γ), indicator s (fun x => c) (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [integral_indicator hs, ← indicator_comp_right, Function.comp, integral_indicator (measurable_prod_mk_left hs),
MeasureTheory.set_integral_const, integral_smul_const]
[GOAL]
case h_ind
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) • c = (∫ (x : β), ENNReal.toReal (↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s)) ∂↑κ a) • c
[PROOFSTEP]
congr 1
[GOAL]
case h_ind.e_a
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) = ∫ (x : β), ENNReal.toReal (↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s)) ∂↑κ a
[PROOFSTEP]
rw [integral_toReal]
[GOAL]
case h_ind.e_a
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) = ENNReal.toReal (∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s) ∂↑κ a)
case h_ind.e_a.hfm
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ AEMeasurable fun x => ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s)
case h_ind.e_a.hf
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ∀ᵐ (x : β) ∂↑κ a, ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s) < ⊤
[PROOFSTEP]
rotate_left
[GOAL]
case h_ind.e_a.hfm
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ AEMeasurable fun x => ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s)
[PROOFSTEP]
exact (kernel.measurable_kernel_prod_mk_left' hs _).aemeasurable
[GOAL]
case h_ind.e_a.hf
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ∀ᵐ (x : β) ∂↑κ a, ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s) < ⊤
[PROOFSTEP]
exact ae_kernel_lt_top a h2s.ne
[GOAL]
case h_ind.e_a
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) = ENNReal.toReal (∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s) ∂↑κ a)
[PROOFSTEP]
rw [kernel.compProd_apply _ _ _ hs]
[GOAL]
case h_ind.e_a
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
c : E
s : Set (β × γ)
hs : MeasurableSet s
h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤
⊢ ENNReal.toReal (∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a) =
ENNReal.toReal (∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s) ∂↑κ a)
[PROOFSTEP]
rfl
[GOAL]
case h_add
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ ∀ ⦃f g : β × γ → E⦄,
Disjoint (support f) (support g) →
Integrable f →
Integrable g →
∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a →
∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a →
∫ (z : β × γ), (f + g) z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), (f + g) (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
intro f g _ i_f i_g hf hg
[GOAL]
case h_add
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
a✝ : Disjoint (support f) (support g)
i_f : Integrable f
i_g : Integrable g
hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
hg : ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a
⊢ ∫ (z : β × γ), (f + g) z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), (f + g) (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [integral_add' i_f i_g, kernel.integral_integral_add' i_f i_g, hf, hg]
[GOAL]
case h_closed
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ IsClosed {f | ∫ (z : β × γ), ↑↑f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a}
[PROOFSTEP]
exact isClosed_eq continuous_integral kernel.continuous_integral_integral
[GOAL]
case h_ae
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
⊢ ∀ ⦃f g : β × γ → E⦄,
f =ᵐ[↑(κ ⊗ₖ η) a] g →
Integrable f →
∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a →
∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
intro f g hfg _ hf
[GOAL]
case h_ae
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g
a✝ : Integrable f
hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
⊢ ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
convert hf using 1
[GOAL]
case h.e'_2
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g
a✝ : Integrable f
hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
⊢ ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a
[PROOFSTEP]
exact integral_congr_ae hfg.symm
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g
a✝ : Integrable f
hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
⊢ ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
refine' integral_congr_ae _
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g
a✝ : Integrable f
hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
⊢ (fun x => ∫ (y : γ), g (x, y) ∂↑η (a, x)) =ᵐ[↑κ a] fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x)
[PROOFSTEP]
refine' (ae_ae_of_ae_compProd hfg).mp (eventually_of_forall _)
[GOAL]
case h.e'_3
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f g : β × γ → E
hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g
a✝ : Integrable f
hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
⊢ ∀ (x : β),
(∀ᵐ (c : γ) ∂↑η (a, x), f (x, c) = g (x, c)) →
(fun x => ∫ (y : γ), g (x, y) ∂↑η (a, x)) x = (fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x)) x
[PROOFSTEP]
exact fun x hfgx => integral_congr_ae (ae_eq_symm hfgx)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f : β × γ → E
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ ∫ (z : β × γ) in s ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β) in s, ∫ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
rw [← kernel.restrict_apply (κ ⊗ₖ η) (hs.prod ht), ← compProd_restrict hs ht, integral_compProd]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f : β × γ → E
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑(kernel.restrict η ht) (a, x) ∂↑(kernel.restrict κ hs) a =
∫ (x : β) in s, ∫ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [kernel.restrict_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f : β × γ → E
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ Integrable fun z => f z
[PROOFSTEP]
rw [compProd_restrict, kernel.restrict_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f : β × γ → E
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ Integrable fun z => f z
[PROOFSTEP]
exact hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f : β × γ → E
s : Set β
hs : MeasurableSet s
hf : IntegrableOn f (s ×ˢ univ)
⊢ ∫ (z : β × γ) in s ×ˢ univ, f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β) in s, ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [set_integral_compProd hs MeasurableSet.univ hf, Measure.restrict_univ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
E : Type u_4
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
inst✝⁷ : NormedAddCommGroup E
κ : { x // x ∈ kernel α β }
inst✝⁶ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝⁵ : IsSFiniteKernel η
a : α
inst✝⁴ : NormedSpace ℝ E
inst✝³ : CompleteSpace E
E' : Type u_5
inst✝² : NormedAddCommGroup E'
inst✝¹ : CompleteSpace E'
inst✝ : NormedSpace ℝ E'
f : β × γ → E
t : Set γ
ht : MeasurableSet t
hf : IntegrableOn f (univ ×ˢ t)
⊢ ∫ (z : β × γ) in univ ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [set_integral_compProd MeasurableSet.univ ht hf, Measure.restrict_univ]
| {"mathlib_filename": "Mathlib.Probability.Kernel.IntegralCompProd", "llama_tokens": 33300} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
⊢ (fun a => Measure.withDensity (↑κ a) (f a)) ∈ kernel α β
[PROOFSTEP]
refine' Measure.measurable_of_measurable_coe _ fun s hs => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(Measure.withDensity (↑κ b) (f b)) s
[PROOFSTEP]
simp_rw [withDensity_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ∫⁻ (a : β) in s, f b a ∂↑κ b
[PROOFSTEP]
exact hf.set_lintegral_kernel_prod_right hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : ¬Measurable (Function.uncurry f)
⊢ withDensity κ f = 0
[PROOFSTEP]
classical exact dif_neg hf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : ¬Measurable (Function.uncurry f)
⊢ withDensity κ f = 0
[PROOFSTEP]
exact dif_neg hf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable (Function.uncurry f)
a : α
⊢ ↑(withDensity κ f) a = Measure.withDensity (↑κ a) (f a)
[PROOFSTEP]
classical
rw [withDensity, dif_pos hf]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable (Function.uncurry f)
a : α
⊢ ↑(withDensity κ f) a = Measure.withDensity (↑κ a) (f a)
[PROOFSTEP]
rw [withDensity, dif_pos hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable (Function.uncurry f)
a : α
⊢ ↑{ val := fun a => Measure.withDensity (↑κ a) (f a),
property := (_ : Measurable fun a => Measure.withDensity (↑κ a) (f a)) }
a =
Measure.withDensity (↑κ a) (f a)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable (Function.uncurry f)
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(withDensity κ f) a) s = ∫⁻ (b : β) in s, f a b ∂↑κ a
[PROOFSTEP]
rw [kernel.withDensity_apply κ hf, withDensity_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable (Function.uncurry f)
a : α
g : β → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (b : β), g b ∂↑(withDensity κ f) a = ∫⁻ (b : β), f a b * g b ∂↑κ a
[PROOFSTEP]
rw [kernel.withDensity_apply _ hf, lintegral_withDensity_eq_lintegral_mul _ (Measurable.of_uncurry_left hf) hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable (Function.uncurry f)
a : α
g : β → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (a_1 : β), (f a * g) a_1 ∂↑κ a = ∫⁻ (b : β), f a b * g b ∂↑κ a
[PROOFSTEP]
simp_rw [Pi.mul_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : β → E
inst✝ : IsSFiniteKernel κ
a : α
g : α → β → ℝ≥0
hg : Measurable (Function.uncurry g)
⊢ ∫ (b : β), f b ∂↑(withDensity κ fun a b => ↑(g a b)) a = ∫ (b : β), g a b • f b ∂↑κ a
[PROOFSTEP]
rw [kernel.withDensity_apply, integral_withDensity_eq_integral_smul]
[GOAL]
case f_meas
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : β → E
inst✝ : IsSFiniteKernel κ
a : α
g : α → β → ℝ≥0
hg : Measurable (Function.uncurry g)
⊢ Measurable fun b => g a b
[PROOFSTEP]
exact Measurable.of_uncurry_left hg
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
E : Type u_4
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : β → E
inst✝ : IsSFiniteKernel κ
a : α
g : α → β → ℝ≥0
hg : Measurable (Function.uncurry g)
⊢ Measurable (Function.uncurry fun a b => ↑(g a b))
[PROOFSTEP]
exact measurable_coe_nnreal_ennreal.comp hg
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
⊢ withDensity (κ + η) f = withDensity κ f + withDensity η f
[PROOFSTEP]
by_cases hf : Measurable (Function.uncurry f)
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
⊢ withDensity (κ + η) f = withDensity κ f + withDensity η f
[PROOFSTEP]
ext a s
[GOAL]
case pos.h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
a : α
s : Set β
a✝ : MeasurableSet s
⊢ ↑↑(↑(withDensity (κ + η) f) a) s = ↑↑(↑(withDensity κ f + withDensity η f) a) s
[PROOFSTEP]
simp only [kernel.withDensity_apply _ hf, coeFn_add, Pi.add_apply, withDensity_add_measure, Measure.add_apply]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : ¬Measurable (Function.uncurry f)
⊢ withDensity (κ + η) f = withDensity κ f + withDensity η f
[PROOFSTEP]
simp_rw [withDensity_of_not_measurable _ hf]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
κ η : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : ¬Measurable (Function.uncurry f)
⊢ 0 = 0 + 0
[PROOFSTEP]
rw [zero_add]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
hκ : ∀ (i : ι), IsSFiniteKernel (κ i)
f : α → β → ℝ≥0∞
⊢ withDensity (kernel.sum κ) f = kernel.sum fun i => withDensity (κ i) f
[PROOFSTEP]
by_cases hf : Measurable (Function.uncurry f)
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
hκ : ∀ (i : ι), IsSFiniteKernel (κ i)
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
⊢ withDensity (kernel.sum κ) f = kernel.sum fun i => withDensity (κ i) f
[PROOFSTEP]
ext1 a
[GOAL]
case pos.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
hκ : ∀ (i : ι), IsSFiniteKernel (κ i)
f : α → β → ℝ≥0∞
hf : Measurable (Function.uncurry f)
a : α
⊢ ↑(withDensity (kernel.sum κ) f) a = ↑(kernel.sum fun i => withDensity (κ i) f) a
[PROOFSTEP]
simp_rw [sum_apply, kernel.withDensity_apply _ hf, sum_apply, withDensity_sum (fun n => κ n a) (f a)]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
hκ : ∀ (i : ι), IsSFiniteKernel (κ i)
f : α → β → ℝ≥0∞
hf : ¬Measurable (Function.uncurry f)
⊢ withDensity (kernel.sum κ) f = kernel.sum fun i => withDensity (κ i) f
[PROOFSTEP]
simp_rw [withDensity_of_not_measurable _ hf]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝ : Countable ι
κ : ι → { x // x ∈ kernel α β }
hκ : ∀ (i : ι), IsSFiniteKernel (κ i)
f : α → β → ℝ≥0∞
hf : ¬Measurable (Function.uncurry f)
⊢ 0 = kernel.sum fun i => 0
[PROOFSTEP]
exact sum_zero.symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
⊢ withDensity κ (∑' (n : ι), f n) = kernel.sum fun n => withDensity κ (f n)
[PROOFSTEP]
have h_sum_a : ∀ a, Summable fun n => f n a := fun a => Pi.summable.mpr fun b => ENNReal.summable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
⊢ withDensity κ (∑' (n : ι), f n) = kernel.sum fun n => withDensity κ (f n)
[PROOFSTEP]
have h_sum : Summable fun n => f n := Pi.summable.mpr h_sum_a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
⊢ withDensity κ (∑' (n : ι), f n) = kernel.sum fun n => withDensity κ (f n)
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(withDensity κ (∑' (n : ι), f n)) a) s = ↑↑(↑(kernel.sum fun n => withDensity κ (f n)) a) s
[PROOFSTEP]
rw [sum_apply' _ a hs, withDensity_apply' κ _ a hs]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ Measurable (Function.uncurry (∑' (n : ι), f n))
[PROOFSTEP]
swap
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ Measurable (Function.uncurry (∑' (n : ι), f n))
[PROOFSTEP]
have : Function.uncurry (∑' n, f n) = ∑' n, Function.uncurry (f n) :=
by
ext1 p
simp only [Function.uncurry_def]
rw [tsum_apply h_sum, tsum_apply (h_sum_a _), tsum_apply]
exact Pi.summable.mpr fun p => ENNReal.summable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ Function.uncurry (∑' (n : ι), f n) = ∑' (n : ι), Function.uncurry (f n)
[PROOFSTEP]
ext1 p
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
p : α × β
⊢ Function.uncurry (∑' (n : ι), f n) p = tsum (fun n => Function.uncurry (f n)) p
[PROOFSTEP]
simp only [Function.uncurry_def]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
p : α × β
⊢ tsum (fun n => f n) p.fst p.snd = tsum (fun n p => f n p.fst p.snd) p
[PROOFSTEP]
rw [tsum_apply h_sum, tsum_apply (h_sum_a _), tsum_apply]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
p : α × β
⊢ Summable fun n p => f n p.fst p.snd
[PROOFSTEP]
exact Pi.summable.mpr fun p => ENNReal.summable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
this : Function.uncurry (∑' (n : ι), f n) = ∑' (n : ι), Function.uncurry (f n)
⊢ Measurable (Function.uncurry (∑' (n : ι), f n))
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
this : Function.uncurry (∑' (n : ι), f n) = ∑' (n : ι), Function.uncurry (f n)
⊢ Measurable (∑' (n : ι), Function.uncurry (f n))
[PROOFSTEP]
exact Measurable.ennreal_tsum' hf
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s
[PROOFSTEP]
have : ∫⁻ b in s, (∑' n, f n) a b ∂κ a = ∫⁻ b in s, ∑' n, (fun b => f n a b) b ∂κ a :=
by
congr with b
rw [tsum_apply h_sum, tsum_apply (h_sum_a a)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a
[PROOFSTEP]
congr with b
[GOAL]
case e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
b : β
⊢ tsum (fun n => f n) a b = ∑' (n : ι), (fun b => f n a b) b
[PROOFSTEP]
rw [tsum_apply h_sum, tsum_apply (h_sum_a a)]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
this : ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a
⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s
[PROOFSTEP]
rw [this, lintegral_tsum fun n => (Measurable.of_uncurry_left (hf n)).aemeasurable]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
this : ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a
⊢ ∑' (i : ι), ∫⁻ (a_1 : β) in s, f i a a_1 ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s
[PROOFSTEP]
congr with n
[GOAL]
case h.h.e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f✝ : α → β → ℝ≥0∞
inst✝¹ : Countable ι
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
f : ι → α → β → ℝ≥0∞
hf : ∀ (i : ι), Measurable (Function.uncurry (f i))
h_sum_a : ∀ (a : α), Summable fun n => f n a
h_sum : Summable fun n => f n
a : α
s : Set β
hs : MeasurableSet s
this : ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a
n : ι
⊢ ∫⁻ (a_1 : β) in s, f n a a_1 ∂↑κ a = ↑↑(↑(withDensity κ (f n)) a) s
[PROOFSTEP]
rw [withDensity_apply' _ (hf n) a hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
⊢ IsFiniteKernel (withDensity κ f)
[PROOFSTEP]
by_cases hf : Measurable (Function.uncurry f)
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
hf : Measurable (Function.uncurry f)
⊢ IsFiniteKernel (withDensity κ f)
[PROOFSTEP]
exact
⟨⟨B * IsFiniteKernel.bound κ, ENNReal.mul_lt_top hB_top (IsFiniteKernel.bound_ne_top κ), fun a =>
by
rw [withDensity_apply' κ hf a MeasurableSet.univ]
calc
∫⁻ b in Set.univ, f a b ∂κ a ≤ ∫⁻ _ in Set.univ, B ∂κ a := lintegral_mono (hf_B a)
_ = B * κ a Set.univ := by simp only [Measure.restrict_univ, MeasureTheory.lintegral_const]
_ ≤ B * IsFiniteKernel.bound κ := mul_le_mul_left' (measure_le_bound κ a Set.univ) _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
hf : Measurable (Function.uncurry f)
a : α
⊢ ↑↑(↑(withDensity κ f) a) Set.univ ≤ B * IsFiniteKernel.bound κ
[PROOFSTEP]
rw [withDensity_apply' κ hf a MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
hf : Measurable (Function.uncurry f)
a : α
⊢ ∫⁻ (b : β) in Set.univ, f a b ∂↑κ a ≤ B * IsFiniteKernel.bound κ
[PROOFSTEP]
calc
∫⁻ b in Set.univ, f a b ∂κ a ≤ ∫⁻ _ in Set.univ, B ∂κ a := lintegral_mono (hf_B a)
_ = B * κ a Set.univ := by simp only [Measure.restrict_univ, MeasureTheory.lintegral_const]
_ ≤ B * IsFiniteKernel.bound κ := mul_le_mul_left' (measure_le_bound κ a Set.univ) _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
hf : Measurable (Function.uncurry f)
a : α
⊢ ∫⁻ (x : β) in Set.univ, B ∂↑κ a = B * ↑↑(↑κ a) Set.univ
[PROOFSTEP]
simp only [Measure.restrict_univ, MeasureTheory.lintegral_const]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
hf : ¬Measurable (Function.uncurry f)
⊢ IsFiniteKernel (withDensity κ f)
[PROOFSTEP]
rw [withDensity_of_not_measurable _ hf]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
B : ℝ≥0∞
hB_top : B ≠ ⊤
hf_B : ∀ (a : α) (b : β), f a b ≤ B
hf : ¬Measurable (Function.uncurry f)
⊢ IsFiniteKernel 0
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
by_cases hf : Measurable (Function.uncurry f)
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
⊢ IsSFiniteKernel (withDensity κ f)
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : ¬Measurable (Function.uncurry f)
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : ¬Measurable (Function.uncurry f)
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
rw [withDensity_of_not_measurable _ hf]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : ¬Measurable (Function.uncurry f)
⊢ IsSFiniteKernel 0
[PROOFSTEP]
infer_instance
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
let fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (n + 1) - min (f a b) n
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
have h_le : ∀ a b n, ⌈(f a b).toReal⌉₊ ≤ n → f a b ≤ n :=
by
intro a b n hn
have : (f a b).toReal ≤ n := Nat.le_of_ceil_le hn
rw [← ENNReal.le_ofReal_iff_toReal_le (hf_ne_top a b) _] at this
· refine' this.trans (le_of_eq _)
rw [ENNReal.ofReal_coe_nat]
· norm_cast
exact zero_le _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
⊢ ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
[PROOFSTEP]
intro a b n hn
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
⊢ f a b ≤ ↑n
[PROOFSTEP]
have : (f a b).toReal ≤ n := Nat.le_of_ceil_le hn
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
this : ENNReal.toReal (f a b) ≤ ↑n
⊢ f a b ≤ ↑n
[PROOFSTEP]
rw [← ENNReal.le_ofReal_iff_toReal_le (hf_ne_top a b) _] at this
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
this : f a b ≤ ENNReal.ofReal ↑n
⊢ f a b ≤ ↑n
[PROOFSTEP]
refine' this.trans (le_of_eq _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
this : f a b ≤ ENNReal.ofReal ↑n
⊢ ENNReal.ofReal ↑n = ↑n
[PROOFSTEP]
rw [ENNReal.ofReal_coe_nat]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
this : ENNReal.toReal (f a b) ≤ ↑n
⊢ 0 ≤ ↑n
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
this : ENNReal.toReal (f a b) ≤ ↑n
⊢ 0 ≤ n
[PROOFSTEP]
exact zero_le _
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
have h_zero : ∀ a b n, ⌈(f a b).toReal⌉₊ ≤ n → fs n a b = 0 :=
by
intro a b n hn
suffices min (f a b) (n + 1) = f a b ∧ min (f a b) n = f a b by simp_rw [this.1, this.2, tsub_self (f a b)]
exact ⟨min_eq_left ((h_le a b n hn).trans (le_add_of_nonneg_right zero_le_one)), min_eq_left (h_le a b n hn)⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
⊢ ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
[PROOFSTEP]
intro a b n hn
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
⊢ fs n a b = 0
[PROOFSTEP]
suffices min (f a b) (n + 1) = f a b ∧ min (f a b) n = f a b by simp_rw [this.1, this.2, tsub_self (f a b)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
this : min (f a b) (↑n + 1) = f a b ∧ min (f a b) ↑n = f a b
⊢ fs n a b = 0
[PROOFSTEP]
simp_rw [this.1, this.2, tsub_self (f a b)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
a : α
b : β
n : ℕ
hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
⊢ min (f a b) (↑n + 1) = f a b ∧ min (f a b) ↑n = f a b
[PROOFSTEP]
exact ⟨min_eq_left ((h_le a b n hn).trans (le_add_of_nonneg_right zero_le_one)), min_eq_left (h_le a b n hn)⟩
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
have hf_eq_tsum : f = ∑' n, fs n :=
by
have h_sum_a : ∀ a, Summable fun n => fs n a :=
by
refine' fun a => Pi.summable.mpr fun b => _
suffices : ∀ n, n ∉ Finset.range ⌈(f a b).toReal⌉₊ → fs n a b = 0
exact summable_of_ne_finset_zero this
intro n hn_not_mem
rw [Finset.mem_range, not_lt] at hn_not_mem
exact h_zero a b n hn_not_mem
ext a b : 2
rw [tsum_apply (Pi.summable.mpr h_sum_a), tsum_apply (h_sum_a a), ENNReal.tsum_eq_liminf_sum_nat]
have h_finset_sum : ∀ n, ∑ i in Finset.range n, fs i a b = min (f a b) n :=
by
intro n
induction' n with n hn
· simp
rw [Finset.sum_range_succ, hn]
simp
simp_rw [h_finset_sum]
refine' (Filter.Tendsto.liminf_eq _).symm
refine' Filter.Tendsto.congr' _ tendsto_const_nhds
rw [Filter.EventuallyEq, Filter.eventually_atTop]
exact ⟨⌈(f a b).toReal⌉₊, fun n hn => (min_eq_left (h_le a b n hn)).symm⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
⊢ f = ∑' (n : ℕ), fs n
[PROOFSTEP]
have h_sum_a : ∀ a, Summable fun n => fs n a :=
by
refine' fun a => Pi.summable.mpr fun b => _
suffices : ∀ n, n ∉ Finset.range ⌈(f a b).toReal⌉₊ → fs n a b = 0
exact summable_of_ne_finset_zero this
intro n hn_not_mem
rw [Finset.mem_range, not_lt] at hn_not_mem
exact h_zero a b n hn_not_mem
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
⊢ ∀ (a : α), Summable fun n => fs n a
[PROOFSTEP]
refine' fun a => Pi.summable.mpr fun b => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
a : α
b : β
⊢ Summable fun i => fs i a b
[PROOFSTEP]
suffices : ∀ n, n ∉ Finset.range ⌈(f a b).toReal⌉₊ → fs n a b = 0
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
a : α
b : β
this : ∀ (n : ℕ), ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ → fs n a b = 0
⊢ Summable fun i => fs i a b
case this
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
a : α
b : β
⊢ ∀ (n : ℕ), ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ → fs n a b = 0
[PROOFSTEP]
exact summable_of_ne_finset_zero this
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
a : α
b : β
⊢ ∀ (n : ℕ), ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ → fs n a b = 0
[PROOFSTEP]
intro n hn_not_mem
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
a : α
b : β
n : ℕ
hn_not_mem : ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊
⊢ fs n a b = 0
[PROOFSTEP]
rw [Finset.mem_range, not_lt] at hn_not_mem
[GOAL]
case this
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
a : α
b : β
n : ℕ
hn_not_mem : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n
⊢ fs n a b = 0
[PROOFSTEP]
exact h_zero a b n hn_not_mem
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
⊢ f = ∑' (n : ℕ), fs n
[PROOFSTEP]
ext a b : 2
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
⊢ f a b = tsum (fun n => fs n) a b
[PROOFSTEP]
rw [tsum_apply (Pi.summable.mpr h_sum_a), tsum_apply (h_sum_a a), ENNReal.tsum_eq_liminf_sum_nat]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
⊢ f a b = Filter.liminf (fun n => ∑ i in Finset.range n, fs i a b) Filter.atTop
[PROOFSTEP]
have h_finset_sum : ∀ n, ∑ i in Finset.range n, fs i a b = min (f a b) n :=
by
intro n
induction' n with n hn
· simp
rw [Finset.sum_range_succ, hn]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
⊢ ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
[PROOFSTEP]
intro n
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
n : ℕ
⊢ ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
[PROOFSTEP]
induction' n with n hn
[GOAL]
case zero
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
⊢ ∑ i in Finset.range Nat.zero, fs i a b = min (f a b) ↑Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
n : ℕ
hn : ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ ∑ i in Finset.range (Nat.succ n), fs i a b = min (f a b) ↑(Nat.succ n)
[PROOFSTEP]
rw [Finset.sum_range_succ, hn]
[GOAL]
case succ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
n : ℕ
hn : ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ min (f a b) ↑n + fs n a b = min (f a b) ↑(Nat.succ n)
[PROOFSTEP]
simp
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ f a b = Filter.liminf (fun n => ∑ i in Finset.range n, fs i a b) Filter.atTop
[PROOFSTEP]
simp_rw [h_finset_sum]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ f a b = Filter.liminf (fun n => min (f a b) ↑n) Filter.atTop
[PROOFSTEP]
refine' (Filter.Tendsto.liminf_eq _).symm
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ Filter.Tendsto (fun n => min (f a b) ↑n) Filter.atTop (nhds (f a b))
[PROOFSTEP]
refine' Filter.Tendsto.congr' _ tendsto_const_nhds
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ (fun x => f a b) =ᶠ[Filter.atTop] fun n => min (f a b) ↑n
[PROOFSTEP]
rw [Filter.EventuallyEq, Filter.eventually_atTop]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
h_sum_a : ∀ (a : α), Summable fun n => fs n a
a : α
b : β
h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n
⊢ ∃ a_1, ∀ (b_1 : ℕ), b_1 ≥ a_1 → f a b = min (f a b) ↑b_1
[PROOFSTEP]
exact ⟨⌈(f a b).toReal⌉₊, fun n hn => (min_eq_left (h_le a b n hn)).symm⟩
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
⊢ IsSFiniteKernel (withDensity κ f)
[PROOFSTEP]
rw [hf_eq_tsum, withDensity_tsum _ fun n : ℕ => _]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
⊢ IsSFiniteKernel (kernel.sum fun n => withDensity κ (fs n))
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
⊢ ∀ (n : ℕ), Measurable (Function.uncurry (fs n))
[PROOFSTEP]
swap
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
⊢ ∀ (n : ℕ), Measurable (Function.uncurry (fs n))
[PROOFSTEP]
exact fun _ => (hf.min measurable_const).sub (hf.min measurable_const)
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
⊢ IsSFiniteKernel (kernel.sum fun n => withDensity κ (fs n))
[PROOFSTEP]
refine' isSFiniteKernel_sum fun n => _
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
⊢ IsSFiniteKernel (withDensity κ (fs n))
[PROOFSTEP]
suffices IsFiniteKernel (withDensity κ (fs n)) by haveI := this; infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
this : IsFiniteKernel (withDensity κ (fs n))
⊢ IsSFiniteKernel (withDensity κ (fs n))
[PROOFSTEP]
haveI := this
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
this✝ this : IsFiniteKernel (withDensity κ (fs n))
⊢ IsSFiniteKernel (withDensity κ (fs n))
[PROOFSTEP]
infer_instance
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
⊢ IsFiniteKernel (withDensity κ (fs n))
[PROOFSTEP]
refine' isFiniteKernel_withDensity_of_bounded _ (ENNReal.coe_ne_top : ↑n + 1 ≠ ∞) fun a b => _
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
a : α
b : β
⊢ fs n a b ≤ ↑((fun x x_1 => x + x_1) (↑n) 1)
[PROOFSTEP]
norm_cast
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
a : α
b : β
⊢ fs n a b ≤ ↑(n + 1)
[PROOFSTEP]
calc
fs n a b ≤ min (f a b) (n + 1) := tsub_le_self
_ ≤ n + 1 := (min_le_right _ _)
_ = ↑(n + 1) := by norm_cast
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
hf : Measurable (Function.uncurry f)
fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n
h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n
h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0
hf_eq_tsum : f = ∑' (n : ℕ), fs n
n : ℕ
a : α
b : β
⊢ ↑n + 1 = ↑(n + 1)
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
⊢ IsSFiniteKernel (kernel.withDensity κ f)
[PROOFSTEP]
have h_eq_sum : withDensity κ f = kernel.sum fun i => withDensity (seq κ i) f :=
by
rw [← withDensity_kernel_sum _ _]
congr
exact (kernel_sum_seq κ).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
⊢ kernel.withDensity κ f = kernel.sum fun i => kernel.withDensity (seq κ i) f
[PROOFSTEP]
rw [← withDensity_kernel_sum _ _]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
⊢ kernel.withDensity κ f = kernel.withDensity (kernel.sum fun i => seq κ i) f
[PROOFSTEP]
congr
[GOAL]
case e_κ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
⊢ κ = kernel.sum fun i => seq κ i
[PROOFSTEP]
exact (kernel_sum_seq κ).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
h_eq_sum : kernel.withDensity κ f = kernel.sum fun i => kernel.withDensity (seq κ i) f
⊢ IsSFiniteKernel (kernel.withDensity κ f)
[PROOFSTEP]
rw [h_eq_sum]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
κ✝ : { x // x ∈ kernel α β }
f : α → β → ℝ≥0∞
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤
h_eq_sum : kernel.withDensity κ f = kernel.sum fun i => kernel.withDensity (seq κ i) f
⊢ IsSFiniteKernel (kernel.sum fun i => kernel.withDensity (seq κ i) f)
[PROOFSTEP]
exact isSFiniteKernel_sum fun n => isSFiniteKernel_withDensity_of_isFiniteKernel (seq κ n) hf_ne_top
| {"mathlib_filename": "Mathlib.Probability.Kernel.WithDensity", "llama_tokens": 32693} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
⊢ ↑p a = 0 ↔ ¬a ∈ support p
[PROOFSTEP]
rw [mem_support_iff, Classical.not_not]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
⊢ ↑p a = 1 ↔ support p = {a}
[PROOFSTEP]
refine'
⟨fun h =>
Set.Subset.antisymm (fun a' ha' => by_contra fun ha => _) fun a' ha' =>
ha'.symm ▸ (p.mem_support_iff a).2 fun ha => zero_ne_one <| ha.symm.trans h,
fun h => _root_.trans (symm <| tsum_eq_single a fun a' ha' => (p.apply_eq_zero_iff a').2 (h.symm ▸ ha')) p.tsum_coe⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
⊢ False
[PROOFSTEP]
suffices : 1 < ∑' a, p a
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 1 < ∑' (a : α), ↑p a
⊢ False
case this
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
⊢ 1 < ∑' (a : α), ↑p a
[PROOFSTEP]
exact ne_of_lt this p.tsum_coe.symm
[GOAL]
case this
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
⊢ 1 < ∑' (a : α), ↑p a
[PROOFSTEP]
have : 0 < ∑' b, ite (b = a) 0 (p b) :=
lt_of_le_of_ne' zero_le'
((tsum_ne_zero_iff ENNReal.summable).2 ⟨a', ite_ne_left_iff.2 ⟨ha, Ne.symm <| (p.mem_support_iff a').2 ha'⟩⟩)
[GOAL]
case this
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
⊢ 1 < ∑' (a : α), ↑p a
[PROOFSTEP]
calc
1 = 1 + 0 := (add_zero 1).symm
_ < p a + ∑' b, ite (b = a) 0 (p b) := (ENNReal.add_lt_add_of_le_of_lt ENNReal.one_ne_top (le_of_eq h.symm) this)
_ = ite (a = a) (p a) 0 + ∑' b, ite (b = a) 0 (p b) := by rw [eq_self_iff_true, if_true]
_ = (∑' b, ite (b = a) (p b) 0) + ∑' b, ite (b = a) 0 (p b) :=
by
congr
exact symm (tsum_eq_single a fun b hb => if_neg hb)
_ = ∑' b, (ite (b = a) (p b) 0 + ite (b = a) 0 (p b)) := ENNReal.tsum_add.symm
_ = ∑' b, p b := tsum_congr fun b => by split_ifs <;> simp only [zero_add, add_zero, le_rfl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
⊢ (↑p a + ∑' (b : α), if b = a then 0 else ↑p b) = (if a = a then ↑p a else 0) + ∑' (b : α), if b = a then 0 else ↑p b
[PROOFSTEP]
rw [eq_self_iff_true, if_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
⊢ ((if a = a then ↑p a else 0) + ∑' (b : α), if b = a then 0 else ↑p b) =
(∑' (b : α), if b = a then ↑p b else 0) + ∑' (b : α), if b = a then 0 else ↑p b
[PROOFSTEP]
congr
[GOAL]
case e_a
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
⊢ (if a = a then ↑p a else 0) = ∑' (b : α), if b = a then ↑p b else 0
[PROOFSTEP]
exact symm (tsum_eq_single a fun b hb => if_neg hb)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
b : α
⊢ ((if b = a then ↑p b else 0) + if b = a then 0 else ↑p b) = ↑p b
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
b : α
h✝ : b = a
⊢ ↑p b + 0 = ↑p b
[PROOFSTEP]
simp only [zero_add, add_zero, le_rfl]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
h : ↑p a = 1
a' : α
ha' : a' ∈ support p
ha : ¬a' ∈ {a}
this : 0 < ∑' (b : α), if b = a then 0 else ↑p b
b : α
h✝ : ¬b = a
⊢ 0 + ↑p b = ↑p b
[PROOFSTEP]
simp only [zero_add, add_zero, le_rfl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a : α
⊢ ↑p a ≤ 1
[PROOFSTEP]
refine' hasSum_le (fun b => _) (hasSum_ite_eq a (p a)) (hasSum_coe_one p)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a b : α
⊢ (if b = a then ↑p a else 0) ≤ ↑p b
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a b : α
h : b = a
⊢ ↑p a ≤ ↑p b
[PROOFSTEP]
simp only [h, zero_le', le_rfl]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
a b : α
h : ¬b = a
⊢ 0 ≤ ↑p b
[PROOFSTEP]
simp only [h, zero_le', le_rfl]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
⊢ OuterMeasure.caratheodory (toOuterMeasure p) = ⊤
[PROOFSTEP]
refine' eq_top_iff.2 <| le_trans (le_sInf fun x hx => _) (le_sum_caratheodory _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
x : MeasurableSpace α
hx : x ∈ Set.range fun i => OuterMeasure.caratheodory (↑p i • dirac i)
⊢ ⊤ ≤ x
[PROOFSTEP]
have ⟨y, hy⟩ := hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
x : MeasurableSpace α
hx : x ∈ Set.range fun i => OuterMeasure.caratheodory (↑p i • dirac i)
y : α
hy : (fun i => OuterMeasure.caratheodory (↑p i • dirac i)) y = x
⊢ ⊤ ≤ x
[PROOFSTEP]
exact ((le_of_eq (dirac_caratheodory y).symm).trans (le_smul_caratheodory _ _)).trans (le_of_eq hy)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s✝ t : Set α
s : Finset α
⊢ ↑(toOuterMeasure p) ↑s = ∑ x in s, ↑p x
[PROOFSTEP]
refine' (toOuterMeasure_apply p s).trans ((tsum_eq_sum (s := s) _).trans _)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s✝ t : Set α
s : Finset α
⊢ ∀ (b : α), ¬b ∈ s → Set.indicator (↑s) (↑p) b = 0
[PROOFSTEP]
exact fun x hx => Set.indicator_of_not_mem (Finset.mem_coe.not.2 hx) _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s✝ t : Set α
s : Finset α
⊢ ∑ b in s, Set.indicator (↑s) (↑p) b = ∑ x in s, ↑p x
[PROOFSTEP]
exact Finset.sum_congr rfl fun x hx => Set.indicator_of_mem (Finset.mem_coe.2 hx) _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
a : α
⊢ ↑(toOuterMeasure p) {a} = ↑p a
[PROOFSTEP]
refine' (p.toOuterMeasure_apply { a }).trans ((tsum_eq_single a fun b hb => _).trans _)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
a b : α
hb : b ≠ a
⊢ Set.indicator {a} (↑p) b = 0
[PROOFSTEP]
exact ite_eq_right_iff.2 fun hb' => False.elim <| hb hb'
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
a : α
⊢ Set.indicator {a} (↑p) a = ↑p a
[PROOFSTEP]
exact ite_eq_left_iff.2 fun ha' => False.elim <| ha' rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
⊢ ↑(toOuterMeasure p) s = 0 ↔ Disjoint (support p) s
[PROOFSTEP]
rw [toOuterMeasure_apply, ENNReal.tsum_eq_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
⊢ (∀ (i : α), Set.indicator s (↑p) i = 0) ↔ Disjoint (support p) s
[PROOFSTEP]
exact Function.funext_iff.symm.trans Set.indicator_eq_zero'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
⊢ ↑(toOuterMeasure p) s = 1 ↔ support p ⊆ s
[PROOFSTEP]
refine' (p.toOuterMeasure_apply s).symm ▸ ⟨fun h a hap => _, fun h => _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : ∑' (x : α), Set.indicator s (↑p) x = 1
a : α
hap : a ∈ support p
⊢ a ∈ s
[PROOFSTEP]
refine' by_contra fun hs => ne_of_lt _ (h.trans p.tsum_coe.symm)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : ∑' (x : α), Set.indicator s (↑p) x = 1
a : α
hap : a ∈ support p
hs : ¬a ∈ s
⊢ ∑' (x : α), Set.indicator s (↑p) x < ∑' (a : α), ↑p a
[PROOFSTEP]
have hs' : s.indicator p a = 0 := Set.indicator_apply_eq_zero.2 fun hs' => False.elim <| hs hs'
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : ∑' (x : α), Set.indicator s (↑p) x = 1
a : α
hap : a ∈ support p
hs : ¬a ∈ s
hs' : Set.indicator s (↑p) a = 0
⊢ ∑' (x : α), Set.indicator s (↑p) x < ∑' (a : α), ↑p a
[PROOFSTEP]
have hsa : s.indicator p a < p a := hs'.symm ▸ (p.apply_pos_iff a).2 hap
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : ∑' (x : α), Set.indicator s (↑p) x = 1
a : α
hap : a ∈ support p
hs : ¬a ∈ s
hs' : Set.indicator s (↑p) a = 0
hsa : Set.indicator s (↑p) a < ↑p a
⊢ ∑' (x : α), Set.indicator s (↑p) x < ∑' (a : α), ↑p a
[PROOFSTEP]
exact ENNReal.tsum_lt_tsum (p.tsum_coe_indicator_ne_top s) (fun x => Set.indicator_apply_le fun _ => le_rfl) hsa
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : support p ⊆ s
⊢ ∑' (x : α), Set.indicator s (↑p) x = 1
[PROOFSTEP]
suffices : ∀ (x) (_ : x ∉ s), p x = 0
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : support p ⊆ s
this : ∀ (x : α), ¬x ∈ s → ↑p x = 0
⊢ ∑' (x : α), Set.indicator s (↑p) x = 1
case this α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : support p ⊆ s ⊢ ∀ (x : α), ¬x ∈ s → ↑p x = 0
[PROOFSTEP]
exact
_root_.trans (tsum_congr fun a => (Set.indicator_apply s p a).trans (ite_eq_left_iff.2 <| symm ∘ this a)) p.tsum_coe
[GOAL]
case this
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
h : support p ⊆ s
⊢ ∀ (x : α), ¬x ∈ s → ↑p x = 0
[PROOFSTEP]
exact fun a ha => (p.apply_eq_zero_iff a).2 <| Set.not_mem_subset h ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s t : Set α
⊢ ↑(toOuterMeasure p) (s ∩ support p) = ↑(toOuterMeasure p) s
[PROOFSTEP]
simp only [toOuterMeasure_apply, Pmf.support, Set.indicator_inter_support]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : MeasurableSpace α
p : Pmf α
s t : Set α
a : α
h : MeasurableSet {a}
⊢ ↑↑(toMeasure p) {a} = ↑p a
[PROOFSTEP]
simp [toMeasure_apply_eq_toOuterMeasure_apply _ _ h, toOuterMeasure_apply_singleton]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : MeasurableSpace α
p : Pmf α
s t : Set α
hs : MeasurableSet s
⊢ ↑↑(toMeasure p) s = 0 ↔ Disjoint (support p) s
[PROOFSTEP]
rw [toMeasure_apply_eq_toOuterMeasure_apply p s hs, toOuterMeasure_apply_eq_zero_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : MeasurableSpace α
p : Pmf α
s t : Set α
hs : MeasurableSet s
hp : MeasurableSet (support p)
⊢ ↑↑(toMeasure p) (s ∩ support p) = ↑↑(toMeasure p) s
[PROOFSTEP]
simp [p.toMeasure_apply_eq_toOuterMeasure_apply s hs, p.toMeasure_apply_eq_toOuterMeasure_apply _ (hs.inter hp)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : MeasurableSpace α
p : Pmf α
s✝ t✝ s t : Set α
hs : MeasurableSet s
ht : MeasurableSet t
h : s ∩ support p ⊆ t
⊢ ↑↑(toMeasure p) s ≤ ↑↑(toMeasure p) t
[PROOFSTEP]
simpa only [p.toMeasure_apply_eq_toOuterMeasure_apply, hs, ht] using toOuterMeasure_mono p h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : MeasurableSpace α
p : Pmf α
s✝ t✝ s t : Set α
hs : MeasurableSet s
ht : MeasurableSet t
h : s ∩ support p = t ∩ support p
⊢ ↑↑(toMeasure p) s = ↑↑(toMeasure p) t
[PROOFSTEP]
simpa only [p.toMeasure_apply_eq_toOuterMeasure_apply, hs, ht] using toOuterMeasure_apply_eq_of_inter_support_eq p h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : MeasurableSpace α
p : Pmf α
s t : Set α
inst✝ : MeasurableSingletonClass α
⊢ Function.Injective toMeasure
[PROOFSTEP]
intro p q h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : MeasurableSpace α
p✝ : Pmf α
s t : Set α
inst✝ : MeasurableSingletonClass α
p q : Pmf α
h : toMeasure p = toMeasure q
⊢ p = q
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : MeasurableSpace α
p✝ : Pmf α
s t : Set α
inst✝ : MeasurableSingletonClass α
p q : Pmf α
h : toMeasure p = toMeasure q
x : α
⊢ ↑p x = ↑q x
[PROOFSTEP]
rw [← p.toMeasure_apply_singleton x <| measurableSet_singleton x, ←
q.toMeasure_apply_singleton x <| measurableSet_singleton x, h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : Countable α
inst✝² : MeasurableSpace α
inst✝¹ : MeasurableSingletonClass α
μ : Measure α
inst✝ : IsProbabilityMeasure μ
s : Set α
hs : MeasurableSet s
⊢ ↑↑(toMeasure (toPmf μ)) s = ↑↑μ s
[PROOFSTEP]
rw [μ.toPmf.toMeasure_apply s hs, ← μ.tsum_indicator_apply_singleton s hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : Countable α
inst✝² : MeasurableSpace α
inst✝¹ : MeasurableSingletonClass α
μ : Measure α
inst✝ : IsProbabilityMeasure μ
s : Set α
hs : MeasurableSet s
⊢ ∑' (x : α), Set.indicator s (↑(toPmf μ)) x = ∑' (x : α), Set.indicator s (fun x => ↑↑μ {x}) x
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝ : MeasurableSpace α
p : Pmf α
⊢ ↑↑(toMeasure p) Set.univ = 1
[PROOFSTEP]
simpa only [MeasurableSet.univ, toMeasure_apply_eq_toOuterMeasure_apply, Set.indicator_univ, toOuterMeasure_apply,
ENNReal.coe_eq_one] using tsum_coe p
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : Countable α
inst✝² : MeasurableSpace α
inst✝¹ : MeasurableSingletonClass α
p : Pmf α
μ : Measure α
inst✝ : IsProbabilityMeasure μ
x : α
⊢ ↑(Measure.toPmf (toMeasure p)) x = ↑p x
[PROOFSTEP]
rw [← p.toMeasure_apply_singleton x (measurableSet_singleton x), p.toMeasure.toPmf_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : Countable α
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSingletonClass α
p : Pmf α
μ✝ : Measure α
inst✝¹ : IsProbabilityMeasure μ✝
μ : Measure α
inst✝ : IsProbabilityMeasure μ
⊢ toMeasure p = μ ↔ p = Measure.toPmf μ
[PROOFSTEP]
rw [← toMeasure_inj, Measure.toPmf_toMeasure]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝⁴ : Countable α
inst✝³ : MeasurableSpace α
inst✝² : MeasurableSingletonClass α
p : Pmf α
μ✝ : Measure α
inst✝¹ : IsProbabilityMeasure μ✝
μ : Measure α
inst✝ : IsProbabilityMeasure μ
⊢ Measure.toPmf μ = p ↔ μ = toMeasure p
[PROOFSTEP]
rw [← toMeasure_inj, Measure.toPmf_toMeasure]
| {"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Basic", "llama_tokens": 7207} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
⊢ Pmf α
[PROOFSTEP]
refine' ofFinset (fun a => if a ∈ s then s.card⁻¹ else 0) s _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
⊢ ∑ a in s, (fun a => if a ∈ s then (↑(Finset.card s))⁻¹ else 0) a = 1
[PROOFSTEP]
simp only [Finset.sum_ite_mem, Finset.inter_self, Finset.sum_const, nsmul_eq_mul]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
⊢ ↑(Finset.card s) * (↑(Finset.card s))⁻¹ = 1
[PROOFSTEP]
have : (s.card : ℝ≥0∞) ≠ 0 := by
simpa only [Ne.def, Nat.cast_eq_zero, Finset.card_eq_zero] using Finset.nonempty_iff_ne_empty.1 hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
⊢ ↑(Finset.card s) ≠ 0
[PROOFSTEP]
simpa only [Ne.def, Nat.cast_eq_zero, Finset.card_eq_zero] using Finset.nonempty_iff_ne_empty.1 hs
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
this : ↑(Finset.card s) ≠ 0
⊢ ↑(Finset.card s) * (↑(Finset.card s))⁻¹ = 1
[PROOFSTEP]
refine' ENNReal.mul_inv_cancel this <| ENNReal.nat_ne_top s.card
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
⊢ ∀ (a : α), ¬a ∈ s → (fun a => if a ∈ s then (↑(Finset.card s))⁻¹ else 0) a = 0
[PROOFSTEP]
exact fun x hx => by simp only [hx, if_false]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
x : α
hx : ¬x ∈ s
⊢ (fun a => if a ∈ s then (↑(Finset.card s))⁻¹ else 0) x = 0
[PROOFSTEP]
simp only [hx, if_false]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
ha : a ∈ s
⊢ ↑(uniformOfFinset s hs) a = (↑(Finset.card s))⁻¹
[PROOFSTEP]
simp [ha]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
ha : ¬a ∈ s
⊢ ↑(uniformOfFinset s hs) a = 0
[PROOFSTEP]
simp [ha]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
⊢ ∀ (x : α), x ∈ support (uniformOfFinset s hs) ↔ x ∈ ↑s
[PROOFSTEP]
let ⟨a, ha⟩ := hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a✝ a : α
ha : a ∈ s
⊢ ∀ (x : α), x ∈ support (uniformOfFinset s (_ : ∃ x, x ∈ s)) ↔ x ∈ ↑s
[PROOFSTEP]
simp [mem_support_iff, Finset.ne_empty_of_mem ha]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a✝ a : α
⊢ a ∈ support (uniformOfFinset s hs) ↔ a ∈ s
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
t : Set α
x : α
⊢ (if x ∈ t then ↑(uniformOfFinset s hs) x else 0) = if x ∈ s ∧ x ∈ t then (↑(Finset.card s))⁻¹ else 0
[PROOFSTEP]
simp_rw [uniformOfFinset_apply, ← ite_and, and_comm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
t : Set α
x : α
hx : x ∈ Finset.filter (fun x => x ∈ t) s
⊢ (if x ∈ s ∧ x ∈ t then (↑(Finset.card s))⁻¹ else 0) = (↑(Finset.card s))⁻¹
[PROOFSTEP]
let this : x ∈ s ∧ x ∈ t := by simpa using hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
t : Set α
x : α
hx : x ∈ Finset.filter (fun x => x ∈ t) s
⊢ x ∈ s ∧ x ∈ t
[PROOFSTEP]
simpa using hx
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
t : Set α
x : α
hx : x ∈ Finset.filter (fun x => x ∈ t) s
this : x ∈ s ∧ x ∈ t := Eq.mp Mathlib.Data.Finset.Basic._auxLemma.130 hx
⊢ (if x ∈ s ∧ x ∈ t then (↑(Finset.card s))⁻¹ else 0) = (↑(Finset.card s))⁻¹
[PROOFSTEP]
simp only [this, and_self_iff, if_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Finset α
hs : Finset.Nonempty s
a : α
t : Set α
⊢ ∑ _x in Finset.filter (fun x => x ∈ t) s, (↑(Finset.card s))⁻¹ =
↑(Finset.card (Finset.filter (fun x => x ∈ t) s)) / ↑(Finset.card s)
[PROOFSTEP]
simp only [div_eq_mul_inv, Finset.sum_const, nsmul_eq_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : Fintype α
inst✝ : Nonempty α
a : α
⊢ ↑(uniformOfFintype α) a = (↑(Fintype.card α))⁻¹
[PROOFSTEP]
simp [uniformOfFintype, Finset.mem_univ, if_true, uniformOfFinset_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : Fintype α
inst✝ : Nonempty α
a : α
⊢ Finset.card Finset.univ = Fintype.card α
[PROOFSTEP]
rfl
[GOAL]
α✝ : Type u_1
β : Type u_2
γ : Type u_3
inst✝³ : Fintype α✝
inst✝² : Nonempty α✝
α : Type u_4
inst✝¹ : Fintype α
inst✝ : Nonempty α
x : α
⊢ x ∈ support (uniformOfFintype α) ↔ x ∈ ⊤
[PROOFSTEP]
simp [mem_support_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : Fintype α
inst✝ : Nonempty α
a : α
⊢ a ∈ support (uniformOfFintype α)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : Fintype α
inst✝ : Nonempty α
s : Set α
⊢ ↑(toOuterMeasure (uniformOfFintype α)) s = ↑(Fintype.card ↑s) / ↑(Fintype.card α)
[PROOFSTEP]
rw [uniformOfFintype, toOuterMeasure_uniformOfFinset_apply, Fintype.card_ofFinset]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : Fintype α
inst✝ : Nonempty α
s : Set α
⊢ ↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Finset.card Finset.univ) =
↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Fintype.card α)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Fintype α
inst✝¹ : Nonempty α
s : Set α
inst✝ : MeasurableSpace α
hs : MeasurableSet s
⊢ ↑↑(toMeasure (uniformOfFintype α)) s = ↑(Fintype.card ↑s) / ↑(Fintype.card α)
[PROOFSTEP]
simp [uniformOfFintype, hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝² : Fintype α
inst✝¹ : Nonempty α
s : Set α
inst✝ : MeasurableSpace α
hs : MeasurableSet s
⊢ ↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Finset.card Finset.univ) =
↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Fintype.card α)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
⊢ ∑' (b : α), ↑(Multiset.count b s) / ↑(↑Multiset.card s) = (↑(↑Multiset.card s))⁻¹ * ∑' (b : α), ↑(Multiset.count b s)
[PROOFSTEP]
simp_rw [ENNReal.div_eq_inv_mul, ENNReal.tsum_mul_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
a : α
ha : ¬a ∈ Multiset.toFinset s
⊢ Multiset.count a s = 0
[PROOFSTEP]
rwa [Multiset.count_eq_zero, ← Multiset.mem_toFinset]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
⊢ (↑(↑Multiset.card s))⁻¹ * ∑ b in Multiset.toFinset s, ↑(Multiset.count b s) = 1
[PROOFSTEP]
rw [← Nat.cast_sum, Multiset.toFinset_sum_count_eq s,
ENNReal.inv_mul_cancel (Nat.cast_ne_zero.2 (hs ∘ Multiset.card_eq_zero.1)) (ENNReal.nat_ne_top _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
⊢ ∀ (x : α), x ∈ support (ofMultiset s hs) ↔ x ∈ ↑(Multiset.toFinset s)
[PROOFSTEP]
simp [mem_support_iff, hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
a : α
⊢ a ∈ support (ofMultiset s hs) ↔ a ∈ Multiset.toFinset s
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
a : α
ha : ¬a ∈ s
⊢ ↑(ofMultiset s hs) a = 0
[PROOFSTEP]
simpa only [ofMultiset_apply, ENNReal.div_eq_zero_iff, Nat.cast_eq_zero, Multiset.count_eq_zero, ENNReal.nat_ne_top,
or_false_iff] using ha
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
t : Set α
⊢ ↑(toOuterMeasure (ofMultiset s hs)) t =
(∑' (x : α), ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s))) / ↑(↑Multiset.card s)
[PROOFSTEP]
simp_rw [div_eq_mul_inv, ← ENNReal.tsum_mul_right, toOuterMeasure_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
t : Set α
⊢ ∑' (x : α), Set.indicator t (↑(ofMultiset s hs)) x =
∑' (i : α), ↑(Multiset.count i (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹
[PROOFSTEP]
refine' tsum_congr fun x => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
t : Set α
x : α
⊢ Set.indicator t (↑(ofMultiset s hs)) x =
↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹
[PROOFSTEP]
by_cases hx : x ∈ t
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
t : Set α
x : α
hx : x ∈ t
⊢ Set.indicator t (↑(ofMultiset s hs)) x =
↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹
[PROOFSTEP]
simp [Set.indicator, hx, div_eq_mul_inv]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
s : Multiset α
hs : s ≠ 0
t : Set α
x : α
hx : ¬x ∈ t
⊢ Set.indicator t (↑(ofMultiset s hs)) x =
↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹
[PROOFSTEP]
simp [Set.indicator, hx, div_eq_mul_inv]
| {"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Uniform", "llama_tokens": 4401} |
[GOAL]
Ω : Type u_1
F : Type u_2
m mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → F
inst✝ : TopologicalSpace F
hm : m ≤ mΩ
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (id ω, id ω)) μ)
[PROOFSTEP]
rw [← aestronglyMeasurable_comp_snd_map_prod_mk_iff (measurable_id'' hm)] at hf
[GOAL]
Ω : Type u_1
F : Type u_2
m mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → F
inst✝ : TopologicalSpace F
hm : m ≤ mΩ
hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (id ω, ω)) μ)
⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (id ω, id ω)) μ)
[PROOFSTEP]
simp_rw [id.def] at hf ⊢
[GOAL]
Ω : Type u_1
F : Type u_2
m mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → F
inst✝ : TopologicalSpace F
hm : m ≤ mΩ
hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (ω, ω)) μ)
⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (ω, ω)) μ)
[PROOFSTEP]
exact hf
[GOAL]
Ω : Type u_1
F : Type u_2
m mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → F
inst✝ : NormedAddCommGroup F
hm : m ≤ mΩ
hf : Integrable f
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
rw [← integrable_comp_snd_map_prod_mk_iff (measurable_id'' hm)] at hf
[GOAL]
Ω : Type u_1
F : Type u_2
m mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → F
inst✝ : NormedAddCommGroup F
hm : m ≤ mΩ
hf : Integrable fun x => f x.snd
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
simp_rw [id.def] at hf ⊢
[GOAL]
Ω : Type u_1
F : Type u_2
m mΩ : MeasurableSpace Ω
μ : Measure Ω
f : Ω → F
inst✝ : NormedAddCommGroup F
hm : m ≤ mΩ
hf : Integrable fun x => f x.snd
⊢ Integrable fun x => f x.snd
[PROOFSTEP]
exact hf
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁴ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝³ : PolishSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
ω : Ω
⊢ ↑(condexpKernel μ m) ω = ↑(condDistrib id id μ) (id ω)
[PROOFSTEP]
simp_rw [condexpKernel, kernel.comap_apply]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁴ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝³ : PolishSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
⊢ IsMarkovKernel (condexpKernel μ m)
[PROOFSTEP]
simp only [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁴ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝³ : PolishSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
⊢ IsMarkovKernel (kernel.comap (condDistrib id id μ) id (_ : Measurable id))
[PROOFSTEP]
infer_instance
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
s : Set Ω
hs : MeasurableSet s
⊢ Measurable fun ω => ↑↑(↑(condexpKernel μ m) ω) s
[PROOFSTEP]
simp_rw [condexpKernel_apply_eq_condDistrib]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
s : Set Ω
hs : MeasurableSet s
⊢ Measurable fun ω => ↑↑(↑(condDistrib id id μ) (id ω)) s
[PROOFSTEP]
refine Measurable.mono ?_ (inf_le_left : m ⊓ mΩ ≤ m) le_rfl
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
s : Set Ω
hs : MeasurableSet s
⊢ Measurable fun ω => ↑↑(↑(condDistrib id id μ) (id ω)) s
[PROOFSTEP]
convert measurable_condDistrib (μ := μ) hs
[GOAL]
case h.e'_3
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
s : Set Ω
hs : MeasurableSet s
⊢ m ⊓ mΩ = MeasurableSpace.comap id (m ⊓ mΩ)
[PROOFSTEP]
rw [MeasurableSpace.comap_id]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable (fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω) μ
[PROOFSTEP]
simp_rw [condexpKernel_apply_eq_condDistrib]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable (fun ω => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id ω)) μ
[PROOFSTEP]
exact
AEStronglyMeasurable.integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id
(hf.comp_snd_map_prod_id inf_le_right)
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω) μ
[PROOFSTEP]
rw [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf : AEStronglyMeasurable f μ
⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) μ
[PROOFSTEP]
have h :=
aestronglyMeasurable'_integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id
(hf.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ))
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf : AEStronglyMeasurable f μ
h :
AEStronglyMeasurable' (MeasurableSpace.comap id (m ⊓ mΩ))
(fun a => ∫ (y : Ω), f (id a, y).snd ∂↑(condDistrib id id μ) (id a)) μ
⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) μ
[PROOFSTEP]
rw [MeasurableSpace.comap_id] at h
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf : AEStronglyMeasurable f μ
h : AEStronglyMeasurable' (m ⊓ mΩ) (fun a => ∫ (y : Ω), f (id a, y).snd ∂↑(condDistrib id id μ) (id a)) μ
⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) μ
[PROOFSTEP]
exact AEStronglyMeasurable'.mono h inf_le_left
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
hf_int : Integrable f
⊢ ∀ᵐ (ω : Ω) ∂μ, Integrable f
[PROOFSTEP]
rw [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
hf_int : Integrable f
⊢ ∀ᵐ (ω : Ω) ∂μ, Integrable f
[PROOFSTEP]
exact
Integrable.condDistrib_ae (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id
(hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ))
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
hf_int : Integrable f
⊢ Integrable fun ω => ∫ (y : Ω), ‖f y‖ ∂↑(condexpKernel μ m) ω
[PROOFSTEP]
rw [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
hf_int : Integrable f
⊢ Integrable fun ω => ∫ (y : Ω), ‖f y‖ ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω
[PROOFSTEP]
exact
Integrable.integral_norm_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id
(hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ))
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
⊢ Integrable fun ω => ‖∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω‖
[PROOFSTEP]
rw [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
⊢ Integrable fun ω => ‖∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω‖
[PROOFSTEP]
exact
Integrable.norm_integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id
(hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ))
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
⊢ Integrable fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω
[PROOFSTEP]
rw [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
⊢ Integrable fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω
[PROOFSTEP]
exact
Integrable.integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id
(hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ))
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
s : Set Ω
hs : MeasurableSet s
⊢ Integrable fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)
[PROOFSTEP]
rw [condexpKernel]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ : IsFiniteMeasure μ
inst✝ : NormedAddCommGroup F
f : Ω → F
s : Set Ω
hs : MeasurableSet s
⊢ Integrable fun ω => ENNReal.toReal (↑↑(↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) s)
[PROOFSTEP]
exact integrable_toReal_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) hs
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
s : Set Ω
hs : MeasurableSet s
⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ]
[PROOFSTEP]
have h := condDistrib_ae_eq_condexp (μ := μ) (measurable_id'' (inf_le_right : m ⊓ mΩ ≤ mΩ)) measurable_id hs
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
s : Set Ω
hs : MeasurableSet s
h :
(fun a => ENNReal.toReal (↑↑(↑(condDistrib id id μ) (id a)) s)) =ᵐ[μ]
μ[indicator (id ⁻¹' s) fun ω => 1|MeasurableSpace.comap id (m ⊓ mΩ)]
⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ]
[PROOFSTEP]
simp only [id_eq, ge_iff_le, MeasurableSpace.comap_id, preimage_id_eq] at h
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
s : Set Ω
hs : MeasurableSet s
h : (fun a => ENNReal.toReal (↑↑(↑(condDistrib id id μ) a) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ]
⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ]
[PROOFSTEP]
simp_rw [condexpKernel_apply_eq_condDistrib]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
s : Set Ω
hs : MeasurableSet s
h : (fun a => ENNReal.toReal (↑↑(↑(condDistrib id id μ) a) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ]
⊢ (fun ω => ENNReal.toReal (↑↑(↑(condDistrib id id μ) (id ω)) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ]
[PROOFSTEP]
exact h
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
hm : m ≤ mΩ
s : Set Ω
hs : MeasurableSet s
⊢ μ[indicator s fun ω => 1|m ⊓ mΩ] =ᵐ[μ] μ[indicator s fun ω => 1|m]
[PROOFSTEP]
rw [inf_of_le_left hm]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
hm : m ≤ mΩ
s : Set Ω
hs : MeasurableSet s
⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[Measure.trim μ hm] μ[indicator s fun ω => 1|m]
[PROOFSTEP]
rw [ae_eq_trim_iff hm _ stronglyMeasurable_condexp]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
hm : m ≤ mΩ
s : Set Ω
hs : MeasurableSet s
⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m]
[PROOFSTEP]
exact condexpKernel_ae_eq_condexp hm hs
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
hm : m ≤ mΩ
s : Set Ω
hs : MeasurableSet s
⊢ StronglyMeasurable fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)
[PROOFSTEP]
refine Measurable.stronglyMeasurable ?_
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁵ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
μ : Measure Ω
inst✝¹ inst✝ : IsFiniteMeasure μ
hm : m ≤ mΩ
s : Set Ω
hs : MeasurableSet s
⊢ Measurable fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)
[PROOFSTEP]
exact @Measurable.ennreal_toReal _ m _ (measurable_condexpKernel hs)
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω
[PROOFSTEP]
have hX : @Measurable Ω Ω mΩ (m ⊓ mΩ) id := measurable_id.mono le_rfl (inf_le_right : m ⊓ mΩ ≤ mΩ)
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
hX : Measurable id
⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω
[PROOFSTEP]
simp_rw [condexpKernel_apply_eq_condDistrib]
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
hX : Measurable id
⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id ω)
[PROOFSTEP]
have h := condexp_ae_eq_integral_condDistrib_id hX hf_int
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hf_int : Integrable f
hX : Measurable id
h : μ[f|MeasurableSpace.comap id (m ⊓ mΩ)] =ᵐ[μ] fun a => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id a)
⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id ω)
[PROOFSTEP]
simpa only [MeasurableSpace.comap_id, id_eq] using h
[GOAL]
Ω : Type u_1
F : Type u_2
inst✝⁷ : TopologicalSpace Ω
m mΩ : MeasurableSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : BorelSpace Ω
inst✝⁴ : Nonempty Ω
μ : Measure Ω
inst✝³ : IsFiniteMeasure μ
inst✝² : NormedAddCommGroup F
f : Ω → F
inst✝¹ : NormedSpace ℝ F
inst✝ : CompleteSpace F
hm : m ≤ mΩ
hf_int : Integrable f
⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] μ[f|m]
[PROOFSTEP]
rw [inf_of_le_left hm]
| {"mathlib_filename": "Mathlib.Probability.Kernel.Condexp", "llama_tokens": 9181} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
⊢ ↑(map f p) b = ∑' (a : α), if b = f a then ↑p a else 0
[PROOFSTEP]
simp [map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b✝ b : β
⊢ b ∈ support (map f p) ↔ b ∈ f '' support p
[PROOFSTEP]
simp [map, @eq_comm β b]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
⊢ b ∈ support (map f p) ↔ ∃ a, a ∈ support p ∧ f a = b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
g : β → γ
⊢ map g (map f p) = map (g ∘ f) p
[PROOFSTEP]
simp [map, Function.comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
⊢ map (Function.const α b) p = pure b
[PROOFSTEP]
simp only [map, Function.comp, bind_const, Function.const]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
s : Set β
⊢ ↑(toOuterMeasure (map f p)) s = ↑(toOuterMeasure p) (f ⁻¹' s)
[PROOFSTEP]
simp [map, Set.indicator, toOuterMeasure_apply p (f ⁻¹' s)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
s : Set β
inst✝¹ : MeasurableSpace α
inst✝ : MeasurableSpace β
hf : Measurable f
hs : MeasurableSet s
⊢ ↑↑(toMeasure (map f p)) s = ↑↑(toMeasure p) (f ⁻¹' s)
[PROOFSTEP]
rw [toMeasure_apply_eq_toOuterMeasure_apply _ s hs,
toMeasure_apply_eq_toOuterMeasure_apply _ (f ⁻¹' s) (measurableSet_preimage hf hs)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → β
p : Pmf α
b : β
s : Set β
inst✝¹ : MeasurableSpace α
inst✝ : MeasurableSpace β
hf : Measurable f
hs : MeasurableSet s
⊢ ↑(toOuterMeasure (map f p)) s = ↑(toOuterMeasure p) (f ⁻¹' s)
[PROOFSTEP]
exact toOuterMeasure_map_apply f p s
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
q : Pmf (α → β)
p : Pmf α
b : β
⊢ ↑(seq q p) b = ∑' (f : α → β) (a : α), if b = f a then ↑q f * ↑p a else 0
[PROOFSTEP]
simp only [seq, mul_boole, bind_apply, pure_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
q : Pmf (α → β)
p : Pmf α
b : β
⊢ (∑' (a : α → β), ↑q a * ∑' (a_1 : α), if b = a a_1 then ↑p a_1 else 0) =
∑' (f : α → β) (a : α), if b = f a then ↑q f * ↑p a else 0
[PROOFSTEP]
refine' tsum_congr fun f => ENNReal.tsum_mul_left.symm.trans (tsum_congr fun a => _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
q : Pmf (α → β)
p : Pmf α
b : β
f : α → β
a : α
⊢ (↑q f * if b = f a then ↑p a else 0) = if b = f a then ↑q f * ↑p a else 0
[PROOFSTEP]
simpa only [mul_zero] using mul_ite (b = f a) (q f) (p a) 0
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
q : Pmf (α → β)
p : Pmf α
b✝ b : β
⊢ b ∈ support (seq q p) ↔ b ∈ ⋃ (f : α → β) (_ : f ∈ support q), f '' support p
[PROOFSTEP]
simp [-mem_support_iff, seq, @eq_comm β b]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
q : Pmf (α → β)
p : Pmf α
b : β
⊢ b ∈ support (seq q p) ↔ ∃ f, f ∈ support q ∧ b ∈ f '' support p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → ℝ≥0∞
s : Finset α
h : ∑ a in s, f a = 1
h' : ∀ (a : α), ¬a ∈ s → f a = 0
a : α
⊢ a ∈ support (ofFinset f s h h') ↔ a ∈ ↑s ∩ Function.support f
[PROOFSTEP]
simpa [mem_support_iff] using mt (h' a)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → ℝ≥0∞
s : Finset α
h : ∑ a in s, f a = 1
h' : ∀ (a : α), ¬a ∈ s → f a = 0
a : α
⊢ a ∈ support (ofFinset f s h h') ↔ a ∈ s ∧ f a ≠ 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → ℝ≥0∞
hf0 : tsum f ≠ 0
hf : tsum f ≠ ⊤
a : α
⊢ a ∈ support (normalize f hf0 hf) ↔ a ∈ Function.support f
[PROOFSTEP]
simp [hf, mem_support_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
f : α → ℝ≥0∞
hf0 : tsum f ≠ 0
hf : tsum f ≠ ⊤
a : α
⊢ a ∈ support (normalize f hf0 hf) ↔ f a ≠ 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s : Set α
h : ∃ a, a ∈ s ∧ a ∈ support p
⊢ tsum (Set.indicator s ↑p) ≠ 0
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s : Set α
h : ∃ a, a ∈ s ∧ a ∈ support p
a : α
⊢ ↑(filter p s h) a = Set.indicator s (↑p) a * (∑' (a' : α), Set.indicator s (↑p) a')⁻¹
[PROOFSTEP]
rw [filter, normalize_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s : Set α
h : ∃ a, a ∈ s ∧ a ∈ support p
a : α
ha : ¬a ∈ s
⊢ ↑(filter p s h) a = 0
[PROOFSTEP]
rw [filter_apply, Set.indicator_apply_eq_zero.mpr fun ha' => absurd ha' ha, zero_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s : Set α
h : ∃ a, a ∈ s ∧ a ∈ support p
a : α
⊢ ↑(filter p s h) a = 0 ↔ ¬a ∈ s ∨ ¬a ∈ support p
[PROOFSTEP]
erw [apply_eq_zero_iff, support_filter, Set.mem_inter_iff, not_and_or]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
s : Set α
h : ∃ a, a ∈ s ∧ a ∈ support p
a : α
⊢ ↑(filter p s h) a ≠ 0 ↔ a ∈ s ∧ a ∈ support p
[PROOFSTEP]
rw [Ne.def, filter_apply_eq_zero_iff, not_or, Classical.not_not, Classical.not_not]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
⊢ ∑ a : Bool, (fun b => bif b then p else 1 - p) a = 1
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
b : Bool
⊢ support (bernoulli p h) = {b | bif b then p ≠ 0 else p ≠ 1}
[PROOFSTEP]
refine' Set.ext fun b => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
b✝ b : Bool
⊢ b ∈ support (bernoulli p h) ↔ b ∈ {b | bif b then p ≠ 0 else p ≠ 1}
[PROOFSTEP]
induction b
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
b : Bool
⊢ false ∈ support (bernoulli p h) ↔ false ∈ {b | bif b then p ≠ 0 else p ≠ 1}
[PROOFSTEP]
simp_rw [mem_support_iff, bernoulli_apply, Bool.cond_false, Ne.def, tsub_eq_zero_iff_le, not_le]
[GOAL]
case false
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
b : Bool
⊢ p < 1 ↔ false ∈ {b | bif b then ¬p = 0 else ¬p = 1}
[PROOFSTEP]
exact ⟨ne_of_lt, lt_of_le_of_ne h⟩
[GOAL]
case true
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
b : Bool
⊢ true ∈ support (bernoulli p h) ↔ true ∈ {b | bif b then p ≠ 0 else p ≠ 1}
[PROOFSTEP]
simp only [mem_support_iff, bernoulli_apply, Bool.cond_true, Set.mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : ℝ≥0∞
h : p ≤ 1
b : Bool
⊢ b ∈ support (bernoulli p h) ↔ bif b then p ≠ 0 else p ≠ 1
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Constructions", "llama_tokens": 3316} |
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
⊢ Compatibility.τ₀ =
Compatibility.τ₁
(eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))
(eqToIso
(_ :
(toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse =
Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor))
N₁Γ₀
[PROOFSTEP]
ext K : 3
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ NatTrans.app Compatibility.τ₀.hom K =
NatTrans.app
(Compatibility.τ₁
(eqToIso
(_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))
(eqToIso
(_ :
(toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse =
Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor))
N₁Γ₀).hom
K
[PROOFSTEP]
simp only [Compatibility.τ₀_hom_app, Compatibility.τ₁_hom_app, eqToIso.hom]
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ NatTrans.app Preadditive.DoldKan.equivalence.counitIso.hom ((toKaroubiEquivalence (ChainComplex C ℕ)).functor.obj K) =
Preadditive.DoldKan.equivalence.functor.map
(NatTrans.app
(eqToHom
(_ :
(toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse =
Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor))
K) ≫
NatTrans.app
(eqToHom
(_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))
(Γ.obj K) ≫
NatTrans.app N₁Γ₀.hom K
[PROOFSTEP]
refine' (N₂Γ₂_compatible_with_N₁Γ₀ K).trans _
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
K : ChainComplex C ℕ
⊢ NatTrans.app N₂Γ₂ToKaroubiIso.hom K ≫ NatTrans.app N₁Γ₀.hom K =
Preadditive.DoldKan.equivalence.functor.map
(NatTrans.app
(eqToHom
(_ :
(toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse =
Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor))
K) ≫
NatTrans.app
(eqToHom
(_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))
(Γ.obj K) ≫
NatTrans.app N₁Γ₀.hom K
[PROOFSTEP]
simp only [N₂Γ₂ToKaroubiIso_hom, eqToHom_map, eqToHom_app, eqToHom_trans_assoc]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
⊢ Compatibility.υ
(eqToIso
(_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)) =
Γ₂N₁
[PROOFSTEP]
ext1
[GOAL]
case w
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
⊢ (Compatibility.υ
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))).hom =
Γ₂N₁.hom
[PROOFSTEP]
rw [← cancel_epi Γ₂N₁.inv, Iso.inv_hom_id]
[GOAL]
case w
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
⊢ Γ₂N₁.inv ≫
(Compatibility.υ
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor =
N₁))).hom =
𝟙 (N₁ ⋙ Γ₂)
[PROOFSTEP]
ext X : 2
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
X : SimplicialObject C
⊢ NatTrans.app
(Γ₂N₁.inv ≫
(Compatibility.υ
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor =
N₁))).hom)
X =
NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X
[PROOFSTEP]
rw [NatTrans.comp_app]
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
X : SimplicialObject C
⊢ NatTrans.app Γ₂N₁.inv X ≫
NatTrans.app
(Compatibility.υ
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor =
N₁))).hom
X =
NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X
[PROOFSTEP]
erw [compatibility_Γ₂N₁_Γ₂N₂_natTrans X]
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
X : SimplicialObject C
⊢ ((compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ NatTrans.app Γ₂N₂.natTrans ((toKaroubi (SimplicialObject C)).obj X)) ≫
NatTrans.app
(Compatibility.υ
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor =
N₁))).hom
X =
NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X
[PROOFSTEP]
rw [Compatibility.υ_hom_app, Preadditive.DoldKan.equivalence_unitIso, Iso.app_inv, assoc]
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
X : SimplicialObject C
⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫
NatTrans.app Γ₂N₂.natTrans ((toKaroubi (SimplicialObject C)).obj X) ≫
NatTrans.app Γ₂N₂.hom ((toKaroubiEquivalence (SimplicialObject C)).functor.obj X) ≫
Preadditive.DoldKan.equivalence.inverse.map
(NatTrans.app
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor =
N₁)).hom
X) =
NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X
[PROOFSTEP]
erw [← NatTrans.comp_app_assoc, IsIso.hom_inv_id]
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
X : SimplicialObject C
⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫
NatTrans.app (𝟙 (N₂ ⋙ Γ₂)) ((toKaroubi (SimplicialObject C)).obj X) ≫
Preadditive.DoldKan.equivalence.inverse.map
(NatTrans.app
(eqToIso
(_ :
(toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor =
N₁)).hom
X) =
NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X
[PROOFSTEP]
rw [NatTrans.id_app, id_comp, NatTrans.id_app, eqToIso.hom, eqToHom_app, eqToHom_map]
[GOAL]
case w.w.h
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : Preadditive C
inst✝¹ : IsIdempotentComplete C
inst✝ : HasFiniteCoproducts C
X : SimplicialObject C
⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫
eqToHom
(_ :
Preadditive.DoldKan.equivalence.inverse.obj
(Preadditive.DoldKan.equivalence.functor.obj
((toKaroubiEquivalence (SimplicialObject C)).functor.obj X)) =
Preadditive.DoldKan.equivalence.inverse.obj (N₁.obj X)) =
𝟙 ((N₁ ⋙ Γ₂).obj X)
[PROOFSTEP]
rw [compatibility_Γ₂N₁_Γ₂N₂_inv_app, eqToHom_trans, eqToHom_refl]
| {"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.EquivalencePseudoabelian", "llama_tokens": 3418} |
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ IsProbabilityMeasure (↑(condKernelReal ρ) a)
[PROOFSTEP]
rw [condKernelReal]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ IsProbabilityMeasure
(↑{ val := fun a => StieltjesFunction.measure (condCdf ρ a),
property := (_ : Measurable fun a => StieltjesFunction.measure (condCdf ρ a)) }
a)
[PROOFSTEP]
exact instIsProbabilityMeasure ρ a
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (Iic x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
simp_rw [condKernelReal_Iic]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
exact set_lintegral_condCdf ρ x hs
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ univ)
[PROOFSTEP]
simp only [measure_univ, lintegral_const, Measure.restrict_apply, MeasurableSet.univ, univ_inter, one_mul,
Measure.fst_apply hs, ← prod_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ = ↑↑ρ univ
[PROOFSTEP]
rw [← set_lintegral_univ, set_lintegral_condKernelReal_univ ρ MeasurableSet.univ, univ_prod_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
[PROOFSTEP]
apply MeasurableSpace.induction_on_inter (borel_eq_generateFrom_Iic ℝ) isPiSystem_Iic _ _ _ _ ht
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) ∅ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ∅)
[PROOFSTEP]
simp only [measure_empty, lintegral_const, zero_mul, prod_empty]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
⊢ ∀ (t : Set ℝ), t ∈ range Iic → ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
[PROOFSTEP]
rintro t ⟨q, rfl⟩
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
q : ℝ
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (Iic q) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic q)
[PROOFSTEP]
exact set_lintegral_condKernelReal_Iic ρ q hs
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
⊢ ∀ (t : Set ℝ),
MeasurableSet t →
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) →
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) tᶜ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ tᶜ)
[PROOFSTEP]
intro t ht ht_lintegral
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) tᶜ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ tᶜ)
[PROOFSTEP]
calc
∫⁻ a in s, condKernelReal ρ a tᶜ ∂ρ.fst = ∫⁻ a in s, condKernelReal ρ a univ - condKernelReal ρ a t ∂ρ.fst := by
congr with a; rw [measure_compl ht (measure_ne_top (condKernelReal ρ a) _)]
_ = ∫⁻ a in s, condKernelReal ρ a univ ∂ρ.fst - ∫⁻ a in s, condKernelReal ρ a t ∂ρ.fst :=
by
rw [lintegral_sub (kernel.measurable_coe (condKernelReal ρ) ht)]
· rw [ht_lintegral]
exact measure_ne_top ρ _
· exact eventually_of_forall fun a => measure_mono (subset_univ _)
_ = ρ (s ×ˢ univ) - ρ (s ×ˢ t) := by rw [set_lintegral_condKernelReal_univ ρ hs, ht_lintegral]
_ = ρ (s ×ˢ tᶜ) := by
rw [← measure_diff _ (hs.prod ht) (measure_ne_top ρ _)]
· rw [prod_diff_prod, compl_eq_univ_diff]
simp only [diff_self, empty_prod, union_empty]
· rw [prod_subset_prod_iff]
exact Or.inl ⟨subset_rfl, subset_univ t⟩
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) tᶜ ∂Measure.fst ρ =
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ
[PROOFSTEP]
congr with a
[GOAL]
case e_f.h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
a : α
⊢ ↑↑(↑(condKernelReal ρ) a) tᶜ = ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) t
[PROOFSTEP]
rw [measure_compl ht (measure_ne_top (condKernelReal ρ a) _)]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ =
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ -
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ
[PROOFSTEP]
rw [lintegral_sub (kernel.measurable_coe (condKernelReal ρ) ht)]
[GOAL]
case hg_fin
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ ≠ ⊤
[PROOFSTEP]
rw [ht_lintegral]
[GOAL]
case hg_fin
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ↑↑ρ (s ×ˢ t) ≠ ⊤
[PROOFSTEP]
exact measure_ne_top ρ _
[GOAL]
case h_le
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ (fun a => ↑↑(↑(condKernelReal ρ) a) t) ≤ᵐ[Measure.restrict (Measure.fst ρ) s] fun a => ↑↑(↑(condKernelReal ρ) a) univ
[PROOFSTEP]
exact eventually_of_forall fun a => measure_mono (subset_univ _)
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ -
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ =
↑↑ρ (s ×ˢ univ) - ↑↑ρ (s ×ˢ t)
[PROOFSTEP]
rw [set_lintegral_condKernelReal_univ ρ hs, ht_lintegral]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ↑↑ρ (s ×ˢ univ) - ↑↑ρ (s ×ˢ t) = ↑↑ρ (s ×ˢ tᶜ)
[PROOFSTEP]
rw [← measure_diff _ (hs.prod ht) (measure_ne_top ρ _)]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ↑↑ρ (s ×ˢ univ \ s ×ˢ t) = ↑↑ρ (s ×ˢ tᶜ)
[PROOFSTEP]
rw [prod_diff_prod, compl_eq_univ_diff]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ ↑↑ρ (s ×ˢ (univ \ t) ∪ (s \ s) ×ˢ univ) = ↑↑ρ (s ×ˢ (univ \ t))
[PROOFSTEP]
simp only [diff_self, empty_prod, union_empty]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ s ×ˢ t ⊆ s ×ˢ univ
[PROOFSTEP]
rw [prod_subset_prod_iff]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t✝ : Set ℝ
ht✝ : MeasurableSet t✝
t : Set ℝ
ht : MeasurableSet t
ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
⊢ s ⊆ s ∧ t ⊆ univ ∨ s = ∅ ∨ t = ∅
[PROOFSTEP]
exact Or.inl ⟨subset_rfl, subset_univ t⟩
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
⊢ ∀ (f : ℕ → Set ℝ),
Pairwise (Disjoint on f) →
(∀ (i : ℕ), MeasurableSet (f i)) →
(∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)) →
∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ⋃ (i : ℕ), f i)
[PROOFSTEP]
intro f hf_disj hf_meas hf_eq
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ⋃ (i : ℕ), f i)
[PROOFSTEP]
simp_rw [measure_iUnion hf_disj hf_meas]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
⊢ ∫⁻ (a : α) in s, ∑' (i : ℕ), ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ⋃ (i : ℕ), f i)
[PROOFSTEP]
rw [lintegral_tsum fun i => (kernel.measurable_coe _ (hf_meas i)).aemeasurable.restrict, prod_iUnion, measure_iUnion]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
⊢ ∑' (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ∑' (i : ℕ), ↑↑ρ (s ×ˢ f i)
[PROOFSTEP]
simp_rw [hf_eq]
[GOAL]
case hn
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
⊢ Pairwise (Disjoint on fun i => s ×ˢ f i)
[PROOFSTEP]
intro i j hij
[GOAL]
case hn
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
i j : ℕ
hij : i ≠ j
⊢ (Disjoint on fun i => s ×ˢ f i) i j
[PROOFSTEP]
rw [Function.onFun, disjoint_prod]
[GOAL]
case hn
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
i j : ℕ
hij : i ≠ j
⊢ Disjoint s s ∨ Disjoint (f i) (f j)
[PROOFSTEP]
exact Or.inr (hf_disj hij)
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)
⊢ ∀ (i : ℕ), MeasurableSet (s ×ˢ f i)
[PROOFSTEP]
exact fun i => MeasurableSet.prod hs (hf_meas i)
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ s} ∂Measure.fst ρ = ↑↑ρ s
[PROOFSTEP]
apply MeasurableSpace.induction_on_inter generateFrom_prod.symm isPiSystem_prod _ _ _ _ hs
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ∅} ∂Measure.fst ρ = ↑↑ρ ∅
[PROOFSTEP]
simp only [mem_empty_iff_false, setOf_false, measure_empty, lintegral_const, zero_mul]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ∀ (t : Set (α × ℝ)),
t ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t} →
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
[PROOFSTEP]
intro t ht
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : t ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t}
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
[PROOFSTEP]
rw [mem_image2] at ht
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : ∃ a b, a ∈ {s | MeasurableSet s} ∧ b ∈ {t | MeasurableSet t} ∧ a ×ˢ b = t
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
[PROOFSTEP]
obtain ⟨t₁, t₂, ht₁, ht₂, rfl⟩ := ht
[GOAL]
case intro.intro.intro.intro
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
have h_prod_eq_snd : ∀ a ∈ t₁, {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = t₂ :=
by
intro a ha
simp only [ha, prod_mk_mem_set_prod_eq, true_and_iff, setOf_mem_eq]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
⊢ ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
[PROOFSTEP]
intro a ha
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
a : α
ha : a ∈ t₁
⊢ {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
[PROOFSTEP]
simp only [ha, prod_mk_mem_set_prod_eq, true_and_iff, setOf_mem_eq]
[GOAL]
case intro.intro.intro.intro
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
cases' eq_empty_or_nonempty t₂ with h h
[GOAL]
case intro.intro.intro.intro.inl
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : t₂ = ∅
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
simp only [h, prod_empty, mem_empty_iff_false, setOf_false, measure_empty, lintegral_const, zero_mul]
[GOAL]
case intro.intro.intro.intro.inr
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
rw [← lintegral_add_compl _ ht₁]
[GOAL]
case intro.intro.intro.intro.inr
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
⊢ ∫⁻ (x : α) in t₁, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ +
∫⁻ (x : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
have h_eq1 :
∫⁻ a in t₁, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} ∂ρ.fst = ∫⁻ a in t₁, condKernelReal ρ a t₂ ∂ρ.fst :=
by
refine' set_lintegral_congr_fun ht₁ (eventually_of_forall fun a ha => _)
rw [h_prod_eq_snd a ha]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
⊢ ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
[PROOFSTEP]
refine' set_lintegral_congr_fun ht₁ (eventually_of_forall fun a ha => _)
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
a : α
ha : a ∈ t₁
⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = ↑↑(↑(condKernelReal ρ) a) t₂
[PROOFSTEP]
rw [h_prod_eq_snd a ha]
[GOAL]
case intro.intro.intro.intro.inr
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
⊢ ∫⁻ (x : α) in t₁, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ +
∫⁻ (x : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
have h_eq2 : ∫⁻ a in t₁ᶜ, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} ∂ρ.fst = 0 :=
by
suffices h_eq_zero : ∀ a ∈ t₁ᶜ, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = 0
· rw [set_lintegral_congr_fun ht₁.compl (eventually_of_forall h_eq_zero)]
simp only [lintegral_const, zero_mul]
intro a hat₁
rw [mem_compl_iff] at hat₁
simp only [hat₁, prod_mk_mem_set_prod_eq, false_and_iff, setOf_false, measure_empty]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
⊢ ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0
[PROOFSTEP]
suffices h_eq_zero : ∀ a ∈ t₁ᶜ, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = 0
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
h_eq_zero : ∀ (a : α), a ∈ t₁ᶜ → ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0
⊢ ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0
[PROOFSTEP]
rw [set_lintegral_congr_fun ht₁.compl (eventually_of_forall h_eq_zero)]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
h_eq_zero : ∀ (a : α), a ∈ t₁ᶜ → ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0
⊢ ∫⁻ (x : α) in t₁ᶜ, 0 ∂Measure.fst ρ = 0
[PROOFSTEP]
simp only [lintegral_const, zero_mul]
[GOAL]
case h_eq_zero
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
⊢ ∀ (a : α), a ∈ t₁ᶜ → ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0
[PROOFSTEP]
intro a hat₁
[GOAL]
case h_eq_zero
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
a : α
hat₁ : a ∈ t₁ᶜ
⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0
[PROOFSTEP]
rw [mem_compl_iff] at hat₁
[GOAL]
case h_eq_zero
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
a : α
hat₁ : ¬a ∈ t₁
⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0
[PROOFSTEP]
simp only [hat₁, prod_mk_mem_set_prod_eq, false_and_iff, setOf_false, measure_empty]
[GOAL]
case intro.intro.intro.intro.inr
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
h_eq2 : ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0
⊢ ∫⁻ (x : α) in t₁, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ +
∫⁻ (x : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
rw [h_eq1, h_eq2, add_zero]
[GOAL]
case intro.intro.intro.intro.inr
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t₁ : Set α
t₂ : Set ℝ
ht₁ : t₁ ∈ {s | MeasurableSet s}
ht₂ : t₂ ∈ {t | MeasurableSet t}
h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂
h : Set.Nonempty t₂
h_eq1 :
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ =
∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ
h_eq2 : ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0
⊢ ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂)
[PROOFSTEP]
exact set_lintegral_condKernelReal_prod ρ ht₁ ht₂
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ∀ (t : Set (α × ℝ)),
MeasurableSet t →
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t →
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ tᶜ} ∂Measure.fst ρ = ↑↑ρ tᶜ
[PROOFSTEP]
intro t ht ht_eq
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ tᶜ} ∂Measure.fst ρ = ↑↑ρ tᶜ
[PROOFSTEP]
calc
∫⁻ a, condKernelReal ρ a {x : ℝ | (a, x) ∈ tᶜ} ∂ρ.fst = ∫⁻ a, condKernelReal ρ a {x : ℝ | (a, x) ∈ t}ᶜ ∂ρ.fst := rfl
_ = ∫⁻ a, condKernelReal ρ a univ - condKernelReal ρ a {x : ℝ | (a, x) ∈ t} ∂ρ.fst :=
by
congr with a : 1
exact measure_compl (measurable_prod_mk_left ht) (measure_ne_top (condKernelReal ρ a) _)
_ = ∫⁻ a, condKernelReal ρ a univ ∂ρ.fst - ∫⁻ a, condKernelReal ρ a {x : ℝ | (a, x) ∈ t} ∂ρ.fst :=
by
have h_le : (fun a => condKernelReal ρ a {x : ℝ | (a, x) ∈ t}) ≤ᵐ[ρ.fst] fun a => condKernelReal ρ a univ :=
eventually_of_forall fun a => measure_mono (subset_univ _)
rw [lintegral_sub _ _ h_le]
· exact kernel.measurable_kernel_prod_mk_left ht
refine' ((lintegral_mono_ae h_le).trans_lt _).ne
rw [lintegral_condKernelReal_univ]
exact measure_lt_top ρ univ
_ = ρ univ - ρ t := by rw [ht_eq, lintegral_condKernelReal_univ]
_ = ρ tᶜ := (measure_compl ht (measure_ne_top _ _)).symm
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}ᶜ ∂Measure.fst ρ =
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ
[PROOFSTEP]
congr with a : 1
[GOAL]
case e_f.h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
a : α
⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}ᶜ =
↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}
[PROOFSTEP]
exact measure_compl (measurable_prod_mk_left ht) (measure_ne_top (condKernelReal ρ a) _)
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ =
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ -
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ
[PROOFSTEP]
have h_le : (fun a => condKernelReal ρ a {x : ℝ | (a, x) ∈ t}) ≤ᵐ[ρ.fst] fun a => condKernelReal ρ a univ :=
eventually_of_forall fun a => measure_mono (subset_univ _)
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ =
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ -
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ
[PROOFSTEP]
rw [lintegral_sub _ _ h_le]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ
⊢ Measurable fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}
[PROOFSTEP]
exact kernel.measurable_kernel_prod_mk_left ht
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ ≠ ⊤
[PROOFSTEP]
refine' ((lintegral_mono_ae h_le).trans_lt _).ne
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ
⊢ ∫⁻ (a : α), (fun a => ↑↑(↑(condKernelReal ρ) a) univ) a ∂Measure.fst ρ < ⊤
[PROOFSTEP]
rw [lintegral_condKernelReal_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ
⊢ ↑↑ρ univ < ⊤
[PROOFSTEP]
exact measure_lt_top ρ univ
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
t : Set (α × ℝ)
ht : MeasurableSet t
ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ -
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ =
↑↑ρ univ - ↑↑ρ t
[PROOFSTEP]
rw [ht_eq, lintegral_condKernelReal_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ∀ (f : ℕ → Set (α × ℝ)),
Pairwise (Disjoint on f) →
(∀ (i : ℕ), MeasurableSet (f i)) →
(∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)) →
∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ⋃ (i : ℕ), f i} ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i)
[PROOFSTEP]
intro f hf_disj hf_meas hf_eq
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ⋃ (i : ℕ), f i} ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i)
[PROOFSTEP]
have h_eq : ∀ a, {x | (a, x) ∈ ⋃ i, f i} = ⋃ i, {x | (a, x) ∈ f i} :=
by
intro a
ext1 x
simp only [mem_iUnion, mem_setOf_eq]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
⊢ ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
a : α
⊢ {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
a : α
x : ℝ
⊢ x ∈ {x | (a, x) ∈ ⋃ (i : ℕ), f i} ↔ x ∈ ⋃ (i : ℕ), {x | (a, x) ∈ f i}
[PROOFSTEP]
simp only [mem_iUnion, mem_setOf_eq]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ⋃ (i : ℕ), f i} ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i)
[PROOFSTEP]
simp_rw [h_eq]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i)
[PROOFSTEP]
have h_disj : ∀ a, Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) :=
by
intro a i j hij
have h_disj := hf_disj hij
rw [Function.onFun, disjoint_iff_inter_eq_empty] at h_disj ⊢
ext1 x
simp only [mem_inter_iff, mem_setOf_eq, mem_empty_iff_false, iff_false_iff]
intro h_mem_both
suffices (a, x) ∈ ∅ by rwa [mem_empty_iff_false] at this
rwa [← h_disj, mem_inter_iff]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
⊢ ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i})
[PROOFSTEP]
intro a i j hij
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
⊢ (Disjoint on fun i => {x | (a, x) ∈ f i}) i j
[PROOFSTEP]
have h_disj := hf_disj hij
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : (Disjoint on f) i j
⊢ (Disjoint on fun i => {x | (a, x) ∈ f i}) i j
[PROOFSTEP]
rw [Function.onFun, disjoint_iff_inter_eq_empty] at h_disj ⊢
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : f i ∩ f j = ∅
⊢ {x | (a, x) ∈ f i} ∩ {x | (a, x) ∈ f j} = ∅
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : f i ∩ f j = ∅
x : ℝ
⊢ x ∈ {x | (a, x) ∈ f i} ∩ {x | (a, x) ∈ f j} ↔ x ∈ ∅
[PROOFSTEP]
simp only [mem_inter_iff, mem_setOf_eq, mem_empty_iff_false, iff_false_iff]
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : f i ∩ f j = ∅
x : ℝ
⊢ ¬((a, x) ∈ f i ∧ (a, x) ∈ f j)
[PROOFSTEP]
intro h_mem_both
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : f i ∩ f j = ∅
x : ℝ
h_mem_both : (a, x) ∈ f i ∧ (a, x) ∈ f j
⊢ False
[PROOFSTEP]
suffices (a, x) ∈ ∅ by rwa [mem_empty_iff_false] at this
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : f i ∩ f j = ∅
x : ℝ
h_mem_both : (a, x) ∈ f i ∧ (a, x) ∈ f j
this : (a, x) ∈ ∅
⊢ False
[PROOFSTEP]
rwa [mem_empty_iff_false] at this
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
a : α
i j : ℕ
hij : i ≠ j
h_disj : f i ∩ f j = ∅
x : ℝ
h_mem_both : (a, x) ∈ f i ∧ (a, x) ∈ f j
⊢ (a, x) ∈ ∅
[PROOFSTEP]
rwa [← h_disj, mem_inter_iff]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i})
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i)
[PROOFSTEP]
calc
∫⁻ a, condKernelReal ρ a (⋃ i, {x | (a, x) ∈ f i}) ∂ρ.fst =
∫⁻ a, ∑' i, condKernelReal ρ a {x | (a, x) ∈ f i} ∂ρ.fst :=
by
congr with a : 1
rw [measure_iUnion (h_disj a) fun i => measurable_prod_mk_left (hf_meas i)]
_ = ∑' i, ∫⁻ a, condKernelReal ρ a {x | (a, x) ∈ f i} ∂ρ.fst :=
(lintegral_tsum fun i => (kernel.measurable_kernel_prod_mk_left (hf_meas i)).aemeasurable)
_ = ∑' i, ρ (f i) := by simp_rw [hf_eq]
_ = ρ (iUnion f) := (measure_iUnion hf_disj hf_meas).symm
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i})
⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) ∂Measure.fst ρ =
∫⁻ (a : α), ∑' (i : ℕ), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ
[PROOFSTEP]
congr with a : 1
[GOAL]
case e_f.h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i})
a : α
⊢ ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) = ∑' (i : ℕ), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i}
[PROOFSTEP]
rw [measure_iUnion (h_disj a) fun i => measurable_prod_mk_left (hf_meas i)]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set (α × ℝ)
hs : MeasurableSet s
f : ℕ → Set (α × ℝ)
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)
h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i}
h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i})
⊢ ∑' (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ∑' (i : ℕ), ↑↑ρ (f i)
[PROOFSTEP]
simp_rw [hf_eq]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ✝ : Measure (α × ℝ)
inst✝² : IsFiniteMeasure ρ✝
γ : Type u_2
inst✝¹ : MeasurableSpace γ
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ const γ ρ = const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (condKernelReal ρ)
[PROOFSTEP]
ext a s hs : 2
[GOAL]
case h.h
α : Type u_1
mα : MeasurableSpace α
ρ✝ : Measure (α × ℝ)
inst✝² : IsFiniteMeasure ρ✝
γ : Type u_2
inst✝¹ : MeasurableSpace γ
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : γ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ↑↑(↑(const γ ρ) a) s = ↑↑(↑(const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (condKernelReal ρ)) a) s
[PROOFSTEP]
rw [kernel.compProd_apply _ _ _ hs, kernel.const_apply, kernel.const_apply]
[GOAL]
case h.h
α : Type u_1
mα : MeasurableSpace α
ρ✝ : Measure (α × ℝ)
inst✝² : IsFiniteMeasure ρ✝
γ : Type u_2
inst✝¹ : MeasurableSpace γ
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : γ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ↑↑ρ s = ∫⁻ (b : α), ↑↑(↑(prodMkLeft γ (condKernelReal ρ)) (a, b)) {c | (b, c) ∈ s} ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply]
[GOAL]
case h.h
α : Type u_1
mα : MeasurableSpace α
ρ✝ : Measure (α × ℝ)
inst✝² : IsFiniteMeasure ρ✝
γ : Type u_2
inst✝¹ : MeasurableSpace γ
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : γ
s : Set (α × ℝ)
hs : MeasurableSet s
⊢ ↑↑ρ s = ∫⁻ (b : α), ↑↑(↑(condKernelReal ρ) b) {c | (b, c) ∈ s} ∂Measure.fst ρ
[PROOFSTEP]
rw [lintegral_condKernelReal_mem ρ hs]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ρ = ↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()
[PROOFSTEP]
rw [← kernel.const_eq_compProd_real Unit ρ, kernel.const_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
f : α × ℝ → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (a : α), ∫⁻ (y : ℝ), f (a, y) ∂↑(condKernelReal ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × ℝ), f x ∂ρ
[PROOFSTEP]
nth_rw 3 [measure_eq_compProd_real ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
f : α × ℝ → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (a : α), ∫⁻ (y : ℝ), f (a, y) ∂↑(condKernelReal ρ) a ∂Measure.fst ρ =
∫⁻ (x : α × ℝ), f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()
[PROOFSTEP]
rw [kernel.lintegral_compProd _ _ _ hf, kernel.const_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
f : α × ℝ → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (a : α), ∫⁻ (y : ℝ), f (a, y) ∂↑(condKernelReal ρ) a ∂Measure.fst ρ =
∫⁻ (b : α), ∫⁻ (c : ℝ), f (b, c) ∂↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b) ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
have h :
ρ {x | x.snd ∈ sᶜ} = (kernel.const Unit ρ.fst ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) () {x | x.snd ∈ sᶜ} := by
rw [← measure_eq_compProd_real]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
⊢ ↑↑ρ {x | x.snd ∈ sᶜ} =
↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ}
[PROOFSTEP]
rw [← measure_eq_compProd_real]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
↑↑ρ {x | x.snd ∈ sᶜ} =
↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ}
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
rw [hρ, kernel.compProd_apply] at h
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
0 =
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) ()
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
case hs
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h : 0 = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ}
⊢ MeasurableSet {x | x.snd ∈ sᶜ}
[PROOFSTEP]
swap
[GOAL]
case hs
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h : 0 = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ}
⊢ MeasurableSet {x | x.snd ∈ sᶜ}
[PROOFSTEP]
exact measurable_snd hs.compl
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
0 =
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) ()
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
rw [eq_comm, lintegral_eq_zero_iff] at h
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
(fun b =>
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}}) =ᵐ[↑(kernel.const Unit (Measure.fst ρ)) ()]
0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () =
0
⊢ Measurable fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}
[PROOFSTEP]
swap
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () =
0
⊢ Measurable fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply']
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () =
0
⊢ Measurable fun b => ↑↑(↑(condKernelReal ρ) b) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}
[PROOFSTEP]
simp only [mem_compl_iff, mem_setOf_eq]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () =
0
⊢ Measurable fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}
[PROOFSTEP]
exact kernel.measurable_coe _ hs.compl
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
(fun b =>
↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b))
{c | (b, c) ∈ {x | x.snd ∈ sᶜ}}) =ᵐ[↑(kernel.const Unit (Measure.fst ρ)) ()]
0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
rw [kernel.const_apply] at h
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h :
(fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}) =ᵐ[Measure.fst ρ]
0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
simp only [mem_compl_iff, mem_setOf_eq, kernel.prodMkLeft_apply'] at h
[GOAL]
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h : (fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}) =ᵐ[Measure.fst ρ] 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
filter_upwards [h] with a ha
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h : (fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}) =ᵐ[Measure.fst ρ] 0
a : α
ha : ↑↑(↑(condKernelReal ρ) a) {c | ¬c ∈ s} = OfNat.ofNat 0 a
⊢ ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
change condKernelReal ρ a sᶜ = 0 at ha
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set ℝ
hs : MeasurableSet s
hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0
h : (fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}) =ᵐ[Measure.fst ρ] 0
a : α
ha : ↑↑(↑(condKernelReal ρ) a) sᶜ = 0
⊢ ↑↑(↑(condKernelReal ρ) a) s = 1
[PROOFSTEP]
rwa [prob_compl_eq_zero_iff hs] at ha
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
obtain ⟨f, hf⟩ := exists_measurableEmbedding_real Ω
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
let ρ' : Measure (α × ℝ) :=
ρ.map
(Prod.map id f)
-- The general idea is to define `η = kernel.comapRight (condKernelReal ρ') hf`. There is
-- however an issue: that `η` may not be a Markov kernel since its value is only a
-- probability distribution almost everywhere with respect to `ρ.fst`, not everywhere.
-- We modify it to obtain a Markov kernel which is almost everywhere equal.
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
let ρ_set := (toMeasurable ρ.fst {a | condKernelReal ρ' a (range f) = 1}ᶜ)ᶜ
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
have hm : MeasurableSet ρ_set := (measurableSet_toMeasurable _ _).compl
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
have h_eq_one_of_mem : ∀ a ∈ ρ_set, condKernelReal ρ' a (range f) = 1 :=
by
intro a ha
rw [mem_compl_iff] at ha
have h_ss := subset_toMeasurable ρ.fst {a : α | condKernelReal ρ' a (range f) = 1}ᶜ
suffices ha' : a ∉ {a : α | condKernelReal ρ' a (range f) = 1}ᶜ
· rwa [not_mem_compl_iff] at ha'
exact not_mem_subset h_ss ha
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
⊢ ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
[PROOFSTEP]
intro a ha
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
a : α
ha : a ∈ ρ_set
⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1
[PROOFSTEP]
rw [mem_compl_iff] at ha
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
a : α
ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1
[PROOFSTEP]
have h_ss := subset_toMeasurable ρ.fst {a : α | condKernelReal ρ' a (range f) = 1}ᶜ
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
a : α
ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
h_ss :
{a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊆
toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1
[PROOFSTEP]
suffices ha' : a ∉ {a : α | condKernelReal ρ' a (range f) = 1}ᶜ
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
a : α
ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
h_ss :
{a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊆
toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
ha' : ¬a ∈ {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1
[PROOFSTEP]
rwa [not_mem_compl_iff] at ha'
[GOAL]
case ha'
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
a : α
ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
h_ss :
{a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊆
toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
⊢ ¬a ∈ {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ
[PROOFSTEP]
exact not_mem_subset h_ss ha
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
have h_prod_embed : MeasurableEmbedding (Prod.map (id : α → α) f) := MeasurableEmbedding.id.prod_mk hf
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
have h_fst : ρ'.fst = ρ.fst := by
ext1 u hu
rw [Measure.fst_apply hu, Measure.fst_apply hu, Measure.map_apply h_prod_embed.measurable (measurable_fst hu)]
rfl
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
⊢ Measure.fst ρ' = Measure.fst ρ
[PROOFSTEP]
ext1 u hu
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
u : Set α
hu : MeasurableSet u
⊢ ↑↑(Measure.fst ρ') u = ↑↑(Measure.fst ρ) u
[PROOFSTEP]
rw [Measure.fst_apply hu, Measure.fst_apply hu, Measure.map_apply h_prod_embed.measurable (measurable_fst hu)]
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
u : Set α
hu : MeasurableSet u
⊢ ↑↑ρ (Prod.map id f ⁻¹' (Prod.fst ⁻¹' u)) = ↑↑ρ (Prod.fst ⁻¹' u)
[PROOFSTEP]
rfl
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
have h_ae : ∀ᵐ a ∂ρ.fst, a ∈ ρ_set := by
rw [ae_iff]
simp only [not_mem_compl_iff, setOf_mem_eq, measure_toMeasurable]
change ρ.fst {a : α | a ∉ {a' : α | condKernelReal ρ' a' (range f) = 1}} = 0
rw [← ae_iff, ← h_fst]
refine' ae_condKernelReal_eq_one ρ' hf.measurableSet_range _
rw [Measure.map_apply h_prod_embed.measurable]
swap; · exact measurable_snd hf.measurableSet_range.compl
convert measure_empty (α := α × Ω)
ext1 x
simp only [mem_compl_iff, mem_range, preimage_setOf_eq, Prod_map, mem_setOf_eq, mem_empty_iff_false, iff_false_iff,
Classical.not_not, exists_apply_eq_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
[PROOFSTEP]
rw [ae_iff]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ↑↑(Measure.fst ρ) {a | ¬a ∈ ρ_set} = 0
[PROOFSTEP]
simp only [not_mem_compl_iff, setOf_mem_eq, measure_toMeasurable]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ↑↑(Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ = 0
[PROOFSTEP]
change ρ.fst {a : α | a ∉ {a' : α | condKernelReal ρ' a' (range f) = 1}} = 0
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ↑↑(Measure.fst ρ) {a | ¬a ∈ {a' | ↑↑(↑(condKernelReal ρ') a') (range f) = 1}} = 0
[PROOFSTEP]
rw [← ae_iff, ← h_fst]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ', a ∈ {a' | ↑↑(↑(condKernelReal ρ') a') (range f) = 1}
[PROOFSTEP]
refine' ae_condKernelReal_eq_one ρ' hf.measurableSet_range _
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ↑↑ρ' {x | x.snd ∈ (range f)ᶜ} = 0
[PROOFSTEP]
rw [Measure.map_apply h_prod_embed.measurable]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ↑↑ρ (Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ}) = 0
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ MeasurableSet {x | x.snd ∈ (range f)ᶜ}
[PROOFSTEP]
swap
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ MeasurableSet {x | x.snd ∈ (range f)ᶜ}
[PROOFSTEP]
exact measurable_snd hf.measurableSet_range.compl
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ ↑↑ρ (Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ}) = 0
[PROOFSTEP]
convert measure_empty (α := α × Ω)
[GOAL]
case h.e'_2.h.e'_3
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
⊢ Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ} = ∅
[PROOFSTEP]
ext1 x
[GOAL]
case h.e'_2.h.e'_3.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
x : α × Ω
⊢ x ∈ Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ} ↔ x ∈ ∅
[PROOFSTEP]
simp only [mem_compl_iff, mem_range, preimage_setOf_eq, Prod_map, mem_setOf_eq, mem_empty_iff_false, iff_false_iff,
Classical.not_not, exists_apply_eq_apply]
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
classical
obtain ⟨x₀, hx₀⟩ : ∃ x, x ∈ range f := range_nonempty _
let η' :=
kernel.piecewise hm (condKernelReal ρ')
(kernel.deterministic (fun _ => x₀) measurable_const)
-- We show that `kernel.comapRight η' hf` is a suitable Markov kernel.
refine' ⟨kernel.comapRight η' hf, _, _⟩
· refine' kernel.IsMarkovKernel.comapRight _ _ fun a => _
rw [kernel.piecewise_apply']
split_ifs with h_mem
· exact h_eq_one_of_mem _ h_mem
· rw [kernel.deterministic_apply' _ _ hf.measurableSet_range, Set.indicator_apply, if_pos hx₀]
have : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed :=
by
ext c t ht : 2
rw [kernel.const_apply, kernel.comapRight_apply' _ _ _ ht, kernel.const_apply,
Measure.map_apply h_prod_embed.measurable (h_prod_embed.measurableSet_image.mpr ht)]
congr with x : 1
rw [← @Prod.mk.eta _ _ x]
simp only [id.def, mem_preimage, Prod.map_mk, mem_image, Prod.mk.inj_iff, Prod.exists]
refine' ⟨fun h => ⟨x.1, x.2, h, rfl, rfl⟩, _⟩
rintro ⟨a, b, h_mem, rfl, hf_eq⟩
rwa [hf.injective hf_eq] at h_mem
rw [this, kernel.const_eq_compProd_real _ ρ']
ext c t ht : 2
rw [kernel.comapRight_apply' _ _ _ ht, kernel.compProd_apply _ _ _ (h_prod_embed.measurableSet_image.mpr ht),
kernel.const_apply, h_fst, kernel.compProd_apply _ _ _ ht, kernel.const_apply]
refine' lintegral_congr_ae _
filter_upwards [h_ae] with a ha
rw [kernel.prodMkLeft_apply', kernel.prodMkLeft_apply', kernel.comapRight_apply']
swap
· exact measurable_prod_mk_left ht
have h1 : {c : ℝ | (a, c) ∈ Prod.map id f '' t} = f '' {c : Ω | (a, c) ∈ t} :=
by
ext1 x
simp only [Prod_map, id.def, mem_image, Prod.mk.inj_iff, Prod.exists, mem_setOf_eq]
constructor
· rintro ⟨a', b, h_mem, rfl, hf_eq⟩
exact ⟨b, h_mem, hf_eq⟩
· rintro ⟨b, h_mem, hf_eq⟩
exact ⟨a, b, h_mem, rfl, hf_eq⟩
have h2 : condKernelReal ρ' (c, a).snd = η' (c, a).snd := by rw [kernel.piecewise_apply, if_pos ha]
rw [h1, h2]
[GOAL]
case intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
obtain ⟨x₀, hx₀⟩ : ∃ x, x ∈ range f := range_nonempty _
[GOAL]
case intro.intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
let η' :=
kernel.piecewise hm (condKernelReal ρ')
(kernel.deterministic (fun _ => x₀) measurable_const)
-- We show that `kernel.comapRight η' hf` is a suitable Markov kernel.
[GOAL]
case intro.intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η
[PROOFSTEP]
refine' ⟨kernel.comapRight η' hf, _, _⟩
[GOAL]
case intro.intro.refine'_1
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
⊢ IsMarkovKernel (kernel.comapRight η' hf)
[PROOFSTEP]
refine' kernel.IsMarkovKernel.comapRight _ _ fun a => _
[GOAL]
case intro.intro.refine'_1
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
a : α
⊢ ↑↑(↑η' a) (range f) = 1
[PROOFSTEP]
rw [kernel.piecewise_apply']
[GOAL]
case intro.intro.refine'_1
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
a : α
⊢ (if a ∈ ρ_set then ↑↑(↑(condKernelReal ρ') a) (range f)
else ↑↑(↑(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a) (range f)) =
1
[PROOFSTEP]
split_ifs with h_mem
[GOAL]
case pos
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
a : α
h_mem : a ∈ ρ_set
⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1
[PROOFSTEP]
exact h_eq_one_of_mem _ h_mem
[GOAL]
case neg
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
a : α
h_mem : ¬a ∈ ρ_set
⊢ ↑↑(↑(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a) (range f) = 1
[PROOFSTEP]
rw [kernel.deterministic_apply' _ _ hf.measurableSet_range, Set.indicator_apply, if_pos hx₀]
[GOAL]
case intro.intro.refine'_2
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
⊢ kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf)
[PROOFSTEP]
have : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed :=
by
ext c t ht : 2
rw [kernel.const_apply, kernel.comapRight_apply' _ _ _ ht, kernel.const_apply,
Measure.map_apply h_prod_embed.measurable (h_prod_embed.measurableSet_image.mpr ht)]
congr with x : 1
rw [← @Prod.mk.eta _ _ x]
simp only [id.def, mem_preimage, Prod.map_mk, mem_image, Prod.mk.inj_iff, Prod.exists]
refine' ⟨fun h => ⟨x.1, x.2, h, rfl, rfl⟩, _⟩
rintro ⟨a, b, h_mem, rfl, hf_eq⟩
rwa [hf.injective hf_eq] at h_mem
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
⊢ kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
[PROOFSTEP]
ext c t ht : 2
[GOAL]
case h.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
⊢ ↑↑(↑(kernel.const γ ρ) c) t = ↑↑(↑(kernel.comapRight (kernel.const γ ρ') h_prod_embed) c) t
[PROOFSTEP]
rw [kernel.const_apply, kernel.comapRight_apply' _ _ _ ht, kernel.const_apply,
Measure.map_apply h_prod_embed.measurable (h_prod_embed.measurableSet_image.mpr ht)]
[GOAL]
case h.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
⊢ ↑↑ρ t = ↑↑ρ (Prod.map id f ⁻¹' (Prod.map id f '' t))
[PROOFSTEP]
congr with x : 1
[GOAL]
case h.h.e_a.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
x : α × Ω
⊢ x ∈ t ↔ x ∈ Prod.map id f ⁻¹' (Prod.map id f '' t)
[PROOFSTEP]
rw [← @Prod.mk.eta _ _ x]
[GOAL]
case h.h.e_a.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
x : α × Ω
⊢ (x.fst, x.snd) ∈ t ↔ (x.fst, x.snd) ∈ Prod.map id f ⁻¹' (Prod.map id f '' t)
[PROOFSTEP]
simp only [id.def, mem_preimage, Prod.map_mk, mem_image, Prod.mk.inj_iff, Prod.exists]
[GOAL]
case h.h.e_a.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
x : α × Ω
⊢ (x.fst, x.snd) ∈ t ↔ ∃ a b, (a, b) ∈ t ∧ a = x.fst ∧ f b = f x.snd
[PROOFSTEP]
refine' ⟨fun h => ⟨x.1, x.2, h, rfl, rfl⟩, _⟩
[GOAL]
case h.h.e_a.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
x : α × Ω
⊢ (∃ a b, (a, b) ∈ t ∧ a = x.fst ∧ f b = f x.snd) → (x.fst, x.snd) ∈ t
[PROOFSTEP]
rintro ⟨a, b, h_mem, rfl, hf_eq⟩
[GOAL]
case h.h.e_a.h.intro.intro.intro.intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
x : α × Ω
b : Ω
hf_eq : f b = f x.snd
h_mem : (x.fst, b) ∈ t
⊢ (x.fst, x.snd) ∈ t
[PROOFSTEP]
rwa [hf.injective hf_eq] at h_mem
[GOAL]
case intro.intro.refine'_2
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
⊢ kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf)
[PROOFSTEP]
rw [this, kernel.const_eq_compProd_real _ ρ']
[GOAL]
case intro.intro.refine'_2
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
⊢ kernel.comapRight (kernel.const γ (Measure.fst ρ') ⊗ₖ kernel.prodMkLeft γ (condKernelReal ρ')) h_prod_embed =
kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf)
[PROOFSTEP]
ext c t ht : 2
[GOAL]
case intro.intro.refine'_2.h.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
⊢ ↑↑(↑(kernel.comapRight (kernel.const γ (Measure.fst ρ') ⊗ₖ kernel.prodMkLeft γ (condKernelReal ρ')) h_prod_embed) c)
t =
↑↑(↑(kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf)) c) t
[PROOFSTEP]
rw [kernel.comapRight_apply' _ _ _ ht, kernel.compProd_apply _ _ _ (h_prod_embed.measurableSet_image.mpr ht),
kernel.const_apply, h_fst, kernel.compProd_apply _ _ _ ht, kernel.const_apply]
[GOAL]
case intro.intro.refine'_2.h.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
⊢ ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft γ (condKernelReal ρ')) (c, b)) {c | (b, c) ∈ Prod.map id f '' t} ∂Measure.fst ρ =
∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft γ (kernel.comapRight η' hf)) (c, b)) {c | (b, c) ∈ t} ∂Measure.fst ρ
[PROOFSTEP]
refine' lintegral_congr_ae _
[GOAL]
case intro.intro.refine'_2.h.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
⊢ (fun b => ↑↑(↑(kernel.prodMkLeft γ (condKernelReal ρ')) (c, b)) {c | (b, c) ∈ Prod.map id f '' t}) =ᵐ[Measure.fst ρ]
fun b => ↑↑(↑(kernel.prodMkLeft γ (kernel.comapRight η' hf)) (c, b)) {c | (b, c) ∈ t}
[PROOFSTEP]
filter_upwards [h_ae] with a ha
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ ↑↑(↑(kernel.prodMkLeft γ (condKernelReal (Measure.map (Prod.map id f) ρ))) (c, a)) {c | (a, c) ∈ Prod.map id f '' t} =
↑↑(↑(kernel.prodMkLeft γ
(kernel.comapRight
(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ))
(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)))
hf))
(c, a))
{c | (a, c) ∈ t}
[PROOFSTEP]
rw [kernel.prodMkLeft_apply', kernel.prodMkLeft_apply', kernel.comapRight_apply']
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} =
↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ))
(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)))
(c, a).snd)
(f '' {c | (a, c) ∈ t})
case h.ht
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ MeasurableSet {c | (a, c) ∈ t}
[PROOFSTEP]
swap
[GOAL]
case h.ht
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ MeasurableSet {c | (a, c) ∈ t}
[PROOFSTEP]
exact measurable_prod_mk_left ht
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} =
↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ))
(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)))
(c, a).snd)
(f '' {c | (a, c) ∈ t})
[PROOFSTEP]
have h1 : {c : ℝ | (a, c) ∈ Prod.map id f '' t} = f '' {c : Ω | (a, c) ∈ t} :=
by
ext1 x
simp only [Prod_map, id.def, mem_image, Prod.mk.inj_iff, Prod.exists, mem_setOf_eq]
constructor
· rintro ⟨a', b, h_mem, rfl, hf_eq⟩
exact ⟨b, h_mem, hf_eq⟩
· rintro ⟨b, h_mem, hf_eq⟩
exact ⟨a, b, h_mem, rfl, hf_eq⟩
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t}
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
x : ℝ
⊢ x ∈ {c | (a, c) ∈ Prod.map id f '' t} ↔ x ∈ f '' {c | (a, c) ∈ t}
[PROOFSTEP]
simp only [Prod_map, id.def, mem_image, Prod.mk.inj_iff, Prod.exists, mem_setOf_eq]
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
x : ℝ
⊢ (∃ a_1 b, (a_1, b) ∈ t ∧ a_1 = a ∧ f b = x) ↔ ∃ x_1, (a, x_1) ∈ t ∧ f x_1 = x
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
x : ℝ
⊢ (∃ a_1 b, (a_1, b) ∈ t ∧ a_1 = a ∧ f b = x) → ∃ x_1, (a, x_1) ∈ t ∧ f x_1 = x
[PROOFSTEP]
rintro ⟨a', b, h_mem, rfl, hf_eq⟩
[GOAL]
case h.mp.intro.intro.intro.intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
x : ℝ
a' : α
b : Ω
h_mem : (a', b) ∈ t
hf_eq : f b = x
ha : a' ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
⊢ ∃ x_1, (a', x_1) ∈ t ∧ f x_1 = x
[PROOFSTEP]
exact ⟨b, h_mem, hf_eq⟩
[GOAL]
case h.mpr
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
x : ℝ
⊢ (∃ x_1, (a, x_1) ∈ t ∧ f x_1 = x) → ∃ a_2 b, (a_2, b) ∈ t ∧ a_2 = a ∧ f b = x
[PROOFSTEP]
rintro ⟨b, h_mem, hf_eq⟩
[GOAL]
case h.mpr.intro.intro
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
x : ℝ
b : Ω
h_mem : (a, b) ∈ t
hf_eq : f b = x
⊢ ∃ a_1 b, (a_1, b) ∈ t ∧ a_1 = a ∧ f b = x
[PROOFSTEP]
exact ⟨a, b, h_mem, rfl, hf_eq⟩
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
h1 : {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t}
⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} =
↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ))
(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)))
(c, a).snd)
(f '' {c | (a, c) ∈ t})
[PROOFSTEP]
have h2 : condKernelReal ρ' (c, a).snd = η' (c, a).snd := by rw [kernel.piecewise_apply, if_pos ha]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
h1 : {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t}
⊢ ↑(condKernelReal ρ') (c, a).snd = ↑η' (c, a).snd
[PROOFSTEP]
rw [kernel.piecewise_apply, if_pos ha]
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁶ : TopologicalSpace Ω
inst✝⁵ : PolishSpace Ω
inst✝⁴ : MeasurableSpace Ω
inst✝³ : BorelSpace Ω
inst✝² : Nonempty Ω
ρ : Measure (α × Ω)
inst✝¹ : IsFiniteMeasure ρ
γ : Type u_3
inst✝ : MeasurableSpace γ
f : Ω → ℝ
hf : MeasurableEmbedding f
ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ
ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ
hm : MeasurableSet ρ_set
h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1
h_prod_embed : MeasurableEmbedding (Prod.map id f)
h_fst : Measure.fst ρ' = Measure.fst ρ
h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set
x₀ : ℝ
hx₀ : x₀ ∈ range f
η' : { x // x ∈ kernel α ℝ } :=
kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))
this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed
c : γ
t : Set (α × Ω)
ht : MeasurableSet t
a : α
ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ
h1 : {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t}
h2 : ↑(condKernelReal ρ') (c, a).snd = ↑η' (c, a).snd
⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} =
↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ))
(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)))
(c, a).snd)
(f '' {c | (a, c) ∈ t})
[PROOFSTEP]
rw [h1, h2]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ Measure.condKernel ρ =
Exists.choose (_ : ∃ η _h, kernel.const Unit ρ = kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit η)
[PROOFSTEP]
rw [MeasureTheory.Measure.condKernel]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ IsMarkovKernel (Measure.condKernel ρ)
[PROOFSTEP]
rw [condKernel_def]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ IsMarkovKernel
(Exists.choose (_ : ∃ η _h, kernel.const Unit ρ = kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit η))
[PROOFSTEP]
exact (exists_cond_kernel ρ Unit).choose_spec.choose
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ const Unit ρ = const Unit (Measure.fst ρ) ⊗ₖ prodMkLeft Unit (Measure.condKernel ρ)
[PROOFSTEP]
simp_rw [condKernel_def]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ const Unit ρ =
const Unit (Measure.fst ρ) ⊗ₖ
prodMkLeft Unit (Exists.choose (_ : ∃ η _h, const Unit ρ = const Unit (Measure.fst ρ) ⊗ₖ prodMkLeft Unit η))
[PROOFSTEP]
exact (exists_cond_kernel ρ Unit).choose_spec.choose_spec
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ ρ = ↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
rw [← kernel.const_unit_eq_compProd, kernel.const_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁷ : TopologicalSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : BorelSpace Ω
inst✝³ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝² : IsFiniteMeasure ρ✝
γ : Type u_3
inst✝¹ : MeasurableSpace γ
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
⊢ const γ ρ = const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (Measure.condKernel ρ)
[PROOFSTEP]
ext a s hs : 2
[GOAL]
case h.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁷ : TopologicalSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : MeasurableSpace Ω
inst✝⁴ : BorelSpace Ω
inst✝³ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝² : IsFiniteMeasure ρ✝
γ : Type u_3
inst✝¹ : MeasurableSpace γ
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
a : γ
s : Set (α × Ω)
hs : MeasurableSet s
⊢ ↑↑(↑(const γ ρ) a) s = ↑↑(↑(const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (Measure.condKernel ρ)) a) s
[PROOFSTEP]
simpa only [kernel.const_apply, kernel.compProd_apply _ _ _ hs, kernel.prodMkLeft_apply'] using
kernel.ext_iff'.mp (kernel.const_unit_eq_compProd ρ) () s hs
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set (α × Ω)
hs : MeasurableSet s
⊢ ∫⁻ (a : α), ↑↑(↑(Measure.condKernel ρ) a) {x | (a, x) ∈ s} ∂Measure.fst ρ = ↑↑ρ s
[PROOFSTEP]
conv_rhs => rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set (α × Ω)
hs : MeasurableSet s
| ↑↑ρ s
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set (α × Ω)
hs : MeasurableSet s
| ↑↑ρ s
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set (α × Ω)
hs : MeasurableSet s
| ↑↑ρ s
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set (α × Ω)
hs : MeasurableSet s
⊢ ∫⁻ (a : α), ↑↑(↑(Measure.condKernel ρ) a) {x | (a, x) ∈ s} ∂Measure.fst ρ =
↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) s
[PROOFSTEP]
simp_rw [kernel.compProd_apply _ _ _ hs, kernel.const_apply, kernel.prodMkLeft_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
[PROOFSTEP]
have : ρ (s ×ˢ t) = ((kernel.const Unit ρ.fst ⊗ₖ kernel.prodMkLeft Unit ρ.condKernel) ()) (s ×ˢ t) := by congr;
exact measure_eq_compProd ρ
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
⊢ ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
[PROOFSTEP]
congr
[GOAL]
case e_self.e_self
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
⊢ ρ = ↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
exact measure_eq_compProd ρ
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t)
[PROOFSTEP]
rw [this, kernel.compProd_apply _ _ _ (hs.prod ht)]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ =
∫⁻ (b : α),
↑↑(↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), b))
{c | (b, c) ∈ s ×ˢ t} ∂↑(kernel.const Unit (Measure.fst ρ)) ()
[PROOFSTEP]
simp only [prod_mk_mem_set_prod_eq, kernel.lintegral_const, kernel.prodMkLeft_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ =
∫⁻ (x : α), ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} ∂Measure.fst ρ
[PROOFSTEP]
rw [← lintegral_indicator _ hs]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
⊢ ∫⁻ (a : α), indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) a ∂Measure.fst ρ =
∫⁻ (x : α), ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} ∂Measure.fst ρ
[PROOFSTEP]
congr
[GOAL]
case e_f
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
⊢ (fun a => indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) a) = fun x =>
↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t}
[PROOFSTEP]
ext1 x
[GOAL]
case e_f.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
x : α
⊢ indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) x = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t}
[PROOFSTEP]
classical
rw [indicator_apply]
split_ifs with hx
· simp only [hx, if_true, true_and_iff, setOf_mem_eq]
· simp only [hx, if_false, false_and_iff, setOf_false, measure_empty]
[GOAL]
case e_f.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
x : α
⊢ indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) x = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t}
[PROOFSTEP]
rw [indicator_apply]
[GOAL]
case e_f.h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
x : α
⊢ (if x ∈ s then ↑↑(↑(Measure.condKernel ρ) x) t else 0) = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t}
[PROOFSTEP]
split_ifs with hx
[GOAL]
case pos
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
x : α
hx : x ∈ s
⊢ ↑↑(↑(Measure.condKernel ρ) x) t = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t}
[PROOFSTEP]
simp only [hx, if_true, true_and_iff, setOf_mem_eq]
[GOAL]
case neg
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
this :
↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t)
x : α
hx : ¬x ∈ s
⊢ 0 = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t}
[PROOFSTEP]
simp only [hx, if_false, false_and_iff, setOf_false, measure_empty]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω), f x ∂ρ
[PROOFSTEP]
conv_rhs => rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
| ∫⁻ (x : α × Ω), f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
| ∫⁻ (x : α × Ω), f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
| ∫⁻ (x : α × Ω), f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (x : α × Ω), f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
rw [kernel.lintegral_compProd _ _ _ hf, kernel.const_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (b : α), ∫⁻ (c : Ω), f (b, c) ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), b) ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
conv_rhs => rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
| ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
| ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
| ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (x : α × Ω) in s ×ˢ t,
f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
rw [← kernel.restrict_apply _ (hs.prod ht), ← kernel.compProd_restrict hs ht, kernel.lintegral_compProd _ _ _ hf,
kernel.restrict_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (b : α) in s,
∫⁻ (c : Ω),
f
(b,
c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht)
((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) ()
[PROOFSTEP]
conv_rhs => enter [2, b, 1]; rw [kernel.restrict_apply _ ht]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
| ∫⁻ (b : α) in s,
∫⁻ (c : Ω),
f
(b,
c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht)
((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) ()
[PROOFSTEP]
enter [2, b, 1]; rw [kernel.restrict_apply _ ht]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
| ∫⁻ (b : α) in s,
∫⁻ (c : Ω),
f
(b,
c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht)
((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) ()
[PROOFSTEP]
enter [2, b, 1]; rw [kernel.restrict_apply _ ht]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
| ∫⁻ (b : α) in s,
∫⁻ (c : Ω),
f
(b,
c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht)
((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) ()
[PROOFSTEP]
enter [2, b, 1]
[GOAL]
case h
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
b : α
| ↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht) ((), b)
[PROOFSTEP]
rw [kernel.restrict_apply _ ht]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω) in s ×ˢ univ, f x ∂ρ
[PROOFSTEP]
rw [← set_lintegral_condKernel ρ hf hs MeasurableSet.univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in univ, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [Measure.restrict_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
t : Set Ω
ht : MeasurableSet t
⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω) in univ ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [← set_lintegral_condKernel ρ hf MeasurableSet.univ ht]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁵ : TopologicalSpace Ω
inst✝⁴ : PolishSpace Ω
inst✝³ : MeasurableSpace Ω
inst✝² : BorelSpace Ω
inst✝¹ : Nonempty Ω
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → ℝ≥0∞
hf : Measurable f
t : Set Ω
ht : MeasurableSet t
⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫⁻ (a : α) in univ, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [Measure.restrict_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : AEStronglyMeasurable f ρ
⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x) (Measure.fst ρ)
[PROOFSTEP]
rw [measure_eq_compProd ρ] at hf
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x) (Measure.fst ρ)
[PROOFSTEP]
exact AEStronglyMeasurable.integral_kernel_compProd hf
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (ω : α × Ω), f ω ∂ρ
[PROOFSTEP]
conv_rhs => rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
| ∫ (ω : α × Ω), f ω ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
| ∫ (ω : α × Ω), f ω ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
| ∫ (ω : α × Ω), f ω ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (ω : α × Ω), f ω ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
have hf' : Integrable f ((kernel.const Unit ρ.fst ⊗ₖ kernel.prodMkLeft Unit ρ.condKernel) ()) := by
rwa [measure_eq_compProd ρ] at hf
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
⊢ Integrable f
[PROOFSTEP]
rwa [measure_eq_compProd ρ] at hf
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
hf' : Integrable f
⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (ω : α × Ω), f ω ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
rw [integral_compProd hf', kernel.const_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf : Integrable f
hf' : Integrable f
⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (x : α), ∫ (y : Ω), f (x, y) ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), x) ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
conv_rhs => rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
| ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
| ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
| ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (x : α × Ω) in s ×ˢ t,
f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()
[PROOFSTEP]
rw [set_integral_compProd hs ht]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (x : α) in s,
∫ (y : Ω) in t,
f (x, y) ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), x) ∂↑(kernel.const Unit (Measure.fst ρ)) ()
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply, kernel.const_apply]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (s ×ˢ t)
⊢ IntegrableOn (fun x => f x) (s ×ˢ t)
[PROOFSTEP]
rwa [measure_eq_compProd ρ] at hf
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
hf : IntegrableOn f (s ×ˢ univ)
⊢ ∫ (a : α) in s, ∫ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ univ, f x ∂ρ
[PROOFSTEP]
rw [← set_integral_condKernel hs MeasurableSet.univ hf]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
s : Set α
hs : MeasurableSet s
hf : IntegrableOn f (s ×ˢ univ)
⊢ ∫ (a : α) in s, ∫ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (a : α) in s, ∫ (ω : Ω) in univ, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [Measure.restrict_univ]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (univ ×ˢ t)
⊢ ∫ (a : α), ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in univ ×ˢ t, f x ∂ρ
[PROOFSTEP]
rw [← set_integral_condKernel MeasurableSet.univ ht hf]
[GOAL]
α : Type u_1
mα : MeasurableSpace α
Ω : Type u_2
inst✝⁹ : TopologicalSpace Ω
inst✝⁸ : PolishSpace Ω
inst✝⁷ : MeasurableSpace Ω
inst✝⁶ : BorelSpace Ω
inst✝⁵ : Nonempty Ω
ρ✝ : Measure (α × Ω)
inst✝⁴ : IsFiniteMeasure ρ✝
E : Type u_3
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
t : Set Ω
ht : MeasurableSet t
hf : IntegrableOn f (univ ×ˢ t)
⊢ ∫ (a : α), ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ =
∫ (a : α) in univ, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ
[PROOFSTEP]
simp_rw [Measure.restrict_univ]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f ρ
⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔
Integrable f
[PROOFSTEP]
rw [measure_eq_compProd ρ] at hf
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔
Integrable f
[PROOFSTEP]
conv_rhs => rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
| Integrable f
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
| Integrable f
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
| Integrable f
[PROOFSTEP]
rw [measure_eq_compProd ρ]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔
Integrable f
[PROOFSTEP]
rw [integrable_compProd_iff hf]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ())
⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔
(∀ᵐ (x : α) ∂↑(kernel.const Unit (Measure.fst ρ)) (), Integrable fun y => f (x, y)) ∧
Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), x)
[PROOFSTEP]
simp_rw [kernel.prodMkLeft_apply, kernel.const_apply]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf_int : Integrable f
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)
[PROOFSTEP]
have hf_ae : AEStronglyMeasurable f ρ := hf_int.1
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf_int : Integrable f
hf_ae : AEStronglyMeasurable f ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)
[PROOFSTEP]
rw [← hf_ae.ae_integrable_condKernel_iff] at hf_int
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf_int :
(∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a
hf_ae : AEStronglyMeasurable f ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)
[PROOFSTEP]
exact hf_int.1
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf_int : Integrable f
⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x
[PROOFSTEP]
have hf_ae : AEStronglyMeasurable f ρ := hf_int.1
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf_int : Integrable f
hf_ae : AEStronglyMeasurable f ρ
⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x
[PROOFSTEP]
rw [← hf_ae.ae_integrable_condKernel_iff] at hf_int
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → F
hf_int :
(∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧
Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a
hf_ae : AEStronglyMeasurable f ρ
⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x
[PROOFSTEP]
exact hf_int.2
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf_int : Integrable f
⊢ Integrable fun x => ‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x‖
[PROOFSTEP]
refine' hf_int.integral_norm_condKernel.mono hf_int.1.integral_condKernel.norm _
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf_int : Integrable f
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ,
‖‖∫ (y : Ω), f (a, y) ∂↑(Measure.condKernel ρ) a‖‖ ≤ ‖∫ (y : Ω), ‖f (a, y)‖ ∂↑(Measure.condKernel ρ) a‖
[PROOFSTEP]
refine' eventually_of_forall fun x => _
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf_int : Integrable f
x : α
⊢ ‖‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x‖‖ ≤ ‖∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x‖
[PROOFSTEP]
rw [norm_norm]
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf_int : Integrable f
x : α
⊢ ‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x‖ ≤ ‖∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x‖
[PROOFSTEP]
refine' (norm_integral_le_integral_norm _).trans_eq (Real.norm_of_nonneg _).symm
[GOAL]
α : Type u_1
Ω : Type u_2
E : Type u_3
F : Type u_4
mα : MeasurableSpace α
inst✝⁹ : MeasurableSpace Ω
inst✝⁸ : TopologicalSpace Ω
inst✝⁷ : BorelSpace Ω
inst✝⁶ : PolishSpace Ω
inst✝⁵ : Nonempty Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : NormedAddCommGroup F
ρ : Measure (α × Ω)
inst✝ : IsFiniteMeasure ρ
f : α × Ω → E
hf_int : Integrable f
x : α
⊢ 0 ≤ ∫ (a : Ω), ‖f (x, a)‖ ∂↑(Measure.condKernel ρ) x
[PROOFSTEP]
exact integral_nonneg_of_ae (eventually_of_forall fun y => norm_nonneg _)
| {"mathlib_filename": "Mathlib.Probability.Kernel.Disintegration", "llama_tokens": 88426} |
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
⊢ predictablePart f ℱ μ 0 = 0
[PROOFSTEP]
simp_rw [predictablePart, Finset.range_zero, Finset.sum_empty]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
⊢ martingalePart f ℱ μ = fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])
[PROOFSTEP]
unfold martingalePart predictablePart
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
⊢ (fun n => f n - ∑ i in Finset.range n, μ[f (i + 1) - f i|↑ℱ i]) = fun n =>
f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])
[PROOFSTEP]
ext1 n
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ n : ℕ
⊢ f n - ∑ i in Finset.range n, μ[f (i + 1) - f i|↑ℱ i] =
f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])
[PROOFSTEP]
rw [Finset.eq_sum_range_sub f n, ← add_sub, ← Finset.sum_sub_distrib]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
hf_int : ∀ (n : ℕ), Integrable (f n)
n : ℕ
⊢ Integrable (martingalePart f ℱ μ n)
[PROOFSTEP]
rw [martingalePart_eq_sum]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
hf_int : ∀ (n : ℕ), Integrable (f n)
n : ℕ
⊢ Integrable ((fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) n)
[PROOFSTEP]
exact (hf_int 0).add (integrable_finset_sum' _ fun i _ => ((hf_int _).sub (hf_int _)).sub integrable_condexp)
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
⊢ Martingale (martingalePart f ℱ μ) ℱ μ
[PROOFSTEP]
refine'
⟨adapted_martingalePart hf, fun i j hij => _⟩
-- ⊢ μ[martingalePart f ℱ μ j | ℱ i] =ᵐ[μ] martingalePart f ℱ μ i
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] martingalePart f ℱ μ i
[PROOFSTEP]
have h_eq_sum :
μ[martingalePart f ℱ μ j|ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|ℱ i] - μ[μ[f (k + 1) - f k|ℱ k]|ℱ i]) :=
by
rw [martingalePart_eq_sum]
refine' (condexp_add (hf_int 0) _).trans _
· exact integrable_finset_sum' _ fun i _ => ((hf_int _).sub (hf_int _)).sub integrable_condexp
refine' (EventuallyEq.add EventuallyEq.rfl (condexp_finset_sum fun i _ => _)).trans _
· exact ((hf_int _).sub (hf_int _)).sub integrable_condexp
refine' EventuallyEq.add _ _
· rw [condexp_of_stronglyMeasurable (ℱ.le _) _ (hf_int 0)]
· exact (hf 0).mono (ℱ.mono (zero_le i))
· exact eventuallyEq_sum fun k _ => condexp_sub ((hf_int _).sub (hf_int _)) integrable_condexp
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
[PROOFSTEP]
rw [martingalePart_eq_sum]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ μ[(fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
[PROOFSTEP]
refine' (condexp_add (hf_int 0) _).trans _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ Integrable (∑ i in Finset.range j, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]))
[PROOFSTEP]
exact integrable_finset_sum' _ fun i _ => ((hf_int _).sub (hf_int _)).sub integrable_condexp
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ μ[f 0|↑ℱ i] + μ[∑ i in Finset.range j, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
[PROOFSTEP]
refine' (EventuallyEq.add EventuallyEq.rfl (condexp_finset_sum fun i _ => _)).trans _
[GOAL]
case refine'_2.refine'_1
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i✝ j : ℕ
hij : i✝ ≤ j
i : ℕ
x✝ : i ∈ Finset.range j
⊢ Integrable (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])
[PROOFSTEP]
exact ((hf_int _).sub (hf_int _)).sub integrable_condexp
[GOAL]
case refine'_2.refine'_2
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ (fun x =>
(μ[f 0|↑ℱ i]) x +
Finset.sum (Finset.range j) (fun i_1 => μ[f (i_1 + 1) - f i_1 - μ[f (i_1 + 1) - f i_1|↑ℱ i_1]|↑ℱ i]) x) =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
[PROOFSTEP]
refine' EventuallyEq.add _ _
[GOAL]
case refine'_2.refine'_2.refine'_1
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ (fun x => (μ[f 0|↑ℱ i]) x) =ᵐ[μ] fun x => f 0 x
[PROOFSTEP]
rw [condexp_of_stronglyMeasurable (ℱ.le _) _ (hf_int 0)]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ StronglyMeasurable (f 0)
[PROOFSTEP]
exact (hf 0).mono (ℱ.mono (zero_le i))
[GOAL]
case refine'_2.refine'_2.refine'_2
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
⊢ (fun x =>
Finset.sum (Finset.range j) (fun i_1 => μ[f (i_1 + 1) - f i_1 - μ[f (i_1 + 1) - f i_1|↑ℱ i_1]|↑ℱ i]) x) =ᵐ[μ]
fun x => Finset.sum (Finset.range j) (fun k => μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x
[PROOFSTEP]
exact eventuallyEq_sum fun k _ => condexp_sub ((hf_int _).sub (hf_int _)) integrable_condexp
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
⊢ μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] martingalePart f ℱ μ i
[PROOFSTEP]
refine' h_eq_sum.trans _
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] martingalePart f ℱ μ i
[PROOFSTEP]
have h_ge : ∀ k, i ≤ k → μ[f (k + 1) - f k|ℱ i] - μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] 0 :=
by
intro k hk
have : μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|ℱ i] := condexp_condexp_of_le (ℱ.mono hk) (ℱ.le k)
filter_upwards [this] with x hx
rw [Pi.sub_apply, Pi.zero_apply, hx, sub_self]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
⊢ ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
[PROOFSTEP]
intro k hk
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
k : ℕ
hk : i ≤ k
⊢ μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
[PROOFSTEP]
have : μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|ℱ i] := condexp_condexp_of_le (ℱ.mono hk) (ℱ.le k)
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
k : ℕ
hk : i ≤ k
this : μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|↑ℱ i]
⊢ μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [this] with x hx
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
k : ℕ
hk : i ≤ k
this : μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|↑ℱ i]
x : Ω
hx : (μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x = (μ[f (k + 1) - f k|↑ℱ i]) x
⊢ (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x = OfNat.ofNat 0 x
[PROOFSTEP]
rw [Pi.sub_apply, Pi.zero_apply, hx, sub_self]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] martingalePart f ℱ μ i
[PROOFSTEP]
have h_lt :
∀ k, k < i → μ[f (k + 1) - f k|ℱ i] - μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|ℱ k] :=
by
refine' fun k hk => EventuallyEq.sub _ _
· rw [condexp_of_stronglyMeasurable]
· exact ((hf (k + 1)).mono (ℱ.mono (Nat.succ_le_of_lt hk))).sub ((hf k).mono (ℱ.mono hk.le))
· exact (hf_int _).sub (hf_int _)
· rw [condexp_of_stronglyMeasurable]
· exact stronglyMeasurable_condexp.mono (ℱ.mono hk.le)
· exact integrable_condexp
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
⊢ ∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
[PROOFSTEP]
refine' fun k hk => EventuallyEq.sub _ _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
k : ℕ
hk : k < i
⊢ (fun x => (μ[f (k + 1) - f k|↑ℱ i]) x) =ᵐ[μ] fun x => (f (k + 1) - f k) x
[PROOFSTEP]
rw [condexp_of_stronglyMeasurable]
[GOAL]
case refine'_1.hf
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
k : ℕ
hk : k < i
⊢ StronglyMeasurable (f (k + 1) - f k)
[PROOFSTEP]
exact ((hf (k + 1)).mono (ℱ.mono (Nat.succ_le_of_lt hk))).sub ((hf k).mono (ℱ.mono hk.le))
[GOAL]
case refine'_1.hfi
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
k : ℕ
hk : k < i
⊢ Integrable (f (k + 1) - f k)
[PROOFSTEP]
exact (hf_int _).sub (hf_int _)
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
k : ℕ
hk : k < i
⊢ (fun x => (μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x) =ᵐ[μ] fun x => (μ[f (k + 1) - f k|↑ℱ k]) x
[PROOFSTEP]
rw [condexp_of_stronglyMeasurable]
[GOAL]
case refine'_2.hf
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
k : ℕ
hk : k < i
⊢ StronglyMeasurable (μ[f (k + 1) - f k|↑ℱ k])
[PROOFSTEP]
exact stronglyMeasurable_condexp.mono (ℱ.mono hk.le)
[GOAL]
case refine'_2.hfi
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
k : ℕ
hk : k < i
⊢ Integrable (μ[f (k + 1) - f k|↑ℱ k])
[PROOFSTEP]
exact integrable_condexp
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] martingalePart f ℱ μ i
[PROOFSTEP]
rw [martingalePart_eq_sum]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ]
(fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) i
[PROOFSTEP]
refine' EventuallyEq.add EventuallyEq.rfl _
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ (fun x => Finset.sum (Finset.range j) (fun k => μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x) =ᵐ[μ]
fun x => Finset.sum (Finset.range i) (fun i => f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) x
[PROOFSTEP]
rw [← Finset.sum_range_add_sum_Ico _ hij, ←
add_zero (∑ i in Finset.range i, (f (i + 1) - f i - μ[f (i + 1) - f i|ℱ i]))]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ (fun x =>
(∑ k in Finset.range i, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) +
∑ k in Finset.Ico i j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]))
x) =ᵐ[μ]
fun x => (∑ i in Finset.range i, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) + 0) x
[PROOFSTEP]
refine' (eventuallyEq_sum fun k hk => h_lt k (Finset.mem_range.mp hk)).add _
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ (fun x => Finset.sum (Finset.Ico i j) (fun k => μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x) =ᵐ[μ]
fun x => OfNat.ofNat 0 x
[PROOFSTEP]
refine' (eventuallyEq_sum fun k hk => h_ge k (Finset.mem_Ico.mp hk).1).trans _
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ ∑ i in Finset.Ico i j, 0 =ᵐ[μ] fun x => OfNat.ofNat 0 x
[PROOFSTEP]
simp only [Finset.sum_const_zero, Pi.zero_apply]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f : ℕ → Ω → E
ℱ : Filtration ℕ m0
n : ℕ
hf : Adapted ℱ f
hf_int : ∀ (n : ℕ), Integrable (f n)
inst✝ : SigmaFiniteFiltration μ ℱ
i j : ℕ
hij : i ≤ j
h_eq_sum :
μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ]
f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])
h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0
h_lt :
∀ (k : ℕ),
k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k]
⊢ 0 =ᵐ[μ] fun x => 0
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n
[PROOFSTEP]
set h := f - martingalePart (f + g) ℱ μ with hhdef
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n
[PROOFSTEP]
have hh : h = predictablePart (f + g) ℱ μ - g := by
rw [hhdef, sub_eq_sub_iff_add_eq_add, add_comm (predictablePart (f + g) ℱ μ), martingalePart_add_predictablePart]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
⊢ h = predictablePart (f + g) ℱ μ - g
[PROOFSTEP]
rw [hhdef, sub_eq_sub_iff_add_eq_add, add_comm (predictablePart (f + g) ℱ μ), martingalePart_add_predictablePart]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n
[PROOFSTEP]
have hhpred : Adapted ℱ fun n => h (n + 1) := by
rw [hh]
exact adapted_predictablePart.sub hg
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
⊢ Adapted ℱ fun n => h (n + 1)
[PROOFSTEP]
rw [hh]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
⊢ Adapted ℱ fun n => (predictablePart (f + g) ℱ μ - g) (n + 1)
[PROOFSTEP]
exact adapted_predictablePart.sub hg
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
hhpred : Adapted ℱ fun n => h (n + 1)
⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n
[PROOFSTEP]
have hhmgle : Martingale h ℱ μ :=
hf.sub
(martingale_martingalePart (hf.adapted.add <| Predictable.adapted hg <| hg0.symm ▸ stronglyMeasurable_zero) fun n =>
(hf.integrable n).add <| hgint n)
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
hhpred : Adapted ℱ fun n => h (n + 1)
hhmgle : Martingale h ℱ μ
⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n
[PROOFSTEP]
refine' (eventuallyEq_iff_sub.2 _).symm
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
hhpred : Adapted ℱ fun n => h (n + 1)
hhmgle : Martingale h ℱ μ
⊢ f n - martingalePart (f + g) ℱ μ n =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [hhmgle.eq_zero_of_predictable hhpred n] with ω hω
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
hhpred : Adapted ℱ fun n => h (n + 1)
hhmgle : Martingale h ℱ μ
ω : Ω
hω : (f - martingalePart (f + g) ℱ μ) n ω = (f - martingalePart (f + g) ℱ μ) 0 ω
⊢ (f n - martingalePart (f + g) ℱ μ n) ω = OfNat.ofNat 0 ω
[PROOFSTEP]
rw [Pi.sub_apply] at hω
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
hhpred : Adapted ℱ fun n => h (n + 1)
hhmgle : Martingale h ℱ μ
ω : Ω
hω : (f n - martingalePart (f + g) ℱ μ n) ω = (f - martingalePart (f + g) ℱ μ) 0 ω
⊢ (f n - martingalePart (f + g) ℱ μ n) ω = OfNat.ofNat 0 ω
[PROOFSTEP]
rw [hω, Pi.sub_apply, martingalePart]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ
hhdef : h = f - martingalePart (f + g) ℱ μ
hh : h = predictablePart (f + g) ℱ μ - g
hhpred : Adapted ℱ fun n => h (n + 1)
hhmgle : Martingale h ℱ μ
ω : Ω
hω : (f n - martingalePart (f + g) ℱ μ n) ω = (f - martingalePart (f + g) ℱ μ) 0 ω
⊢ (f 0 - ((f + g) 0 - predictablePart (f + g) ℱ μ 0)) ω = OfNat.ofNat 0 ω
[PROOFSTEP]
simp [hg0]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
⊢ predictablePart (f + g) ℱ μ n =ᵐ[μ] g n
[PROOFSTEP]
filter_upwards [martingalePart_add_ae_eq hf hg hg0 hgint n] with ω hω
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
ω : Ω
hω : martingalePart (f + g) ℱ μ n ω = f n ω
⊢ predictablePart (f + g) ℱ μ n ω = g n ω
[PROOFSTEP]
rw [← add_right_inj (f n ω)]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
ω : Ω
hω : martingalePart (f + g) ℱ μ n ω = f n ω
⊢ f n ω + predictablePart (f + g) ℱ μ n ω = f n ω + g n ω
[PROOFSTEP]
conv_rhs => rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
ω : Ω
hω : martingalePart (f + g) ℱ μ n ω = f n ω
| f n ω + g n ω
[PROOFSTEP]
rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
ω : Ω
hω : martingalePart (f + g) ℱ μ n ω = f n ω
| f n ω + g n ω
[PROOFSTEP]
rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
ω : Ω
hω : martingalePart (f + g) ℱ μ n ω = f n ω
| f n ω + g n ω
[PROOFSTEP]
rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ : Filtration ℕ m0
n✝ : ℕ
inst✝ : SigmaFiniteFiltration μ ℱ
f g : ℕ → Ω → E
hf : Martingale f ℱ μ
hg : Adapted ℱ fun n => g (n + 1)
hg0 : g 0 = 0
hgint : ∀ (n : ℕ), Integrable (g n)
n : ℕ
ω : Ω
hω : martingalePart (f + g) ℱ μ n ω = f n ω
⊢ f n ω + predictablePart (f + g) ℱ μ n ω = (martingalePart (f + g) ℱ μ + predictablePart (f + g) ℱ μ) n ω
[PROOFSTEP]
rw [Pi.add_apply, Pi.add_apply, hω]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
[PROOFSTEP]
simp_rw [predictablePart, Finset.sum_apply, Finset.sum_range_succ_sub_sum]
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(μ[f (i + 1) - f i|↑ℱ i]) ω| ≤ ↑R
[PROOFSTEP]
exact ae_all_iff.2 fun i => ae_bdd_condexp_of_ae_bdd <| ae_all_iff.1 hbdd i
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |martingalePart f ℱ μ (i + 1) ω - martingalePart f ℱ μ i ω| ≤ ↑(2 * R)
[PROOFSTEP]
filter_upwards [hbdd, predictablePart_bdd_difference ℱ hbdd] with ω hω₁ hω₂ i
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
i : ℕ
⊢ |martingalePart f ℱ μ (i + 1) ω - martingalePart f ℱ μ i ω| ≤ ↑(2 * R)
[PROOFSTEP]
simp only [two_mul, martingalePart, Pi.sub_apply]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
i : ℕ
⊢ |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| ≤ ↑(R + R)
[PROOFSTEP]
have :
|f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| =
|f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| :=
by
ring_nf
-- `ring` suggests `ring_nf` despite proving the goal
[GOAL]
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
i : ℕ
⊢ |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| =
|f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)|
[PROOFSTEP]
ring_nf
-- `ring` suggests `ring_nf` despite proving the goal
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
i : ℕ
this :
|f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| =
|f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)|
⊢ |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| ≤ ↑(R + R)
[PROOFSTEP]
rw [this]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ : ℕ → Ω → E
ℱ✝ : Filtration ℕ m0
n : ℕ
R : ℝ≥0
f : ℕ → Ω → ℝ
ℱ : Filtration ℕ m0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R
i : ℕ
this :
|f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| =
|f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)|
⊢ |f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| ≤ ↑(R + R)
[PROOFSTEP]
exact (abs_sub _ _).trans (add_le_add (hω₁ i) (hω₂ i))
| {"mathlib_filename": "Mathlib.Probability.Martingale.Centering", "llama_tokens": 24799} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)
[PROOFSTEP]
refine'
MeasurableSpace.induction_on_inter (C := fun t => Measurable fun a => κ a (Prod.mk a ⁻¹' t)) generateFrom_prod.symm
isPiSystem_prod _ _ _ _ ht
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
⊢ (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) ∅
[PROOFSTEP]
simp only [preimage_empty, measure_empty, measurable_const]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
⊢ ∀ (t : Set (α × β)),
t ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t} →
(fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) t
[PROOFSTEP]
intro t' ht'
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : t' ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t}
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
[PROOFSTEP]
simp only [Set.mem_image2, Set.mem_setOf_eq, exists_and_left] at ht'
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : ∃ a, MeasurableSet a ∧ ∃ x, MeasurableSet x ∧ a ×ˢ x = t'
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
[PROOFSTEP]
obtain ⟨t₁, ht₁, t₂, ht₂, rfl⟩ := ht'
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t₁ ×ˢ t₂)
[PROOFSTEP]
classical
simp_rw [mk_preimage_prod_right_eq_if]
have h_eq_ite : (fun a => κ a (ite (a ∈ t₁) t₂ ∅)) = fun a => ite (a ∈ t₁) (κ a t₂) 0 :=
by
ext1 a
split_ifs
exacts [rfl, measure_empty]
rw [h_eq_ite]
exact Measurable.ite ht₁ (kernel.measurable_coe κ ht₂) measurable_const
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t₁ ×ˢ t₂)
[PROOFSTEP]
simp_rw [mk_preimage_prod_right_eq_if]
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
⊢ Measurable fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)
[PROOFSTEP]
have h_eq_ite : (fun a => κ a (ite (a ∈ t₁) t₂ ∅)) = fun a => ite (a ∈ t₁) (κ a t₂) 0 :=
by
ext1 a
split_ifs
exacts [rfl, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
⊢ (fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
a : α
⊢ ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅) = if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
a : α
h✝ : a ∈ t₁
⊢ ↑↑(↑κ a) t₂ = ↑↑(↑κ a) t₂
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
a : α
h✝ : ¬a ∈ t₁
⊢ ↑↑(↑κ a) ∅ = 0
[PROOFSTEP]
exacts [rfl, measure_empty]
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
h_eq_ite : (fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0
⊢ Measurable fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)
[PROOFSTEP]
rw [h_eq_ite]
[GOAL]
case refine'_2.intro.intro.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t₁ : Set α
ht₁ : MeasurableSet t₁
t₂ : Set β
ht₂ : MeasurableSet t₂
h_eq_ite : (fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0
⊢ Measurable fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0
[PROOFSTEP]
exact Measurable.ite ht₁ (kernel.measurable_coe κ ht₂) measurable_const
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
⊢ ∀ (t : Set (α × β)),
MeasurableSet t →
(fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) t →
(fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) tᶜ
[PROOFSTEP]
intro t' ht' h_meas
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t'ᶜ)
[PROOFSTEP]
have h_eq_sdiff : ∀ a, Prod.mk a ⁻¹' t'ᶜ = Set.univ \ Prod.mk a ⁻¹' t' :=
by
intro a
ext1 b
simp only [mem_compl_iff, mem_preimage, mem_diff, mem_univ, true_and_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
⊢ ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
a : α
⊢ Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
[PROOFSTEP]
ext1 b
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
a : α
b : β
⊢ b ∈ Prod.mk a ⁻¹' t'ᶜ ↔ b ∈ univ \ Prod.mk a ⁻¹' t'
[PROOFSTEP]
simp only [mem_compl_iff, mem_preimage, mem_diff, mem_univ, true_and_iff]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t'ᶜ)
[PROOFSTEP]
simp_rw [h_eq_sdiff]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
⊢ Measurable fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')
[PROOFSTEP]
have : (fun a => κ a (Set.univ \ Prod.mk a ⁻¹' t')) = fun a => κ a Set.univ - κ a (Prod.mk a ⁻¹' t') :=
by
ext1 a
rw [← Set.diff_inter_self_eq_diff, Set.inter_univ, measure_diff (Set.subset_univ _)]
· exact (@measurable_prod_mk_left α β _ _ a) ht'
· exact measure_ne_top _ _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
⊢ (fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')) = fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
a : α
⊢ ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t') = ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
[PROOFSTEP]
rw [← Set.diff_inter_self_eq_diff, Set.inter_univ, measure_diff (Set.subset_univ _)]
[GOAL]
case h.h₂
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
a : α
⊢ MeasurableSet (Prod.mk a ⁻¹' t')
[PROOFSTEP]
exact (@measurable_prod_mk_left α β _ _ a) ht'
[GOAL]
case h.h_fin
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
a : α
⊢ ↑↑(↑κ a) (Prod.mk a ⁻¹' t') ≠ ⊤
[PROOFSTEP]
exact measure_ne_top _ _
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
this : (fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')) = fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
⊢ Measurable fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')
[PROOFSTEP]
rw [this]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
t' : Set (α × β)
ht' : MeasurableSet t'
h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t'
this : (fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')) = fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
⊢ Measurable fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t')
[PROOFSTEP]
exact Measurable.sub (kernel.measurable_coe κ MeasurableSet.univ) h_meas
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
⊢ ∀ (f : ℕ → Set (α × β)),
Pairwise (Disjoint on f) →
(∀ (i : ℕ), MeasurableSet (f i)) →
(∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)) →
(fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (⋃ (i : ℕ), f i)
[PROOFSTEP]
intro f h_disj hf_meas hf
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)
[PROOFSTEP]
have h_Union : (fun a => κ a (Prod.mk a ⁻¹' ⋃ i, f i)) = fun a => κ a (⋃ i, Prod.mk a ⁻¹' f i) :=
by
ext1 a
congr with b
simp only [mem_iUnion, mem_preimage]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
⊢ (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
a : α
⊢ ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i) = ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
[PROOFSTEP]
congr with b
[GOAL]
case h.e_a.h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
a : α
b : β
⊢ b ∈ Prod.mk a ⁻¹' ⋃ (i : ℕ), f i ↔ b ∈ ⋃ (i : ℕ), Prod.mk a ⁻¹' f i
[PROOFSTEP]
simp only [mem_iUnion, mem_preimage]
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)
[PROOFSTEP]
rw [h_Union]
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
⊢ Measurable fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
[PROOFSTEP]
have h_tsum : (fun a => κ a (⋃ i, Prod.mk a ⁻¹' f i)) = fun a => ∑' i, κ a (Prod.mk a ⁻¹' f i) :=
by
ext1 a
rw [measure_iUnion]
· intro i j hij s hsi hsj b hbs
have habi : {(a, b)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hbs
have habj : {(a, b)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hbs
simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using
h_disj hij habi habj
· exact fun i => (@measurable_prod_mk_left α β _ _ a) (hf_meas i)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
⊢ (fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)) = fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i)
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
⊢ ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) = ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i)
[PROOFSTEP]
rw [measure_iUnion]
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
⊢ Pairwise (Disjoint on fun i => Prod.mk a ⁻¹' f i)
[PROOFSTEP]
intro i j hij s hsi hsj b hbs
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
⊢ b ∈ ⊥
[PROOFSTEP]
have habi : {(a, b)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hbs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
⊢ {(a, b)} ⊆ f i
[PROOFSTEP]
rw [Set.singleton_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
⊢ (a, b) ∈ f i
[PROOFSTEP]
exact hsi hbs
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
habi : {(a, b)} ⊆ f i
⊢ b ∈ ⊥
[PROOFSTEP]
have habj : {(a, b)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hbs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
habi : {(a, b)} ⊆ f i
⊢ {(a, b)} ⊆ f j
[PROOFSTEP]
rw [Set.singleton_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
habi : {(a, b)} ⊆ f i
⊢ (a, b) ∈ f j
[PROOFSTEP]
exact hsj hbs
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
i j : ℕ
hij : i ≠ j
s : Set β
hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i
hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j
b : β
hbs : b ∈ s
habi : {(a, b)} ⊆ f i
habj : {(a, b)} ⊆ f j
⊢ b ∈ ⊥
[PROOFSTEP]
simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using
h_disj hij habi habj
[GOAL]
case h.h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
a : α
⊢ ∀ (i : ℕ), MeasurableSet (Prod.mk a ⁻¹' f i)
[PROOFSTEP]
exact fun i => (@measurable_prod_mk_left α β _ _ a) (hf_meas i)
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
h_tsum : (fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)) = fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i)
⊢ Measurable fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
[PROOFSTEP]
rw [h_tsum]
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
t : Set (α × β)
ht : MeasurableSet t
hκs : ∀ (a : α), IsFiniteMeasure (↑κ a)
f : ℕ → Set (α × β)
h_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)
h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)
h_tsum : (fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)) = fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i)
⊢ Measurable fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i)
[PROOFSTEP]
exact Measurable.ennreal_tsum hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝ : IsSFiniteKernel κ
t : Set (α × β)
ht : MeasurableSet t
⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)
[PROOFSTEP]
rw [← kernel.kernel_sum_seq κ]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝ : IsSFiniteKernel κ
t : Set (α × β)
ht : MeasurableSet t
⊢ Measurable fun a => ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t)
[PROOFSTEP]
have : ∀ a, kernel.sum (kernel.seq κ) a (Prod.mk a ⁻¹' t) = ∑' n, kernel.seq κ n a (Prod.mk a ⁻¹' t) := fun a =>
kernel.sum_apply' _ _ (measurable_prod_mk_left ht)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝ : IsSFiniteKernel κ
t : Set (α × β)
ht : MeasurableSet t
this : ∀ (a : α), ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) = ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t)
⊢ Measurable fun a => ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t)
[PROOFSTEP]
simp_rw [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝ : IsSFiniteKernel κ
t : Set (α × β)
ht : MeasurableSet t
this : ∀ (a : α), ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) = ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t)
⊢ Measurable fun a => ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t)
[PROOFSTEP]
refine' Measurable.ennreal_tsum fun n => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝ : IsSFiniteKernel κ
t : Set (α × β)
ht : MeasurableSet t
this : ∀ (a : α), ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) = ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t)
n : ℕ
⊢ Measurable fun a => ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t)
[PROOFSTEP]
exact measurable_kernel_prod_mk_left_of_finite ht inferInstance
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
⊢ Measurable fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)
[PROOFSTEP]
have : ∀ b, Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p : (α × β) × γ | (p.1.2, p.2) ∈ s}} := by intro b; rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
⊢ ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}}
[PROOFSTEP]
intro b
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
b : β
⊢ Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}}
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}}
⊢ Measurable fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)
[PROOFSTEP]
simp_rw [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}}
⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}}
[PROOFSTEP]
refine' (measurable_kernel_prod_mk_left _).comp measurable_prod_mk_left
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}}
⊢ MeasurableSet {p | (p.fst.snd, p.snd) ∈ s}
[PROOFSTEP]
exact (measurable_fst.snd.prod_mk measurable_snd) hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
⊢ Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a
[PROOFSTEP]
conv =>
congr
ext
erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
| Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a
[PROOFSTEP]
congr
ext
erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
| Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a
[PROOFSTEP]
congr
ext
erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
| Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a
[PROOFSTEP]
congr
[GOAL]
case f
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
| fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a
[PROOFSTEP]
ext
[GOAL]
case f.h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
x✝ : α
| ∫⁻ (b : β), indicator t (Function.const (α × β) c) (x✝, b) ∂↑κ x✝
[PROOFSTEP]
erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
t : Set (α × β)
ht : MeasurableSet t
c : ℝ≥0∞
⊢ Measurable fun x => c * ↑↑(↑κ x) (Prod.mk x ⁻¹' t)
[PROOFSTEP]
exact Measurable.const_mul (measurable_kernel_prod_mk_left ht) c
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a
[PROOFSTEP]
let F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a
[PROOFSTEP]
have h : ∀ a, ⨆ n, F n a = uncurry f a := SimpleFunc.iSup_eapprox_apply (uncurry f) hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α × β), ⨆ (n : ℕ), ↑(F n) a = uncurry f a
⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a
[PROOFSTEP]
simp only [Prod.forall, uncurry_apply_pair] at h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a
[PROOFSTEP]
simp_rw [← h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
⊢ Measurable fun a => ∫⁻ (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a
[PROOFSTEP]
have : ∀ a, (∫⁻ b, ⨆ n, F n (a, b) ∂κ a) = ⨆ n, ∫⁻ b, F n (a, b) ∂κ a :=
by
intro a
rw [lintegral_iSup]
· exact fun n => (F n).measurable.comp measurable_prod_mk_left
· exact fun i j hij b => SimpleFunc.monotone_eapprox (uncurry f) hij _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
⊢ ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
a : α
⊢ ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
[PROOFSTEP]
rw [lintegral_iSup]
[GOAL]
case hf
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
a : α
⊢ ∀ (n : ℕ), Measurable fun b => ↑(F n) (a, b)
[PROOFSTEP]
exact fun n => (F n).measurable.comp measurable_prod_mk_left
[GOAL]
case h_mono
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝ : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
a : α
⊢ Monotone fun n b => ↑(F n) (a, b)
[PROOFSTEP]
exact fun i j hij b => SimpleFunc.monotone_eapprox (uncurry f) hij _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
⊢ Measurable fun a => ∫⁻ (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a
[PROOFSTEP]
simp_rw [this]
-- Porting note: trouble finding the induction motive
-- refine' measurable_iSup fun n => SimpleFunc.induction _ _ (F n)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
⊢ Measurable fun a => ⨆ (n : ℕ), ∫⁻ (b : β), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a
[PROOFSTEP]
refine' measurable_iSup fun n => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
⊢ Measurable fun a => ∫⁻ (b : β), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a
[PROOFSTEP]
refine' SimpleFunc.induction (P := fun f => Measurable (fun (a : α) => ∫⁻ (b : β), f (a, b) ∂κ a)) _ _ (F n)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
⊢ ∀ (c : ℝ≥0∞) {s : Set (α × β)} (hs : MeasurableSet s),
(fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a)
(SimpleFunc.piecewise s hs (SimpleFunc.const (α × β) c) (SimpleFunc.const (α × β) 0))
[PROOFSTEP]
intro c t ht
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
c : ℝ≥0∞
t : Set (α × β)
ht : MeasurableSet t
⊢ Measurable fun a =>
∫⁻ (b : β), ↑(SimpleFunc.piecewise t ht (SimpleFunc.const (α × β) c) (SimpleFunc.const (α × β) 0)) (a, b) ∂↑κ a
[PROOFSTEP]
simp only [SimpleFunc.const_zero, SimpleFunc.coe_piecewise, SimpleFunc.coe_const, SimpleFunc.coe_zero,
Set.piecewise_eq_indicator]
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
c : ℝ≥0∞
t : Set (α × β)
ht : MeasurableSet t
⊢ Measurable fun a => ∫⁻ (b : β), Set.piecewise t (Function.const (α × β) c) 0 (a, b) ∂↑κ a
[PROOFSTEP]
exact kernel.measurable_lintegral_indicator_const (κ := κ) ht c
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
⊢ ∀ ⦃f g : SimpleFunc (α × β) ℝ≥0∞⦄,
Disjoint (support ↑f) (support ↑g) →
(fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) f →
(fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) g →
(fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) (f + g)
[PROOFSTEP]
intro g₁ g₂ _ hm₁ hm₂
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
⊢ Measurable fun a => ∫⁻ (b : β), ↑(g₁ + g₂) (a, b) ∂↑κ a
[PROOFSTEP]
simp only [SimpleFunc.coe_add, Pi.add_apply]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
⊢ Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a
[PROOFSTEP]
have h_add :
(fun a => ∫⁻ b, g₁ (a, b) + g₂ (a, b) ∂κ a) = (fun a => ∫⁻ b, g₁ (a, b) ∂κ a) + fun a => ∫⁻ b, g₂ (a, b) ∂κ a :=
by
ext1 a
rw [Pi.add_apply]
-- Porting note: was `rw` (`Function.comp` reducibility)
erw [lintegral_add_left (g₁.measurable.comp measurable_prod_mk_left)]
simp_rw [Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
⊢ (fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a) =
(fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝¹ : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
a : α
⊢ ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a =
((fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a) a
[PROOFSTEP]
rw [Pi.add_apply]
-- Porting note: was `rw` (`Function.comp` reducibility)
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝¹ : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
a : α
⊢ ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a = ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a + ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
[PROOFSTEP]
erw [lintegral_add_left (g₁.measurable.comp measurable_prod_mk_left)]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a✝¹ : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
a : α
⊢ ∫⁻ (a_1 : β), (↑g₁ ∘ Prod.mk a) a_1 ∂↑κ a + ∫⁻ (a_1 : β), ↑g₂ (a, a_1) ∂↑κ a =
∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a + ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
[PROOFSTEP]
simp_rw [Function.comp_apply]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
h_add :
(fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a) =
(fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
⊢ Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a
[PROOFSTEP]
rw [h_add]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f)
h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b
this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a
n : ℕ
g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞
a✝ : Disjoint (support ↑g₁) (support ↑g₂)
hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a
hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
h_add :
(fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a) =
(fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a
⊢ Measurable ((fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a)
[PROOFSTEP]
exact Measurable.add hm₁ hm₂
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → ℝ≥0∞
hf : Measurable f
⊢ Measurable fun a => ∫⁻ (b : β), f (a, b) ∂↑κ a
[PROOFSTEP]
refine' Measurable.lintegral_kernel_prod_right _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → ℝ≥0∞
hf : Measurable f
⊢ Measurable (uncurry fun a b => f (a, b))
[PROOFSTEP]
have : (uncurry fun (a : α) (b : β) => f (a, b)) = f := by ext x; rw [← @Prod.mk.eta _ _ x, uncurry_apply_pair]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → ℝ≥0∞
hf : Measurable f
⊢ (uncurry fun a b => f (a, b)) = f
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → ℝ≥0∞
hf : Measurable f
x : α × β
⊢ uncurry (fun a b => f (a, b)) x = f x
[PROOFSTEP]
rw [← @Prod.mk.eta _ _ x, uncurry_apply_pair]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → ℝ≥0∞
hf : Measurable f
this : (uncurry fun a b => f (a, b)) = f
⊢ Measurable (uncurry fun a b => f (a, b))
[PROOFSTEP]
rwa [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → ℝ≥0∞
hf : Measurable f
⊢ Measurable fun x => ∫⁻ (y : γ), f (x, y) ∂↑η (a, x)
[PROOFSTEP]
change
Measurable
((fun x => ∫⁻ y, (fun u : (α × β) × γ => f (u.1.2, u.2)) (x, y) ∂η x) ∘ Prod.mk a)
-- Porting note: specified `κ`, `f`.
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → ℝ≥0∞
hf : Measurable f
⊢ Measurable ((fun x => ∫⁻ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x) ∘ Prod.mk a)
[PROOFSTEP]
refine'
(Measurable.lintegral_kernel_prod_right' (κ := η) (f := (fun u ↦ f (u.fst.snd, u.snd))) _).comp
measurable_prod_mk_left
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → ℝ≥0∞
hf : Measurable f
⊢ Measurable fun u => f (u.fst.snd, u.snd)
[PROOFSTEP]
exact hf.comp (measurable_fst.snd.prod_mk measurable_snd)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
s : Set β
hs : MeasurableSet s
⊢ Measurable fun a => ∫⁻ (b : β) in s, f a b ∂↑κ a
[PROOFSTEP]
simp_rw [← lintegral_restrict κ hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → ℝ≥0∞
hf : Measurable (uncurry f)
s : Set β
hs : MeasurableSet s
⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑(kernel.restrict κ hs) a
[PROOFSTEP]
exact hf.lintegral_kernel_prod_right
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β → α → ℝ≥0∞
hf : Measurable (uncurry f)
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ∫⁻ (a : β) in s, f a b ∂↑κ b
[PROOFSTEP]
simp_rw [← lintegral_restrict κ hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β → α → ℝ≥0∞
hf : Measurable (uncurry f)
s : Set β
hs : MeasurableSet s
⊢ Measurable fun b => ∫⁻ (a : β), f a b ∂↑(kernel.restrict κ hs) b
[PROOFSTEP]
exact hf.lintegral_kernel_prod_left
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β → ℝ≥0∞
hf : Measurable f
s : Set β
hs : MeasurableSet s
⊢ Measurable fun a => ∫⁻ (b : β) in s, f b ∂↑κ a
[PROOFSTEP]
refine Measurable.set_lintegral_kernel_prod_right ?_ hs
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β → ℝ≥0∞
hf : Measurable f
s : Set β
hs : MeasurableSet s
⊢ Measurable (uncurry fun a b => f b)
[PROOFSTEP]
convert (hf.comp measurable_snd)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝² : NormedAddCommGroup E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
⊢ MeasurableSet {x | Integrable (f x)}
[PROOFSTEP]
simp_rw [Integrable, hf.of_uncurry_left.aestronglyMeasurable, true_and_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝² : NormedAddCommGroup E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
⊢ MeasurableSet {x | HasFiniteIntegral (f x)}
[PROOFSTEP]
exact measurableSet_lt (Measurable.lintegral_kernel_prod_right hf.ennnorm) measurable_const
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
classical
borelize E
haveI : TopologicalSpace.SeparableSpace (range (uncurry f) ∪ {0} : Set E) := hf.separableSpace_range_union_singleton
let s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn _ hf.measurable (range (uncurry f) ∪ {0}) 0 (by simp)
let s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) measurable_prod_mk_left
let f' : ℕ → α → E := fun n => {x | Integrable (f x) (κ x)}.indicator fun x => (s' n x).integral (κ x)
have hf' : ∀ n, StronglyMeasurable (f' n) := by
intro n; refine' StronglyMeasurable.indicator _ (measurableSet_kernel_integrable hf)
have : ∀ x, ((s' n x).range.filter fun x => x ≠ 0) ⊆ (s n).range :=
by
intro x; refine' Finset.Subset.trans (Finset.filter_subset _ _) _; intro y
simp_rw [SimpleFunc.mem_range]; rintro ⟨z, rfl⟩; exact ⟨(x, z), rfl⟩
simp only [SimpleFunc.integral_eq_sum_of_subset (this _)]
refine' Finset.stronglyMeasurable_sum _ fun x _ => _
refine' (Measurable.ennreal_toReal _).stronglyMeasurable.smul_const _
simp (config := { singlePass := true }) only [SimpleFunc.coe_comp, preimage_comp]
apply kernel.measurable_kernel_prod_mk_left
exact (s n).measurableSet_fiber x
have h2f' : Tendsto f' atTop (𝓝 fun x : α => ∫ y : β, f x y ∂κ x) :=
by
rw [tendsto_pi_nhds]; intro x
by_cases hfx : Integrable (f x) (κ x)
· have : ∀ n, Integrable (s' n x) (κ x) := by
intro n; apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable
apply eventually_of_forall; intro y
simp_rw [SimpleFunc.coe_comp]; exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n
simp only [hfx, SimpleFunc.integral_eq_integral _ (this _), indicator_of_mem, mem_setOf_eq]
refine'
tendsto_integral_of_dominated_convergence (fun y => ‖f x y‖ + ‖f x y‖) (fun n => (s' n x).aestronglyMeasurable)
(hfx.norm.add hfx.norm) _ _
·
-- Porting note: was
-- exact fun n => eventually_of_forall fun y =>
-- SimpleFunc.norm_approxOn_zero_le _ _ (x, y) nexact fun n =>
eventually_of_forall fun y => SimpleFunc.norm_approxOn_zero_le hf.measurable (by simp) (x, y) n
·
-- Porting note:
-- refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn _ _ _
refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn hf.measurable (by simp) _
apply subset_closure
simp [-uncurry_apply_pair]
· simp [hfx, integral_undef]
exact stronglyMeasurable_of_tendsto _ hf' h2f'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
borelize E
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
haveI : TopologicalSpace.SeparableSpace (range (uncurry f) ∪ {0} : Set E) := hf.separableSpace_range_union_singleton
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
let s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn _ hf.measurable (range (uncurry f) ∪ {0}) 0 (by simp)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
⊢ 0 ∈ range (uncurry f) ∪ {0}
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
let s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) measurable_prod_mk_left
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
let f' : ℕ → α → E := fun n => {x | Integrable (f x) (κ x)}.indicator fun x => (s' n x).integral (κ x)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
have hf' : ∀ n, StronglyMeasurable (f' n) := by
intro n; refine' StronglyMeasurable.indicator _ (measurableSet_kernel_integrable hf)
have : ∀ x, ((s' n x).range.filter fun x => x ≠ 0) ⊆ (s n).range :=
by
intro x; refine' Finset.Subset.trans (Finset.filter_subset _ _) _; intro y
simp_rw [SimpleFunc.mem_range]; rintro ⟨z, rfl⟩; exact ⟨(x, z), rfl⟩
simp only [SimpleFunc.integral_eq_sum_of_subset (this _)]
refine' Finset.stronglyMeasurable_sum _ fun x _ => _
refine' (Measurable.ennreal_toReal _).stronglyMeasurable.smul_const _
simp (config := { singlePass := true }) only [SimpleFunc.coe_comp, preimage_comp]
apply kernel.measurable_kernel_prod_mk_left
exact (s n).measurableSet_fiber x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
⊢ ∀ (n : ℕ), StronglyMeasurable (f' n)
[PROOFSTEP]
intro n
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
⊢ StronglyMeasurable (f' n)
[PROOFSTEP]
refine' StronglyMeasurable.indicator _ (measurableSet_kernel_integrable hf)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
⊢ StronglyMeasurable fun x => SimpleFunc.integral (↑κ x) (s' n x)
[PROOFSTEP]
have : ∀ x, ((s' n x).range.filter fun x => x ≠ 0) ⊆ (s n).range :=
by
intro x; refine' Finset.Subset.trans (Finset.filter_subset _ _) _; intro y
simp_rw [SimpleFunc.mem_range]; rintro ⟨z, rfl⟩; exact ⟨(x, z), rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
⊢ ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
x : α
⊢ Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
[PROOFSTEP]
refine' Finset.Subset.trans (Finset.filter_subset _ _) _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
x : α
⊢ SimpleFunc.range (s' n x) ⊆ SimpleFunc.range (s n)
[PROOFSTEP]
intro y
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
x : α
y : E
⊢ y ∈ SimpleFunc.range (s' n x) → y ∈ SimpleFunc.range (s n)
[PROOFSTEP]
simp_rw [SimpleFunc.mem_range]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
x : α
y : E
⊢ y ∈
range
↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x) (_ : Measurable (Prod.mk x))) →
y ∈
range
↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
[PROOFSTEP]
rintro ⟨z, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
x : α
z : β
⊢ ↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x) (_ : Measurable (Prod.mk x)))
z ∈
range
↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
[PROOFSTEP]
exact ⟨(x, z), rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
⊢ StronglyMeasurable fun x => SimpleFunc.integral (↑κ x) (s' n x)
[PROOFSTEP]
simp only [SimpleFunc.integral_eq_sum_of_subset (this _)]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
⊢ StronglyMeasurable fun x =>
Finset.sum
(SimpleFunc.range
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n))
fun x_1 =>
ENNReal.toReal
(↑↑(↑κ x)
(↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x) (_ : Measurable (Prod.mk x))) ⁻¹'
{x_1})) •
x_1
[PROOFSTEP]
refine' Finset.stronglyMeasurable_sum _ fun x _ => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
x : E
x✝ :
x ∈
SimpleFunc.range
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
⊢ StronglyMeasurable fun x_1 =>
ENNReal.toReal
(↑↑(↑κ x_1)
(↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x_1) (_ : Measurable (Prod.mk x_1))) ⁻¹'
{x})) •
x
[PROOFSTEP]
refine' (Measurable.ennreal_toReal _).stronglyMeasurable.smul_const _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
x : E
x✝ :
x ∈
SimpleFunc.range
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
⊢ Measurable fun x_1 =>
↑↑(↑κ x_1)
(↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x_1) (_ : Measurable (Prod.mk x_1))) ⁻¹'
{x})
[PROOFSTEP]
simp (config := { singlePass := true }) only [SimpleFunc.coe_comp, preimage_comp]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
x : E
x✝ :
x ∈
SimpleFunc.range
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
⊢ Measurable fun x_1 =>
↑↑(↑κ x_1)
(Prod.mk x_1 ⁻¹'
(↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⁻¹'
{x}))
[PROOFSTEP]
apply kernel.measurable_kernel_prod_mk_left
[GOAL]
case ht
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
n : ℕ
this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n)
x : E
x✝ :
x ∈
SimpleFunc.range
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
⊢ MeasurableSet
(↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⁻¹'
{x})
[PROOFSTEP]
exact (s n).measurableSet_fiber x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
have h2f' : Tendsto f' atTop (𝓝 fun x : α => ∫ y : β, f x y ∂κ x) :=
by
rw [tendsto_pi_nhds]; intro x
by_cases hfx : Integrable (f x) (κ x)
· have : ∀ n, Integrable (s' n x) (κ x) := by
intro n; apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable
apply eventually_of_forall; intro y
simp_rw [SimpleFunc.coe_comp]; exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n
simp only [hfx, SimpleFunc.integral_eq_integral _ (this _), indicator_of_mem, mem_setOf_eq]
refine'
tendsto_integral_of_dominated_convergence (fun y => ‖f x y‖ + ‖f x y‖) (fun n => (s' n x).aestronglyMeasurable)
(hfx.norm.add hfx.norm) _ _
·
-- Porting note: was
-- exact fun n => eventually_of_forall fun y =>
-- SimpleFunc.norm_approxOn_zero_le _ _ (x, y) nexact fun n =>
eventually_of_forall fun y => SimpleFunc.norm_approxOn_zero_le hf.measurable (by simp) (x, y) n
·
-- Porting note:
-- refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn _ _ _
refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn hf.measurable (by simp) _
apply subset_closure
simp [-uncurry_apply_pair]
· simp [hfx, integral_undef]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
⊢ Tendsto f' atTop (𝓝 fun x => ∫ (y : β), f x y ∂↑κ x)
[PROOFSTEP]
rw [tendsto_pi_nhds]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
⊢ ∀ (x : α), Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x))
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x))
[PROOFSTEP]
by_cases hfx : Integrable (f x) (κ x)
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x))
[PROOFSTEP]
have : ∀ n, Integrable (s' n x) (κ x) := by
intro n; apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable
apply eventually_of_forall; intro y
simp_rw [SimpleFunc.coe_comp]; exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
⊢ ∀ (n : ℕ), Integrable ↑(s' n x)
[PROOFSTEP]
intro n
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
n : ℕ
⊢ Integrable ↑(s' n x)
[PROOFSTEP]
apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
n : ℕ
⊢ ∀ᵐ (a : β) ∂↑κ x, ‖↑(s' n x) a‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) a
[PROOFSTEP]
apply eventually_of_forall
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
n : ℕ
⊢ ∀ (x_1 : β), ‖↑(s' n x) x_1‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) x_1
[PROOFSTEP]
intro y
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
n : ℕ
y : β
⊢ ‖↑(s' n x) y‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) y
[PROOFSTEP]
simp_rw [SimpleFunc.coe_comp]
[GOAL]
case hp
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
n : ℕ
y : β
⊢ ‖(↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n) ∘
Prod.mk x)
y‖ ≤
((fun a => ‖f x a‖) + fun a => ‖f x a‖) y
[PROOFSTEP]
exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x))
[PROOFSTEP]
simp only [hfx, SimpleFunc.integral_eq_integral _ (this _), indicator_of_mem, mem_setOf_eq]
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
⊢ Tendsto
(fun i =>
∫ (x_1 : β),
↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) i)
(Prod.mk x) (_ : Measurable (Prod.mk x)))
x_1 ∂↑κ x)
atTop (𝓝 (∫ (y : β), f x y ∂↑κ x))
[PROOFSTEP]
refine'
tendsto_integral_of_dominated_convergence (fun y => ‖f x y‖ + ‖f x y‖) (fun n => (s' n x).aestronglyMeasurable)
(hfx.norm.add hfx.norm) _ _
[GOAL]
case pos.refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
⊢ ∀ (n : ℕ),
∀ᵐ (a : β) ∂↑κ x,
‖↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x) (_ : Measurable (Prod.mk x)))
a‖ ≤
(fun y => ‖f x y‖ + ‖f x y‖) a
[PROOFSTEP]
exact fun n => eventually_of_forall fun y => SimpleFunc.norm_approxOn_zero_le hf.measurable (by simp) (x, y) n
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
n : ℕ
y : β
⊢ 0 ∈ range (uncurry f) ∪ {0}
[PROOFSTEP]
simp
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
⊢ ∀ᵐ (a : β) ∂↑κ x,
Tendsto
(fun n =>
↑(SimpleFunc.comp
(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0}) n)
(Prod.mk x) (_ : Measurable (Prod.mk x)))
a)
atTop (𝓝 (f x a))
[PROOFSTEP]
refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn hf.measurable (by simp) _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
y : β
⊢ 0 ∈ range (uncurry f) ∪ {0}
[PROOFSTEP]
simp
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
y : β
⊢ uncurry f (x, y) ∈ closure (range (uncurry f) ∪ {0})
[PROOFSTEP]
apply subset_closure
[GOAL]
case pos.refine'_2.a
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝² : MeasurableSpace E := borel E
this✝¹ : BorelSpace E
this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : Integrable (f x)
this : ∀ (n : ℕ), Integrable ↑(s' n x)
y : β
⊢ uncurry f (x, y) ∈ range (uncurry f) ∪ {0}
[PROOFSTEP]
simp [-uncurry_apply_pair]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
x : α
hfx : ¬Integrable (f x)
⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x))
[PROOFSTEP]
simp [hfx, integral_undef]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α → β → E
hf : StronglyMeasurable (uncurry f)
this✝¹ : MeasurableSpace E := borel E
this✝ : BorelSpace E
this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0})
s : ℕ → SimpleFunc (α × β) E :=
SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0
(_ : 0 ∈ range (uncurry f) ∪ {0})
s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x))
f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x)
hf' : ∀ (n : ℕ), StronglyMeasurable (f' n)
h2f' : Tendsto f' atTop (𝓝 fun x => ∫ (y : β), f x y ∂↑κ x)
⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x
[PROOFSTEP]
exact stronglyMeasurable_of_tendsto _ hf' h2f'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable fun x => ∫ (y : β), f (x, y) ∂↑κ x
[PROOFSTEP]
rw [← uncurry_curry f] at hf
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : α × β → E
hf : StronglyMeasurable (uncurry (curry f))
⊢ StronglyMeasurable fun x => ∫ (y : β), f (x, y) ∂↑κ x
[PROOFSTEP]
exact hf.integral_kernel_prod_right
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x)
[PROOFSTEP]
change StronglyMeasurable ((fun x => ∫ y, (fun u : (α × β) × γ => f (u.1.2, u.2)) (x, y) ∂η x) ∘ fun x => (a, x))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable ((fun x => ∫ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x) ∘ fun x => (a, x))
[PROOFSTEP]
refine' StronglyMeasurable.comp_measurable _ measurable_prod_mk_left
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable fun x => ∫ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → E
hf : StronglyMeasurable f
⊢ MeasurableSpace α
[PROOFSTEP]
have :=
MeasureTheory.StronglyMeasurable.integral_kernel_prod_right' (κ := η)
(hf.comp_measurable (measurable_fst.snd.prod_mk measurable_snd))
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → E
hf : StronglyMeasurable f
this : StronglyMeasurable fun x => ∫ (y : γ), (f ∘ fun a => (a.fst.snd, a.snd)) (x, y) ∂↑η x
⊢ StronglyMeasurable fun x => ∫ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : β × γ → E
hf : StronglyMeasurable f
⊢ MeasurableSpace α
[PROOFSTEP]
simpa using this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : γ × β → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable fun y => ∫ (x : γ), f (x, y) ∂↑η (a, y)
[PROOFSTEP]
change StronglyMeasurable ((fun y => ∫ x, (fun u : γ × α × β => f (u.1, u.2.2)) (x, y) ∂η y) ∘ fun x => (a, x))
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : γ × β → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable ((fun y => ∫ (x : γ), (fun u => f (u.fst, u.snd.snd)) (x, y) ∂↑η y) ∘ fun x => (a, x))
[PROOFSTEP]
refine' StronglyMeasurable.comp_measurable _ measurable_prod_mk_left
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : γ × β → E
hf : StronglyMeasurable f
⊢ StronglyMeasurable fun y => ∫ (x : γ), (fun u => f (u.fst, u.snd.snd)) (x, y) ∂↑η y
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : γ × β → E
hf : StronglyMeasurable f
⊢ MeasurableSpace α
[PROOFSTEP]
have :=
MeasureTheory.StronglyMeasurable.integral_kernel_prod_left' (κ := η)
(hf.comp_measurable (measurable_fst.prod_mk measurable_snd.snd))
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : γ × β → E
hf : StronglyMeasurable f
this : StronglyMeasurable fun y => ∫ (x : γ), (f ∘ fun a => (a.fst, a.snd.snd)) (x, y) ∂↑η y
⊢ StronglyMeasurable fun y => ∫ (x : γ), (fun u => f (u.fst, u.snd.snd)) (x, y) ∂↑η y
case refine'_2
α : Type u_1
β : Type u_2
γ : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
inst✝¹ : IsSFiniteKernel κ
inst✝ : IsSFiniteKernel η
f : γ × β → E
hf : StronglyMeasurable f
⊢ MeasurableSpace α
[PROOFSTEP]
simpa using this
| {"mathlib_filename": "Mathlib.Probability.Kernel.MeasurableIntegral", "llama_tokens": 61072} |
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
ι : Type u_3
inst✝⁶ : LinearOrder ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝² : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
inst✝¹ : Filter.IsCountablyGenerated Filter.atTop
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
hin : i ≤ n
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i
[PROOFSTEP]
refine' Filter.EventuallyEq.trans _ (ae_restrict_of_ae (h.condexp_ae_eq hin))
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
ι : Type u_3
inst✝⁶ : LinearOrder ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝² : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
inst✝¹ : Filter.IsCountablyGenerated Filter.atTop
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
hin : i ≤ n
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] fun x => (μ[f n|↑ℱ i]) x
[PROOFSTEP]
refine'
condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (ℱ.le i) (hτ.measurableSet_eq' i) fun t => _
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
ι : Type u_3
inst✝⁶ : LinearOrder ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝² : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
inst✝¹ : Filter.IsCountablyGenerated Filter.atTop
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
hin : i ≤ n
t : Set Ω
⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i
[PROOFSTEP]
by_cases hin : i ≤ n
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : i ≤ n
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i
[PROOFSTEP]
refine' Filter.EventuallyEq.trans _ (ae_restrict_of_ae (h.condexp_ae_eq hin))
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : i ≤ n
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] fun x => (μ[f n|↑ℱ i]) x
[PROOFSTEP]
refine'
condexp_ae_eq_restrict_of_measurableSpace_eq_on (hτ.measurableSpace_le_of_le hτ_le) (ℱ.le i) (hτ.measurableSet_eq' i)
fun t => _
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : i ≤ n
t : Set Ω
⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff]
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : ¬i ≤ n
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i
[PROOFSTEP]
suffices {x : Ω | τ x = i} = ∅ by simp [this]; norm_cast
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : ¬i ≤ n
this : {x | τ x = i} = ∅
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i
[PROOFSTEP]
simp [this]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : ¬i ≤ n
this : {x | τ x = i} = ∅
⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᶠ[⊥] f i
[PROOFSTEP]
norm_cast
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : ¬i ≤ n
⊢ {x | τ x = i} = ∅
[PROOFSTEP]
ext1 x
[GOAL]
case neg.h
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : ¬i ≤ n
x : Ω
⊢ x ∈ {x | τ x = i} ↔ x ∈ ∅
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false_iff]
[GOAL]
case neg.h
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
hin : ¬i ≤ n
x : Ω
⊢ ¬τ x = i
[PROOFSTEP]
rintro rfl
[GOAL]
case neg.h
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
x : Ω
hin : ¬τ x ≤ n
⊢ False
[PROOFSTEP]
exact hin (hτ_le x)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
⊢ stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f n|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
refine' Filter.EventuallyEq.trans _ (condexp_stopping_time_ae_eq_restrict_eq_const_of_le_const h hτ hτ_le i).symm
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
⊢ stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x = i}] f i
[PROOFSTEP]
rw [Filter.EventuallyEq, ae_restrict_iff' (ℱ.le _ _ (hτ.measurableSet_eq i))]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ {ω | τ ω = i} → stoppedValue f τ x = f i x
[PROOFSTEP]
refine' Filter.eventually_of_forall fun x hx => _
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
x : Ω
hx : x ∈ {ω | τ ω = i}
⊢ stoppedValue f τ x = f i x
[PROOFSTEP]
rw [Set.mem_setOf_eq] at hx
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i✝ n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
x : Ω
hx : τ x = i
⊢ stoppedValue f τ x = f i x
[PROOFSTEP]
simp_rw [stoppedValue, hx]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
h_countable_range : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
⊢ stoppedValue f τ =ᵐ[μ] μ[f n|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
have : Set.univ = ⋃ i ∈ Set.range τ, {x | τ x = i} := by
ext1 x
simp only [Set.mem_univ, Set.mem_range, true_and_iff, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_iUnion,
Set.mem_setOf_eq, exists_apply_eq_apply']
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
h_countable_range : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
⊢ Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i}
[PROOFSTEP]
ext1 x
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
h_countable_range : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
x : Ω
⊢ x ∈ Set.univ ↔ x ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i}
[PROOFSTEP]
simp only [Set.mem_univ, Set.mem_range, true_and_iff, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_iUnion,
Set.mem_setOf_eq, exists_apply_eq_apply']
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
h_countable_range : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
this : Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i}
⊢ stoppedValue f τ =ᵐ[μ] μ[f n|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
nth_rw 1 [← @Measure.restrict_univ Ω _ μ]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
h_countable_range : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
this : Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i}
⊢ stoppedValue f τ =ᵐ[Measure.restrict μ Set.univ] μ[f n|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
rw [this, ae_eq_restrict_biUnion_iff _ h_countable_range]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
h_countable_range : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
this : Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i}
⊢ ∀ (i : ι),
i ∈ Set.range τ → stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f n|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
exact fun i _ => stoppedValue_ae_eq_restrict_eq h _ hτ_le i
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
hσ_le_τ : σ ≤ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
hτ_countable_range : Set.Countable (Set.range τ)
hσ_countable_range : Set.Countable (Set.range σ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
⊢ stoppedValue f σ =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
have : SigmaFinite (μ.trim (hτ.measurableSpace_le_of_le hτ_le)) :=
sigmaFiniteTrim_mono _ (IsStoppingTime.measurableSpace_mono hσ hτ hσ_le_τ)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
hσ_le_τ : σ ≤ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
hτ_countable_range : Set.Countable (Set.range τ)
hσ_countable_range : Set.Countable (Set.range σ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
⊢ stoppedValue f σ =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
have : μ[stoppedValue f τ|hσ.measurableSpace] =ᵐ[μ] μ[μ[f n|hτ.measurableSpace]|hσ.measurableSpace] :=
condexp_congr_ae (h.stoppedValue_ae_eq_condexp_of_le_const_of_countable_range hτ hτ_le hτ_countable_range)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
hσ_le_τ : σ ≤ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
hτ_countable_range : Set.Countable (Set.range τ)
hσ_countable_range : Set.Countable (Set.range σ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
this✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
this :
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[μ]
μ[μ[f n|IsStoppingTime.measurableSpace hτ]|IsStoppingTime.measurableSpace hσ]
⊢ stoppedValue f σ =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
refine' (Filter.EventuallyEq.trans _ (condexp_condexp_of_le _ (hτ.measurableSpace_le_of_le hτ_le)).symm).trans this.symm
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
hσ_le_τ : σ ≤ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
hτ_countable_range : Set.Countable (Set.range τ)
hσ_countable_range : Set.Countable (Set.range σ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
this✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
this :
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[μ]
μ[μ[f n|IsStoppingTime.measurableSpace hτ]|IsStoppingTime.measurableSpace hσ]
⊢ stoppedValue f σ =ᵐ[μ] μ[f n|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
exact
h.stoppedValue_ae_eq_condexp_of_le_const_of_countable_range hσ (fun x => (hσ_le_τ x).trans (hτ_le x))
hσ_countable_range
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
ι : Type u_3
inst✝⁵ : LinearOrder ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝¹ : SigmaFiniteFiltration μ ℱ
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
hσ_le_τ : σ ≤ τ
hτ_le : ∀ (x : Ω), τ x ≤ n
hτ_countable_range : Set.Countable (Set.range τ)
hσ_countable_range : Set.Countable (Set.range σ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
this✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
this :
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[μ]
μ[μ[f n|IsStoppingTime.measurableSpace hτ]|IsStoppingTime.measurableSpace hσ]
⊢ IsStoppingTime.measurableSpace hσ ≤ IsStoppingTime.measurableSpace hτ
[PROOFSTEP]
exact hσ.measurableSpace_mono hτ hσ_le_τ
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] stoppedValue f τ
[PROOFSTEP]
rw [ae_eq_restrict_iff_indicator_ae_eq (hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ))]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
⊢ Set.indicator {ω | τ ω ≤ σ ω} (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) =ᵐ[μ]
Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ)
[PROOFSTEP]
refine'
(condexp_indicator (integrable_stoppedValue ι hτ h.integrable hτ_le)
(hτ.measurableSet_stopping_time_le hσ)).symm.trans
_
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
⊢ μ[Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)|IsStoppingTime.measurableSpace hσ] =ᵐ[μ]
Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ)
[PROOFSTEP]
have h_int : Integrable ({ω : Ω | τ ω ≤ σ ω}.indicator (stoppedValue (fun n : ι => f n) τ)) μ :=
by
refine' (integrable_stoppedValue ι hτ h.integrable hτ_le).indicator _
exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
⊢ Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
[PROOFSTEP]
refine' (integrable_stoppedValue ι hτ h.integrable hτ_le).indicator _
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
⊢ MeasurableSet {ω | τ ω ≤ σ ω}
[PROOFSTEP]
exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ μ[Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)|IsStoppingTime.measurableSpace hσ] =ᵐ[μ]
Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ)
[PROOFSTEP]
have h_meas :
AEStronglyMeasurable' hσ.measurableSpace ({ω : Ω | τ ω ≤ σ ω}.indicator (stoppedValue (fun n : ι => f n) τ)) μ :=
by
refine' StronglyMeasurable.aeStronglyMeasurable' _
refine' StronglyMeasurable.stronglyMeasurable_of_measurableSpace_le_on (hτ.measurableSet_le_stopping_time hσ) _ _ _
· intro t ht
rw [Set.inter_comm _ t] at ht ⊢
rw [hτ.measurableSet_inter_le_iff hσ, IsStoppingTime.measurableSet_min_iff hτ hσ] at ht
exact ht.2
· refine' StronglyMeasurable.indicator _ (hτ.measurableSet_le_stopping_time hσ)
refine' Measurable.stronglyMeasurable _
exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ
· intro x hx
simp only [hx, Set.indicator_of_not_mem, not_false_iff]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ AEStronglyMeasurable' (IsStoppingTime.measurableSpace hσ)
(Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) μ
[PROOFSTEP]
refine' StronglyMeasurable.aeStronglyMeasurable' _
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ StronglyMeasurable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
[PROOFSTEP]
refine' StronglyMeasurable.stronglyMeasurable_of_measurableSpace_le_on (hτ.measurableSet_le_stopping_time hσ) _ _ _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ ∀ (t : Set Ω), MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) → MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t)
[PROOFSTEP]
intro t ht
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
t : Set Ω
ht : MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t)
⊢ MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t] at ht ⊢
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
t : Set Ω
ht : MeasurableSet (t ∩ {ω | τ ω ≤ σ ω})
⊢ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω})
[PROOFSTEP]
rw [hτ.measurableSet_inter_le_iff hσ, IsStoppingTime.measurableSet_min_iff hτ hσ] at ht
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
t : Set Ω
ht : MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ∧ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω})
⊢ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω})
[PROOFSTEP]
exact ht.2
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ StronglyMeasurable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
[PROOFSTEP]
refine' StronglyMeasurable.indicator _ (hτ.measurableSet_le_stopping_time hσ)
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ StronglyMeasurable (stoppedValue (fun n => f n) τ)
[PROOFSTEP]
refine' Measurable.stronglyMeasurable _
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ Measurable (stoppedValue (fun n => f n) τ)
[PROOFSTEP]
exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ
[GOAL]
case refine'_3
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
⊢ ∀ (x : Ω), ¬x ∈ {ω | τ ω ≤ σ ω} → Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ) x = 0
[PROOFSTEP]
intro x hx
[GOAL]
case refine'_3
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
x : Ω
hx : ¬x ∈ {ω | τ ω ≤ σ ω}
⊢ Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ) x = 0
[PROOFSTEP]
simp only [hx, Set.indicator_of_not_mem, not_false_iff]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n : ι
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m))
hτ_le : ∀ (x : Ω), τ x ≤ n
h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ))
h_meas :
AEStronglyMeasurable' (IsStoppingTime.measurableSpace hσ)
(Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) μ
⊢ μ[Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)|IsStoppingTime.measurableSpace hσ] =ᵐ[μ]
Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ)
[PROOFSTEP]
exact condexp_of_aestronglyMeasurable' hσ.measurableSpace_le h_meas h_int
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ (stoppedValue f fun x => min (σ x) (τ x)) =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
refine' (h.stoppedValue_ae_eq_condexp_of_le hτ (hσ.min hτ) (fun x => min_le_right _ _) hτ_le).trans _
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[μ]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
refine' ae_of_ae_restrict_of_ae_restrict_compl {x | σ x ≤ τ x} _ _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | σ x ≤ τ x},
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
exact condexp_min_stopping_time_ae_eq_restrict_le hσ hτ
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | σ x ≤ τ x}ᶜ,
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
suffices
μ[stoppedValue f τ|(hσ.min hτ).measurableSpace] =ᵐ[μ.restrict {x | τ x ≤ σ x}] μ[stoppedValue f τ|hσ.measurableSpace]
by
rw [ae_restrict_iff' (hσ.measurableSpace_le _ (hσ.measurableSet_le_stopping_time hτ).compl)]
rw [Filter.EventuallyEq, ae_restrict_iff'] at this
swap; · exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ)
filter_upwards [this] with x hx hx_mem
simp only [Set.mem_compl_iff, Set.mem_setOf_eq, not_le] at hx_mem
exact hx hx_mem.le
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
μ[stoppedValue f
τ|IsStoppingTime.measurableSpace
(_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
⊢ ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | σ x ≤ τ x}ᶜ,
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
rw [ae_restrict_iff' (hσ.measurableSpace_le _ (hσ.measurableSet_le_stopping_time hτ).compl)]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
μ[stoppedValue f
τ|IsStoppingTime.measurableSpace
(_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
⊢ ∀ᵐ (x : Ω) ∂μ,
x ∈ {ω | σ ω ≤ τ ω}ᶜ →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
rw [Filter.EventuallyEq, ae_restrict_iff'] at this
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
∀ᵐ (x : Ω) ∂μ,
x ∈ {x | τ x ≤ σ x} →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
⊢ ∀ᵐ (x : Ω) ∂μ,
x ∈ {ω | σ ω ≤ τ ω}ᶜ →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
∀ᵐ (x : Ω) ∂Measure.restrict μ {x | τ x ≤ σ x},
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
⊢ MeasurableSet {x | τ x ≤ σ x}
[PROOFSTEP]
swap
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
∀ᵐ (x : Ω) ∂Measure.restrict μ {x | τ x ≤ σ x},
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
⊢ MeasurableSet {x | τ x ≤ σ x}
[PROOFSTEP]
exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
∀ᵐ (x : Ω) ∂μ,
x ∈ {x | τ x ≤ σ x} →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
⊢ ∀ᵐ (x : Ω) ∂μ,
x ∈ {ω | σ ω ≤ τ ω}ᶜ →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
filter_upwards [this] with x hx hx_mem
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
∀ᵐ (x : Ω) ∂μ,
x ∈ {x | τ x ≤ σ x} →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
x : Ω
hx :
τ x ≤ σ x →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
hx_mem : x ∈ {ω | σ ω ≤ τ ω}ᶜ
⊢ (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
simp only [Set.mem_compl_iff, Set.mem_setOf_eq, not_le] at hx_mem
[GOAL]
case h
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this :
∀ᵐ (x : Ω) ∂μ,
x ∈ {x | τ x ≤ σ x} →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
x : Ω
hx :
τ x ≤ σ x →
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
hx_mem : τ x < σ x
⊢ (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x =
(μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x
[PROOFSTEP]
exact hx hx_mem.le
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ μ[stoppedValue f
τ|IsStoppingTime.measurableSpace
(_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
apply Filter.EventuallyEq.trans _ ((condexp_min_stopping_time_ae_eq_restrict_le hτ hσ).trans _)
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ Ω → E
[PROOFSTEP]
exact stoppedValue f τ
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ μ[stoppedValue f
τ|IsStoppingTime.measurableSpace
(_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω))]
[PROOFSTEP]
rw [IsStoppingTime.measurableSpace_min hσ, IsStoppingTime.measurableSpace_min hτ, inf_comm]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
have h1 : μ[stoppedValue f τ|hτ.measurableSpace] = stoppedValue f τ :=
by
refine' condexp_of_stronglyMeasurable hτ.measurableSpace_le _ _
· refine' Measurable.stronglyMeasurable _
exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ
· exact integrable_stoppedValue ι hτ h.integrable hτ_le
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] = stoppedValue f τ
[PROOFSTEP]
refine' condexp_of_stronglyMeasurable hτ.measurableSpace_le _ _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ StronglyMeasurable (stoppedValue f τ)
[PROOFSTEP]
refine' Measurable.stronglyMeasurable _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ Measurable (stoppedValue f τ)
[PROOFSTEP]
exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ Integrable (stoppedValue f τ)
[PROOFSTEP]
exact integrable_stoppedValue ι hτ h.integrable hτ_le
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
h1 : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] = stoppedValue f τ
⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
rw [h1]
[GOAL]
Ω : Type u_1
E : Type u_2
m : MeasurableSpace Ω
μ : Measure Ω
inst✝¹³ : NormedAddCommGroup E
inst✝¹² : NormedSpace ℝ E
inst✝¹¹ : CompleteSpace E
ι : Type u_3
inst✝¹⁰ : LinearOrder ι
inst✝⁹ : LocallyFiniteOrder ι
inst✝⁸ : OrderBot ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : DiscreteTopology ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : MeasurableSpace E
inst✝² : BorelSpace E
inst✝¹ : SecondCountableTopology E
ℱ : Filtration ι m
τ σ : Ω → ι
f : ι → Ω → E
i n✝ : ι
inst✝ : SigmaFiniteFiltration μ ℱ
h : Martingale f ℱ μ
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
n : ι
hτ_le : ∀ (x : Ω), τ x ≤ n
h_sf_min :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
h1 : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] = stoppedValue f τ
⊢ stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]
[PROOFSTEP]
exact (condexp_stoppedValue_stopping_time_ae_eq_restrict_le h hτ hσ hτ_le).symm
| {"mathlib_filename": "Mathlib.Probability.Martingale.OptionalSampling", "llama_tokens": 32449} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a'✝ a' : α
⊢ a' ∈ support (pure a) ↔ a' ∈ {a}
[PROOFSTEP]
simp [mem_support_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
⊢ a' ∈ support (pure a) ↔ a' = a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
⊢ ↑(toOuterMeasure (pure a)) s = if a ∈ s then 1 else 0
[PROOFSTEP]
refine' (toOuterMeasure_apply (pure a) s).trans _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
⊢ ∑' (x : α), Set.indicator s (↑(pure a)) x = if a ∈ s then 1 else 0
[PROOFSTEP]
split_ifs with ha
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
ha : a ∈ s
⊢ ∑' (x : α), Set.indicator s (↑(pure a)) x = 1
[PROOFSTEP]
refine' (tsum_congr fun b => _).trans (tsum_ite_eq a 1)
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
ha : a ∈ s
b : α
⊢ Set.indicator s (↑(pure a)) b = if b = a then 1 else 0
[PROOFSTEP]
exact ite_eq_left_iff.2 fun hb => symm (ite_eq_right_iff.2 fun h => (hb <| h.symm ▸ ha).elim)
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
ha : ¬a ∈ s
⊢ ∑' (x : α), Set.indicator s (↑(pure a)) x = 0
[PROOFSTEP]
refine' (tsum_congr fun b => _).trans tsum_zero
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
ha : ¬a ∈ s
b : α
⊢ Set.indicator s (↑(pure a)) b = 0
[PROOFSTEP]
exact ite_eq_right_iff.2 fun hb => ite_eq_right_iff.2 fun h => (ha <| h ▸ hb).elim
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s✝ : Set α
inst✝ : MeasurableSpace α
s : Set α
hs : MeasurableSet s
⊢ ↑↑(toMeasure (pure a)) s = ↑↑(Measure.dirac a) s
[PROOFSTEP]
rw [toMeasure_pure_apply a s hs, Measure.dirac_apply' a hs]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s✝ : Set α
inst✝ : MeasurableSpace α
s : Set α
hs : MeasurableSet s
⊢ (if a ∈ s then 1 else 0) = Set.indicator s 1 a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
a a' : α
s : Set α
inst✝¹ : MeasurableSpace α
inst✝ : Countable α
h : MeasurableSingletonClass α
⊢ Measure.toPmf (Measure.dirac a) = pure a
[PROOFSTEP]
rw [toPmf_eq_iff_toMeasure_eq, toMeasure_pure]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
⊢ ∑' (b : α) (a : β), ↑p b * ↑(f b) a = 1
[PROOFSTEP]
simp only [ENNReal.tsum_mul_left, tsum_coe, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
b : β
⊢ b ∈ support (bind p f) ↔ b ∈ ⋃ (a : α) (_ : a ∈ support p), support (f a)
[PROOFSTEP]
simp [mem_support_iff, ENNReal.tsum_eq_zero, not_or]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
b : β
⊢ b ∈ support (bind p f) ↔ ∃ a, a ∈ support p ∧ b ∈ support (f a)
[PROOFSTEP]
simp only [support_bind, Set.mem_iUnion, Set.mem_setOf_eq, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
⊢ bind (pure a) f = f a
[PROOFSTEP]
have : ∀ b a', ite (a' = a) (f a' b) 0 = ite (a' = a) (f a b) 0 := fun b a' => by split_ifs with h <;> simp; subst h;
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
b : β
a' : α
⊢ (if a' = a then ↑(f a') b else 0) = if a' = a then ↑(f a) b else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
b : β
a' : α
h : a' = a
⊢ ↑(f a') b = ↑(f a) b
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
b : β
a' : α
h : ¬a' = a
⊢ 0 = 0
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
b : β
a' : α
h : a' = a
⊢ ↑(f a') b = ↑(f a) b
[PROOFSTEP]
subst h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
f : α → Pmf β
b : β
a' : α
⊢ ↑(f a') b = ↑(f a') b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
this : ∀ (b : β) (a' : α), (if a' = a then ↑(f a') b else 0) = if a' = a then ↑(f a) b else 0
⊢ bind (pure a) f = f a
[PROOFSTEP]
ext b
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
a : α
f : α → Pmf β
this : ∀ (b : β) (a' : α), (if a' = a then ↑(f a') b else 0) = if a' = a then ↑(f a) b else 0
b : β
⊢ ↑(bind (pure a) f) b = ↑(f a) b
[PROOFSTEP]
simp [this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
x y : α
hy : y ≠ x
⊢ ↑p y * ↑(pure y) x = 0
[PROOFSTEP]
rw [pure_apply_of_ne _ _ hy.symm, mul_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
x : α
⊢ ↑p x * ↑(pure x) x = ↑p x
[PROOFSTEP]
rw [pure_apply_self, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f : α → Pmf β
g : β → Pmf γ
p : Pmf α
q : Pmf β
x : β
⊢ ↑(bind p fun x => q) x = ↑q x
[PROOFSTEP]
rw [bind_apply, ENNReal.tsum_mul_right, tsum_coe, one_mul]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
b : γ
⊢ ↑(bind (bind p f) g) b = ↑(bind p fun a => bind (f a) g) b
[PROOFSTEP]
simpa only [ENNReal.coe_eq_coe.symm, bind_apply, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm, mul_assoc,
mul_left_comm, mul_comm] using ENNReal.tsum_comm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : α → Pmf β
g : β → Pmf γ
p : Pmf α
q : Pmf β
f : α → β → Pmf γ
b : γ
⊢ ↑(bind p fun a => bind q (f a)) b = ↑(bind q fun b => bind p fun a => f a b) b
[PROOFSTEP]
simpa only [ENNReal.coe_eq_coe.symm, bind_apply, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm, mul_assoc,
mul_left_comm, mul_comm] using ENNReal.tsum_comm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
⊢ ↑(toOuterMeasure (bind p f)) s = ∑' (b : β), if b ∈ s then ∑' (a : α), ↑p a * ↑(f a) b else 0
[PROOFSTEP]
simp [toOuterMeasure_apply, Set.indicator_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
b : β
⊢ (if b ∈ s then ∑' (a : α), ↑p a * ↑(f a) b else 0) = ∑' (a : α), ↑p a * if b ∈ s then ↑(f a) b else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
b : β
h✝ : b ∈ s
⊢ ∑' (a : α), ↑p a * ↑(f a) b = ∑' (a : α), ↑p a * ↑(f a) b
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
b : β
h✝ : ¬b ∈ s
⊢ 0 = ∑' (a : α), ↑p a * 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
a : α
b : β
⊢ (if b ∈ s then ↑(f a) b else 0) = if b ∈ s then ↑(f a) b else 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
a : α
b : β
h✝ : b ∈ s
⊢ ↑(f a) b = ↑(f a) b
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
a : α
b : β
h✝ : ¬b ∈ s
⊢ 0 = 0
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : α → Pmf β
g : β → Pmf γ
s : Set β
a : α
⊢ (↑p a * ∑' (b : β), if b ∈ s then ↑(f a) b else 0) = ↑p a * ↑(toOuterMeasure (f a)) s
[PROOFSTEP]
simp only [toOuterMeasure_apply, Set.indicator_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
⊢ (∑' (b : β) (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 1
[PROOFSTEP]
refine' ENNReal.tsum_comm.trans (_root_.trans (tsum_congr fun a => _) p.tsum_coe)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
a : α
⊢ (∑' (a_1 : β), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = ↑p a
[PROOFSTEP]
simp_rw [ENNReal.tsum_mul_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
a : α
⊢ (↑p a * ∑' (i : β), if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) i) = ↑p a
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
a : α
h : ↑p a = 0
⊢ ↑p a * ∑' (i : β), 0 = ↑p a
[PROOFSTEP]
simp only [h, zero_mul]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
a : α
h : ¬↑p a = 0
⊢ ↑p a * ∑' (i : β), ↑(f a (_ : ¬↑p a = 0)) i = ↑p a
[PROOFSTEP]
rw [(f a h).tsum_coe, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
⊢ support (bindOnSupport p f) = ⋃ (a : α) (h : a ∈ support p), support (f a h)
[PROOFSTEP]
refine' Set.ext fun b => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
⊢ b ∈ support (bindOnSupport p f) ↔ b ∈ ⋃ (a : α) (h : a ∈ support p), support (f a h)
[PROOFSTEP]
simp only [ENNReal.tsum_eq_zero, not_or, mem_support_iff, bindOnSupport_apply, Ne.def, not_forall, mul_eq_zero,
Set.mem_iUnion]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
⊢ (∃ x, ¬↑p x = 0 ∧ ¬(if h : ↑p x = 0 then 0 else ↑(f x (_ : ¬↑p x = 0)) b) = 0) ↔
∃ i h, ¬↑(f i (_ : i ∈ support p)) b = 0
[PROOFSTEP]
exact
⟨fun hb =>
let ⟨a, ⟨ha, ha'⟩⟩ := hb
⟨a, ha, by simpa [ha] using ha'⟩,
fun hb =>
let ⟨a, ha, ha'⟩ := hb
⟨a, ⟨ha, by simpa [(mem_support_iff _ a).1 ha] using ha'⟩⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
hb : ∃ x, ¬↑p x = 0 ∧ ¬(if h : ↑p x = 0 then 0 else ↑(f x (_ : ¬↑p x = 0)) b) = 0
a : α
ha : ¬↑p a = 0
ha' : ¬(if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) b) = 0
⊢ ¬↑(f a (_ : a ∈ support p)) b = 0
[PROOFSTEP]
simpa [ha] using ha'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
hb : ∃ i h, ¬↑(f i (_ : i ∈ support p)) b = 0
a : α
ha : ¬↑p a = 0
ha' : ¬↑(f a (_ : a ∈ support p)) b = 0
⊢ ¬(if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) b) = 0
[PROOFSTEP]
simpa [(mem_support_iff _ a).1 ha] using ha'
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
⊢ b ∈ support (bindOnSupport p f) ↔ ∃ a h, b ∈ support (f a h)
[PROOFSTEP]
simp only [support_bindOnSupport, Set.mem_setOf_eq, Set.mem_iUnion]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : α → Pmf β
⊢ (bindOnSupport p fun a x => f a) = bind p f
[PROOFSTEP]
ext b
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : α → Pmf β
b : β
⊢ ↑(bindOnSupport p fun a x => f a) b = ↑(bind p f) b
[PROOFSTEP]
have : ∀ a, ite (p a = 0) 0 (p a * f a b) = p a * f a b := fun a =>
ite_eq_right_iff.2 fun h => h.symm ▸ symm (zero_mul <| f a b)
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : α → Pmf β
b : β
this : ∀ (a : α), (if ↑p a = 0 then 0 else ↑p a * ↑(f a) b) = ↑p a * ↑(f a) b
⊢ ↑(bindOnSupport p fun a x => f a) b = ↑(bind p f) b
[PROOFSTEP]
simp only [bindOnSupport_apply fun a _ => f a, p.bind_apply f, dite_eq_ite, mul_ite, mul_zero, this]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
⊢ ↑(bindOnSupport p f) b = 0 ↔ ∀ (a : α) (ha : ↑p a ≠ 0), ↑(f a ha) b = 0
[PROOFSTEP]
simp only [bindOnSupport_apply, ENNReal.tsum_eq_zero, mul_eq_zero, or_iff_not_imp_left]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
b : β
⊢ (∀ (i : α), ¬↑p i = 0 → (if h : ↑p i = 0 then 0 else ↑(f i (_ : ¬↑p i = 0)) b) = 0) ↔
∀ (a : α) (ha : ↑p a ≠ 0), ↑(f a ha) b = 0
[PROOFSTEP]
exact ⟨fun h a ha => Trans.trans (dif_neg ha).symm (h a ha), fun h a ha => Trans.trans (dif_neg ha) (h a ha)⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : (a : α) → a ∈ support p → Pmf β
a : α
f : (a' : α) → a' ∈ support (pure a) → Pmf β
⊢ bindOnSupport (pure a) f = f a (_ : a ∈ support (pure a))
[PROOFSTEP]
refine' Pmf.ext fun b => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : (a : α) → a ∈ support p → Pmf β
a : α
f : (a' : α) → a' ∈ support (pure a) → Pmf β
b : β
⊢ ↑(bindOnSupport (pure a) f) b = ↑(f a (_ : a ∈ support (pure a))) b
[PROOFSTEP]
simp only [bindOnSupport_apply, pure_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : (a : α) → a ∈ support p → Pmf β
a : α
f : (a' : α) → a' ∈ support (pure a) → Pmf β
b : β
⊢ (∑' (a_1 : α),
(if a_1 = a then 1 else 0) *
if h : (if a_1 = a then 1 else 0) = 0 then 0 else ↑(f a_1 (_ : ¬↑(pure a) a_1 = 0)) b) =
↑(f a (_ : a ∈ support (pure a))) b
[PROOFSTEP]
refine' _root_.trans (tsum_congr fun a' => _) (tsum_ite_eq a _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : (a : α) → a ∈ support p → Pmf β
a : α
f : (a' : α) → a' ∈ support (pure a) → Pmf β
b : β
a' : α
⊢ ((if a' = a then 1 else 0) * if h : (if a' = a then 1 else 0) = 0 then 0 else ↑(f a' (_ : ¬↑(pure a) a' = 0)) b) =
if a' = a then ↑(f a (_ : a ∈ support (pure a))) b else 0
[PROOFSTEP]
by_cases h : a' = a
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : (a : α) → a ∈ support p → Pmf β
a : α
f : (a' : α) → a' ∈ support (pure a) → Pmf β
b : β
a' : α
h : a' = a
⊢ ((if a' = a then 1 else 0) * if h : (if a' = a then 1 else 0) = 0 then 0 else ↑(f a' (_ : ¬↑(pure a) a' = 0)) b) =
if a' = a then ↑(f a (_ : a ∈ support (pure a))) b else 0
[PROOFSTEP]
simp [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f✝ : (a : α) → a ∈ support p → Pmf β
a : α
f : (a' : α) → a' ∈ support (pure a) → Pmf β
b : β
a' : α
h : ¬a' = a
⊢ ((if a' = a then 1 else 0) * if h : (if a' = a then 1 else 0) = 0 then 0 else ↑(f a' (_ : ¬↑(pure a) a' = 0)) b) =
if a' = a then ↑(f a (_ : a ∈ support (pure a))) b else 0
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
⊢ (bindOnSupport p fun a x => pure a) = p
[PROOFSTEP]
simp only [Pmf.bind_pure, Pmf.bindOnSupport_eq_bind]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
⊢ bindOnSupport (bindOnSupport p f) g =
bindOnSupport p fun a ha => bindOnSupport (f a ha) fun b hb => g b (_ : b ∈ support (bindOnSupport p f))
[PROOFSTEP]
refine' Pmf.ext fun a => _
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
⊢ ↑(bindOnSupport (bindOnSupport p f) g) a =
↑(bindOnSupport p fun a ha => bindOnSupport (f a ha) fun b hb => g b (_ : b ∈ support (bindOnSupport p f))) a
[PROOFSTEP]
dsimp only [bindOnSupport_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
⊢ (∑' (a_1 : β),
(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) *
if h : (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = 0 then 0 else ↑(g a_1 h) a) =
∑' (a_1 : α),
↑p a_1 *
if h : ↑p a_1 = 0 then 0
else
∑' (a_2 : β),
↑(f a_1 h) a_2 * if h : ↑(f a_1 h) a_2 = 0 then 0 else ↑(g a_2 (_ : a_2 ∈ support (bindOnSupport p f))) a
[PROOFSTEP]
simp only [← tsum_dite_right, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
⊢ (∑' (a_1 : β) (i : α),
(↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) a_1) *
if h : (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = 0 then 0 else ↑(g a_1 h) a) =
∑' (a_1 : α) (i : β),
↑p a_1 *
if h : ↑p a_1 = 0 then 0
else ↑(f a_1 h) i * if h : ↑(f a_1 h) i = 0 then 0 else ↑(g i (_ : i ∈ support (bindOnSupport p f))) a
[PROOFSTEP]
simp only [ENNReal.tsum_eq_zero, dite_eq_left_iff]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
⊢ (∑' (a_1 : β) (i : α),
(↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) a_1) *
if h : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) a_1) = 0 then 0
else ↑(g a_1 (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = 0)) a) =
∑' (a_1 : α) (i : β),
↑p a_1 *
if h : ↑p a_1 = 0 then 0
else ↑(f a_1 h) i * if h : ↑(f a_1 h) i = 0 then 0 else ↑(g i (_ : i ∈ support (bindOnSupport p f))) a
[PROOFSTEP]
refine' ENNReal.tsum_comm.trans (tsum_congr fun a' => tsum_congr fun b => _)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
⊢ ((↑p a' * if h : ↑p a' = 0 then 0 else ↑(f a' h) b) *
if h : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 then 0
else ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a) =
↑p a' *
if h : ↑p a' = 0 then 0
else ↑(f a' h) b * if h : ↑(f a' h) b = 0 then 0 else ↑(g b (_ : b ∈ support (bindOnSupport p f))) a
[PROOFSTEP]
split_ifs with h _ h_1 _ h_2
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ↑p a' = 0
_ : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
⊢ ↑p a' * 0 * 0 = ↑p a' * 0
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ↑p a' = 0
_ : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
⊢ ↑p a' * 0 * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * 0
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * 0)
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ¬↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
h_2 : ↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a =
↑p a' * (↑(f a' h) b * 0)
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
h_2 : ¬↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a =
↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
[PROOFSTEP]
any_goals ring1
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ↑p a' = 0
_ : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
⊢ ↑p a' * 0 * 0 = ↑p a' * 0
[PROOFSTEP]
ring1
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ↑p a' = 0
_ : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
⊢ ↑p a' * 0 * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * 0
[PROOFSTEP]
ring1
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * 0)
[PROOFSTEP]
ring1
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ¬↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
[PROOFSTEP]
ring1
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
h_2 : ↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a =
↑p a' * (↑(f a' h) b * 0)
[PROOFSTEP]
ring1
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
h_2 : ¬↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a =
↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
[PROOFSTEP]
ring1
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ¬↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
[PROOFSTEP]
have := h_1 a'
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ¬↑(f a' h) b = 0
this : (↑p a' * if h : ↑p a' = 0 then 0 else ↑(f a' h) b) = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
[PROOFSTEP]
simp [h] at this
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
_ : ¬↑(f a' h) b = 0
this : ↑(f a' (_ : ¬↑p a' = 0)) b = 0
⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a)
[PROOFSTEP]
contradiction
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ
a : γ
a' : α
b : β
h : ¬↑p a' = 0
h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0
h_2 : ↑(f a' h) b = 0
⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a =
↑p a' * (↑(f a' h) b * 0)
[PROOFSTEP]
simp [h_2]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
⊢ (bindOnSupport p fun a ha => bindOnSupport q (f a ha)) =
bindOnSupport q fun b hb => bindOnSupport p fun a ha => f a ha b hb
[PROOFSTEP]
apply Pmf.ext
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
⊢ ∀ (x : γ),
↑(bindOnSupport p fun a ha => bindOnSupport q (f a ha)) x =
↑(bindOnSupport q fun b hb => bindOnSupport p fun a ha => f a ha b hb) x
[PROOFSTEP]
rintro c
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
⊢ ↑(bindOnSupport p fun a ha => bindOnSupport q (f a ha)) c =
↑(bindOnSupport q fun b hb => bindOnSupport p fun a ha => f a ha b hb) c
[PROOFSTEP]
simp only [ENNReal.coe_eq_coe.symm, bindOnSupport_apply, ← tsum_dite_right, ENNReal.tsum_mul_left.symm,
ENNReal.tsum_mul_right.symm]
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
⊢ (∑' (a : α) (i : β),
↑p a *
if h : ↑p a = 0 then 0 else ↑q i * if h : ↑q i = 0 then 0 else ↑(f a (_ : ¬↑p a = 0) i (_ : ¬↑q i = 0)) c) =
∑' (a : β) (i : α),
↑q a * if h : ↑q a = 0 then 0 else ↑p i * if h : ↑p i = 0 then 0 else ↑(f i (_ : ¬↑p i = 0) a (_ : ¬↑q a = 0)) c
[PROOFSTEP]
refine' _root_.trans ENNReal.tsum_comm (tsum_congr fun b => tsum_congr fun a => _)
[GOAL]
case h
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
b : β
a : α
⊢ (↑p a * if h : ↑p a = 0 then 0 else ↑q b * if h : ↑q b = 0 then 0 else ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c) =
↑q b * if h : ↑q b = 0 then 0 else ↑p a * if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c
[PROOFSTEP]
split_ifs with h1 h2 h2
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
b : β
a : α
h1 : ↑p a = 0
h2 : ↑q b = 0
⊢ ↑p a * 0 = ↑q b * 0
[PROOFSTEP]
ring
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
b : β
a : α
h1 : ↑p a = 0
h2 : ¬↑q b = 0
⊢ ↑p a * 0 = ↑q b * (↑p a * 0)
[PROOFSTEP]
ring
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
b : β
a : α
h1 : ¬↑p a = 0
h2 : ↑q b = 0
⊢ ↑p a * (↑q b * 0) = ↑q b * 0
[PROOFSTEP]
ring
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p✝ : Pmf α
f✝ : (a : α) → a ∈ support p✝ → Pmf β
p : Pmf α
q : Pmf β
f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ
c : γ
b : β
a : α
h1 : ¬↑p a = 0
h2 : ¬↑q b = 0
⊢ ↑p a * (↑q b * ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c) =
↑q b * (↑p a * ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
⊢ ↑(toOuterMeasure (bindOnSupport p f)) s = ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(toOuterMeasure (f a h)) s
[PROOFSTEP]
simp only [toOuterMeasure_apply, Set.indicator_apply, bindOnSupport_apply]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
⊢ (∑' (x : β), if x ∈ s then ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) x else 0) =
∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ∑' (x : β), if x ∈ s then ↑(f a (_ : ¬↑p a = 0)) x else 0
[PROOFSTEP]
calc
(∑' b, ite (b ∈ s) (∑' a, p a * dite (p a = 0) (fun h => 0) fun h => f a h b) 0) =
∑' (b) (a), ite (b ∈ s) (p a * dite (p a = 0) (fun h => 0) fun h => f a h b) 0 :=
tsum_congr fun b => by split_ifs with hbs <;> simp only [eq_self_iff_true, tsum_zero]
_ = ∑' (a) (b), ite (b ∈ s) (p a * dite (p a = 0) (fun h => 0) fun h => f a h b) 0 := ENNReal.tsum_comm
_ = ∑' a, p a * ∑' b, ite (b ∈ s) (dite (p a = 0) (fun h => 0) fun h => f a h b) 0 :=
(tsum_congr fun a => by simp only [← ENNReal.tsum_mul_left, mul_ite, mul_zero])
_ = ∑' a, p a * dite (p a = 0) (fun h => 0) fun h => ∑' b, ite (b ∈ s) (f a h b) 0 :=
tsum_congr fun a => by split_ifs with ha <;> simp only [ite_self, tsum_zero, eq_self_iff_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
b : β
⊢ (if b ∈ s then ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b else 0) =
∑' (a : α), if b ∈ s then ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b else 0
[PROOFSTEP]
split_ifs with hbs
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
b : β
hbs : b ∈ s
⊢ (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) =
∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b
[PROOFSTEP]
simp only [eq_self_iff_true, tsum_zero]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
b : β
hbs : ¬b ∈ s
⊢ 0 = ∑' (a : α), 0
[PROOFSTEP]
simp only [eq_self_iff_true, tsum_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
a : α
⊢ (∑' (b : β), if b ∈ s then ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b else 0) =
↑p a * ∑' (b : β), if b ∈ s then if h : ↑p a = 0 then 0 else ↑(f a h) b else 0
[PROOFSTEP]
simp only [← ENNReal.tsum_mul_left, mul_ite, mul_zero]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
a : α
⊢ (↑p a * ∑' (b : β), if b ∈ s then if h : ↑p a = 0 then 0 else ↑(f a h) b else 0) =
↑p a * if h : ↑p a = 0 then 0 else ∑' (b : β), if b ∈ s then ↑(f a h) b else 0
[PROOFSTEP]
split_ifs with ha
[GOAL]
case pos
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
a : α
ha : ↑p a = 0
⊢ (↑p a * ∑' (b : β), if b ∈ s then 0 else 0) = ↑p a * 0
[PROOFSTEP]
simp only [ite_self, tsum_zero, eq_self_iff_true]
[GOAL]
case neg
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
a : α
ha : ¬↑p a = 0
⊢ (↑p a * ∑' (b : β), if b ∈ s then ↑(f a ha) b else 0) = ↑p a * ∑' (b : β), if b ∈ s then ↑(f a ha) b else 0
[PROOFSTEP]
simp only [ite_self, tsum_zero, eq_self_iff_true]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
p : Pmf α
f : (a : α) → a ∈ support p → Pmf β
s : Set β
inst✝ : MeasurableSpace β
hs : MeasurableSet s
⊢ ↑↑(toMeasure (bindOnSupport p f)) s = ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑↑(toMeasure (f a h)) s
[PROOFSTEP]
simp only [toMeasure_apply_eq_toOuterMeasure_apply _ _ hs, toOuterMeasure_bindOnSupport_apply]
| {"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Monad", "llama_tokens": 18358} |
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ
[PROOFSTEP]
rw [← sub_nonneg, ← integral_sub', stoppedValue_sub_eq_sum' hle hbdd]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ 0 ≤
∫ (a : Ω),
(fun ω => Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i)) ω)
a ∂μ
[PROOFSTEP]
simp only [Finset.sum_apply]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ 0 ≤ ∫ (a : Ω), Finset.sum (Finset.range (N + 1)) fun c => Set.indicator {ω | τ ω ≤ c ∧ c < π ω} (f (c + 1) - f c) a ∂μ
[PROOFSTEP]
have : ∀ i, MeasurableSet[𝒢 i] {ω : Ω | τ ω ≤ i ∧ i < π ω} :=
by
intro i
refine' (hτ i).inter _
convert (hπ i).compl using 1
ext x
simp; rfl
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
i : ℕ
⊢ MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
[PROOFSTEP]
refine' (hτ i).inter _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
i : ℕ
⊢ MeasurableSet fun ω => Nat.le (Nat.succ i) (π ω)
[PROOFSTEP]
convert (hπ i).compl using 1
[GOAL]
case h.e'_3
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
i : ℕ
⊢ (fun ω => Nat.le (Nat.succ i) (π ω)) = {ω | π ω ≤ i}ᶜ
[PROOFSTEP]
ext x
[GOAL]
case h.e'_3.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
i : ℕ
x : Ω
⊢ (x ∈ fun ω => Nat.le (Nat.succ i) (π ω)) ↔ x ∈ {ω | π ω ≤ i}ᶜ
[PROOFSTEP]
simp
[GOAL]
case h.e'_3.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
i : ℕ
x : Ω
⊢ (x ∈ fun ω => Nat.succ i ≤ π ω) ↔ i < π x
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
⊢ 0 ≤ ∫ (a : Ω), Finset.sum (Finset.range (N + 1)) fun c => Set.indicator {ω | τ ω ≤ c ∧ c < π ω} (f (c + 1) - f c) a ∂μ
[PROOFSTEP]
rw [integral_finset_sum]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
⊢ 0 ≤ Finset.sum (Finset.range (N + 1)) fun i => ∫ (a : Ω), Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a ∂μ
[PROOFSTEP]
refine' Finset.sum_nonneg fun i _ => _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
i : ℕ
x✝ : i ∈ Finset.range (N + 1)
⊢ 0 ≤ ∫ (a : Ω), Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a ∂μ
[PROOFSTEP]
rw [integral_indicator (𝒢.le _ _ (this _)), integral_sub', sub_nonneg]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
i : ℕ
x✝ : i ∈ Finset.range (N + 1)
⊢ ∫ (a : Ω) in {ω | τ ω ≤ i ∧ i < π ω}, f i a ∂μ ≤ ∫ (a : Ω) in {ω | τ ω ≤ i ∧ i < π ω}, f (i + 1) a ∂μ
[PROOFSTEP]
exact hf.set_integral_le (Nat.le_succ i) (this _)
[GOAL]
case hf
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
i : ℕ
x✝ : i ∈ Finset.range (N + 1)
⊢ Integrable (f (i + 1))
[PROOFSTEP]
exact (hf.integrable _).integrableOn
[GOAL]
case hg
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
i : ℕ
x✝ : i ∈ Finset.range (N + 1)
⊢ Integrable (f i)
[PROOFSTEP]
exact (hf.integrable _).integrableOn
[GOAL]
case hf
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
⊢ ∀ (i : ℕ), i ∈ Finset.range (N + 1) → Integrable fun a => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a
[PROOFSTEP]
intro i _
[GOAL]
case hf
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω}
i : ℕ
a✝ : i ∈ Finset.range (N + 1)
⊢ Integrable fun a => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a
[PROOFSTEP]
exact Integrable.indicator (Integrable.sub (hf.integrable _) (hf.integrable _)) (𝒢.le _ _ (this _))
[GOAL]
case hf
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ Integrable fun x => stoppedValue f π x
[PROOFSTEP]
exact hf.integrable_stoppedValue hπ hbdd
[GOAL]
case hg
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : SigmaFiniteFiltration μ 𝒢
hf : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
hπ : IsStoppingTime 𝒢 π
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ Integrable fun x => stoppedValue f τ x
[PROOFSTEP]
exact hf.integrable_stoppedValue hτ fun ω => le_trans (hle ω) (hbdd ω)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf :
∀ (τ π : Ω → ℕ),
IsStoppingTime 𝒢 τ →
IsStoppingTime 𝒢 π →
τ ≤ π → (∃ N, ∀ (ω : Ω), π ω ≤ N) → ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ
⊢ Submartingale f 𝒢 μ
[PROOFSTEP]
refine' submartingale_of_set_integral_le hadp hint fun i j hij s hs => _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf :
∀ (τ π : Ω → ℕ),
IsStoppingTime 𝒢 τ →
IsStoppingTime 𝒢 π →
τ ≤ π → (∃ N, ∀ (ω : Ω), π ω ≤ N) → ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ
i j : ℕ
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
[PROOFSTEP]
classical
specialize
hf (s.piecewise (fun _ => i) fun _ => j) _ (isStoppingTime_piecewise_const hij hs) (isStoppingTime_const 𝒢 j)
(fun x => (ite_le_sup _ _ (x ∈ s)).trans (max_eq_right hij).le) ⟨j, fun _ => le_rfl⟩
rwa [stoppedValue_const, stoppedValue_piecewise_const,
integral_piecewise (𝒢.le _ _ hs) (hint _).integrableOn (hint _).integrableOn, ←
integral_add_compl (𝒢.le _ _ hs) (hint j), add_le_add_iff_right] at hf
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf :
∀ (τ π : Ω → ℕ),
IsStoppingTime 𝒢 τ →
IsStoppingTime 𝒢 π →
τ ≤ π → (∃ N, ∀ (ω : Ω), π ω ≤ N) → ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ
i j : ℕ
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
[PROOFSTEP]
specialize
hf (s.piecewise (fun _ => i) fun _ => j) _ (isStoppingTime_piecewise_const hij hs) (isStoppingTime_const 𝒢 j)
(fun x => (ite_le_sup _ _ (x ∈ s)).trans (max_eq_right hij).le) ⟨j, fun _ => le_rfl⟩
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
i j : ℕ
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
hf :
∫ (x : Ω), stoppedValue f (Set.piecewise s (fun x => i) fun x => j) x ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun x => j) x ∂μ
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
[PROOFSTEP]
rwa [stoppedValue_const, stoppedValue_piecewise_const,
integral_piecewise (𝒢.le _ _ hs) (hint _).integrableOn (hint _).integrableOn, ←
integral_add_compl (𝒢.le _ _ hs) (hint j), add_le_add_iff_right] at hf
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
⊢ Submartingale (stoppedProcess f τ) 𝒢 μ
[PROOFSTEP]
rw [submartingale_iff_expected_stoppedValue_mono]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
⊢ ∀ (τ_1 π : Ω → ℕ),
IsStoppingTime 𝒢 τ_1 →
IsStoppingTime 𝒢 π →
τ_1 ≤ π →
(∃ N, ∀ (x : Ω), π x ≤ N) →
∫ (x : Ω), stoppedValue (stoppedProcess f τ) τ_1 x ∂μ ≤ ∫ (x : Ω), stoppedValue (stoppedProcess f τ) π x ∂μ
[PROOFSTEP]
intro σ π hσ hπ hσ_le_π hπ_bdd
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π✝ : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
σ π : Ω → ℕ
hσ : IsStoppingTime 𝒢 σ
hπ : IsStoppingTime 𝒢 π
hσ_le_π : σ ≤ π
hπ_bdd : ∃ N, ∀ (x : Ω), π x ≤ N
⊢ ∫ (x : Ω), stoppedValue (stoppedProcess f τ) σ x ∂μ ≤ ∫ (x : Ω), stoppedValue (stoppedProcess f τ) π x ∂μ
[PROOFSTEP]
simp_rw [stoppedValue_stoppedProcess]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π✝ : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
σ π : Ω → ℕ
hσ : IsStoppingTime 𝒢 σ
hπ : IsStoppingTime 𝒢 π
hσ_le_π : σ ≤ π
hπ_bdd : ∃ N, ∀ (x : Ω), π x ≤ N
⊢ ∫ (x : Ω), stoppedValue f (fun ω => min (σ ω) (τ ω)) x ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun ω => min (π ω) (τ ω)) x ∂μ
[PROOFSTEP]
obtain ⟨n, hπ_le_n⟩ := hπ_bdd
[GOAL]
case intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π✝ : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
σ π : Ω → ℕ
hσ : IsStoppingTime 𝒢 σ
hπ : IsStoppingTime 𝒢 π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ ∫ (x : Ω), stoppedValue f (fun ω => min (σ ω) (τ ω)) x ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun ω => min (π ω) (τ ω)) x ∂μ
[PROOFSTEP]
exact
h.expected_stoppedValue_mono (hσ.min hτ) (hπ.min hτ) (fun ω => min_le_min (hσ_le_π ω) le_rfl) fun ω =>
(min_le_left _ _).trans (hπ_le_n ω)
[GOAL]
case hadp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
⊢ Adapted 𝒢 (stoppedProcess f τ)
[PROOFSTEP]
exact Adapted.stoppedProcess_of_discrete h.adapted hτ
[GOAL]
case hint
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
h : Submartingale f 𝒢 μ
hτ : IsStoppingTime 𝒢 τ
⊢ ∀ (i : ℕ), Integrable (stoppedProcess f τ i)
[PROOFSTEP]
exact fun i => h.integrable_stoppedValue ((isStoppingTime_const _ i).min hτ) fun ω => min_le_left _ _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
have hn : Set.Icc 0 n = {k | k ≤ n} := by ext x; simp
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
⊢ Set.Icc 0 n = {k | k ≤ n}
[PROOFSTEP]
ext x
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n x : ℕ
⊢ x ∈ Set.Icc 0 n ↔ x ∈ {k | k ≤ n}
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
have :
∀ ω,
((ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω) →
(ε : ℝ) ≤ stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω :=
by
intro x hx
simp_rw [le_sup'_iff, mem_range, Nat.lt_succ_iff] at hx
refine' stoppedValue_hitting_mem _
simp only [Set.mem_setOf_eq, exists_prop, hn]
exact
let ⟨j, hj₁, hj₂⟩ := hx
⟨j, hj₁, hj₂⟩
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
⊢ ∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
[PROOFSTEP]
intro x hx
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
x : Ω
hx : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k x
⊢ ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x
[PROOFSTEP]
simp_rw [le_sup'_iff, mem_range, Nat.lt_succ_iff] at hx
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
x : Ω
hx : ∃ b, b ≤ n ∧ ↑ε ≤ f b x
⊢ ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x
[PROOFSTEP]
refine' stoppedValue_hitting_mem _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
x : Ω
hx : ∃ b, b ≤ n ∧ ↑ε ≤ f b x
⊢ ∃ j, j ∈ Set.Icc 0 n ∧ f j x ∈ {y | ↑ε ≤ y}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, exists_prop, hn]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
x : Ω
hx : ∃ b, b ≤ n ∧ ↑ε ≤ f b x
⊢ ∃ j, j ≤ n ∧ ↑ε ≤ f j x
[PROOFSTEP]
exact
let ⟨j, hj₁, hj₂⟩ := hx
⟨j, hj₁, hj₂⟩
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
this :
∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
have h :=
set_integral_ge_of_const_le
(measurableSet_le measurable_const
(Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)))
(measure_ne_top _ _) this
(Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le))
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
this :
∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
h :
↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤
∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
rw [ENNReal.le_ofReal_iff_toReal_le, ENNReal.toReal_smul]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
this :
∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
h :
↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤
∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ
⊢ ε • ENNReal.toReal (↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}) ≤
∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ
[PROOFSTEP]
exact h
[GOAL]
case ha
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
this :
∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
h :
↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤
∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≠ ⊤
[PROOFSTEP]
exact ENNReal.mul_ne_top (by simp) (measure_ne_top _ _)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
this :
∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
h :
↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤
∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ
⊢ ↑(RingHom.id ℝ≥0∞) (↑ENNReal.ofNNRealHom ε) ≠ ⊤
[PROOFSTEP]
simp
[GOAL]
case hb
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
ε : ℝ≥0
n : ℕ
hn : Set.Icc 0 n = {k | k ≤ n}
this :
∀ (ω : Ω),
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) →
↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
h :
↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤
∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ
⊢ 0 ≤
∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ
[PROOFSTEP]
exact le_trans (mul_nonneg ε.coe_nonneg ENNReal.toReal_nonneg) h
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ)
[PROOFSTEP]
suffices
ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} +
ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ε}, f n ω ∂μ) ≤
ENNReal.ofReal (μ[f n])
by
have hadd :
ENNReal.ofReal (∫ ω, f n ω ∂μ) =
ENNReal.ofReal (∫ ω in {ω | ↑ε ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ) +
ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ↑ε}, f n ω ∂μ) :=
by
rw [← ENNReal.ofReal_add, ← integral_union]
· rw [← integral_univ]
convert rfl
ext ω
change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _
simp only [le_or_lt, Set.mem_univ]
· rw [disjoint_iff_inf_le]
rintro ω ⟨hω₁, hω₂⟩
change (ε : ℝ) ≤ _ at hω₁
change _ < (ε : ℝ) at hω₂
exact (not_le.2 hω₂) hω₁
·
exact
measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const
exacts [(hsub.integrable _).integrableOn, (hsub.integrable _).integrableOn, integral_nonneg (hnonneg _),
integral_nonneg (hnonneg _)]
rwa [hadd, ENNReal.add_le_add_iff_right ENNReal.ofReal_ne_top] at this
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ)
[PROOFSTEP]
have hadd :
ENNReal.ofReal (∫ ω, f n ω ∂μ) =
ENNReal.ofReal (∫ ω in {ω | ↑ε ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ) +
ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ↑ε}, f n ω ∂μ) :=
by
rw [← ENNReal.ofReal_add, ← integral_union]
· rw [← integral_univ]
convert rfl
ext ω
change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _
simp only [le_or_lt, Set.mem_univ]
· rw [disjoint_iff_inf_le]
rintro ω ⟨hω₁, hω₂⟩
change (ε : ℝ) ≤ _ at hω₁
change _ < (ε : ℝ) at hω₂
exact (not_le.2 hω₂) hω₁
·
exact
measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const
exacts [(hsub.integrable _).integrableOn, (hsub.integrable _).integrableOn, integral_nonneg (hnonneg _),
integral_nonneg (hnonneg _)]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) =
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ)
[PROOFSTEP]
rw [← ENNReal.ofReal_add, ← integral_union]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) =
ENNReal.ofReal
(∫ (x : Ω) in
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n x ∂μ)
[PROOFSTEP]
rw [← integral_univ]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ ENNReal.ofReal (∫ (x : Ω) in Set.univ, f n x ∂μ) =
ENNReal.ofReal
(∫ (x : Ω) in
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n x ∂μ)
[PROOFSTEP]
convert rfl
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h.e'_4
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} =
Set.univ
[PROOFSTEP]
ext ω
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
ω : Ω
⊢ ω ∈
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ↔
ω ∈ Set.univ
[PROOFSTEP]
change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
ω : Ω
⊢ (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) ∨
(sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ↔
ω ∈ Set.univ
[PROOFSTEP]
simp only [le_or_lt, Set.mem_univ]
[GOAL]
case hst
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ Disjoint {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case hst
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ⊓
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ≤
⊥
[PROOFSTEP]
rintro ω ⟨hω₁, hω₂⟩
[GOAL]
case hst.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
ω : Ω
hω₁ : ω ∈ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}
hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
⊢ ω ∈ ⊥
[PROOFSTEP]
change (ε : ℝ) ≤ _ at hω₁
[GOAL]
case hst.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
ω : Ω
hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω
⊢ ω ∈ ⊥
[PROOFSTEP]
change _ < (ε : ℝ) at hω₂
[GOAL]
case hst.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
ω : Ω
hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω
hω₂ : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
⊢ ω ∈ ⊥
[PROOFSTEP]
exact (not_le.2 hω₂) hω₁
[GOAL]
case ht
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ MeasurableSet {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
exact
measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const
[GOAL]
case hfs
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ IntegrableOn (fun ω => f n ω) {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}
case hft
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ IntegrableOn (fun ω => f n ω) {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
case hp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ 0 ≤ ∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ
case hq
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
⊢ 0 ≤ ∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ
[PROOFSTEP]
exacts [(hsub.integrable _).integrableOn, (hsub.integrable _).integrableOn, integral_nonneg (hnonneg _),
integral_nonneg (hnonneg _)]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
this :
ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
hadd :
ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) =
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ)
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ)
[PROOFSTEP]
rwa [hadd, ENNReal.add_le_add_iff_right ENNReal.ofReal_ne_top] at this
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
[PROOFSTEP]
calc
ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} +
ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ε}, f n ω ∂μ) ≤
ENNReal.ofReal
(∫ ω in {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω},
stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω ∂μ) +
ENNReal.ofReal
(∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ε},
stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω ∂μ) :=
by
refine'
add_le_add (smul_le_stoppedValue_hitting hsub _)
(ENNReal.ofReal_le_ofReal
(set_integral_mono_on (hsub.integrable n).integrableOn
(Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le))
(measurableSet_lt
(Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const)
_))
intro ω hω
rw [Set.mem_setOf_eq] at hω
have : hitting f {y : ℝ | ↑ε ≤ y} 0 n ω = n :=
by
classical simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff,
forall_exists_index, and_imp]
intro m hm hεm
exact False.elim ((not_le.2 hω) ((le_sup'_iff _).2 ⟨m, mem_range.2 (Nat.lt_succ_of_le hm.2), hεm⟩))
simp_rw [stoppedValue, this, le_rfl]
_ = ENNReal.ofReal (∫ ω, stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω ∂μ) :=
by
rw [← ENNReal.ofReal_add, ← integral_union]
· rw [← integral_univ (μ := μ)]
convert rfl
ext ω
change _ ↔ (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ)
simp only [le_or_lt, Set.mem_univ]
· rw [disjoint_iff_inf_le]
rintro ω ⟨hω₁, hω₂⟩
change (ε : ℝ) ≤ _ at hω₁
change _ < (ε : ℝ) at hω₂
exact (not_le.2 hω₂) hω₁
·
exact
measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const
·
exact
Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)
·
exact
Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)
exacts [integral_nonneg fun x => hnonneg _ _, integral_nonneg fun x => hnonneg _ _]
_ ≤ ENNReal.ofReal (μ[f n]) := by
refine' ENNReal.ofReal_le_ofReal _
rw [← stoppedValue_const f n]
exact
hsub.expected_stoppedValue_mono (hitting_isStoppingTime hsub.adapted measurableSet_Ici) (isStoppingTime_const _ _)
(fun ω => hitting_le ω) (fun _ => le_rfl : ∀ _, n ≤ n)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
f n ω ∂μ) ≤
ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
refine'
add_le_add (smul_le_stoppedValue_hitting hsub _)
(ENNReal.ofReal_le_ofReal
(set_integral_mono_on (hsub.integrable n).integrableOn
(Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le))
(measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const)
_))
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ∀ (x : Ω),
x ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} →
f n x ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x
[PROOFSTEP]
intro ω hω
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
⊢ f n ω ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
[PROOFSTEP]
rw [Set.mem_setOf_eq] at hω
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
⊢ f n ω ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
[PROOFSTEP]
have : hitting f {y : ℝ | ↑ε ≤ y} 0 n ω = n :=
by
classical simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff,
forall_exists_index, and_imp]
intro m hm hεm
exact False.elim ((not_le.2 hω) ((le_sup'_iff _).2 ⟨m, mem_range.2 (Nat.lt_succ_of_le hm.2), hεm⟩))
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
⊢ hitting f {y | ↑ε ≤ y} 0 n ω = n
[PROOFSTEP]
classical simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff,
forall_exists_index, and_imp]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
⊢ hitting f {y | ↑ε ≤ y} 0 n ω = n
[PROOFSTEP]
simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff, forall_exists_index,
and_imp]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
⊢ ∀ (x : ℕ), x ∈ Set.Icc 0 n → ↑ε ≤ f x ω → sInf (Set.Icc 0 n ∩ {i | ↑ε ≤ f i ω}) = n
[PROOFSTEP]
intro m hm hεm
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
m : ℕ
hm : m ∈ Set.Icc 0 n
hεm : ↑ε ≤ f m ω
⊢ sInf (Set.Icc 0 n ∩ {i | ↑ε ≤ f i ω}) = n
[PROOFSTEP]
exact False.elim ((not_le.2 hω) ((le_sup'_iff _).2 ⟨m, mem_range.2 (Nat.lt_succ_of_le hm.2), hεm⟩))
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
this : hitting f {y | ↑ε ≤ y} 0 n ω = n
⊢ f n ω ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω
[PROOFSTEP]
simp_rw [stoppedValue, this, le_rfl]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ENNReal.ofReal
(∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) +
ENNReal.ofReal
(∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) =
ENNReal.ofReal (∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
rw [← ENNReal.ofReal_add, ← integral_union]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ENNReal.ofReal
(∫ (x : Ω) in
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ) =
ENNReal.ofReal (∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ)
[PROOFSTEP]
rw [← integral_univ (μ := μ)]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ENNReal.ofReal
(∫ (x : Ω) in
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ) =
ENNReal.ofReal (∫ (x : Ω) in Set.univ, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ)
[PROOFSTEP]
convert rfl
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h.e'_4
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ Set.univ =
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
ext ω
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
⊢ ω ∈ Set.univ ↔
ω ∈
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
change _ ↔ (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ)
[GOAL]
case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
⊢ ω ∈ Set.univ ↔
(↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) ∨
(sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
[PROOFSTEP]
simp only [le_or_lt, Set.mem_univ]
[GOAL]
case hst
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ Disjoint {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case hst
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ⊓
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ≤
⊥
[PROOFSTEP]
rintro ω ⟨hω₁, hω₂⟩
[GOAL]
case hst.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω₁ : ω ∈ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}
hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
⊢ ω ∈ ⊥
[PROOFSTEP]
change (ε : ℝ) ≤ _ at hω₁
[GOAL]
case hst.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω
⊢ ω ∈ ⊥
[PROOFSTEP]
change _ < (ε : ℝ) at hω₂
[GOAL]
case hst.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
ω : Ω
hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω
hω₂ : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε
⊢ ω ∈ ⊥
[PROOFSTEP]
exact (not_le.2 hω₂) hω₁
[GOAL]
case ht
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ MeasurableSet {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
exact
measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))
measurable_const
[GOAL]
case hfs
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ IntegrableOn (fun ω => stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω)
{ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}
[PROOFSTEP]
exact
Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)
[GOAL]
case hft
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ IntegrableOn (fun ω => stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω)
{ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}
[PROOFSTEP]
exact
Integrable.integrableOn
(hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)
[GOAL]
case hp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ 0 ≤
∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ
case hq
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ 0 ≤
∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε},
stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ
[PROOFSTEP]
exacts [integral_nonneg fun x => hnonneg _ _, integral_nonneg fun x => hnonneg _ _]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ENNReal.ofReal (∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ)
[PROOFSTEP]
refine' ENNReal.ofReal_le_ofReal _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ ≤ ∫ (x : Ω), f n x ∂μ
[PROOFSTEP]
rw [← stoppedValue_const f n]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
𝒢 : Filtration ℕ m0
f : ℕ → Ω → ℝ
τ π : Ω → ℕ
inst✝ : IsFiniteMeasure μ
hsub : Submartingale f 𝒢 μ
hnonneg : 0 ≤ f
ε : ℝ≥0
n : ℕ
⊢ ∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun x => n) x ∂μ
[PROOFSTEP]
exact
hsub.expected_stoppedValue_mono (hitting_isStoppingTime hsub.adapted measurableSet_Ici) (isStoppingTime_const _ _)
(fun ω => hitting_le ω) (fun _ => le_rfl : ∀ _, n ≤ n)
| {"mathlib_filename": "Mathlib.Probability.Martingale.OptionalStopping", "llama_tokens": 30288} |
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : upcrossings a b f ω ≠ ⊤
⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω)
[PROOFSTEP]
rw [← lt_top_iff_ne_top, upcrossings_lt_top_iff] at hω
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω)
[PROOFSTEP]
replace hω : ∃ k, ∀ N, upcrossingsBefore a b f N ω < k
[GOAL]
case hω
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
[PROOFSTEP]
obtain ⟨k, hk⟩ := hω
[GOAL]
case hω.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
k : ℕ
hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
[PROOFSTEP]
exact ⟨k + 1, fun N => lt_of_le_of_lt (hk N) k.lt_succ_self⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω)
[PROOFSTEP]
rintro ⟨h₁, h₂⟩
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∃ᶠ (n : ℕ) in atTop, f n ω < a
h₂ : ∃ᶠ (n : ℕ) in atTop, b < f n ω
⊢ False
[PROOFSTEP]
rw [frequently_atTop] at h₁ h₂
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
⊢ False
[PROOFSTEP]
refine' Classical.not_not.2 hω _
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
⊢ ¬∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
[PROOFSTEP]
push_neg
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
⊢ ∀ (k : ℕ), ∃ N, k ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
intro k
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
k : ℕ
⊢ ∃ N, k ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
induction' k with k ih
[GOAL]
case intro.zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
⊢ ∃ N, Nat.zero ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
simp only [Nat.zero_eq, zero_le, exists_const]
[GOAL]
case intro.succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
k : ℕ
ih : ∃ N, k ≤ upcrossingsBefore a b f N ω
⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
obtain ⟨N, hN⟩ := ih
[GOAL]
case intro.succ.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
k N : ℕ
hN : k ≤ upcrossingsBefore a b f N ω
⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
obtain ⟨N₁, hN₁, hN₁'⟩ := h₁ N
[GOAL]
case intro.succ.intro.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
k N : ℕ
hN : k ≤ upcrossingsBefore a b f N ω
N₁ : ℕ
hN₁ : N₁ ≥ N
hN₁' : f N₁ ω < a
⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
obtain ⟨N₂, hN₂, hN₂'⟩ := h₂ N₁
[GOAL]
case intro.succ.intro.intro.intro.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hab : a < b
hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k
h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a
h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω
k N : ℕ
hN : k ≤ upcrossingsBefore a b f N ω
N₁ : ℕ
hN₁ : N₁ ≥ N
hN₁' : f N₁ ω < a
N₂ : ℕ
hN₂ : N₂ ≥ N₁
hN₂' : b < f N₂ ω
⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω
[PROOFSTEP]
exact ⟨N₂ + 1, Nat.succ_le_of_lt <| lt_of_le_of_lt hN (upcrossingsBefore_lt_of_exists_upcrossing hab hN₁ hN₁' hN₂ hN₂')⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
by_cases h : IsBoundedUnder (· ≤ ·) atTop fun n => |f n ω|
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => |f n ω|
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
rw [isBoundedUnder_le_abs] at h
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h :
(IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧
IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
refine' tendsto_of_no_upcrossings Rat.denseRange_cast _ h.1 h.2
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h :
(IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧
IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω
⊢ ∀ (a : ℝ),
a ∈ Set.range Rat.cast →
∀ (b : ℝ), b ∈ Set.range Rat.cast → a < b → ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω)
[PROOFSTEP]
intro a ha b hb hab
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h :
(IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧
IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω
a : ℝ
ha : a ∈ Set.range Rat.cast
b : ℝ
hb : b ∈ Set.range Rat.cast
hab : a < b
⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω)
[PROOFSTEP]
obtain ⟨⟨a, rfl⟩, ⟨b, rfl⟩⟩ := ha, hb
[GOAL]
case pos.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h :
(IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧
IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω
a b : ℚ
hab : ↑a < ↑b
⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < ↑a) ∧ ∃ᶠ (n : ℕ) in atTop, ↑b < f n ω)
[PROOFSTEP]
exact not_frequently_of_upcrossings_lt_top hab (hf₂ a b (Rat.cast_lt.1 hab)).ne
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => |f n ω|
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
obtain ⟨a, b, hab, h₁, h₂⟩ := ENNReal.exists_upcrossings_of_not_bounded_under hf₁.ne h
[GOAL]
case neg.intro.intro.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => |f n ω|
a b : ℚ
hab : a < b
h₁ : ∃ᶠ (i : ℕ) in atTop, f i ω < ↑a
h₂ : ∃ᶠ (i : ℕ) in atTop, ↑b < f i ω
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
exact False.elim ((hf₂ a b hab).ne (upcrossings_eq_top_of_frequently_lt (Rat.cast_lt.2 hab) h₁ h₂))
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
⊢ ∀ᵐ (ω : Ω) ∂μ, upcrossings a b f ω < ⊤
[PROOFSTEP]
refine' ae_lt_top (hf.adapted.measurable_upcrossings hab) _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
⊢ ∫⁻ (x : Ω), upcrossings a b f x ∂μ ≠ ⊤
[PROOFSTEP]
have := hf.mul_lintegral_upcrossings_le_lintegral_pos_part a b
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
⊢ ∫⁻ (x : Ω), upcrossings a b f x ∂μ ≠ ⊤
[PROOFSTEP]
rw [mul_comm, ← ENNReal.le_div_iff_mul_le] at this
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
⊢ ∫⁻ (x : Ω), upcrossings a b f x ∂μ ≠ ⊤
[PROOFSTEP]
refine' (lt_of_le_of_lt this (ENNReal.div_lt_top _ _)).ne
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
⊢ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ ⊤
[PROOFSTEP]
have hR' : ∀ n, ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ R + ‖a‖₊ * μ Set.univ :=
by
simp_rw [snorm_one_eq_lintegral_nnnorm] at hbdd
intro n
refine' (lintegral_mono _ : ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ ∫⁻ ω, ‖f n ω‖₊ + ‖a‖₊ ∂μ).trans _
· intro ω
simp_rw [sub_eq_add_neg, ← nnnorm_neg a, ← ENNReal.coe_add, ENNReal.coe_le_coe]
exact nnnorm_add_le _ _
· simp_rw [lintegral_add_right _ measurable_const, lintegral_const]
exact add_le_add (hbdd _) le_rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
⊢ ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
[PROOFSTEP]
simp_rw [snorm_one_eq_lintegral_nnnorm] at hbdd
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
⊢ ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
n : ℕ
⊢ ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
[PROOFSTEP]
refine' (lintegral_mono _ : ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ ∫⁻ ω, ‖f n ω‖₊ + ‖a‖₊ ∂μ).trans _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
n : ℕ
⊢ (fun ω => ↑‖f n ω - a‖₊) ≤ fun ω => ↑‖f n ω‖₊ + ↑‖a‖₊
[PROOFSTEP]
intro ω
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
n : ℕ
ω : Ω
⊢ (fun ω => ↑‖f n ω - a‖₊) ω ≤ (fun ω => ↑‖f n ω‖₊ + ↑‖a‖₊) ω
[PROOFSTEP]
simp_rw [sub_eq_add_neg, ← nnnorm_neg a, ← ENNReal.coe_add, ENNReal.coe_le_coe]
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
n : ℕ
ω : Ω
⊢ ‖f n ω + -a‖₊ ≤ ‖f n ω‖₊ + ‖-a‖₊
[PROOFSTEP]
exact nnnorm_add_le _ _
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
n : ℕ
⊢ ∫⁻ (a_1 : Ω), ↑‖f n a_1‖₊ + ↑‖a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
[PROOFSTEP]
simp_rw [lintegral_add_right _ measurable_const, lintegral_const]
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R
n : ℕ
⊢ ∫⁻ (a : Ω), ↑‖f n a‖₊ ∂μ + ↑‖a‖₊ * ↑↑μ Set.univ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
[PROOFSTEP]
exact add_le_add (hbdd _) le_rfl
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
⊢ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ ⊤
[PROOFSTEP]
refine'
ne_of_lt
(iSup_lt_iff.2
⟨R + ‖a‖₊ * μ Set.univ,
ENNReal.add_lt_top.2 ⟨ENNReal.coe_lt_top, ENNReal.mul_lt_top ENNReal.coe_lt_top.ne (measure_ne_top _ _)⟩,
fun n => le_trans _ (hR' n)⟩)
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
⊢ ∫⁻ (ω : Ω), ENNReal.ofReal (f n ω - a)⁺ ∂μ ≤ ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ
[PROOFSTEP]
refine' lintegral_mono fun ω => _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
⊢ ENNReal.ofReal (f n ω - a)⁺ ≤ ↑‖f n ω - a‖₊
[PROOFSTEP]
rw [ENNReal.ofReal_le_iff_le_toReal, ENNReal.coe_toReal, coe_nnnorm]
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
⊢ (f n ω - a)⁺ ≤ ‖f n ω - a‖
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
⊢ ↑‖f n ω - a‖₊ ≠ ⊤
[PROOFSTEP]
by_cases hnonneg : 0 ≤ f n ω - a
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
hnonneg : 0 ≤ f n ω - a
⊢ (f n ω - a)⁺ ≤ ‖f n ω - a‖
[PROOFSTEP]
rw [LatticeOrderedGroup.pos_of_nonneg _ hnonneg, Real.norm_eq_abs, abs_of_nonneg hnonneg]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
hnonneg : ¬0 ≤ f n ω - a
⊢ (f n ω - a)⁺ ≤ ‖f n ω - a‖
[PROOFSTEP]
rw [LatticeOrderedGroup.pos_of_nonpos _ (not_le.1 hnonneg).le]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
hnonneg : ¬0 ≤ f n ω - a
⊢ 0 ≤ ‖f n ω - a‖
[PROOFSTEP]
exact norm_nonneg _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ
n : ℕ
ω : Ω
⊢ ↑‖f n ω - a‖₊ ≠ ⊤
[PROOFSTEP]
simp only [Ne.def, ENNReal.coe_ne_top, not_false_iff]
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a)
⊢ ENNReal.ofReal (b - a) ≠ 0
[PROOFSTEP]
simp only [hab, Ne.def, ENNReal.ofReal_eq_zero, sub_nonpos, not_le]
[GOAL]
case h0
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
(∫⁻ (ω : Ω), upcrossings a b f ω ∂μ) * ENNReal.ofReal (b - a) ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
⊢ ENNReal.ofReal (b - a) ≠ 0 ∨ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ 0
[PROOFSTEP]
simp only [hab, Ne.def, ENNReal.ofReal_eq_zero, sub_nonpos, not_le, true_or_iff]
[GOAL]
case ht
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
hab : a < b
this :
(∫⁻ (ω : Ω), upcrossings a b f ω ∂μ) * ENNReal.ofReal (b - a) ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
⊢ ENNReal.ofReal (b - a) ≠ ⊤ ∨ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ ⊤
[PROOFSTEP]
simp only [Ne.def, ENNReal.ofReal_ne_top, not_false_iff, true_or_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
[PROOFSTEP]
simp only [ae_all_iff, eventually_imp_distrib_left]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∀ (i i_1 : ℚ), i < i_1 → ∀ᵐ (x : Ω) ∂μ, upcrossings (↑i) (↑i_1) f x < ⊤
[PROOFSTEP]
rintro a b hab
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
a b : ℚ
hab : a < b
⊢ ∀ᵐ (x : Ω) ∂μ, upcrossings (↑a) (↑b) f x < ⊤
[PROOFSTEP]
exact hf.upcrossings_ae_lt_top' hbdd (Rat.cast_lt.2 hab)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
filter_upwards [hf.upcrossings_ae_lt_top hbdd,
ae_bdd_liminf_atTop_of_snorm_bdd one_ne_zero (fun n => (hf.stronglyMeasurable n).measurable.mono (ℱ.le n) le_rfl)
hbdd] with
ω h₁ h₂
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
ω : Ω
h₁ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤
h₂ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
exact tendsto_of_uncrossing_lt_top h₂ h₁
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂Measure.trim μ (_ : sSup (Set.range fun n => ↑ℱ n) ≤ m0), ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
rw [@ae_iff _ (⨆ n, ℱ n) _ _, trim_measurableSet_eq]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ↑↑μ {a | ¬∃ c, Tendsto (fun n => f n a) atTop (𝓝 c)} = 0
[PROOFSTEP]
exact hf.exists_ae_tendsto_of_bdd hbdd
[GOAL]
case hs
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ MeasurableSet {a | ¬∃ c, Tendsto (fun n => f n a) atTop (𝓝 c)}
[PROOFSTEP]
exact
MeasurableSet.compl
(@measurableSet_exists_tendsto _ _ _ _ _ _ (⨆ n, ℱ n) _ _ _ _ _ fun n =>
(hf.stronglyMeasurable n).measurable.mono (le_sSup ⟨n, rfl⟩) le_rfl)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (limitProcess f ℱ μ ω))
[PROOFSTEP]
classical
suffices ∃ g, StronglyMeasurable[⨆ n, ℱ n] g ∧ ∀ᵐ ω ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
by
rw [limitProcess, dif_pos this]
exact (Classical.choose_spec this).2
set g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then h.choose else 0
have hle : ⨆ n, ℱ n ≤ m0 := sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _
have hg' : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) :=
by
filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω
simp_rw [dif_pos hω]
exact hω.choose_spec
have hg'm : @AEStronglyMeasurable _ _ _ (⨆ n, ℱ n) g' (μ.trim hle) :=
(@aemeasurable_of_tendsto_metrizable_ae' _ _ (⨆ n, ℱ n) _ _ _ _ _ _ _
(fun n => ((hf.stronglyMeasurable n).measurable.mono (le_sSup ⟨n, rfl⟩ : ℱ n ≤ ⨆ n, ℱ n) le_rfl).aemeasurable)
hg').aestronglyMeasurable
obtain ⟨g, hgm, hae⟩ := hg'm
have hg : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) :=
by
filter_upwards [hae, hg'] with ω hω hg'ω
exact hω ▸ hg'ω
exact ⟨g, hgm, measure_eq_zero_of_trim_eq_zero hle hg⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (limitProcess f ℱ μ ω))
[PROOFSTEP]
suffices ∃ g, StronglyMeasurable[⨆ n, ℱ n] g ∧ ∀ᵐ ω ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
by
rw [limitProcess, dif_pos this]
exact (Classical.choose_spec this).2
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
this : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (limitProcess f ℱ μ ω))
[PROOFSTEP]
rw [limitProcess, dif_pos this]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
this : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (Classical.choose this ω))
[PROOFSTEP]
exact (Classical.choose_spec this).2
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
set g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then h.choose else 0
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
have hle : ⨆ n, ℱ n ≤ m0 := sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
have hg' : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) :=
by
filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω
simp_rw [dif_pos hω]
exact hω.choose_spec
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
⊢ ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
[PROOFSTEP]
filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
ω : Ω
hω : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
⊢ Tendsto (fun n => f n ω) atTop (𝓝 (if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0))
[PROOFSTEP]
simp_rw [dif_pos hω]
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
ω : Ω
hω : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
⊢ Tendsto (fun n => f n ω) atTop (𝓝 (Exists.choose hω))
[PROOFSTEP]
exact hω.choose_spec
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
have hg'm : @AEStronglyMeasurable _ _ _ (⨆ n, ℱ n) g' (μ.trim hle) :=
(@aemeasurable_of_tendsto_metrizable_ae' _ _ (⨆ n, ℱ n) _ _ _ _ _ _ _
(fun n => ((hf.stronglyMeasurable n).measurable.mono (le_sSup ⟨n, rfl⟩ : ℱ n ≤ ⨆ n, ℱ n) le_rfl).aemeasurable)
hg').aestronglyMeasurable
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
hg'm : AEStronglyMeasurable g' (Measure.trim μ hle)
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
obtain ⟨g, hgm, hae⟩ := hg'm
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
g : Ω → ℝ
hgm : StronglyMeasurable g
hae : g' =ᵐ[Measure.trim μ hle] g
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
have hg : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) :=
by
filter_upwards [hae, hg'] with ω hω hg'ω
exact hω ▸ hg'ω
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
g : Ω → ℝ
hgm : StronglyMeasurable g
hae : g' =ᵐ[Measure.trim μ hle] g
⊢ ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
filter_upwards [hae, hg'] with ω hω hg'ω
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω✝ : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
g : Ω → ℝ
hgm : StronglyMeasurable g
hae : g' =ᵐ[Measure.trim μ hle] g
ω : Ω
hω : (if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0) = g ω
hg'ω : Tendsto (fun n => f n ω) atTop (𝓝 (if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0))
⊢ Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
exact hω ▸ hg'ω
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R
g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω))
g : Ω → ℝ
hgm : StronglyMeasurable g
hae : g' =ᵐ[Measure.trim μ hle] g
hg : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω))
[PROOFSTEP]
exact ⟨g, hgm, measure_eq_zero_of_trim_eq_zero hle hg⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hf : Submartingale f ℱ μ
hunif : UniformIntegrable f 1 μ
⊢ Tendsto (fun n => snorm (f n - limitProcess f ℱ μ) 1 μ) atTop (𝓝 0)
[PROOFSTEP]
obtain ⟨R, hR⟩ := hunif.2.2
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hf : Submartingale f ℱ μ
hunif : UniformIntegrable f 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm (f i) 1 μ ≤ ↑R
⊢ Tendsto (fun n => snorm (f n - limitProcess f ℱ μ) 1 μ) atTop (𝓝 0)
[PROOFSTEP]
have hmeas : ∀ n, AEStronglyMeasurable (f n) μ := fun n =>
((hf.stronglyMeasurable n).mono (ℱ.le _)).aestronglyMeasurable
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hf : Submartingale f ℱ μ
hunif : UniformIntegrable f 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm (f i) 1 μ ≤ ↑R
hmeas : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ
⊢ Tendsto (fun n => snorm (f n - limitProcess f ℱ μ) 1 μ) atTop (𝓝 0)
[PROOFSTEP]
exact
tendsto_Lp_of_tendstoInMeasure _ le_rfl ENNReal.one_ne_top hmeas (memℒp_limitProcess_of_snorm_bdd hmeas hR) hunif.2.1
(tendstoInMeasure_of_tendsto_ae hmeas <| hf.ae_tendsto_limitProcess hR)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
⊢ f n =ᵐ[μ] μ[g|↑ℱ n]
[PROOFSTEP]
rw [← sub_ae_eq_zero, ←
snorm_eq_zero_iff
(((hf.stronglyMeasurable n).mono (ℱ.le _)).sub (stronglyMeasurable_condexp.mono (ℱ.le _))).aestronglyMeasurable
one_ne_zero]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
⊢ snorm (f n - μ[g|↑ℱ n]) 1 μ = 0
[PROOFSTEP]
have ht : Tendsto (fun m => snorm (μ[f m - g|ℱ n]) 1 μ) atTop (𝓝 0) :=
haveI hint : ∀ m, Integrable (f m - g) μ := fun m => (hf.integrable m).sub hg
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds hgtends (fun m => zero_le _) fun m =>
snorm_one_condexp_le_snorm _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0)
⊢ snorm (f n - μ[g|↑ℱ n]) 1 μ = 0
[PROOFSTEP]
have hev : ∀ m ≥ n, snorm (μ[f m - g|ℱ n]) 1 μ = snorm (f n - μ[g|ℱ n]) 1 μ :=
by
refine' fun m hm => snorm_congr_ae ((condexp_sub (hf.integrable m) hg).trans _)
filter_upwards [hf.2 n m hm] with x hx
simp only [hx, Pi.sub_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0)
⊢ ∀ (m : ℕ), m ≥ n → snorm (μ[f m - g|↑ℱ n]) 1 μ = snorm (f n - μ[g|↑ℱ n]) 1 μ
[PROOFSTEP]
refine' fun m hm => snorm_congr_ae ((condexp_sub (hf.integrable m) hg).trans _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0)
m : ℕ
hm : m ≥ n
⊢ μ[f m|↑ℱ n] - μ[g|↑ℱ n] =ᵐ[μ] f n - μ[g|↑ℱ n]
[PROOFSTEP]
filter_upwards [hf.2 n m hm] with x hx
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0)
m : ℕ
hm : m ≥ n
x : Ω
hx : (μ[f m|↑ℱ n]) x = f n x
⊢ (μ[f m|↑ℱ n] - μ[g|↑ℱ n]) x = (f n - μ[g|↑ℱ n]) x
[PROOFSTEP]
simp only [hx, Pi.sub_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ✝
g : Ω → ℝ
μ : Measure Ω
hf : Martingale f ℱ μ
hg : Integrable g
hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0)
n : ℕ
ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0)
hev : ∀ (m : ℕ), m ≥ n → snorm (μ[f m - g|↑ℱ n]) 1 μ = snorm (f n - μ[g|↑ℱ n]) 1 μ
⊢ snorm (f n - μ[g|↑ℱ n]) 1 μ = 0
[PROOFSTEP]
exact tendsto_nhds_unique (tendsto_atTop_of_eventually_const hev) ht
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
have hle : ⨆ n, ℱ n ≤ m0 := sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
have hunif : UniformIntegrable (fun n => μ[g|ℱ n]) 1 μ := hg.uniformIntegrable_condexp_filtration
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
obtain ⟨R, hR⟩ := hunif.2.2
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
have hlimint : Integrable (ℱ.limitProcess (fun n => μ[g|ℱ n]) μ) μ :=
(memℒp_limitProcess_of_snorm_bdd hunif.1 hR).integrable le_rfl
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
suffices g =ᵐ[μ] ℱ.limitProcess (fun n x => (μ[g|ℱ n]) x) μ
by
filter_upwards [this, (martingale_condexp g ℱ μ).submartingale.ae_tendsto_limitProcess hR] with x heq ht
rwa [heq]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this : g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
filter_upwards [this, (martingale_condexp g ℱ μ).submartingale.ae_tendsto_limitProcess hR] with x heq ht
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this : g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ
x : Ω
heq : g x = limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x
ht : Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (limitProcess (fun i => μ[g|↑ℱ i]) ℱ μ x))
⊢ Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x))
[PROOFSTEP]
rwa [heq]
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
⊢ g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ
[PROOFSTEP]
have : ∀ n s, MeasurableSet[ℱ n] s → ∫ x in s, g x ∂μ = ∫ x in s, ℱ.limitProcess (fun n x => (μ[g|ℱ n]) x) μ x ∂μ :=
by
intro n s hs
rw [← set_integral_condexp (ℱ.le n) hg hs, ← set_integral_condexp (ℱ.le n) hlimint hs]
refine' set_integral_congr_ae (ℱ.le _ _ hs) _
filter_upwards [(martingale_condexp g ℱ μ).ae_eq_condexp_limitProcess hunif n] with x hx _
rw [hx]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
⊢ ∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
intro n s hs
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
n : ℕ
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rw [← set_integral_condexp (ℱ.le n) hg hs, ← set_integral_condexp (ℱ.le n) hlimint hs]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
n : ℕ
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (x : Ω) in s, (μ[g|↑ℱ n]) x ∂μ = ∫ (x : Ω) in s, (μ[limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ|↑ℱ n]) x ∂μ
[PROOFSTEP]
refine' set_integral_congr_ae (ℱ.le _ _ hs) _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
n : ℕ
s : Set Ω
hs : MeasurableSet s
⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ s → (μ[g|↑ℱ n]) x = (μ[limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ|↑ℱ n]) x
[PROOFSTEP]
filter_upwards [(martingale_condexp g ℱ μ).ae_eq_condexp_limitProcess hunif n] with x hx _
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
n : ℕ
s : Set Ω
hs : MeasurableSet s
x : Ω
hx : (μ[g|↑ℱ n]) x = (μ[limitProcess (fun i => μ[g|↑ℱ i]) ℱ μ|↑ℱ n]) x
a✝ : x ∈ s
⊢ (μ[g|↑ℱ n]) x = (μ[limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ|↑ℱ n]) x
[PROOFSTEP]
rw [hx]
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
⊢ g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ
[PROOFSTEP]
refine'
ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hle (fun s _ _ => hg.integrableOn) (fun s _ _ => hlimint.integrableOn)
(fun s hs => _) hgmeas.aeStronglyMeasurable' stronglyMeasurable_limitProcess.aeStronglyMeasurable'
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
⊢ ↑↑μ s < ⊤ → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
apply @MeasurableSpace.induction_on_inter _ _ _ (⨆ n, ℱ n) (MeasurableSpace.measurableSpace_iSup_eq ℱ) _ _ _ _ _ _ hs
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
⊢ IsPiSystem {s | ∃ n, MeasurableSet s}
[PROOFSTEP]
rintro s ⟨n, hs⟩ t ⟨m, ht⟩ -
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s✝ : Set Ω
hs✝ : MeasurableSet s✝
s : Set Ω
n : ℕ
hs : MeasurableSet s
t : Set Ω
m : ℕ
ht : MeasurableSet t
⊢ s ∩ t ∈ {s | ∃ n, MeasurableSet s}
[PROOFSTEP]
by_cases hnm : n ≤ m
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s✝ : Set Ω
hs✝ : MeasurableSet s✝
s : Set Ω
n : ℕ
hs : MeasurableSet s
t : Set Ω
m : ℕ
ht : MeasurableSet t
hnm : n ≤ m
⊢ s ∩ t ∈ {s | ∃ n, MeasurableSet s}
[PROOFSTEP]
exact ⟨m, (ℱ.mono hnm _ hs).inter ht⟩
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s✝ : Set Ω
hs✝ : MeasurableSet s✝
s : Set Ω
n : ℕ
hs : MeasurableSet s
t : Set Ω
m : ℕ
ht : MeasurableSet t
hnm : ¬n ≤ m
⊢ s ∩ t ∈ {s | ∃ n, MeasurableSet s}
[PROOFSTEP]
exact ⟨n, hs.inter (ℱ.mono (not_le.1 hnm).le _ ht)⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
⊢ ↑↑μ ∅ < ⊤ → ∫ (x : Ω) in ∅, g x ∂μ = ∫ (x : Ω) in ∅, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
simp only [measure_empty, WithTop.zero_lt_top, Measure.restrict_empty, integral_zero_measure, forall_true_left]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
⊢ ∀ (t : Set Ω),
t ∈ {s | ∃ n, MeasurableSet s} →
↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rintro t ⟨n, ht⟩ -
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
t : Set Ω
n : ℕ
ht : MeasurableSet t
⊢ ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
exact this n _ ht
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
⊢ ∀ (t : Set Ω),
MeasurableSet t →
(↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ) →
↑↑μ tᶜ < ⊤ → ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rintro t htmeas ht -
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
t : Set Ω
htmeas : MeasurableSet t
ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
have hgeq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ htmeas (hg.trim hle hgmeas)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
t : Set Ω
htmeas : MeasurableSet t
ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
hgeq :
∫ (x : Ω) in t, g x ∂Measure.trim μ hle + ∫ (x : Ω) in tᶜ, g x ∂Measure.trim μ hle =
∫ (x : Ω), g x ∂Measure.trim μ hle
⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
have hheq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ htmeas (hlimint.trim hle stronglyMeasurable_limitProcess)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
t : Set Ω
htmeas : MeasurableSet t
ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
hgeq :
∫ (x : Ω) in t, g x ∂Measure.trim μ hle + ∫ (x : Ω) in tᶜ, g x ∂Measure.trim μ hle =
∫ (x : Ω), g x ∂Measure.trim μ hle
hheq :
∫ (x : Ω) in t, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle +
∫ (x : Ω) in tᶜ, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle =
∫ (x : Ω), limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle
⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rw [add_comm, ← eq_sub_iff_add_eq] at hgeq hheq
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
t : Set Ω
htmeas : MeasurableSet t
ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
hgeq :
∫ (x : Ω) in tᶜ, g x ∂Measure.trim μ hle =
∫ (x : Ω), g x ∂Measure.trim μ hle - ∫ (x : Ω) in t, g x ∂Measure.trim μ hle
hheq :
∫ (x : Ω) in tᶜ, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle =
∫ (x : Ω), limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle -
∫ (x : Ω) in t, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle
⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rw [set_integral_trim hle hgmeas htmeas.compl, set_integral_trim hle stronglyMeasurable_limitProcess htmeas.compl, hgeq,
hheq, ← set_integral_trim hle hgmeas htmeas, ← set_integral_trim hle stronglyMeasurable_limitProcess htmeas, ←
integral_trim hle hgmeas, ← integral_trim hle stronglyMeasurable_limitProcess, ← integral_univ,
this 0 _ MeasurableSet.univ, integral_univ, ht (measure_lt_top _ _)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
⊢ ∀ (f : ℕ → Set Ω),
Pairwise (Disjoint on f) →
(∀ (i : ℕ), MeasurableSet (f i)) →
(∀ (i : ℕ),
↑↑μ (f i) < ⊤ →
∫ (x : Ω) in f i, g x ∂μ = ∫ (x : Ω) in f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ) →
↑↑μ (⋃ (i : ℕ), f i) < ⊤ →
∫ (x : Ω) in ⋃ (i : ℕ), f i, g x ∂μ =
∫ (x : Ω) in ⋃ (i : ℕ), f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rintro f hf hfmeas heq -
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f✝ : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
f : ℕ → Set Ω
hf : Pairwise (Disjoint on f)
hfmeas : ∀ (i : ℕ), MeasurableSet (f i)
heq :
∀ (i : ℕ),
↑↑μ (f i) < ⊤ → ∫ (x : Ω) in f i, g x ∂μ = ∫ (x : Ω) in f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
⊢ ∫ (x : Ω) in ⋃ (i : ℕ), f i, g x ∂μ = ∫ (x : Ω) in ⋃ (i : ℕ), f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
[PROOFSTEP]
rw [integral_iUnion (fun n => hle _ (hfmeas n)) hf hg.integrableOn,
integral_iUnion (fun n => hle _ (hfmeas n)) hf hlimint.integrableOn]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f✝ : ℕ → Ω → ℝ
ω : Ω
R✝ : ℝ≥0
inst✝ : IsFiniteMeasure μ
g : Ω → ℝ
hg : Integrable g
hgmeas : StronglyMeasurable g
hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0
hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ
R : ℝ≥0
hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R
hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ)
this :
∀ (n : ℕ) (s : Set Ω),
MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
s : Set Ω
hs : MeasurableSet s
f : ℕ → Set Ω
hf : Pairwise (Disjoint on f)
hfmeas : ∀ (i : ℕ), MeasurableSet (f i)
heq :
∀ (i : ℕ),
↑↑μ (f i) < ⊤ → ∫ (x : Ω) in f i, g x ∂μ = ∫ (x : Ω) in f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ
⊢ ∑' (n : ℕ), ∫ (a : Ω) in f n, g a ∂μ = ∑' (n : ℕ), ∫ (a : Ω) in f n, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ a ∂μ
[PROOFSTEP]
exact tsum_congr fun n => heq _ (measure_lt_top _ _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
[PROOFSTEP]
have ht : ∀ᵐ x ∂μ, Tendsto (fun n => (μ[μ[g|⨆ n, ℱ n]|ℱ n]) x) atTop (𝓝 ((μ[g|⨆ n, ℱ n]) x)) :=
integrable_condexp.tendsto_ae_condexp stronglyMeasurable_condexp
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
[PROOFSTEP]
have heq : ∀ n, ∀ᵐ x ∂μ, (μ[μ[g|⨆ n, ℱ n]|ℱ n]) x = (μ[g|ℱ n]) x := fun n =>
condexp_condexp_of_le (le_iSup _ n) (iSup_le fun n => ℱ.le n)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
[PROOFSTEP]
rw [← ae_all_iff] at heq
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
heq : ∀ᵐ (a : Ω) ∂μ, ∀ (i : ℕ), (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ i]) a = (μ[g|↑ℱ i]) a
⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
[PROOFSTEP]
filter_upwards [heq, ht] with x hxeq hxt
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
heq : ∀ᵐ (a : Ω) ∂μ, ∀ (i : ℕ), (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ i]) a = (μ[g|↑ℱ i]) a
x : Ω
hxeq : ∀ (i : ℕ), (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ i]) x = (μ[g|↑ℱ i]) x
hxt : Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
⊢ Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x))
[PROOFSTEP]
exact hxt.congr hxeq
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
⊢ Tendsto (fun n => snorm (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
[PROOFSTEP]
have ht : Tendsto (fun n => snorm (μ[μ[g|⨆ n, ℱ n]|ℱ n] - μ[g|⨆ n, ℱ n]) 1 μ) atTop (𝓝 0) :=
integrable_condexp.tendsto_snorm_condexp stronglyMeasurable_condexp
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
⊢ Tendsto (fun n => snorm (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
[PROOFSTEP]
have heq : ∀ n, ∀ᵐ x ∂μ, (μ[μ[g|⨆ n, ℱ n]|ℱ n]) x = (μ[g|ℱ n]) x := fun n =>
condexp_condexp_of_le (le_iSup _ n) (iSup_le fun n => ℱ.le n)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x
⊢ Tendsto (fun n => snorm (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
[PROOFSTEP]
refine' ht.congr fun n => snorm_congr_ae _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x
n : ℕ
⊢ μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n] =ᵐ[μ] μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]
[PROOFSTEP]
filter_upwards [heq n] with x hxeq
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
a b : ℝ
f : ℕ → Ω → ℝ
ω : Ω
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
g✝ g : Ω → ℝ
ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0)
heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x
n : ℕ
x : Ω
hxeq : (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x
⊢ (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) x = (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) x
[PROOFSTEP]
simp only [hxeq, Pi.sub_apply]
| {"mathlib_filename": "Mathlib.Probability.Martingale.Convergence", "llama_tokens": 42294} |
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
⊢ leastGE f r (π ω) ω = min (π ω) (leastGE f r n ω)
[PROOFSTEP]
classical
refine' le_antisymm (le_min (leastGE_le _) (leastGE_mono (hπn ω) r ω)) _
by_cases hle : π ω ≤ leastGE f r n ω
· rw [min_eq_left hle, leastGE]
by_cases h : ∃ j ∈ Set.Icc 0 (π ω), f j ω ∈ Set.Ici r
· refine' hle.trans (Eq.le _)
rw [leastGE, ← hitting_eq_hitting_of_exists (hπn ω) h]
· simp only [hitting, if_neg h, le_rfl]
· rw [min_eq_right (not_le.1 hle).le, leastGE, leastGE, ← hitting_eq_hitting_of_exists (hπn ω) _]
rw [not_le, leastGE, hitting_lt_iff _ (hπn ω)] at hle
exact
let ⟨j, hj₁, hj₂⟩ := hle
⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
⊢ leastGE f r (π ω) ω = min (π ω) (leastGE f r n ω)
[PROOFSTEP]
refine' le_antisymm (le_min (leastGE_le _) (leastGE_mono (hπn ω) r ω)) _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
⊢ min (π ω) (leastGE f r n ω) ≤ leastGE f r (π ω) ω
[PROOFSTEP]
by_cases hle : π ω ≤ leastGE f r n ω
[GOAL]
case pos
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : π ω ≤ leastGE f r n ω
⊢ min (π ω) (leastGE f r n ω) ≤ leastGE f r (π ω) ω
[PROOFSTEP]
rw [min_eq_left hle, leastGE]
[GOAL]
case pos
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : π ω ≤ leastGE f r n ω
⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω
[PROOFSTEP]
by_cases h : ∃ j ∈ Set.Icc 0 (π ω), f j ω ∈ Set.Ici r
[GOAL]
case pos
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : π ω ≤ leastGE f r n ω
h : ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r
⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω
[PROOFSTEP]
refine' hle.trans (Eq.le _)
[GOAL]
case pos
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : π ω ≤ leastGE f r n ω
h : ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r
⊢ leastGE f r n ω = hitting f (Set.Ici r) 0 (π ω) ω
[PROOFSTEP]
rw [leastGE, ← hitting_eq_hitting_of_exists (hπn ω) h]
[GOAL]
case neg
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : π ω ≤ leastGE f r n ω
h : ¬∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r
⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω
[PROOFSTEP]
simp only [hitting, if_neg h, le_rfl]
[GOAL]
case neg
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : ¬π ω ≤ leastGE f r n ω
⊢ min (π ω) (leastGE f r n ω) ≤ leastGE f r (π ω) ω
[PROOFSTEP]
rw [min_eq_right (not_le.1 hle).le, leastGE, leastGE, ← hitting_eq_hitting_of_exists (hπn ω) _]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : ¬π ω ≤ leastGE f r n ω
⊢ ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r
[PROOFSTEP]
rw [not_le, leastGE, hitting_lt_iff _ (hπn ω)] at hle
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
π : Ω → ℕ
r : ℝ
ω : Ω
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
hle : ∃ j, j ∈ Set.Ico 0 (π ω) ∧ f j ω ∈ Set.Ici r
⊢ ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r
[PROOFSTEP]
exact
let ⟨j, hj₁, hj₂⟩ := hle
⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f✝ : ℕ → Ω → ℝ
ω : Ω
f : ℕ → Ω → ℝ
π : Ω → ℕ
r : ℝ
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
⊢ stoppedValue (fun i => stoppedValue f (leastGE f r i)) π = stoppedValue (stoppedProcess f (leastGE f r n)) π
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f✝ : ℕ → Ω → ℝ
ω✝ : Ω
f : ℕ → Ω → ℝ
π : Ω → ℕ
r : ℝ
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
ω : Ω
⊢ stoppedValue (fun i => stoppedValue f (leastGE f r i)) π ω = stoppedValue (stoppedProcess f (leastGE f r n)) π ω
[PROOFSTEP]
simp_rw [stoppedProcess, stoppedValue]
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f✝ : ℕ → Ω → ℝ
ω✝ : Ω
f : ℕ → Ω → ℝ
π : Ω → ℕ
r : ℝ
n : ℕ
hπn : ∀ (ω : Ω), π ω ≤ n
ω : Ω
⊢ f (leastGE f r (π ω) ω) ω = f (min (π ω) (leastGE f r n ω)) ω
[PROOFSTEP]
rw [leastGE_eq_min _ _ _ hπn]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
⊢ Submartingale (fun i => stoppedValue f (leastGE f r i)) ℱ μ
[PROOFSTEP]
rw [submartingale_iff_expected_stoppedValue_mono]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
⊢ ∀ (τ π : Ω → ℕ),
IsStoppingTime ℱ τ →
IsStoppingTime ℱ π →
τ ≤ π →
(∃ N, ∀ (x : Ω), π x ≤ N) →
∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) τ x ∂μ ≤
∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ
[PROOFSTEP]
intro σ π hσ hπ hσ_le_π hπ_bdd
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
hπ_bdd : ∃ N, ∀ (x : Ω), π x ≤ N
⊢ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) σ x ∂μ ≤
∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ
[PROOFSTEP]
obtain ⟨n, hπ_le_n⟩ := hπ_bdd
[GOAL]
case intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) σ x ∂μ ≤
∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ
[PROOFSTEP]
simp_rw [stoppedValue_stoppedValue_leastGE f σ r fun i => (hσ_le_π i).trans (hπ_le_n i)]
[GOAL]
case intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ ∫ (x : Ω), stoppedValue (stoppedProcess f (leastGE f r n)) σ x ∂μ ≤
∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ
[PROOFSTEP]
simp_rw [stoppedValue_stoppedValue_leastGE f π r hπ_le_n]
[GOAL]
case intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ ∫ (x : Ω), stoppedValue (stoppedProcess f (leastGE f r n)) σ x ∂μ ≤
∫ (x : Ω), stoppedValue (stoppedProcess f (leastGE f r n)) π x ∂μ
[PROOFSTEP]
refine' hf.expected_stoppedValue_mono _ _ _ fun ω => (min_le_left _ _).trans (hπ_le_n ω)
[GOAL]
case intro.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ IsStoppingTime ℱ fun x => min (σ x) (leastGE f r n x)
[PROOFSTEP]
exact hσ.min (hf.adapted.isStoppingTime_leastGE _ _)
[GOAL]
case intro.refine'_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ IsStoppingTime ℱ fun x => min (π x) (leastGE f r n x)
[PROOFSTEP]
exact hπ.min (hf.adapted.isStoppingTime_leastGE _ _)
[GOAL]
case intro.refine'_3
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
σ π : Ω → ℕ
hσ : IsStoppingTime ℱ σ
hπ : IsStoppingTime ℱ π
hσ_le_π : σ ≤ π
n : ℕ
hπ_le_n : ∀ (x : Ω), π x ≤ n
⊢ (fun x => min (σ x) (leastGE f r n x)) ≤ fun x => min (π x) (leastGE f r n x)
[PROOFSTEP]
exact fun ω => min_le_min (hσ_le_π ω) le_rfl
[GOAL]
case hadp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
⊢ Adapted ℱ fun i => stoppedValue f (leastGE f r i)
[PROOFSTEP]
exact fun i =>
stronglyMeasurable_stoppedValue_of_le hf.adapted.progMeasurable_of_discrete (hf.adapted.isStoppingTime_leastGE _ _)
leastGE_le
[GOAL]
case hint
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
r : ℝ
⊢ ∀ (i : ℕ), Integrable (stoppedValue f (leastGE f r i))
[PROOFSTEP]
exact fun i => integrable_stoppedValue _ (hf.adapted.isStoppingTime_leastGE _ _) hf.integrable leastGE_le
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ ∀ᵐ (ω : Ω) ∂μ, stoppedValue f (leastGE f r i) ω ≤ r + ↑R
[PROOFSTEP]
filter_upwards [hbdd] with ω hbddω
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ stoppedValue f (leastGE f r i) ω ≤ r + ↑R
[PROOFSTEP]
change f (leastGE f r i ω) ω ≤ r + R
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ f (leastGE f r i ω) ω ≤ r + ↑R
[PROOFSTEP]
by_cases heq : leastGE f r i ω = 0
[GOAL]
case pos
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : leastGE f r i ω = 0
⊢ f (leastGE f r i ω) ω ≤ r + ↑R
[PROOFSTEP]
rw [heq, hf0, Pi.zero_apply]
[GOAL]
case pos
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : leastGE f r i ω = 0
⊢ 0 ≤ r + ↑R
[PROOFSTEP]
exact add_nonneg hr R.coe_nonneg
[GOAL]
case neg
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : ¬leastGE f r i ω = 0
⊢ f (leastGE f r i ω) ω ≤ r + ↑R
[PROOFSTEP]
obtain ⟨k, hk⟩ := Nat.exists_eq_succ_of_ne_zero heq
[GOAL]
case neg.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : ¬leastGE f r i ω = 0
k : ℕ
hk : leastGE f r i ω = Nat.succ k
⊢ f (leastGE f r i ω) ω ≤ r + ↑R
[PROOFSTEP]
rw [hk, add_comm, ← sub_le_iff_le_add]
[GOAL]
case neg.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : ¬leastGE f r i ω = 0
k : ℕ
hk : leastGE f r i ω = Nat.succ k
⊢ f (Nat.succ k) ω - r ≤ ↑R
[PROOFSTEP]
have := not_mem_of_lt_hitting (hk.symm ▸ k.lt_succ_self : k < leastGE f r i ω) (zero_le _)
[GOAL]
case neg.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : ¬leastGE f r i ω = 0
k : ℕ
hk : leastGE f r i ω = Nat.succ k
this : ¬f k ω ∈ Set.Ici r
⊢ f (Nat.succ k) ω - r ≤ ↑R
[PROOFSTEP]
simp only [Set.mem_union, Set.mem_Iic, Set.mem_Ici, not_or, not_le] at this
[GOAL]
case neg.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
ω : Ω
hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
heq : ¬leastGE f r i ω = 0
k : ℕ
hk : leastGE f r i ω = Nat.succ k
this : f k ω < r
⊢ f (Nat.succ k) ω - r ≤ ↑R
[PROOFSTEP]
exact (sub_lt_sub_left this _).le.trans ((le_abs_self _).trans (hbddω _))
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ snorm (stoppedValue f (leastGE f r i)) 1 μ ≤ 2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R)
[PROOFSTEP]
refine' snorm_one_le_of_le' ((hf.stoppedValue_leastGE r).integrable _) _ (norm_stoppedValue_leastGE_le hr hf0 hbdd i)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ 0 ≤ ∫ (x : Ω), stoppedValue f (leastGE f r i) x ∂μ
[PROOFSTEP]
rw [← integral_univ]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ 0 ≤ ∫ (x : Ω) in Set.univ, stoppedValue f (leastGE f r i) x ∂μ
[PROOFSTEP]
refine' le_trans _ ((hf.stoppedValue_leastGE r).set_integral_le (zero_le _) MeasurableSet.univ)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ 0 ≤ ∫ (ω : Ω) in Set.univ, stoppedValue f (leastGE f r 0) ω ∂μ
[PROOFSTEP]
simp_rw [stoppedValue, leastGE, hitting_of_le le_rfl, hf0, integral_zero', le_rfl]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ snorm (stoppedValue f (leastGE f r i)) 1 μ ≤ ↑(ENNReal.toNNReal (2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R)))
[PROOFSTEP]
refine' (hf.stoppedValue_leastGE_snorm_le hr hf0 hbdd i).trans _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hr : 0 ≤ r
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ 2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R) ≤ ↑(ENNReal.toNNReal (2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R)))
[PROOFSTEP]
simp [ENNReal.coe_toNNReal (measure_ne_top μ _), ENNReal.coe_toNNReal]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) → ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
have ht : ∀ᵐ ω ∂μ, ∀ i : ℕ, ∃ c, Tendsto (fun n => stoppedValue f (leastGE f i n) ω) atTop (𝓝 c) :=
by
rw [ae_all_iff]
exact fun i =>
Submartingale.exists_ae_tendsto_of_bdd (hf.stoppedValue_leastGE i)
(hf.stoppedValue_leastGE_snorm_le' i.cast_nonneg hf0 hbdd)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
[PROOFSTEP]
rw [ae_all_iff]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ (i : ℕ), ∀ᵐ (a : Ω) ∂μ, ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) a) atTop (𝓝 c)
[PROOFSTEP]
exact fun i =>
Submartingale.exists_ae_tendsto_of_bdd (hf.stoppedValue_leastGE i)
(hf.stoppedValue_leastGE_snorm_le' i.cast_nonneg hf0 hbdd)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) → ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
filter_upwards [ht] with ω hω hωb
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : BddAbove (Set.range fun n => f n ω)
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
rw [BddAbove] at hωb
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
obtain ⟨i, hi⟩ := exists_nat_gt hωb.some
[GOAL]
case h.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
have hib : ∀ n, f n ω < i := by
intro n
exact lt_of_le_of_lt ((mem_upperBounds.1 hωb.some_mem) _ ⟨n, rfl⟩) hi
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
⊢ ∀ (n : ℕ), f n ω < ↑i
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
n : ℕ
⊢ f n ω < ↑i
[PROOFSTEP]
exact lt_of_le_of_lt ((mem_upperBounds.1 hωb.some_mem) _ ⟨n, rfl⟩) hi
[GOAL]
case h.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
have heq : ∀ n, stoppedValue f (leastGE f i n) ω = f n ω :=
by
intro n
rw [leastGE]; unfold hitting; rw [stoppedValue]
rw [if_neg]
simp only [Set.mem_Icc, Set.mem_union, Set.mem_Ici]
push_neg
exact fun j _ => hib j
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
⊢ ∀ (n : ℕ), stoppedValue f (leastGE f (↑i) n) ω = f n ω
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ stoppedValue f (leastGE f (↑i) n) ω = f n ω
[PROOFSTEP]
rw [leastGE]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ stoppedValue f (hitting f (Set.Ici ↑i) 0 n) ω = f n ω
[PROOFSTEP]
unfold hitting
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ stoppedValue f
(fun x =>
if ∃ j, j ∈ Set.Icc 0 n ∧ f j x ∈ Set.Ici ↑i then sInf (Set.Icc 0 n ∩ {i_1 | f i_1 x ∈ Set.Ici ↑i}) else n)
ω =
f n ω
[PROOFSTEP]
rw [stoppedValue]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ f (if ∃ j, j ∈ Set.Icc 0 n ∧ f j ω ∈ Set.Ici ↑i then sInf (Set.Icc 0 n ∩ {i_1 | f i_1 ω ∈ Set.Ici ↑i}) else n) ω =
f n ω
[PROOFSTEP]
rw [if_neg]
[GOAL]
case hnc
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ ¬∃ j, j ∈ Set.Icc 0 n ∧ f j ω ∈ Set.Ici ↑i
[PROOFSTEP]
simp only [Set.mem_Icc, Set.mem_union, Set.mem_Ici]
[GOAL]
case hnc
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ ¬∃ j, (0 ≤ j ∧ j ≤ n) ∧ ↑i ≤ f j ω
[PROOFSTEP]
push_neg
[GOAL]
case hnc
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
n : ℕ
⊢ ∀ (j : ℕ), 0 ≤ j ∧ j ≤ n → f j ω < ↑i
[PROOFSTEP]
exact fun j _ => hib j
[GOAL]
case h.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
ω : Ω
hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c)
hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω))
i : ℕ
hi : Set.Nonempty.some hωb < ↑i
hib : ∀ (n : ℕ), f n ω < ↑i
heq : ∀ (n : ℕ), stoppedValue f (leastGE f (↑i) n) ω = f n ω
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
simp only [← heq, hω i]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hf0 : f 0 = 0
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
filter_upwards [hf.exists_tendsto_of_abs_bddAbove_aux hf0 hbdd] with ω hω using ⟨hω, fun ⟨c, hc⟩ => hc.bddAbove_range⟩
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
set g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
have hg : Submartingale g ℱ μ := hf.sub_martingale (martingale_const_fun _ _ (hf.adapted 0) (hf.integrable 0))
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
have hg0 : g 0 = 0 := by
ext ω
simp only [sub_self, Pi.zero_apply]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
⊢ g 0 = 0
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
ω : Ω
⊢ g 0 ω = OfNat.ofNat 0 ω
[PROOFSTEP]
simp only [sub_self, Pi.zero_apply]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
have hgbdd : ∀ᵐ ω ∂μ, ∀ i : ℕ, |g (i + 1) ω - g i ω| ≤ ↑R := by simpa only [sub_sub_sub_cancel_right]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
[PROOFSTEP]
simpa only [sub_sub_sub_cancel_right]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
filter_upwards [hg.bddAbove_iff_exists_tendsto_aux hg0 hgbdd] with ω hω
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
⊢ BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
convert hω using 1
[GOAL]
case h.e'_1.a
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
⊢ BddAbove (Set.range fun n => f n ω) ↔ BddAbove (Set.range fun n => f n ω - f 0 ω)
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case h.e'_1.a.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
h : BddAbove (Set.range fun n => f n ω)
⊢ BddAbove (Set.range fun n => f n ω - f 0 ω)
[PROOFSTEP]
obtain ⟨b, hb⟩ := h
[GOAL]
case h.e'_1.a.refine'_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
h : BddAbove (Set.range fun n => f n ω - f 0 ω)
⊢ BddAbove (Set.range fun n => f n ω)
[PROOFSTEP]
obtain ⟨b, hb⟩ := h
[GOAL]
case h.e'_1.a.refine'_1.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω)
⊢ BddAbove (Set.range fun n => f n ω - f 0 ω)
[PROOFSTEP]
refine' ⟨b + |f 0 ω|, fun y hy => _⟩
[GOAL]
case h.e'_1.a.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω - f 0 ω)
⊢ BddAbove (Set.range fun n => f n ω)
[PROOFSTEP]
refine' ⟨b + |f 0 ω|, fun y hy => _⟩
[GOAL]
case h.e'_1.a.refine'_1.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω)
y : ℝ
hy : y ∈ Set.range fun n => f n ω - f 0 ω
⊢ y ≤ b + |f 0 ω|
[PROOFSTEP]
obtain ⟨n, rfl⟩ := hy
[GOAL]
case h.e'_1.a.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω - f 0 ω)
y : ℝ
hy : y ∈ Set.range fun n => f n ω
⊢ y ≤ b + |f 0 ω|
[PROOFSTEP]
obtain ⟨n, rfl⟩ := hy
[GOAL]
case h.e'_1.a.refine'_1.intro.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω)
n : ℕ
⊢ (fun n => f n ω - f 0 ω) n ≤ b + |f 0 ω|
[PROOFSTEP]
simp_rw [sub_eq_add_neg]
[GOAL]
case h.e'_1.a.refine'_1.intro.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω)
n : ℕ
⊢ f n ω + -f 0 ω ≤ b + |f 0 ω|
[PROOFSTEP]
exact add_le_add (hb ⟨n, rfl⟩) (neg_le_abs_self _)
[GOAL]
case h.e'_1.a.refine'_2.intro.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
b : ℝ
hb : b ∈ upperBounds (Set.range fun n => f n ω - f 0 ω)
n : ℕ
⊢ (fun n => f n ω) n ≤ b + |f 0 ω|
[PROOFSTEP]
exact sub_le_iff_le_add.1 (le_trans (sub_le_sub_left (le_abs_self _) _) (hb ⟨n, rfl⟩))
[GOAL]
case h.e'_2.a
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
⊢ (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case h.e'_2.a.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
⊢ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
[PROOFSTEP]
obtain ⟨c, hc⟩ := h
[GOAL]
case h.e'_2.a.refine'_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
h : ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
obtain ⟨c, hc⟩ := h
[GOAL]
case h.e'_2.a.refine'_1.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => f n ω) atTop (𝓝 c)
⊢ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
[PROOFSTEP]
exact ⟨c - f 0 ω, hc.sub_const _⟩
[GOAL]
case h.e'_2.a.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
refine' ⟨c + f 0 ω, _⟩
[GOAL]
case h.e'_2.a.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
⊢ Tendsto (fun n => f n ω) atTop (𝓝 (c + f 0 ω))
[PROOFSTEP]
have := hc.add_const (f 0 ω)
[GOAL]
case h.e'_2.a.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω
hg : Submartingale g ℱ μ
hg0 : g 0 = 0
hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R
ω : Ω
hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c)
this : Tendsto (fun k => f k ω - f 0 ω + f 0 ω) atTop (𝓝 (c + f 0 ω))
⊢ Tendsto (fun n => f n ω) atTop (𝓝 (c + f 0 ω))
[PROOFSTEP]
simpa only [sub_add_cancel]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
have hbdd' : ∀ᵐ ω ∂μ, ∀ i, |(-f) (i + 1) ω - (-f) i ω| ≤ R :=
by
filter_upwards [hbdd] with ω hω i
erw [← abs_neg, neg_sub, sub_neg_eq_add, neg_add_eq_sub]
exact hω i
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
[PROOFSTEP]
filter_upwards [hbdd] with ω hω i
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
[PROOFSTEP]
erw [← abs_neg, neg_sub, sub_neg_eq_add, neg_add_eq_sub]
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
ω : Ω
hω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
i : ℕ
⊢ |f (i + 1) ω - f i ω| ≤ ↑R
[PROOFSTEP]
exact hω i
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
have hup := hf.submartingale.bddAbove_iff_exists_tendsto hbdd
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
have hdown := hf.neg.submartingale.bddAbove_iff_exists_tendsto hbdd'
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
filter_upwards [hup, hdown] with ω hω₁ hω₂
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
have : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) :=
by
constructor <;> rintro ⟨c, hc⟩
· exact ⟨-c, hc.neg⟩
· refine' ⟨-c, _⟩
convert hc.neg
simp only [neg_neg, Pi.neg_apply]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) → ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case mpr
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ (∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)) → ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case mp.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => f n ω) atTop (𝓝 c)
⊢ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
[PROOFSTEP]
exact ⟨-c, hc.neg⟩
[GOAL]
case mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
[PROOFSTEP]
refine' ⟨-c, _⟩
[GOAL]
case mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ Tendsto (fun n => f n ω) atTop (𝓝 (-c))
[PROOFSTEP]
convert hc.neg
[GOAL]
case h.e'_3.h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
c : ℝ
hc : Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
x✝ : ℕ
⊢ f x✝ ω = -(-f) x✝ ω
[PROOFSTEP]
simp only [neg_neg, Pi.neg_apply]
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
rw [hω₁, this, ← hω₂]
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ BddAbove (Set.range fun n => (-f) n ω) ↔ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ BddAbove (Set.range fun n => (-f) n ω) → BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case h.mpr
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
⊢ BddBelow (Set.range fun n => f n ω) → BddAbove (Set.range fun n => (-f) n ω)
[PROOFSTEP]
rintro ⟨c, hc⟩
[GOAL]
case h.mp.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
c : ℝ
hc : c ∈ upperBounds (Set.range fun n => (-f) n ω)
⊢ BddBelow (Set.range fun n => f n ω)
[PROOFSTEP]
refine' ⟨-c, fun ω hω => _⟩
[GOAL]
case h.mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω : Ω
hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
c : ℝ
hc : c ∈ lowerBounds (Set.range fun n => f n ω)
⊢ BddAbove (Set.range fun n => (-f) n ω)
[PROOFSTEP]
refine' ⟨-c, fun ω hω => _⟩
[GOAL]
case h.mp.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : c ∈ upperBounds (Set.range fun n => (-f) n ω✝)
ω : ℝ
hω : ω ∈ Set.range fun n => f n ω✝
⊢ -c ≤ ω
[PROOFSTEP]
rw [mem_upperBounds] at hc
[GOAL]
case h.mp.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : ∀ (x : ℝ), (x ∈ Set.range fun n => (-f) n ω✝) → x ≤ c
ω : ℝ
hω : ω ∈ Set.range fun n => f n ω✝
⊢ -c ≤ ω
[PROOFSTEP]
refine' neg_le.2 (hc _ _)
[GOAL]
case h.mp.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : ∀ (x : ℝ), (x ∈ Set.range fun n => (-f) n ω✝) → x ≤ c
ω : ℝ
hω : ω ∈ Set.range fun n => f n ω✝
⊢ -ω ∈ Set.range fun n => (-f) n ω✝
[PROOFSTEP]
simpa only [Pi.neg_apply, Set.mem_range, neg_inj]
[GOAL]
case h.mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : c ∈ lowerBounds (Set.range fun n => f n ω✝)
ω : ℝ
hω : ω ∈ Set.range fun n => (-f) n ω✝
⊢ ω ≤ -c
[PROOFSTEP]
rw [mem_lowerBounds] at hc
[GOAL]
case h.mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : ∀ (x : ℝ), (x ∈ Set.range fun n => f n ω✝) → c ≤ x
ω : ℝ
hω : ω ∈ Set.range fun n => (-f) n ω✝
⊢ ω ≤ -c
[PROOFSTEP]
simp_rw [Set.mem_range, Pi.neg_apply, neg_eq_iff_eq_neg] at hω
[GOAL]
case h.mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : ∀ (x : ℝ), (x ∈ Set.range fun n => f n ω✝) → c ≤ x
ω : ℝ
hω : ∃ y, f y ω✝ = -ω
⊢ ω ≤ -c
[PROOFSTEP]
refine' le_neg.1 (hc _ _)
[GOAL]
case h.mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝¹ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R
hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)
hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)
ω✝ : Ω
hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)
hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c)
c : ℝ
hc : ∀ (x : ℝ), (x ∈ Set.range fun n => f n ω✝) → c ≤ x
ω : ℝ
hω : ∃ y, f y ω✝ = -ω
⊢ -ω ∈ Set.range fun n => f n ω✝
[PROOFSTEP]
simpa only [Set.mem_range]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => f n ω) atTop atTop
[PROOFSTEP]
filter_upwards [hf.bddAbove_range_iff_bddBelow_range hbdd] with ω hω htop using
unbounded_of_tendsto_atTop htop (hω.2 <| bddBelow_range_of_tendsto_atTop_atTop htop)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hf : Martingale f ℱ μ
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => f n ω) atTop atBot
[PROOFSTEP]
filter_upwards [hf.bddAbove_range_iff_bddBelow_range hbdd] with ω hω htop using
unbounded_of_tendsto_atBot htop (hω.1 <| bddAbove_range_of_tendsto_atTop_atBot htop)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s : ℕ → Set Ω
⊢ process s 0 = 0
[PROOFSTEP]
rw [process, Finset.range_zero, Finset.sum_empty]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ✝ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s✝ : ℕ → Set Ω
ℱ : Filtration ℕ m0
μ : Measure Ω
s : ℕ → Set Ω
n : ℕ
⊢ martingalePart (process s) ℱ μ n =
∑ k in Finset.range n, (Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k])
[PROOFSTEP]
simp only [martingalePart_eq_sum, process_zero, zero_add]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ✝ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s✝ : ℕ → Set Ω
ℱ : Filtration ℕ m0
μ : Measure Ω
s : ℕ → Set Ω
n : ℕ
⊢ ∑ i in Finset.range n, (process s (i + 1) - process s i - μ[process s (i + 1) - process s i|↑ℱ i]) =
∑ k in Finset.range n, (Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k])
[PROOFSTEP]
refine' Finset.sum_congr rfl fun k _ => _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ✝ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s✝ : ℕ → Set Ω
ℱ : Filtration ℕ m0
μ : Measure Ω
s : ℕ → Set Ω
n k : ℕ
x✝ : k ∈ Finset.range n
⊢ process s (k + 1) - process s k - μ[process s (k + 1) - process s k|↑ℱ k] =
Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k]
[PROOFSTEP]
simp only [process, Finset.sum_range_succ_sub_sum]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ✝ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s✝ : ℕ → Set Ω
ℱ : Filtration ℕ m0
μ : Measure Ω
s : ℕ → Set Ω
n : ℕ
⊢ predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, μ[Set.indicator (s (k + 1)) 1|↑ℱ k]
[PROOFSTEP]
have := martingalePart_process_ae_eq ℱ μ s n
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ✝ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s✝ : ℕ → Set Ω
ℱ : Filtration ℕ m0
μ : Measure Ω
s : ℕ → Set Ω
n : ℕ
this :
martingalePart (process s) ℱ μ n =
∑ k in Finset.range n, (Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k])
⊢ predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, μ[Set.indicator (s (k + 1)) 1|↑ℱ k]
[PROOFSTEP]
simp_rw [martingalePart, process, Finset.sum_sub_distrib] at this
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
ℱ✝ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
s✝ : ℕ → Set Ω
ℱ : Filtration ℕ m0
μ : Measure Ω
s : ℕ → Set Ω
n : ℕ
this :
∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 - predictablePart (process s) ℱ μ n =
∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 - ∑ x in Finset.range n, μ[Set.indicator (s (x + 1)) 1|↑ℱ x]
⊢ predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, μ[Set.indicator (s (k + 1)) 1|↑ℱ k]
[PROOFSTEP]
exact sub_right_injective this
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
s✝ s : ℕ → Set Ω
ω : Ω
n : ℕ
⊢ |process s (n + 1) ω - process s n ω| ≤ ↑1
[PROOFSTEP]
norm_cast
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
s✝ s : ℕ → Set Ω
ω : Ω
n : ℕ
⊢ |process s (n + 1) ω - process s n ω| ≤ 1
[PROOFSTEP]
rw [process, process, Finset.sum_apply, Finset.sum_apply, Finset.sum_range_succ_sub_sum, ← Real.norm_eq_abs,
norm_indicator_eq_indicator_norm]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
s✝ s : ℕ → Set Ω
ω : Ω
n : ℕ
⊢ Set.indicator (s (n + 1)) (fun a => ‖OfNat.ofNat 1 a‖) ω ≤ 1
[PROOFSTEP]
refine' Set.indicator_le' (fun _ _ => _) (fun _ _ => zero_le_one) _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
s✝ s : ℕ → Set Ω
ω : Ω
n : ℕ
x✝¹ : Ω
x✝ : x✝¹ ∈ s (n + 1)
⊢ ‖OfNat.ofNat 1 x✝¹‖ ≤ 1
[PROOFSTEP]
rw [Pi.one_apply, norm_one]
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
have h₁ := (martingale_martingalePart hf hint).ae_not_tendsto_atTop_atTop (martingalePart_bdd_difference ℱ hbdd)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
have h₂ := (martingale_martingalePart hf hint).ae_not_tendsto_atTop_atBot (martingalePart_bdd_difference ℱ hbdd)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
have h₃ : ∀ᵐ ω ∂μ, ∀ n, 0 ≤ (μ[f (n + 1) - f n|ℱ n]) ω :=
by
refine' ae_all_iff.2 fun n => condexp_nonneg _
filter_upwards [ae_all_iff.1 hfmono n] with ω hω using sub_nonneg.2 hω
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
[PROOFSTEP]
refine' ae_all_iff.2 fun n => condexp_nonneg _
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
n : ℕ
⊢ 0 ≤ᵐ[μ] f (n + 1) - f n
[PROOFSTEP]
filter_upwards [ae_all_iff.1 hfmono n] with ω hω using sub_nonneg.2 hω
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
filter_upwards [h₁, h₂, h₃, hfmono] with ω hω₁ hω₂ hω₃ hω₄
[GOAL]
case h
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
⊢ Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
⊢ Tendsto (fun n => f n ω) atTop atTop → Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
intro ht
[GOAL]
case h.mpr
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
⊢ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop → Tendsto (fun n => f n ω) atTop atTop
[PROOFSTEP]
intro ht
[GOAL]
case h.mp
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => f n ω) atTop atTop
⊢ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
[PROOFSTEP]
refine' tendsto_atTop_atTop_of_monotone' _ _
[GOAL]
case h.mp.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => f n ω) atTop atTop
⊢ Monotone fun n => predictablePart f ℱ μ n ω
[PROOFSTEP]
intro n m hnm
[GOAL]
case h.mp.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => f n ω) atTop atTop
n m : ℕ
hnm : n ≤ m
⊢ (fun n => predictablePart f ℱ μ n ω) n ≤ (fun n => predictablePart f ℱ μ n ω) m
[PROOFSTEP]
simp only [predictablePart, Finset.sum_apply]
[GOAL]
case h.mp.refine'_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => f n ω) atTop atTop
n m : ℕ
hnm : n ≤ m
⊢ ∑ c in Finset.range n, (μ[f (c + 1) - f c|↑ℱ c]) ω ≤ ∑ c in Finset.range m, (μ[f (c + 1) - f c|↑ℱ c]) ω
[PROOFSTEP]
refine' Finset.sum_mono_set_of_nonneg hω₃ (Finset.range_mono hnm)
[GOAL]
case h.mp.refine'_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => f n ω) atTop atTop
⊢ ¬BddAbove (Set.range fun n => predictablePart f ℱ μ n ω)
[PROOFSTEP]
rintro ⟨b, hbdd⟩
[GOAL]
case h.mp.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => f n ω) atTop atTop
b : ℝ
hbdd : b ∈ upperBounds (Set.range fun n => predictablePart f ℱ μ n ω)
⊢ False
[PROOFSTEP]
rw [← tendsto_neg_atBot_iff] at ht
[GOAL]
case h.mp.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun x => -f x ω) atTop atBot
b : ℝ
hbdd : b ∈ upperBounds (Set.range fun n => predictablePart f ℱ μ n ω)
⊢ False
[PROOFSTEP]
simp only [martingalePart, sub_eq_add_neg] at hω₁
[GOAL]
case h.mp.refine'_2.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun x => -f x ω) atTop atBot
b : ℝ
hbdd : b ∈ upperBounds (Set.range fun n => predictablePart f ℱ μ n ω)
hω₁ : ¬Tendsto (fun n => (f n + -predictablePart f ℱ μ n) ω) atTop atTop
⊢ False
[PROOFSTEP]
exact hω₁ (tendsto_atTop_add_right_of_le _ (-b) (tendsto_neg_atBot_iff.1 ht) fun n => neg_le_neg (hbdd ⟨n, rfl⟩))
[GOAL]
case h.mpr
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
⊢ Tendsto (fun n => f n ω) atTop atTop
[PROOFSTEP]
refine' tendsto_atTop_atTop_of_monotone' (monotone_nat_of_le_succ hω₄) _
[GOAL]
case h.mpr
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
⊢ ¬BddAbove (Set.range fun n => f n ω)
[PROOFSTEP]
rintro ⟨b, hbdd⟩
[GOAL]
case h.mpr.intro
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
hf : Adapted ℱ f
hint : ∀ (n : ℕ), Integrable (f n)
hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R
h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
ω : Ω
hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop
hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot
hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω
hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω
ht : Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop
b : ℝ
hbdd : b ∈ upperBounds (Set.range fun n => f n ω)
⊢ False
[PROOFSTEP]
exact hω₂ ((tendsto_atBot_add_left_of_ge _ b fun n => hbdd ⟨n, rfl⟩) <| tendsto_neg_atBot_iff.2 ht)
[GOAL]
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
⊢ ∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop
[PROOFSTEP]
have :=
tendsto_sum_indicator_atTop_iff (eventually_of_forall fun ω n => ?_) (adapted_process hs) (integrable_process μ hs)
(eventually_of_forall <| process_difference_le s)
[GOAL]
case refine_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
this :
∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => process (fun n => s n) n ω) atTop atTop ↔
Tendsto (fun n => predictablePart (process fun n => s n) ℱ μ n ω) atTop atTop
⊢ ∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop
case refine_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
ω : Ω
n : ℕ
⊢ process (fun n => s n) n ω ≤ process (fun n => s n) (n + 1) ω
[PROOFSTEP]
swap
[GOAL]
case refine_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
ω : Ω
n : ℕ
⊢ process (fun n => s n) n ω ≤ process (fun n => s n) (n + 1) ω
[PROOFSTEP]
rw [process, process, ← sub_nonneg, Finset.sum_apply, Finset.sum_apply, Finset.sum_range_succ_sub_sum]
[GOAL]
case refine_1
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω✝ : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
ω : Ω
n : ℕ
⊢ 0 ≤ Set.indicator (s (n + 1)) 1 ω
[PROOFSTEP]
exact Set.indicator_nonneg (fun _ _ => zero_le_one) _
[GOAL]
case refine_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
this :
∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => process (fun n => s n) n ω) atTop atTop ↔
Tendsto (fun n => predictablePart (process fun n => s n) ℱ μ n ω) atTop atTop
⊢ ∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop
[PROOFSTEP]
simp_rw [process, predictablePart_process_ae_eq] at this
[GOAL]
case refine_2
Ω : Type u_1
m0 : MeasurableSpace Ω
μ : Measure Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
r : ℝ
R : ℝ≥0
inst✝ : IsFiniteMeasure μ
s : ℕ → Set Ω
hs : ∀ (n : ℕ), MeasurableSet (s n)
this :
∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => Finset.sum (Finset.range n) (fun k => Set.indicator (s (k + 1)) 1) ω) atTop atTop ↔
Tendsto (fun n => Finset.sum (Finset.range n) (fun k => μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop
⊢ ∀ᵐ (ω : Ω) ∂μ,
Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔
Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop
[PROOFSTEP]
simpa using this
| {"mathlib_filename": "Mathlib.Probability.Martingale.BorelCantelli", "llama_tokens": 55307} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
a : α
⊢ compProdFun κ η a ∅ = 0
[PROOFSTEP]
simp only [compProdFun, Set.mem_empty_iff_false, Set.setOf_false, measure_empty, MeasureTheory.lintegral_const,
zero_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
⊢ compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)
[PROOFSTEP]
have h_Union : (fun b => η (a, b) {c : γ | (b, c) ∈ ⋃ i, f i}) = fun b => η (a, b) (⋃ i, {c : γ | (b, c) ∈ f i}) :=
by
ext1 b
congr with c
simp only [Set.mem_iUnion, Set.iSup_eq_iUnion, Set.mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
⊢ (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
[PROOFSTEP]
ext1 b
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
b : β
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i} = ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
[PROOFSTEP]
congr with c
[GOAL]
case h.e_a.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
b : β
c : γ
⊢ c ∈ {c | (b, c) ∈ ⋃ (i : ℕ), f i} ↔ c ∈ ⋃ (i : ℕ), {c | (b, c) ∈ f i}
[PROOFSTEP]
simp only [Set.mem_iUnion, Set.iSup_eq_iUnion, Set.mem_setOf_eq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
⊢ compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)
[PROOFSTEP]
rw [compProdFun, h_Union]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ∂↑κ a = ∑' (i : ℕ), compProdFun κ η a (f i)
[PROOFSTEP]
have h_tsum : (fun b => η (a, b) (⋃ i, {c : γ | (b, c) ∈ f i})) = fun b => ∑' i, η (a, b) {c : γ | (b, c) ∈ f i} :=
by
ext1 b
rw [measure_iUnion]
· intro i j hij s hsi hsj c hcs
have hbci : {(b, c)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hcs
have hbcj : {(b, c)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hcs
simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using
hf_disj hij hbci hbcj
·
-- Porting note: behavior of `@` changed relative to lean 3, was
-- exact fun i => (@measurable_prod_mk_left β γ _ _ b) _ (hf_meas i)exact fun i =>
(@measurable_prod_mk_left β γ _ _ b) (hf_meas i)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
⊢ (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
[PROOFSTEP]
ext1 b
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
⊢ ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) = ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
[PROOFSTEP]
rw [measure_iUnion]
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
⊢ Pairwise (Disjoint on fun i => {c | (b, c) ∈ f i})
[PROOFSTEP]
intro i j hij s hsi hsj c hcs
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
⊢ c ∈ ⊥
[PROOFSTEP]
have hbci : {(b, c)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hcs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
⊢ {(b, c)} ⊆ f i
[PROOFSTEP]
rw [Set.singleton_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
⊢ (b, c) ∈ f i
[PROOFSTEP]
exact hsi hcs
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
hbci : {(b, c)} ⊆ f i
⊢ c ∈ ⊥
[PROOFSTEP]
have hbcj : {(b, c)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hcs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
hbci : {(b, c)} ⊆ f i
⊢ {(b, c)} ⊆ f j
[PROOFSTEP]
rw [Set.singleton_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
hbci : {(b, c)} ⊆ f i
⊢ (b, c) ∈ f j
[PROOFSTEP]
exact hsj hcs
[GOAL]
case h.hn
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
i j : ℕ
hij : i ≠ j
s : Set γ
hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i
hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j
c : γ
hcs : c ∈ s
hbci : {(b, c)} ⊆ f i
hbcj : {(b, c)} ⊆ f j
⊢ c ∈ ⊥
[PROOFSTEP]
simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using
hf_disj hij hbci hbcj
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
b : β
⊢ ∀ (i : ℕ), MeasurableSet {c | (b, c) ∈ f i}
[PROOFSTEP]
exact fun i => (@measurable_prod_mk_left β γ _ _ b) (hf_meas i)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
h_tsum :
(fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ∂↑κ a = ∑' (i : ℕ), compProdFun κ η a (f i)
[PROOFSTEP]
rw [h_tsum, lintegral_tsum]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
h_tsum :
(fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
⊢ ∑' (i : ℕ), ∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ f i} ∂↑κ a = ∑' (i : ℕ), compProdFun κ η a (f i)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
h_tsum :
(fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
⊢ ∀ (i : ℕ), AEMeasurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
[PROOFSTEP]
intro i
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
h_tsum :
(fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
i : ℕ
⊢ AEMeasurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
[PROOFSTEP]
have hm : MeasurableSet {p : (α × β) × γ | (p.1.2, p.2) ∈ f i} := measurable_fst.snd.prod_mk measurable_snd (hf_meas i)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : ℕ → Set (β × γ)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_disj : Pairwise (Disjoint on f)
h_Union :
(fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})
h_tsum :
(fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
i : ℕ
hm : MeasurableSet {p | (p.fst.snd, p.snd) ∈ f i}
⊢ AEMeasurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ f i}
[PROOFSTEP]
exact ((measurable_kernel_prod_mk_left hm).comp measurable_prod_mk_left).aemeasurable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ compProdFun κ η a s = ∑' (n : ℕ), compProdFun κ (seq η n) a s
[PROOFSTEP]
simp_rw [compProdFun, (measure_sum_seq η _).symm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a =
∑' (n : ℕ), ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
have :
∫⁻ b, Measure.sum (fun n => seq η n (a, b)) {c : γ | (b, c) ∈ s} ∂κ a =
∫⁻ b, ∑' n, seq η n (a, b) {c : γ | (b, c) ∈ s} ∂κ a :=
by
congr
ext1 b
rw [Measure.sum_apply]
exact measurable_prod_mk_left hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a =
∫⁻ (b : β), ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
congr
[GOAL]
case e_f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ (fun b => ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun b =>
∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}
[PROOFSTEP]
ext1 b
[GOAL]
case e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
b : β
⊢ ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} = ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}
[PROOFSTEP]
rw [Measure.sum_apply]
[GOAL]
case e_f.h.hs
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
b : β
⊢ MeasurableSet {c | (b, c) ∈ s}
[PROOFSTEP]
exact measurable_prod_mk_left hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
this :
∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a =
∫⁻ (b : β), ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
⊢ ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a =
∑' (n : ℕ), ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
rw [this, lintegral_tsum]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
this :
∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a =
∫⁻ (b : β), ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
⊢ ∀ (i : ℕ), AEMeasurable fun b => ↑↑(↑(seq η i) (a, b)) {c | (b, c) ∈ s}
[PROOFSTEP]
exact fun n =>
((measurable_kernel_prod_mk_left (κ := (seq η n)) ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp
measurable_prod_mk_left).aemeasurable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel κ
a : α
s : Set (β × γ)
⊢ compProdFun κ η a s = ∑' (n : ℕ), compProdFun (seq κ n) η a s
[PROOFSTEP]
simp_rw [compProdFun, (measure_sum_seq κ _).symm, lintegral_sum_measure]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ compProdFun κ η a s = ∑' (n : ℕ) (m : ℕ), compProdFun (seq κ n) (seq η m) a s
[PROOFSTEP]
simp_rw [compProdFun_tsum_left κ η a s, compProdFun_tsum_right _ η a hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
⊢ Measurable fun a => compProdFun κ η a s
[PROOFSTEP]
simp only [compProdFun]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
have h_meas : Measurable (Function.uncurry fun a b => η (a, b) {c : γ | (b, c) ∈ s}) :=
by
have : (Function.uncurry fun a b => η (a, b) {c : γ | (b, c) ∈ s}) = fun p => η p {c : γ | (p.2, c) ∈ s} :=
by
ext1 p
have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm
rw [hp_eq_mk, Function.uncurry_apply_pair]
rw [this]
exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
⊢ Measurable (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s})
[PROOFSTEP]
have : (Function.uncurry fun a b => η (a, b) {c : γ | (b, c) ∈ s}) = fun p => η p {c : γ | (p.2, c) ∈ s} :=
by
ext1 p
have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm
rw [hp_eq_mk, Function.uncurry_apply_pair]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
⊢ (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
ext1 p
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
p : α × β
⊢ Function.uncurry (fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑η p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
p : α × β
hp_eq_mk : p = (p.fst, p.snd)
⊢ Function.uncurry (fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑η p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
rw [hp_eq_mk, Function.uncurry_apply_pair]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
this : (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s}
⊢ Measurable (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s})
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
this : (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s}
⊢ Measurable fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
hs : MeasurableSet s
h_meas : Measurable (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s})
⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
exact h_meas.lintegral_kernel_prod_right
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
⊢ Measurable fun a => compProdFun κ η a s
[PROOFSTEP]
simp_rw [compProdFun_tsum_right κ η _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
⊢ Measurable fun a => ∑' (n : ℕ), compProdFun κ (seq η n) a s
[PROOFSTEP]
refine' Measurable.ennreal_tsum fun n => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
⊢ Measurable fun a => compProdFun κ (seq η n) a s
[PROOFSTEP]
simp only [compProdFun]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
have h_meas : Measurable (Function.uncurry fun a b => seq η n (a, b) {c : γ | (b, c) ∈ s}) :=
by
have :
(Function.uncurry fun a b => seq η n (a, b) {c : γ | (b, c) ∈ s}) = fun p => seq η n p {c : γ | (p.2, c) ∈ s} :=
by
ext1 p
have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm
rw [hp_eq_mk, Function.uncurry_apply_pair]
rw [this]
exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
⊢ Measurable (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s})
[PROOFSTEP]
have : (Function.uncurry fun a b => seq η n (a, b) {c : γ | (b, c) ∈ s}) = fun p => seq η n p {c : γ | (p.2, c) ∈ s} :=
by
ext1 p
have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm
rw [hp_eq_mk, Function.uncurry_apply_pair]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
⊢ (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
ext1 p
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
p : α × β
⊢ Function.uncurry (fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
p : α × β
hp_eq_mk : p = (p.fst, p.snd)
⊢ Function.uncurry (fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
rw [hp_eq_mk, Function.uncurry_apply_pair]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
this :
(Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s}
⊢ Measurable (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s})
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
this :
(Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s}
⊢ Measurable fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s}
[PROOFSTEP]
exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hs : MeasurableSet s
n : ℕ
h_meas : Measurable (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s})
⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
exact h_meas.lintegral_kernel_prod_right
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
⊢ (fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) ∈
kernel α (β × γ)
[PROOFSTEP]
have : IsSFiniteKernel κ := h.1
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this : IsSFiniteKernel κ
⊢ (fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) ∈
kernel α (β × γ)
[PROOFSTEP]
have : IsSFiniteKernel η := h.2
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this✝ : IsSFiniteKernel κ
this : IsSFiniteKernel η
⊢ (fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) ∈
kernel α (β × γ)
[PROOFSTEP]
refine' Measure.measurable_of_measurable_coe _ fun s hs => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this✝ : IsSFiniteKernel κ
this : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
⊢ Measurable fun b =>
↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η b s) (_ : compProdFun κ η b ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η b (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η b (f i)))
s
[PROOFSTEP]
have :
(fun a =>
Measure.ofMeasurable (fun s _ => compProdFun κ η a s) (compProdFun_empty κ η a) (compProdFun_iUnion κ η a) s) =
fun a => compProdFun κ η a s :=
by ext1 a; rwa [Measure.ofMeasurable_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this✝ : IsSFiniteKernel κ
this : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
⊢ (fun a =>
↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)))
s) =
fun a => compProdFun κ η a s
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this✝ : IsSFiniteKernel κ
this : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
a : α
⊢ ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)))
s =
compProdFun κ η a s
[PROOFSTEP]
rwa [Measure.ofMeasurable_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this✝¹ : IsSFiniteKernel κ
this✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
this :
(fun a =>
↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)))
s) =
fun a => compProdFun κ η a s
⊢ Measurable fun b =>
↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η b s) (_ : compProdFun κ η b ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η b (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η b (f i)))
s
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ ∧ IsSFiniteKernel η
this✝¹ : IsSFiniteKernel κ
this✝ : IsSFiniteKernel η
s : Set (β × γ)
hs : MeasurableSet s
this :
(fun a =>
↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)))
s) =
fun a => compProdFun κ η a s
⊢ Measurable fun a => compProdFun κ η a s
[PROOFSTEP]
exact measurable_compProdFun κ η hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ↑↑(↑(κ ⊗ₖ η) a) s = compProdFun κ η a s
[PROOFSTEP]
rw [compProd, dif_pos]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ↑↑(↑{
val := fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)),
property :=
(_ :
Measurable fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) }
a)
s =
compProdFun κ η a s
case hc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ IsSFiniteKernel κ ∧ IsSFiniteKernel η
[PROOFSTEP]
swap
[GOAL]
case hc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ IsSFiniteKernel κ ∧ IsSFiniteKernel η
[PROOFSTEP]
constructor
[GOAL]
case hc.left
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ IsSFiniteKernel κ
[PROOFSTEP]
infer_instance
[GOAL]
case hc.right
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ IsSFiniteKernel η
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ↑↑(↑{
val := fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)),
property :=
(_ :
Measurable fun a =>
Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) →
compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) }
a)
s =
compProdFun κ η a s
[PROOFSTEP]
change
Measure.ofMeasurable (fun s _ => compProdFun κ η a s) (compProdFun_empty κ η a) (compProdFun_iUnion κ η a) s =
∫⁻ b, η (a, b) {c | (b, c) ∈ s} ∂κ a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0)
(_ :
∀ (f : ℕ → Set (β × γ)),
(∀ (i : ℕ), MeasurableSet (f i)) →
Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)))
s =
∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
rw [Measure.ofMeasurable_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ compProdFun κ η a s = ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel κ
⊢ κ ⊗ₖ η = 0
[PROOFSTEP]
rw [compProd, dif_neg]
[GOAL]
case hnc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel κ
⊢ ¬(IsSFiniteKernel κ ∧ IsSFiniteKernel η)
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel η
⊢ κ ⊗ₖ η = 0
[PROOFSTEP]
rw [compProd, dif_neg]
[GOAL]
case hnc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel η
⊢ ¬(IsSFiniteKernel κ ∧ IsSFiniteKernel η)
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
let t := toMeasurable ((κ ⊗ₖ η) a) s
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
have : ∀ b : β, η (a, b) (Prod.mk b ⁻¹' s) ≤ η (a, b) (Prod.mk b ⁻¹' t) := fun b =>
measure_mono (Set.preimage_mono (subset_toMeasurable _ _))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
have ht : MeasurableSet t := measurableSet_toMeasurable _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
have h2t : (κ ⊗ₖ η) a t ≠ ∞ := by rwa [measure_toMeasurable]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
⊢ ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤
[PROOFSTEP]
rwa [measure_toMeasurable]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
have ht_lt_top : ∀ᵐ b ∂κ a, η (a, b) (Prod.mk b ⁻¹' t) < ∞ :=
by
rw [kernel.compProd_apply _ _ _ ht] at h2t
exact ae_lt_top (kernel.measurable_kernel_prod_mk_left' ht a) h2t
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤
[PROOFSTEP]
rw [kernel.compProd_apply _ _ _ ht] at h2t
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
h2t : ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ t} ∂↑κ a ≠ ⊤
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤
[PROOFSTEP]
exact ae_lt_top (kernel.measurable_kernel_prod_mk_left' ht a) h2t
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤
ht_lt_top : ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤
⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
filter_upwards [ht_lt_top] with b hb
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤
t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s
this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)
ht : MeasurableSet t
h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤
ht_lt_top : ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤
b : β
hb : ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' toMeasurable (↑(κ ⊗ₖ η) a) s) < ⊤
⊢ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤
[PROOFSTEP]
exact (this b).trans_lt hb
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
hs : MeasurableSet s
⊢ ↑↑(↑(κ ⊗ₖ η) a) s = 0 ↔ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0
[PROOFSTEP]
rw [kernel.compProd_apply _ _ _ hs, lintegral_eq_zero_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
hs : MeasurableSet s
⊢ (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) =ᵐ[↑κ a] 0 ↔ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ a : α
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}
[PROOFSTEP]
exact kernel.measurable_kernel_prod_mk_left' hs a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
h : ↑↑(↑(κ ⊗ₖ η) a) s = 0
⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0
[PROOFSTEP]
obtain ⟨t, hst, mt, ht⟩ := exists_measurable_superset_of_null h
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
h : ↑↑(↑(κ ⊗ₖ η) a) s = 0
t : Set (β × γ)
hst : s ⊆ t
mt : MeasurableSet t
ht : ↑↑(↑(κ ⊗ₖ η) a) t = 0
⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0
[PROOFSTEP]
simp_rw [compProd_null a mt] at ht
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
h : ↑↑(↑(κ ⊗ₖ η) a) s = 0
t : Set (β × γ)
hst : s ⊆ t
mt : MeasurableSet t
ht : (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)) =ᵐ[↑κ a] 0
⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0
[PROOFSTEP]
rw [Filter.eventuallyLE_antisymm_iff]
[GOAL]
case intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
h : ↑↑(↑(κ ⊗ₖ η) a) s = 0
t : Set (β × γ)
hst : s ⊆ t
mt : MeasurableSet t
ht : (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)) =ᵐ[↑κ a] 0
⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) ≤ᵐ[↑κ a] 0 ∧ 0 ≤ᵐ[↑κ a] fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)
[PROOFSTEP]
exact
⟨Filter.EventuallyLE.trans_eq (Filter.eventually_of_forall fun x => (measure_mono (Set.preimage_mono hst) : _)) ht,
Filter.eventually_of_forall fun x => zero_le _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
⊢ kernel.restrict κ hs ⊗ₖ kernel.restrict η ht = kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (s ×ˢ t))
[PROOFSTEP]
ext a u hu
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
⊢ ↑↑(↑(kernel.restrict κ hs ⊗ₖ kernel.restrict η ht) a) u =
↑↑(↑(kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (s ×ˢ t))) a) u
[PROOFSTEP]
rw [compProd_apply _ _ _ hu, restrict_apply' _ _ _ hu, compProd_apply _ _ _ (hu.inter (hs.prod ht))]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
⊢ ∫⁻ (b : β), ↑↑(↑(kernel.restrict η ht) (a, b)) {c | (b, c) ∈ u} ∂↑(kernel.restrict κ hs) a =
∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∩ s ×ˢ t} ∂↑κ a
[PROOFSTEP]
simp only [kernel.restrict_apply, Measure.restrict_apply' ht, Set.mem_inter_iff, Set.prod_mk_mem_set_prod_eq]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
⊢ ∫⁻ (b : β) in s, ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) ∂↑κ a =
∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} ∂↑κ a
[PROOFSTEP]
have :
∀ b, η (a, b) {c : γ | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = s.indicator (fun b => η (a, b) ({c : γ | (b, c) ∈ u} ∩ t)) b :=
by
intro b
classical
rw [Set.indicator_apply]
split_ifs with h
· simp only [h, true_and_iff]
rfl
· simp only [h, false_and_iff, and_false_iff, Set.setOf_false, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
⊢ ∀ (b : β),
↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b
[PROOFSTEP]
intro b
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
b : β
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b
[PROOFSTEP]
classical
rw [Set.indicator_apply]
split_ifs with h
· simp only [h, true_and_iff]
rfl
· simp only [h, false_and_iff, and_false_iff, Set.setOf_false, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
b : β
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b
[PROOFSTEP]
rw [Set.indicator_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
b : β
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = if b ∈ s then ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
b : β
h : b ∈ s
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)
[PROOFSTEP]
simp only [h, true_and_iff]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
b : β
h : b ∈ s
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ c ∈ t} = ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)
[PROOFSTEP]
rfl
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
b : β
h : ¬b ∈ s
⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = 0
[PROOFSTEP]
simp only [h, false_and_iff, and_false_iff, Set.setOf_false, measure_empty]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
this :
∀ (b : β),
↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b
⊢ ∫⁻ (b : β) in s, ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) ∂↑κ a =
∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} ∂↑κ a
[PROOFSTEP]
simp_rw [this]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
a : α
u : Set (β × γ)
hu : MeasurableSet u
this :
∀ (b : β),
↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b
⊢ ∫⁻ (b : β) in s, ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) ∂↑κ a =
∫⁻ (b : β), Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b ∂↑κ a
[PROOFSTEP]
rw [lintegral_indicator _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
hs : MeasurableSet s
⊢ kernel.restrict κ hs ⊗ₖ η = kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (s ×ˢ Set.univ))
[PROOFSTEP]
rw [← compProd_restrict]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
hs : MeasurableSet s
⊢ kernel.restrict κ hs ⊗ₖ η = kernel.restrict κ ?hs ⊗ₖ kernel.restrict η ?ht
case hs
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
hs : MeasurableSet s
⊢ MeasurableSet s
case ht
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
hs : MeasurableSet s
⊢ MeasurableSet Set.univ
[PROOFSTEP]
congr
[GOAL]
case e_η
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
hs : MeasurableSet s
⊢ η = kernel.restrict η ?ht
case ht
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set β
hs : MeasurableSet s
⊢ MeasurableSet Set.univ
[PROOFSTEP]
exact kernel.restrict_univ.symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
t : Set γ
ht : MeasurableSet t
⊢ κ ⊗ₖ kernel.restrict η ht = kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (Set.univ ×ˢ t))
[PROOFSTEP]
rw [← compProd_restrict]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
t : Set γ
ht : MeasurableSet t
⊢ κ ⊗ₖ kernel.restrict η ht = kernel.restrict κ ?hs ⊗ₖ kernel.restrict η ?ht
case hs
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
t : Set γ
ht : MeasurableSet t
⊢ MeasurableSet Set.univ
case ht
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
t : Set γ
ht : MeasurableSet t
⊢ MeasurableSet t
[PROOFSTEP]
congr
[GOAL]
case e_κ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
t : Set γ
ht : MeasurableSet t
⊢ κ = kernel.restrict κ ?hs
case hs
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
t : Set γ
ht : MeasurableSet t
⊢ MeasurableSet Set.univ
[PROOFSTEP]
exact kernel.restrict_univ.symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
let F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
have h : ∀ a, ⨆ n, F n a = Function.uncurry f a := SimpleFunc.iSup_eapprox_apply (Function.uncurry f) hf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β × γ), ⨆ (n : ℕ), ↑(F n) a = Function.uncurry f a
⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
simp only [Prod.forall, Function.uncurry_apply_pair] at h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
simp_rw [← h, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
⊢ ∫⁻ (bc : β × γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) bc ∂↑(κ ⊗ₖ η) a =
∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
have h_mono : Monotone F := fun i j hij b => SimpleFunc.monotone_eapprox (Function.uncurry f) hij _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
⊢ ∫⁻ (bc : β × γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) bc ∂↑(κ ⊗ₖ η) a =
∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
rw [lintegral_iSup (fun n => (F n).measurable) h_mono]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(F n) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
have : ∀ b, ∫⁻ c, ⨆ n, F n (b, c) ∂η (a, b) = ⨆ n, ∫⁻ c, F n (b, c) ∂η (a, b) :=
by
intro a
rw [lintegral_iSup]
· exact fun n => (F n).measurable.comp measurable_prod_mk_left
· exact fun i j hij b => h_mono hij _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
⊢ ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
a : β
⊢ ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (a, c) ∂↑η (a✝, a) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (a, c) ∂↑η (a✝, a)
[PROOFSTEP]
rw [lintegral_iSup]
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
a : β
⊢ ∀ (n : ℕ), Measurable fun c => ↑(F n) (a, c)
[PROOFSTEP]
exact fun n => (F n).measurable.comp measurable_prod_mk_left
[GOAL]
case h_mono
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a✝ : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
a : β
⊢ Monotone fun n c => ↑(F n) (a, c)
[PROOFSTEP]
exact fun i j hij b => h_mono hij _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(F n) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
simp_rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (b : β), ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
have h_some_meas_integral : ∀ f' : SimpleFunc (β × γ) ℝ≥0∞, Measurable fun b => ∫⁻ c, f' (b, c) ∂η (a, b) :=
by
intro f'
have : (fun b => ∫⁻ c, f' (b, c) ∂η (a, b)) = (fun ab => ∫⁻ c, f' (ab.2, c) ∂η ab) ∘ fun b => (a, b) := by ext1 ab;
rfl
rw [this]
refine' Measurable.comp _ measurable_prod_mk_left
exact
Measurable.lintegral_kernel_prod_right ((SimpleFunc.measurable _).comp (measurable_fst.snd.prod_mk measurable_snd))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
⊢ ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
[PROOFSTEP]
intro f'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
⊢ Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
[PROOFSTEP]
have : (fun b => ∫⁻ c, f' (b, c) ∂η (a, b)) = (fun ab => ∫⁻ c, f' (ab.2, c) ∂η ab) ∘ fun b => (a, b) := by ext1 ab; rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
⊢ (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)
[PROOFSTEP]
ext1 ab
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
ab : β
⊢ ∫⁻ (c : γ), ↑f' (ab, c) ∂↑η (a, ab) = ((fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)) ab
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)
⊢ Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)
⊢ Measurable ((fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b))
[PROOFSTEP]
refine' Measurable.comp _ measurable_prod_mk_left
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)
⊢ Measurable fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
f' : SimpleFunc (β × γ) ℝ≥0∞
this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)
⊢ MeasurableSpace α
[PROOFSTEP]
exact
Measurable.lintegral_kernel_prod_right ((SimpleFunc.measurable _).comp (measurable_fst.snd.prod_mk measurable_snd))
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (b : β), ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
rw [lintegral_iSup]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a =
⨆ (n : ℕ), ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ ∀ (n : ℕ), Measurable fun b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b)
case h_mono
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ Monotone fun n b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b)
[PROOFSTEP]
rotate_left
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ ∀ (n : ℕ), Measurable fun b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b)
[PROOFSTEP]
exact fun n => h_some_meas_integral (F n)
[GOAL]
case h_mono
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ Monotone fun n b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b)
[PROOFSTEP]
exact fun i j hij b => lintegral_mono fun c => h_mono hij _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a =
⨆ (n : ℕ), ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
congr
[GOAL]
case e_s
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
⊢ (fun n => ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a) = fun n =>
∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
ext1 n
[GOAL]
case e_s.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
⊢ ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
refine'
SimpleFunc.induction (P := fun f =>
(∫⁻ (a : β × γ), f a ∂(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), f (a_1, c) ∂η (a, a_1) ∂κ a)) _ _ (F n)
[GOAL]
case e_s.h.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
⊢ ∀ (c : ℝ≥0∞) {s : Set (β × γ)} (hs : MeasurableSet s),
(fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a)
(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0))
[PROOFSTEP]
intro c s hs
[GOAL]
case e_s.h.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ ∫⁻ (a : β × γ),
↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (a_1 : β),
∫⁻ (c_1 : γ),
↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0))
(a_1, c_1) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
classical
-- Porting note: Added `classical` for `Set.piecewise_eq_indicator`
simp only [SimpleFunc.const_zero, SimpleFunc.coe_piecewise, SimpleFunc.coe_const, SimpleFunc.coe_zero,
Set.piecewise_eq_indicator, Function.const, lintegral_indicator_const hs]
rw [compProd_apply κ η _ hs, ← lintegral_const_mul c _]
swap
· exact (measurable_kernel_prod_mk_left ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left
congr
ext1 b
rw [lintegral_indicator_const_comp measurable_prod_mk_left hs]
rfl
[GOAL]
case e_s.h.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ ∫⁻ (a : β × γ),
↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) a ∂↑(κ ⊗ₖ η) a =
∫⁻ (a_1 : β),
∫⁻ (c_1 : γ),
↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0))
(a_1, c_1) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
simp only [SimpleFunc.const_zero, SimpleFunc.coe_piecewise, SimpleFunc.coe_const, SimpleFunc.coe_zero,
Set.piecewise_eq_indicator, Function.const, lintegral_indicator_const hs]
[GOAL]
case e_s.h.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ c * ↑↑(↑(κ ⊗ₖ η) a) s = ∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
rw [compProd_apply κ η _ hs, ← lintegral_const_mul c _]
[GOAL]
case e_s.h.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ ∫⁻ (a_1 : β), c * ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ s} ∂↑κ a =
∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}
[PROOFSTEP]
swap
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}
[PROOFSTEP]
exact (measurable_kernel_prod_mk_left ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left
[GOAL]
case e_s.h.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ ∫⁻ (a_1 : β), c * ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ s} ∂↑κ a =
∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
congr
[GOAL]
case e_s.h.refine'_1.e_f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
⊢ (fun a_1 => c * ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ s}) = fun a_1 =>
∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1)
[PROOFSTEP]
ext1 b
[GOAL]
case e_s.h.refine'_1.e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
b : β
⊢ c * ↑↑(↑η (a, b)) {c | (b, c) ∈ s} = ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (b, c_1) ∂↑η (a, b)
[PROOFSTEP]
rw [lintegral_indicator_const_comp measurable_prod_mk_left hs]
[GOAL]
case e_s.h.refine'_1.e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
c : ℝ≥0∞
s : Set (β × γ)
hs : MeasurableSet s
b : β
⊢ c * ↑↑(↑η (a, b)) {c | (b, c) ∈ s} = c * ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)
[PROOFSTEP]
rfl
[GOAL]
case e_s.h.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
⊢ ∀ ⦃f g : SimpleFunc (β × γ) ℝ≥0∞⦄,
Disjoint (Function.support ↑f) (Function.support ↑g) →
(fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a) f →
(fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a) g →
(fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a)
(f + g)
[PROOFSTEP]
intro f f' _ hf_eq hf'_eq
[GOAL]
case e_s.h.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ ∫⁻ (a : β × γ), ↑(f + f') a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(f + f') (a_1, c) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
simp_rw [SimpleFunc.coe_add, Pi.add_apply]
[GOAL]
case e_s.h.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ ∫⁻ (a : β × γ), ↑f a + ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) + ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
[PROOFSTEP]
change ∫⁻ x, (f : β × γ → ℝ≥0∞) x + f' x ∂(κ ⊗ₖ η) a = ∫⁻ b, ∫⁻ c : γ, f (b, c) + f' (b, c) ∂η (a, b) ∂κ a
[GOAL]
case e_s.h.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ ∫⁻ (x : β × γ), ↑f x + ↑f' x ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
rw [lintegral_add_left (SimpleFunc.measurable _), hf_eq, hf'_eq, ← lintegral_add_left]
[GOAL]
case e_s.h.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) + ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a =
∫⁻ (b : β), ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) ∂↑κ a
case e_s.h.refine'_2.hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ Measurable fun a_1 => ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1)
[PROOFSTEP]
swap
[GOAL]
case e_s.h.refine'_2.hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ Measurable fun a_1 => ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1)
[PROOFSTEP]
exact h_some_meas_integral f
[GOAL]
case e_s.h.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
⊢ ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) + ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a =
∫⁻ (b : β), ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
congr with b
[GOAL]
case e_s.h.refine'_2.e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
b : β
⊢ ∫⁻ (c : γ), ↑f (b, c) ∂↑η (a, b) + ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) = ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b)
[PROOFSTEP]
rw [lintegral_add_left]
[GOAL]
case e_s.h.refine'_2.e_f.h.hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f✝ : β → γ → ℝ≥0∞
hf : Measurable (Function.uncurry f✝)
F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝)
h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b
h_mono : Monotone F
this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b)
h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)
n : ℕ
f f' : SimpleFunc (β × γ) ℝ≥0∞
a✝ : Disjoint (Function.support ↑f) (Function.support ↑f')
hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a
hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a
b : β
⊢ Measurable fun c => ↑f (b, c)
[PROOFSTEP]
exact (SimpleFunc.measurable _).comp measurable_prod_mk_left
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
let g := Function.curry f
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
g : β → γ → ℝ≥0∞ := Function.curry f
⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f (b, c) ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
change ∫⁻ bc, f bc ∂(κ ⊗ₖ η) a = ∫⁻ b, ∫⁻ c, g b c ∂η (a, b) ∂κ a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
g : β → γ → ℝ≥0∞ := Function.curry f
⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), g b c ∂↑η (a, b) ∂↑κ a
[PROOFSTEP]
rw [← lintegral_compProd']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
g : β → γ → ℝ≥0∞ := Function.curry f
⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (bc : β × γ), g bc.fst bc.snd ∂↑(κ ⊗ₖ η) a
[PROOFSTEP]
simp_rw [Function.curry_apply]
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
g : β → γ → ℝ≥0∞ := Function.curry f
⊢ Measurable (Function.uncurry fun b c => g b c)
[PROOFSTEP]
simp_rw [Function.uncurry_curry]
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
g : β → γ → ℝ≥0∞ := Function.curry f
⊢ Measurable f
[PROOFSTEP]
exact hf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : AEMeasurable f
⊢ ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
have A : ∫⁻ z, f z ∂(κ ⊗ₖ η) a = ∫⁻ z, hf.mk f z ∂(κ ⊗ₖ η) a := lintegral_congr_ae hf.ae_eq_mk
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : AEMeasurable f
A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a
⊢ ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
have B : ∫⁻ x, ∫⁻ y, f (x, y) ∂η (a, x) ∂κ a = ∫⁻ x, ∫⁻ y, hf.mk f (x, y) ∂η (a, x) ∂κ a :=
by
apply lintegral_congr_ae
filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with _ ha using lintegral_congr_ae ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : AEMeasurable f
A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a
⊢ ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a =
∫⁻ (x : β), ∫⁻ (y : γ), AEMeasurable.mk f hf (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
apply lintegral_congr_ae
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : AEMeasurable f
A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a
⊢ (fun a_1 => ∫⁻ (y : γ), f (a_1, y) ∂↑η (a, a_1)) =ᵐ[↑κ a] fun a_1 =>
∫⁻ (y : γ), AEMeasurable.mk f hf (a_1, y) ∂↑η (a, a_1)
[PROOFSTEP]
filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with _ ha using lintegral_congr_ae ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : AEMeasurable f
A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a
B :
∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a =
∫⁻ (x : β), ∫⁻ (y : γ), AEMeasurable.mk f hf (x, y) ∂↑η (a, x) ∂↑κ a
⊢ ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
rw [A, B, lintegral_compProd]
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : AEMeasurable f
A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a
B :
∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a =
∫⁻ (x : β), ∫⁻ (y : γ), AEMeasurable.mk f hf (x, y) ∂↑η (a, x) ∂↑κ a
⊢ Measurable fun z => AEMeasurable.mk f hf z
[PROOFSTEP]
exact hf.measurable_mk
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
s : Set β
t : Set γ
hs : MeasurableSet s
ht : MeasurableSet t
⊢ ∫⁻ (z : β × γ) in s ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β) in s, ∫⁻ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [← kernel.restrict_apply (κ ⊗ₖ η) (hs.prod ht), ← compProd_restrict hs ht, lintegral_compProd _ _ _ hf,
kernel.restrict_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
s : Set β
hs : MeasurableSet s
⊢ ∫⁻ (z : β × γ) in s ×ˢ Set.univ, f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β) in s, ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [set_lintegral_compProd κ η a hf hs MeasurableSet.univ, Measure.restrict_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
f : β × γ → ℝ≥0∞
hf : Measurable f
t : Set γ
ht : MeasurableSet t
⊢ ∫⁻ (z : β × γ) in Set.univ ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a
[PROOFSTEP]
simp_rw [set_lintegral_compProd κ η a hf MeasurableSet.univ ht, Measure.restrict_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ ↑↑(↑(κ ⊗ₖ η) a) s = ∑' (n : ℕ) (m : ℕ), ↑↑(↑(seq κ n ⊗ₖ seq η m) a) s
[PROOFSTEP]
simp_rw [compProd_apply_eq_compProdFun _ _ _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
hs : MeasurableSet s
⊢ compProdFun κ η a s = ∑' (n : ℕ) (m : ℕ), compProdFun (seq κ n) (seq η m) a s
[PROOFSTEP]
exact compProdFun_eq_tsum κ η a hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
⊢ κ ⊗ₖ η = kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set (β × γ)
hs : MeasurableSet s
⊢ ↑↑(↑(κ ⊗ₖ η) a) s = ↑↑(↑(kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) a) s
[PROOFSTEP]
simp_rw [kernel.sum_apply' _ a hs]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set (β × γ)
hs : MeasurableSet s
⊢ ↑↑(↑(κ ⊗ₖ η) a) s = ∑' (n : ℕ) (n_1 : ℕ), ↑↑(↑(seq κ n ⊗ₖ seq η n_1) a) s
[PROOFSTEP]
rw [compProd_eq_tsum_compProd κ η a hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η
[PROOFSTEP]
by_cases h : IsSFiniteKernel η
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel η
⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel η
⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel η
⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η
[PROOFSTEP]
simp_rw [compProd_of_not_isSFiniteKernel_right _ _ h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel η
⊢ 0 = kernel.sum fun n => 0
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel η
⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η
[PROOFSTEP]
rw [compProd_eq_sum_compProd]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel η
⊢ (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) = kernel.sum fun n => seq κ n ⊗ₖ η
[PROOFSTEP]
congr with n a s hs
[GOAL]
case pos.e_κ.h.h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s✝ : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel η
n : ℕ
a : α
s : Set (β × γ)
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun m => seq κ n ⊗ₖ seq η m) a) s = ↑↑(↑(seq κ n ⊗ₖ η) a) s
[PROOFSTEP]
simp_rw [kernel.sum_apply' _ _ hs, compProd_apply_eq_compProdFun _ _ _ hs, compProdFun_tsum_right _ η a hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n
[PROOFSTEP]
by_cases hκ : IsSFiniteKernel κ
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : IsSFiniteKernel κ
⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : ¬IsSFiniteKernel κ
⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : ¬IsSFiniteKernel κ
⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n
[PROOFSTEP]
simp_rw [compProd_of_not_isSFiniteKernel_left _ _ hκ]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : ¬IsSFiniteKernel κ
⊢ 0 = kernel.sum fun n => 0
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : IsSFiniteKernel κ
⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n
[PROOFSTEP]
rw [compProd_eq_sum_compProd]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : IsSFiniteKernel κ
⊢ (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) = kernel.sum fun n => κ ⊗ₖ seq η n
[PROOFSTEP]
simp_rw [compProd_eq_sum_compProd_left κ _]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel η
hκ : IsSFiniteKernel κ
⊢ (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) =
kernel.sum fun n => kernel.sum fun n_1 => seq κ n_1 ⊗ₖ seq η n
[PROOFSTEP]
rw [kernel.sum_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsMarkovKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsMarkovKernel η
a : α
⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ = 1
[PROOFSTEP]
rw [compProd_apply κ η a MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
inst✝¹ : IsMarkovKernel κ
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsMarkovKernel η
a : α
⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ Set.univ} ∂↑κ a = 1
[PROOFSTEP]
simp only [Set.mem_univ, Set.setOf_true, measure_univ, lintegral_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
by_cases hκ : IsSFiniteKernel κ
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : IsSFiniteKernel κ
⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : ¬IsSFiniteKernel κ
⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : ¬IsSFiniteKernel κ
⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
rw [compProd_of_not_isSFiniteKernel_left _ _ hκ]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : ¬IsSFiniteKernel κ
⊢ ↑↑(↑0 a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : IsSFiniteKernel κ
⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
rw [compProd_apply κ η a MeasurableSet.univ]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : IsSFiniteKernel κ
⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ Set.univ} ∂↑κ a ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
simp only [Set.mem_univ, Set.setOf_true]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : IsSFiniteKernel κ
⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) Set.univ ∂↑κ a ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
let Cη := IsFiniteKernel.bound η
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel η
a : α
hκ : IsSFiniteKernel κ
Cη : ℝ≥0∞ := IsFiniteKernel.bound η
⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) Set.univ ∂↑κ a ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η
[PROOFSTEP]
calc
∫⁻ b, η (a, b) Set.univ ∂κ a ≤ ∫⁻ _, Cη ∂κ a := lintegral_mono fun b => measure_le_bound η (a, b) Set.univ
_ = Cη * κ a Set.univ := (MeasureTheory.lintegral_const Cη)
_ = κ a Set.univ * Cη := mul_comm _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
by_cases h : IsSFiniteKernel κ
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ
⊢ IsSFiniteKernel (κ ⊗ₖ η)
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel κ
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel κ
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
rw [compProd_of_not_isSFiniteKernel_left _ _ h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : ¬IsSFiniteKernel κ
⊢ IsSFiniteKernel 0
[PROOFSTEP]
infer_instance
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h : IsSFiniteKernel κ
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
by_cases h : IsSFiniteKernel η
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h✝ : IsSFiniteKernel κ
h : IsSFiniteKernel η
⊢ IsSFiniteKernel (κ ⊗ₖ η)
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h✝ : IsSFiniteKernel κ
h : ¬IsSFiniteKernel η
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
swap
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h✝ : IsSFiniteKernel κ
h : ¬IsSFiniteKernel η
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
rw [compProd_of_not_isSFiniteKernel_right _ _ h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h✝ : IsSFiniteKernel κ
h : ¬IsSFiniteKernel η
⊢ IsSFiniteKernel 0
[PROOFSTEP]
infer_instance
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h✝ : IsSFiniteKernel κ
h : IsSFiniteKernel η
⊢ IsSFiniteKernel (κ ⊗ₖ η)
[PROOFSTEP]
rw [compProd_eq_sum_compProd]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
s : Set (β × γ)
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel (α × β) γ }
h✝ : IsSFiniteKernel κ
h : IsSFiniteKernel η
⊢ IsSFiniteKernel (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m)
[PROOFSTEP]
exact kernel.isSFiniteKernel_sum fun n => kernel.isSFiniteKernel_sum inferInstance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
hf : Measurable f
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑(map κ f hf) a) s = ↑↑(↑κ a) (f ⁻¹' s)
[PROOFSTEP]
rw [map_apply, Measure.map_apply hf hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
hf : Measurable f
a : α
g' : γ → ℝ≥0∞
hg : Measurable g'
⊢ ∫⁻ (b : γ), g' b ∂↑(map κ f hf) a = ∫⁻ (a : β), g' (f a) ∂↑κ a
[PROOFSTEP]
rw [map_apply _ hf, lintegral_map hg hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable f
⊢ (kernel.sum fun n => map (seq κ n) f hf) = map κ f hf
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable f
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun n => map (seq κ n) f hf) a) s = ↑↑(↑(map κ f hf) a) s
[PROOFSTEP]
rw [kernel.sum_apply, map_apply' κ hf a hs, Measure.sum_apply _ hs, ← measure_sum_seq κ, Measure.sum_apply _ (hf hs)]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hf : Measurable f
a : α
s : Set γ
hs : MeasurableSet s
⊢ ∑' (i : ℕ), ↑↑(↑(map (seq κ i) f hf) a) s = ∑' (i : ℕ), ↑↑(↑(seq κ i) a) (f ⁻¹' s)
[PROOFSTEP]
simp_rw [map_apply' _ hf _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsMarkovKernel κ
hf : Measurable f
a : α
⊢ ↑↑(↑(kernel.map κ f hf) a) Set.univ = 1
[PROOFSTEP]
rw [map_apply' κ hf a MeasurableSet.univ, Set.preimage_univ, measure_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf : Measurable f
⊢ IsFiniteKernel (kernel.map κ f hf)
[PROOFSTEP]
refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf : Measurable f
a : α
⊢ ↑↑(↑(kernel.map κ f hf) a) Set.univ ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
rw [map_apply' κ hf a MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hf : Measurable f
a : α
⊢ ↑↑(↑κ a) (f ⁻¹' Set.univ) ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
exact measure_le_bound κ a _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hg : Measurable g
⊢ (kernel.sum fun n => comap (seq κ n) g hg) = comap κ g hg
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hg : Measurable g
a : γ
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(kernel.sum fun n => comap (seq κ n) g hg) a) s = ↑↑(↑(comap κ g hg) a) s
[PROOFSTEP]
rw [kernel.sum_apply, comap_apply' κ hg a s, Measure.sum_apply _ hs, ← measure_sum_seq κ, Measure.sum_apply _ hs]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
hg : Measurable g
a : γ
s : Set β
hs : MeasurableSet s
⊢ ∑' (i : ℕ), ↑↑(↑(comap (seq κ i) g hg) a) s = ∑' (i : ℕ), ↑↑(↑(seq κ i) (g a)) s
[PROOFSTEP]
simp_rw [comap_apply' _ hg _ s]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsMarkovKernel κ
hg : Measurable g
a : γ
⊢ ↑↑(↑(kernel.comap κ g hg) a) Set.univ = 1
[PROOFSTEP]
rw [comap_apply' κ hg a Set.univ, measure_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hg : Measurable g
⊢ IsFiniteKernel (kernel.comap κ g hg)
[PROOFSTEP]
refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hg : Measurable g
a : γ
⊢ ↑↑(↑(kernel.comap κ g hg) a) Set.univ ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
rw [comap_apply' κ hg a Set.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
hg : Measurable g
a : γ
⊢ ↑↑(↑κ (g a)) Set.univ ≤ IsFiniteKernel.bound κ
[PROOFSTEP]
exact measure_le_bound κ _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.prodMkLeft γ κ)
[PROOFSTEP]
rw [prodMkLeft]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.comap κ Prod.snd (_ : Measurable Prod.snd))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.prodMkLeft γ κ)
[PROOFSTEP]
rw [prodMkLeft]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.comap κ Prod.snd (_ : Measurable Prod.snd))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.prodMkLeft γ κ)
[PROOFSTEP]
rw [prodMkLeft]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.comap κ Prod.snd (_ : Measurable Prod.snd))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g✝ : γ → α
κ : { x // x ∈ kernel (α × β) γ }
a : β × α
g : γ → ℝ≥0∞
⊢ ∫⁻ (c : γ), g c ∂↑(swapLeft κ) a = ∫⁻ (c : γ), g c ∂↑κ (Prod.swap a)
[PROOFSTEP]
rw [swapLeft, lintegral_comap _ measurable_swap a]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel (α × β) γ }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.swapLeft κ)
[PROOFSTEP]
rw [swapLeft]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel (α × β) γ }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.comap κ Prod.swap (_ : Measurable Prod.swap))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.swapLeft κ)
[PROOFSTEP]
rw [swapLeft]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel (α × β) γ }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.comap κ Prod.swap (_ : Measurable Prod.swap))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.swapLeft κ)
[PROOFSTEP]
rw [swapLeft]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel (α × β) γ }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.comap κ Prod.swap (_ : Measurable Prod.swap))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
s : Set (γ × β)
hs : MeasurableSet s
⊢ ↑↑(↑(swapRight κ) a) s = ↑↑(↑κ a) {p | Prod.swap p ∈ s}
[PROOFSTEP]
rw [swapRight_apply, Measure.map_apply measurable_swap hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
s : Set (γ × β)
hs : MeasurableSet s
⊢ ↑↑(↑κ a) (Prod.swap ⁻¹' s) = ↑↑(↑κ a) {p | Prod.swap p ∈ s}
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g✝ : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
g : γ × β → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (c : γ × β), g c ∂↑(swapRight κ) a = ∫⁻ (bc : β × γ), g (Prod.swap bc) ∂↑κ a
[PROOFSTEP]
rw [swapRight, lintegral_map _ measurable_swap a hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.swapRight κ)
[PROOFSTEP]
rw [swapRight]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.map κ Prod.swap (_ : Measurable Prod.swap))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.swapRight κ)
[PROOFSTEP]
rw [swapRight]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.map κ Prod.swap (_ : Measurable Prod.swap))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.swapRight κ)
[PROOFSTEP]
rw [swapRight]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.map κ Prod.swap (_ : Measurable Prod.swap))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(fst κ) a) s = ↑↑(↑κ a) {p | p.fst ∈ s}
[PROOFSTEP]
rw [fst_apply, Measure.map_apply measurable_fst hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑κ a) (Prod.fst ⁻¹' s) = ↑↑(↑κ a) {p | p.fst ∈ s}
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g✝ : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
g : β → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (c : β), g c ∂↑(fst κ) a = ∫⁻ (bc : β × γ), g bc.fst ∂↑κ a
[PROOFSTEP]
rw [fst, lintegral_map _ measurable_fst a hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.fst κ)
[PROOFSTEP]
rw [fst]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.map κ Prod.fst (_ : Measurable Prod.fst))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.fst κ)
[PROOFSTEP]
rw [fst]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.map κ Prod.fst (_ : Measurable Prod.fst))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.fst κ)
[PROOFSTEP]
rw [fst]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.map κ Prod.fst (_ : Measurable Prod.fst))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑(snd κ) a) s = ↑↑(↑κ a) {p | p.snd ∈ s}
[PROOFSTEP]
rw [snd_apply, Measure.map_apply measurable_snd hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑κ a) (Prod.snd ⁻¹' s) = ↑↑(↑κ a) {p | p.snd ∈ s}
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g✝ : γ → α
κ : { x // x ∈ kernel α (β × γ) }
a : α
g : γ → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (c : γ), g c ∂↑(snd κ) a = ∫⁻ (bc : β × γ), g bc.snd ∂↑κ a
[PROOFSTEP]
rw [snd, lintegral_map _ measurable_snd a hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.snd κ)
[PROOFSTEP]
rw [snd]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.map κ Prod.snd (_ : Measurable Prod.snd))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.snd κ)
[PROOFSTEP]
rw [snd]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.map κ Prod.snd (_ : Measurable Prod.snd))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.snd κ)
[PROOFSTEP]
rw [snd]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α (β × γ) }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.map κ Prod.snd (_ : Measurable Prod.snd))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
κ : { x // x ∈ kernel α β }
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑(η ∘ₖ κ) a) s = ∫⁻ (b : β), ↑↑(↑η b) s ∂↑κ a
[PROOFSTEP]
rw [comp_apply, Measure.bind_apply hs (kernel.measurable _)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
⊢ η ∘ₖ κ = snd (κ ⊗ₖ prodMkLeft α η)
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑(η ∘ₖ κ) a) s = ↑↑(↑(snd (κ ⊗ₖ prodMkLeft α η)) a) s
[PROOFSTEP]
rw [comp_apply' _ _ _ hs, snd_apply' _ _ hs, compProd_apply]
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
a : α
s : Set γ
hs : MeasurableSet s
⊢ ∫⁻ (b : β), ↑↑(↑η b) s ∂↑κ a = ∫⁻ (b : β), ↑↑(↑(prodMkLeft α η) (a, b)) {c | (b, c) ∈ {p | p.snd ∈ s}} ∂↑κ a
case h.h.hs
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
a : α
s : Set γ
hs : MeasurableSet s
⊢ MeasurableSet {p | p.snd ∈ s}
[PROOFSTEP]
swap
[GOAL]
case h.h.hs
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
a : α
s : Set γ
hs : MeasurableSet s
⊢ MeasurableSet {p | p.snd ∈ s}
[PROOFSTEP]
exact measurable_snd hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
a : α
s : Set γ
hs : MeasurableSet s
⊢ ∫⁻ (b : β), ↑↑(↑η b) s ∂↑κ a = ∫⁻ (b : β), ↑↑(↑(prodMkLeft α η) (a, b)) {c | (b, c) ∈ {p | p.snd ∈ s}} ∂↑κ a
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.setOf_mem_eq, prodMkLeft_apply' _ _ s]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g✝ : γ → α
η : { x // x ∈ kernel β γ }
κ : { x // x ∈ kernel α β }
a : α
g : γ → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (c : γ), g c ∂↑(η ∘ₖ κ) a = ∫⁻ (b : β), ∫⁻ (c : γ), g c ∂↑η b ∂↑κ a
[PROOFSTEP]
rw [comp_apply, Measure.lintegral_bind (kernel.measurable _) hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsMarkovKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (η ∘ₖ κ)
[PROOFSTEP]
rw [comp_eq_snd_compProd]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsMarkovKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsMarkovKernel κ
⊢ IsMarkovKernel (kernel.snd (κ ⊗ₖ kernel.prodMkLeft α η))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (η ∘ₖ κ)
[PROOFSTEP]
rw [comp_eq_snd_compProd]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsFiniteKernel κ
⊢ IsFiniteKernel (kernel.snd (κ ⊗ₖ kernel.prodMkLeft α η))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (η ∘ₖ κ)
[PROOFSTEP]
rw [comp_eq_snd_compProd]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
η : { x // x ∈ kernel β γ }
inst✝¹ : IsSFiniteKernel η
κ : { x // x ∈ kernel α β }
inst✝ : IsSFiniteKernel κ
⊢ IsSFiniteKernel (kernel.snd (κ ⊗ₖ kernel.prodMkLeft α η))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
δ : Type u_5
mδ : MeasurableSpace δ
ξ : { x // x ∈ kernel γ δ }
inst✝ : IsSFiniteKernel ξ
η : { x // x ∈ kernel β γ }
κ : { x // x ∈ kernel α β }
⊢ ξ ∘ₖ η ∘ₖ κ = ξ ∘ₖ (η ∘ₖ κ)
[PROOFSTEP]
refine' ext_fun fun a f hf => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f✝ : β → γ
g : γ → α
δ : Type u_5
mδ : MeasurableSpace δ
ξ : { x // x ∈ kernel γ δ }
inst✝ : IsSFiniteKernel ξ
η : { x // x ∈ kernel β γ }
κ : { x // x ∈ kernel α β }
a : α
f : δ → ℝ≥0∞
hf : Measurable f
⊢ ∫⁻ (b : δ), f b ∂↑(ξ ∘ₖ η ∘ₖ κ) a = ∫⁻ (b : δ), f b ∂↑(ξ ∘ₖ (η ∘ₖ κ)) a
[PROOFSTEP]
simp_rw [lintegral_comp _ _ _ hf, lintegral_comp _ _ _ hf.lintegral_kernel]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
hf : Measurable f
κ : { x // x ∈ kernel α β }
⊢ deterministic f hf ∘ₖ κ = map κ f hf
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
hf : Measurable f
κ : { x // x ∈ kernel α β }
a : α
s : Set γ
hs : MeasurableSet s
⊢ ↑↑(↑(deterministic f hf ∘ₖ κ) a) s = ↑↑(↑(map κ f hf) a) s
[PROOFSTEP]
simp_rw [map_apply' _ _ _ hs, comp_apply' _ _ _ hs, deterministic_apply' hf _ hs, lintegral_indicator_const_comp hf hs,
one_mul]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
hg : Measurable g
⊢ κ ∘ₖ deterministic g hg = comap κ g hg
[PROOFSTEP]
ext a s hs
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
f : β → γ
g : γ → α
κ : { x // x ∈ kernel α β }
hg : Measurable g
a : γ
s : Set β
hs : MeasurableSet s
⊢ ↑↑(↑(κ ∘ₖ deterministic g hg) a) s = ↑↑(↑(comap κ g hg) a) s
[PROOFSTEP]
simp_rw [comap_apply' _ _ _ s, comp_apply' _ _ _ hs, deterministic_apply hg a,
lintegral_dirac' _ (kernel.measurable_coe κ hs)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel α γ }
inst✝ : IsSFiniteKernel η
a : α
s : Set (β × γ)
hs : MeasurableSet s
⊢ ↑↑(↑(κ ×ₖ η) a) s = ∫⁻ (b : β), ↑↑(↑η a) {c | (b, c) ∈ s} ∂↑κ a
[PROOFSTEP]
simp_rw [prod, compProd_apply _ _ _ hs, swapLeft_apply _ _, prodMkLeft_apply, Prod.swap_prod_mk]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
inst✝¹ : IsSFiniteKernel κ
η : { x // x ∈ kernel α γ }
inst✝ : IsSFiniteKernel η
a : α
g : β × γ → ℝ≥0∞
hg : Measurable g
⊢ ∫⁻ (c : β × γ), g c ∂↑(κ ×ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), g (b, c) ∂↑η a ∂↑κ a
[PROOFSTEP]
simp_rw [prod, lintegral_compProd _ _ _ hg, swapLeft_apply, prodMkLeft_apply, Prod.swap_prod_mk]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
inst✝¹ : IsMarkovKernel κ
η : { x // x ∈ kernel α γ }
inst✝ : IsMarkovKernel η
⊢ IsMarkovKernel (κ ×ₖ η)
[PROOFSTEP]
rw [prod]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
inst✝¹ : IsMarkovKernel κ
η : { x // x ∈ kernel α γ }
inst✝ : IsMarkovKernel η
⊢ IsMarkovKernel (κ ⊗ₖ kernel.swapLeft (kernel.prodMkLeft β η))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel α γ }
inst✝ : IsFiniteKernel η
⊢ IsFiniteKernel (κ ×ₖ η)
[PROOFSTEP]
rw [prod]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
inst✝¹ : IsFiniteKernel κ
η : { x // x ∈ kernel α γ }
inst✝ : IsFiniteKernel η
⊢ IsFiniteKernel (κ ⊗ₖ kernel.swapLeft (kernel.prodMkLeft β η))
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel α γ }
⊢ IsSFiniteKernel (κ ×ₖ η)
[PROOFSTEP]
rw [prod]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
mβ : MeasurableSpace β
γ : Type u_4
mγ : MeasurableSpace γ
κ : { x // x ∈ kernel α β }
η : { x // x ∈ kernel α γ }
⊢ IsSFiniteKernel (κ ⊗ₖ kernel.swapLeft (kernel.prodMkLeft β η))
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Probability.Kernel.Composition", "llama_tokens": 90393} |
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
i j : ι
⊢ MeasurableSet {ω | (fun x => i) ω ≤ j}
[PROOFSTEP]
simp only [MeasurableSet.const]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
by_cases hi_min : IsMin i
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : IsMin i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
suffices {ω : Ω | τ ω < i} = ∅ by rw [this]; exact @MeasurableSet.empty _ (f i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : IsMin i
this : {ω | τ ω < i} = ∅
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : IsMin i
this : {ω | τ ω < i} = ∅
⊢ MeasurableSet ∅
[PROOFSTEP]
exact @MeasurableSet.empty _ (f i)
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : IsMin i
⊢ {ω | τ ω < i} = ∅
[PROOFSTEP]
ext1 ω
[GOAL]
case pos.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : IsMin i
ω : Ω
⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ ∅
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false_iff]
[GOAL]
case pos.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : IsMin i
ω : Ω
⊢ ¬τ ω < i
[PROOFSTEP]
rw [isMin_iff_forall_not_lt] at hi_min
[GOAL]
case pos.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : ∀ (b : ι), ¬b < i
ω : Ω
⊢ ¬τ ω < i
[PROOFSTEP]
exact hi_min (τ ω)
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : ¬IsMin i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have : {ω : Ω | τ ω < i} = τ ⁻¹' Set.Iio i := rfl
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : ¬IsMin i
this : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [this, ← Iic_pred_of_not_isMin hi_min]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ : Ω → ι
inst✝ : PredOrder ι
hτ : IsStoppingTime f τ
i : ι
hi_min : ¬IsMin i
this : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet (τ ⁻¹' Set.Iic (pred i))
[PROOFSTEP]
exact f.mono (pred_le i) _ (hτ.measurableSet_le <| pred i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
have : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} :=
by
ext1 a
simp only [Set.mem_setOf_eq, Set.mem_range, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_diff, Set.mem_iUnion,
exists_prop, not_exists, not_and, not_le]
constructor <;> intro h
· simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, imp_true_iff, and_self_iff]
· have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1
rcases h_lt_or_eq with (h_lt | rfl)
· exfalso
exact h.2 a h_lt (le_refl (τ a))
· rfl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
[PROOFSTEP]
ext1 a
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
⊢ a ∈ {ω | τ ω = i} ↔ a ∈ {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_range, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_diff, Set.mem_iUnion,
exists_prop, not_exists, not_and, not_le]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
⊢ τ a = i ↔ τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
⊢ τ a = i → τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
[PROOFSTEP]
intro h
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
⊢ (τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x) → τ a = i
[PROOFSTEP]
intro h
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
h : τ a = i
⊢ τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
[PROOFSTEP]
simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, imp_true_iff, and_self_iff]
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
⊢ τ a = i
[PROOFSTEP]
have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
h_lt_or_eq : τ a < i ∨ τ a = i
⊢ τ a = i
[PROOFSTEP]
rcases h_lt_or_eq with (h_lt | rfl)
[GOAL]
case h.mpr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
h_lt : τ a < i
⊢ τ a = i
[PROOFSTEP]
exfalso
[GOAL]
case h.mpr.inl.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
a : Ω
h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x
h_lt : τ a < i
⊢ False
[PROOFSTEP]
exact h.2 a h_lt (le_refl (τ a))
[GOAL]
case h.mpr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
a : Ω
h : τ a ≤ τ a ∧ ∀ (x : Ω), τ x < τ a → ¬τ a ≤ τ x
⊢ τ a = τ a
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
⊢ MeasurableSet ({ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j})
[PROOFSTEP]
refine' (hτ.measurableSet_le i).diff _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
⊢ MeasurableSet (⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j})
[PROOFSTEP]
refine' MeasurableSet.biUnion h_countable fun j _ => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
j : ι
x✝ : j ∈ Set.range τ
⊢ MeasurableSet (⋃ (_ : j < i), {ω | τ ω ≤ j})
[PROOFSTEP]
by_cases hji : j < i
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
j : ι
x✝ : j ∈ Set.range τ
hji : j < i
⊢ MeasurableSet (⋃ (_ : j < i), {ω | τ ω ≤ j})
[PROOFSTEP]
simp only [hji, Set.iUnion_true]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
j : ι
x✝ : j ∈ Set.range τ
hji : j < i
⊢ MeasurableSet {ω | τ ω ≤ j}
[PROOFSTEP]
exact f.mono hji.le _ (hτ.measurableSet_le j)
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
j : ι
x✝ : j ∈ Set.range τ
hji : ¬j < i
⊢ MeasurableSet (⋃ (_ : j < i), {ω | τ ω ≤ j})
[PROOFSTEP]
simp only [hji, Set.iUnion_false]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}
j : ι
x✝ : j ∈ Set.range τ
hji : ¬j < i
⊢ MeasurableSet ∅
[PROOFSTEP]
exact @MeasurableSet.empty _ (f i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by ext1 ω; simp [lt_iff_le_and_ne]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
ω : Ω
⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i}
[PROOFSTEP]
simp [lt_iff_le_and_ne]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : PartialOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i})
[PROOFSTEP]
exact (hτ.measurableSet_le i).diff (hτ.measurableSet_eq_of_countable_range h_countable i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝¹ : PartialOrder ι✝
τ✝ : Ω → ι✝
f✝ : Filtration ι✝ m
ι : Type u_4
inst✝ : LinearOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝¹ : PartialOrder ι✝
τ✝ : Ω → ι✝
f✝ : Filtration ι✝ m
ι : Type u_4
inst✝ : LinearOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝¹ : PartialOrder ι✝
τ✝ : Ω → ι✝
f✝ : Filtration ι✝ m
ι : Type u_4
inst✝ : LinearOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
ω : Ω
⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω < i}ᶜ
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝¹ : PartialOrder ι✝
τ✝ : Ω → ι✝
f✝ : Filtration ι✝ m
ι : Type u_4
inst✝ : LinearOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝¹ : PartialOrder ι✝
τ✝ : Ω → ι✝
f✝ : Filtration ι✝ m
ι : Type u_4
inst✝ : LinearOrder ι
τ : Ω → ι
f : Filtration ι m
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ
⊢ MeasurableSet {ω | τ ω < i}ᶜ
[PROOFSTEP]
exact (hτ.measurableSet_lt_of_countable_range h_countable i).compl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | i < τ ω}
[PROOFSTEP]
have : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_le]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
⊢ {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ ω ∈ {ω | i < τ ω} ↔ ω ∈ {ω | τ ω ≤ i}ᶜ
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_le]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ
⊢ MeasurableSet {ω | i < τ ω}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ
⊢ MeasurableSet {ω | τ ω ≤ i}ᶜ
[PROOFSTEP]
exact (hτ.measurableSet_le i).compl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
by_cases hi_min : IsMin i
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : IsMin i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
suffices {ω | τ ω < i} = ∅ by rw [this]; exact @MeasurableSet.empty _ (f i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : IsMin i
this : {ω | τ ω < i} = ∅
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : IsMin i
this : {ω | τ ω < i} = ∅
⊢ MeasurableSet ∅
[PROOFSTEP]
exact @MeasurableSet.empty _ (f i)
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : IsMin i
⊢ {ω | τ ω < i} = ∅
[PROOFSTEP]
ext1 ω
[GOAL]
case pos.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : IsMin i
ω : Ω
⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ ∅
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false_iff]
[GOAL]
case pos.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : IsMin i
ω : Ω
⊢ ¬τ ω < i
[PROOFSTEP]
exact isMin_iff_forall_not_lt.mp hi_min (τ ω)
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
obtain ⟨seq, -, -, h_tendsto, h_bound⟩ :
∃ seq : ℕ → ι, Monotone seq ∧ (∀ j, seq j ≤ i) ∧ Tendsto seq atTop (𝓝 i) ∧ ∀ j, seq j < i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
⊢ ∃ seq, Monotone seq ∧ (∀ (j : ℕ), seq j ≤ i) ∧ Tendsto seq atTop (𝓝 i) ∧ ∀ (j : ℕ), seq j < i
case neg.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
exact h_lub.exists_seq_monotone_tendsto (not_isMin_iff.mp hi_min)
[GOAL]
case neg.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have h_Ioi_eq_Union : Set.Iio i = ⋃ j, {k | k ≤ seq j} :=
by
ext1 k
simp only [Set.mem_Iio, Set.mem_iUnion, Set.mem_setOf_eq]
refine' ⟨fun hk_lt_i => _, fun h_exists_k_le_seq => _⟩
· rw [tendsto_atTop'] at h_tendsto
have h_nhds : Set.Ici k ∈ 𝓝 i := mem_nhds_iff.mpr ⟨Set.Ioi k, Set.Ioi_subset_Ici le_rfl, isOpen_Ioi, hk_lt_i⟩
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, b ≥ a → k ≤ seq b := h_tendsto (Set.Ici k) h_nhds
exact ⟨a, ha a le_rfl⟩
· obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq
exact hk_seq_j.trans_lt (h_bound j)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
⊢ Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
[PROOFSTEP]
ext1 k
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
k : ι
⊢ k ∈ Set.Iio i ↔ k ∈ ⋃ (j : ℕ), {k | k ≤ seq j}
[PROOFSTEP]
simp only [Set.mem_Iio, Set.mem_iUnion, Set.mem_setOf_eq]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
k : ι
⊢ k < i ↔ ∃ i, k ≤ seq i
[PROOFSTEP]
refine' ⟨fun hk_lt_i => _, fun h_exists_k_le_seq => _⟩
[GOAL]
case h.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
k : ι
hk_lt_i : k < i
⊢ ∃ i, k ≤ seq i
[PROOFSTEP]
rw [tendsto_atTop'] at h_tendsto
[GOAL]
case h.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : ∀ (s : Set ι), s ∈ 𝓝 i → ∃ a, ∀ (b : ℕ), b ≥ a → seq b ∈ s
h_bound : ∀ (j : ℕ), seq j < i
k : ι
hk_lt_i : k < i
⊢ ∃ i, k ≤ seq i
[PROOFSTEP]
have h_nhds : Set.Ici k ∈ 𝓝 i := mem_nhds_iff.mpr ⟨Set.Ioi k, Set.Ioi_subset_Ici le_rfl, isOpen_Ioi, hk_lt_i⟩
[GOAL]
case h.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : ∀ (s : Set ι), s ∈ 𝓝 i → ∃ a, ∀ (b : ℕ), b ≥ a → seq b ∈ s
h_bound : ∀ (j : ℕ), seq j < i
k : ι
hk_lt_i : k < i
h_nhds : Set.Ici k ∈ 𝓝 i
⊢ ∃ i, k ≤ seq i
[PROOFSTEP]
obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, b ≥ a → k ≤ seq b := h_tendsto (Set.Ici k) h_nhds
[GOAL]
case h.refine'_1.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : ∀ (s : Set ι), s ∈ 𝓝 i → ∃ a, ∀ (b : ℕ), b ≥ a → seq b ∈ s
h_bound : ∀ (j : ℕ), seq j < i
k : ι
hk_lt_i : k < i
h_nhds : Set.Ici k ∈ 𝓝 i
a : ℕ
ha : ∀ (b : ℕ), b ≥ a → k ≤ seq b
⊢ ∃ i, k ≤ seq i
[PROOFSTEP]
exact ⟨a, ha a le_rfl⟩
[GOAL]
case h.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
k : ι
h_exists_k_le_seq : ∃ i, k ≤ seq i
⊢ k < i
[PROOFSTEP]
obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq
[GOAL]
case h.refine'_2.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
k : ι
j : ℕ
hk_seq_j : k ≤ seq j
⊢ k < i
[PROOFSTEP]
exact hk_seq_j.trans_lt (h_bound j)
[GOAL]
case neg.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i := by ext1 ω;
simp only [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iio]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
⊢ {ω | τ ω < i} = τ ⁻¹' Set.Iio i
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
ω : Ω
⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ τ ⁻¹' Set.Iio i
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iio]
[GOAL]
case neg.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [h_lt_eq_preimage, h_Ioi_eq_Union]
[GOAL]
case neg.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet (τ ⁻¹' ⋃ (j : ℕ), {k | k ≤ seq j})
[PROOFSTEP]
simp only [Set.preimage_iUnion, Set.preimage_setOf_eq]
[GOAL]
case neg.intro.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
h_lub : IsLUB (Set.Iio i) i
hi_min : ¬IsMin i
seq : ℕ → ι
h_tendsto : Tendsto seq atTop (𝓝 i)
h_bound : ∀ (j : ℕ), seq j < i
h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j}
h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet (⋃ (i : ℕ), {a | τ a ≤ seq i})
[PROOFSTEP]
exact MeasurableSet.iUnion fun n => f.mono (h_bound n).le _ (hτ.measurableSet_le (seq n))
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
obtain ⟨i', hi'_lub⟩ : ∃ i', IsLUB (Set.Iio i) i'
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ ∃ i', IsLUB (Set.Iio i) i'
case intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i) i'
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
exact exists_lub_Iio i
[GOAL]
case intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i) i'
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
cases' lub_Iio_eq_self_or_Iio_eq_Iic i hi'_lub with hi'_eq_i h_Iio_eq_Iic
[GOAL]
case intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i) i'
hi'_eq_i : i' = i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [← hi'_eq_i] at hi'_lub ⊢
[GOAL]
case intro.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i') i'
hi'_eq_i : i' = i
⊢ MeasurableSet {ω | τ ω < i'}
[PROOFSTEP]
exact hτ.measurableSet_lt_of_isLUB i' hi'_lub
[GOAL]
case intro.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i) i'
h_Iio_eq_Iic : Set.Iio i = Set.Iic i'
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have h_lt_eq_preimage : {ω : Ω | τ ω < i} = τ ⁻¹' Set.Iio i := rfl
[GOAL]
case intro.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i) i'
h_Iio_eq_Iic : Set.Iio i = Set.Iic i'
h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [h_lt_eq_preimage, h_Iio_eq_Iic]
[GOAL]
case intro.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i i' : ι
hi'_lub : IsLUB (Set.Iio i) i'
h_Iio_eq_Iic : Set.Iio i = Set.Iic i'
h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i
⊢ MeasurableSet (τ ⁻¹' Set.Iic i')
[PROOFSTEP]
exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurableSet_le i')
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω < i}ᶜ
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ
⊢ MeasurableSet {ω | τ ω < i}ᶜ
[PROOFSTEP]
exact (hτ.measurableSet_lt i).compl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
have : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i} := by ext1 ω;
simp only [Set.mem_setOf_eq, ge_iff_le, Set.mem_inter_iff, le_antisymm_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ ω ∈ {ω | τ ω = i} ↔ ω ∈ {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, ge_iff_le, Set.mem_inter_iff, le_antisymm_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i}
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i}
⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i})
[PROOFSTEP]
exact (hτ.measurableSet_le i).inter (hτ.measurableSet_ge i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
inst✝ : Countable ι
f : Filtration ι m
τ : Ω → ι
hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i}
⊢ IsStoppingTime f τ
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
inst✝ : Countable ι
f : Filtration ι m
τ : Ω → ι
hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i}
i : ι
⊢ MeasurableSet {ω | τ ω ≤ i}
[PROOFSTEP]
rw [show {ω | τ ω ≤ i} = ⋃ k ≤ i, {ω | τ ω = k} by ext; simp]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
inst✝ : Countable ι
f : Filtration ι m
τ : Ω → ι
hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i}
i : ι
⊢ {ω | τ ω ≤ i} = ⋃ (k : ι) (_ : k ≤ i), {ω | τ ω = k}
[PROOFSTEP]
ext
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
inst✝ : Countable ι
f : Filtration ι m
τ : Ω → ι
hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i}
i : ι
x✝ : Ω
⊢ x✝ ∈ {ω | τ ω ≤ i} ↔ x✝ ∈ ⋃ (k : ι) (_ : k ≤ i), {ω | τ ω = k}
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
inst✝ : Countable ι
f : Filtration ι m
τ : Ω → ι
hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i}
i : ι
⊢ MeasurableSet (⋃ (k : ι) (_ : k ≤ i), {ω | τ ω = k})
[PROOFSTEP]
refine' MeasurableSet.biUnion (Set.to_countable _) fun k hk => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
inst✝ : Countable ι
f : Filtration ι m
τ : Ω → ι
hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i}
i k : ι
hk : k ∈ fun k => Preorder.toLE.1 k i
⊢ MeasurableSet {ω | τ ω = k}
[PROOFSTEP]
exact f.mono hk _ (hτ k)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ IsStoppingTime f fun ω => max (τ ω) (π ω)
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ι
⊢ MeasurableSet {ω | (fun ω => max (τ ω) (π ω)) ω ≤ i}
[PROOFSTEP]
simp_rw [max_le_iff, Set.setOf_and]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ι
⊢ MeasurableSet ({a | τ a ≤ i} ∩ {a | π a ≤ i})
[PROOFSTEP]
exact (hτ i).inter (hπ i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ IsStoppingTime f fun ω => min (τ ω) (π ω)
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ι
⊢ MeasurableSet {ω | (fun ω => min (τ ω) (π ω)) ω ≤ i}
[PROOFSTEP]
simp_rw [min_le_iff, Set.setOf_or]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ι
⊢ MeasurableSet ({a | τ a ≤ i} ∪ {a | π a ≤ i})
[PROOFSTEP]
exact (hτ i).union (hπ i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : AddGroup ι
inst✝² : Preorder ι
inst✝¹ : CovariantClass ι ι (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
hi : 0 ≤ i
⊢ IsStoppingTime f fun ω => τ ω + i
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : AddGroup ι
inst✝² : Preorder ι
inst✝¹ : CovariantClass ι ι (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
hi : 0 ≤ i
j : ι
⊢ MeasurableSet {ω | (fun ω => τ ω + i) ω ≤ j}
[PROOFSTEP]
simp_rw [← le_sub_iff_add_le]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : AddGroup ι
inst✝² : Preorder ι
inst✝¹ : CovariantClass ι ι (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : Filtration ι m
τ : Ω → ι
hτ : IsStoppingTime f τ
i : ι
hi : 0 ≤ i
j : ι
⊢ MeasurableSet {ω | τ ω ≤ j - i}
[PROOFSTEP]
exact f.mono (sub_le_self j hi) _ (hτ (j - i))
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i : ℕ
⊢ IsStoppingTime f fun ω => τ ω + i
[PROOFSTEP]
refine' isStoppingTime_of_measurableSet_eq fun j => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
⊢ MeasurableSet {ω | τ ω + i = j}
[PROOFSTEP]
by_cases hij : i ≤ j
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : i ≤ j
⊢ MeasurableSet {ω | τ ω + i = j}
[PROOFSTEP]
simp_rw [eq_comm, ← Nat.sub_eq_iff_eq_add hij, eq_comm]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : i ≤ j
⊢ MeasurableSet {ω | τ ω = j - i}
[PROOFSTEP]
exact f.mono (j.sub_le i) _ (hτ.measurableSet_eq (j - i))
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : ¬i ≤ j
⊢ MeasurableSet {ω | τ ω + i = j}
[PROOFSTEP]
rw [not_le] at hij
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : j < i
⊢ MeasurableSet {ω | τ ω + i = j}
[PROOFSTEP]
convert @MeasurableSet.empty _ (f.1 j)
[GOAL]
case h.e'_3
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : j < i
⊢ {ω | τ ω + i = j} = ∅
[PROOFSTEP]
ext ω
[GOAL]
case h.e'_3.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : j < i
ω : Ω
⊢ ω ∈ {ω | τ ω + i = j} ↔ ω ∈ ∅
[PROOFSTEP]
simp only [Set.mem_empty_iff_false, iff_false_iff]
[GOAL]
case h.e'_3.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : j < i
ω : Ω
⊢ ¬ω ∈ {ω | τ ω + i = j}
[PROOFSTEP]
rintro (hx : τ ω + i = j)
[GOAL]
case h.e'_3.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ : Ω → ℕ
hτ : IsStoppingTime f τ
i j : ℕ
hij : j < i
ω : Ω
hx : τ ω + i = j
⊢ False
[PROOFSTEP]
linarith
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ IsStoppingTime f (τ + π)
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
⊢ MeasurableSet {ω | (τ + π) ω ≤ i}
[PROOFSTEP]
rw [(_ : {ω | (τ + π) ω ≤ i} = ⋃ k ≤ i, {ω | π ω = k} ∩ {ω | τ ω + k ≤ i})]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
⊢ MeasurableSet (⋃ (k : ℕ) (_ : k ≤ i), {ω | π ω = k} ∩ {ω | τ ω + k ≤ i})
[PROOFSTEP]
exact
MeasurableSet.iUnion fun k => MeasurableSet.iUnion fun hk => (hπ.measurableSet_eq_le hk).inter (hτ.add_const_nat i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
⊢ {ω | (τ + π) ω ≤ i} = ⋃ (k : ℕ) (_ : k ≤ i), {ω | π ω = k} ∩ {ω | τ ω + k ≤ i}
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
ω : Ω
⊢ ω ∈ {ω | (τ + π) ω ≤ i} ↔ ω ∈ ⋃ (k : ℕ) (_ : k ≤ i), {ω | π ω = k} ∩ {ω | τ ω + k ≤ i}
[PROOFSTEP]
simp only [Pi.add_apply, Set.mem_setOf_eq, Set.mem_iUnion, Set.mem_inter_iff, exists_prop]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
ω : Ω
⊢ τ ω + π ω ≤ i ↔ ∃ i_1, i_1 ≤ i ∧ π ω = i_1 ∧ τ ω + i_1 ≤ i
[PROOFSTEP]
refine' ⟨fun h => ⟨π ω, by linarith, rfl, h⟩, _⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
ω : Ω
h : τ ω + π ω ≤ i
⊢ π ω ≤ i
[PROOFSTEP]
linarith
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
ω : Ω
⊢ (∃ i_1, i_1 ≤ i ∧ π ω = i_1 ∧ τ ω + i_1 ≤ i) → τ ω + π ω ≤ i
[PROOFSTEP]
rintro ⟨j, hj, rfl, h⟩
[GOAL]
case h.intro.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
τ π : Ω → ℕ
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
i : ℕ
ω : Ω
hj : π ω ≤ i
h : τ ω + π ω ≤ i
⊢ τ ω + π ω ≤ i
[PROOFSTEP]
assumption
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ MeasurableSet (sᶜ ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
rw [(_ : sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i})]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ MeasurableSet ((sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
refine' MeasurableSet.inter _ _
[GOAL]
case refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ MeasurableSet (sᶜ ∪ {ω | τ ω ≤ i}ᶜ)
[PROOFSTEP]
rw [← Set.compl_inter]
[GOAL]
case refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i})ᶜ
[PROOFSTEP]
exact (hs i).compl
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ MeasurableSet {ω | τ ω ≤ i}
[PROOFSTEP]
exact hτ i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
rw [Set.union_inter_distrib_right]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s
i : ι
⊢ sᶜ ∩ {ω | τ ω ≤ i} = sᶜ ∩ {ω | τ ω ≤ i} ∪ {ω | τ ω ≤ i}ᶜ ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
simp only [Set.compl_inter_self, Set.union_empty]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : ℕ → Set Ω
hs : ∀ (i : ℕ), (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) (s i)
i : ι
⊢ MeasurableSet ((⋃ (i : ℕ), s i) ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
rw [forall_swap] at hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : ℕ → Set Ω
hs : ∀ (y : ι) (x : ℕ), MeasurableSet (s x ∩ {ω | τ ω ≤ y})
i : ι
⊢ MeasurableSet ((⋃ (i : ℕ), s i) ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
rw [Set.iUnion_inter]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : ℕ → Set Ω
hs : ∀ (y : ι) (x : ℕ), MeasurableSet (s x ∩ {ω | τ ω ≤ y})
i : ι
⊢ MeasurableSet (⋃ (i_1 : ℕ), s i_1 ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
exact MeasurableSet.iUnion (hs i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
⊢ IsStoppingTime.measurableSpace hτ ≤ IsStoppingTime.measurableSpace hπ
[PROOFSTEP]
intro s hs i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
s : Set Ω
hs : MeasurableSet s
i : ι
⊢ MeasurableSet (s ∩ {ω | π ω ≤ i})
[PROOFSTEP]
rw [(_ : s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i})]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
s : Set Ω
hs : MeasurableSet s
i : ι
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i})
[PROOFSTEP]
exact (hs i).inter (hπ i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
s : Set Ω
hs : MeasurableSet s
i : ι
⊢ s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i}
[PROOFSTEP]
ext
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
s : Set Ω
hs : MeasurableSet s
i : ι
x✝ : Ω
⊢ x✝ ∈ s ∩ {ω | π ω ≤ i} ↔ x✝ ∈ s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i}
[PROOFSTEP]
simp only [Set.mem_inter_iff, iff_self_and, and_congr_left_iff, Set.mem_setOf_eq]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
s : Set Ω
hs : MeasurableSet s
i : ι
x✝ : Ω
⊢ π x✝ ≤ i → x✝ ∈ s → τ x✝ ≤ i
[PROOFSTEP]
intro hle' _
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
hle : τ ≤ π
s : Set Ω
hs : MeasurableSet s
i : ι
x✝ : Ω
hle' : π x✝ ≤ i
a✝ : x✝ ∈ s
⊢ τ x✝ ≤ i
[PROOFSTEP]
exact le_trans (hle _) hle'
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
intro s hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : MeasurableSet s
⊢ MeasurableSet s
[PROOFSTEP]
change ∀ i, MeasurableSet[f i] (s ∩ {ω | τ ω ≤ i}) at hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet s
[PROOFSTEP]
rw [(_ : s = ⋃ i, s ∩ {ω | τ ω ≤ i})]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet (⋃ (i : ι), s ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
exact MeasurableSet.iUnion fun i => f.le i _ (hs i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ s = ⋃ (i : ι), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ s ↔ ω ∈ ⋃ (i : ι), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ s → ω ∈ ⋃ (i : ι), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ ⋃ (i : ι), s ∩ {ω | τ ω ≤ i} → ω ∈ s
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ s → ∃ i, ω ∈ s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
exact fun hx => ⟨τ ω, hx, le_rfl⟩
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ (∃ i, ω ∈ s ∩ {ω | τ ω ≤ i}) → ω ∈ s
[PROOFSTEP]
rintro ⟨_, hx, _⟩
[GOAL]
case h.mpr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝ : Countable ι
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
w✝ : ι
hx : ω ∈ s
right✝ : ω ∈ {ω | τ ω ≤ w✝}
⊢ ω ∈ s
[PROOFSTEP]
exact hx
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
intro s hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : MeasurableSet s
⊢ MeasurableSet s
[PROOFSTEP]
change ∀ i, MeasurableSet[f i] (s ∩ {ω | τ ω ≤ i}) at hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet s
[PROOFSTEP]
obtain ⟨seq : ℕ → ι, h_seq_tendsto⟩ := (atTop : Filter ι).exists_seq_tendsto
[GOAL]
case intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
⊢ MeasurableSet s
[PROOFSTEP]
rw [(_ : s = ⋃ n, s ∩ {ω | τ ω ≤ seq n})]
[GOAL]
case intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
⊢ MeasurableSet (⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n})
[PROOFSTEP]
exact MeasurableSet.iUnion fun i => f.le (seq i) _ (hs (seq i))
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
⊢ s = ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n}
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
⊢ ω ∈ s ↔ ω ∈ ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n}
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
⊢ ω ∈ s → ω ∈ ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n}
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
⊢ ω ∈ ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n} → ω ∈ s
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
⊢ ω ∈ s → ∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i}
[PROOFSTEP]
intro hx
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
hx : ω ∈ s
⊢ ∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i}
[PROOFSTEP]
suffices : ∃ i, τ ω ≤ seq i
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
hx : ω ∈ s
this : ∃ i, τ ω ≤ seq i
⊢ ∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i}
case this
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
hx : ω ∈ s
⊢ ∃ i, τ ω ≤ seq i
[PROOFSTEP]
exact ⟨this.choose, hx, this.choose_spec⟩
[GOAL]
case this
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
hx : ω ∈ s
⊢ ∃ i, τ ω ≤ seq i
[PROOFSTEP]
rw [tendsto_atTop] at h_seq_tendsto
[GOAL]
case this
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : ∀ (b : ι), ∀ᶠ (a : ℕ) in atTop, b ≤ seq a
ω : Ω
hx : ω ∈ s
⊢ ∃ i, τ ω ≤ seq i
[PROOFSTEP]
exact (h_seq_tendsto (τ ω)).exists
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
⊢ (∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i}) → ω ∈ s
[PROOFSTEP]
rintro ⟨_, hx, _⟩
[GOAL]
case h.mpr.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι
f : Filtration ι m
τ π : Ω → ι
inst✝¹ : IsCountablyGenerated atTop
inst✝ : NeBot atTop
hτ : IsStoppingTime f τ
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
seq : ℕ → ι
h_seq_tendsto : Tendsto seq atTop atTop
ω : Ω
w✝ : ℕ
hx : ω ∈ s
right✝ : ω ∈ {ω | τ ω ≤ seq w✝}
⊢ ω ∈ s
[PROOFSTEP]
exact hx
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
cases isEmpty_or_nonempty ι
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
haveI : IsEmpty Ω := ⟨fun ω => IsEmpty.false (τ ω)⟩
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
this : IsEmpty Ω
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
intro s _
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
this : IsEmpty Ω
s : Set Ω
a✝ : MeasurableSet s
⊢ MeasurableSet s
[PROOFSTEP]
suffices hs : s = ∅
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
this : IsEmpty Ω
s : Set Ω
a✝ : MeasurableSet s
hs : s = ∅
⊢ MeasurableSet s
[PROOFSTEP]
rw [hs]
[GOAL]
case inl
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
this : IsEmpty Ω
s : Set Ω
a✝ : MeasurableSet s
hs : s = ∅
⊢ MeasurableSet ∅
[PROOFSTEP]
exact MeasurableSet.empty
[GOAL]
case hs
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
this : IsEmpty Ω
s : Set Ω
a✝ : MeasurableSet s
⊢ s = ∅
[PROOFSTEP]
haveI : Unique (Set Ω) := Set.uniqueEmpty
[GOAL]
case hs
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : IsEmpty ι
this✝ : IsEmpty Ω
s : Set Ω
a✝ : MeasurableSet s
this : Unique (Set Ω)
⊢ s = ∅
[PROOFSTEP]
rw [Unique.eq_default s, Unique.eq_default ∅]
[GOAL]
case inr
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
inst✝² : Preorder ι✝
f✝ : Filtration ι✝ m
τ✝ π : Ω → ι✝
ι : Type u_4
inst✝¹ : SemilatticeSup ι
f : Filtration ι m
τ : Ω → ι
inst✝ : IsCountablyGenerated atTop
hτ : IsStoppingTime f τ
h✝ : Nonempty ι
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
exact measurableSpace_le' hτ
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun x => i) = ↑f i
[PROOFSTEP]
ext1 s
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
⊢ MeasurableSet s ↔ MeasurableSet s
[PROOFSTEP]
change MeasurableSet[(isStoppingTime_const f i).measurableSpace] s ↔ MeasurableSet[f i] s
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
⊢ MeasurableSet s ↔ MeasurableSet s
[PROOFSTEP]
rw [IsStoppingTime.measurableSet]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
⊢ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})) ↔ MeasurableSet s
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
⊢ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})) → MeasurableSet s
[PROOFSTEP]
intro h
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
⊢ MeasurableSet s → ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})
[PROOFSTEP]
intro h
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})
⊢ MeasurableSet s
[PROOFSTEP]
specialize h i
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : MeasurableSet (s ∩ {ω | i ≤ i})
⊢ MeasurableSet s
[PROOFSTEP]
simpa only [le_refl, Set.setOf_true, Set.inter_univ] using h
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : MeasurableSet s
⊢ ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})
[PROOFSTEP]
intro j
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : MeasurableSet s
j : ι
⊢ MeasurableSet (s ∩ {ω | i ≤ j})
[PROOFSTEP]
by_cases hij : i ≤ j
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : MeasurableSet s
j : ι
hij : i ≤ j
⊢ MeasurableSet (s ∩ {ω | i ≤ j})
[PROOFSTEP]
simp only [hij, Set.setOf_true, Set.inter_univ]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : MeasurableSet s
j : ι
hij : i ≤ j
⊢ MeasurableSet s
[PROOFSTEP]
exact f.mono hij _ h
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f✝ : Filtration ι m
τ π : Ω → ι
f : Filtration ι m
i : ι
s : Set Ω
h : MeasurableSet s
j : ι
hij : ¬i ≤ j
⊢ MeasurableSet (s ∩ {ω | i ≤ j})
[PROOFSTEP]
simp only [hij, Set.setOf_false, Set.inter_empty, @MeasurableSet.empty _ (f.1 j)]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
⊢ MeasurableSet (s ∩ {ω | τ ω = i}) ↔ MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
have : ∀ j, {ω : Ω | τ ω = i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω = i} ∩ {_ω | i ≤ j} :=
by
intro j
ext1 ω
simp only [Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff]
intro hxi
rw [hxi]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
⊢ ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i j : ι
⊢ {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i j : ι
ω : Ω
⊢ ω ∈ {ω | τ ω = i} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | τ ω = i} ∩ {_ω | i ≤ j}
[PROOFSTEP]
simp only [Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i j : ι
ω : Ω
⊢ τ ω = i → (τ ω ≤ j ↔ i ≤ j)
[PROOFSTEP]
intro hxi
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i j : ι
ω : Ω
hxi : τ ω = i
⊢ τ ω ≤ j ↔ i ≤ j
[PROOFSTEP]
rw [hxi]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
⊢ MeasurableSet (s ∩ {ω | τ ω = i}) ↔ MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
⊢ MeasurableSet (s ∩ {ω | τ ω = i}) → MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
intro h
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
⊢ MeasurableSet (s ∩ {ω | τ ω = i}) → MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
intro h
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
⊢ MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
specialize h i
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i} ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
simpa only [Set.inter_assoc, this, le_refl, Set.setOf_true, Set.inter_univ] using h
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
⊢ MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
intro j
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
j : ι
⊢ MeasurableSet (s ∩ {ω | τ ω = i} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
rw [Set.inter_assoc, this]
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
j : ι
⊢ MeasurableSet (s ∩ ({ω | τ ω = i} ∩ {_ω | i ≤ j}))
[PROOFSTEP]
by_cases hij : i ≤ j
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
j : ι
hij : i ≤ j
⊢ MeasurableSet (s ∩ ({ω | τ ω = i} ∩ {_ω | i ≤ j}))
[PROOFSTEP]
simp only [hij, Set.setOf_true, Set.inter_univ]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
j : ι
hij : i ≤ j
⊢ MeasurableSet (s ∩ {ω | τ ω = i})
[PROOFSTEP]
exact f.mono hij _ h
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
j : ι
hij : ¬i ≤ j
⊢ MeasurableSet (s ∩ ({ω | τ ω = i} ∩ {_ω | i ≤ j}))
[PROOFSTEP]
simp [hij]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : Preorder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j}
h : MeasurableSet (s ∩ {ω | τ ω = i})
j : ι
hij : ¬i ≤ j
⊢ MeasurableSet ∅
[PROOFSTEP]
convert @MeasurableSet.empty _ (Filtration.seq f j)
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.96517
inst✝³ : SemilatticeSup ι
inst✝² : OrderBot ι
inst✝¹ : IsCountablyGenerated atTop
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
⊢ SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
[PROOFSTEP]
refine @sigmaFiniteTrim_mono _ _ ?_ _ _ _ ?_ ?_
[GOAL]
case refine_1
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.96517
inst✝³ : SemilatticeSup ι
inst✝² : OrderBot ι
inst✝¹ : IsCountablyGenerated atTop
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
⊢ MeasurableSpace Ω
[PROOFSTEP]
exact f ⊥
[GOAL]
case refine_2
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.96517
inst✝³ : SemilatticeSup ι
inst✝² : OrderBot ι
inst✝¹ : IsCountablyGenerated atTop
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
⊢ ↑f ⊥ ≤ IsStoppingTime.measurableSpace hτ
[PROOFSTEP]
exact hτ.le_measurableSpace_of_const_le fun _ => bot_le
[GOAL]
case refine_3
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.96517
inst✝³ : SemilatticeSup ι
inst✝² : OrderBot ι
inst✝¹ : IsCountablyGenerated atTop
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
⊢ SigmaFinite (Measure.trim μ (_ : ↑f ⊥ ≤ m))
[PROOFSTEP]
infer_instance
[GOAL]
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.101660
inst✝² : SemilatticeSup ι
inst✝¹ : OrderBot ι
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
⊢ SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
[PROOFSTEP]
refine @sigmaFiniteTrim_mono _ _ ?_ _ _ _ ?_ ?_
[GOAL]
case refine_1
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.101660
inst✝² : SemilatticeSup ι
inst✝¹ : OrderBot ι
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
⊢ MeasurableSpace Ω
[PROOFSTEP]
exact f ⊥
[GOAL]
case refine_2
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.101660
inst✝² : SemilatticeSup ι
inst✝¹ : OrderBot ι
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
⊢ ↑f ⊥ ≤ IsStoppingTime.measurableSpace hτ
[PROOFSTEP]
exact hτ.le_measurableSpace_of_const_le fun _ => bot_le
[GOAL]
case refine_3
Ω : Type u_1
β : Type u_2
ι✝ : Type u_3
m : MeasurableSpace Ω
ι : Type ?u.101660
inst✝² : SemilatticeSup ι
inst✝¹ : OrderBot ι
μ : Measure Ω
f : Filtration ι m
τ : Ω → ι
inst✝ : SigmaFiniteFiltration μ f
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
⊢ SigmaFinite (Measure.trim μ (_ : ↑f ⊥ ≤ m))
[PROOFSTEP]
infer_instance
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω ≤ i}
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i j : ι
⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
have : {ω : Ω | τ ω ≤ i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω ≤ min i j} := by ext1 ω;
simp only [Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i j : ι
⊢ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} = {ω | τ ω ≤ min i j}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i j : ι
ω : Ω
⊢ ω ∈ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | τ ω ≤ min i j}
[PROOFSTEP]
simp only [Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i j : ι
this : {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} = {ω | τ ω ≤ min i j}
⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i j : ι
this : {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} = {ω | τ ω ≤ min i j}
⊢ MeasurableSet {ω | τ ω ≤ min i j}
[PROOFSTEP]
exact f.mono (min_le_right i j) _ (hτ _)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | i < τ ω}
[PROOFSTEP]
have : {ω : Ω | i < τ ω} = {ω : Ω | τ ω ≤ i}ᶜ := by ext1 ω; simp
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
⊢ {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ ω ∈ {ω | i < τ ω} ↔ ω ∈ {ω | τ ω ≤ i}ᶜ
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ
⊢ MeasurableSet {ω | i < τ ω}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ
⊢ MeasurableSet {ω | τ ω ≤ i}ᶜ
[PROOFSTEP]
exact (hτ.measurableSet_le' i).compl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
rw [← Set.univ_inter {ω | τ ω = i}, measurableSet_inter_eq_iff, Set.univ_inter]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
exact hτ.measurableSet_eq i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} := by
ext1 ω
simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union]
rw [@eq_comm _ i, or_comm]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω = i} ∪ {ω | i < τ ω}
[PROOFSTEP]
simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ i < τ ω ∨ i = τ ω ↔ τ ω = i ∨ i < τ ω
[PROOFSTEP]
rw [@eq_comm _ i, or_comm]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}
⊢ MeasurableSet ({ω | τ ω = i} ∪ {ω | i < τ ω})
[PROOFSTEP]
exact (hτ.measurableSet_eq' i).union (hτ.measurableSet_gt' i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by
ext1 ω
simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
ω : Ω
⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i}
[PROOFSTEP]
simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝³ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝² : TopologicalSpace ι
inst✝¹ : OrderTopology ι
inst✝ : FirstCountableTopology ι
hτ : IsStoppingTime f τ
i : ι
this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i})
[PROOFSTEP]
exact (hτ.measurableSet_le' i).diff (hτ.measurableSet_eq' i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
rw [← Set.univ_inter {ω | τ ω = i}, measurableSet_inter_eq_iff, Set.univ_inter]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
exact hτ.measurableSet_eq_of_countable_range h_countable i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} := by
ext1 ω
simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union]
rw [@eq_comm _ i, or_comm]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
ω : Ω
⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω = i} ∪ {ω | i < τ ω}
[PROOFSTEP]
simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
ω : Ω
⊢ i < τ ω ∨ i = τ ω ↔ τ ω = i ∨ i < τ ω
[PROOFSTEP]
rw [@eq_comm _ i, or_comm]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}
⊢ MeasurableSet {ω | i ≤ τ ω}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω}
⊢ MeasurableSet ({ω | τ ω = i} ∪ {ω | i < τ ω})
[PROOFSTEP]
exact (hτ.measurableSet_eq_of_countable_range' h_countable i).union (hτ.measurableSet_gt' i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by
ext1 ω
simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
ω : Ω
⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i}
[PROOFSTEP]
simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
⊢ MeasurableSet {ω | τ ω < i}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
i : ι
this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i})
[PROOFSTEP]
exact (hτ.measurableSet_le' i).diff (hτ.measurableSet_eq_of_countable_range' h_countable i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
⊢ IsStoppingTime.measurableSpace hτ ≤ m
[PROOFSTEP]
intro s hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : MeasurableSet s
⊢ MeasurableSet s
[PROOFSTEP]
change ∀ i, MeasurableSet[f i] (s ∩ {ω | τ ω ≤ i}) at hs
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet s
[PROOFSTEP]
rw [(_ : s = ⋃ i ∈ Set.range τ, s ∩ {ω | τ ω ≤ i})]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet (⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
exact MeasurableSet.biUnion h_countable fun i _ => f.le i _ (hs i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ s = ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ s ↔ ω ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
constructor
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ s → ω ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} → ω ∈ s
[PROOFSTEP]
rw [Set.mem_iUnion]
[GOAL]
case h.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ ω ∈ s → ∃ i, ω ∈ ⋃ (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
exact fun hx => ⟨τ ω, by simpa using hx⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
hx : ω ∈ s
⊢ ω ∈ ⋃ (_ : τ ω ∈ Set.range τ), s ∩ {ω_1 | τ ω_1 ≤ τ ω}
[PROOFSTEP]
simpa using hx
[GOAL]
case h.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
⊢ (∃ i, ω ∈ ⋃ (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}) → ω ∈ s
[PROOFSTEP]
rintro ⟨i, hx⟩
[GOAL]
case h.mpr.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
i : ι
hx : ω ∈ ⋃ (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}
⊢ ω ∈ s
[PROOFSTEP]
simp only [Set.mem_range, Set.iUnion_exists, Set.mem_iUnion, Set.mem_inter_iff, Set.mem_setOf_eq, exists_prop,
exists_and_right] at hx
[GOAL]
case h.mpr.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
h_countable : Set.Countable (Set.range τ)
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
ω : Ω
i : ι
hx : (∃ y, τ y = i) ∧ ω ∈ s ∧ τ ω ≤ i
⊢ ω ∈ s
[PROOFSTEP]
exact hx.2.1
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) (π ω)) =
IsStoppingTime.measurableSpace hτ ⊓ IsStoppingTime.measurableSpace hπ
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) (π ω)) ≤
IsStoppingTime.measurableSpace hτ ⊓ IsStoppingTime.measurableSpace hπ
[PROOFSTEP]
exact le_inf (measurableSpace_mono _ hτ fun _ => min_le_left _ _) (measurableSpace_mono _ hπ fun _ => min_le_right _ _)
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ IsStoppingTime.measurableSpace hτ ⊓ IsStoppingTime.measurableSpace hπ ≤
IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) (π ω))
[PROOFSTEP]
intro s
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet s → MeasurableSet s
[PROOFSTEP]
change
MeasurableSet[hτ.measurableSpace] s ∧ MeasurableSet[hπ.measurableSpace] s →
MeasurableSet[(hτ.min hπ).measurableSpace] s
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet s ∧ MeasurableSet s → MeasurableSet s
[PROOFSTEP]
simp_rw [IsStoppingTime.measurableSet]
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ ((∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) ∧ ∀ (i : ι), MeasurableSet (s ∩ {ω | π ω ≤ i})) →
∀ (i : ι), MeasurableSet (s ∩ {ω | min (τ ω) (π ω) ≤ i})
[PROOFSTEP]
have : ∀ i, {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} := by intro i; ext1 ω; simp
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ ∀ (i : ι), {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i}
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
i : ι
⊢ {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
i : ι
ω : Ω
⊢ ω ∈ {ω | min (τ ω) (π ω) ≤ i} ↔ ω ∈ {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i}
[PROOFSTEP]
simp
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
this : ∀ (i : ι), {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i}
⊢ ((∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) ∧ ∀ (i : ι), MeasurableSet (s ∩ {ω | π ω ≤ i})) →
∀ (i : ι), MeasurableSet (s ∩ {ω | min (τ ω) (π ω) ≤ i})
[PROOFSTEP]
simp_rw [this, Set.inter_union_distrib_left]
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
this : ∀ (i : ι), {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i}
⊢ ((∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) ∧ ∀ (i : ι), MeasurableSet (s ∩ {ω | π ω ≤ i})) →
∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∪ s ∩ {ω | π ω ≤ i})
[PROOFSTEP]
exact fun h i => (h.left i).union (h.right i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s
[PROOFSTEP]
rw [measurableSpace_min hτ hπ]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
i : ι
⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) i) = IsStoppingTime.measurableSpace hτ ⊓ ↑f i
[PROOFSTEP]
rw [hτ.measurableSpace_min (isStoppingTime_const _ i), measurableSpace_const]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s
[PROOFSTEP]
rw [measurableSpace_min_const hτ]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s
[PROOFSTEP]
apply MeasurableSpace.measurableSet_inf
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : MeasurableSet s
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
simp_rw [IsStoppingTime.measurableSet] at hs ⊢
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
⊢ ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i})
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i})
[PROOFSTEP]
have :
s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} :=
by
ext1 ω
simp only [min_le_iff, Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff, le_refl, true_and_iff, and_true_iff,
true_or_iff, or_true_iff]
by_cases hτi : τ ω ≤ i
· simp only [hτi, true_or_iff, and_true_iff, and_congr_right_iff]
intro
constructor <;> intro h
· exact Or.inl h
· cases' h with h h
· exact h
· exact hτi.trans h
simp only [hτi, false_or_iff, and_false_iff, false_and_iff, iff_false_iff, not_and, not_le, and_imp]
refine' fun _ hτ_le_π => lt_of_lt_of_le _ hτ_le_π
rw [← not_le]
exact hτi
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
⊢ s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
⊢ ω ∈ s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} ↔
ω ∈ s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
[PROOFSTEP]
simp only [min_le_iff, Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff, le_refl, true_and_iff, and_true_iff,
true_or_iff, or_true_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω)
[PROOFSTEP]
by_cases hτi : τ ω ≤ i
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω)
[PROOFSTEP]
simp only [hτi, true_or_iff, and_true_iff, and_congr_right_iff]
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
⊢ ω ∈ s → (τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ i ≤ π ω)
[PROOFSTEP]
intro
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ i ≤ π ω
[PROOFSTEP]
constructor
[GOAL]
case pos.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
⊢ τ ω ≤ π ω → τ ω ≤ π ω ∨ i ≤ π ω
[PROOFSTEP]
intro h
[GOAL]
case pos.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
⊢ τ ω ≤ π ω ∨ i ≤ π ω → τ ω ≤ π ω
[PROOFSTEP]
intro h
[GOAL]
case pos.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
h : τ ω ≤ π ω
⊢ τ ω ≤ π ω ∨ i ≤ π ω
[PROOFSTEP]
exact Or.inl h
[GOAL]
case pos.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
h : τ ω ≤ π ω ∨ i ≤ π ω
⊢ τ ω ≤ π ω
[PROOFSTEP]
cases' h with h h
[GOAL]
case pos.mpr.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
h : τ ω ≤ π ω
⊢ τ ω ≤ π ω
[PROOFSTEP]
exact h
[GOAL]
case pos.mpr.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : τ ω ≤ i
a✝ : ω ∈ s
h : i ≤ π ω
⊢ τ ω ≤ π ω
[PROOFSTEP]
exact hτi.trans h
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : ¬τ ω ≤ i
⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω)
[PROOFSTEP]
simp only [hτi, false_or_iff, and_false_iff, false_and_iff, iff_false_iff, not_and, not_le, and_imp]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : ¬τ ω ≤ i
⊢ ω ∈ s → τ ω ≤ π ω → i < π ω
[PROOFSTEP]
refine' fun _ hτ_le_π => lt_of_lt_of_le _ hτ_le_π
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : ¬τ ω ≤ i
x✝ : ω ∈ s
hτ_le_π : τ ω ≤ π ω
⊢ i < τ ω
[PROOFSTEP]
rw [← not_le]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
ω : Ω
hτi : ¬τ ω ≤ i
x✝ : ω ∈ s
hτ_le_π : τ ω ≤ π ω
⊢ ¬τ ω ≤ i
[PROOFSTEP]
exact hτi
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
this :
s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i})
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
this :
s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i})
[PROOFSTEP]
refine' ((hs i).inter ((hτ.min hπ) i)).inter _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
this :
s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
⊢ MeasurableSet {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
[PROOFSTEP]
apply @measurableSet_le _ _ _ _ _ (Filtration.seq f i) _ _ _ _ _ ?_ ?_
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
this :
s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
⊢ Measurable fun a => min (τ a) i
[PROOFSTEP]
exact (hτ.min_const i).measurable_of_le fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})
i : ι
this :
s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} =
s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}
⊢ Measurable fun a => min (min (τ a) (π a)) i
[PROOFSTEP]
exact ((hτ.min hπ).min_const i).measurable_of_le fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ↔ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) → MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
intro h
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) → MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
intro h
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
have : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω} := by rw [Set.inter_assoc, Set.inter_self]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
⊢ s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω}
[PROOFSTEP]
rw [Set.inter_assoc, Set.inter_self]
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
this : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω}
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
rw [this]
[GOAL]
case mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
this : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω}
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
exact measurableSet_inter_le _ hπ _ h
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
rw [measurableSet_min_iff hτ hπ] at h
[GOAL]
case mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
s : Set Ω
h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ∧ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω})
[PROOFSTEP]
exact h.1
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i}) ↔ MeasurableSet (s ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
rw [IsStoppingTime.measurableSet_min_iff hτ (isStoppingTime_const _ i), IsStoppingTime.measurableSpace_const,
IsStoppingTime.measurableSet]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
⊢ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i_1})) ↔
(∀ (i_1 : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i_1})) ∧ MeasurableSet (s ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
refine' ⟨fun h => ⟨h, _⟩, fun h j => h.1 j⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
h : ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i_1})
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
specialize h i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
hτ : IsStoppingTime f τ
s : Set Ω
i : ι
h : MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i})
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
rwa [Set.inter_assoc, Set.inter_self] at h
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ MeasurableSet {ω | τ ω ≤ π ω}
[PROOFSTEP]
rw [hτ.measurableSet]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ ∀ (i : ι), MeasurableSet ({ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
⊢ MeasurableSet ({ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
have : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} :=
by
ext1 ω
simp only [Set.mem_inter_iff, Set.mem_setOf_eq, min_le_iff, le_min_iff, le_refl, and_true_iff, and_congr_left_iff]
intro h
simp only [h, or_self_iff, and_true_iff]
by_cases hj : j ≤ π ω
· simp only [hj, h.trans hj, or_self_iff]
· simp only [hj, or_false_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
⊢ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
⊢ ω ∈ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
[PROOFSTEP]
simp only [Set.mem_inter_iff, Set.mem_setOf_eq, min_le_iff, le_min_iff, le_refl, and_true_iff, and_congr_left_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
⊢ τ ω ≤ j → (τ ω ≤ π ω ↔ (τ ω ≤ π ω ∨ j ≤ π ω) ∧ (τ ω ≤ j ∨ True))
[PROOFSTEP]
intro h
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω ≤ j
⊢ τ ω ≤ π ω ↔ (τ ω ≤ π ω ∨ j ≤ π ω) ∧ (τ ω ≤ j ∨ True)
[PROOFSTEP]
simp only [h, or_self_iff, and_true_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω ≤ j
⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ j ≤ π ω
[PROOFSTEP]
by_cases hj : j ≤ π ω
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω ≤ j
hj : j ≤ π ω
⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ j ≤ π ω
[PROOFSTEP]
simp only [hj, h.trans hj, or_self_iff]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω ≤ j
hj : ¬j ≤ π ω
⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ j ≤ π ω
[PROOFSTEP]
simp only [hj, or_false_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
⊢ MeasurableSet ({ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
⊢ MeasurableSet ({ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
refine' MeasurableSet.inter _ (hτ.measurableSet_le j)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
⊢ MeasurableSet {ω | min (τ ω) j ≤ min (π ω) j}
[PROOFSTEP]
apply @measurableSet_le _ _ _ _ _ (Filtration.seq f j) _ _ _ _ _ ?_ ?_
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
⊢ Measurable fun a => min (τ a) j
[PROOFSTEP]
exact (hτ.min_const j).measurable_of_le fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}
⊢ Measurable fun a => min (π a) j
[PROOFSTEP]
exact (hπ.min_const j).measurable_of_le fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ MeasurableSet {ω | τ ω ≤ π ω}
[PROOFSTEP]
suffices MeasurableSet[(hτ.min hπ).measurableSpace] {ω : Ω | τ ω ≤ π ω} by rw [measurableSet_min_iff hτ hπ] at this ;
exact this.2
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
this : MeasurableSet {ω | τ ω ≤ π ω}
⊢ MeasurableSet {ω | τ ω ≤ π ω}
[PROOFSTEP]
rw [measurableSet_min_iff hτ hπ] at this
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
this : MeasurableSet {ω | τ ω ≤ π ω} ∧ MeasurableSet {ω | τ ω ≤ π ω}
⊢ MeasurableSet {ω | τ ω ≤ π ω}
[PROOFSTEP]
exact this.2
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ MeasurableSet {ω | τ ω ≤ π ω}
[PROOFSTEP]
rw [← Set.univ_inter {ω : Ω | τ ω ≤ π ω}, ← hτ.measurableSet_inter_le_iff hπ, Set.univ_inter]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : SecondCountableTopology ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSpace ι
inst✝ : BorelSpace ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ MeasurableSet {ω | τ ω ≤ π ω}
[PROOFSTEP]
exact measurableSet_le_stopping_time hτ hπ
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ MeasurableSet {ω | τ ω = π ω}
[PROOFSTEP]
rw [hτ.measurableSet]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ ∀ (i : ι), MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} :=
by
ext1 ω
simp only [Set.mem_inter_iff, Set.mem_setOf_eq]
refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩
· rw [h.1]
· rw [← h.1]; exact h.2
· cases' h with h' hσ_le
cases' h' with h_eq hτ_le
rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
⊢ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
⊢ ω ∈ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
[PROOFSTEP]
simp only [Set.mem_inter_iff, Set.mem_setOf_eq]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
⊢ τ ω = π ω ∧ τ ω ≤ j ↔ (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j
[PROOFSTEP]
refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩
[GOAL]
case h.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω = π ω ∧ τ ω ≤ j
⊢ min (τ ω) j = min (π ω) j
[PROOFSTEP]
rw [h.1]
[GOAL]
case h.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω = π ω ∧ τ ω ≤ j
⊢ π ω ≤ j
[PROOFSTEP]
rw [← h.1]
[GOAL]
case h.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω = π ω ∧ τ ω ≤ j
⊢ τ ω ≤ j
[PROOFSTEP]
exact h.2
[GOAL]
case h.refine'_3
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j
⊢ τ ω = π ω
[PROOFSTEP]
cases' h with h' hσ_le
[GOAL]
case h.refine'_3.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h' : min (τ ω) j = min (π ω) j ∧ τ ω ≤ j
hσ_le : π ω ≤ j
⊢ τ ω = π ω
[PROOFSTEP]
cases' h' with h_eq hτ_le
[GOAL]
case h.refine'_3.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
hσ_le : π ω ≤ j
h_eq : min (τ ω) j = min (π ω) j
hτ_le : τ ω ≤ j
⊢ τ ω = π ω
[PROOFSTEP]
rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ MeasurableSet ({ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j})
[PROOFSTEP]
refine' MeasurableSet.inter (MeasurableSet.inter _ (hτ.measurableSet_le j)) (hπ.measurableSet_le j)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ MeasurableSet {ω | min (τ ω) j = min (π ω) j}
[PROOFSTEP]
apply measurableSet_eq_fun
[GOAL]
case hf
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ Measurable fun x => min (τ x) j
[PROOFSTEP]
exact (hτ.min_const j).measurable_of_le fun _ => min_le_right _ _
[GOAL]
case hg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁸ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁷ : AddGroup ι
inst✝⁶ : TopologicalSpace ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : BorelSpace ι
inst✝³ : OrderTopology ι
inst✝² : MeasurableSingletonClass ι
inst✝¹ : SecondCountableTopology ι
inst✝ : MeasurableSub₂ ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ Measurable fun x => min (π x) j
[PROOFSTEP]
exact (hπ.min_const j).measurable_of_le fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ MeasurableSet {ω | τ ω = π ω}
[PROOFSTEP]
rw [hτ.measurableSet]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
⊢ ∀ (i : ι), MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
intro j
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} :=
by
ext1 ω
simp only [Set.mem_inter_iff, Set.mem_setOf_eq]
refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩
· rw [h.1]
· rw [← h.1]; exact h.2
· cases' h with h' hπ_le
cases' h' with h_eq hτ_le
rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
⊢ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
⊢ ω ∈ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
[PROOFSTEP]
simp only [Set.mem_inter_iff, Set.mem_setOf_eq]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
⊢ τ ω = π ω ∧ τ ω ≤ j ↔ (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j
[PROOFSTEP]
refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩
[GOAL]
case h.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω = π ω ∧ τ ω ≤ j
⊢ min (τ ω) j = min (π ω) j
[PROOFSTEP]
rw [h.1]
[GOAL]
case h.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω = π ω ∧ τ ω ≤ j
⊢ π ω ≤ j
[PROOFSTEP]
rw [← h.1]
[GOAL]
case h.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : τ ω = π ω ∧ τ ω ≤ j
⊢ τ ω ≤ j
[PROOFSTEP]
exact h.2
[GOAL]
case h.refine'_3
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h : (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j
⊢ τ ω = π ω
[PROOFSTEP]
cases' h with h' hπ_le
[GOAL]
case h.refine'_3.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
h' : min (τ ω) j = min (π ω) j ∧ τ ω ≤ j
hπ_le : π ω ≤ j
⊢ τ ω = π ω
[PROOFSTEP]
cases' h' with h_eq hτ_le
[GOAL]
case h.refine'_3.intro.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
ω : Ω
hπ_le : π ω ≤ j
h_eq : min (τ ω) j = min (π ω) j
hτ_le : τ ω ≤ j
⊢ τ ω = π ω
[PROOFSTEP]
rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j})
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ MeasurableSet ({ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j})
[PROOFSTEP]
refine' MeasurableSet.inter (MeasurableSet.inter _ (hτ.measurableSet_le j)) (hπ.measurableSet_le j)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ MeasurableSet {ω | min (τ ω) j = min (π ω) j}
[PROOFSTEP]
apply measurableSet_eq_fun_of_countable
[GOAL]
case hf
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ Measurable fun x => min (τ x) j
[PROOFSTEP]
exact (hτ.min_const j).measurable_of_le fun _ => min_le_right _ _
[GOAL]
case hg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
f : Filtration ι m
τ π : Ω → ι
inst✝⁶ : Countable ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : MeasurableSpace ι
inst✝³ : BorelSpace ι
inst✝² : OrderTopology ι
inst✝¹ : MeasurableSingletonClass ι
inst✝ : SecondCountableTopology ι
hτ : IsStoppingTime f τ
hπ : IsStoppingTime f π
j : ι
this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}
⊢ Measurable fun x => min (π x) j
[PROOFSTEP]
exact (hπ.min_const j).measurable_of_le fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
u : ι → Ω → β
τ : Ω → ι
i : ι
ω : Ω
h : i ≤ τ ω
⊢ stoppedProcess u τ i ω = u i ω
[PROOFSTEP]
simp [stoppedProcess, min_eq_left h]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝ : LinearOrder ι
u : ι → Ω → β
τ : Ω → ι
i : ι
ω : Ω
h : τ ω ≤ i
⊢ stoppedProcess u τ i ω = u (τ ω) ω
[PROOFSTEP]
simp [stoppedProcess, min_eq_right h]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
⊢ ProgMeasurable f fun i ω => min i (τ ω)
[PROOFSTEP]
intro i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
let m_prod : MeasurableSpace (Set.Iic i × Ω) := Subtype.instMeasurableSpace.prod (f i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
let m_set : ∀ t : Set (Set.Iic i × Ω), MeasurableSpace t := fun _ =>
@Subtype.instMeasurableSpace (Set.Iic i × Ω) _ m_prod
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
let s := {p : Set.Iic i × Ω | τ p.2 ≤ i}
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
have hs : MeasurableSet[m_prod] s := @measurable_snd (Set.Iic i) Ω _ (f i) _ (hτ i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
have h_meas_fst : ∀ t : Set (Set.Iic i × Ω), Measurable[m_set t] fun x : t => ((x : Set.Iic i × Ω).fst : ι) := fun t =>
(@measurable_subtype_coe (Set.Iic i × Ω) m_prod _).fst.subtype_val
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
apply Measurable.stronglyMeasurable
[GOAL]
case hf
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
⊢ Measurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd
[PROOFSTEP]
refine' measurable_of_restrict_of_restrict_compl hs _ _
[GOAL]
case hf.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
⊢ Measurable (Set.restrict s fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd)
[PROOFSTEP]
refine @Measurable.min _ _ _ _ _ (m_set s) _ _ _ _ _ (h_meas_fst s) ?_
[GOAL]
case hf.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
⊢ Measurable fun a => τ (↑a).snd
[PROOFSTEP]
refine' @measurable_of_Iic ι s _ _ _ (m_set s) _ _ _ _ fun j => _
[GOAL]
case hf.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
⊢ MeasurableSet ((fun a => τ (↑a).snd) ⁻¹' Set.Iic j)
[PROOFSTEP]
have h_set_eq :
(fun x : s => τ (x : Set.Iic i × Ω).snd) ⁻¹' Set.Iic j =
(fun x : s => (x : Set.Iic i × Ω).snd) ⁻¹' {ω | τ ω ≤ min i j} :=
by
ext1 ω
simp only [Set.mem_preimage, Set.mem_Iic, iff_and_self, le_min_iff, Set.mem_setOf_eq]
exact fun _ => ω.prop
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
⊢ (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
ω : ↑s
⊢ ω ∈ (fun x => τ (↑x).snd) ⁻¹' Set.Iic j ↔ ω ∈ (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
[PROOFSTEP]
simp only [Set.mem_preimage, Set.mem_Iic, iff_and_self, le_min_iff, Set.mem_setOf_eq]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
ω : ↑s
⊢ τ (↑ω).snd ≤ j → τ (↑ω).snd ≤ i
[PROOFSTEP]
exact fun _ => ω.prop
[GOAL]
case hf.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
⊢ MeasurableSet ((fun a => τ (↑a).snd) ⁻¹' Set.Iic j)
[PROOFSTEP]
rw [h_set_eq]
[GOAL]
case hf.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
⊢ MeasurableSet ((fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j})
[PROOFSTEP]
suffices h_meas : @Measurable _ _ (m_set s) (f i) fun x : s => (x : Set.Iic i × Ω).snd
[GOAL]
case hf.refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
h_meas : Measurable fun x => (↑x).snd
⊢ MeasurableSet ((fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j})
case h_meas
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
⊢ Measurable fun x => (↑x).snd
[PROOFSTEP]
exact h_meas (f.mono (min_le_left _ _) _ (hτ.measurableSet_le (min i j)))
[GOAL]
case h_meas
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
j : ι
h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}
⊢ Measurable fun x => (↑x).snd
[PROOFSTEP]
exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _)
[GOAL]
case hf.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
⊢ Measurable (Set.restrict sᶜ fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd)
[PROOFSTEP]
letI sc := sᶜ
[GOAL]
case hf.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
⊢ Measurable (Set.restrict sᶜ fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd)
[PROOFSTEP]
suffices h_min_eq_left :
(fun x : sc => min (↑(x : Set.Iic i × Ω).fst) (τ (x : Set.Iic i × Ω).snd)) = fun x : sc => ↑(x : Set.Iic i × Ω).fst
[GOAL]
case hf.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
h_min_eq_left : (fun x => min (↑(↑x).fst) (τ (↑x).snd)) = fun x => ↑(↑x).fst
⊢ Measurable (Set.restrict sᶜ fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd)
[PROOFSTEP]
simp_rw [Set.restrict, h_min_eq_left]
[GOAL]
case hf.refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
h_min_eq_left : (fun x => min (↑(↑x).fst) (τ (↑x).snd)) = fun x => ↑(↑x).fst
⊢ Measurable fun x => ↑(↑x).fst
[PROOFSTEP]
exact h_meas_fst _
[GOAL]
case h_min_eq_left
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
⊢ (fun x => min (↑(↑x).fst) (τ (↑x).snd)) = fun x => ↑(↑x).fst
[PROOFSTEP]
ext1 ω
[GOAL]
case h_min_eq_left.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
ω : ↑sc
⊢ min (↑(↑ω).fst) (τ (↑ω).snd) = ↑(↑ω).fst
[PROOFSTEP]
rw [min_eq_left]
[GOAL]
case h_min_eq_left.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
ω : ↑sc
⊢ ↑(↑ω).fst ≤ τ (↑ω).snd
[PROOFSTEP]
have hx_fst_le : ↑(ω : Set.Iic i × Ω).fst ≤ i := (ω : Set.Iic i × Ω).fst.prop
[GOAL]
case h_min_eq_left.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
ω : ↑sc
hx_fst_le : ↑(↑ω).fst ≤ i
⊢ ↑(↑ω).fst ≤ τ (↑ω).snd
[PROOFSTEP]
refine' hx_fst_le.trans (le_of_lt _)
[GOAL]
case h_min_eq_left.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
ω : ↑sc
hx_fst_le : ↑(↑ω).fst ≤ i
⊢ i < τ (↑ω).snd
[PROOFSTEP]
convert ω.prop
[GOAL]
case a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁷ : LinearOrder ι
inst✝⁶ : MeasurableSpace ι
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : SecondCountableTopology ι
inst✝² : BorelSpace ι
inst✝¹ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝ : MetrizableSpace ι
hτ : IsStoppingTime f τ
i : ι
m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i)
m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace
s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i}
hs : MeasurableSet s
h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst
sc : Set (↑(Set.Iic i) × Ω) := sᶜ
ω : ↑sc
hx_fst_le : ↑(↑ω).fst ≤ i
⊢ i < τ (↑ω).snd ↔ ↑ω ∈ sc
[PROOFSTEP]
simp only [not_le, Set.mem_compl_iff, Set.mem_setOf_eq]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : LinearOrder ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
inst✝ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
h : ProgMeasurable f u
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
⊢ StronglyMeasurable (stoppedValue u τ)
[PROOFSTEP]
have : stoppedValue u τ = (fun p : Set.Iic n × Ω => u (↑p.fst) p.snd) ∘ fun ω => (⟨τ ω, hτ_le ω⟩, ω) := by ext1 ω;
simp only [stoppedValue, Function.comp_apply, Subtype.coe_mk]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : LinearOrder ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
inst✝ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
h : ProgMeasurable f u
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
⊢ stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : LinearOrder ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
inst✝ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
h : ProgMeasurable f u
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
ω : Ω
⊢ stoppedValue u τ ω = ((fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)) ω
[PROOFSTEP]
simp only [stoppedValue, Function.comp_apply, Subtype.coe_mk]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : LinearOrder ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
inst✝ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
h : ProgMeasurable f u
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
this : stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)
⊢ StronglyMeasurable (stoppedValue u τ)
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : LinearOrder ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
inst✝ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
h : ProgMeasurable f u
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
this : stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)
⊢ StronglyMeasurable ((fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω))
[PROOFSTEP]
refine' StronglyMeasurable.comp_measurable (h n) _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁶ : LinearOrder ι
inst✝⁵ : MeasurableSpace ι
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
inst✝ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
h : ProgMeasurable f u
hτ : IsStoppingTime f τ
n : ι
hτ_le : ∀ (ω : Ω), τ ω ≤ n
this : stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)
⊢ Measurable fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)
[PROOFSTEP]
exact (hτ.measurable_of_le hτ_le).subtype_mk.prod_mk measurable_id
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
⊢ Measurable (stoppedValue u τ)
[PROOFSTEP]
have h_str_meas : ∀ i, StronglyMeasurable[f i] (stoppedValue u fun ω => min (τ ω) i) := fun i =>
stronglyMeasurable_stoppedValue_of_le hf_prog (hτ.min_const i) fun _ => min_le_right _ _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
⊢ Measurable (stoppedValue u τ)
[PROOFSTEP]
intro t ht i
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
⊢ MeasurableSet (stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
suffices stoppedValue u τ ⁻¹' t ∩ {ω : Ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω : Ω | τ ω ≤ i} by
rw [this]; exact ((h_str_meas i).measurable ht).inter (hτ.measurableSet_le i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i}
⊢ MeasurableSet (stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i}
⊢ MeasurableSet ((stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i})
[PROOFSTEP]
exact ((h_str_meas i).measurable ht).inter (hτ.measurableSet_le i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
⊢ stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
ω : Ω
⊢ ω ∈ stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} ↔ ω ∈ (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i}
[PROOFSTEP]
simp only [stoppedValue, Set.mem_inter_iff, Set.mem_preimage, Set.mem_setOf_eq, and_congr_left_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
ω : Ω
⊢ τ ω ≤ i → (u (τ ω) ω ∈ t ↔ u (min (τ ω) i) ω ∈ t)
[PROOFSTEP]
intro h
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
inst✝⁸ : MeasurableSpace ι
inst✝⁷ : TopologicalSpace ι
inst✝⁶ : OrderTopology ι
inst✝⁵ : SecondCountableTopology ι
inst✝⁴ : BorelSpace ι
inst✝³ : TopologicalSpace β
u : ι → Ω → β
τ : Ω → ι
f : Filtration ι m
inst✝² : MetrizableSpace β
inst✝¹ : MeasurableSpace β
inst✝ : BorelSpace β
hf_prog : ProgMeasurable f u
hτ : IsStoppingTime f τ
h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i)
t : Set β
ht : MeasurableSet t
i : ι
ω : Ω
h : τ ω ≤ i
⊢ u (τ ω) ω ∈ t ↔ u (min (τ ω) i) ω ∈ t
[PROOFSTEP]
rw [min_eq_left h]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
⊢ stoppedValue u τ = ∑ i in s, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
ext y
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
⊢ stoppedValue u τ y = Finset.sum s (fun i => Set.indicator {ω | τ ω = i} (u i)) y
[PROOFSTEP]
rw [stoppedValue, Finset.sum_apply, Finset.sum_indicator_eq_sum_filter]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
⊢ u (τ y) y = ∑ i in Finset.filter (fun i => y ∈ {ω | τ ω = i}) s, u i y
[PROOFSTEP]
suffices Finset.filter (fun i => y ∈ {ω : Ω | τ ω = i}) s = ({τ y} : Finset ι) by rw [this, Finset.sum_singleton]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
this : Finset.filter (fun i => y ∈ {ω | τ ω = i}) s = {τ y}
⊢ u (τ y) y = ∑ i in Finset.filter (fun i => y ∈ {ω | τ ω = i}) s, u i y
[PROOFSTEP]
rw [this, Finset.sum_singleton]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
⊢ Finset.filter (fun i => y ∈ {ω | τ ω = i}) s = {τ y}
[PROOFSTEP]
ext1 ω
[GOAL]
case h.a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
⊢ ω ∈ Finset.filter (fun i => y ∈ {ω | τ ω = i}) s ↔ ω ∈ {τ y}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, Finset.mem_filter, Finset.mem_singleton]
[GOAL]
case h.a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
⊢ ω ∈ s ∧ τ y = ω ↔ ω = τ y
[PROOFSTEP]
constructor
[GOAL]
case h.a.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
⊢ ω ∈ s ∧ τ y = ω → ω = τ y
[PROOFSTEP]
intro h
[GOAL]
case h.a.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
⊢ ω = τ y → ω ∈ s ∧ τ y = ω
[PROOFSTEP]
intro h
[GOAL]
case h.a.mp
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
h : ω ∈ s ∧ τ y = ω
⊢ ω = τ y
[PROOFSTEP]
exact h.2.symm
[GOAL]
case h.a.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
h : ω = τ y
⊢ ω ∈ s ∧ τ y = ω
[PROOFSTEP]
refine' ⟨_, h.symm⟩
[GOAL]
case h.a.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
h : ω = τ y
⊢ ω ∈ s
[PROOFSTEP]
rw [h]
[GOAL]
case h.a.mpr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝ : AddCommMonoid E
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
y : Ω
ω : ι
h : ω = τ y
⊢ τ y ∈ s
[PROOFSTEP]
exact hbdd y
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ stoppedProcess u τ n =
Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
⊢ stoppedProcess u τ n ω =
(Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) ω
[PROOFSTEP]
rw [Pi.add_apply, Finset.sum_apply]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
⊢ stoppedProcess u τ n ω =
Set.indicator {a | n ≤ τ a} (u n) ω + ∑ c in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = c} (u c) ω
[PROOFSTEP]
cases' le_or_lt n (τ ω) with h h
[GOAL]
case h.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : n ≤ τ ω
⊢ stoppedProcess u τ n ω =
Set.indicator {a | n ≤ τ a} (u n) ω + ∑ c in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = c} (u c) ω
[PROOFSTEP]
rw [stoppedProcess_eq_of_le h, Set.indicator_of_mem, Finset.sum_eq_zero, add_zero]
[GOAL]
case h.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : n ≤ τ ω
⊢ ∀ (x : ι), x ∈ Finset.filter (fun x => x < n) s → Set.indicator {ω | τ ω = x} (u x) ω = 0
[PROOFSTEP]
intro m hm
[GOAL]
case h.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : n ≤ τ ω
m : ι
hm : m ∈ Finset.filter (fun x => x < n) s
⊢ Set.indicator {ω | τ ω = m} (u m) ω = 0
[PROOFSTEP]
refine' Set.indicator_of_not_mem _ _
[GOAL]
case h.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : n ≤ τ ω
m : ι
hm : m ∈ Finset.filter (fun x => x < n) s
⊢ ¬ω ∈ {ω | τ ω = m}
[PROOFSTEP]
rw [Finset.mem_filter] at hm
[GOAL]
case h.inl
Ω : Type u_1
β : Type u_2
ι : Type u_3
m✝ : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : n ≤ τ ω
m : ι
hm : m ∈ s ∧ m < n
⊢ ¬ω ∈ {ω | τ ω = m}
[PROOFSTEP]
exact (hm.2.trans_le h).ne'
[GOAL]
case h.inl.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : n ≤ τ ω
⊢ ω ∈ {a | n ≤ τ a}
[PROOFSTEP]
exact h
[GOAL]
case h.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ stoppedProcess u τ n ω =
Set.indicator {a | n ≤ τ a} (u n) ω + ∑ c in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = c} (u c) ω
[PROOFSTEP]
rw [stoppedProcess_eq_of_ge (le_of_lt h), Finset.sum_eq_single_of_mem (τ ω)]
[GOAL]
case h.inr
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ u (τ ω) ω = Set.indicator {a | n ≤ τ a} (u n) ω + Set.indicator {ω_1 | τ ω_1 = τ ω} (u (τ ω)) ω
[PROOFSTEP]
rw [Set.indicator_of_not_mem, zero_add, Set.indicator_of_mem]
[GOAL]
case h.inr.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ ω ∈ {ω_1 | τ ω_1 = τ ω}
[PROOFSTEP]
exact rfl
[GOAL]
case h.inr.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ ¬ω ∈ {a | n ≤ τ a}
[PROOFSTEP]
exact not_le.2 h
[GOAL]
case h.inr.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ τ ω ∈ Finset.filter (fun x => x < n) s
[PROOFSTEP]
rw [Finset.mem_filter]
[GOAL]
case h.inr.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ τ ω ∈ s ∧ τ ω < n
[PROOFSTEP]
exact ⟨hbdd ω h, h⟩
[GOAL]
case h.inr.h₀
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
⊢ ∀ (b : ι), b ∈ Finset.filter (fun x => x < n) s → b ≠ τ ω → Set.indicator {ω | τ ω = b} (u b) ω = 0
[PROOFSTEP]
intro b _ hneq
[GOAL]
case h.inr.h₀
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
b : ι
a✝ : b ∈ Finset.filter (fun x => x < n) s
hneq : b ≠ τ ω
⊢ Set.indicator {ω | τ ω = b} (u b) ω = 0
[PROOFSTEP]
rw [Set.indicator_of_not_mem]
[GOAL]
case h.inr.h₀.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : LinearOrder ι
inst✝ : AddCommMonoid E
s : Finset ι
n : ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
ω : Ω
h : τ ω < n
b : ι
a✝ : b ∈ Finset.filter (fun x => x < n) s
hneq : b ≠ τ ω
⊢ ¬ω ∈ {ω | τ ω = b}
[PROOFSTEP]
exact hneq.symm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝² : LinearOrder ι
inst✝¹ : LocallyFiniteOrderBot ι
inst✝ : AddCommMonoid E
n : ι
⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
have h_mem : ∀ ω, τ ω < n → τ ω ∈ Finset.Iio n := fun ω h => Finset.mem_Iio.mpr h
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝² : LinearOrder ι
inst✝¹ : LocallyFiniteOrderBot ι
inst✝ : AddCommMonoid E
n : ι
h_mem : ∀ (ω : Ω), τ ω < n → τ ω ∈ Finset.Iio n
⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
rw [stoppedProcess_eq_of_mem_finset n h_mem]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝² : LinearOrder ι
inst✝¹ : LocallyFiniteOrderBot ι
inst✝ : AddCommMonoid E
n : ι
h_mem : ∀ (ω : Ω), τ ω < n → τ ω ∈ Finset.Iio n
⊢ Set.indicator {a | n ≤ τ a} (u n) +
∑ i in Finset.filter (fun x => x < n) (Finset.Iio n), Set.indicator {ω | τ ω = i} (u i) =
Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
congr with i
[GOAL]
case e_a.e_s.a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝² : LinearOrder ι
inst✝¹ : LocallyFiniteOrderBot ι
inst✝ : AddCommMonoid E
n : ι
h_mem : ∀ (ω : Ω), τ ω < n → τ ω ∈ Finset.Iio n
i : ι
⊢ i ∈ Finset.filter (fun x => x < n) (Finset.Iio n) ↔ i ∈ Finset.Iio n
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
⊢ Memℒp (stoppedValue u τ) p
[PROOFSTEP]
rw [stoppedValue_eq_of_mem_finset hbdd]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
⊢ Memℒp (∑ i in s, Set.indicator {ω | τ ω = i} (u i)) p
[PROOFSTEP]
refine' memℒp_finset_sum' _ fun i _ => Memℒp.indicator _ (hu i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
i : ι
x✝ : i ∈ s
⊢ MeasurableSet {ω | τ ω = i}
[PROOFSTEP]
refine' ℱ.le i {a : Ω | τ a = i} (hτ.measurableSet_eq_of_countable_range _ i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
i : ι
x✝ : i ∈ s
⊢ Set.Countable (Set.range τ)
[PROOFSTEP]
refine' ((Finset.finite_toSet s).subset fun ω hω => _).countable
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
i : ι
x✝ : i ∈ s
ω : ι
hω : ω ∈ Set.range τ
⊢ ω ∈ ↑s
[PROOFSTEP]
obtain ⟨y, rfl⟩ := hω
[GOAL]
case intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
i : ι
x✝ : i ∈ s
y : Ω
⊢ τ y ∈ ↑s
[PROOFSTEP]
exact hbdd y
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Integrable (u n)
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
⊢ Integrable (stoppedValue u τ)
[PROOFSTEP]
simp_rw [← memℒp_one_iff_integrable] at hu ⊢
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝¹ : PartialOrder ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω ∈ s
hu : ∀ (n : ι), Memℒp (u n) 1
⊢ Memℒp (stoppedValue u τ) 1
[PROOFSTEP]
exact memℒp_stoppedValue_of_mem_finset hτ hu hbdd
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ Memℒp (stoppedProcess u τ n) p
[PROOFSTEP]
rw [stoppedProcess_eq_of_mem_finset n hbdd]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ Memℒp (Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i))
p
[PROOFSTEP]
refine' Memℒp.add _ _
[GOAL]
case refine'_1
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ Memℒp (Set.indicator {a | n ≤ τ a} (u n)) p
[PROOFSTEP]
exact Memℒp.indicator (ℱ.le n {a : Ω | n ≤ τ a} (hτ.measurableSet_ge n)) (hu n)
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ Memℒp (∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) p
[PROOFSTEP]
suffices Memℒp (fun ω => ∑ i in s.filter (· < n), {a : Ω | τ a = i}.indicator (u i) ω) p μ by convert this using 1;
ext1 ω; simp only [Finset.sum_apply]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
this : Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p
⊢ Memℒp (∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) p
[PROOFSTEP]
convert this using 1
[GOAL]
case h.e'_5
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
this : Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p
⊢ ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i) = fun ω =>
∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω
[PROOFSTEP]
ext1 ω
[GOAL]
case h.e'_5.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
this : Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p
ω : Ω
⊢ Finset.sum (Finset.filter (fun x => x < n) s) (fun i => Set.indicator {ω | τ ω = i} (u i)) ω =
∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω
[PROOFSTEP]
simp only [Finset.sum_apply]
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p
[PROOFSTEP]
refine' memℒp_finset_sum _ fun i _ => Memℒp.indicator _ (hu i)
[GOAL]
case refine'_2
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Memℒp (u n) p
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
i : ι
x✝ : i ∈ Finset.filter (fun x => x < n) s
⊢ MeasurableSet {a | τ a = i}
[PROOFSTEP]
exact ℱ.le i {a : Ω | τ a = i} (hτ.measurableSet_eq i)
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
hu : ∀ (n : ι), Integrable (u n)
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
⊢ Integrable (stoppedProcess u τ n)
[PROOFSTEP]
simp_rw [← memℒp_one_iff_integrable] at hu ⊢
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
μ : Measure Ω
τ σ : Ω → ι
E : Type u_4
p : ℝ≥0∞
u : ι → Ω → E
inst✝⁴ : LinearOrder ι
inst✝³ : TopologicalSpace ι
inst✝² : OrderTopology ι
inst✝¹ : FirstCountableTopology ι
ℱ : Filtration ι m
inst✝ : NormedAddCommGroup E
hτ : IsStoppingTime ℱ τ
n : ι
s : Finset ι
hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s
hu : ∀ (n : ι), Memℒp (u n) 1
⊢ Memℒp (stoppedProcess u τ n) 1
[PROOFSTEP]
exact memℒp_stoppedProcess_of_mem_finset hτ hu n hbdd
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
⊢ stoppedValue u π - stoppedValue u τ = fun ω => Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
ω : Ω
⊢ (stoppedValue u π - stoppedValue u τ) ω = Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω
[PROOFSTEP]
rw [Finset.sum_Ico_eq_sub _ (hle ω), Finset.sum_range_sub, Finset.sum_range_sub]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
ω : Ω
⊢ (stoppedValue u π - stoppedValue u τ) ω = (u (π ω) - u 0 - (u (τ ω) - u 0)) ω
[PROOFSTEP]
simp [stoppedValue]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ stoppedValue u π - stoppedValue u τ = fun ω =>
Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω
[PROOFSTEP]
rw [stoppedValue_sub_eq_sum hle]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
⊢ (fun ω => Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω) = fun ω =>
Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
ω : Ω
⊢ Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω =
Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω
[PROOFSTEP]
simp only [Finset.sum_apply, Finset.sum_indicator_eq_sum_filter]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
ω : Ω
⊢ ∑ c in Finset.Ico (τ ω) (π ω), (u (c + 1) - u c) ω =
∑ c in Finset.filter (fun i => ω ∈ {ω | τ ω ≤ i ∧ i < π ω}) (Finset.range (N + 1)), (u (c + 1) - u c) ω
[PROOFSTEP]
refine' Finset.sum_congr _ fun _ _ => rfl
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
ω : Ω
⊢ Finset.Ico (τ ω) (π ω) = Finset.filter (fun i => ω ∈ {ω | τ ω ≤ i ∧ i < π ω}) (Finset.range (N + 1))
[PROOFSTEP]
ext i
[GOAL]
case h.a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
ω : Ω
i : ℕ
⊢ i ∈ Finset.Ico (τ ω) (π ω) ↔ i ∈ Finset.filter (fun i => ω ∈ {ω | τ ω ≤ i ∧ i < π ω}) (Finset.range (N + 1))
[PROOFSTEP]
simp only [Finset.mem_filter, Set.mem_setOf_eq, Finset.mem_range, Finset.mem_Ico]
[GOAL]
case h.a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommGroup β
hle : τ ≤ π
N : ℕ
hbdd : ∀ (ω : Ω), π ω ≤ N
ω : Ω
i : ℕ
⊢ τ ω ≤ i ∧ i < π ω ↔ i < N + 1 ∧ τ ω ≤ i ∧ i < π ω
[PROOFSTEP]
exact ⟨fun h => ⟨lt_trans h.2 (Nat.lt_succ_iff.2 <| hbdd _), h⟩, fun h => h.2⟩
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.range n, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
rw [stoppedProcess_eq'' n]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
⊢ Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i) =
Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.range n, Set.indicator {ω | τ ω = i} (u i)
[PROOFSTEP]
congr with i
[GOAL]
case e_a.e_s.a
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n i : ℕ
⊢ i ∈ Finset.Iio n ↔ i ∈ Finset.range n
[PROOFSTEP]
rw [Finset.mem_Iio, Finset.mem_range]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
⊢ stoppedProcess u τ n =
Set.indicator {a | n + 1 ≤ τ a} (u n) + ∑ i in Finset.range (n + 1), Set.indicator {a | τ a = i} (u i)
[PROOFSTEP]
have : {a | n ≤ τ a}.indicator (u n) = {a | n + 1 ≤ τ a}.indicator (u n) + {a | τ a = n}.indicator (u n) :=
by
ext x
rw [add_comm, Pi.add_apply, ← Set.indicator_union_of_not_mem_inter]
· simp_rw [@eq_comm _ _ n, @le_iff_eq_or_lt _ _ n, Nat.succ_le_iff]
rfl
· rintro ⟨h₁, h₂⟩
exact (Nat.succ_le_iff.1 h₂).ne h₁.symm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
⊢ Set.indicator {a | n ≤ τ a} (u n) = Set.indicator {a | n + 1 ≤ τ a} (u n) + Set.indicator {a | τ a = n} (u n)
[PROOFSTEP]
ext x
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
x : Ω
⊢ Set.indicator {a | n ≤ τ a} (u n) x = (Set.indicator {a | n + 1 ≤ τ a} (u n) + Set.indicator {a | τ a = n} (u n)) x
[PROOFSTEP]
rw [add_comm, Pi.add_apply, ← Set.indicator_union_of_not_mem_inter]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
x : Ω
⊢ Set.indicator {a | n ≤ τ a} (u n) x = Set.indicator ({a | τ a = n} ∪ {a | n + 1 ≤ τ a}) (u n) x
[PROOFSTEP]
simp_rw [@eq_comm _ _ n, @le_iff_eq_or_lt _ _ n, Nat.succ_le_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
x : Ω
⊢ Set.indicator {a | n = τ a ∨ n < τ a} (u n) x = Set.indicator ({a | n = τ a} ∪ {a | n < τ a}) (u n) x
[PROOFSTEP]
rfl
[GOAL]
case h.h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
x : Ω
⊢ ¬x ∈ {a | τ a = n} ∩ {a | n + 1 ≤ τ a}
[PROOFSTEP]
rintro ⟨h₁, h₂⟩
[GOAL]
case h.h.intro
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
x : Ω
h₁ : x ∈ {a | τ a = n}
h₂ : x ∈ {a | n + 1 ≤ τ a}
⊢ False
[PROOFSTEP]
exact (Nat.succ_le_iff.1 h₂).ne h₁.symm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
f : Filtration ℕ m
u : ℕ → Ω → β
τ π : Ω → ℕ
inst✝ : AddCommMonoid β
n : ℕ
this : Set.indicator {a | n ≤ τ a} (u n) = Set.indicator {a | n + 1 ≤ τ a} (u n) + Set.indicator {a | τ a = n} (u n)
⊢ stoppedProcess u τ n =
Set.indicator {a | n + 1 ≤ τ a} (u n) + ∑ i in Finset.range (n + 1), Set.indicator {a | τ a = i} (u i)
[PROOFSTEP]
rw [stoppedProcess_eq, this, Finset.sum_range_succ_comm, ← add_assoc]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
⊢ IsStoppingTime 𝒢 (Set.piecewise s τ η)
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
⊢ MeasurableSet {ω | Set.piecewise s τ η ω ≤ n}
[PROOFSTEP]
have : {ω | s.piecewise τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} :=
by
ext1 ω
simp only [Set.piecewise, Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff]
by_cases hx : ω ∈ s <;> simp [hx]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
⊢ {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
[PROOFSTEP]
ext1 ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
ω : Ω
⊢ ω ∈ {ω | Set.piecewise s τ η ω ≤ n} ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
[PROOFSTEP]
simp only [Set.piecewise, Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
ω : Ω
⊢ (if ω ∈ s then τ ω else η ω) ≤ n ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
[PROOFSTEP]
by_cases hx : ω ∈ s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
ω : Ω
hx : ω ∈ s
⊢ (if ω ∈ s then τ ω else η ω) ≤ n ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
ω : Ω
hx : ¬ω ∈ s
⊢ (if ω ∈ s then τ ω else η ω) ≤ n ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
[PROOFSTEP]
simp [hx]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
⊢ MeasurableSet {ω | Set.piecewise s τ η ω ≤ n}
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n})
[PROOFSTEP]
by_cases hin : i ≤ n
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
hin : i ≤ n
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n})
[PROOFSTEP]
have hs_n : MeasurableSet[𝒢 n] s := 𝒢.mono hin _ hs
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
hin : i ≤ n
hs_n : MeasurableSet s
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n})
[PROOFSTEP]
exact (hs_n.inter (hτ_st n)).union (hs_n.compl.inter (hη_st n))
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
hin : ¬i ≤ n
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n})
[PROOFSTEP]
have hτn : ∀ ω, ¬τ ω ≤ n := fun ω hτn => hin ((hτ ω).trans hτn)
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
hin : ¬i ≤ n
hτn : ∀ (ω : Ω), ¬τ ω ≤ n
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n})
[PROOFSTEP]
have hηn : ∀ ω, ¬η ω ≤ n := fun ω hηn => hin ((hη ω).trans hηn)
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i j : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
hτ_st : IsStoppingTime 𝒢 τ
hη_st : IsStoppingTime 𝒢 η
hτ : ∀ (ω : Ω), i ≤ τ ω
hη : ∀ (ω : Ω), i ≤ η ω
hs : MeasurableSet s
n : ι
this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}
hin : ¬i ≤ n
hτn : ∀ (ω : Ω), ¬τ ω ≤ n
hηn : ∀ (ω : Ω), ¬η ω ≤ n
⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n})
[PROOFSTEP]
simp [hτn, hηn, @MeasurableSet.empty _ _]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) = Set.piecewise s (f i) (f j)
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) ω = Set.piecewise s (f i) (f j) ω
[PROOFSTEP]
rw [stoppedValue]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = Set.piecewise s (f i) (f j) ω
[PROOFSTEP]
by_cases hx : ω ∈ s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
hx : ω ∈ s
⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = Set.piecewise s (f i) (f j) ω
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
hx : ¬ω ∈ s
⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = Set.piecewise s (f i) (f j) ω
[PROOFSTEP]
simp [hx]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) = Set.indicator s (f i) + Set.indicator sᶜ (f j)
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω
[PROOFSTEP]
rw [stoppedValue]
[GOAL]
case h
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω
[PROOFSTEP]
by_cases hx : ω ∈ s
[GOAL]
case pos
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
hx : ω ∈ s
⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω
[PROOFSTEP]
simp [hx]
[GOAL]
case neg
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹ : Preorder ι
𝒢 : Filtration ι m
τ η : Ω → ι
i✝ j✝ : ι
s : Set Ω
inst✝ : DecidablePred fun x => x ∈ s
ι' : Type u_4
i j : ι'
f : ι' → Ω → ℝ
ω : Ω
hx : ¬ω ∈ s
⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω
[PROOFSTEP]
simp [hx]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : SigmaFiniteFiltration μ ℱ
hτ : IsStoppingTime ℱ τ
h_countable : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
⊢ μ[f|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f|↑ℱ i]
[PROOFSTEP]
refine'
condexp_ae_eq_restrict_of_measurableSpace_eq_on (hτ.measurableSpace_le_of_countable_range h_countable) (ℱ.le i)
(hτ.measurableSet_eq_of_countable_range' h_countable i) fun t => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : SigmaFiniteFiltration μ ℱ
hτ : IsStoppingTime ℱ τ
h_countable : Set.Countable (Set.range τ)
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
t : Set Ω
⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : IsCountablyGenerated atTop
hτ : IsStoppingTime ℱ τ
i : ι
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m))
⊢ μ[f|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i)] =ᵐ[Measure.restrict μ {x | τ x ≤ i}]
μ[f|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
have : SigmaFinite (μ.trim hτ.measurableSpace_le) :=
haveI h_le : (hτ.min_const i).measurableSpace ≤ hτ.measurableSpace :=
by
rw [IsStoppingTime.measurableSpace_min_const]
exact inf_le_left
sigmaFiniteTrim_mono _ h_le
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : IsCountablyGenerated atTop
hτ : IsStoppingTime ℱ τ
i : ι
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m))
⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ IsStoppingTime.measurableSpace hτ
[PROOFSTEP]
rw [IsStoppingTime.measurableSpace_min_const]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : IsCountablyGenerated atTop
hτ : IsStoppingTime ℱ τ
i : ι
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m))
⊢ IsStoppingTime.measurableSpace ?hτ ⊓ ↑ℱ i ≤ IsStoppingTime.measurableSpace hτ
case hτ
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : IsCountablyGenerated atTop
hτ : IsStoppingTime ℱ τ
i : ι
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m))
⊢ IsStoppingTime ℱ fun ω => τ ω
[PROOFSTEP]
exact inf_le_left
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : IsCountablyGenerated atTop
hτ : IsStoppingTime ℱ τ
i : ι
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m))
this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
⊢ μ[f|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i)] =ᵐ[Measure.restrict μ {x | τ x ≤ i}]
μ[f|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
refine'
(condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (hτ.min_const i).measurableSpace_le
(hτ.measurableSet_le' i) fun t => _).symm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁵ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f : Ω → E
inst✝¹ : IsCountablyGenerated atTop
hτ : IsStoppingTime ℱ τ
i : ι
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m))
this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
t : Set Ω
⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ t) ↔ MeasurableSet ({ω | τ ω ≤ i} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t, hτ.measurableSet_inter_le_const_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
f : Ω → E
inst✝⁵ : IsCountablyGenerated atTop
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
inst✝¹ : SigmaFiniteFiltration μ ℱ
hτ : IsStoppingTime ℱ τ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
⊢ μ[f|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f|↑ℱ i]
[PROOFSTEP]
refine'
condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (ℱ.le i) (hτ.measurableSet_eq' i) fun t => _
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝⁹ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁸ : NormedAddCommGroup E
inst✝⁷ : NormedSpace ℝ E
inst✝⁶ : CompleteSpace E
f : Ω → E
inst✝⁵ : IsCountablyGenerated atTop
inst✝⁴ : TopologicalSpace ι
inst✝³ : OrderTopology ι
inst✝² : FirstCountableTopology ι
inst✝¹ : SigmaFiniteFiltration μ ℱ
hτ : IsStoppingTime ℱ τ
inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
i : ι
t : Set Ω
⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ μ[f|IsStoppingTime.measurableSpace
(_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[f|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
have : SigmaFinite (μ.trim hτ.measurableSpace_le) :=
haveI h_le : (hτ.min hσ).measurableSpace ≤ hτ.measurableSpace :=
by
rw [IsStoppingTime.measurableSpace_min]
exact inf_le_left; simp_all only
sigmaFiniteTrim_mono _ h_le
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ IsStoppingTime.measurableSpace hτ
[PROOFSTEP]
rw [IsStoppingTime.measurableSpace_min]
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ IsStoppingTime.measurableSpace ?hτ ⊓ IsStoppingTime.measurableSpace ?hπ ≤ IsStoppingTime.measurableSpace hτ
case hτ
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ IsStoppingTime ℱ fun ω => τ ω
case hπ
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ IsStoppingTime ℱ fun ω => σ ω
[PROOFSTEP]
exact inf_le_left
[GOAL]
case hπ
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
⊢ IsStoppingTime ℱ fun ω => σ ω
[PROOFSTEP]
simp_all only
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
⊢ μ[f|IsStoppingTime.measurableSpace
(_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}]
μ[f|IsStoppingTime.measurableSpace hτ]
[PROOFSTEP]
refine'
(condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (hτ.min hσ).measurableSpace_le
(hτ.measurableSet_le_stopping_time hσ) fun t => _).symm
[GOAL]
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
t : Set Ω
⊢ MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) ↔ MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t)
[PROOFSTEP]
rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_le_iff]
[GOAL]
case hπ
Ω : Type u_1
β : Type u_2
ι : Type u_3
m : MeasurableSpace Ω
inst✝¹⁰ : LinearOrder ι
μ : Measure Ω
ℱ : Filtration ι m
τ σ : Ω → ι
E : Type u_4
inst✝⁹ : NormedAddCommGroup E
inst✝⁸ : NormedSpace ℝ E
inst✝⁷ : CompleteSpace E
f : Ω → E
inst✝⁶ : IsCountablyGenerated atTop
inst✝⁵ : TopologicalSpace ι
inst✝⁴ : OrderTopology ι
inst✝³ : MeasurableSpace ι
inst✝² : SecondCountableTopology ι
inst✝¹ : BorelSpace ι
hτ : IsStoppingTime ℱ τ
hσ : IsStoppingTime ℱ σ
inst✝ :
SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m))
this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m))
t : Set Ω
⊢ IsStoppingTime ℱ fun ω => σ ω
[PROOFSTEP]
simp_all only
| {"mathlib_filename": "Mathlib.Probability.Process.Stopping", "llama_tokens": 125624} |
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
s : Set α
t : ι → Set β
hι : Nonempty ι
⊢ s ×ˢ ⋂ (i : ι), t i = ⋂ (i : ι), s ×ˢ t i
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
s : Set α
t : ι → Set β
hι : Nonempty ι
x : α × β
⊢ x ∈ s ×ˢ ⋂ (i : ι), t i ↔ x ∈ ⋂ (i : ι), s ×ˢ t i
[PROOFSTEP]
simp only [mem_prod, mem_iInter]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
s : Set α
t : ι → Set β
hι : Nonempty ι
x : α × β
⊢ (x.fst ∈ s ∧ ∀ (i : ι), x.snd ∈ t i) ↔ ∀ (i : ι), x.fst ∈ s ∧ x.snd ∈ t i
[PROOFSTEP]
exact ⟨fun h i => ⟨h.1, h.2 i⟩, fun h => ⟨(h hι.some).1, fun i => (h i).2⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ ⋃ (r : ℚ), Iic ↑r = univ
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
⊢ x ∈ ⋃ (r : ℚ), Iic ↑r ↔ x ∈ univ
[PROOFSTEP]
simp only [mem_iUnion, mem_Iic, mem_univ, iff_true_iff]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
⊢ ∃ i, x ≤ ↑i
[PROOFSTEP]
obtain ⟨r, hr⟩ := exists_rat_gt x
[GOAL]
case h.intro
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
r : ℚ
hr : x < ↑r
⊢ ∃ i, x ≤ ↑i
[PROOFSTEP]
exact ⟨r, hr.le⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
⊢ ⋂ (r : ℚ), Iic ↑r = ∅
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
⊢ x ∈ ⋂ (r : ℚ), Iic ↑r ↔ x ∈ ∅
[PROOFSTEP]
simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
x : ℝ
⊢ ∃ x_1, ↑x_1 < x
[PROOFSTEP]
exact exists_rat_lt x
[GOAL]
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
⊢ atBot ≤ 𝓝 ⊥
[PROOFSTEP]
cases subsingleton_or_nontrivial α
[GOAL]
case inl
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Subsingleton α
⊢ atBot ≤ 𝓝 ⊥
[PROOFSTEP]
simp only [nhds_discrete, le_pure_iff, mem_atBot_sets, mem_singleton_iff, eq_iff_true_of_subsingleton, imp_true_iff,
exists_const]
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
⊢ atBot ≤ 𝓝 ⊥
[PROOFSTEP]
have h : atBot.HasBasis (fun _ : α => True) Iic := @atBot_basis α _ _
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
h : HasBasis atBot (fun x => True) Iic
⊢ atBot ≤ 𝓝 ⊥
[PROOFSTEP]
have h_nhds : (𝓝 ⊥).HasBasis (fun a : α => ⊥ < a) fun a => Iio a := @nhds_bot_basis α _ _ _ _ _
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
h : HasBasis atBot (fun x => True) Iic
h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a
⊢ atBot ≤ 𝓝 ⊥
[PROOFSTEP]
intro s
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
h : HasBasis atBot (fun x => True) Iic
h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a
s : Set α
⊢ s ∈ 𝓝 ⊥ → s ∈ atBot
[PROOFSTEP]
rw [h.mem_iff, h_nhds.mem_iff]
[GOAL]
case inr
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
h : HasBasis atBot (fun x => True) Iic
h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a
s : Set α
⊢ (∃ i, ⊥ < i ∧ Iio i ⊆ s) → ∃ i, True ∧ Iic i ⊆ s
[PROOFSTEP]
rintro ⟨a, ha_bot_lt, h_Iio_a_subset_s⟩
[GOAL]
case inr.intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
h : HasBasis atBot (fun x => True) Iic
h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a
s : Set α
a : α
ha_bot_lt : ⊥ < a
h_Iio_a_subset_s : Iio a ⊆ s
⊢ ∃ i, True ∧ Iic i ⊆ s
[PROOFSTEP]
refine' ⟨⊥, trivial, _root_.trans _ h_Iio_a_subset_s⟩
[GOAL]
case inr.intro.intro
α✝ : Type u_1
β : Type u_2
ι : Type u_3
α : Type u_4
inst✝³ : TopologicalSpace α
inst✝² : LinearOrder α
inst✝¹ : OrderBot α
inst✝ : OrderTopology α
h✝ : Nontrivial α
h : HasBasis atBot (fun x => True) Iic
h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a
s : Set α
a : α
ha_bot_lt : ⊥ < a
h_Iio_a_subset_s : Iio a ⊆ s
⊢ Iic ⊥ ⊆ Iio a
[PROOFSTEP]
simpa only [Iic_bot, singleton_subset_iff, mem_Iio]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
⊢ ENNReal.ofReal (⨅ (i : α), f i) = ⨅ (i : α), ENNReal.ofReal (f i)
[PROOFSTEP]
by_cases hf : BddBelow (range f)
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : BddBelow (range f)
⊢ ENNReal.ofReal (⨅ (i : α), f i) = ⨅ (i : α), ENNReal.ofReal (f i)
[PROOFSTEP]
exact
Monotone.map_ciInf_of_continuousAt ENNReal.continuous_ofReal.continuousAt
(fun i j hij => ENNReal.ofReal_le_ofReal hij) hf
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : ¬BddBelow (range f)
⊢ ENNReal.ofReal (⨅ (i : α), f i) = ⨅ (i : α), ENNReal.ofReal (f i)
[PROOFSTEP]
symm
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : ¬BddBelow (range f)
⊢ ⨅ (i : α), ENNReal.ofReal (f i) = ENNReal.ofReal (⨅ (i : α), f i)
[PROOFSTEP]
rw [Real.iInf_of_not_bddBelow hf, ENNReal.ofReal_zero, ← ENNReal.bot_eq_zero, iInf_eq_bot]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : ¬BddBelow (range f)
⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, ENNReal.ofReal (f i) < b
[PROOFSTEP]
obtain ⟨y, hy_mem, hy_neg⟩ := not_bddBelow_iff.mp hf 0
[GOAL]
case neg.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : ¬BddBelow (range f)
y : ℝ
hy_mem : y ∈ range f
hy_neg : y < 0
⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, ENNReal.ofReal (f i) < b
[PROOFSTEP]
obtain ⟨i, rfl⟩ := mem_range.mpr hy_mem
[GOAL]
case neg.intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : ¬BddBelow (range f)
i : α
hy_mem : (fun y => f y) i ∈ range f
hy_neg : (fun y => f y) i < 0
⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, ENNReal.ofReal (f i) < b
[PROOFSTEP]
refine' fun x hx => ⟨i, _⟩
[GOAL]
case neg.intro.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
f : α → ℝ
inst✝ : Nonempty α
hf : ¬BddBelow (range f)
i : α
hy_mem : (fun y => f y) i ∈ range f
hy_neg : (fun y => f y) i < 0
x : ℝ≥0∞
hx : x > ⊥
⊢ ENNReal.ofReal (f i) < x
[PROOFSTEP]
rwa [ENNReal.ofReal_of_nonpos hy_neg.le]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
cases nonempty_encodable β
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
cases isEmpty_or_nonempty β
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
conv =>
lhs
congr
·skip
· ext x
rw [WithTop.iInf_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
lhs
congr
·skip
· ext x
rw [WithTop.iInf_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
lhs
congr
·skip
· ext x
rw [WithTop.iInf_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
lhs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ
[PROOFSTEP]
congr
[GOAL]
case μ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| μ
case f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| fun a => ⨅ (b : β), f b a
[PROOFSTEP]
·skip
[GOAL]
case μ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| μ
[PROOFSTEP]
skip
[GOAL]
case μ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| μ
[PROOFSTEP]
skip
[GOAL]
case μ
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| μ
[PROOFSTEP]
skip
[GOAL]
case f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| fun a => ⨅ (b : β), f b a
[PROOFSTEP]
· ext x
rw [WithTop.iInf_empty]
[GOAL]
case f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| fun a => ⨅ (b : β), f b a
[PROOFSTEP]
ext x
rw [WithTop.iInf_empty]
[GOAL]
case f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| fun a => ⨅ (b : β), f b a
[PROOFSTEP]
ext x
rw [WithTop.iInf_empty]
[GOAL]
case f
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
| fun a => ⨅ (b : β), f b a
[PROOFSTEP]
ext x
[GOAL]
case f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
x : α
| ⨅ (b : β), f b x
[PROOFSTEP]
rw [WithTop.iInf_empty]
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
⊢ ∫⁻ (x : α), ⊤ ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
rw [WithTop.iInf_empty, lintegral_const]
[GOAL]
case intro.inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
⊢ ⊤ * ↑↑μ univ = ⊤
[PROOFSTEP]
rw [ENNReal.top_mul', if_neg]
[GOAL]
case intro.inl.hnc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : IsEmpty β
⊢ ¬↑↑μ univ = 0
[PROOFSTEP]
simp only [Measure.measure_univ_eq_zero, hμ, not_false_iff]
[GOAL]
case intro.inr
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
inhabit β
[GOAL]
case intro.inr
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
have : ∀ a, ⨅ b, f b a = ⨅ n, f (h_directed.sequence f n) a :=
by
refine' fun a =>
le_antisymm (le_iInf fun n => iInf_le _ _) (le_iInf fun b => iInf_le_of_le (Encodable.encode b + 1) _)
exact h_directed.sequence_le b a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
⊢ ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
[PROOFSTEP]
refine' fun a => le_antisymm (le_iInf fun n => iInf_le _ _) (le_iInf fun b => iInf_le_of_le (Encodable.encode b + 1) _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
a : α
b : β
⊢ f (Directed.sequence f h_directed (Encodable.encode b + 1)) a ≤ f b a
[PROOFSTEP]
exact h_directed.sequence_le b a
[GOAL]
case intro.inr
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
calc
∫⁻ a, ⨅ b, f b a ∂μ
_ = ∫⁻ a, ⨅ n, (f ∘ h_directed.sequence f) n a ∂μ := by simp only [this, Function.comp_apply]
_ = ⨅ n, ∫⁻ a, (f ∘ h_directed.sequence f) n a ∂μ :=
by
rw [lintegral_iInf ?_ h_directed.sequence_anti]
· exact hf_int _
· exact (fun n => hf _)
_ = ⨅ b, ∫⁻ a, f b a ∂μ := by
refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _)
· exact iInf_le_of_le (Encodable.encode b + 1) (lintegral_mono <| h_directed.sequence_le b)
· exact iInf_le (fun b => ∫⁻ a, f b a ∂μ) _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ∫⁻ (a : α), ⨅ (n : ℕ), (f ∘ Directed.sequence f h_directed) n a ∂μ
[PROOFSTEP]
simp only [this, Function.comp_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
⊢ ∫⁻ (a : α), ⨅ (n : ℕ), (f ∘ Directed.sequence f h_directed) n a ∂μ =
⨅ (n : ℕ), ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ
[PROOFSTEP]
rw [lintegral_iInf ?_ h_directed.sequence_anti]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
⊢ ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) 0 a ∂μ ≠ ⊤
[PROOFSTEP]
exact hf_int _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
⊢ ∀ (n : ℕ), Measurable ((f ∘ Directed.sequence f h_directed) n)
[PROOFSTEP]
exact (fun n => hf _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
⊢ ⨅ (n : ℕ), ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _)
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
b : β
⊢ ⨅ (n : ℕ), ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ ≤ ∫⁻ (a : α), f b a ∂μ
[PROOFSTEP]
exact iInf_le_of_le (Encodable.encode b + 1) (lintegral_mono <| h_directed.sequence_le b)
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
inst✝ : Countable β
f : β → α → ℝ≥0∞
μ : Measure α
hμ : μ ≠ 0
hf : ∀ (b : β), Measurable (f b)
hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤
h_directed : Directed (fun x x_1 => x ≥ x_1) f
val✝ : Encodable β
h✝ : Nonempty β
inhabited_h : Inhabited β
this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a
n : ℕ
⊢ ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ ≤ ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ
[PROOFSTEP]
exact iInf_le (fun b => ∫⁻ a, f b a ∂μ) _
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℝ
s : Set α
hs : MeasurableSet s
⊢ ↑↑(IicSnd ρ r) s = ↑↑ρ (s ×ˢ Iic r)
[PROOFSTEP]
rw [IicSnd, fst_apply hs, restrict_apply' (MeasurableSet.univ.prod (measurableSet_Iic : MeasurableSet (Iic r))), ←
prod_univ, prod_inter_prod, inter_univ, univ_inter]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r r' : ℝ
h_le : r ≤ r'
⊢ IicSnd ρ r ≤ IicSnd ρ r'
[PROOFSTEP]
intro s hs
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r r' : ℝ
h_le : r ≤ r'
s : Set α
hs : MeasurableSet s
⊢ ↑↑(IicSnd ρ r) s ≤ ↑↑(IicSnd ρ r') s
[PROOFSTEP]
simp_rw [IicSnd_apply ρ _ hs]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r r' : ℝ
h_le : r ≤ r'
s : Set α
hs : MeasurableSet s
⊢ ↑↑ρ (s ×ˢ Iic r) ≤ ↑↑ρ (s ×ˢ Iic r')
[PROOFSTEP]
refine' measure_mono (prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, Iic_subset_Iic.mpr _⟩))
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r r' : ℝ
h_le : r ≤ r'
s : Set α
hs : MeasurableSet s
⊢ r ≤ r'
[PROOFSTEP]
exact_mod_cast h_le
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℝ
⊢ IicSnd ρ r ≤ fst ρ
[PROOFSTEP]
intro s hs
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℝ
s : Set α
hs : MeasurableSet s
⊢ ↑↑(IicSnd ρ r) s ≤ ↑↑(fst ρ) s
[PROOFSTEP]
simp_rw [fst_apply hs, IicSnd_apply ρ r hs]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℝ
s : Set α
hs : MeasurableSet s
⊢ ↑↑ρ (s ×ˢ Iic r) ≤ ↑↑ρ (Prod.fst ⁻¹' s)
[PROOFSTEP]
exact measure_mono (prod_subset_preimage_fst _ _)
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ⨅ (r : { r' // t < r' }), ↑↑(IicSnd ρ ↑↑r) s = ↑↑(IicSnd ρ ↑t) s
[PROOFSTEP]
simp_rw [ρ.IicSnd_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ⨅ (r : { r' // t < r' }), ↑↑ρ (s ×ˢ Iic ↑↑r) = ↑↑ρ (s ×ˢ Iic ↑t)
[PROOFSTEP]
rw [← measure_iInter_eq_iInf]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ↑↑ρ (⋂ (i : { r' // t < r' }), s ×ˢ Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic ↑t)
[PROOFSTEP]
rw [← prod_iInter]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ↑↑ρ (s ×ˢ ⋂ (i : { r' // t < r' }), Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic ↑t)
[PROOFSTEP]
congr with x : 1
[GOAL]
case e_a.e_a.h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
x : ℝ
⊢ x ∈ ⋂ (i : { r' // t < r' }), Iic ↑↑i ↔ x ∈ Iic ↑t
[PROOFSTEP]
simp only [mem_iInter, mem_Iic, Subtype.forall, Subtype.coe_mk]
[GOAL]
case e_a.e_a.h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
x : ℝ
⊢ (∀ (a : ℚ), t < a → x ≤ ↑a) ↔ x ≤ ↑t
[PROOFSTEP]
refine' ⟨fun h => _, fun h a hta => h.trans _⟩
[GOAL]
case e_a.e_a.h.refine'_1
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
x : ℝ
h : ∀ (a : ℚ), t < a → x ≤ ↑a
⊢ x ≤ ↑t
[PROOFSTEP]
refine' le_of_forall_lt_rat_imp_le fun q htq => h q _
[GOAL]
case e_a.e_a.h.refine'_1
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
x : ℝ
h : ∀ (a : ℚ), t < a → x ≤ ↑a
q : ℚ
htq : ↑t < ↑q
⊢ t < q
[PROOFSTEP]
exact_mod_cast htq
[GOAL]
case e_a.e_a.h.refine'_2
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
x : ℝ
h : x ≤ ↑t
a : ℚ
hta : t < a
⊢ ↑t ≤ ↑a
[PROOFSTEP]
exact_mod_cast hta.le
[GOAL]
case h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∀ (i : { r' // t < r' }), MeasurableSet (s ×ˢ Iic ↑↑i)
[PROOFSTEP]
exact fun _ => hs.prod measurableSet_Iic
[GOAL]
case hd
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ Directed (fun x x_1 => x ⊇ x_1) fun r => s ×ˢ Iic ↑↑r
[PROOFSTEP]
refine' Monotone.directed_ge fun r r' hrr' => prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, _⟩)
[GOAL]
case hd
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
r r' : { r' // t < r' }
hrr' : r ≤ r'
⊢ Iic ↑↑r ⊆ Iic ↑↑r'
[PROOFSTEP]
refine' Iic_subset_Iic.mpr _
[GOAL]
case hd
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
r r' : { r' // t < r' }
hrr' : r ≤ r'
⊢ ↑↑r ≤ ↑↑r'
[PROOFSTEP]
exact_mod_cast hrr'
[GOAL]
case hfin
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
t : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∃ i, ↑↑ρ (s ×ˢ Iic ↑↑i) ≠ ⊤
[PROOFSTEP]
exact ⟨⟨t + 1, lt_add_one _⟩, measure_ne_top ρ _⟩
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
⊢ Tendsto (fun r => ↑↑(IicSnd ρ ↑r) s) atTop (𝓝 (↑↑(fst ρ) s))
[PROOFSTEP]
simp_rw [ρ.IicSnd_apply _ hs, fst_apply hs, ← prod_univ]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atTop (𝓝 (↑↑ρ (s ×ˢ univ)))
[PROOFSTEP]
rw [← Real.iUnion_Iic_rat, prod_iUnion]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atTop (𝓝 (↑↑ρ (⋃ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
refine' tendsto_measure_iUnion fun r q hr_le_q x => _
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
r q : ℚ
hr_le_q : r ≤ q
x : α × ℝ
⊢ x ∈ s ×ˢ Iic ↑r → x ∈ s ×ˢ Iic ↑q
[PROOFSTEP]
simp only [mem_prod, mem_Iic, and_imp]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
r q : ℚ
hr_le_q : r ≤ q
x : α × ℝ
⊢ x.fst ∈ s → x.snd ≤ ↑r → x.fst ∈ s ∧ x.snd ≤ ↑q
[PROOFSTEP]
refine' fun hxs hxr => ⟨hxs, hxr.trans _⟩
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set α
hs : MeasurableSet s
r q : ℚ
hr_le_q : r ≤ q
x : α × ℝ
hxs : x.fst ∈ s
hxr : x.snd ≤ ↑r
⊢ ↑r ≤ ↑q
[PROOFSTEP]
exact_mod_cast hr_le_q
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
⊢ Tendsto (fun r => ↑↑(IicSnd ρ ↑r) s) atBot (𝓝 0)
[PROOFSTEP]
simp_rw [ρ.IicSnd_apply _ hs]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 0)
[PROOFSTEP]
have h_empty : ρ (s ×ˢ ∅) = 0 := by simp only [prod_empty, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
⊢ ↑↑ρ (s ×ˢ ∅) = 0
[PROOFSTEP]
simp only [prod_empty, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 0)
[PROOFSTEP]
rw [← h_empty, ← Real.iInter_Iic_rat, prod_iInter]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
suffices h_neg : Tendsto (fun r : ℚ => ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (ρ (⋂ r : ℚ, s ×ˢ Iic ↑(-r))))
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
have h_inter_eq : ⋂ r : ℚ, s ×ˢ Iic ↑(-r) = ⋂ r : ℚ, s ×ˢ Iic (r : ℝ) :=
by
ext1 x
simp only [Rat.cast_eq_id, id.def, mem_iInter, mem_prod, mem_Iic]
refine' ⟨fun h i => ⟨(h i).1, _⟩, fun h i => ⟨(h i).1, _⟩⟩ <;> have h' := h (-i)
· rw [neg_neg] at h' ; exact h'.2
· exact h'.2
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
⊢ ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
⊢ x ∈ ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) ↔ x ∈ ⋂ (r : ℚ), s ×ˢ Iic ↑r
[PROOFSTEP]
simp only [Rat.cast_eq_id, id.def, mem_iInter, mem_prod, mem_Iic]
[GOAL]
case h
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
⊢ (∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i)) ↔ ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑i
[PROOFSTEP]
refine' ⟨fun h i => ⟨(h i).1, _⟩, fun h i => ⟨(h i).1, _⟩⟩
[GOAL]
case h.refine'_1
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i)
i : ℚ
⊢ x.snd ≤ ↑i
[PROOFSTEP]
have h' := h (-i)
[GOAL]
case h.refine'_2
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑i
i : ℚ
⊢ x.snd ≤ ↑(-i)
[PROOFSTEP]
have h' := h (-i)
[GOAL]
case h.refine'_1
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i)
i : ℚ
h' : x.fst ∈ s ∧ x.snd ≤ ↑(- -i)
⊢ x.snd ≤ ↑i
[PROOFSTEP]
rw [neg_neg] at h'
[GOAL]
case h.refine'_1
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i)
i : ℚ
h' : x.fst ∈ s ∧ x.snd ≤ ↑i
⊢ x.snd ≤ ↑i
[PROOFSTEP]
exact h'.2
[GOAL]
case h.refine'_2
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
x : α × ℝ
h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑i
i : ℚ
h' : x.fst ∈ s ∧ x.snd ≤ ↑(-i)
⊢ x.snd ≤ ↑(-i)
[PROOFSTEP]
exact h'.2
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
rw [h_inter_eq] at h_neg
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r)))
h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
have h_fun_eq : (fun r : ℚ => ρ (s ×ˢ Iic (r : ℝ))) = fun r : ℚ => ρ (s ×ˢ Iic ↑(- -r)) := by simp_rw [neg_neg]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r)))
h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r
⊢ (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) = fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r))
[PROOFSTEP]
simp_rw [neg_neg]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r)))
h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r
h_fun_eq : (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) = fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r))
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
rw [h_fun_eq]
[GOAL]
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r)))
h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r
h_fun_eq : (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) = fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r))
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r))) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i)))
[PROOFSTEP]
exact h_neg.comp tendsto_neg_atBot_atTop
[GOAL]
case h_neg
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r))))
[PROOFSTEP]
refine' tendsto_measure_iInter (fun q => hs.prod measurableSet_Iic) _ ⟨0, measure_ne_top ρ _⟩
[GOAL]
case h_neg
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
⊢ Antitone fun r => s ×ˢ Iic ↑(-r)
[PROOFSTEP]
refine' fun q r hqr => prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, fun x hx => _⟩)
[GOAL]
case h_neg
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
q r : ℚ
hqr : q ≤ r
x : ℝ
hx : x ∈ Iic ↑(-r)
⊢ x ∈ Iic ↑(-q)
[PROOFSTEP]
simp only [Rat.cast_neg, mem_Iic] at hx ⊢
[GOAL]
case h_neg
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
q r : ℚ
hqr : q ≤ r
x : ℝ
hx : x ≤ -↑r
⊢ x ≤ -↑q
[PROOFSTEP]
refine' hx.trans (neg_le_neg _)
[GOAL]
case h_neg
α : Type u_1
β : Type u_2
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
s : Set α
hs : MeasurableSet s
h_empty : ↑↑ρ (s ×ˢ ∅) = 0
q r : ℚ
hqr : q ≤ r
x : ℝ
hx : x ≤ -↑r
⊢ ↑q ≤ ↑r
[PROOFSTEP]
exact_mod_cast hqr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑r) s
[PROOFSTEP]
have : ∀ r, ∫⁻ x in s, preCdf ρ r x ∂ρ.fst = ∫⁻ x in s, (preCdf ρ r * 1) x ∂ρ.fst := by
simp only [mul_one, eq_self_iff_true, forall_const]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ
[PROOFSTEP]
simp only [mul_one, eq_self_iff_true, forall_const]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ
⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑r) s
[PROOFSTEP]
rw [this, ← set_lintegral_withDensity_eq_set_lintegral_mul _ measurable_preCdf _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ
⊢ ∫⁻ (x : α) in s, OfNat.ofNat 1 x ∂Measure.withDensity (Measure.fst ρ) (preCdf ρ r) = ↑↑(Measure.IicSnd ρ ↑r) s
[PROOFSTEP]
simp only [withDensity_preCdf ρ r, Pi.one_apply, lintegral_one, Measure.restrict_apply, MeasurableSet.univ, univ_inter]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ
⊢ Measurable 1
[PROOFSTEP]
rw [(_ : (1 : α → ℝ≥0∞) = fun _ => 1)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ
⊢ Measurable fun x => 1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ
⊢ 1 = fun x => 1
[PROOFSTEP]
exacts [measurable_const, rfl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
[PROOFSTEP]
simp_rw [Monotone, ae_all_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ (i i_1 : ℚ), i ≤ i_1 → ∀ᵐ (a : α) ∂Measure.fst ρ, preCdf ρ i a ≤ preCdf ρ i_1 a
[PROOFSTEP]
refine' fun r r' hrr' =>
ae_le_of_forall_set_lintegral_le_of_sigmaFinite measurable_preCdf measurable_preCdf fun s hs _ => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r r' : ℚ
hrr' : r ≤ r'
s : Set α
hs : MeasurableSet s
x✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, preCdf ρ r' x ∂Measure.fst ρ
[PROOFSTEP]
rw [set_lintegral_preCdf_fst ρ r hs, set_lintegral_preCdf_fst ρ r' hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r r' : ℚ
hrr' : r ≤ r'
s : Set α
hs : MeasurableSet s
x✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ↑↑(Measure.IicSnd ρ ↑r) s ≤ ↑↑(Measure.IicSnd ρ ↑r') s
[PROOFSTEP]
refine' Measure.IicSnd_mono ρ _ s hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r r' : ℚ
hrr' : r ≤ r'
s : Set α
hs : MeasurableSet s
x✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ↑r ≤ ↑r'
[PROOFSTEP]
exact_mod_cast hrr'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑t) s
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑t) s
[PROOFSTEP]
have h : ∀ q : Ioi t, ∫⁻ x in s, ⨅ r : Ioi t, preCdf ρ r x ∂ρ.fst ≤ ρ.IicSnd q s :=
by
intro q
rw [← set_lintegral_preCdf_fst ρ _ hs]
refine' set_lintegral_mono_ae _ measurable_preCdf _
· exact measurable_iInf fun _ => measurable_preCdf
· filter_upwards [monotone_preCdf _] with a _
exact fun _ => iInf_le _ q
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∀ (q : ↑(Ioi t)), ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑↑q) s
[PROOFSTEP]
intro q
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
q : ↑(Ioi t)
⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑↑q) s
[PROOFSTEP]
rw [← set_lintegral_preCdf_fst ρ _ hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
q : ↑(Ioi t)
⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, preCdf ρ (↑q) x ∂Measure.fst ρ
[PROOFSTEP]
refine' set_lintegral_mono_ae _ measurable_preCdf _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
q : ↑(Ioi t)
⊢ Measurable fun x => ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x
[PROOFSTEP]
exact measurable_iInf fun _ => measurable_preCdf
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
q : ↑(Ioi t)
⊢ ∀ᵐ (x : α) ∂Measure.fst ρ, x ∈ s → ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ≤ preCdf ρ (↑q) x
[PROOFSTEP]
filter_upwards [monotone_preCdf _] with a _
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
q : ↑(Ioi t)
a : α
a✝ : Monotone fun r => preCdf ρ r a
⊢ a ∈ s → ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a ≤ preCdf ρ (↑q) a
[PROOFSTEP]
exact fun _ => iInf_le _ q
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
h : ∀ (q : ↑(Ioi t)), ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑↑q) s
⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑t) s
[PROOFSTEP]
calc
∫⁻ x in s, ⨅ r : Ioi t, preCdf ρ r x ∂ρ.fst ≤ ⨅ q : Ioi t, ρ.IicSnd q s := le_iInf h
_ = ρ.IicSnd t s := Measure.iInf_IicSnd_gt ρ t hs
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ ↑↑(Measure.IicSnd ρ ↑t) s ≤ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ
[PROOFSTEP]
rw [(set_lintegral_preCdf_fst ρ t hs).symm]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (x : α) in s, preCdf ρ t x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ
[PROOFSTEP]
refine' set_lintegral_mono_ae measurable_preCdf _ _
[GOAL]
case refine'_2.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ Measurable fun x => ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x
[PROOFSTEP]
exact measurable_iInf fun _ => measurable_preCdf
[GOAL]
case refine'_2.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∀ᵐ (x : α) ∂Measure.fst ρ, x ∈ s → preCdf ρ t x ≤ ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x
[PROOFSTEP]
filter_upwards [monotone_preCdf _] with a ha_mono
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
a : α
ha_mono : Monotone fun r => preCdf ρ r a
⊢ a ∈ s → preCdf ρ t a ≤ ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a
[PROOFSTEP]
exact fun _ => le_iInf fun r => ha_mono (le_of_lt r.prop)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
[PROOFSTEP]
rw [ae_all_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ (i : ℚ), ∀ᵐ (a : α) ∂Measure.fst ρ, preCdf ρ i a ≤ 1
[PROOFSTEP]
refine' fun r => ae_le_of_forall_set_lintegral_le_of_sigmaFinite measurable_preCdf measurable_const fun s hs _ => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
x✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, 1 ∂Measure.fst ρ
[PROOFSTEP]
rw [set_lintegral_preCdf_fst ρ r hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
x✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ↑↑(Measure.IicSnd ρ ↑r) s ≤ ∫⁻ (x : α) in s, 1 ∂Measure.fst ρ
[PROOFSTEP]
simp only [Pi.one_apply, lintegral_one, Measure.restrict_apply, MeasurableSet.univ, univ_inter]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
x✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ↑↑(Measure.IicSnd ρ ↑r) s ≤ ↑↑(Measure.fst ρ) s
[PROOFSTEP]
exact Measure.IicSnd_le_fst ρ r s hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ r a ∂Measure.fst ρ) atTop (𝓝 (↑↑ρ univ))
[PROOFSTEP]
convert ρ.tendsto_IicSnd_atTop MeasurableSet.univ
[GOAL]
case h.e'_3.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x✝ : ℚ
⊢ ∫⁻ (a : α), preCdf ρ x✝ a ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑x✝) univ
[PROOFSTEP]
rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ]
[GOAL]
case h.e'_5.h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ↑↑ρ univ = ↑↑(Measure.fst ρ) univ
[PROOFSTEP]
exact Measure.fst_univ.symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ r a ∂Measure.fst ρ) atBot (𝓝 0)
[PROOFSTEP]
convert ρ.tendsto_IicSnd_atBot MeasurableSet.univ
[GOAL]
case h.e'_3.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x✝ : ℚ
⊢ ∫⁻ (a : α), preCdf ρ x✝ a ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑x✝) univ
[PROOFSTEP]
rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have h_mono := monotone_preCdf ρ
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have h_le_one := preCdf_le_one ρ
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have h_exists : ∀ᵐ a ∂ρ.fst, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) :=
by
filter_upwards [h_mono, h_le_one] with a ha_mono ha_le_one
have h_tendsto : Tendsto (fun r => preCdf ρ r a) atTop atTop ∨ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) :=
tendsto_of_monotone ha_mono
cases' h_tendsto with h_absurd h_tendsto
· rw [Monotone.tendsto_atTop_atTop_iff ha_mono] at h_absurd
obtain ⟨r, hr⟩ := h_absurd 2
exact absurd (hr.trans (ha_le_one r)) ENNReal.one_lt_two.not_le
· exact h_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
filter_upwards [h_mono, h_le_one] with a ha_mono ha_le_one
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
a : α
ha_mono : Monotone fun r => preCdf ρ r a
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
have h_tendsto : Tendsto (fun r => preCdf ρ r a) atTop atTop ∨ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) :=
tendsto_of_monotone ha_mono
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
a : α
ha_mono : Monotone fun r => preCdf ρ r a
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_tendsto : Tendsto (fun r => preCdf ρ r a) atTop atTop ∨ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
cases' h_tendsto with h_absurd h_tendsto
[GOAL]
case h.inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
a : α
ha_mono : Monotone fun r => preCdf ρ r a
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_absurd : Tendsto (fun r => preCdf ρ r a) atTop atTop
⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
rw [Monotone.tendsto_atTop_atTop_iff ha_mono] at h_absurd
[GOAL]
case h.inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
a : α
ha_mono : Monotone fun r => preCdf ρ r a
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_absurd : ∀ (b : ℝ≥0∞), ∃ a_1, b ≤ preCdf ρ a_1 a
⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
obtain ⟨r, hr⟩ := h_absurd 2
[GOAL]
case h.inl.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
a : α
ha_mono : Monotone fun r => preCdf ρ r a
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_absurd : ∀ (b : ℝ≥0∞), ∃ a_1, b ≤ preCdf ρ a_1 a
r : ℚ
hr : 2 ≤ preCdf ρ r a
⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
exact absurd (hr.trans (ha_le_one r)) ENNReal.one_lt_two.not_le
[GOAL]
case h.inr
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
a : α
ha_mono : Monotone fun r => preCdf ρ r a
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_tendsto : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
[PROOFSTEP]
exact h_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
classical
-- let `F` be the pointwise limit of `preCdf` where it exists, and 0 elsewhere.
let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then h.choose else 0
have h_tendsto_ℚ : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) :=
by
filter_upwards [h_exists] with a ha
simp_rw [dif_pos ha]
exact ha.choose_spec
have h_tendsto_ℕ : ∀ᵐ a ∂ρ.fst, Tendsto (fun n : ℕ => preCdf ρ n a) atTop (𝓝 (F a)) := by
filter_upwards [h_tendsto_ℚ] with a ha using ha.comp tendsto_nat_cast_atTop_atTop
have hF_ae_meas : AEMeasurable F ρ.fst :=
by
refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto_ℚ
exact measurable_preCdf.aemeasurable
have hF_le_one : ∀ᵐ a ∂ρ.fst, F a ≤ 1 := by
filter_upwards [h_tendsto_ℚ, h_le_one] with a ha ha_le using le_of_tendsto' ha ha_le
suffices ∀ᵐ a ∂ρ.fst, F a = 1 by
filter_upwards [h_tendsto_ℚ, this] with a ha_tendsto ha_eq
rwa [ha_eq] at ha_tendsto
have h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst :=
by
have h_lintegral : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) :=
by
refine'
lintegral_tendsto_of_tendsto_of_monotone
(
-- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable)
_ h_tendsto_ℕ
filter_upwards [h_mono] with a ha
refine' fun n m hnm => ha _
exact_mod_cast hnm
have h_lintegral' : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ _, 1 ∂ρ.fst)) :=
by
rw [lintegral_one, Measure.fst_univ]
exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop
exact tendsto_nhds_unique h_lintegral h_lintegral'
have : ∫⁻ a, 1 - F a ∂ρ.fst = 0 :=
by
rw [lintegral_sub' hF_ae_meas _ hF_le_one, h_lintegral_eq, tsub_self]
calc
∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := h_lintegral_eq
_ = ρ.fst univ := lintegral_one
_ = ρ univ := Measure.fst_univ
_ ≠ ∞ := measure_ne_top ρ _
rw [lintegral_eq_zero_iff' (aemeasurable_const.sub hF_ae_meas)] at this
filter_upwards [this, hF_le_one] with ha h_one_sub_eq_zero h_le_one
rw [Pi.zero_apply, tsub_eq_zero_iff_le] at h_one_sub_eq_zero
exact le_antisymm h_le_one h_one_sub_eq_zero
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then h.choose else 0
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have h_tendsto_ℚ : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) :=
by
filter_upwards [h_exists] with a ha
simp_rw [dif_pos ha]
exact ha.choose_spec
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
[PROOFSTEP]
filter_upwards [h_exists] with a ha
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
a : α
ha : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
⊢ Tendsto (fun r => preCdf ρ r a) atTop
(𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0))
[PROOFSTEP]
simp_rw [dif_pos ha]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
a : α
ha : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (Exists.choose ha))
[PROOFSTEP]
exact ha.choose_spec
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have h_tendsto_ℕ : ∀ᵐ a ∂ρ.fst, Tendsto (fun n : ℕ => preCdf ρ n a) atTop (𝓝 (F a)) := by
filter_upwards [h_tendsto_ℚ] with a ha using ha.comp tendsto_nat_cast_atTop_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
[PROOFSTEP]
filter_upwards [h_tendsto_ℚ] with a ha using ha.comp tendsto_nat_cast_atTop_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have hF_ae_meas : AEMeasurable F ρ.fst :=
by
refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto_ℚ
exact measurable_preCdf.aemeasurable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
⊢ AEMeasurable F
[PROOFSTEP]
refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto_ℚ
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
n : ℚ
⊢ AEMeasurable fun x => preCdf ρ n x
[PROOFSTEP]
exact measurable_preCdf.aemeasurable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
have hF_le_one : ∀ᵐ a ∂ρ.fst, F a ≤ 1 := by
filter_upwards [h_tendsto_ℚ, h_le_one] with a ha ha_le using le_of_tendsto' ha ha_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
[PROOFSTEP]
filter_upwards [h_tendsto_ℚ, h_le_one] with a ha ha_le using le_of_tendsto' ha ha_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
suffices ∀ᵐ a ∂ρ.fst, F a = 1 by
filter_upwards [h_tendsto_ℚ, this] with a ha_tendsto ha_eq
rwa [ha_eq] at ha_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
this : ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
filter_upwards [h_tendsto_ℚ, this] with a ha_tendsto ha_eq
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
this : ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1
a : α
ha_tendsto :
Tendsto (fun r => preCdf ρ r a) atTop
(𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0))
ha_eq : (if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0) = 1
⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
rwa [ha_eq] at ha_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1
[PROOFSTEP]
have h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst :=
by
have h_lintegral : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) :=
by
refine'
lintegral_tendsto_of_tendsto_of_monotone
(
-- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable)
_ h_tendsto_ℕ
filter_upwards [h_mono] with a ha
refine' fun n m hnm => ha _
exact_mod_cast hnm
have h_lintegral' : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ _, 1 ∂ρ.fst)) :=
by
rw [lintegral_one, Measure.fst_univ]
exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop
exact tendsto_nhds_unique h_lintegral h_lintegral'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
[PROOFSTEP]
have h_lintegral : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) :=
by
refine'
lintegral_tendsto_of_tendsto_of_monotone
(
-- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable)
_ h_tendsto_ℕ
filter_upwards [h_mono] with a ha
refine' fun n m hnm => ha _
exact_mod_cast hnm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
[PROOFSTEP]
refine'
lintegral_tendsto_of_tendsto_of_monotone
(
-- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable)
_ h_tendsto_ℕ
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
⊢ ∀ᵐ (x : α) ∂Measure.fst ρ, Monotone fun n => preCdf ρ (↑n) x
[PROOFSTEP]
filter_upwards [h_mono] with a ha
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
a : α
ha : Monotone fun r => preCdf ρ r a
⊢ Monotone fun n => preCdf ρ (↑n) a
[PROOFSTEP]
refine' fun n m hnm => ha _
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
a : α
ha : Monotone fun r => preCdf ρ r a
n m : ℕ
hnm : n ≤ m
⊢ ↑n ≤ ↑m
[PROOFSTEP]
exact_mod_cast hnm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
[PROOFSTEP]
have h_lintegral' : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ _, 1 ∂ρ.fst)) :=
by
rw [lintegral_one, Measure.fst_univ]
exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (x : α), 1 ∂Measure.fst ρ))
[PROOFSTEP]
rw [lintegral_one, Measure.fst_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (↑↑ρ univ))
[PROOFSTEP]
exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral' : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (x : α), 1 ∂Measure.fst ρ))
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
[PROOFSTEP]
exact tendsto_nhds_unique h_lintegral h_lintegral'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1
[PROOFSTEP]
have : ∫⁻ a, 1 - F a ∂ρ.fst = 0 :=
by
rw [lintegral_sub' hF_ae_meas _ hF_le_one, h_lintegral_eq, tsub_self]
calc
∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := h_lintegral_eq
_ = ρ.fst univ := lintegral_one
_ = ρ univ := Measure.fst_univ
_ ≠ ∞ := measure_ne_top ρ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
⊢ ∫⁻ (a : α), 1 - F a ∂Measure.fst ρ = 0
[PROOFSTEP]
rw [lintegral_sub' hF_ae_meas _ hF_le_one, h_lintegral_eq, tsub_self]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ ≠ ⊤
[PROOFSTEP]
calc
∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := h_lintegral_eq
_ = ρ.fst univ := lintegral_one
_ = ρ univ := Measure.fst_univ
_ ≠ ∞ := measure_ne_top ρ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
this : ∫⁻ (a : α), 1 - F a ∂Measure.fst ρ = 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1
[PROOFSTEP]
rw [lintegral_eq_zero_iff' (aemeasurable_const.sub hF_ae_meas)] at this
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
this : (fun a => 1 - F a) =ᵐ[Measure.fst ρ] 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1
[PROOFSTEP]
filter_upwards [this, hF_le_one] with ha h_one_sub_eq_zero h_le_one
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one✝ : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
this : (fun a => 1 - F a) =ᵐ[Measure.fst ρ] 0
ha : α
h_one_sub_eq_zero :
(1 - if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) = OfNat.ofNat 0 ha
h_le_one : (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) ≤ 1
⊢ (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) = 1
[PROOFSTEP]
rw [Pi.zero_apply, tsub_eq_zero_iff_le] at h_one_sub_eq_zero
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a
h_le_one✝ : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a))
h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a))
hF_ae_meas : AEMeasurable F
hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ
this : (fun a => 1 - F a) =ᵐ[Measure.fst ρ] 0
ha : α
h_one_sub_eq_zero : 1 ≤ if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0
h_le_one : (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) ≤ 1
⊢ (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) = 1
[PROOFSTEP]
exact le_antisymm h_le_one h_one_sub_eq_zero
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0)
[PROOFSTEP]
suffices ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
by
filter_upwards [this] with a ha
have h_eq_neg : (fun r : ℚ => preCdf ρ r a) = fun r : ℚ => preCdf ρ (- -r) a := by simp_rw [neg_neg]
rw [h_eq_neg]
exact ha.comp tendsto_neg_atBot_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0)
[PROOFSTEP]
filter_upwards [this] with a ha
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
a : α
ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
⊢ Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0)
[PROOFSTEP]
have h_eq_neg : (fun r : ℚ => preCdf ρ r a) = fun r : ℚ => preCdf ρ (- -r) a := by simp_rw [neg_neg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
a : α
ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
⊢ (fun r => preCdf ρ r a) = fun r => preCdf ρ (- -r) a
[PROOFSTEP]
simp_rw [neg_neg]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
a : α
ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
h_eq_neg : (fun r => preCdf ρ r a) = fun r => preCdf ρ (- -r) a
⊢ Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0)
[PROOFSTEP]
rw [h_eq_neg]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
a : α
ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
h_eq_neg : (fun r => preCdf ρ r a) = fun r => preCdf ρ (- -r) a
⊢ Tendsto (fun r => preCdf ρ (- -r) a) atBot (𝓝 0)
[PROOFSTEP]
exact ha.comp tendsto_neg_atBot_atTop
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
have h_exists : ∀ᵐ a ∂ρ.fst, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) :=
by
filter_upwards [monotone_preCdf ρ] with a ha
have h_anti : Antitone fun r => preCdf ρ (-r) a := fun p q hpq => ha (neg_le_neg hpq)
have h_tendsto :
Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ∨ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) :=
tendsto_of_antitone h_anti
cases' h_tendsto with h_bot h_tendsto
· exact ⟨0, Tendsto.mono_right h_bot atBot_le_nhds_bot⟩
· exact h_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
[PROOFSTEP]
filter_upwards [monotone_preCdf ρ] with a ha
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : α
ha : Monotone fun r => preCdf ρ r a
⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
[PROOFSTEP]
have h_anti : Antitone fun r => preCdf ρ (-r) a := fun p q hpq => ha (neg_le_neg hpq)
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : α
ha : Monotone fun r => preCdf ρ r a
h_anti : Antitone fun r => preCdf ρ (-r) a
⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
[PROOFSTEP]
have h_tendsto : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ∨ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) :=
tendsto_of_antitone h_anti
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : α
ha : Monotone fun r => preCdf ρ r a
h_anti : Antitone fun r => preCdf ρ (-r) a
h_tendsto : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ∨ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
[PROOFSTEP]
cases' h_tendsto with h_bot h_tendsto
[GOAL]
case h.inl
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : α
ha : Monotone fun r => preCdf ρ r a
h_anti : Antitone fun r => preCdf ρ (-r) a
h_bot : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot
⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
[PROOFSTEP]
exact ⟨0, Tendsto.mono_right h_bot atBot_le_nhds_bot⟩
[GOAL]
case h.inr
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : α
ha : Monotone fun r => preCdf ρ r a
h_anti : Antitone fun r => preCdf ρ (-r) a
h_tendsto : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
[PROOFSTEP]
exact h_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
classical
let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then h.choose else 0
have h_tendsto : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) :=
by
filter_upwards [h_exists] with a ha
simp_rw [dif_pos ha]
exact ha.choose_spec
suffices h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = 0
· have hF_ae_meas : AEMeasurable F ρ.fst :=
by
refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto
exact measurable_preCdf.aemeasurable
rw [lintegral_eq_zero_iff' hF_ae_meas] at h_lintegral_eq
filter_upwards [h_tendsto, h_lintegral_eq] with a ha_tendsto ha_eq
rwa [ha_eq] at ha_tendsto
have h_lintegral : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) :=
by
refine'
tendsto_lintegral_filter_of_dominated_convergence (fun _ => 1) (eventually_of_forall fun _ => measurable_preCdf)
(eventually_of_forall fun _ => _) _ h_tendsto
· filter_upwards [preCdf_le_one ρ] with a ha using ha _
· rw [lintegral_one]
exact measure_ne_top _ _
have h_lintegral' : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 0) :=
by
have h_lintegral_eq : (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) = fun r : ℚ => ρ (univ ×ˢ Iic (-r : ℝ)) :=
by
ext1 n
rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ]
norm_cast
rw [h_lintegral_eq]
have h_zero_eq_measure_iInter : (0 : ℝ≥0∞) = ρ (⋂ r : ℚ, univ ×ˢ Iic (-r : ℝ)) :=
by
suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty]
ext1 x
simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le]
simp_rw [neg_lt]
exact exists_rat_gt _
rw [h_zero_eq_measure_iInter]
refine'
tendsto_measure_iInter (fun n => MeasurableSet.univ.prod measurableSet_Iic) (fun i j hij x => _)
⟨0, measure_ne_top ρ _⟩
simp only [mem_prod, mem_univ, mem_Iic, true_and_iff]
refine' fun hxj => hxj.trans (neg_le_neg _)
exact_mod_cast hij
exact tendsto_nhds_unique h_lintegral h_lintegral'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then h.choose else 0
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
have h_tendsto : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) :=
by
filter_upwards [h_exists] with a ha
simp_rw [dif_pos ha]
exact ha.choose_spec
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
[PROOFSTEP]
filter_upwards [h_exists] with a ha
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
a : α
ha : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
⊢ Tendsto (fun r => preCdf ρ (-r) a) atTop
(𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0))
[PROOFSTEP]
simp_rw [dif_pos ha]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
a : α
ha : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
⊢ Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (Exists.choose ha))
[PROOFSTEP]
exact ha.choose_spec
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
suffices h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = 0
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
have hF_ae_meas : AEMeasurable F ρ.fst :=
by
refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto
exact measurable_preCdf.aemeasurable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
⊢ AEMeasurable F
[PROOFSTEP]
refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
n : ℚ
⊢ AEMeasurable fun x => preCdf ρ (-n) x
[PROOFSTEP]
exact measurable_preCdf.aemeasurable
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
hF_ae_meas : AEMeasurable F
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
rw [lintegral_eq_zero_iff' hF_ae_meas] at h_lintegral_eq
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral_eq : F =ᵐ[Measure.fst ρ] 0
hF_ae_meas : AEMeasurable F
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
filter_upwards [h_tendsto, h_lintegral_eq] with a ha_tendsto ha_eq
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral_eq : F =ᵐ[Measure.fst ρ] 0
hF_ae_meas : AEMeasurable F
a : α
ha_tendsto :
Tendsto (fun r => preCdf ρ (-r) a) atTop
(𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0))
ha_eq : (if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0) = OfNat.ofNat 0 a
⊢ Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0)
[PROOFSTEP]
rwa [ha_eq] at ha_tendsto
[GOAL]
case h_lintegral_eq
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
[PROOFSTEP]
have h_lintegral : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) :=
by
refine'
tendsto_lintegral_filter_of_dominated_convergence (fun _ => 1) (eventually_of_forall fun _ => measurable_preCdf)
(eventually_of_forall fun _ => _) _ h_tendsto
· filter_upwards [preCdf_le_one ρ] with a ha using ha _
· rw [lintegral_one]
exact measure_ne_top _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
[PROOFSTEP]
refine'
tendsto_lintegral_filter_of_dominated_convergence (fun _ => 1) (eventually_of_forall fun _ => measurable_preCdf)
(eventually_of_forall fun _ => _) _ h_tendsto
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
x✝ : ℚ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, preCdf ρ (-x✝) a ≤ (fun x => 1) a
[PROOFSTEP]
filter_upwards [preCdf_le_one ρ] with a ha using ha _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
⊢ ∫⁻ (a : α), (fun x => 1) a ∂Measure.fst ρ ≠ ⊤
[PROOFSTEP]
rw [lintegral_one]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
⊢ ↑↑(Measure.fst ρ) univ ≠ ⊤
[PROOFSTEP]
exact measure_ne_top _ _
[GOAL]
case h_lintegral_eq
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
[PROOFSTEP]
have h_lintegral' : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 0) :=
by
have h_lintegral_eq : (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) = fun r : ℚ => ρ (univ ×ˢ Iic (-r : ℝ)) :=
by
ext1 n
rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ]
norm_cast
rw [h_lintegral_eq]
have h_zero_eq_measure_iInter : (0 : ℝ≥0∞) = ρ (⋂ r : ℚ, univ ×ˢ Iic (-r : ℝ)) :=
by
suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty]
ext1 x
simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le]
simp_rw [neg_lt]
exact exists_rat_gt _
rw [h_zero_eq_measure_iInter]
refine'
tendsto_measure_iInter (fun n => MeasurableSet.univ.prod measurableSet_Iic) (fun i j hij x => _)
⟨0, measure_ne_top ρ _⟩
simp only [mem_prod, mem_univ, mem_Iic, true_and_iff]
refine' fun hxj => hxj.trans (neg_le_neg _)
exact_mod_cast hij
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 0)
[PROOFSTEP]
have h_lintegral_eq : (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) = fun r : ℚ => ρ (univ ×ˢ Iic (-r : ℝ)) :=
by
ext1 n
rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
⊢ (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
[PROOFSTEP]
ext1 n
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
n : ℚ
⊢ ∫⁻ (a : α), preCdf ρ (-n) a ∂Measure.fst ρ = ↑↑ρ (univ ×ˢ Iic (-↑n))
[PROOFSTEP]
rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
n : ℚ
⊢ ↑↑ρ (univ ×ˢ Iic ↑(-n)) = ↑↑ρ (univ ×ˢ Iic (-↑n))
[PROOFSTEP]
norm_cast
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 0)
[PROOFSTEP]
rw [h_lintegral_eq]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
⊢ Tendsto (fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))) atTop (𝓝 0)
[PROOFSTEP]
have h_zero_eq_measure_iInter : (0 : ℝ≥0∞) = ρ (⋂ r : ℚ, univ ×ˢ Iic (-r : ℝ)) :=
by
suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty]
ext1 x
simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le]
simp_rw [neg_lt]
exact exists_rat_gt _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
⊢ 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
[PROOFSTEP]
suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
this : ⋂ (r : ℚ), Iic (-↑r) = ∅
⊢ 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
[PROOFSTEP]
rw [← prod_iInter, this, prod_empty, measure_empty]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
⊢ ⋂ (r : ℚ), Iic (-↑r) = ∅
[PROOFSTEP]
ext1 x
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
x : ℝ
⊢ x ∈ ⋂ (r : ℚ), Iic (-↑r) ↔ x ∈ ∅
[PROOFSTEP]
simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
x : ℝ
⊢ ∃ x_1, -↑x_1 < x
[PROOFSTEP]
simp_rw [neg_lt]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
x : ℝ
⊢ ∃ x_1, -x < ↑x_1
[PROOFSTEP]
exact exists_rat_gt _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
⊢ Tendsto (fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))) atTop (𝓝 0)
[PROOFSTEP]
rw [h_zero_eq_measure_iInter]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
⊢ Tendsto (fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))))
[PROOFSTEP]
refine'
tendsto_measure_iInter (fun n => MeasurableSet.univ.prod measurableSet_Iic) (fun i j hij x => _)
⟨0, measure_ne_top ρ _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
i j : ℚ
hij : i ≤ j
x : α × ℝ
⊢ x ∈ univ ×ˢ Iic (-↑j) → x ∈ univ ×ˢ Iic (-↑i)
[PROOFSTEP]
simp only [mem_prod, mem_univ, mem_Iic, true_and_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
i j : ℚ
hij : i ≤ j
x : α × ℝ
⊢ x.snd ≤ -↑j → x.snd ≤ -↑i
[PROOFSTEP]
refine' fun hxj => hxj.trans (neg_le_neg _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))
h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r))
i j : ℚ
hij : i ≤ j
x : α × ℝ
hxj : x.snd ≤ -↑j
⊢ ↑i ≤ ↑j
[PROOFSTEP]
exact_mod_cast hij
[GOAL]
case h_lintegral_eq
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l)
F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0
h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a))
h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ))
h_lintegral' : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 0)
⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = 0
[PROOFSTEP]
exact tendsto_nhds_unique h_lintegral h_lintegral'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (t : ℚ), ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a = preCdf ρ t a
[PROOFSTEP]
rw [ae_all_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ (i : ℚ), ∀ᵐ (a : α) ∂Measure.fst ρ, ⨅ (r : ↑(Ioi i)), preCdf ρ (↑r) a = preCdf ρ i a
[PROOFSTEP]
refine' fun t => ae_eq_of_forall_set_lintegral_eq_of_sigmaFinite _ measurable_preCdf _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
⊢ Measurable fun a => ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a
[PROOFSTEP]
exact measurable_iInf fun i => measurable_preCdf
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
⊢ ∀ (s : Set α),
MeasurableSet s →
↑↑(Measure.fst ρ) s < ⊤ →
∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ = ∫⁻ (x : α) in s, preCdf ρ t x ∂Measure.fst ρ
[PROOFSTEP]
intro s hs _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
t : ℚ
s : Set α
hs : MeasurableSet s
a✝ : ↑↑(Measure.fst ρ) s < ⊤
⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ = ∫⁻ (x : α) in s, preCdf ρ t x ∂Measure.fst ρ
[PROOFSTEP]
rw [set_lintegral_iInf_gt_preCdf ρ t hs, set_lintegral_preCdf_fst ρ t hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, HasCondCdf ρ a
[PROOFSTEP]
filter_upwards [monotone_preCdf ρ, preCdf_le_one ρ, tendsto_preCdf_atTop_one ρ, tendsto_preCdf_atBot_zero ρ,
inf_gt_preCdf ρ] with a h1 h2 h3 h4 h5
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
a : α
h1 : Monotone fun r => preCdf ρ r a
h2 : ∀ (r : ℚ), preCdf ρ r a ≤ 1
h3 : Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
h4 : Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0)
h5 : ∀ (t : ℚ), ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a = preCdf ρ t a
⊢ HasCondCdf ρ a
[PROOFSTEP]
exact ⟨h1, h2, h3, h4, h5⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ HasCondCdf ρ a
[PROOFSTEP]
rw [condCdfSet, mem_compl_iff] at h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b}
⊢ HasCondCdf ρ a
[PROOFSTEP]
have h_ss := subset_toMeasurable ρ.fst {b | ¬HasCondCdf ρ b}
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b}
h_ss : {b | ¬HasCondCdf ρ b} ⊆ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b}
⊢ HasCondCdf ρ a
[PROOFSTEP]
by_contra ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b}
h_ss : {b | ¬HasCondCdf ρ b} ⊆ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b}
ha : ¬HasCondCdf ρ a
⊢ False
[PROOFSTEP]
exact h (h_ss ha)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ condCdfSet ρ
[PROOFSTEP]
simp_rw [ae_iff, condCdfSet, not_mem_compl_iff, setOf_mem_eq, measure_toMeasurable]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
⊢ ↑↑(Measure.fst ρ) {b | ¬HasCondCdf ρ b} = 0
[PROOFSTEP]
exact hasCondCdf_ae ρ
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
r : ℚ
⊢ condCdfRat ρ a r = if r < 0 then 0 else 1
[PROOFSTEP]
simp only [condCdfRat, h, if_false]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
r : ℚ
⊢ condCdfRat ρ a r = ENNReal.toReal (preCdf ρ r a)
[PROOFSTEP]
simp only [condCdfRat, h, if_true]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Monotone (condCdfRat ρ a)
[PROOFSTEP]
by_cases h : a ∈ condCdfSet ρ
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ Monotone (condCdfRat ρ a)
[PROOFSTEP]
simp only [condCdfRat, h, if_true, forall_const, and_self_iff]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ Monotone fun r => ENNReal.toReal (preCdf ρ r a)
[PROOFSTEP]
intro r r' hrr'
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
r r' : ℚ
hrr' : r ≤ r'
⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r'
[PROOFSTEP]
have h' := hasCondCdf_of_mem_condCdfSet h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
r r' : ℚ
hrr' : r ≤ r'
h' : HasCondCdf ρ a
⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r'
[PROOFSTEP]
have h_ne_top : ∀ r, preCdf ρ r a ≠ ∞ := fun r => ((h'.le_one r).trans_lt ENNReal.one_lt_top).ne
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
r r' : ℚ
hrr' : r ≤ r'
h' : HasCondCdf ρ a
h_ne_top : ∀ (r : ℚ), preCdf ρ r a ≠ ⊤
⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r'
[PROOFSTEP]
rw [ENNReal.toReal_le_toReal (h_ne_top _) (h_ne_top _)]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
r r' : ℚ
hrr' : r ≤ r'
h' : HasCondCdf ρ a
h_ne_top : ∀ (r : ℚ), preCdf ρ r a ≠ ⊤
⊢ preCdf ρ r a ≤ preCdf ρ r' a
[PROOFSTEP]
exact h'.1 hrr'
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ Monotone (condCdfRat ρ a)
[PROOFSTEP]
simp only [condCdfRat, h, if_false]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ Monotone fun r => if r < 0 then 0 else 1
[PROOFSTEP]
intro x y hxy
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
x y : ℚ
hxy : x ≤ y
⊢ (fun r => if r < 0 then 0 else 1) x ≤ (fun r => if r < 0 then 0 else 1) y
[PROOFSTEP]
dsimp only
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
x y : ℚ
hxy : x ≤ y
⊢ (if x < 0 then 0 else 1) ≤ if y < 0 then 0 else 1
[PROOFSTEP]
split_ifs with h_1 h_2 h_2
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
x y : ℚ
hxy : x ≤ y
h_1 : x < 0
h_2 : y < 0
⊢ 0 ≤ 0
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
x y : ℚ
hxy : x ≤ y
h_1 : x < 0
h_2 : ¬y < 0
⊢ 0 ≤ 1
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
x y : ℚ
hxy : x ≤ y
h_1 : ¬x < 0
h_2 : y < 0
⊢ 1 ≤ 0
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
x y : ℚ
hxy : x ≤ y
h_1 : ¬x < 0
h_2 : ¬y < 0
⊢ 1 ≤ 1
[PROOFSTEP]
exacts [le_rfl, zero_le_one, absurd (hxy.trans_lt h_2) h_1, le_rfl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
q : ℚ
⊢ Measurable fun a => condCdfRat ρ a q
[PROOFSTEP]
simp_rw [condCdfRat, ite_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
q : ℚ
⊢ Measurable fun a => if a ∈ condCdfSet ρ then ENNReal.toReal (preCdf ρ q a) else if q < 0 then 0 else 1
[PROOFSTEP]
exact Measurable.ite (measurableSet_condCdfSet ρ) measurable_preCdf.ennreal_toReal measurable_const
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ 0 ≤ condCdfRat ρ a r
[PROOFSTEP]
unfold condCdfRat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ 0 ≤ ite (a ∈ condCdfSet ρ) (fun r => ENNReal.toReal (preCdf ρ r a)) (fun r => if r < 0 then 0 else 1) r
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h✝ : a ∈ condCdfSet ρ
⊢ 0 ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r
[PROOFSTEP]
exact ENNReal.toReal_nonneg
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h✝ : ¬a ∈ condCdfSet ρ
⊢ 0 ≤ (fun r => if r < 0 then 0 else 1) r
[PROOFSTEP]
dsimp only
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h✝ : ¬a ∈ condCdfSet ρ
⊢ 0 ≤ if r < 0 then 0 else 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h✝¹ : ¬a ∈ condCdfSet ρ
h✝ : r < 0
⊢ 0 ≤ 0
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h✝¹ : ¬a ∈ condCdfSet ρ
h✝ : ¬r < 0
⊢ 0 ≤ 1
[PROOFSTEP]
exacts [le_rfl, zero_le_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ condCdfRat ρ a r ≤ 1
[PROOFSTEP]
unfold condCdfRat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ ite (a ∈ condCdfSet ρ) (fun r => ENNReal.toReal (preCdf ρ r a)) (fun r => if r < 0 then 0 else 1) r ≤ 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : a ∈ condCdfSet ρ
⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ 1
[PROOFSTEP]
refine' ENNReal.toReal_le_of_le_ofReal zero_le_one _
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : a ∈ condCdfSet ρ
⊢ preCdf ρ r a ≤ ENNReal.ofReal 1
[PROOFSTEP]
rw [ENNReal.ofReal_one]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : a ∈ condCdfSet ρ
⊢ preCdf ρ r a ≤ 1
[PROOFSTEP]
exact (hasCondCdf_of_mem_condCdfSet h).le_one r
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : ¬a ∈ condCdfSet ρ
⊢ (fun r => if r < 0 then 0 else 1) r ≤ 1
[PROOFSTEP]
dsimp only
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : ¬a ∈ condCdfSet ρ
⊢ (if r < 0 then 0 else 1) ≤ 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : ¬a ∈ condCdfSet ρ
h✝ : r < 0
⊢ 0 ≤ 1
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
h : ¬a ∈ condCdfSet ρ
h✝ : ¬r < 0
⊢ 1 ≤ 1
[PROOFSTEP]
exacts [zero_le_one, le_rfl]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Tendsto (condCdfRat ρ a) atBot (𝓝 0)
[PROOFSTEP]
unfold condCdfRat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Tendsto (if a ∈ condCdfSet ρ then fun r => ENNReal.toReal (preCdf ρ r a) else fun r => if r < 0 then 0 else 1) atBot
(𝓝 0)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ Tendsto (fun r => ENNReal.toReal (preCdf ρ r a)) atBot (𝓝 0)
[PROOFSTEP]
rw [← ENNReal.zero_toReal, ENNReal.tendsto_toReal_iff]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0)
[PROOFSTEP]
exact (hasCondCdf_of_mem_condCdfSet h).tendsto_atBot_zero
[GOAL]
case pos.hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ ∀ (i : ℚ), preCdf ρ i a ≠ ⊤
[PROOFSTEP]
have h' := hasCondCdf_of_mem_condCdfSet h
[GOAL]
case pos.hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
h' : HasCondCdf ρ a
⊢ ∀ (i : ℚ), preCdf ρ i a ≠ ⊤
[PROOFSTEP]
exact fun r => ((h'.le_one r).trans_lt ENNReal.one_lt_top).ne
[GOAL]
case pos.hx
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ 0 ≠ ⊤
[PROOFSTEP]
exact ENNReal.zero_ne_top
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ Tendsto (fun r => if r < 0 then 0 else 1) atBot (𝓝 0)
[PROOFSTEP]
refine' (tendsto_congr' _).mp tendsto_const_nhds
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ (fun x => 0) =ᶠ[atBot] fun r => if r < 0 then 0 else 1
[PROOFSTEP]
rw [EventuallyEq, eventually_atBot]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ ∃ a, ∀ (b : ℚ), b ≤ a → 0 = if b < 0 then 0 else 1
[PROOFSTEP]
refine' ⟨-1, fun q hq => (if_pos (hq.trans_lt _)).symm⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
q : ℚ
hq : q ≤ -1
⊢ -1 < 0
[PROOFSTEP]
linarith
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Tendsto (condCdfRat ρ a) atTop (𝓝 1)
[PROOFSTEP]
unfold condCdfRat
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Tendsto (if a ∈ condCdfSet ρ then fun r => ENNReal.toReal (preCdf ρ r a) else fun r => if r < 0 then 0 else 1) atTop
(𝓝 1)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
⊢ Tendsto (fun r => ENNReal.toReal (preCdf ρ r a)) atTop (𝓝 1)
[PROOFSTEP]
have h' := hasCondCdf_of_mem_condCdfSet h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
h' : HasCondCdf ρ a
⊢ Tendsto (fun r => ENNReal.toReal (preCdf ρ r a)) atTop (𝓝 1)
[PROOFSTEP]
rw [← ENNReal.one_toReal, ENNReal.tendsto_toReal_iff]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
h' : HasCondCdf ρ a
⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1)
[PROOFSTEP]
exact h'.tendsto_atTop_one
[GOAL]
case pos.hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
h' : HasCondCdf ρ a
⊢ ∀ (i : ℚ), preCdf ρ i a ≠ ⊤
[PROOFSTEP]
exact fun r => ((h'.le_one r).trans_lt ENNReal.one_lt_top).ne
[GOAL]
case pos.hx
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : a ∈ condCdfSet ρ
h' : HasCondCdf ρ a
⊢ 1 ≠ ⊤
[PROOFSTEP]
exact ENNReal.one_ne_top
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ Tendsto (fun r => if r < 0 then 0 else 1) atTop (𝓝 1)
[PROOFSTEP]
refine' (tendsto_congr' _).mp tendsto_const_nhds
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ (fun x => 1) =ᶠ[atTop] fun r => if r < 0 then 0 else 1
[PROOFSTEP]
rw [EventuallyEq, eventually_atTop]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h : ¬a ∈ condCdfSet ρ
⊢ ∃ a, ∀ (b : ℚ), b ≥ a → 1 = if b < 0 then 0 else 1
[PROOFSTEP]
exact ⟨0, fun q hq => (if_neg (not_lt.mpr hq)).symm⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
⊢ (fun a => condCdfRat ρ a r) =ᵐ[Measure.fst ρ] fun a => ENNReal.toReal (preCdf ρ r a)
[PROOFSTEP]
filter_upwards [mem_condCdfSet_ae ρ] with a ha using condCdfRat_of_mem ρ a ha r
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
⊢ (fun a => ENNReal.ofReal (condCdfRat ρ a r)) =ᵐ[Measure.fst ρ] preCdf ρ r
[PROOFSTEP]
filter_upwards [condCdfRat_ae_eq ρ r, preCdf_le_one ρ] with a ha ha_le_one
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
a : α
ha : condCdfRat ρ a r = ENNReal.toReal (preCdf ρ r a)
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ ENNReal.ofReal (condCdfRat ρ a r) = preCdf ρ r a
[PROOFSTEP]
rw [ha, ENNReal.ofReal_toReal]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
a : α
ha : condCdfRat ρ a r = ENNReal.toReal (preCdf ρ r a)
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ preCdf ρ r a ≠ ⊤
[PROOFSTEP]
exact ((ha_le_one r).trans_lt ENNReal.one_lt_top).ne
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
⊢ ⨅ (r : ↑(Ioi t)), condCdfRat ρ a ↑r = condCdfRat ρ a t
[PROOFSTEP]
by_cases ha : a ∈ condCdfSet ρ
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
⊢ ⨅ (r : ↑(Ioi t)), condCdfRat ρ a ↑r = condCdfRat ρ a t
[PROOFSTEP]
simp_rw [condCdfRat_of_mem ρ a ha]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
⊢ ⨅ (r : ↑(Ioi t)), ENNReal.toReal (preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a)
[PROOFSTEP]
have ha' := hasCondCdf_of_mem_condCdfSet ha
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
ha' : HasCondCdf ρ a
⊢ ⨅ (r : ↑(Ioi t)), ENNReal.toReal (preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a)
[PROOFSTEP]
rw [← ENNReal.toReal_iInf]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
ha' : HasCondCdf ρ a
⊢ ENNReal.toReal (⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a)
[PROOFSTEP]
suffices ⨅ i : ↥(Ioi t), preCdf ρ (↑i) a = preCdf ρ t a by rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
ha' : HasCondCdf ρ a
this : ⨅ (i : ↑(Ioi t)), preCdf ρ (↑i) a = preCdf ρ t a
⊢ ENNReal.toReal (⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a)
[PROOFSTEP]
rw [this]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
ha' : HasCondCdf ρ a
⊢ ⨅ (i : ↑(Ioi t)), preCdf ρ (↑i) a = preCdf ρ t a
[PROOFSTEP]
rw [← ha'.iInf_rat_gt_eq]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : a ∈ condCdfSet ρ
ha' : HasCondCdf ρ a
⊢ ∀ (i : ↑(Ioi t)), preCdf ρ (↑i) a ≠ ⊤
[PROOFSTEP]
exact fun r => ((ha'.le_one r).trans_lt ENNReal.one_lt_top).ne
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
⊢ ⨅ (r : ↑(Ioi t)), condCdfRat ρ a ↑r = condCdfRat ρ a t
[PROOFSTEP]
simp_rw [condCdfRat_of_not_mem ρ a ha]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = if t < 0 then 0 else 1
[PROOFSTEP]
have h_bdd : BddBelow (range fun r : ↥(Ioi t) => ite ((r : ℚ) < 0) (0 : ℝ) 1) :=
by
refine' ⟨0, fun x hx => _⟩
obtain ⟨y, rfl⟩ := mem_range.mpr hx
dsimp only
split_ifs
exacts [le_rfl, zero_le_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
⊢ BddBelow (range fun r => if ↑r < 0 then 0 else 1)
[PROOFSTEP]
refine' ⟨0, fun x hx => _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
x : ℝ
hx : x ∈ range fun r => if ↑r < 0 then 0 else 1
⊢ 0 ≤ x
[PROOFSTEP]
obtain ⟨y, rfl⟩ := mem_range.mpr hx
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
y : ↑(Ioi t)
hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1
⊢ 0 ≤ (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y
[PROOFSTEP]
dsimp only
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
y : ↑(Ioi t)
hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1
⊢ 0 ≤ if ↑y < 0 then 0 else 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
y : ↑(Ioi t)
hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1
h✝ : ↑y < 0
⊢ 0 ≤ 0
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
y : ↑(Ioi t)
hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1
h✝ : ¬↑y < 0
⊢ 0 ≤ 1
[PROOFSTEP]
exacts [le_rfl, zero_le_one]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = if t < 0 then 0 else 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = 0
[PROOFSTEP]
refine' le_antisymm _ (le_ciInf fun x => _)
[GOAL]
case pos.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) ≤ 0
[PROOFSTEP]
obtain ⟨q, htq, hq_neg⟩ : ∃ q, t < q ∧ q < 0 := by
refine' ⟨t / 2, _, _⟩
· linarith
· linarith
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
⊢ ∃ q, t < q ∧ q < 0
[PROOFSTEP]
refine' ⟨t / 2, _, _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
⊢ t < t / 2
[PROOFSTEP]
linarith
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
⊢ t / 2 < 0
[PROOFSTEP]
linarith
[GOAL]
case pos.refine'_1.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
q : ℚ
htq : t < q
hq_neg : q < 0
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) ≤ 0
[PROOFSTEP]
refine' (ciInf_le h_bdd ⟨q, htq⟩).trans _
[GOAL]
case pos.refine'_1.intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
q : ℚ
htq : t < q
hq_neg : q < 0
⊢ (if ↑{ val := q, property := htq } < 0 then 0 else 1) ≤ 0
[PROOFSTEP]
rw [if_pos]
[GOAL]
case pos.refine'_1.intro.intro.hc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
q : ℚ
htq : t < q
hq_neg : q < 0
⊢ ↑{ val := q, property := htq } < 0
[PROOFSTEP]
rwa [Subtype.coe_mk]
[GOAL]
case pos.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
x : ↑(Ioi t)
⊢ 0 ≤ if ↑x < 0 then 0 else 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
x : ↑(Ioi t)
h✝ : ↑x < 0
⊢ 0 ≤ 0
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : t < 0
x : ↑(Ioi t)
h✝ : ¬↑x < 0
⊢ 0 ≤ 1
[PROOFSTEP]
exacts [le_rfl, zero_le_one]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = 1
[PROOFSTEP]
refine' le_antisymm _ _
[GOAL]
case neg.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) ≤ 1
[PROOFSTEP]
refine' (ciInf_le h_bdd ⟨t + 1, lt_add_one t⟩).trans _
[GOAL]
case neg.refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
⊢ (if ↑{ val := t + 1, property := (_ : t < t + 1) } < 0 then 0 else 1) ≤ 1
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
h✝ : ↑{ val := t + 1, property := (_ : t < t + 1) } < 0
⊢ 0 ≤ 1
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
h✝ : ¬↑{ val := t + 1, property := (_ : t < t + 1) } < 0
⊢ 1 ≤ 1
[PROOFSTEP]
exacts [zero_le_one, le_rfl]
[GOAL]
case neg.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
⊢ 1 ≤ ⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1
[PROOFSTEP]
refine' le_ciInf fun x => _
[GOAL]
case neg.refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
x : ↑(Ioi t)
⊢ 1 ≤ if ↑x < 0 then 0 else 1
[PROOFSTEP]
rw [if_neg]
[GOAL]
case neg.refine'_2.hnc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : ¬t < 0
x : ↑(Ioi t)
⊢ ¬↑x < 0
[PROOFSTEP]
rw [not_lt] at h ⊢
[GOAL]
case neg.refine'_2.hnc
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
t : ℚ
ha : ¬a ∈ condCdfSet ρ
h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1)
h : 0 ≤ t
x : ↑(Ioi t)
⊢ 0 ≤ ↑x
[PROOFSTEP]
exact h.trans (mem_Ioi.mp x.prop).le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ condCdf' ρ a x = ⨅ (r : { r // x < ↑r }), condCdfRat ρ a ↑r
[PROOFSTEP]
rw [condCdf']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ condCdf' ρ a ↑r = condCdfRat ρ a r
[PROOFSTEP]
rw [← inf_gt_condCdfRat ρ a r, condCdf']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ ⨅ (r_1 : { r' // ↑r < ↑r' }), condCdfRat ρ a ↑r_1 = ⨅ (r_1 : ↑(Ioi r)), condCdfRat ρ a ↑r_1
[PROOFSTEP]
refine' Equiv.iInf_congr _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ { r' // ↑r < ↑r' } ≃ ↑(Ioi r)
[PROOFSTEP]
exact
{ toFun := fun t => ⟨t.1, by exact_mod_cast t.2⟩
invFun := fun t => ⟨t.1, by exact_mod_cast t.2⟩
left_inv := fun t => by simp only [Subtype.coe_eta]
right_inv := fun t => by simp only [Subtype.coe_eta] }
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
t : { r' // ↑r < ↑r' }
⊢ ↑t ∈ Ioi r
[PROOFSTEP]
exact_mod_cast t.2
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
t : ↑(Ioi r)
⊢ ↑r < ↑↑t
[PROOFSTEP]
exact_mod_cast t.2
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
t : { r' // ↑r < ↑r' }
⊢ (fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) ((fun t => { val := ↑t, property := (_ : r < ↑t) }) t) = t
[PROOFSTEP]
simp only [Subtype.coe_eta]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
t : ↑(Ioi r)
⊢ (fun t => { val := ↑t, property := (_ : r < ↑t) }) ((fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) t) = t
[PROOFSTEP]
simp only [Subtype.coe_eta]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
⊢ ∀ (x : { r' // ↑r < ↑r' }),
condCdfRat ρ a
↑(↑{ toFun := fun t => { val := ↑t, property := (_ : r < ↑t) },
invFun := fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) },
left_inv :=
(_ :
∀ (t : { r' // ↑r < ↑r' }),
{ val := ↑t, property := (_ : ↑r < ↑↑((fun t => { val := ↑t, property := (_ : r < ↑t) }) t)) } =
t),
right_inv :=
(_ :
∀ (t : ↑(Ioi r)),
{ val := ↑t, property := (_ : r < ↑((fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) t)) } =
t) }
x) =
condCdfRat ρ a ↑x
[PROOFSTEP]
intro t
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℚ
t : { r' // ↑r < ↑r' }
⊢ condCdfRat ρ a
↑(↑{ toFun := fun t => { val := ↑t, property := (_ : r < ↑t) },
invFun := fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) },
left_inv :=
(_ :
∀ (t : { r' // ↑r < ↑r' }),
{ val := ↑t, property := (_ : ↑r < ↑↑((fun t => { val := ↑t, property := (_ : r < ↑t) }) t)) } = t),
right_inv :=
(_ :
∀ (t : ↑(Ioi r)),
{ val := ↑t, property := (_ : r < ↑((fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) t)) } =
t) }
t) =
condCdfRat ρ a ↑t
[PROOFSTEP]
simp only [Equiv.coe_fn_mk, Subtype.coe_mk]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℝ
⊢ 0 ≤ condCdf' ρ a r
[PROOFSTEP]
have : Nonempty { r' : ℚ // r < ↑r' } := by
obtain ⟨r, hrx⟩ := exists_rat_gt r
exact ⟨⟨r, hrx⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℝ
⊢ Nonempty { r' // r < ↑r' }
[PROOFSTEP]
obtain ⟨r, hrx⟩ := exists_rat_gt r
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r✝ : ℝ
r : ℚ
hrx : r✝ < ↑r
⊢ Nonempty { r' // r✝ < ↑r' }
[PROOFSTEP]
exact ⟨⟨r, hrx⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℝ
this : Nonempty { r' // r < ↑r' }
⊢ 0 ≤ condCdf' ρ a r
[PROOFSTEP]
rw [condCdf'_def]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
r : ℝ
this : Nonempty { r' // r < ↑r' }
⊢ 0 ≤ ⨅ (r_1 : { r' // r < ↑r' }), condCdfRat ρ a ↑r_1
[PROOFSTEP]
exact le_ciInf fun r' => condCdfRat_nonneg ρ a _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ BddBelow (range fun r => condCdfRat ρ a ↑r)
[PROOFSTEP]
refine' ⟨0, fun z => _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x z : ℝ
⊢ (z ∈ range fun r => condCdfRat ρ a ↑r) → 0 ≤ z
[PROOFSTEP]
rintro ⟨u, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
u : { r' // x < ↑r' }
⊢ 0 ≤ (fun r => condCdfRat ρ a ↑r) u
[PROOFSTEP]
exact condCdfRat_nonneg ρ a _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Monotone (condCdf' ρ a)
[PROOFSTEP]
intro x y hxy
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
⊢ condCdf' ρ a x ≤ condCdf' ρ a y
[PROOFSTEP]
have : Nonempty { r' : ℚ // y < ↑r' } := by
obtain ⟨r, hrx⟩ := exists_rat_gt y
exact ⟨⟨r, hrx⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
⊢ Nonempty { r' // y < ↑r' }
[PROOFSTEP]
obtain ⟨r, hrx⟩ := exists_rat_gt y
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
r : ℚ
hrx : y < ↑r
⊢ Nonempty { r' // y < ↑r' }
[PROOFSTEP]
exact ⟨⟨r, hrx⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
this : Nonempty { r' // y < ↑r' }
⊢ condCdf' ρ a x ≤ condCdf' ρ a y
[PROOFSTEP]
simp_rw [condCdf'_def]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
this : Nonempty { r' // y < ↑r' }
⊢ ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ≤ ⨅ (r : { r' // y < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
refine' le_ciInf fun r => (ciInf_le _ _).trans_eq _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
this : Nonempty { r' // y < ↑r' }
r : { r' // y < ↑r' }
⊢ BddBelow (range fun r => condCdfRat ρ a ↑r)
[PROOFSTEP]
exact bddBelow_range_condCdfRat_gt ρ a x
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
this : Nonempty { r' // y < ↑r' }
r : { r' // y < ↑r' }
⊢ { r' // x < ↑r' }
[PROOFSTEP]
exact ⟨r.1, hxy.trans_lt r.prop⟩
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x y : ℝ
hxy : x ≤ y
this : Nonempty { r' // y < ↑r' }
r : { r' // y < ↑r' }
⊢ condCdfRat ρ a ↑{ val := ↑r, property := (_ : x < ↑↑r) } = condCdfRat ρ a ↑r
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ContinuousWithinAt (condCdf' ρ a) (Ici x) x
[PROOFSTEP]
rw [← continuousWithinAt_Ioi_iff_Ici]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x
[PROOFSTEP]
convert Monotone.tendsto_nhdsWithin_Ioi (monotone_condCdf' ρ a) x
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (sInf (condCdf' ρ a '' Ioi x)))
[PROOFSTEP]
rw [sInf_image']
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔
Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (a_1 : ↑(Ioi x)), condCdf' ρ a ↑a_1))
[PROOFSTEP]
have h' : ⨅ r : Ioi x, condCdf' ρ a r = ⨅ r : { r' : ℚ // x < r' }, condCdf' ρ a r :=
by
refine' Real.iInf_Ioi_eq_iInf_rat_gt x _ (monotone_condCdf' ρ a)
refine' ⟨0, fun z => _⟩
rintro ⟨u, -, rfl⟩
exact condCdf'_nonneg ρ a u
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
[PROOFSTEP]
refine' Real.iInf_Ioi_eq_iInf_rat_gt x _ (monotone_condCdf' ρ a)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ BddBelow (condCdf' ρ a '' Ioi x)
[PROOFSTEP]
refine' ⟨0, fun z => _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x z : ℝ
⊢ z ∈ condCdf' ρ a '' Ioi x → 0 ≤ z
[PROOFSTEP]
rintro ⟨u, -, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x u : ℝ
⊢ 0 ≤ condCdf' ρ a u
[PROOFSTEP]
exact condCdf'_nonneg ρ a u
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔
Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (a_1 : ↑(Ioi x)), condCdf' ρ a ↑a_1))
[PROOFSTEP]
have h'' : ⨅ r : { r' : ℚ // x < r' }, condCdf' ρ a r = ⨅ r : { r' : ℚ // x < r' }, condCdfRat ρ a r :=
by
congr with r
exact condCdf'_eq_condCdfRat ρ a r
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
⊢ ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
congr with r
[GOAL]
case e_s.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
r : { r' // x < ↑r' }
⊢ condCdf' ρ a ↑↑r = condCdfRat ρ a ↑r
[PROOFSTEP]
exact condCdf'_eq_condCdfRat ρ a r
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
h'' : ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔
Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (a_1 : ↑(Ioi x)), condCdf' ρ a ↑a_1))
[PROOFSTEP]
rw [h', h'', ContinuousWithinAt]
[GOAL]
case a
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
h'' : ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
⊢ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (condCdf' ρ a x)) ↔
Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r))
[PROOFSTEP]
congr!
[GOAL]
case a.a.h.e'_5.h.e'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r
h'' : ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
⊢ condCdf' ρ a x = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
exact condCdf'_def'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ↑(condCdf ρ a) x ≤ 1
[PROOFSTEP]
obtain ⟨r, hrx⟩ := exists_rat_gt x
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
r : ℚ
hrx : x < ↑r
⊢ ↑(condCdf ρ a) x ≤ 1
[PROOFSTEP]
rw [← StieltjesFunction.iInf_rat_gt_eq]
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
r : ℚ
hrx : x < ↑r
⊢ ⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r ≤ 1
[PROOFSTEP]
simp_rw [condCdf_eq_condCdfRat]
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
r : ℚ
hrx : x < ↑r
⊢ ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ≤ 1
[PROOFSTEP]
refine' ciInf_le_of_le (bddBelow_range_condCdfRat_gt ρ a x) _ (condCdfRat_le_one _ _ _)
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
r : ℚ
hrx : x < ↑r
⊢ { r' // x < ↑r' }
[PROOFSTEP]
exact ⟨r, hrx⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0)
[PROOFSTEP]
have h_exists : ∀ x : ℝ, ∃ q : ℚ, x < q ∧ ↑q < x + 1 := fun x => exists_rat_btwn (lt_add_one x)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0)
[PROOFSTEP]
let qs : ℝ → ℚ := fun x => (h_exists x).choose
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0)
[PROOFSTEP]
have hqs_tendsto : Tendsto qs atBot atBot := by
rw [tendsto_atBot_atBot]
refine' fun q => ⟨q - 1, fun y hy => _⟩
have h_le : ↑(qs y) ≤ (q : ℝ) - 1 + 1 := (h_exists y).choose_spec.2.le.trans (add_le_add hy le_rfl)
rw [sub_add_cancel] at h_le
exact_mod_cast h_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
⊢ Tendsto qs atBot atBot
[PROOFSTEP]
rw [tendsto_atBot_atBot]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
⊢ ∀ (b : ℚ), ∃ i, ∀ (a : ℝ), a ≤ i → qs a ≤ b
[PROOFSTEP]
refine' fun q => ⟨q - 1, fun y hy => _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
q : ℚ
y : ℝ
hy : y ≤ ↑q - 1
⊢ qs y ≤ q
[PROOFSTEP]
have h_le : ↑(qs y) ≤ (q : ℝ) - 1 + 1 := (h_exists y).choose_spec.2.le.trans (add_le_add hy le_rfl)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
q : ℚ
y : ℝ
hy : y ≤ ↑q - 1
h_le : ↑(qs y) ≤ ↑q - 1 + 1
⊢ qs y ≤ q
[PROOFSTEP]
rw [sub_add_cancel] at h_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
q : ℚ
y : ℝ
hy : y ≤ ↑q - 1
h_le : ↑(qs y) ≤ ↑q
⊢ qs y ≤ q
[PROOFSTEP]
exact_mod_cast h_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
hqs_tendsto : Tendsto qs atBot atBot
⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0)
[PROOFSTEP]
refine'
tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds ((tendsto_condCdfRat_atBot ρ a).comp hqs_tendsto)
(condCdf_nonneg ρ a) fun x => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
hqs_tendsto : Tendsto qs atBot atBot
x : ℝ
⊢ ↑(condCdf ρ a) x ≤ (condCdfRat ρ a ∘ qs) x
[PROOFSTEP]
rw [Function.comp_apply, ← condCdf_eq_condCdfRat]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1)
hqs_tendsto : Tendsto qs atBot atBot
x : ℝ
⊢ ↑(condCdf ρ a) x ≤ ↑(condCdf ρ a) ↑(qs x)
[PROOFSTEP]
exact (condCdf ρ a).mono (h_exists x).choose_spec.1.le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1)
[PROOFSTEP]
have h_exists : ∀ x : ℝ, ∃ q : ℚ, x - 1 < q ∧ ↑q < x := fun x => exists_rat_btwn (sub_one_lt x)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1)
[PROOFSTEP]
let qs : ℝ → ℚ := fun x => (h_exists x).choose
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1)
[PROOFSTEP]
have hqs_tendsto : Tendsto qs atTop atTop := by
rw [tendsto_atTop_atTop]
refine' fun q => ⟨q + 1, fun y hy => _⟩
have h_le : y - 1 ≤ qs y := (h_exists y).choose_spec.1.le
rw [sub_le_iff_le_add] at h_le
exact_mod_cast le_of_add_le_add_right (hy.trans h_le)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
⊢ Tendsto qs atTop atTop
[PROOFSTEP]
rw [tendsto_atTop_atTop]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
⊢ ∀ (b : ℚ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ qs a
[PROOFSTEP]
refine' fun q => ⟨q + 1, fun y hy => _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
q : ℚ
y : ℝ
hy : ↑q + 1 ≤ y
⊢ q ≤ qs y
[PROOFSTEP]
have h_le : y - 1 ≤ qs y := (h_exists y).choose_spec.1.le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
q : ℚ
y : ℝ
hy : ↑q + 1 ≤ y
h_le : y - 1 ≤ ↑(qs y)
⊢ q ≤ qs y
[PROOFSTEP]
rw [sub_le_iff_le_add] at h_le
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
q : ℚ
y : ℝ
hy : ↑q + 1 ≤ y
h_le : y ≤ ↑(qs y) + 1
⊢ q ≤ qs y
[PROOFSTEP]
exact_mod_cast le_of_add_le_add_right (hy.trans h_le)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
hqs_tendsto : Tendsto qs atTop atTop
⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1)
[PROOFSTEP]
refine'
tendsto_of_tendsto_of_tendsto_of_le_of_le ((tendsto_condCdfRat_atTop ρ a).comp hqs_tendsto) tendsto_const_nhds _
(condCdf_le_one ρ a)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
hqs_tendsto : Tendsto qs atTop atTop
⊢ condCdfRat ρ a ∘ qs ≤ ↑(condCdf ρ a)
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
hqs_tendsto : Tendsto qs atTop atTop
x : ℝ
⊢ (condCdfRat ρ a ∘ qs) x ≤ ↑(condCdf ρ a) x
[PROOFSTEP]
rw [Function.comp_apply, ← condCdf_eq_condCdfRat]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x
qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x)
hqs_tendsto : Tendsto qs atTop atTop
x : ℝ
⊢ ↑(condCdf ρ a) ↑(qs x) ≤ ↑(condCdf ρ a) x
[PROOFSTEP]
exact (condCdf ρ a).mono (le_of_lt (h_exists x).choose_spec.2)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
⊢ (fun a => ↑(condCdf ρ a) ↑r) =ᵐ[Measure.fst ρ] fun a => ENNReal.toReal (preCdf ρ r a)
[PROOFSTEP]
filter_upwards [mem_condCdfSet_ae ρ] with a ha using (condCdf_eq_condCdfRat ρ a r).trans (condCdfRat_of_mem ρ a ha r)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
⊢ (fun a => ENNReal.ofReal (↑(condCdf ρ a) ↑r)) =ᵐ[Measure.fst ρ] preCdf ρ r
[PROOFSTEP]
filter_upwards [condCdf_ae_eq ρ r, preCdf_le_one ρ] with a ha ha_le_one
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
a : α
ha : ↑(condCdf ρ a) ↑r = ENNReal.toReal (preCdf ρ r a)
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a
[PROOFSTEP]
rw [ha, ENNReal.ofReal_toReal]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
a : α
ha : ↑(condCdf ρ a) ↑r = ENNReal.toReal (preCdf ρ r a)
ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1
⊢ preCdf ρ r a ≠ ⊤
[PROOFSTEP]
exact ((ha_le_one r).trans_lt ENNReal.one_lt_top).ne
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
⊢ Measurable fun a => ↑(condCdf ρ a) x
[PROOFSTEP]
have : (fun a => condCdf ρ a x) = fun a => ⨅ r : { r' : ℚ // x < r' }, condCdfRat ρ a ↑r :=
by
ext1 a
rw [← StieltjesFunction.iInf_rat_gt_eq]
congr with q
rw [condCdf_eq_condCdfRat]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
⊢ (fun a => ↑(condCdf ρ a) x) = fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
a : α
⊢ ↑(condCdf ρ a) x = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
rw [← StieltjesFunction.iInf_rat_gt_eq]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
a : α
⊢ ⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
congr with q
[GOAL]
case h.e_s.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
a : α
q : { r' // x < ↑r' }
⊢ ↑(condCdf ρ a) ↑↑q = condCdfRat ρ a ↑q
[PROOFSTEP]
rw [condCdf_eq_condCdfRat]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
this : (fun a => ↑(condCdf ρ a) x) = fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
⊢ Measurable fun a => ↑(condCdf ρ a) x
[PROOFSTEP]
rw [this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
x : ℝ
this : (fun a => ↑(condCdf ρ a) x) = fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
⊢ Measurable fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r
[PROOFSTEP]
exact measurable_ciInf (fun q => measurable_condCdfRat ρ q) fun a => bddBelow_range_condCdfRat_gt ρ a _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑r) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic ↑r)
[PROOFSTEP]
have : ∀ᵐ a ∂ρ.fst, a ∈ s → ENNReal.ofReal (condCdf ρ a r) = preCdf ρ r a := by
filter_upwards [ofReal_condCdf_ae_eq ρ r] with a ha using fun _ => ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ s → ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a
[PROOFSTEP]
filter_upwards [ofReal_condCdf_ae_eq ρ r] with a ha using fun _ => ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
this : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ s → ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑r) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic ↑r)
[PROOFSTEP]
rw [set_lintegral_congr_fun hs this, set_lintegral_preCdf_fst ρ r hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
r : ℚ
s : Set α
hs : MeasurableSet s
this : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ s → ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a
⊢ ↑↑(Measure.IicSnd ρ ↑r) s = ↑↑ρ (s ×ˢ Iic ↑r)
[PROOFSTEP]
exact ρ.IicSnd_apply r hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
by_cases hρ_zero : ρ.fst.restrict s = 0
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : Measure.restrict (Measure.fst ρ) s = 0
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
rw [hρ_zero, lintegral_zero_measure]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : Measure.restrict (Measure.fst ρ) s = 0
⊢ 0 = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
refine' le_antisymm (zero_le _) _
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : Measure.restrict (Measure.fst ρ) s = 0
⊢ ↑↑ρ (s ×ˢ Iic x) ≤ 0
[PROOFSTEP]
calc
ρ (s ×ˢ Iic x) ≤ ρ (Prod.fst ⁻¹' s) := measure_mono (prod_subset_preimage_fst s (Iic x))
_ = ρ.fst s := by rw [Measure.fst_apply hs]
_ = ρ.fst.restrict s univ := by rw [Measure.restrict_apply_univ]
_ = 0 := by simp only [hρ_zero, Measure.coe_zero, Pi.zero_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : Measure.restrict (Measure.fst ρ) s = 0
⊢ ↑↑ρ (Prod.fst ⁻¹' s) = ↑↑(Measure.fst ρ) s
[PROOFSTEP]
rw [Measure.fst_apply hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : Measure.restrict (Measure.fst ρ) s = 0
⊢ ↑↑(Measure.fst ρ) s = ↑↑(Measure.restrict (Measure.fst ρ) s) univ
[PROOFSTEP]
rw [Measure.restrict_apply_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : Measure.restrict (Measure.fst ρ) s = 0
⊢ ↑↑(Measure.restrict (Measure.fst ρ) s) univ = 0
[PROOFSTEP]
simp only [hρ_zero, Measure.coe_zero, Pi.zero_apply]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
have h :
∫⁻ a in s, ENNReal.ofReal (condCdf ρ a x) ∂ρ.fst =
∫⁻ a in s, ENNReal.ofReal (⨅ r : { r' : ℚ // x < r' }, condCdf ρ a r) ∂ρ.fst :=
by
congr with a : 1
rw [← (condCdf ρ a).iInf_rat_gt_eq x]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
[PROOFSTEP]
congr with a : 1
[GOAL]
case e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
a : α
⊢ ENNReal.ofReal (↑(condCdf ρ a) x) = ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r)
[PROOFSTEP]
rw [← (condCdf ρ a).iInf_rat_gt_eq x]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
have h_nonempty : Nonempty { r' : ℚ // x < ↑r' } :=
by
obtain ⟨r, hrx⟩ := exists_rat_gt x
exact ⟨⟨r, hrx⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
⊢ Nonempty { r' // x < ↑r' }
[PROOFSTEP]
obtain ⟨r, hrx⟩ := exists_rat_gt x
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
r : ℚ
hrx : x < ↑r
⊢ Nonempty { r' // x < ↑r' }
[PROOFSTEP]
exact ⟨⟨r, hrx⟩⟩
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
rw [h]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
simp_rw [ENNReal.ofReal_cinfi]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
⊢ ∫⁻ (a : α) in s, ⨅ (i : { r' // x < ↑r' }), ENNReal.ofReal (↑(condCdf ρ a) ↑↑i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
have h_coe : ∀ b : { r' : ℚ // x < ↑r' }, (b : ℝ) = ((b : ℚ) : ℝ) := fun _ => by congr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
x✝ : { r' // x < ↑r' }
⊢ ↑↑x✝ = ↑↑x✝
[PROOFSTEP]
congr
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ∫⁻ (a : α) in s, ⨅ (i : { r' // x < ↑r' }), ENNReal.ofReal (↑(condCdf ρ a) ↑↑i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
rw [lintegral_iInf_directed_of_measurable hρ_zero fun q : { r' : ℚ // x < ↑r' } =>
(measurable_condCdf ρ q).ennreal_ofReal]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ⨅ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
case neg.hf_int
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ∀ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ ≠ ⊤
case neg.h_directed
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ Directed (fun x x_1 => x ≥ x_1) fun q x_1 => ENNReal.ofReal (↑(condCdf ρ x_1) ↑↑q)
[PROOFSTEP]
rotate_left
[GOAL]
case neg.hf_int
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ∀ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ ≠ ⊤
[PROOFSTEP]
intro b
[GOAL]
case neg.hf_int
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
b : { r' // x < ↑r' }
⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ ≠ ⊤
[PROOFSTEP]
rw [set_lintegral_condCdf_rat ρ _ hs]
[GOAL]
case neg.hf_int
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
b : { r' // x < ↑r' }
⊢ ↑↑ρ (s ×ˢ Iic ↑↑b) ≠ ⊤
[PROOFSTEP]
exact measure_ne_top ρ _
[GOAL]
case neg.h_directed
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ Directed (fun x x_1 => x ≥ x_1) fun q x_1 => ENNReal.ofReal (↑(condCdf ρ x_1) ↑↑q)
[PROOFSTEP]
refine' Monotone.directed_ge fun i j hij a => ENNReal.ofReal_le_ofReal ((condCdf ρ a).mono _)
[GOAL]
case neg.h_directed
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
i j : { r' // x < ↑r' }
hij : i ≤ j
a : α
⊢ ↑↑i ≤ ↑↑j
[PROOFSTEP]
rw [h_coe, h_coe]
[GOAL]
case neg.h_directed
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
i j : { r' // x < ↑r' }
hij : i ≤ j
a : α
⊢ ↑↑i ≤ ↑↑j
[PROOFSTEP]
exact_mod_cast hij
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ⨅ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
simp_rw [set_lintegral_condCdf_rat ρ _ hs]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ⨅ (b : { r' // x < ↑r' }), ↑↑ρ (s ×ˢ Iic ↑↑b) = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
rw [← measure_iInter_eq_iInf]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ↑↑ρ (⋂ (i : { r' // x < ↑r' }), s ×ˢ Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
rw [← prod_iInter]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ↑↑ρ (s ×ˢ ⋂ (i : { r' // x < ↑r' }), Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic x)
[PROOFSTEP]
congr with y
[GOAL]
case neg.e_a.e_a.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
y : ℝ
⊢ y ∈ ⋂ (i : { r' // x < ↑r' }), Iic ↑↑i ↔ y ∈ Iic x
[PROOFSTEP]
simp only [mem_iInter, mem_Iic, Subtype.forall, Subtype.coe_mk]
[GOAL]
case neg.e_a.e_a.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
y : ℝ
⊢ (∀ (a : ℚ), x < ↑a → y ≤ ↑a) ↔ y ≤ x
[PROOFSTEP]
exact ⟨le_of_forall_lt_rat_imp_le, fun hyx q hq => hyx.trans hq.le⟩
[GOAL]
case neg.h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ∀ (i : { r' // x < ↑r' }), MeasurableSet (s ×ˢ Iic ↑↑i)
[PROOFSTEP]
exact fun i => hs.prod measurableSet_Iic
[GOAL]
case neg.hd
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ Directed (fun x x_1 => x ⊇ x_1) fun b => s ×ˢ Iic ↑↑b
[PROOFSTEP]
refine' Monotone.directed_ge fun i j hij => _
[GOAL]
case neg.hd
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
i j : { r' // x < ↑r' }
hij : i ≤ j
⊢ s ×ˢ Iic ↑↑i ≤ s ×ˢ Iic ↑↑j
[PROOFSTEP]
refine' prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, Iic_subset_Iic.mpr _⟩)
[GOAL]
case neg.hd
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
i j : { r' // x < ↑r' }
hij : i ≤ j
⊢ ↑↑i ≤ ↑↑j
[PROOFSTEP]
exact_mod_cast hij
[GOAL]
case neg.hfin
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0
h :
∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ =
∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ
h_nonempty : Nonempty { r' // x < ↑r' }
h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b
⊢ ∃ i, ↑↑ρ (s ×ˢ Iic ↑↑i) ≠ ⊤
[PROOFSTEP]
exact ⟨h_nonempty.some, measure_ne_top _ _⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
⊢ ∫⁻ (a : α), ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (univ ×ˢ Iic x)
[PROOFSTEP]
rw [← set_lintegral_univ, set_lintegral_condCdf ρ _ MeasurableSet.univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
⊢ Integrable fun a => ↑(condCdf ρ a) x
[PROOFSTEP]
refine' integrable_of_forall_fin_meas_le _ (measure_lt_top ρ.fst univ) _ fun t _ _ => _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
⊢ AEStronglyMeasurable (fun a => ↑(condCdf ρ a) x) (Measure.fst ρ)
[PROOFSTEP]
exact (stronglyMeasurable_condCdf ρ _).aestronglyMeasurable
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
⊢ ∫⁻ (x_1 : α) in t, ↑‖↑(condCdf ρ x_1) x‖₊ ∂Measure.fst ρ ≤ ↑↑(Measure.fst ρ) univ
[PROOFSTEP]
have : ∀ y, (‖condCdf ρ y x‖₊ : ℝ≥0∞) ≤ 1 := by
intro y
rw [Real.nnnorm_of_nonneg (condCdf_nonneg _ _ _)]
-- Porting note: was exact_mod_cast condCdf_le_one _ _ _
simp only [ENNReal.coe_le_one_iff]
exact condCdf_le_one _ _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
⊢ ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1
[PROOFSTEP]
intro y
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
y : α
⊢ ↑‖↑(condCdf ρ y) x‖₊ ≤ 1
[PROOFSTEP]
rw [Real.nnnorm_of_nonneg (condCdf_nonneg _ _ _)]
-- Porting note: was exact_mod_cast condCdf_le_one _ _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
y : α
⊢ ↑{ val := ↑(condCdf ρ y) x, property := (_ : 0 ≤ ↑(condCdf ρ y) x) } ≤ 1
[PROOFSTEP]
simp only [ENNReal.coe_le_one_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
y : α
⊢ { val := ↑(condCdf ρ y) x, property := (_ : 0 ≤ ↑(condCdf ρ y) x) } ≤ 1
[PROOFSTEP]
exact condCdf_le_one _ _ _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
this : ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1
⊢ ∫⁻ (x_1 : α) in t, ↑‖↑(condCdf ρ x_1) x‖₊ ∂Measure.fst ρ ≤ ↑↑(Measure.fst ρ) univ
[PROOFSTEP]
refine' (set_lintegral_mono (measurable_condCdf _ _).ennnorm measurable_one fun y _ => this y).trans _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
this : ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1
⊢ ∫⁻ (x : α) in t, OfNat.ofNat 1 x ∂Measure.fst ρ ≤ ↑↑(Measure.fst ρ) univ
[PROOFSTEP]
simp only [Pi.one_apply, lintegral_one, Measure.restrict_apply, MeasurableSet.univ, univ_inter]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
t : Set α
x✝¹ : MeasurableSet t
x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤
this : ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1
⊢ ↑↑(Measure.fst ρ) t ≤ ↑↑(Measure.fst ρ) univ
[PROOFSTEP]
exact measure_mono (subset_univ _)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
⊢ ∫ (a : α) in s, ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (s ×ˢ Iic x))
[PROOFSTEP]
have h := set_lintegral_condCdf ρ x hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
⊢ ∫ (a : α) in s, ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (s ×ˢ Iic x))
[PROOFSTEP]
rw [← ofReal_integral_eq_lintegral_ofReal] at h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
h : ENNReal.ofReal (∫ (x_1 : α) in s, ↑(condCdf ρ x_1) x ∂Measure.fst ρ) = ↑↑ρ (s ×ˢ Iic x)
⊢ ∫ (a : α) in s, ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (s ×ˢ Iic x))
[PROOFSTEP]
rw [← h, ENNReal.toReal_ofReal]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
h : ENNReal.ofReal (∫ (x_1 : α) in s, ↑(condCdf ρ x_1) x ∂Measure.fst ρ) = ↑↑ρ (s ×ˢ Iic x)
⊢ 0 ≤ ∫ (x_1 : α) in s, ↑(condCdf ρ x_1) x ∂Measure.fst ρ
[PROOFSTEP]
exact integral_nonneg fun _ => condCdf_nonneg _ _ _
[GOAL]
case hfi
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
⊢ Integrable fun a => ↑(condCdf ρ a) x
[PROOFSTEP]
exact (integrable_condCdf _ _).integrableOn
[GOAL]
case f_nn
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
s : Set α
hs : MeasurableSet s
h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x)
⊢ 0 ≤ᵐ[Measure.restrict (Measure.fst ρ) s] fun a => ↑(condCdf ρ a) x
[PROOFSTEP]
exact eventually_of_forall fun _ => condCdf_nonneg _ _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
inst✝ : IsFiniteMeasure ρ
x : ℝ
⊢ ∫ (a : α), ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (univ ×ˢ Iic x))
[PROOFSTEP]
rw [← set_integral_condCdf ρ _ MeasurableSet.univ, Measure.restrict_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) (Iic x) = ENNReal.ofReal (↑(condCdf ρ a) x)
[PROOFSTEP]
rw [← sub_zero (condCdf ρ a x)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
x : ℝ
⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) (Iic x) = ENNReal.ofReal (↑(condCdf ρ a) x - 0)
[PROOFSTEP]
exact (condCdf ρ a).measure_Iic (tendsto_condCdf_atBot ρ a) _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ = 1
[PROOFSTEP]
rw [← ENNReal.ofReal_one, ← sub_zero (1 : ℝ)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
a : α
⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ = ENNReal.ofReal (1 - 0)
[PROOFSTEP]
exact StieltjesFunction.measure_univ _ (tendsto_condCdf_atBot ρ a) (tendsto_condCdf_atTop ρ a)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
⊢ Measurable fun a => StieltjesFunction.measure (condCdf ρ a)
[PROOFSTEP]
rw [Measure.measurable_measure]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
⊢ ∀ (s : Set ℝ), MeasurableSet s → Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s
[PROOFSTEP]
refine' fun s hs =>
?_
-- Porting note: supplied `C`
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s
[PROOFSTEP]
refine'
MeasurableSpace.induction_on_inter (C := fun s => Measurable fun b ↦ StieltjesFunction.measure (condCdf ρ b) s)
(borel_eq_generateFrom_Iic ℝ) isPiSystem_Iic _ _ _ _ hs
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
⊢ (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) ∅
[PROOFSTEP]
simp only [measure_empty, measurable_const]
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
⊢ ∀ (t : Set ℝ), t ∈ range Iic → (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) t
[PROOFSTEP]
rintro S ⟨u, rfl⟩
[GOAL]
case refine'_2.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
u : ℝ
⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) (Iic u)
[PROOFSTEP]
simp_rw [measure_condCdf_Iic ρ _ u]
[GOAL]
case refine'_2.intro
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
u : ℝ
⊢ Measurable fun b => ENNReal.ofReal (↑(condCdf ρ b) u)
[PROOFSTEP]
exact (measurable_condCdf ρ u).ennreal_ofReal
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
⊢ ∀ (t : Set ℝ),
MeasurableSet t →
(fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) t →
(fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) tᶜ
[PROOFSTEP]
intro t ht ht_cd_meas
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t
⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) tᶜ
[PROOFSTEP]
have : (fun a => (condCdf ρ a).measure tᶜ) = (fun a => (condCdf ρ a).measure univ) - fun a => (condCdf ρ a).measure t :=
by
ext1 a
rw [measure_compl ht (measure_ne_top (condCdf ρ a).measure _), Pi.sub_apply]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t
⊢ (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ) =
(fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t
[PROOFSTEP]
ext1 a
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t
a : α
⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ =
((fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a =>
↑↑(StieltjesFunction.measure (condCdf ρ a)) t)
a
[PROOFSTEP]
rw [measure_compl ht (measure_ne_top (condCdf ρ a).measure _), Pi.sub_apply]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t
this :
(fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ) =
(fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t
⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) tᶜ
[PROOFSTEP]
simp_rw [this, measure_condCdf_univ ρ]
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
t : Set ℝ
ht : MeasurableSet t
ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t
this :
(fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ) =
(fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t
⊢ Measurable ((fun a => 1) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t)
[PROOFSTEP]
exact Measurable.sub measurable_const ht_cd_meas
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
⊢ ∀ (f : ℕ → Set ℝ),
Pairwise (Disjoint on f) →
(∀ (i : ℕ), MeasurableSet (f i)) →
(∀ (i : ℕ), (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (f i)) →
(fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (⋃ (i : ℕ), f i)
[PROOFSTEP]
intro f hf_disj hf_meas hf_cd_meas
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_cd_meas : ∀ (i : ℕ), (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (f i)
⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) (⋃ (i : ℕ), f i)
[PROOFSTEP]
simp_rw [measure_iUnion hf_disj hf_meas]
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
s : Set ℝ
hs : MeasurableSet s
f : ℕ → Set ℝ
hf_disj : Pairwise (Disjoint on f)
hf_meas : ∀ (i : ℕ), MeasurableSet (f i)
hf_cd_meas : ∀ (i : ℕ), (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (f i)
⊢ Measurable fun b => ∑' (i : ℕ), ↑↑(StieltjesFunction.measure (condCdf ρ b)) (f i)
[PROOFSTEP]
exact Measurable.ennreal_tsum hf_cd_meas
| {"mathlib_filename": "Mathlib.Probability.Kernel.CondCdf", "llama_tokens": 111741} |
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ evariance X μ < ⊤
[PROOFSTEP]
have := ENNReal.pow_lt_top (hX.sub <| memℒp_const <| μ[X]).2 2
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
this : snorm (X - fun x => ∫ (x : Ω), X x ∂μ) 2 μ ^ 2 < ⊤
⊢ evariance X μ < ⊤
[PROOFSTEP]
rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top, ← ENNReal.rpow_two] at this
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
this : ((∫⁻ (x : Ω), ↑‖(X - fun x => ∫ (x : Ω), X x ∂μ) x‖₊ ^ ENNReal.toReal 2 ∂μ) ^ (1 / ENNReal.toReal 2)) ^ 2 < ⊤
⊢ evariance X μ < ⊤
[PROOFSTEP]
simp only [coe_two, Pi.sub_apply, ENNReal.one_toReal, one_div] at this
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
this : ((∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ) ^ 2⁻¹) ^ 2 < ⊤
⊢ evariance X μ < ⊤
[PROOFSTEP]
rw [← ENNReal.rpow_mul, inv_mul_cancel (two_ne_zero : (2 : ℝ) ≠ 0), ENNReal.rpow_one] at this
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
this : ∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ < ⊤
⊢ evariance X μ < ⊤
[PROOFSTEP]
simp_rw [ENNReal.rpow_two] at this
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
this : ∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ < ⊤
⊢ evariance X μ < ⊤
[PROOFSTEP]
exact this
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
⊢ evariance X μ = ⊤
[PROOFSTEP]
by_contra h
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : ¬evariance X μ = ⊤
⊢ False
[PROOFSTEP]
rw [← Ne.def, ← lt_top_iff_ne_top] at h
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
⊢ False
[PROOFSTEP]
have : Memℒp (fun ω => X ω - μ[X]) 2 μ :=
by
refine' ⟨hXm.sub aestronglyMeasurable_const, _⟩
rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top]
simp only [coe_two, ENNReal.one_toReal, ENNReal.rpow_two, Ne.def]
exact ENNReal.rpow_lt_top_of_nonneg (by linarith) h.ne
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
⊢ Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2
[PROOFSTEP]
refine' ⟨hXm.sub aestronglyMeasurable_const, _⟩
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
⊢ snorm (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 μ < ⊤
[PROOFSTEP]
rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
⊢ (∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ ENNReal.toReal 2 ∂μ) ^ (1 / ENNReal.toReal 2) < ⊤
[PROOFSTEP]
simp only [coe_two, ENNReal.one_toReal, ENNReal.rpow_two, Ne.def]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
⊢ (∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ) ^ (1 / 2) < ⊤
[PROOFSTEP]
exact ENNReal.rpow_lt_top_of_nonneg (by linarith) h.ne
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
⊢ 0 ≤ 1 / 2
[PROOFSTEP]
linarith
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2
⊢ False
[PROOFSTEP]
refine'
hX
_
-- Porting note: `μ[X]` without whitespace is ambiguous as it could be GetElem,
-- and `convert` cannot disambiguate based on typeclass inference failure.
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2
⊢ Memℒp X 2
[PROOFSTEP]
convert this.add (memℒp_const <| μ [X])
[GOAL]
case h.e'_5
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2
⊢ X = (fun ω => X ω - ∫ (x : Ω), X x ∂μ) + fun x => ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
ext ω
[GOAL]
case h.e'_5.h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hXm : AEStronglyMeasurable X μ
hX : ¬Memℒp X 2
h : evariance X μ < ⊤
this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2
ω : Ω
⊢ X ω = ((fun ω => X ω - ∫ (x : Ω), X x ∂μ) + fun x => ∫ (x : Ω), X x ∂μ) ω
[PROOFSTEP]
rw [Pi.add_apply, sub_add_cancel]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : AEStronglyMeasurable X μ
⊢ evariance X μ < ⊤ ↔ Memℒp X 2
[PROOFSTEP]
refine' ⟨_, MeasureTheory.Memℒp.evariance_lt_top⟩
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : AEStronglyMeasurable X μ
⊢ evariance X μ < ⊤ → Memℒp X 2
[PROOFSTEP]
contrapose
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : AEStronglyMeasurable X μ
⊢ ¬Memℒp X 2 → ¬evariance X μ < ⊤
[PROOFSTEP]
rw [not_lt, top_le_iff]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : AEStronglyMeasurable X μ
⊢ ¬Memℒp X 2 → evariance X μ = ⊤
[PROOFSTEP]
exact evariance_eq_top hX
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ ENNReal.ofReal (variance X μ) = evariance X μ
[PROOFSTEP]
rw [variance, ENNReal.ofReal_toReal]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ evariance X μ ≠ ⊤
[PROOFSTEP]
exact hX.evariance_lt_top.ne
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
X : Ω → ℝ
μ : Measure Ω
⊢ evariance X μ = ∫⁻ (ω : Ω), ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) ∂μ
[PROOFSTEP]
rw [evariance]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
X : Ω → ℝ
μ : Measure Ω
⊢ ∫⁻ (ω : Ω), ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ = ∫⁻ (ω : Ω), ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) ∂μ
[PROOFSTEP]
congr
[GOAL]
case e_f
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
X : Ω → ℝ
μ : Measure Ω
⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) = fun ω => ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2)
[PROOFSTEP]
ext1 ω
[GOAL]
case e_f.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2)
[PROOFSTEP]
rw [pow_two, ← ENNReal.coe_mul, ← nnnorm_mul, ← pow_two]
[GOAL]
case e_f.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ↑‖(X ω - ∫ (x : Ω), X x ∂μ) ^ 2‖₊ = ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2)
[PROOFSTEP]
congr
[GOAL]
case e_f.h.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ‖(X ω - ∫ (x : Ω), X x ∂μ) ^ 2‖₊ = Real.toNNReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2)
[PROOFSTEP]
exact (Real.toNNReal_eq_nnnorm_of_nonneg <| sq_nonneg _).symm
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ variance X μ = ∫ (x : Ω), (X ^ 2) x ∂μ
[PROOFSTEP]
rw [variance, evariance_eq_lintegral_ofReal, ← ofReal_integral_eq_lintegral_ofReal, ENNReal.toReal_ofReal]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ = ∫ (x : Ω), (X ^ 2) x ∂μ
[PROOFSTEP]
simp_rw [hXint, sub_zero]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ 0 ≤ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ
[PROOFSTEP]
simp_rw [hXint, sub_zero]
[GOAL]
case hfi
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ Integrable fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2
[PROOFSTEP]
simp_rw [hXint, sub_zero]
[GOAL]
case f_nn
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ 0 ≤ᵐ[μ] fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2
[PROOFSTEP]
simp_rw [hXint, sub_zero]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ ∫ (x : Ω), X x ^ 2 ∂μ = ∫ (x : Ω), (X ^ 2) x ∂μ
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ 0 ≤ ∫ (x : Ω), X x ^ 2 ∂μ
[PROOFSTEP]
exact integral_nonneg fun ω => pow_two_nonneg _
[GOAL]
case hfi
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ Integrable fun ω => X ω ^ 2
[PROOFSTEP]
convert hX.integrable_norm_rpow two_ne_zero ENNReal.two_ne_top with ω
[GOAL]
case h.e'_5.h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
ω : Ω
⊢ X ω ^ 2 = ‖X ω‖ ^ ENNReal.toReal 2
[PROOFSTEP]
simp only [Pi.sub_apply, Real.norm_eq_abs, coe_two, ENNReal.one_toReal, Real.rpow_two, sq_abs, abs_pow]
[GOAL]
case f_nn
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : Memℒp X 2
hXint : ∫ (x : Ω), X x ∂μ = 0
⊢ 0 ≤ᵐ[μ] fun ω => X ω ^ 2
[PROOFSTEP]
exact ae_of_all _ fun ω => pow_two_nonneg _
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ variance X μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ
[PROOFSTEP]
rw [variance, evariance_eq_lintegral_ofReal, ← ofReal_integral_eq_lintegral_ofReal, ENNReal.toReal_ofReal]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ 0 ≤ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ
[PROOFSTEP]
exact integral_nonneg fun ω => pow_two_nonneg _
[GOAL]
case hfi
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ Integrable fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2
[PROOFSTEP]
convert (hX.sub <| memℒp_const (μ [X])).integrable_norm_rpow two_ne_zero ENNReal.two_ne_top with ω
[GOAL]
case h.e'_5.h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
ω : Ω
⊢ (X ω - ∫ (x : Ω), X x ∂μ) ^ 2 = ‖(X - fun x => ∫ (x : Ω), X x ∂μ) ω‖ ^ ENNReal.toReal 2
[PROOFSTEP]
simp only [Pi.sub_apply, Real.norm_eq_abs, coe_two, ENNReal.one_toReal, Real.rpow_two, sq_abs, abs_pow]
[GOAL]
case f_nn
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
hX : Memℒp X 2
⊢ 0 ≤ᵐ[μ] fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2
[PROOFSTEP]
exact ae_of_all _ fun ω => pow_two_nonneg _
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
⊢ evariance 0 μ = 0
[PROOFSTEP]
simp [evariance]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : AEMeasurable X
⊢ evariance X μ = 0 ↔ X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
rw [evariance, lintegral_eq_zero_iff']
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : AEMeasurable X
⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 ↔ X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : AEMeasurable X
⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 → X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
intro hX
[GOAL]
case mpr
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : AEMeasurable X
⊢ (X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ) → (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0
[PROOFSTEP]
intro hX
[GOAL]
case mp
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX✝ : AEMeasurable X
hX : (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0
⊢ X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
filter_upwards [hX] with ω hω
[GOAL]
case mpr
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX✝ : AEMeasurable X
hX : X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0
[PROOFSTEP]
filter_upwards [hX] with ω hω
[GOAL]
case h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX✝ : AEMeasurable X
hX : (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0
ω : Ω
hω : ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = OfNat.ofNat 0 ω
⊢ X ω = ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
simp only [Pi.zero_apply, pow_eq_zero_iff, Nat.succ_pos', ENNReal.coe_eq_zero, nnnorm_eq_zero, sub_eq_zero] at hω
[GOAL]
case h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX✝ : AEMeasurable X
hX : (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0
ω : Ω
hω : X ω = ∫ (x : Ω), X x ∂μ
⊢ X ω = ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
exact hω
[GOAL]
case h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX✝ : AEMeasurable X
hX : X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
ω : Ω
hω : X ω = ∫ (x : Ω), X x ∂μ
⊢ ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = OfNat.ofNat 0 ω
[PROOFSTEP]
rw [hω]
[GOAL]
case h
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX✝ : AEMeasurable X
hX : X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ
ω : Ω
hω : X ω = ∫ (x : Ω), X x ∂μ
⊢ ↑‖∫ (x : Ω), X x ∂μ - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = OfNat.ofNat 0 ω
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ : Measure Ω
hX : AEMeasurable X
⊢ AEMeasurable fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2
[PROOFSTEP]
measurability
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
⊢ evariance (fun ω => c * X ω) μ = ENNReal.ofReal (c ^ 2) * evariance X μ
[PROOFSTEP]
rw [evariance, evariance, ← lintegral_const_mul' _ _ ENNReal.ofReal_lt_top.ne]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
⊢ ∫⁻ (ω : Ω), ↑‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 ∂μ =
∫⁻ (a : Ω), ENNReal.ofReal (c ^ 2) * ↑‖X a - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ
[PROOFSTEP]
congr
[GOAL]
case e_f
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
⊢ (fun ω => ↑‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2) = fun a => ENNReal.ofReal (c ^ 2) * ↑‖X a - ∫ (x : Ω), X x ∂μ‖₊ ^ 2
[PROOFSTEP]
ext1 ω
[GOAL]
case e_f.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ↑‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = ENNReal.ofReal (c ^ 2) * ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2
[PROOFSTEP]
rw [ENNReal.ofReal, ← ENNReal.coe_pow, ← ENNReal.coe_pow, ← ENNReal.coe_mul]
[GOAL]
case e_f.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ↑(‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2) = ↑(Real.toNNReal (c ^ 2) * ‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2)
[PROOFSTEP]
congr
[GOAL]
case e_f.h.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = Real.toNNReal (c ^ 2) * ‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2
[PROOFSTEP]
rw [← sq_abs, ← Real.rpow_two, Real.toNNReal_rpow_of_nonneg (abs_nonneg _), NNReal.rpow_two, ← mul_pow,
Real.toNNReal_mul_nnnorm _ (abs_nonneg _)]
[GOAL]
case e_f.h.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2
[PROOFSTEP]
conv_rhs => rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
| ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2
[PROOFSTEP]
rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
| ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2
[PROOFSTEP]
rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
| ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2
[PROOFSTEP]
rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub]
[GOAL]
case e_f.h.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = ‖c * X ω - c * ∫ (x : Ω), X x ∂μ‖₊ ^ 2
[PROOFSTEP]
congr
[GOAL]
case e_f.h.e_a.e_a.e_a.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ∫ (x : Ω), c * X x ∂μ = c * ∫ (x : Ω), X x ∂μ
[PROOFSTEP]
rw [mul_comm]
[GOAL]
case e_f.h.e_a.e_a.e_a.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
ω : Ω
⊢ ∫ (x : Ω), c * X x ∂μ = (∫ (x : Ω), X x ∂μ) * c
[PROOFSTEP]
simp_rw [← smul_eq_mul, ← integral_smul_const, smul_eq_mul, mul_comm]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X : Ω → ℝ
μ✝ μ : Measure Ω
⊢ variance 0 μ = 0
[PROOFSTEP]
simp only [variance, evariance_zero, ENNReal.zero_toReal]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
⊢ variance (fun ω => c * X ω) μ = c ^ 2 * variance X μ
[PROOFSTEP]
rw [variance, evariance_mul, ENNReal.toReal_mul, ENNReal.toReal_ofReal (sq_nonneg _)]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
c : ℝ
X : Ω → ℝ
μ : Measure Ω
⊢ c ^ 2 * ENNReal.toReal (evariance (fun ω => X ω) μ) = c ^ 2 * variance X μ
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
A : Type u_2
inst✝¹ : CommSemiring A
inst✝ : Algebra A ℝ
c : A
X : Ω → ℝ
μ : Measure Ω
⊢ variance (c • X) μ = c ^ 2 • variance X μ
[PROOFSTEP]
convert variance_smul (algebraMap A ℝ c) X μ using 1
[GOAL]
case h.e'_2
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
A : Type u_2
inst✝¹ : CommSemiring A
inst✝ : Algebra A ℝ
c : A
X : Ω → ℝ
μ : Measure Ω
⊢ variance (c • X) μ = variance (↑(algebraMap A ℝ) c • X) μ
[PROOFSTEP]
congr
[GOAL]
case h.e'_2.e_X
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
A : Type u_2
inst✝¹ : CommSemiring A
inst✝ : Algebra A ℝ
c : A
X : Ω → ℝ
μ : Measure Ω
⊢ c • X = ↑(algebraMap A ℝ) c • X
[PROOFSTEP]
simp only [algebraMap_smul]
[GOAL]
case h.e'_3
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ✝ : Measure Ω
A : Type u_2
inst✝¹ : CommSemiring A
inst✝ : Algebra A ℝ
c : A
X : Ω → ℝ
μ : Measure Ω
⊢ c ^ 2 • variance X μ = ↑(algebraMap A ℝ) c ^ 2 * variance X μ
[PROOFSTEP]
simp only [Algebra.smul_def, map_pow]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ variance X ℙ = (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2
[PROOFSTEP]
rw [hX.variance_eq, sub_sq', integral_sub', integral_add']
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), ((fun x => ∫ (x : Ω), X x) ^ 2) a) -
∫ (a : Ω), (2 * X * fun x => ∫ (x : Ω), X x) a =
(∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable (X ^ 2)
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable ((fun x => ∫ (x : Ω), X x) ^ 2)
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable (X ^ 2 + (fun x => ∫ (x : Ω), X x) ^ 2)
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable (2 * X * fun x => ∫ (x : Ω), X x)
[PROOFSTEP]
rotate_left
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable (X ^ 2)
[PROOFSTEP]
exact hX.integrable_sq
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable ((fun x => ∫ (x : Ω), X x) ^ 2)
[PROOFSTEP]
convert @integrable_const Ω ℝ (_) ℙ _ _ (𝔼[X] ^ 2)
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable (X ^ 2 + (fun x => ∫ (x : Ω), X x) ^ 2)
[PROOFSTEP]
apply hX.integrable_sq.add
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable ((fun x => ∫ (x : Ω), X x) ^ 2)
[PROOFSTEP]
convert @integrable_const Ω ℝ (_) ℙ _ _ (𝔼[X] ^ 2)
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ Integrable (2 * X * fun x => ∫ (x : Ω), X x)
[PROOFSTEP]
exact ((hX.integrable one_le_two).const_mul 2).mul_const' _
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), ((fun x => ∫ (x : Ω), X x) ^ 2) a) -
∫ (a : Ω), (2 * X * fun x => ∫ (x : Ω), X x) a =
(∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2
[PROOFSTEP]
simp [integral_mul_right, integral_mul_left]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
⊢ (∫ (a : Ω), X a ^ 2) + (∫ (x : Ω), X x) ^ 2 - (2 * ∫ (x : Ω), X x) * ∫ (x : Ω), X x =
(∫ (a : Ω), X a ^ 2) - (∫ (x : Ω), X x) ^ 2
[PROOFSTEP]
ring
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
⊢ variance X ℙ ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
by_cases hX : Memℒp X 2
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : Memℒp X 2
⊢ variance X ℙ ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
rw [variance_def' hX]
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : Memℒp X 2
⊢ (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
simp only [sq_nonneg, sub_le_self_iff]
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ variance X ℙ ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
rw [variance, evariance_eq_lintegral_ofReal, ← integral_eq_lintegral_of_nonneg_ae]
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a
case neg.hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ 0 ≤ᵐ[ℙ] fun ω => (X ω - ∫ (x : Ω), X x) ^ 2
case neg.hfm
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ AEStronglyMeasurable (fun ω => (X ω - ∫ (x : Ω), X x) ^ 2) ℙ
[PROOFSTEP]
by_cases hint : Integrable X
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : ¬Integrable X
⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a
case neg.hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ 0 ≤ᵐ[ℙ] fun ω => (X ω - ∫ (x : Ω), X x) ^ 2
case neg.hfm
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ AEStronglyMeasurable (fun ω => (X ω - ∫ (x : Ω), X x) ^ 2) ℙ
[PROOFSTEP]
swap
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : ¬Integrable X
⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
simp only [integral_undef hint, Pi.pow_apply, Pi.sub_apply, sub_zero]
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : ¬Integrable X
⊢ ∫ (a : Ω), X a ^ 2 ≤ ∫ (a : Ω), X a ^ 2
[PROOFSTEP]
exact le_rfl
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
rw [integral_undef]
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
⊢ 0 ≤ ∫ (a : Ω), (X ^ 2) a
[PROOFSTEP]
exact integral_nonneg fun a => sq_nonneg _
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
⊢ ¬Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2
[PROOFSTEP]
intro h
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2
⊢ False
[PROOFSTEP]
have A : Memℒp (X - fun ω : Ω => 𝔼[X]) 2 ℙ :=
(memℒp_two_iff_integrable_sq (hint.aestronglyMeasurable.sub aestronglyMeasurable_const)).2 h
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2
A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2
⊢ False
[PROOFSTEP]
have B : Memℒp (fun _ : Ω => 𝔼[X]) 2 ℙ := memℒp_const _
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2
A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2
B : Memℒp (fun x => ∫ (a : Ω), X a) 2
⊢ False
[PROOFSTEP]
apply hX
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2
A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2
B : Memℒp (fun x => ∫ (a : Ω), X a) 2
⊢ Memℒp X 2
[PROOFSTEP]
convert A.add B
[GOAL]
case h.e'_5
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
hint : Integrable X
h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2
A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2
B : Memℒp (fun x => ∫ (a : Ω), X a) 2
⊢ X = (X - fun ω => ∫ (a : Ω), X a) + fun x => ∫ (a : Ω), X a
[PROOFSTEP]
simp
[GOAL]
case neg.hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ 0 ≤ᵐ[ℙ] fun ω => (X ω - ∫ (x : Ω), X x) ^ 2
[PROOFSTEP]
exact @ae_of_all _ (_) _ _ fun x => sq_nonneg _
[GOAL]
case neg.hfm
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hm : AEStronglyMeasurable X ℙ
hX : ¬Memℒp X 2
⊢ AEStronglyMeasurable (fun ω => (X ω - ∫ (x : Ω), X x) ^ 2) ℙ
[PROOFSTEP]
exact (AEMeasurable.pow_const (hm.aemeasurable.sub_const _) _).aestronglyMeasurable
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
⊢ evariance X ℙ = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2)
[PROOFSTEP]
by_cases hℒ : Memℒp X 2
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : Memℒp X 2
⊢ evariance X ℙ = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2)
[PROOFSTEP]
rw [← hℒ.ofReal_variance_eq, variance_def' hℒ, ENNReal.ofReal_sub _ (sq_nonneg _)]
[GOAL]
case pos
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : Memℒp X 2
⊢ ENNReal.ofReal (∫ (a : Ω), (X ^ 2) a) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) =
(∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2)
[PROOFSTEP]
congr
[GOAL]
case pos.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : Memℒp X 2
⊢ ENNReal.ofReal (∫ (a : Ω), (X ^ 2) a) = ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)
[PROOFSTEP]
rw [lintegral_coe_eq_integral]
[GOAL]
case pos.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : Memℒp X 2
⊢ ENNReal.ofReal (∫ (a : Ω), (X ^ 2) a) = ENNReal.ofReal (∫ (a : Ω), ↑(‖X a‖₊ ^ 2))
[PROOFSTEP]
congr 2 with ω
[GOAL]
case pos.e_a.e_r.e_f.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : Memℒp X 2
ω : Ω
⊢ (X ^ 2) ω = ↑(‖X ω‖₊ ^ 2)
[PROOFSTEP]
simp only [Pi.pow_apply, NNReal.coe_pow, coe_nnnorm, Real.norm_eq_abs, Even.pow_abs even_two]
[GOAL]
case pos.e_a.hfi
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : Memℒp X 2
⊢ Integrable fun x => ↑(‖X x‖₊ ^ 2)
[PROOFSTEP]
exact hℒ.abs.integrable_sq
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : ¬Memℒp X 2
⊢ evariance X ℙ = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2)
[PROOFSTEP]
symm
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : ¬Memℒp X 2
⊢ (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) = evariance X ℙ
[PROOFSTEP]
rw [evariance_eq_top hX hℒ, ENNReal.sub_eq_top_iff]
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : ¬Memℒp X 2
⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤ ∧ ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) ≠ ⊤
[PROOFSTEP]
refine' ⟨_, ENNReal.ofReal_ne_top⟩
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : ¬Memℒp X 2
⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤
[PROOFSTEP]
rw [Memℒp, not_and] at hℒ
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : AEStronglyMeasurable X ℙ → ¬snorm X 2 ℙ < ⊤
⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤
[PROOFSTEP]
specialize hℒ hX
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : ¬snorm X 2 ℙ < ⊤
⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤
[PROOFSTEP]
simp only [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top, not_lt, top_le_iff, coe_two, one_div,
ENNReal.rpow_eq_top_iff, inv_lt_zero, inv_pos, and_true_iff, or_iff_not_imp_left, not_and_or, zero_lt_two] at hℒ
[GOAL]
case neg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
hℒ : (¬¬∫⁻ (x : Ω), ↑‖X x‖₊ ^ 2 = 0 → 0 ≤ 2) → ∫⁻ (x : Ω), ↑‖X x‖₊ ^ 2 = ⊤
⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤
[PROOFSTEP]
exact_mod_cast hℒ fun _ => zero_le_two
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ↑(c ^ 2)
[PROOFSTEP]
have A : (c : ℝ≥0∞) ≠ 0 := by rwa [Ne.def, ENNReal.coe_eq_zero]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
⊢ ↑c ≠ 0
[PROOFSTEP]
rwa [Ne.def, ENNReal.coe_eq_zero]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ↑(c ^ 2)
[PROOFSTEP]
have B : AEStronglyMeasurable (fun _ : Ω => 𝔼[X]) ℙ := aestronglyMeasurable_const
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ↑(c ^ 2)
[PROOFSTEP]
convert meas_ge_le_mul_pow_snorm ℙ two_ne_zero ENNReal.two_ne_top (hX.sub B) A using 1
[GOAL]
case h.e'_3
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} = ↑↑ℙ {x | ↑c ≤ ↑‖(X - fun x => ∫ (a : Ω), X a) x‖₊}
[PROOFSTEP]
congr
[GOAL]
case h.e'_3.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} = {x | ↑c ≤ ↑‖(X - fun x => ∫ (a : Ω), X a) x‖₊}
[PROOFSTEP]
simp only [Pi.sub_apply, ENNReal.coe_le_coe, ← Real.norm_eq_abs, ← coe_nnnorm, NNReal.coe_le_coe,
ENNReal.ofReal_coe_nnreal]
[GOAL]
case h.e'_4
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ evariance X ℙ / ↑(c ^ 2) = (↑c)⁻¹ ^ ENNReal.toReal 2 * snorm (X - fun x => ∫ (a : Ω), X a) 2 ℙ ^ ENNReal.toReal 2
[PROOFSTEP]
rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top]
[GOAL]
case h.e'_4
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ evariance X ℙ / ↑(c ^ 2) =
(↑c)⁻¹ ^ ENNReal.toReal 2 *
((∫⁻ (x : Ω), ↑‖(X - fun x => ∫ (a : Ω), X a) x‖₊ ^ ENNReal.toReal 2) ^ (1 / ENNReal.toReal 2)) ^ ENNReal.toReal 2
[PROOFSTEP]
simp only [show ENNReal.some (c ^ 2) = (ENNReal.some c) ^ 2 by norm_cast, coe_two, one_div, Pi.sub_apply]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ ↑(c ^ 2) = ↑c ^ 2
[PROOFSTEP]
norm_cast
[GOAL]
case h.e'_4
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ evariance X ℙ / ↑c ^ 2 = (↑c)⁻¹ ^ 2 * ((∫⁻ (x : Ω), ↑‖X x - ∫ (a : Ω), X a‖₊ ^ 2) ^ 2⁻¹) ^ 2
[PROOFSTEP]
rw [div_eq_mul_inv, ENNReal.inv_pow, mul_comm, ENNReal.rpow_two]
[GOAL]
case h.e'_4
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ (↑c)⁻¹ ^ 2 * evariance X ℙ = (↑c)⁻¹ ^ 2 * ((∫⁻ (x : Ω), ↑‖X x - ∫ (a : Ω), X a‖₊ ^ 2) ^ 2⁻¹) ^ 2
[PROOFSTEP]
congr
[GOAL]
case h.e'_4.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝ : MeasureSpace Ω
X : Ω → ℝ
hX : AEStronglyMeasurable X ℙ
c : ℝ≥0
hc : c ≠ 0
A : ↑c ≠ 0
B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ
⊢ evariance X ℙ = ((∫⁻ (x : Ω), ↑‖X x - ∫ (a : Ω), X a‖₊ ^ 2) ^ 2⁻¹) ^ 2
[PROOFSTEP]
simp_rw [← ENNReal.rpow_mul, inv_mul_cancel (two_ne_zero : (2 : ℝ) ≠ 0), ENNReal.rpow_two, ENNReal.rpow_one, evariance]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
c : ℝ
hc : 0 < c
⊢ ↑↑ℙ {ω | c ≤ |X ω - ∫ (a : Ω), X a|} ≤ ENNReal.ofReal (variance X ℙ / c ^ 2)
[PROOFSTEP]
rw [ENNReal.ofReal_div_of_pos (sq_pos_of_ne_zero _ hc.ne.symm), hX.ofReal_variance_eq]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
c : ℝ
hc : 0 < c
⊢ ↑↑ℙ {ω | c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ENNReal.ofReal (c ^ 2)
[PROOFSTEP]
convert @meas_ge_le_evariance_div_sq _ _ _ hX.1 c.toNNReal (by simp [hc]) using 1
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
c : ℝ
hc : 0 < c
⊢ Real.toNNReal c ≠ 0
[PROOFSTEP]
simp [hc]
[GOAL]
case h.e'_3
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
c : ℝ
hc : 0 < c
⊢ ↑↑ℙ {ω | c ≤ |X ω - ∫ (a : Ω), X a|} = ↑↑ℙ {ω | ↑(Real.toNNReal c) ≤ |X ω - ∫ (a : Ω), X a|}
[PROOFSTEP]
simp only [Real.coe_toNNReal', max_le_iff, abs_nonneg, and_true_iff]
[GOAL]
case h.e'_4
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
c : ℝ
hc : 0 < c
⊢ evariance X ℙ / ENNReal.ofReal (c ^ 2) = evariance X ℙ / ↑(Real.toNNReal c ^ 2)
[PROOFSTEP]
rw [ENNReal.ofReal_pow hc.le, ENNReal.coe_pow]
[GOAL]
case h.e'_4
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsFiniteMeasure ℙ
X : Ω → ℝ
hX : Memℒp X 2
c : ℝ
hc : 0 < c
⊢ evariance X ℙ / ENNReal.ofReal c ^ 2 = evariance X ℙ / ↑(Real.toNNReal c) ^ 2
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ variance (X + Y) ℙ = (∫ (a : Ω), (fun a => X a ^ 2 + Y a ^ 2 + 2 * X a * Y a) a) - (∫ (a : Ω), (X + Y) a) ^ 2
[PROOFSTEP]
simp [variance_def' (hX.add hY), add_sq']
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ (∫ (a : Ω), (fun a => X a ^ 2 + Y a ^ 2 + 2 * X a * Y a) a) - (∫ (a : Ω), (X + Y) a) ^ 2 =
(((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + 2 * ∫ (a : Ω), (X * Y) a) -
((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2
[PROOFSTEP]
simp only [Pi.add_apply, Pi.pow_apply, Pi.mul_apply, mul_assoc]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ (∫ (a : Ω), X a ^ 2 + Y a ^ 2 + 2 * (X a * Y a)) - (∫ (a : Ω), X a + Y a) ^ 2 =
(((∫ (a : Ω), X a ^ 2) + ∫ (a : Ω), Y a ^ 2) + 2 * ∫ (a : Ω), X a * Y a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2
[PROOFSTEP]
rw [integral_add, integral_add, integral_add, integral_mul_left]
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun a => X a
[PROOFSTEP]
exact hX.integrable one_le_two
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun a => Y a
[PROOFSTEP]
exact hY.integrable one_le_two
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun a => X a ^ 2
[PROOFSTEP]
exact hX.integrable_sq
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun a => Y a ^ 2
[PROOFSTEP]
exact hY.integrable_sq
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun a => X a ^ 2 + Y a ^ 2
[PROOFSTEP]
exact hX.integrable_sq.add hY.integrable_sq
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun a => 2 * (X a * Y a)
[PROOFSTEP]
apply Integrable.const_mul
[GOAL]
case hg.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ Integrable fun x => X x * Y x
[PROOFSTEP]
exact h.integrable_mul (hX.integrable one_le_two) (hY.integrable one_le_two)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ (((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + 2 * ∫ (a : Ω), (X * Y) a) -
((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 =
((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + ↑2 * ((∫ (a : Ω), X a) * ∫ (a : Ω), Y a) -
((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a.e_a
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ ∫ (a : Ω), (X * Y) a = (∫ (a : Ω), X a) * ∫ (a : Ω), Y a
[PROOFSTEP]
exact h.integral_mul_of_integrable (hX.integrable one_le_two) (hY.integrable one_le_two)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + ↑2 * ((∫ (a : Ω), X a) * ∫ (a : Ω), Y a) -
((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 =
variance X ℙ + variance Y ℙ
[PROOFSTEP]
simp only [variance_def', hX, hY, Pi.pow_apply]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X Y : Ω → ℝ
hX : Memℒp X 2
hY : Memℒp Y 2
h : IndepFun X Y
⊢ ((∫ (a : Ω), X a ^ 2) + ∫ (a : Ω), Y a ^ 2) + ↑2 * ((∫ (a : Ω), X a) * ∫ (a : Ω), Y a) -
((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 =
(∫ (a : Ω), X a ^ 2) - (∫ (a : Ω), X a) ^ 2 + ((∫ (a : Ω), Y a ^ 2) - (∫ (a : Ω), Y a) ^ 2)
[PROOFSTEP]
ring
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s : Finset ι
hs : ∀ (i : ι), i ∈ s → Memℒp (X i) 2
h : Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)
⊢ variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
[PROOFSTEP]
classical
induction' s using Finset.induction_on with k s ks IH
· simp only [Finset.sum_empty, variance_zero]
rw [variance_def' (memℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks]
simp only [add_sq']
calc
𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2 =
𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i] - (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 :=
by
rw [integral_add', integral_add', integral_add']
· exact Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))
· apply integrable_finset_sum' _ fun i hi => ?_
exact Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))
· exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _))
· apply Memℒp.integrable_sq
exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi)
· apply Integrable.add
· exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _))
· apply Memℒp.integrable_sq
exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi)
· rw [mul_assoc]
apply Integrable.const_mul _ (2 : ℝ)
simp only [mul_sum, sum_apply, Pi.mul_apply]
apply integrable_finset_sum _ fun i hi => ?_
apply
IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
exact fun hki => ks (hki.symm ▸ hi)
_ = Var[X k] + Var[∑ i in s, X i] + (𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) :=
by
rw [variance_def' (hs _ (mem_insert_self _ _)),
variance_def' (memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi))]
ring
_ = Var[X k] + Var[∑ i in s, X i] :=
by
simp only [mul_assoc, integral_mul_left, Pi.mul_apply, Pi.one_apply, sum_apply, add_right_eq_self, mul_sum]
rw [integral_finset_sum s fun i hi => ?_]; swap
· apply Integrable.const_mul _ (2 : ℝ)
apply
IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
exact fun hki => ks (hki.symm ▸ hi)
rw [integral_finset_sum s fun i hi => Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)), mul_sum, mul_sum, ←
sum_sub_distrib]
apply Finset.sum_eq_zero fun i hi => ?_
have : ∀ (a : Ω), @OfNat.ofNat (Ω → ℝ) 2 instOfNat a = (2 : ℝ) := fun a => rfl
conv_lhs => enter [1, 2, a]; rw [this]
rw [integral_mul_left, IndepFun.integral_mul', sub_self]
· apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
exact fun hki => ks (hki.symm ▸ hi)
· exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_self _ _))
· exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_of_mem hi))
_ = Var[X k] + ∑ i in s, Var[X i] := by
rw [IH (fun i hi => hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, Set.subset_insert]))]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s : Finset ι
hs : ∀ (i : ι), i ∈ s → Memℒp (X i) 2
h : Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)
⊢ variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
[PROOFSTEP]
induction' s using Finset.induction_on with k s ks IH
[GOAL]
case empty
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s : Finset ι
hs✝ : ∀ (i : ι), i ∈ s → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)
hs : ∀ (i : ι), i ∈ ∅ → Memℒp (X i) 2
h : Set.Pairwise ↑∅ fun i j => IndepFun (X i) (X j)
⊢ variance (∑ i in ∅, X i) ℙ = ∑ i in ∅, variance (X i) ℙ
[PROOFSTEP]
simp only [Finset.sum_empty, variance_zero]
[GOAL]
case insert
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ variance (∑ i in insert k s, X i) ℙ = ∑ i in insert k s, variance (X i) ℙ
[PROOFSTEP]
rw [variance_def' (memℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks]
[GOAL]
case insert
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (∫ (a : Ω), ((X k + ∑ x in s, X x) ^ 2) a) - (∫ (a : Ω), (X k + ∑ x in s, X x) a) ^ 2 =
variance (X k) ℙ + ∑ x in s, variance (X x) ℙ
[PROOFSTEP]
simp only [add_sq']
[GOAL]
case insert
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (∫ (a : Ω), (X k ^ 2 + (∑ x in s, X x) ^ 2 + 2 * X k * ∑ x in s, X x) a) - (∫ (a : Ω), (X k + ∑ x in s, X x) a) ^ 2 =
variance (X k) ℙ + ∑ x in s, variance (X x) ℙ
[PROOFSTEP]
calc
𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2 =
𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i] - (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 :=
by
rw [integral_add', integral_add', integral_add']
· exact Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))
· apply integrable_finset_sum' _ fun i hi => ?_
exact Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))
· exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _))
· apply Memℒp.integrable_sq
exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi)
· apply Integrable.add
· exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _))
· apply Memℒp.integrable_sq
exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi)
· rw [mul_assoc]
apply Integrable.const_mul _ (2 : ℝ)
simp only [mul_sum, sum_apply, Pi.mul_apply]
apply integrable_finset_sum _ fun i hi => ?_
apply
IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
exact fun hki => ks (hki.symm ▸ hi)
_ = Var[X k] + Var[∑ i in s, X i] + (𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) :=
by
rw [variance_def' (hs _ (mem_insert_self _ _)),
variance_def' (memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi))]
ring
_ = Var[X k] + Var[∑ i in s, X i] :=
by
simp only [mul_assoc, integral_mul_left, Pi.mul_apply, Pi.one_apply, sum_apply, add_right_eq_self, mul_sum]
rw [integral_finset_sum s fun i hi => ?_]; swap
· apply Integrable.const_mul _ (2 : ℝ)
apply
IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
exact fun hki => ks (hki.symm ▸ hi)
rw [integral_finset_sum s fun i hi => Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)), mul_sum, mul_sum, ←
sum_sub_distrib]
apply Finset.sum_eq_zero fun i hi => ?_
have : ∀ (a : Ω), @OfNat.ofNat (Ω → ℝ) 2 instOfNat a = (2 : ℝ) := fun a => rfl
conv_lhs => enter [1, 2, a]; rw [this]
rw [integral_mul_left, IndepFun.integral_mul', sub_self]
· apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
exact fun hki => ks (hki.symm ▸ hi)
· exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_self _ _))
· exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_of_mem hi))
_ = Var[X k] + ∑ i in s, Var[X i] := by
rw [IH (fun i hi => hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, Set.subset_insert]))]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (∫ (a : Ω), (X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i) a) - (∫ (a : Ω), (X k + ∑ i in s, X i) a) ^ 2 =
(((∫ (a : Ω), (X k ^ 2) a) + ∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) + ∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) -
((∫ (a : Ω), X k a) + ∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2
[PROOFSTEP]
rw [integral_add', integral_add', integral_add']
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (X k)
[PROOFSTEP]
exact Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (∑ i in s, X i)
[PROOFSTEP]
apply integrable_finset_sum' _ fun i hi => ?_
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ Integrable (X i)
[PROOFSTEP]
exact Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (X k ^ 2)
[PROOFSTEP]
exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _))
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable ((∑ i in s, X i) ^ 2)
[PROOFSTEP]
apply Memℒp.integrable_sq
[GOAL]
case hg.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Memℒp (fun x => Finset.sum s (fun i => X i) x) 2
[PROOFSTEP]
exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi)
[GOAL]
case hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (X k ^ 2 + (∑ i in s, X i) ^ 2)
[PROOFSTEP]
apply Integrable.add
[GOAL]
case hf.hf
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (X k ^ 2)
[PROOFSTEP]
exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _))
[GOAL]
case hf.hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable ((∑ i in s, X i) ^ 2)
[PROOFSTEP]
apply Memℒp.integrable_sq
[GOAL]
case hf.hg.h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Memℒp (fun x => Finset.sum s (fun i => X i) x) 2
[PROOFSTEP]
exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi)
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (2 * X k * ∑ i in s, X i)
[PROOFSTEP]
rw [mul_assoc]
[GOAL]
case hg
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable (2 * (X k * ∑ i in s, X i))
[PROOFSTEP]
apply Integrable.const_mul _ (2 : ℝ)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable fun x => (X k * ∑ i in s, X i) x
[PROOFSTEP]
simp only [mul_sum, sum_apply, Pi.mul_apply]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ Integrable fun x => ∑ x_1 in s, X k x * X x_1 x
[PROOFSTEP]
apply integrable_finset_sum _ fun i hi => ?_
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ Integrable fun a => X k a * X i a
[PROOFSTEP]
apply
IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ IndepFun (X k) (X i)
[PROOFSTEP]
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ k ≠ i
[PROOFSTEP]
exact fun hki => ks (hki.symm ▸ hi)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (((∫ (a : Ω), (X k ^ 2) a) + ∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) + ∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) -
((∫ (a : Ω), X k a) + ∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2 =
variance (X k) ℙ + variance (∑ i in s, X i) ℙ +
((∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - (2 * ∫ (a : Ω), X k a) * ∫ (a : Ω), Finset.sum s (fun i => X i) a)
[PROOFSTEP]
rw [variance_def' (hs _ (mem_insert_self _ _)),
variance_def' (memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi))]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (((∫ (a : Ω), (X k ^ 2) a) + ∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) + ∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) -
((∫ (a : Ω), X k a) + ∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2 =
(∫ (a : Ω), (X k ^ 2) a) - (∫ (a : Ω), X k a) ^ 2 +
((∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) - (∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2) +
((∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - (2 * ∫ (a : Ω), X k a) * ∫ (a : Ω), Finset.sum s (fun i => X i) a)
[PROOFSTEP]
ring
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ variance (X k) ℙ + variance (∑ i in s, X i) ℙ +
((∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - (2 * ∫ (a : Ω), X k a) * ∫ (a : Ω), Finset.sum s (fun i => X i) a) =
variance (X k) ℙ + variance (∑ i in s, X i) ℙ
[PROOFSTEP]
simp only [mul_assoc, integral_mul_left, Pi.mul_apply, Pi.one_apply, sum_apply, add_right_eq_self, mul_sum]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (∫ (a : Ω), ∑ x in s, OfNat.ofNat 2 a * (X k a * X x a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), ∑ c in s, X c a) = 0
[PROOFSTEP]
rw [integral_finset_sum s fun i hi => ?_]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (∑ i in s, ∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), ∑ c in s, X c a) = 0
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ Integrable fun a => OfNat.ofNat 2 a * (X k a * X i a)
[PROOFSTEP]
swap
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ Integrable fun a => OfNat.ofNat 2 a * (X k a * X i a)
[PROOFSTEP]
apply Integrable.const_mul _ (2 : ℝ)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ Integrable fun x => X k x * X i x
[PROOFSTEP]
apply
IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)))
(Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)))
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ IndepFun (X k) (X i)
[PROOFSTEP]
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ k ≠ i
[PROOFSTEP]
exact fun hki => ks (hki.symm ▸ hi)
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ (∑ i in s, ∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), ∑ c in s, X c a) = 0
[PROOFSTEP]
rw [integral_finset_sum s fun i hi => Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)), mul_sum, mul_sum, ←
sum_sub_distrib]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ ∑ x in s, ((∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X x a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X x a)) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero fun i hi => ?_
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
⊢ (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) = 0
[PROOFSTEP]
have : ∀ (a : Ω), @OfNat.ofNat (Ω → ℝ) 2 instOfNat a = (2 : ℝ) := fun a => rfl
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
⊢ (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) = 0
[PROOFSTEP]
conv_lhs => enter [1, 2, a]; rw [this]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
| (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a)
[PROOFSTEP]
enter [1, 2, a]; rw [this]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
| (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a)
[PROOFSTEP]
enter [1, 2, a]; rw [this]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
| (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a)
[PROOFSTEP]
enter [1, 2, a]
[GOAL]
case h
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
a : Ω
| OfNat.ofNat 2 a * (X k a * X i a)
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
⊢ (∫ (a : Ω), 2 * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) = 0
[PROOFSTEP]
rw [integral_mul_left, IndepFun.integral_mul', sub_self]
[GOAL]
case hXY
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
⊢ IndepFun (fun a => X k a) fun a => X i a
[PROOFSTEP]
apply h (mem_insert_self _ _) (mem_insert_of_mem hi)
[GOAL]
case hXY
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
⊢ k ≠ i
[PROOFSTEP]
exact fun hki => ks (hki.symm ▸ hi)
[GOAL]
case hX
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
⊢ AEStronglyMeasurable (fun a => X k a) ℙ
[PROOFSTEP]
exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_self _ _))
[GOAL]
case hY
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
i : ι
hi : i ∈ s
this : ∀ (a : Ω), OfNat.ofNat 2 a = 2
⊢ AEStronglyMeasurable (fun a => X i a) ℙ
[PROOFSTEP]
exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_of_mem hi))
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ variance (X k) ℙ + variance (∑ i in s, X i) ℙ = variance (X k) ℙ + ∑ i in s, variance (X i) ℙ
[PROOFSTEP]
rw [IH (fun i hi => hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, Set.subset_insert]))]
[GOAL]
Ω : Type u_1
m : MeasurableSpace Ω
X✝ : Ω → ℝ
μ : Measure Ω
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
ι : Type u_2
X : ι → Ω → ℝ
s✝ : Finset ι
hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2
h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j)
k : ι
s : Finset ι
ks : ¬k ∈ s
IH :
(∀ (i : ι), i ∈ s → Memℒp (X i) 2) →
(Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ
hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2
h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j)
⊢ ↑s ⊆ ↑(insert k s)
[PROOFSTEP]
simp only [coe_insert, Set.subset_insert]
| {"mathlib_filename": "Mathlib.Probability.Variance", "llama_tokens": 48928} |
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
⊢ AEStronglyMeasurable (ProbabilityTheory.truncation f A) μ
[PROOFSTEP]
apply AEStronglyMeasurable.comp_aemeasurable _ hf.aemeasurable
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
⊢ AEStronglyMeasurable (indicator (Set.Ioc (-A) A) id) (Measure.map f μ)
[PROOFSTEP]
exact (stronglyMeasurable_id.indicator measurableSet_Ioc).aestronglyMeasurable
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
⊢ |truncation f A x| ≤ |A|
[PROOFSTEP]
simp only [truncation, Set.indicator, Set.mem_Icc, id.def, Function.comp_apply]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
⊢ |if f x ∈ Set.Ioc (-A) A then f x else 0| ≤ |A|
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h : f x ∈ Set.Ioc (-A) A
⊢ |f x| ≤ |A|
[PROOFSTEP]
exact abs_le_abs h.2 (neg_le.2 h.1.le)
[GOAL]
case neg
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h : ¬f x ∈ Set.Ioc (-A) A
⊢ |0| ≤ |A|
[PROOFSTEP]
simp [abs_nonneg]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
⊢ truncation f 0 = 0
[PROOFSTEP]
simp [truncation]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
⊢ (fun x => 0) ∘ f = 0
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
⊢ |truncation f A x| ≤ |f x|
[PROOFSTEP]
simp only [truncation, indicator, Set.mem_Icc, id.def, Function.comp_apply]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
⊢ |if f x ∈ Set.Ioc (-A) A then f x else 0| ≤ |f x|
[PROOFSTEP]
split_ifs
[GOAL]
case pos
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h✝ : f x ∈ Set.Ioc (-A) A
⊢ |f x| ≤ |f x|
[PROOFSTEP]
exact le_rfl
[GOAL]
case neg
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h✝ : ¬f x ∈ Set.Ioc (-A) A
⊢ |0| ≤ |f x|
[PROOFSTEP]
simp [abs_nonneg]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h : |f x| < A
⊢ truncation f A x = f x
[PROOFSTEP]
simp only [truncation, indicator, Set.mem_Icc, id.def, Function.comp_apply, ite_eq_left_iff]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h : |f x| < A
⊢ ¬f x ∈ Set.Ioc (-A) A → 0 = f x
[PROOFSTEP]
intro H
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h : |f x| < A
H : ¬f x ∈ Set.Ioc (-A) A
⊢ 0 = f x
[PROOFSTEP]
apply H.elim
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
x : α
h : |f x| < A
H : ¬f x ∈ Set.Ioc (-A) A
⊢ f x ∈ Set.Ioc (-A) A
[PROOFSTEP]
simp [(abs_lt.1 h).1, (abs_lt.1 h).2.le]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
⊢ truncation f A = indicator (Set.Ioc 0 A) id ∘ f
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
⊢ truncation f A x = (indicator (Set.Ioc 0 A) id ∘ f) x
[PROOFSTEP]
rcases(h x).lt_or_eq with (hx | hx)
[GOAL]
case h.inl
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 < f x
⊢ truncation f A x = (indicator (Set.Ioc 0 A) id ∘ f) x
[PROOFSTEP]
simp only [truncation, indicator, hx, Set.mem_Ioc, id.def, Function.comp_apply, true_and_iff]
[GOAL]
case h.inl
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 < f x
⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0
[PROOFSTEP]
by_cases h'x : f x ≤ A
[GOAL]
case pos
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 < f x
h'x : f x ≤ A
⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0
[PROOFSTEP]
have : -A < f x := by linarith [h x]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 < f x
h'x : f x ≤ A
⊢ -A < f x
[PROOFSTEP]
linarith [h x]
[GOAL]
case pos
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 < f x
h'x : f x ≤ A
this : -A < f x
⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0
[PROOFSTEP]
simp only [this, true_and_iff]
[GOAL]
case neg
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 < f x
h'x : ¬f x ≤ A
⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0
[PROOFSTEP]
simp only [h'x, and_false_iff]
[GOAL]
case h.inr
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
A : ℝ
h : ∀ (x : α), 0 ≤ f x
x : α
hx : 0 = f x
⊢ truncation f A x = (indicator (Set.Ioc 0 A) id ∘ f) x
[PROOFSTEP]
simp only [truncation, indicator, hx, id.def, Function.comp_apply, ite_self]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
inst✝ : IsFiniteMeasure μ
hf : AEStronglyMeasurable f μ
A : ℝ
⊢ Integrable (truncation f A)
[PROOFSTEP]
rw [← memℒp_one_iff_integrable]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
inst✝ : IsFiniteMeasure μ
hf : AEStronglyMeasurable f μ
A : ℝ
⊢ Memℒp (truncation f A) 1
[PROOFSTEP]
exact hf.memℒp_truncation
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
n : ℕ
hn : n ≠ 0
⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in -A..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
have M : MeasurableSet (Set.Ioc (-A) A) := measurableSet_Ioc
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
n : ℕ
hn : n ≠ 0
M : MeasurableSet (Set.Ioc (-A) A)
⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in -A..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
change ∫ x, (fun z => indicator (Set.Ioc (-A) A) id z ^ n) (f x) ∂μ = _
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
n : ℕ
hn : n ≠ 0
M : MeasurableSet (Set.Ioc (-A) A)
⊢ ∫ (x : α), (fun z => indicator (Set.Ioc (-A) A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in -A..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
rw [← integral_map (f := fun z => _ ^ n) hf.aemeasurable, intervalIntegral.integral_of_le, ← integral_indicator M]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
n : ℕ
hn : n ≠ 0
M : MeasurableSet (Set.Ioc (-A) A)
⊢ ∫ (y : ℝ), indicator (Set.Ioc (-A) A) id y ^ n ∂Measure.map f μ =
∫ (x : ℝ), indicator (Set.Ioc (-A) A) (fun x => x ^ n) x ∂Measure.map f μ
[PROOFSTEP]
simp only [indicator, zero_pow' _ hn, id.def, ite_pow]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
n : ℕ
hn : n ≠ 0
M : MeasurableSet (Set.Ioc (-A) A)
⊢ -A ≤ A
[PROOFSTEP]
linarith
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
n : ℕ
hn : n ≠ 0
M : MeasurableSet (Set.Ioc (-A) A)
⊢ AEStronglyMeasurable (fun z => indicator (Set.Ioc (-A) A) id z ^ n) (Measure.map f μ)
[PROOFSTEP]
exact ((measurable_id.indicator M).pow_const n).aestronglyMeasurable
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
have M : MeasurableSet (Set.Ioc 0 A) := measurableSet_Ioc
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
have M' : MeasurableSet (Set.Ioc A 0) := measurableSet_Ioc
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
rw [truncation_eq_of_nonneg h'f]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
⊢ ∫ (x : α), (indicator (Set.Ioc 0 A) id ∘ fun x => f x) x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
change ∫ x, (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = _
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
⊢ ∫ (x : α), (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
rcases le_or_lt 0 A with (hA | hA)
[GOAL]
case inl
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : 0 ≤ A
⊢ ∫ (x : α), (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
rw [← integral_map (f := fun z => _ ^ n) hf.aemeasurable, intervalIntegral.integral_of_le hA, ← integral_indicator M]
[GOAL]
case inl
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : 0 ≤ A
⊢ ∫ (y : ℝ), indicator (Set.Ioc 0 A) id y ^ n ∂Measure.map f μ =
∫ (x : ℝ), indicator (Set.Ioc 0 A) (fun x => x ^ n) x ∂Measure.map f μ
[PROOFSTEP]
simp only [indicator, zero_pow' _ hn, id.def, ite_pow]
[GOAL]
case inl
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : 0 ≤ A
⊢ AEStronglyMeasurable (fun z => indicator (Set.Ioc 0 A) id z ^ n) (Measure.map f μ)
[PROOFSTEP]
exact ((measurable_id.indicator M).pow_const n).aestronglyMeasurable
[GOAL]
case inr
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
⊢ ∫ (x : α), (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ
[PROOFSTEP]
rw [← integral_map (f := fun z => _ ^ n) hf.aemeasurable, intervalIntegral.integral_of_ge hA.le, ←
integral_indicator M']
[GOAL]
case inr
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
⊢ ∫ (y : ℝ), indicator (Set.Ioc 0 A) id y ^ n ∂Measure.map f μ =
-∫ (x : ℝ), indicator (Set.Ioc A 0) (fun x => x ^ n) x ∂Measure.map f μ
[PROOFSTEP]
simp only [Set.Ioc_eq_empty_of_le hA.le, zero_pow' _ hn, Set.indicator_empty, integral_zero, zero_eq_neg]
[GOAL]
case inr
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
⊢ ∫ (x : ℝ), indicator (Set.Ioc A 0) (fun x => x ^ n) x ∂Measure.map f μ = 0
[PROOFSTEP]
apply integral_eq_zero_of_ae
[GOAL]
case inr.hf
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
⊢ (fun a => indicator (Set.Ioc A 0) (fun x => x ^ n) a) =ᵐ[Measure.map f μ] 0
[PROOFSTEP]
have : ∀ᵐ x ∂Measure.map f μ, (0 : ℝ) ≤ x := (ae_map_iff hf.aemeasurable measurableSet_Ici).2 (eventually_of_forall h'f)
[GOAL]
case inr.hf
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x
⊢ (fun a => indicator (Set.Ioc A 0) (fun x => x ^ n) a) =ᵐ[Measure.map f μ] 0
[PROOFSTEP]
filter_upwards [this] with x hx
[GOAL]
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x
x : ℝ
hx : 0 ≤ x
⊢ indicator (Set.Ioc A 0) (fun x => x ^ n) x = OfNat.ofNat 0 x
[PROOFSTEP]
simp only [indicator, Set.mem_Ioc, Pi.zero_apply, ite_eq_right_iff, and_imp]
[GOAL]
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x
x : ℝ
hx : 0 ≤ x
⊢ A < x → x ≤ 0 → x ^ n = 0
[PROOFSTEP]
intro _ h''x
[GOAL]
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x
x : ℝ
hx : 0 ≤ x
a✝ : A < x
h''x : x ≤ 0
⊢ x ^ n = 0
[PROOFSTEP]
have : x = 0 := by linarith
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x
x : ℝ
hx : 0 ≤ x
a✝ : A < x
h''x : x ≤ 0
⊢ x = 0
[PROOFSTEP]
linarith
[GOAL]
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
this✝ : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x
x : ℝ
hx : 0 ≤ x
a✝ : A < x
h''x : x ≤ 0
this : x = 0
⊢ x ^ n = 0
[PROOFSTEP]
simp [this, zero_pow' _ hn]
[GOAL]
case inr
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
n : ℕ
hn : n ≠ 0
h'f : 0 ≤ f
M : MeasurableSet (Set.Ioc 0 A)
M' : MeasurableSet (Set.Ioc A 0)
hA : A < 0
⊢ AEStronglyMeasurable (fun z => indicator (Set.Ioc 0 A) id z ^ n) (Measure.map f μ)
[PROOFSTEP]
exact ((measurable_id.indicator M).pow_const n).aestronglyMeasurable
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
hA : 0 ≤ A
⊢ ∫ (x : α), truncation f A x ∂μ = ∫ (y : ℝ) in -A..A, y ∂Measure.map f μ
[PROOFSTEP]
simpa using moment_truncation_eq_intervalIntegral hf hA one_ne_zero
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : AEStronglyMeasurable f μ
A : ℝ
h'f : 0 ≤ f
⊢ ∫ (x : α), truncation f A x ∂μ = ∫ (y : ℝ) in 0 ..A, y ∂Measure.map f μ
[PROOFSTEP]
simpa using moment_truncation_eq_intervalIntegral_of_nonneg hf one_ne_zero h'f
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f
h'f : 0 ≤ f
A : ℝ
⊢ ∫ (x : α), truncation f A x ∂μ ≤ ∫ (x : α), f x ∂μ
[PROOFSTEP]
apply integral_mono_of_nonneg (eventually_of_forall fun x => ?_) hf (eventually_of_forall fun x => ?_)
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f
h'f : 0 ≤ f
A : ℝ
x : α
⊢ OfNat.ofNat 0 x ≤ truncation f A x
[PROOFSTEP]
exact truncation_nonneg _ (h'f x)
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f : α → ℝ
hf : Integrable f
h'f : 0 ≤ f
A : ℝ
x : α
⊢ truncation f A x ≤ f x
[PROOFSTEP]
calc
truncation f A x ≤ |truncation f A x| := le_abs_self _
_ ≤ |f x| := (abs_truncation_le_abs_self _ _ _)
_ = f x := abs_of_nonneg (h'f x)
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
⊢ Tendsto (fun A => ∫ (x : α), truncation f A x ∂μ) atTop (𝓝 (∫ (x : α), f x ∂μ))
[PROOFSTEP]
refine' tendsto_integral_filter_of_dominated_convergence (fun x => abs (f x)) _ _ _ _
[GOAL]
case refine'_1
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
⊢ ∀ᶠ (n : ℝ) in atTop, AEStronglyMeasurable (fun x => truncation f n x) μ
[PROOFSTEP]
exact eventually_of_forall fun A => hf.aestronglyMeasurable.truncation
[GOAL]
case refine'_2
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
⊢ ∀ᶠ (n : ℝ) in atTop, ∀ᵐ (a : α) ∂μ, ‖truncation f n a‖ ≤ (fun x => |f x|) a
[PROOFSTEP]
apply eventually_of_forall fun A => ?_
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
A : ℝ
⊢ ∀ᵐ (a : α) ∂μ, ‖truncation f A a‖ ≤ (fun x => |f x|) a
[PROOFSTEP]
apply eventually_of_forall fun x => ?_
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
A : ℝ
x : α
⊢ ‖truncation f A x‖ ≤ (fun x => |f x|) x
[PROOFSTEP]
rw [Real.norm_eq_abs]
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
A : ℝ
x : α
⊢ |truncation f A x| ≤ (fun x => |f x|) x
[PROOFSTEP]
exact abs_truncation_le_abs_self _ _ _
[GOAL]
case refine'_3
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
⊢ Integrable fun x => |f x|
[PROOFSTEP]
apply hf.abs
[GOAL]
case refine'_4
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => truncation f n a) atTop (𝓝 (f a))
[PROOFSTEP]
apply eventually_of_forall fun x => ?_
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
x : α
⊢ Tendsto (fun n => truncation f n x) atTop (𝓝 (f x))
[PROOFSTEP]
apply tendsto_const_nhds.congr' _
[GOAL]
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
x : α
⊢ (fun x_1 => f x) =ᶠ[atTop] fun n => truncation f n x
[PROOFSTEP]
filter_upwards [Ioi_mem_atTop (abs (f x))] with A hA
[GOAL]
case h
α : Type u_1
m : MeasurableSpace α
μ : Measure α
f✝ f : α → ℝ
hf : Integrable f
x : α
A : ℝ
hA : A ∈ Set.Ioi |f x|
⊢ f x = truncation f A x
[PROOFSTEP]
exact (truncation_eq_self hA).symm
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
let ρ : Measure ℝ := Measure.map X ℙ
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
haveI : IsProbabilityMeasure ρ := isProbabilityMeasure_map hint.aemeasurable
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
have A : ∑ j in range K, ∫ _ in j..N, (1 : ℝ) ∂ρ ≤ 𝔼[X] + 1 :=
calc
∑ j in range K, ∫ _ in j..N, (1 : ℝ) ∂ρ = ∑ j in range K, ∑ i in Ico j N, ∫ _ in i..(i + 1 : ℕ), (1 : ℝ) ∂ρ :=
by
apply sum_congr rfl fun j hj => ?_
rw [intervalIntegral.sum_integral_adjacent_intervals_Ico ((mem_range.1 hj).le.trans hKN)]
intro k _
exact continuous_const.intervalIntegrable _ _
_ = ∑ i in range N, ∑ j in range (min (i + 1) K), ∫ _ in i..(i + 1 : ℕ), (1 : ℝ) ∂ρ :=
by
simp_rw [sum_sigma']
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range, mem_Ico] at hij
simp only [hij, Nat.lt_succ_iff.2 hij.2.1, mem_sigma, mem_range, lt_min_iff, and_self_iff]
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range, lt_min_iff] at hij
simp only [hij, Nat.lt_succ_iff.1 hij.2.1, mem_sigma, mem_range, mem_Ico, and_self_iff]
· rintro ⟨i, j⟩ hij; rfl
· rintro ⟨i, j⟩ hij; rfl
_ ≤ ∑ i in range N, (i + 1) * ∫ _ in i..(i + 1 : ℕ), (1 : ℝ) ∂ρ :=
by
apply sum_le_sum fun i _ => ?_
simp only [Nat.cast_add, Nat.cast_one, sum_const, card_range, nsmul_eq_mul, Nat.cast_min]
refine' mul_le_mul_of_nonneg_right (min_le_left _ _) _
apply intervalIntegral.integral_nonneg
· simp only [le_add_iff_nonneg_right, zero_le_one]
· simp only [zero_le_one, imp_true_iff]
_ ≤ ∑ i in range N, ∫ x in i..(i + 1 : ℕ), x + 1 ∂ρ :=
by
apply sum_le_sum fun i _ => ?_
have I : (i : ℝ) ≤ (i + 1 : ℕ) := by simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one]
simp_rw [intervalIntegral.integral_of_le I, ← integral_mul_left]
apply set_integral_mono_on
· exact continuous_const.integrableOn_Ioc
· exact (continuous_id.add continuous_const).integrableOn_Ioc
· exact measurableSet_Ioc
· intro x hx
simp only [Nat.cast_add, Nat.cast_one, Set.mem_Ioc] at hx
simp [hx.1.le]
_ = ∫ x in (0)..N, x + 1 ∂ρ :=
by
rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_]
· norm_cast
· exact (continuous_id.add continuous_const).intervalIntegrable _ _
_ = ∫ x in (0)..N, x ∂ρ + ∫ x in (0)..N, 1 ∂ρ :=
by
rw [intervalIntegral.integral_add]
· exact continuous_id.intervalIntegrable _ _
· exact continuous_const.intervalIntegrable _ _
_ = 𝔼[truncation X N] + ∫ x in (0)..N, 1 ∂ρ := by
rw [integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg]
_ ≤ 𝔼[X] + ∫ x in (0)..N, 1 ∂ρ := (add_le_add_right (integral_truncation_le_integral_of_nonneg hint hnonneg) _)
_ ≤ 𝔼[X] + 1 := by
refine' add_le_add le_rfl _
rw [intervalIntegral.integral_of_le (Nat.cast_nonneg _)]
simp only [integral_const, Measure.restrict_apply', measurableSet_Ioc, Set.univ_inter, Algebra.id.smul_eq_mul,
mul_one]
rw [← ENNReal.one_toReal]
exact ENNReal.toReal_mono ENNReal.one_ne_top prob_le_one
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ = ∑ j in range K, ∑ i in Ico j N, ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ
[PROOFSTEP]
apply sum_congr rfl fun j hj => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
j : ℕ
hj : j ∈ range K
⊢ ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ = ∑ i in Ico j N, ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ
[PROOFSTEP]
rw [intervalIntegral.sum_integral_adjacent_intervals_Ico ((mem_range.1 hj).le.trans hKN)]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
j : ℕ
hj : j ∈ range K
⊢ ∀ (k : ℕ), k ∈ Set.Ico j N → IntervalIntegrable (fun x => 1) ρ ↑k ↑(k + 1)
[PROOFSTEP]
intro k _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
j : ℕ
hj : j ∈ range K
k : ℕ
a✝ : k ∈ Set.Ico j N
⊢ IntervalIntegrable (fun x => 1) ρ ↑k ↑(k + 1)
[PROOFSTEP]
exact continuous_const.intervalIntegrable _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ j in range K, ∑ i in Ico j N, ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ =
∑ i in range N, ∑ j in range (min (i + 1) K), ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ
[PROOFSTEP]
simp_rw [sum_sigma']
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ x in Finset.sigma (range K) fun a => Ico a N, ∫ (x : ℝ) in ↑x.snd..↑(x.snd + 1), 1 ∂Measure.map X ℙ =
∑ x in Finset.sigma (range N) fun a => range (min (a + 1) K), ∫ (x : ℝ) in ↑x.fst..↑(x.fst + 1), 1 ∂Measure.map X ℙ
[PROOFSTEP]
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
[GOAL]
case refine'_1
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ico a N),
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ico a N
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range N) fun a => range (min (a + 1) K)
[PROOFSTEP]
simp only [mem_sigma, mem_range, mem_Ico] at hij
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ico a N
hij : i < K ∧ i ≤ j ∧ j < N
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈
Finset.sigma (range N) fun a => range (min (a + 1) K)
[PROOFSTEP]
simp only [hij, Nat.lt_succ_iff.2 hij.2.1, mem_sigma, mem_range, lt_min_iff, and_self_iff]
[GOAL]
case refine'_2
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)),
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ico a N
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_2.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => Ico a N
[PROOFSTEP]
simp only [mem_sigma, mem_range, lt_min_iff] at hij
[GOAL]
case refine'_2.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)
hij : i < N ∧ j < i + 1 ∧ j < K
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range K) fun a => Ico a N
[PROOFSTEP]
simp only [hij, Nat.lt_succ_iff.1 hij.2.1, mem_sigma, mem_range, mem_Ico, and_self_iff]
[GOAL]
case refine'_3
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ico a N),
(fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha)
(_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)) =
a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_3.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ico a N
⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range N) fun a => range (min (a + 1) K)) =
{ fst := i, snd := j }
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)),
(fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha)
(_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ico a N) =
a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_4.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)
⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range K) fun a => Ico a N) =
{ fst := i, snd := j }
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ i in range N, ∑ j in range (min (i + 1) K), ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤
∑ i in range N, (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ
[PROOFSTEP]
apply sum_le_sum fun i _ => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ ∑ j in range (min (i + 1) K), ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one, sum_const, card_range, nsmul_eq_mul, Nat.cast_min]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ min (↑i + 1) ↑K * ∫ (x : ℝ) in ↑i..↑i + 1, 1 ∂Measure.map X ℙ ≤ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑i + 1, 1 ∂Measure.map X ℙ
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right (min_le_left _ _) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ 0 ≤ ∫ (x : ℝ) in ↑i..↑i + 1, 1 ∂Measure.map X ℙ
[PROOFSTEP]
apply intervalIntegral.integral_nonneg
[GOAL]
case hab
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ ↑i ≤ ↑i + 1
[PROOFSTEP]
simp only [le_add_iff_nonneg_right, zero_le_one]
[GOAL]
case hf
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ ∀ (u : ℝ), u ∈ Set.Icc (↑i) (↑i + 1) → 0 ≤ 1
[PROOFSTEP]
simp only [zero_le_one, imp_true_iff]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ i in range N, (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∑ i in range N, ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ
[PROOFSTEP]
apply sum_le_sum fun i _ => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ
[PROOFSTEP]
have I : (i : ℝ) ≤ (i + 1 : ℕ) := by simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
⊢ ↑i ≤ ↑(i + 1)
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
⊢ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ
[PROOFSTEP]
simp_rw [intervalIntegral.integral_of_le I, ← integral_mul_left]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
⊢ ∫ (a : ℝ) in Set.Ioc ↑i ↑(i + 1), (↑i + 1) * 1 ∂Measure.map X ℙ ≤
∫ (x : ℝ) in Set.Ioc ↑i ↑(i + 1), x + 1 ∂Measure.map X ℙ
[PROOFSTEP]
apply set_integral_mono_on
[GOAL]
case hf
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
⊢ IntegrableOn (fun a => (↑i + 1) * 1) (Set.Ioc ↑i ↑(i + 1))
[PROOFSTEP]
exact continuous_const.integrableOn_Ioc
[GOAL]
case hg
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
⊢ IntegrableOn (fun a => a + 1) (Set.Ioc ↑i ↑(i + 1))
[PROOFSTEP]
exact (continuous_id.add continuous_const).integrableOn_Ioc
[GOAL]
case hs
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
⊢ MeasurableSet (Set.Ioc ↑i ↑(i + 1))
[PROOFSTEP]
exact measurableSet_Ioc
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
⊢ ∀ (x : ℝ), x ∈ Set.Ioc ↑i ↑(i + 1) → (↑i + 1) * 1 ≤ x + 1
[PROOFSTEP]
intro x hx
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑i ↑(i + 1)
⊢ (↑i + 1) * 1 ≤ x + 1
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one, Set.mem_Ioc] at hx
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
i : ℕ
x✝ : i ∈ range N
I : ↑i ≤ ↑(i + 1)
x : ℝ
hx : ↑i < x ∧ x ≤ ↑i + 1
⊢ (↑i + 1) * 1 ≤ x + 1
[PROOFSTEP]
simp [hx.1.le]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∑ i in range N, ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ = ∫ (x : ℝ) in 0 ..↑N, x + 1 ∂ρ
[PROOFSTEP]
rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∫ (x : ℝ) in ↑0 ..↑N, x + 1 ∂ρ = ∫ (x : ℝ) in 0 ..↑N, x + 1 ∂ρ
[PROOFSTEP]
norm_cast
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
k : ℕ
x✝ : k < N
⊢ IntervalIntegrable (fun x => x + 1) ρ ↑k ↑(k + 1)
[PROOFSTEP]
exact (continuous_id.add continuous_const).intervalIntegrable _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∫ (x : ℝ) in 0 ..↑N, x + 1 ∂ρ = ∫ (x : ℝ) in 0 ..↑N, x ∂ρ + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ
[PROOFSTEP]
rw [intervalIntegral.integral_add]
[GOAL]
case hf
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ IntervalIntegrable (fun x => x) ρ 0 ↑N
[PROOFSTEP]
exact continuous_id.intervalIntegrable _ _
[GOAL]
case hg
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ IntervalIntegrable (fun x => 1) ρ 0 ↑N
[PROOFSTEP]
exact continuous_const.intervalIntegrable _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∫ (x : ℝ) in 0 ..↑N, x ∂ρ + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ = (∫ (a : Ω), truncation X (↑N) a) + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ
[PROOFSTEP]
rw [integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ (∫ (a : Ω), X a) + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
[PROOFSTEP]
refine' add_le_add le_rfl _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ ≤ 1
[PROOFSTEP]
rw [intervalIntegral.integral_of_le (Nat.cast_nonneg _)]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ∫ (x : ℝ) in Set.Ioc 0 ↑N, 1 ∂ρ ≤ 1
[PROOFSTEP]
simp only [integral_const, Measure.restrict_apply', measurableSet_Ioc, Set.univ_inter, Algebra.id.smul_eq_mul, mul_one]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ENNReal.toReal (↑↑(Measure.map X ℙ) (Set.Ioc 0 ↑N)) ≤ 1
[PROOFSTEP]
rw [← ENNReal.one_toReal]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
⊢ ENNReal.toReal (↑↑(Measure.map X ℙ) (Set.Ioc 0 ↑N)) ≤ ENNReal.toReal 1
[PROOFSTEP]
exact ENNReal.toReal_mono ENNReal.one_ne_top prob_le_one
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
have B : ∀ a b, ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ _ in Set.Ioc a b, (1 : ℝ) ∂ρ) :=
by
intro a b
rw [ofReal_set_integral_one ρ _, Measure.map_apply_of_aemeasurable hint.aemeasurable measurableSet_Ioc]
rfl
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
⊢ ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
[PROOFSTEP]
intro a b
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
a b : ℝ
⊢ ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
[PROOFSTEP]
rw [ofReal_set_integral_one ρ _, Measure.map_apply_of_aemeasurable hint.aemeasurable measurableSet_Ioc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
a b : ℝ
⊢ ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ↑↑ℙ (X ⁻¹' Set.Ioc a b)
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
calc
∑ j in range K, ℙ {ω | X ω ∈ Set.Ioc (j : ℝ) N} =
∑ j in range K, ENNReal.ofReal (∫ _ in Set.Ioc (j : ℝ) N, (1 : ℝ) ∂ρ) :=
by simp_rw [B]
_ = ENNReal.ofReal (∑ j in range K, ∫ _ in Set.Ioc (j : ℝ) N, (1 : ℝ) ∂ρ) :=
by
rw [ENNReal.ofReal_sum_of_nonneg]
simp only [integral_const, Algebra.id.smul_eq_mul, mul_one, ENNReal.toReal_nonneg, imp_true_iff]
_ = ENNReal.ofReal (∑ j in range K, ∫ _ in (j : ℝ)..N, (1 : ℝ) ∂ρ) :=
by
congr 1
refine' sum_congr rfl fun j hj => _
rw [intervalIntegral.integral_of_le (Nat.cast_le.2 ((mem_range.1 hj).le.trans hKN))]
_ ≤ ENNReal.ofReal (𝔼[X] + 1) := ENNReal.ofReal_le_ofReal A
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} = ∑ j in range K, ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ)
[PROOFSTEP]
simp_rw [B]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
⊢ ∑ j in range K, ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ) =
ENNReal.ofReal (∑ j in range K, ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ)
[PROOFSTEP]
rw [ENNReal.ofReal_sum_of_nonneg]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
⊢ ∀ (i : ℕ), i ∈ range K → 0 ≤ ∫ (x : ℝ) in Set.Ioc ↑i ↑N, 1 ∂ρ
[PROOFSTEP]
simp only [integral_const, Algebra.id.smul_eq_mul, mul_one, ENNReal.toReal_nonneg, imp_true_iff]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
⊢ ENNReal.ofReal (∑ j in range K, ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ) =
ENNReal.ofReal (∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ)
[PROOFSTEP]
congr 1
[GOAL]
case e_r
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
⊢ ∑ j in range K, ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ = ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ
[PROOFSTEP]
refine' sum_congr rfl fun j hj => _
[GOAL]
case e_r
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K N : ℕ
hKN : K ≤ N
ρ : Measure ℝ := Measure.map X ℙ
this : IsProbabilityMeasure ρ
A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1
B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ)
j : ℕ
hj : j ∈ range K
⊢ ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ = ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ
[PROOFSTEP]
rw [intervalIntegral.integral_of_le (Nat.cast_le.2 ((mem_range.1 hj).le.trans hKN))]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
⊢ ∑' (j : ℕ), ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} < ⊤
[PROOFSTEP]
suffices : ∀ K : ℕ, ∑ j in range K, ℙ {ω | X ω ∈ Set.Ioi (j : ℝ)} ≤ ENNReal.ofReal (𝔼[X] + 1)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
this : ∀ (K : ℕ), ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
⊢ ∑' (j : ℕ), ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} < ⊤
case this
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
⊢ ∀ (K : ℕ), ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
exact
(le_of_tendsto_of_tendsto (ENNReal.tendsto_nat_tsum _) tendsto_const_nhds (eventually_of_forall this)).trans_lt
ENNReal.ofReal_lt_top
[GOAL]
case this
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
⊢ ∀ (K : ℕ), ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
intro K
[GOAL]
case this
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
have A :
Tendsto (fun N : ℕ => ∑ j in range K, ℙ {ω | X ω ∈ Set.Ioc (j : ℝ) N}) atTop
(𝓝 (∑ j in range K, ℙ {ω | X ω ∈ Set.Ioi (j : ℝ)})) :=
by
refine' tendsto_finset_sum _ fun i _ => _
have : {ω | X ω ∈ Set.Ioi (i : ℝ)} = ⋃ N : ℕ, {ω | X ω ∈ Set.Ioc (i : ℝ) N} :=
by
apply Set.Subset.antisymm _ _
· intro ω hω
obtain ⟨N, hN⟩ : ∃ N : ℕ, X ω ≤ N := exists_nat_ge (X ω)
exact Set.mem_iUnion.2 ⟨N, hω, hN⟩
·
simp (config := { contextual := true }) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff,
Set.setOf_subset_setOf, imp_true_iff]
rw [this]
apply tendsto_measure_iUnion
intro m n hmn x hx
exact ⟨hx.1, hx.2.trans (Nat.cast_le.2 hmn)⟩
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
⊢ Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop
(𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j}))
[PROOFSTEP]
refine' tendsto_finset_sum _ fun i _ => _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
⊢ Tendsto (fun N => ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑i ↑N}) atTop (𝓝 (↑↑ℙ {ω | X ω ∈ Set.Ioi ↑i}))
[PROOFSTEP]
have : {ω | X ω ∈ Set.Ioi (i : ℝ)} = ⋃ N : ℕ, {ω | X ω ∈ Set.Ioc (i : ℝ) N} :=
by
apply Set.Subset.antisymm _ _
· intro ω hω
obtain ⟨N, hN⟩ : ∃ N : ℕ, X ω ≤ N := exists_nat_ge (X ω)
exact Set.mem_iUnion.2 ⟨N, hω, hN⟩
·
simp (config := { contextual := true }) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff,
Set.setOf_subset_setOf, imp_true_iff]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
⊢ {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
[PROOFSTEP]
apply Set.Subset.antisymm _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
⊢ {ω | X ω ∈ Set.Ioi ↑i} ⊆ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
[PROOFSTEP]
intro ω hω
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
ω : Ω
hω : ω ∈ {ω | X ω ∈ Set.Ioi ↑i}
⊢ ω ∈ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
[PROOFSTEP]
obtain ⟨N, hN⟩ : ∃ N : ℕ, X ω ≤ N := exists_nat_ge (X ω)
[GOAL]
case intro
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
ω : Ω
hω : ω ∈ {ω | X ω ∈ Set.Ioi ↑i}
N : ℕ
hN : X ω ≤ ↑N
⊢ ω ∈ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
[PROOFSTEP]
exact Set.mem_iUnion.2 ⟨N, hω, hN⟩
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
⊢ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} ⊆ {ω | X ω ∈ Set.Ioi ↑i}
[PROOFSTEP]
simp (config := { contextual := true }) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff, Set.setOf_subset_setOf,
imp_true_iff]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
⊢ Tendsto (fun N => ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑i ↑N}) atTop (𝓝 (↑↑ℙ {ω | X ω ∈ Set.Ioi ↑i}))
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
⊢ Tendsto (fun N => ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑i ↑N}) atTop (𝓝 (↑↑ℙ (⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N})))
[PROOFSTEP]
apply tendsto_measure_iUnion
[GOAL]
case hm
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
⊢ Monotone fun N => {ω | X ω ∈ Set.Ioc ↑i ↑N}
[PROOFSTEP]
intro m n hmn x hx
[GOAL]
case hm
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K i : ℕ
x✝ : i ∈ range K
this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}
m n : ℕ
hmn : m ≤ n
x : Ω
hx : x ∈ (fun N => {ω | X ω ∈ Set.Ioc ↑i ↑N}) m
⊢ x ∈ (fun N => {ω | X ω ∈ Set.Ioc ↑i ↑N}) n
[PROOFSTEP]
exact ⟨hx.1, hx.2.trans (Nat.cast_le.2 hmn)⟩
[GOAL]
case this
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
A :
Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop
(𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j}))
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
apply le_of_tendsto_of_tendsto A tendsto_const_nhds
[GOAL]
case this
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
A :
Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop
(𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j}))
⊢ (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) ≤ᶠ[atTop] fun x => ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
filter_upwards [Ici_mem_atTop K] with N hN
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
A :
Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop
(𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j}))
N : ℕ
hN : N ∈ Set.Ici K
⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1)
[PROOFSTEP]
exact sum_prob_mem_Ioc_le hint hnonneg hN
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a
[PROOFSTEP]
set Y := fun n : ℕ => truncation X n
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a
[PROOFSTEP]
let ρ : Measure ℝ := Measure.map X ℙ
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a
[PROOFSTEP]
have Y2 : ∀ n, 𝔼[Y n ^ 2] = ∫ x in (0)..n, x ^ 2 ∂ρ := by
intro n
change 𝔼[fun x => Y n x ^ 2] = _
rw [moment_truncation_eq_intervalIntegral_of_nonneg hint.1 two_ne_zero hnonneg]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
⊢ ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
n : ℕ
⊢ ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
[PROOFSTEP]
change 𝔼[fun x => Y n x ^ 2] = _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
n : ℕ
⊢ ∫ (a : Ω), (fun x => Y n x ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
[PROOFSTEP]
rw [moment_truncation_eq_intervalIntegral_of_nonneg hint.1 two_ne_zero hnonneg]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a
[PROOFSTEP]
calc
∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[Y j ^ 2] = ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * ∫ x in (0)..j, x ^ 2 ∂ρ := by
simp_rw [Y2]
_ = ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * ∑ k in range j, ∫ x in k..(k + 1 : ℕ), x ^ 2 ∂ρ :=
by
congr 1 with j
congr 1
rw [intervalIntegral.sum_integral_adjacent_intervals]
· norm_cast
intro k _
exact (continuous_id.pow _).intervalIntegrable _ _
_ = ∑ k in range K, (∑ j in Ioo k K, ((j : ℝ) ^ 2)⁻¹) * ∫ x in k..(k + 1 : ℕ), x ^ 2 ∂ρ :=
by
simp_rw [mul_sum, sum_mul, sum_sigma']
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range, mem_filter] at hij
simp [hij, mem_sigma, mem_range, and_self_iff, hij.2.trans hij.1]
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range, mem_Ioo] at hij
simp only [hij, mem_sigma, mem_range, and_self_iff]
· rintro ⟨i, j⟩ hij; rfl
· rintro ⟨i, j⟩ hij; rfl
_ ≤ ∑ k in range K, ↑2 / (k + ↑1) * ∫ x in k..(k + 1 : ℕ), x ^ 2 ∂ρ :=
by
apply sum_le_sum fun k _ => ?_
refine' mul_le_mul_of_nonneg_right (sum_Ioo_inv_sq_le _ _) _
refine' intervalIntegral.integral_nonneg_of_forall _ fun u => sq_nonneg _
simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one]
_ ≤ ∑ k in range K, ∫ x in k..(k + 1 : ℕ), 2 * x ∂ρ :=
by
apply sum_le_sum fun k _ => ?_
have Ik : (k : ℝ) ≤ (k + 1 : ℕ) := by simp
rw [← intervalIntegral.integral_const_mul, intervalIntegral.integral_of_le Ik, intervalIntegral.integral_of_le Ik]
refine' set_integral_mono_on _ _ measurableSet_Ioc fun x hx => _
· apply Continuous.integrableOn_Ioc
exact continuous_const.mul (continuous_pow 2)
· apply Continuous.integrableOn_Ioc
exact continuous_const.mul continuous_id'
·
calc
↑2 / (↑k + ↑1) * x ^ 2 = x / (k + 1) * (2 * x) := by ring
_ ≤ 1 * (2 * x) :=
(mul_le_mul_of_nonneg_right
(by
convert (div_le_one _).2 hx.2; norm_cast
simp only [Nat.cast_add, Nat.cast_one]
linarith only [show (0 : ℝ) ≤ k from Nat.cast_nonneg k])
(mul_nonneg zero_le_two ((Nat.cast_nonneg k).trans hx.1.le)))
_ = 2 * x := by rw [one_mul]
_ = 2 * ∫ x in (0 : ℝ)..K, x ∂ρ :=
by
rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_]
swap; · exact (continuous_const.mul continuous_id').intervalIntegrable _ _
rw [intervalIntegral.integral_const_mul]
norm_cast
_ ≤ 2 * 𝔼[X] :=
mul_le_mul_of_nonneg_left
(by
rw [← integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg]
exact integral_truncation_le_integral_of_nonneg hint hnonneg)
zero_le_two
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (Y j ^ 2) a = ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ
[PROOFSTEP]
simp_rw [Y2]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ =
∑ j in range K, (↑j ^ 2)⁻¹ * ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
congr 1 with j
[GOAL]
case e_f.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
j : ℕ
⊢ (↑j ^ 2)⁻¹ * ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = (↑j ^ 2)⁻¹ * ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
congr 1
[GOAL]
case e_f.h.e_a
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
j : ℕ
⊢ ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
rw [intervalIntegral.sum_integral_adjacent_intervals]
[GOAL]
case e_f.h.e_a
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
j : ℕ
⊢ ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = ∫ (x : ℝ) in ↑0 ..↑j, x ^ 2 ∂ρ
[PROOFSTEP]
norm_cast
[GOAL]
case e_f.h.e_a
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
j : ℕ
⊢ ∀ (k : ℕ), k < j → IntervalIntegrable (fun x => x ^ 2) ρ ↑k ↑(k + 1)
[PROOFSTEP]
intro k _
[GOAL]
case e_f.h.e_a
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
j k : ℕ
a✝ : k < j
⊢ IntervalIntegrable (fun x => x ^ 2) ρ ↑k ↑(k + 1)
[PROOFSTEP]
exact (continuous_id.pow _).intervalIntegrable _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ =
∑ k in range K, (∑ j in Ioo k K, (↑j ^ 2)⁻¹) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
simp_rw [mul_sum, sum_mul, sum_sigma']
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ x in Finset.sigma (range K) fun a => range a,
(↑x.fst ^ 2)⁻¹ * ∫ (x : ℝ) in ↑x.snd..↑(x.snd + 1), x ^ 2 ∂Measure.map X ℙ =
∑ x in Finset.sigma (range K) fun a => Ioo a K,
(↑x.snd ^ 2)⁻¹ * ∫ (x : ℝ) in ↑x.fst..↑(x.fst + 1), x ^ 2 ∂Measure.map X ℙ
[PROOFSTEP]
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
[GOAL]
case refine'_1
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => range a),
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ioo a K
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => range a
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => Ioo a K
[PROOFSTEP]
simp only [mem_sigma, mem_range, mem_filter] at hij
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => range a
hij : i < K ∧ j < i
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range K) fun a => Ioo a K
[PROOFSTEP]
simp [hij, mem_sigma, mem_range, and_self_iff, hij.2.trans hij.1]
[GOAL]
case refine'_2
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ioo a K),
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => range a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_2.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ioo a K
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => range a
[PROOFSTEP]
simp only [mem_sigma, mem_range, mem_Ioo] at hij
[GOAL]
case refine'_2.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ioo a K
hij : i < K ∧ i < j ∧ j < K
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range K) fun a => range a
[PROOFSTEP]
simp only [hij, mem_sigma, mem_range, and_self_iff]
[GOAL]
case refine'_3
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => range a),
(fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha)
(_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ioo a K) =
a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_3.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => range a
⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range K) fun a => Ioo a K) =
{ fst := i, snd := j }
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ioo a K),
(fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha)
(_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => range a) =
a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_4.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ioo a K
⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range K) fun a => range a) =
{ fst := i, snd := j }
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ k in range K, (∑ j in Ioo k K, (↑j ^ 2)⁻¹) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤
∑ k in range K, 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
apply sum_le_sum fun k _ => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
⊢ (∑ j in Ioo k K, (↑j ^ 2)⁻¹) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤
2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right (sum_Ioo_inv_sq_le _ _) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
⊢ 0 ≤ ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ
[PROOFSTEP]
refine' intervalIntegral.integral_nonneg_of_forall _ fun u => sq_nonneg _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
⊢ ↑k ≤ ↑(k + 1)
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ k in range K, 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤
∑ k in range K, ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ
[PROOFSTEP]
apply sum_le_sum fun k _ => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
⊢ 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ
[PROOFSTEP]
have Ik : (k : ℝ) ≤ (k + 1 : ℕ) := by simp
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
⊢ ↑k ≤ ↑(k + 1)
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
⊢ 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ
[PROOFSTEP]
rw [← intervalIntegral.integral_const_mul, intervalIntegral.integral_of_le Ik, intervalIntegral.integral_of_le Ik]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
⊢ ∫ (x : ℝ) in Set.Ioc ↑k ↑(k + 1), 2 / (↑k + 1) * x ^ 2 ∂ρ ≤ ∫ (x : ℝ) in Set.Ioc ↑k ↑(k + 1), 2 * x ∂ρ
[PROOFSTEP]
refine' set_integral_mono_on _ _ measurableSet_Ioc fun x hx => _
[GOAL]
case refine'_1
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
⊢ IntegrableOn (fun x => 2 / (↑k + 1) * x ^ 2) (Set.Ioc ↑k ↑(k + 1))
[PROOFSTEP]
apply Continuous.integrableOn_Ioc
[GOAL]
case refine'_1.hf
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
⊢ Continuous fun x => 2 / (↑k + 1) * x ^ 2
[PROOFSTEP]
exact continuous_const.mul (continuous_pow 2)
[GOAL]
case refine'_2
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
⊢ IntegrableOn (fun x => 2 * x) (Set.Ioc ↑k ↑(k + 1))
[PROOFSTEP]
apply Continuous.integrableOn_Ioc
[GOAL]
case refine'_2.hf
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
⊢ Continuous fun x => 2 * x
[PROOFSTEP]
exact continuous_const.mul continuous_id'
[GOAL]
case refine'_3
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ 2 / (↑k + 1) * x ^ 2 ≤ 2 * x
[PROOFSTEP]
calc
↑2 / (↑k + ↑1) * x ^ 2 = x / (k + 1) * (2 * x) := by ring
_ ≤ 1 * (2 * x) :=
(mul_le_mul_of_nonneg_right
(by
convert (div_le_one _).2 hx.2; norm_cast
simp only [Nat.cast_add, Nat.cast_one]
linarith only [show (0 : ℝ) ≤ k from Nat.cast_nonneg k])
(mul_nonneg zero_le_two ((Nat.cast_nonneg k).trans hx.1.le)))
_ = 2 * x := by rw [one_mul]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ 2 / (↑k + 1) * x ^ 2 = x / (↑k + 1) * (2 * x)
[PROOFSTEP]
ring
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ x / (↑k + 1) ≤ 1
[PROOFSTEP]
convert (div_le_one _).2 hx.2
[GOAL]
case h.e'_3.h.e'_6
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ ↑k + 1 = ↑(k + 1)
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ 0 < ↑(k + 1)
[PROOFSTEP]
norm_cast
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ 0 < ↑(k + 1)
[PROOFSTEP]
simp only [Nat.cast_add, Nat.cast_one]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ 0 < ↑k + 1
[PROOFSTEP]
linarith only [show (0 : ℝ) ≤ k from Nat.cast_nonneg k]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k ∈ range K
Ik : ↑k ≤ ↑(k + 1)
x : ℝ
hx : x ∈ Set.Ioc ↑k ↑(k + 1)
⊢ 1 * (2 * x) = 2 * x
[PROOFSTEP]
rw [one_mul]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∑ k in range K, ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ
[PROOFSTEP]
rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∫ (x : ℝ) in ↑0 ..↑K, 2 * x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k < K
⊢ IntervalIntegrable (fun x => 2 * x) ρ ↑k ↑(k + 1)
[PROOFSTEP]
swap
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
k : ℕ
x✝ : k < K
⊢ IntervalIntegrable (fun x => 2 * x) ρ ↑k ↑(k + 1)
[PROOFSTEP]
exact (continuous_const.mul continuous_id').intervalIntegrable _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∫ (x : ℝ) in ↑0 ..↑K, 2 * x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ
[PROOFSTEP]
rw [intervalIntegral.integral_const_mul]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ 2 * ∫ (x : ℝ) in ↑0 ..↑K, x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ
[PROOFSTEP]
norm_cast
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∫ (x : ℝ) in 0 ..↑K, x ∂ρ ≤ ∫ (a : Ω), X a
[PROOFSTEP]
rw [← integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : Ω → ℝ
hint : Integrable X
hnonneg : 0 ≤ X
K : ℕ
Y : ℕ → Ω → ℝ := fun n => truncation X ↑n
ρ : Measure ℝ := Measure.map X ℙ
Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ
⊢ ∫ (x : Ω), truncation X (↑K) x ≤ ∫ (a : Ω), X a
[PROOFSTEP]
exact integral_truncation_le_integral_of_nonneg hint hnonneg
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have c_pos : 0 < c := zero_lt_one.trans c_one
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have hX : ∀ i, AEStronglyMeasurable (X i) ℙ := fun i => (hident i).symm.aestronglyMeasurable_snd hint.1
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have A : ∀ i, StronglyMeasurable (indicator (Set.Ioc (-i : ℝ) i) id) := fun i =>
stronglyMeasurable_id.indicator measurableSet_Ioc
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
set Y := fun n : ℕ => truncation (X n) n
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
set S := fun n => ∑ i in range n, Y i with hS
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
let u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have u_mono : Monotone u := fun i j hij => Nat.floor_mono (pow_le_pow c_one.le hij)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have I1 : ∀ K, ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * Var[Y j] ≤ 2 * 𝔼[X 0] :=
by
intro K
calc
∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * Var[Y j] ≤ ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[truncation (X 0) j ^ 2] :=
by
apply sum_le_sum fun j _ => ?_
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _))
rw [(hident j).truncation.variance_eq]
exact variance_le_expectation_sq (hX 0).truncation
_ ≤ 2 * 𝔼[X 0] := sum_variance_truncation_le hint (hnonneg 0) K
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
⊢ ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
[PROOFSTEP]
intro K
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
K : ℕ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
[PROOFSTEP]
calc
∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * Var[Y j] ≤ ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[truncation (X 0) j ^ 2] :=
by
apply sum_le_sum fun j _ => ?_
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _))
rw [(hident j).truncation.variance_eq]
exact variance_le_expectation_sq (hX 0).truncation
_ ≤ 2 * 𝔼[X 0] := sum_variance_truncation_le hint (hnonneg 0) K
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
K : ℕ
⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a
[PROOFSTEP]
apply sum_le_sum fun j _ => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
K j : ℕ
x✝ : j ∈ range K
⊢ (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _))
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
K j : ℕ
x✝ : j ∈ range K
⊢ variance (Y j) ℙ ≤ ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a
[PROOFSTEP]
rw [(hident j).truncation.variance_eq]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
K j : ℕ
x✝ : j ∈ range K
⊢ variance (truncation (X 0) ↑j) ℙ ≤ ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a
[PROOFSTEP]
exact variance_le_expectation_sq (hX 0).truncation
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
let C := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * 𝔼[X 0])
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have I2 : ∀ N, ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * Var[S (u i)] ≤ C :=
by
intro N
calc
∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * Var[S (u i)] =
∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * ∑ j in range (u i), Var[Y j] :=
by
congr 1 with i
congr 1
rw [hS, IndepFun.variance_sum]
· intro j _
exact (hident j).aestronglyMeasurable_fst.memℒp_truncation
· intro k _ l _ hkl
exact (hindep hkl).comp (A k).measurable (A l).measurable
_ = ∑ j in range (u (N - 1)), (∑ i in (range N).filter fun i => j < u i, ((u i : ℝ) ^ 2)⁻¹) * Var[Y j] :=
by
simp_rw [mul_sum, sum_mul, sum_sigma']
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range] at hij
simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true_iff]
exact hij.2.trans_le (u_mono (Nat.le_pred_of_lt hij.1))
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range, mem_filter] at hij
simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self_iff]
· rintro ⟨i, j⟩ hij; rfl
· rintro ⟨i, j⟩ hij; rfl
_ ≤ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * Var[Y j] :=
by
apply sum_le_sum fun j hj => ?_
rcases@eq_zero_or_pos _ _ j with (rfl | hj)
· simp only [Nat.cast_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul]
simp only [Nat.cast_zero, truncation_zero, variance_zero, mul_zero, le_rfl]
apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _)
convert sum_div_nat_floor_pow_sq_le_div_sq N (Nat.cast_pos.2 hj) c_one using 2
· simp only [Nat.cast_lt]
· simp only [one_div]
_ = c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), ((j : ℝ) ^ 2)⁻¹ * Var[Y j] := by
simp_rw [mul_sum, div_eq_mul_inv, mul_assoc]
_ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * 𝔼[X 0]) :=
by
apply mul_le_mul_of_nonneg_left (I1 _)
apply mul_nonneg (pow_nonneg c_pos.le _)
exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
⊢ ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
[PROOFSTEP]
intro N
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
[PROOFSTEP]
calc
∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * Var[S (u i)] = ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * ∑ j in range (u i), Var[Y j] :=
by
congr 1 with i
congr 1
rw [hS, IndepFun.variance_sum]
· intro j _
exact (hident j).aestronglyMeasurable_fst.memℒp_truncation
· intro k _ l _ hkl
exact (hindep hkl).comp (A k).measurable (A l).measurable
_ = ∑ j in range (u (N - 1)), (∑ i in (range N).filter fun i => j < u i, ((u i : ℝ) ^ 2)⁻¹) * Var[Y j] :=
by
simp_rw [mul_sum, sum_mul, sum_sigma']
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range] at hij
simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true_iff]
exact hij.2.trans_le (u_mono (Nat.le_pred_of_lt hij.1))
· rintro ⟨i, j⟩ hij
simp only [mem_sigma, mem_range, mem_filter] at hij
simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self_iff]
· rintro ⟨i, j⟩ hij; rfl
· rintro ⟨i, j⟩ hij; rfl
_ ≤ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * Var[Y j] :=
by
apply sum_le_sum fun j hj => ?_
rcases@eq_zero_or_pos _ _ j with (rfl | hj)
· simp only [Nat.cast_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul]
simp only [Nat.cast_zero, truncation_zero, variance_zero, mul_zero, le_rfl]
apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _)
convert sum_div_nat_floor_pow_sq_le_div_sq N (Nat.cast_pos.2 hj) c_one using 2
· simp only [Nat.cast_lt]
· simp only [one_div]
_ = c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), ((j : ℝ) ^ 2)⁻¹ * Var[Y j] := by
simp_rw [mul_sum, div_eq_mul_inv, mul_assoc]
_ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * 𝔼[X 0]) :=
by
apply mul_le_mul_of_nonneg_left (I1 _)
apply mul_nonneg (pow_nonneg c_pos.le _)
exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ =
∑ i in range N, (↑(u i) ^ 2)⁻¹ * ∑ j in range (u i), variance (Y j) ℙ
[PROOFSTEP]
congr 1 with i
[GOAL]
case e_f.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i : ℕ
⊢ (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ = (↑(u i) ^ 2)⁻¹ * ∑ j in range (u i), variance (Y j) ℙ
[PROOFSTEP]
congr 1
[GOAL]
case e_f.h.e_a
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i : ℕ
⊢ variance (S (u i)) ℙ = ∑ j in range (u i), variance (Y j) ℙ
[PROOFSTEP]
rw [hS, IndepFun.variance_sum]
[GOAL]
case e_f.h.e_a.hs
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i : ℕ
⊢ ∀ (i_1 : ℕ), i_1 ∈ range (u i) → Memℒp (Y i_1) 2
[PROOFSTEP]
intro j _
[GOAL]
case e_f.h.e_a.hs
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
a✝ : j ∈ range (u i)
⊢ Memℒp (Y j) 2
[PROOFSTEP]
exact (hident j).aestronglyMeasurable_fst.memℒp_truncation
[GOAL]
case e_f.h.e_a.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i : ℕ
⊢ Set.Pairwise ↑(range (u i)) fun i j => IndepFun (Y i) (Y j)
[PROOFSTEP]
intro k _ l _ hkl
[GOAL]
case e_f.h.e_a.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i k : ℕ
a✝¹ : k ∈ ↑(range (u i))
l : ℕ
a✝ : l ∈ ↑(range (u i))
hkl : k ≠ l
⊢ IndepFun (Y k) (Y l)
[PROOFSTEP]
exact (hindep hkl).comp (A k).measurable (A l).measurable
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * ∑ j in range (u i), variance (Y j) ℙ =
∑ j in range (u (N - 1)), (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ
[PROOFSTEP]
simp_rw [mul_sum, sum_mul, sum_sigma']
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∑ x in Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊,
(↑⌊c ^ x.fst⌋₊ ^ 2)⁻¹ * variance (truncation (X x.snd) ↑x.snd) ℙ =
∑ x in Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N),
(↑⌊c ^ x.snd⌋₊ ^ 2)⁻¹ * variance (truncation (X x.fst) ↑x.fst) ℙ
[PROOFSTEP]
refine'
sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl)
(fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _
[GOAL]
case refine'_1
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊),
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈
Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)
[PROOFSTEP]
simp only [mem_sigma, mem_range] at hij
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
hij : i < N ∧ j < ⌊c ^ i⌋₊
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈
Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)
[PROOFSTEP]
simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true_iff]
[GOAL]
case refine'_1.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
hij : i < N ∧ j < ⌊c ^ i⌋₊
⊢ j < ⌊c ^ (N - 1)⌋₊
[PROOFSTEP]
exact hij.2.trans_le (u_mono (Nat.le_pred_of_lt hij.1))
[GOAL]
case refine'_2
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)),
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_2.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
[PROOFSTEP]
simp only [mem_sigma, mem_range, mem_filter] at hij
[GOAL]
case refine'_2.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)
hij : i < ⌊c ^ (N - 1)⌋₊ ∧ j < N ∧ i < ⌊c ^ j⌋₊
⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈
Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
[PROOFSTEP]
simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self_iff]
[GOAL]
case refine'_3
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊),
(fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) a ha ∈
Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)) =
a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_3.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊
⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)) =
{ fst := i, snd := j }
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)),
(fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha)
(_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊) =
a
[PROOFSTEP]
rintro ⟨i, j⟩ hij
[GOAL]
case refine'_4.mk
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N i j : ℕ
hij : { fst := i, snd := j } ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)
⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij)
(_ :
(fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈
Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊) =
{ fst := i, snd := j }
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∑ j in range (u (N - 1)), (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ ≤
∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ
[PROOFSTEP]
apply sum_le_sum fun j hj => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N j : ℕ
hj : j ∈ range (u (N - 1))
⊢ (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ ≤
c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ
[PROOFSTEP]
rcases@eq_zero_or_pos _ _ j with (rfl | hj)
[GOAL]
case inl
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
hj : 0 ∈ range (u (N - 1))
⊢ (∑ i in filter (fun i => 0 < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y 0) ℙ ≤
c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑0 ^ 2 * variance (Y 0) ℙ
[PROOFSTEP]
simp only [Nat.cast_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul]
[GOAL]
case inl
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
hj : 0 ∈ range (u (N - 1))
⊢ (∑ x in filter (fun i => 0 < ⌊c ^ i⌋₊) (range N), (↑⌊c ^ x⌋₊ ^ 2)⁻¹) * variance (truncation (X 0) 0) ℙ ≤ 0
[PROOFSTEP]
simp only [Nat.cast_zero, truncation_zero, variance_zero, mul_zero, le_rfl]
[GOAL]
case inr
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N j : ℕ
hj✝ : j ∈ range (u (N - 1))
hj : 0 < j
⊢ (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ ≤
c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ
[PROOFSTEP]
apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N j : ℕ
hj✝ : j ∈ range (u (N - 1))
hj : 0 < j
⊢ ∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2
[PROOFSTEP]
convert sum_div_nat_floor_pow_sq_le_div_sq N (Nat.cast_pos.2 hj) c_one using 2
[GOAL]
case h.e'_3.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N j : ℕ
hj✝ : j ∈ range (u (N - 1))
hj : 0 < j
⊢ filter (fun i => j < u i) (range N) = filter (fun x => ↑j < ↑⌊c ^ x⌋₊) (range N)
[PROOFSTEP]
simp only [Nat.cast_lt]
[GOAL]
case h.e'_3.a
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N j : ℕ
hj✝ : j ∈ range (u (N - 1))
hj : 0 < j
x✝ : ℕ
a✝ : x✝ ∈ filter (fun x => ↑j < ↑⌊c ^ x⌋₊) (range N)
⊢ (↑(u x✝) ^ 2)⁻¹ = 1 / ↑⌊c ^ x✝⌋₊ ^ 2
[PROOFSTEP]
simp only [one_div]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ =
c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), (↑j ^ 2)⁻¹ * variance (Y j) ℙ
[PROOFSTEP]
simp_rw [mul_sum, div_eq_mul_inv, mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤
c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
[PROOFSTEP]
apply mul_le_mul_of_nonneg_left (I1 _)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ 0 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3
[PROOFSTEP]
apply mul_nonneg (pow_nonneg c_pos.le _)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
N : ℕ
⊢ 0 ≤ (c - 1)⁻¹ ^ 3
[PROOFSTEP]
exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have I3 : ∀ N, ∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) :=
by
intro N
calc
∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤
∑ i in range N, ENNReal.ofReal (Var[S (u i)] / (u i * ε) ^ 2) :=
by
refine' sum_le_sum fun i _ => _
apply meas_ge_le_variance_div_sq
· exact memℒp_finset_sum' _ fun j _ => (hident j).aestronglyMeasurable_fst.memℒp_truncation
· apply mul_pos (Nat.cast_pos.2 _) εpos
refine' zero_lt_one.trans_le _
apply Nat.le_floor
rw [Nat.cast_one]
apply one_le_pow_of_one_le c_one.le
_ = ENNReal.ofReal (∑ i in range N, Var[S (u i)] / (u i * ε) ^ 2) :=
by
rw [ENNReal.ofReal_sum_of_nonneg fun i _ => ?_]
exact div_nonneg (variance_nonneg _ _) (sq_nonneg _)
_ ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) := by
apply ENNReal.ofReal_le_ofReal
conv_lhs =>
enter [2, i]
rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc]
rw [← mul_sum]
refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _)
conv_lhs => enter [2, i]; rw [inv_pow]
exact I2 N
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
⊢ ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
[PROOFSTEP]
intro N
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
[PROOFSTEP]
calc
∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤
∑ i in range N, ENNReal.ofReal (Var[S (u i)] / (u i * ε) ^ 2) :=
by
refine' sum_le_sum fun i _ => _
apply meas_ge_le_variance_div_sq
· exact memℒp_finset_sum' _ fun j _ => (hident j).aestronglyMeasurable_fst.memℒp_truncation
· apply mul_pos (Nat.cast_pos.2 _) εpos
refine' zero_lt_one.trans_le _
apply Nat.le_floor
rw [Nat.cast_one]
apply one_le_pow_of_one_le c_one.le
_ = ENNReal.ofReal (∑ i in range N, Var[S (u i)] / (u i * ε) ^ 2) :=
by
rw [ENNReal.ofReal_sum_of_nonneg fun i _ => ?_]
exact div_nonneg (variance_nonneg _ _) (sq_nonneg _)
_ ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) := by
apply ENNReal.ofReal_le_ofReal
conv_lhs =>
enter [2, i]
rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc]
rw [← mul_sum]
refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _)
conv_lhs => enter [2, i]; rw [inv_pow]
exact I2 N
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤
∑ i in range N, ENNReal.ofReal (variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2)
[PROOFSTEP]
refine' sum_le_sum fun i _ => _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2)
[PROOFSTEP]
apply meas_ge_le_variance_div_sq
[GOAL]
case hX
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ Memℒp (fun ω => S (u i) ω) 2
[PROOFSTEP]
exact memℒp_finset_sum' _ fun j _ => (hident j).aestronglyMeasurable_fst.memℒp_truncation
[GOAL]
case hc
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ 0 < ↑(u i) * ε
[PROOFSTEP]
apply mul_pos (Nat.cast_pos.2 _) εpos
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ 0 < u i
[PROOFSTEP]
refine' zero_lt_one.trans_le _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ 1 ≤ u i
[PROOFSTEP]
apply Nat.le_floor
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ ↑1 ≤ c ^ i
[PROOFSTEP]
rw [Nat.cast_one]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ 1 ≤ c ^ i
[PROOFSTEP]
apply one_le_pow_of_one_le c_one.le
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ i in range N, ENNReal.ofReal (variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) =
ENNReal.ofReal (∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2)
[PROOFSTEP]
rw [ENNReal.ofReal_sum_of_nonneg fun i _ => ?_]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
x✝ : i ∈ range N
⊢ 0 ≤ variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2
[PROOFSTEP]
exact div_nonneg (variance_nonneg _ _) (sq_nonneg _)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ENNReal.ofReal (∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
[PROOFSTEP]
apply ENNReal.ofReal_le_ofReal
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 ≤ ε⁻¹ ^ 2 * C
[PROOFSTEP]
conv_lhs =>
enter [2, i]
rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
| ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2
[PROOFSTEP]
enter [2, i]
rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
| ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2
[PROOFSTEP]
enter [2, i]
rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
| ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2
[PROOFSTEP]
enter [2, i]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
| variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2
[PROOFSTEP]
rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ i in range N, ε⁻¹ ^ 2 * ((↑(u i))⁻¹ ^ 2 * variance (S (u i)) ℙ) ≤ ε⁻¹ ^ 2 * C
[PROOFSTEP]
rw [← mul_sum]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ε⁻¹ ^ 2 * ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ ≤ ε⁻¹ ^ 2 * C
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _)
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ ≤ C
[PROOFSTEP]
conv_lhs => enter [2, i]; rw [inv_pow]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
| ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ
[PROOFSTEP]
enter [2, i]; rw [inv_pow]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
| ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ
[PROOFSTEP]
enter [2, i]; rw [inv_pow]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
| ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ
[PROOFSTEP]
enter [2, i]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N i : ℕ
| (↑(u i))⁻¹ ^ 2 * variance (S (u i)) ℙ
[PROOFSTEP]
rw [inv_pow]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
N : ℕ
⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
[PROOFSTEP]
exact I2 N
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
have I4 : (∑' i, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|}) < ∞ :=
(le_of_tendsto_of_tendsto' (ENNReal.tendsto_nat_tsum _) tendsto_const_nhds I3).trans_lt ENNReal.ofReal_lt_top
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤
⊢ ∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
filter_upwards [ae_eventually_not_mem I4.ne] with ω hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤
ω : Ω
hω :
∀ᶠ (n : ℕ) in atTop,
¬↑⌊c ^ n⌋₊ * ε ≤
|Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a|
⊢ ∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun n => truncation (X n) ↑n) a| <
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
simp_rw [not_le, mul_comm, sum_apply] at hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤
ω : Ω
hω :
∀ᶠ (n : ℕ) in atTop,
|∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) ω - ∫ (a : Ω), ∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) a| <
ε * ↑⌊c ^ n⌋₊
⊢ ∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun n => truncation (X n) ↑n) a| <
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
convert hω
[GOAL]
case h.e'_2.h.h.e'_3.h.e'_3.h.e'_6.h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ε : ℝ
εpos : 0 < ε
c_pos : 0 < c
hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id)
Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n
S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i
hS : S = fun n => ∑ i in range n, Y i
u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊
u_mono : Monotone u
I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a
C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a)
I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C
I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C)
I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤
ω : Ω
hω :
∀ᶠ (n : ℕ) in atTop,
|∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) ω - ∫ (a : Ω), ∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) a| <
ε * ↑⌊c ^ n⌋₊
x✝¹ : ℕ
x✝ : Ω
⊢ Finset.sum (range ⌊c ^ x✝¹⌋₊) (fun n => truncation (X n) ↑n) x✝ = ∑ c in range ⌊c ^ x✝¹⌋₊, truncation (X c) (↑c) x✝
[PROOFSTEP]
simp only [sum_apply]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
⊢ ∀ᵐ (ω : Ω),
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
obtain ⟨v, -, v_pos, v_lim⟩ : ∃ v : ℕ → ℝ, StrictAnti v ∧ (∀ n : ℕ, 0 < v n) ∧ Tendsto v atTop (𝓝 0) :=
exists_seq_strictAnti_tendsto (0 : ℝ)
[GOAL]
case intro.intro.intro
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
⊢ ∀ᵐ (ω : Ω),
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
have := fun i => strong_law_aux1 X hint hindep hident hnonneg c_one (v_pos i)
[GOAL]
case intro.intro.intro
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
this :
∀ (i : ℕ),
∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
⊢ ∀ᵐ (ω : Ω),
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
filter_upwards [ae_all_iff.2 this] with ω hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
this :
∀ (i : ℕ),
∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ω : Ω
hω :
∀ (i : ℕ),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
⊢ (fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
apply Asymptotics.isLittleO_iff.2 fun ε εpos => ?_
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
this :
∀ (i : ℕ),
∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ω : Ω
hω :
∀ (i : ℕ),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ε : ℝ
εpos : 0 < ε
⊢ ∀ᶠ (x : ℕ) in atTop,
‖∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ x⌋₊) (fun i => truncation (X i) ↑i) a‖ ≤
ε * ‖↑⌊c ^ x⌋₊‖
[PROOFSTEP]
obtain ⟨i, hi⟩ : ∃ i, v i < ε := ((tendsto_order.1 v_lim).2 ε εpos).exists
[GOAL]
case intro
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
this :
∀ (i : ℕ),
∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ω : Ω
hω :
∀ (i : ℕ),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ε : ℝ
εpos : 0 < ε
i : ℕ
hi : v i < ε
⊢ ∀ᶠ (x : ℕ) in atTop,
‖∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ x⌋₊) (fun i => truncation (X i) ↑i) a‖ ≤
ε * ‖↑⌊c ^ x⌋₊‖
[PROOFSTEP]
filter_upwards [hω i] with n hn
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
this :
∀ (i : ℕ),
∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ω : Ω
hω :
∀ (i : ℕ),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ε : ℝ
εpos : 0 < ε
i : ℕ
hi : v i < ε
n : ℕ
hn :
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
⊢ ‖∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a‖ ≤
ε * ‖↑⌊c ^ n⌋₊‖
[PROOFSTEP]
simp only [Real.norm_eq_abs, LatticeOrderedGroup.abs_abs, Nat.abs_cast]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
v : ℕ → ℝ
v_pos : ∀ (n : ℕ), 0 < v n
v_lim : Tendsto v atTop (𝓝 0)
this :
∀ (i : ℕ),
∀ᵐ (ω : Ω),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ω : Ω
hω :
∀ (i : ℕ),
∀ᶠ (n : ℕ) in atTop,
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
ε : ℝ
εpos : 0 < ε
i : ℕ
hi : v i < ε
n : ℕ
hn :
|∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| <
v i * ↑⌊c ^ n⌋₊
⊢ |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| ≤
ε * ↑⌊c ^ n⌋₊
[PROOFSTEP]
exact hn.le.trans (mul_le_mul_of_nonneg_right hi.le (Nat.cast_nonneg _))
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ (fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) =o[atTop]
Nat.cast
[PROOFSTEP]
have A : Tendsto (fun i => 𝔼[truncation (X i) i]) atTop (𝓝 𝔼[X 0]) :=
by
convert (tendsto_integral_truncation hint).comp tendsto_nat_cast_atTop_atTop using 1
ext i
exact (hident i).truncation.integral_eq
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
convert (tendsto_integral_truncation hint).comp tendsto_nat_cast_atTop_atTop using 1
[GOAL]
case h.e'_3
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) = (fun A => ∫ (x : Ω), truncation (X 0) A x) ∘ Nat.cast
[PROOFSTEP]
ext i
[GOAL]
case h.e'_3.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
i : ℕ
⊢ ∫ (a : Ω), truncation (X i) (↑i) a = ((fun A => ∫ (x : Ω), truncation (X 0) A x) ∘ Nat.cast) i
[PROOFSTEP]
exact (hident i).truncation.integral_eq
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a))
⊢ (fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) =o[atTop]
Nat.cast
[PROOFSTEP]
convert Asymptotics.isLittleO_sum_range_of_tendsto_zero (tendsto_sub_nhds_zero_iff.2 A) using 1
[GOAL]
case h.e'_7
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a))
⊢ (fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) = fun n =>
∑ i in range n, ((∫ (a : Ω), truncation (X i) (↑i) a) - ∫ (a : Ω), X 0 a)
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a))
n : ℕ
⊢ (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a =
∑ i in range n, ((∫ (a : Ω), truncation (X i) (↑i) a) - ∫ (a : Ω), X 0 a)
[PROOFSTEP]
simp only [sum_sub_distrib, sum_const, card_range, nsmul_eq_mul, sum_apply, sub_left_inj]
[GOAL]
case h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a))
n : ℕ
⊢ ∫ (a : Ω), ∑ c in range n, truncation (X c) (↑c) a = ∑ x in range n, ∫ (a : Ω), truncation (X x) (↑x) a
[PROOFSTEP]
rw [integral_finset_sum _ fun i _ => ?_]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a))
n i : ℕ
x✝ : i ∈ range n
⊢ Integrable fun a => truncation (X i) (↑i) a
[PROOFSTEP]
exact ((hident i).symm.integrable_snd hint).1.integrable_truncation
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
⊢ ∀ᵐ (ω : Ω),
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n =>
↑⌊c ^ n⌋₊
[PROOFSTEP]
filter_upwards [strong_law_aux2 X hint hindep hident hnonneg c_one] with ω hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ω : Ω
hω :
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
have A : Tendsto (fun n : ℕ => ⌊c ^ n⌋₊) atTop atTop :=
tendsto_nat_floor_atTop.comp (tendsto_pow_atTop_atTop_of_one_lt c_one)
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ω : Ω
hω :
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop
⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
convert hω.add ((strong_law_aux3 X hint hident).comp_tendsto A) using 1
[GOAL]
case h.e'_7
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ω : Ω
hω :
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop
⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) = fun x =>
(∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ x⌋₊) (fun i => truncation (X i) ↑i) a) +
((fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) ∘ fun n =>
⌊c ^ n⌋₊)
x
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
ω : Ω
hω :
(fun n =>
∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop]
fun n => ↑⌊c ^ n⌋₊
A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop
n : ℕ
⊢ ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a =
(∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω -
∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) +
((fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) ∘ fun n =>
⌊c ^ n⌋₊)
n
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
[PROOFSTEP]
have A : (∑' j : ℕ, ℙ {ω | X j ω ∈ Set.Ioi (j : ℝ)}) < ∞ :=
by
convert tsum_prob_mem_Ioi_lt_top hint (hnonneg 0) using 2
ext1 j
exact (hident j).measure_mem_eq measurableSet_Ioi
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
[PROOFSTEP]
convert tsum_prob_mem_Ioi_lt_top hint (hnonneg 0) using 2
[GOAL]
case h.e'_3.h.e'_5
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ (fun j => ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j}) = fun j => ↑↑ℙ {ω | X 0 ω ∈ Set.Ioi ↑j}
[PROOFSTEP]
ext1 j
[GOAL]
case h.e'_3.h.e'_5.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
j : ℕ
⊢ ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} = ↑↑ℙ {ω | X 0 ω ∈ Set.Ioi ↑j}
[PROOFSTEP]
exact (hident j).measure_mem_eq measurableSet_Ioi
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
[PROOFSTEP]
have B : ∀ᵐ ω, Tendsto (fun n : ℕ => truncation (X n) n ω - X n ω) atTop (𝓝 0) :=
by
filter_upwards [ae_eventually_not_mem A.ne] with ω hω
apply tendsto_const_nhds.congr' _
filter_upwards [hω, Ioi_mem_atTop 0] with n hn npos
simp only [truncation, indicator, Set.mem_Ioc, id.def, Function.comp_apply]
split_ifs with h
· exact (sub_self _).symm
· have : -(n : ℝ) < X n ω := by
apply lt_of_lt_of_le _ (hnonneg n ω)
simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos
simp only [this, true_and_iff, not_le] at h
exact (hn h).elim
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
[PROOFSTEP]
filter_upwards [ae_eventually_not_mem A.ne] with ω hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
⊢ Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
[PROOFSTEP]
apply tendsto_const_nhds.congr' _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
⊢ (fun x => 0) =ᶠ[atTop] fun n => truncation (X n) (↑n) ω - X n ω
[PROOFSTEP]
filter_upwards [hω, Ioi_mem_atTop 0] with n hn npos
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
⊢ 0 = truncation (X n) (↑n) ω - X n ω
[PROOFSTEP]
simp only [truncation, indicator, Set.mem_Ioc, id.def, Function.comp_apply]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
⊢ 0 = (if -↑n < X n ω ∧ X n ω ≤ ↑n then X n ω else 0) - X n ω
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
h : -↑n < X n ω ∧ X n ω ≤ ↑n
⊢ 0 = X n ω - X n ω
[PROOFSTEP]
exact (sub_self _).symm
[GOAL]
case neg
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n)
⊢ 0 = 0 - X n ω
[PROOFSTEP]
have : -(n : ℝ) < X n ω := by
apply lt_of_lt_of_le _ (hnonneg n ω)
simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n)
⊢ -↑n < X n ω
[PROOFSTEP]
apply lt_of_lt_of_le _ (hnonneg n ω)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n)
⊢ -↑n < 0
[PROOFSTEP]
simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos
[GOAL]
case neg
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n)
this : -↑n < X n ω
⊢ 0 = 0 - X n ω
[PROOFSTEP]
simp only [this, true_and_iff, not_le] at h
[GOAL]
case neg
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
ω : Ω
hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n
n : ℕ
hn : ¬X n ω ∈ Set.Ioi ↑n
npos : n ∈ Set.Ioi 0
this : -↑n < X n ω
h : ↑n < X n ω
⊢ 0 = 0 - X n ω
[PROOFSTEP]
exact (hn h).elim
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
[PROOFSTEP]
filter_upwards [B] with ω hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
ω : Ω
hω : Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
⊢ (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
[PROOFSTEP]
convert isLittleO_sum_range_of_tendsto_zero hω using 1
[GOAL]
case h.e'_7
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
ω : Ω
hω : Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
⊢ (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) = fun n =>
∑ i in range n, (truncation (X i) (↑i) ω - X i ω)
[PROOFSTEP]
ext n
[GOAL]
case h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤
B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
ω : Ω
hω : Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0)
n : ℕ
⊢ ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω = ∑ i in range n, (truncation (X i) (↑i) ω - X i ω)
[PROOFSTEP]
rw [sum_sub_distrib]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
have H : ∀ n : ℕ, (0 : ℝ) < ⌊c ^ n⌋₊ := by
intro n
refine' zero_lt_one.trans_le _
simp only [Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow_of_one_le c_one.le n]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
⊢ ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
n : ℕ
⊢ 0 < ↑⌊c ^ n⌋₊
[PROOFSTEP]
refine' zero_lt_one.trans_le _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
n : ℕ
⊢ 1 ≤ ↑⌊c ^ n⌋₊
[PROOFSTEP]
simp only [Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow_of_one_le c_one.le n]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
filter_upwards [strong_law_aux4 X hint hindep hident hnonneg c_one, strong_law_aux5 X hint hident hnonneg] with ω hω h'ω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
⊢ Tendsto (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
⊢ (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a) =o[atTop] fun _x => 1
[PROOFSTEP]
have L : (fun n : ℕ => ∑ i in range ⌊c ^ n⌋₊, X i ω - ⌊c ^ n⌋₊ * 𝔼[X 0]) =o[atTop] fun n => (⌊c ^ n⌋₊ : ℝ) :=
by
have A : Tendsto (fun n : ℕ => ⌊c ^ n⌋₊) atTop atTop :=
tendsto_nat_floor_atTop.comp (tendsto_pow_atTop_atTop_of_one_lt c_one)
convert hω.sub (h'ω.comp_tendsto A) using 1
ext1 n
simp only [Function.comp_apply, sub_sub_sub_cancel_left]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
have A : Tendsto (fun n : ℕ => ⌊c ^ n⌋₊) atTop atTop :=
tendsto_nat_floor_atTop.comp (tendsto_pow_atTop_atTop_of_one_lt c_one)
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop
⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
[PROOFSTEP]
convert hω.sub (h'ω.comp_tendsto A) using 1
[GOAL]
case h.e'_7
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop
⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) = fun x =>
(∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ x⌋₊ * ∫ (a : Ω), X 0 a) -
((fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) ∘ fun n => ⌊c ^ n⌋₊) x
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop
n : ℕ
⊢ ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a =
(∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) -
((fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) ∘ fun n => ⌊c ^ n⌋₊) n
[PROOFSTEP]
simp only [Function.comp_apply, sub_sub_sub_cancel_left]
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
⊢ (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a) =o[atTop] fun _x => 1
[PROOFSTEP]
convert L.mul_isBigO (isBigO_refl (fun n : ℕ => (⌊c ^ n⌋₊ : ℝ)⁻¹) atTop) using 1
[GOAL]
case h.e'_7
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
⊢ (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a) = fun x =>
(∑ i in range ⌊c ^ x⌋₊, X i ω - ↑⌊c ^ x⌋₊ * ∫ (a : Ω), X 0 a) * (↑⌊c ^ x⌋₊)⁻¹
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_7.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
n : ℕ
⊢ (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a =
(∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) * (↑⌊c ^ n⌋₊)⁻¹
[PROOFSTEP]
field_simp [(H n).ne']
[GOAL]
case h.e'_8
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
⊢ (fun _x => 1) = fun x => ↑⌊c ^ x⌋₊ * (↑⌊c ^ x⌋₊)⁻¹
[PROOFSTEP]
ext1 n
[GOAL]
case h.e'_8.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℝ
c_one : 1 < c
H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊
ω : Ω
hω :
(fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n
L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊
n : ℕ
⊢ 1 = ↑⌊c ^ n⌋₊ * (↑⌊c ^ n⌋₊)⁻¹
[PROOFSTEP]
field_simp [(H n).ne']
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
obtain ⟨c, -, cone, clim⟩ : ∃ c : ℕ → ℝ, StrictAnti c ∧ (∀ n : ℕ, 1 < c n) ∧ Tendsto c atTop (𝓝 1) :=
exists_seq_strictAnti_tendsto (1 : ℝ)
[GOAL]
case intro.intro.intro
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℕ → ℝ
cone : ∀ (n : ℕ), 1 < c n
clim : Tendsto c atTop (𝓝 1)
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
have : ∀ k, ∀ᵐ ω, Tendsto (fun n : ℕ => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ⌊c k ^ n⌋₊) atTop (𝓝 𝔼[X 0]) := fun k =>
strong_law_aux6 X hint hindep hident hnonneg (cone k)
[GOAL]
case intro.intro.intro
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℕ → ℝ
cone : ∀ (n : ℕ), 1 < c n
clim : Tendsto c atTop (𝓝 1)
this :
∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
filter_upwards [ae_all_iff.2 this] with ω hω
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℕ → ℝ
cone : ∀ (n : ℕ), 1 < c n
clim : Tendsto c atTop (𝓝 1)
this :
∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
ω : Ω
hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
⊢ Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
apply tendsto_div_of_monotone_of_tendsto_div_floor_pow _ _ _ c cone clim _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℕ → ℝ
cone : ∀ (n : ℕ), 1 < c n
clim : Tendsto c atTop (𝓝 1)
this :
∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
ω : Ω
hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
⊢ Monotone fun n => ∑ i in range n, X i ω
[PROOFSTEP]
intro m n hmn
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℕ → ℝ
cone : ∀ (n : ℕ), 1 < c n
clim : Tendsto c atTop (𝓝 1)
this :
∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
ω : Ω
hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
m n : ℕ
hmn : m ≤ n
⊢ (fun n => ∑ i in range n, X i ω) m ≤ (fun n => ∑ i in range n, X i ω) n
[PROOFSTEP]
exact sum_le_sum_of_subset_of_nonneg (range_mono hmn) fun i _ _ => hnonneg i ω
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω
c : ℕ → ℝ
cone : ∀ (n : ℕ), 1 < c n
clim : Tendsto c atTop (𝓝 1)
this :
∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
ω : Ω
hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
⊢ ∀ (k : ℕ), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
exact hω
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
let pos : ℝ → ℝ := fun x => max x 0
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
let neg : ℝ → ℝ := fun x => max (-x) 0
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
have posm : Measurable pos := measurable_id'.max measurable_const
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
have negm : Measurable neg := measurable_id'.neg.max measurable_const
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
have A : ∀ᵐ ω, Tendsto (fun n : ℕ => (∑ i in range n, (pos ∘ X i) ω) / n) atTop (𝓝 𝔼[pos ∘ X 0]) :=
strong_law_aux7 _ hint.pos_part (fun i j hij => (hindep hij).comp posm posm) (fun i => (hident i).comp posm)
fun i ω => le_max_right _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a))
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
have B : ∀ᵐ ω, Tendsto (fun n : ℕ => (∑ i in range n, (neg ∘ X i) ω) / n) atTop (𝓝 𝔼[neg ∘ X 0]) :=
strong_law_aux7 _ hint.neg_part (fun i j hij => (hindep hij).comp negm negm) (fun i => (hident i).comp negm)
fun i ω => le_max_right _ _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a))
B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a))
⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
filter_upwards [A, B] with ω hωpos hωneg
[GOAL]
case h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a))
B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a))
ω : Ω
hωpos :
Tendsto (fun n => (∑ i in range n, ((fun x => max x 0) ∘ X i) ω) / ↑n) atTop
(𝓝 (∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a))
hωneg :
Tendsto (fun n => (∑ i in range n, ((fun x => max (-x) 0) ∘ X i) ω) / ↑n) atTop
(𝓝 (∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a))
⊢ Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a))
[PROOFSTEP]
convert hωpos.sub hωneg using 1
[GOAL]
case h.e'_3
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a))
B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a))
ω : Ω
hωpos :
Tendsto (fun n => (∑ i in range n, ((fun x => max x 0) ∘ X i) ω) / ↑n) atTop
(𝓝 (∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a))
hωneg :
Tendsto (fun n => (∑ i in range n, ((fun x => max (-x) 0) ∘ X i) ω) / ↑n) atTop
(𝓝 (∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a))
⊢ (fun n => (∑ i in range n, X i ω) / ↑n) = fun x =>
(∑ i in range x, ((fun x => max x 0) ∘ X i) ω) / ↑x - (∑ i in range x, ((fun x => max (-x) 0) ∘ X i) ω) / ↑x
[PROOFSTEP]
simp only [← sub_div, ← sum_sub_distrib, max_zero_sub_max_neg_zero_eq_self, Function.comp_apply]
[GOAL]
case h.e'_5
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
X : ℕ → Ω → ℝ
hint : Integrable (X 0)
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
pos : ℝ → ℝ := fun x => max x 0
neg : ℝ → ℝ := fun x => max (-x) 0
posm : Measurable pos
negm : Measurable neg
A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a))
B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a))
ω : Ω
hωpos :
Tendsto (fun n => (∑ i in range n, ((fun x => max x 0) ∘ X i) ω) / ↑n) atTop
(𝓝 (∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a))
hωneg :
Tendsto (fun n => (∑ i in range n, ((fun x => max (-x) 0) ∘ X i) ω) / ↑n) atTop
(𝓝 (∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a))
⊢ 𝓝 (∫ (a : Ω), X 0 a) = 𝓝 ((∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a) - ∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a)
[PROOFSTEP]
simp only [← integral_sub hint.pos_part hint.neg_part, max_zero_sub_max_neg_zero_eq_self, Function.comp_apply]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0)
[PROOFSTEP]
have hmeas : ∀ i, AEStronglyMeasurable (X i) ℙ := fun i => (hident i).aestronglyMeasurable_iff.2 hℒp.1
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0)
[PROOFSTEP]
have hint : Integrable (X 0) ℙ := hℒp.integrable hp
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0)
[PROOFSTEP]
have havg : ∀ n, AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / n) ℙ :=
by
intro n
simp_rw [div_eq_mul_inv]
exact AEStronglyMeasurable.mul_const (aestronglyMeasurable_sum _ fun i _ => hmeas i) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
⊢ ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
n : ℕ
⊢ AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
[PROOFSTEP]
simp_rw [div_eq_mul_inv]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
n : ℕ
⊢ AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) * (↑n)⁻¹) ℙ
[PROOFSTEP]
exact AEStronglyMeasurable.mul_const (aestronglyMeasurable_sum _ fun i _ => hmeas i) _
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0)
[PROOFSTEP]
refine'
tendsto_Lp_of_tendstoInMeasure _ hp hp' havg (memℒp_const _) _
(tendstoInMeasure_of_tendsto_ae havg (strong_law_ae _ hint hindep hident))
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
⊢ UnifIntegrable (fun n ω => (∑ i in range n, X i ω) / ↑n) p ℙ
[PROOFSTEP]
rw [(_ : (fun n ω => (∑ i in range n, X i ω) / ↑n) = fun n => (∑ i in range n, X i) / ↑n)]
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
⊢ UnifIntegrable (fun n => (∑ i in range n, X i) / ↑n) p ℙ
[PROOFSTEP]
exact (uniformIntegrable_average hp <| Memℒp.uniformIntegrable_of_identDistrib hp hp' hℒp hident).2.1
[GOAL]
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
⊢ (fun n ω => (∑ i in range n, X i ω) / ↑n) = fun n => (∑ i in range n, X i) / ↑n
[PROOFSTEP]
ext n ω
[GOAL]
case h.h
Ω : Type u_1
inst✝¹ : MeasureSpace Ω
inst✝ : IsProbabilityMeasure ℙ
p : ℝ≥0∞
hp : 1 ≤ p
hp' : p ≠ ⊤
X : ℕ → Ω → ℝ
hℒp : Memℒp (X 0) p
hindep : Pairwise fun i j => IndepFun (X i) (X j)
hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0)
hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ
hint : Integrable (X 0)
havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ
n : ℕ
ω : Ω
⊢ (∑ i in range n, X i ω) / ↑n = ((∑ i in range n, X i) / ↑n) ω
[PROOFSTEP]
simp only [Pi.coe_nat, Pi.div_apply, sum_apply]
| {"mathlib_filename": "Mathlib.Probability.StrongLaw", "llama_tokens": 125319} |
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f g : ι → Ω → E
ℱ✝ ℱ : Filtration ι m0
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
x : E
i j : ι
x✝ : i ≤ j
⊢ μ[(fun x_1 x_2 => x) j|↑ℱ i] =ᵐ[μ] (fun x_1 x_2 => x) i
[PROOFSTEP]
rw [condexp_const (ℱ.le _)]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ✝ : Filtration ι m0
inst✝¹ : OrderBot ι
ℱ : Filtration ι m0
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
f : Ω → E
hf : StronglyMeasurable f
hfint : Integrable f
⊢ Martingale (fun x => f) ℱ μ
[PROOFSTEP]
refine' ⟨fun i => hf.mono <| ℱ.mono bot_le, fun i j _ => _⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ✝ : Filtration ι m0
inst✝¹ : OrderBot ι
ℱ : Filtration ι m0
μ : Measure Ω
inst✝ : IsFiniteMeasure μ
f : Ω → E
hf : StronglyMeasurable f
hfint : Integrable f
i j : ι
x✝ : i ≤ j
⊢ μ[(fun x => f) j|↑ℱ i] =ᵐ[μ] (fun x => f) i
[PROOFSTEP]
rw [condexp_of_stronglyMeasurable (ℱ.le _) (hf.mono <| ℱ.mono bot_le) hfint]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ✝ ℱ : Filtration ι m0
μ : Measure Ω
i j : ι
x✝ : i ≤ j
⊢ μ[OfNat.ofNat 0 j|↑ℱ i] =ᵐ[μ] OfNat.ofNat 0 i
[PROOFSTEP]
rw [Pi.zero_apply, condexp_zero]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ✝ ℱ : Filtration ι m0
μ : Measure Ω
i j : ι
x✝ : i ≤ j
⊢ 0 =ᵐ[μ] OfNat.ofNat 0 i
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ✝ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ✝ ℱ : Filtration ι m0
μ : Measure Ω
i j : ι
x✝ : i ≤ j
⊢ 0 =ᵐ[μ] 0
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
hf : Martingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ = ∫ (ω : Ω) in s, f j ω ∂μ
[PROOFSTEP]
rw [← @set_integral_condexp _ _ _ _ _ (ℱ i) m0 _ _ _ (ℱ.le i) _ (hf.integrable j) hs]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
hf : Martingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ = ∫ (x : Ω) in s, (μ[f j|↑ℱ i]) x ∂μ
[PROOFSTEP]
refine' set_integral_congr_ae (ℱ.le i s hs) _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
hf : Martingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ s → f i x = (μ[f j|↑ℱ i]) x
[PROOFSTEP]
filter_upwards [hf.2 i j hij] with _ heq _ using heq.symm
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
hf : Martingale f ℱ μ
hg : Martingale g ℱ μ
⊢ Martingale (f + g) ℱ μ
[PROOFSTEP]
refine' ⟨hf.adapted.add hg.adapted, fun i j hij => _⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
hf : Martingale f ℱ μ
hg : Martingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ μ[(f + g) j|↑ℱ i] =ᵐ[μ] (f + g) i
[PROOFSTEP]
exact (condexp_add (hf.integrable j) (hg.integrable j)).trans ((hf.2 i j hij).add (hg.2 i j hij))
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
hf : Martingale f ℱ μ
hg : Martingale g ℱ μ
⊢ Martingale (f - g) ℱ μ
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
hf : Martingale f ℱ μ
hg : Martingale g ℱ μ
⊢ Martingale (f + -g) ℱ μ
[PROOFSTEP]
exact hf.add hg.neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
c : ℝ
hf : Martingale f ℱ μ
⊢ Martingale (c • f) ℱ μ
[PROOFSTEP]
refine' ⟨hf.adapted.smul c, fun i j hij => _⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
c : ℝ
hf : Martingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ μ[(c • f) j|↑ℱ i] =ᵐ[μ] (c • f) i
[PROOFSTEP]
refine' (condexp_smul c (f j)).trans ((hf.2 i j hij).mono fun x hx => _)
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
c : ℝ
hf : Martingale f ℱ μ
i j : ι
hij : i ≤ j
x : Ω
hx : (μ[f j|↑ℱ i]) x = f i x
⊢ (c • μ[f j|↑ℱ i]) x = (c • f) i x
[PROOFSTEP]
rw [Pi.smul_apply, hx, Pi.smul_apply, Pi.smul_apply]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
f : ι → Ω → ℝ
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f j ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ
[PROOFSTEP]
rw [← set_integral_condexp (ℱ.le i) (hf.integrable j) hs]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
f : ι → Ω → ℝ
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (x : Ω) in s, (μ[f j|↑ℱ i]) x ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ
[PROOFSTEP]
refine' set_integral_mono_ae integrable_condexp.integrableOn (hf.integrable i).integrableOn _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
f : ι → Ω → ℝ
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ (fun x => (μ[f j|↑ℱ i]) x) ≤ᵐ[μ] fun ω => f i ω
[PROOFSTEP]
filter_upwards [hf.2.1 i j hij] with _ heq using heq
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
⊢ Supermartingale (f + g) ℱ μ
[PROOFSTEP]
refine' ⟨hf.1.add hg.1, fun i j hij => _, fun i => (hf.2.2 i).add (hg.2.2 i)⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ μ[(f + g) j|↑ℱ i] ≤ᵐ[μ] (f + g) i
[PROOFSTEP]
refine' (condexp_add (hf.integrable j) (hg.integrable j)).le.trans _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ μ[f j|↑ℱ i] + μ[g j|↑ℱ i] ≤ᵐ[μ] (f + g) i
[PROOFSTEP]
filter_upwards [hf.2.1 i j hij, hg.2.1 i j hij]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ ∀ (a : Ω), (μ[f j|↑ℱ i]) a ≤ f i a → (μ[g j|↑ℱ i]) a ≤ g i a → (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a ≤ (f + g) i a
[PROOFSTEP]
intros
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
i j : ι
hij : i ≤ j
a✝² : Ω
a✝¹ : (μ[f j|↑ℱ i]) a✝² ≤ f i a✝²
a✝ : (μ[g j|↑ℱ i]) a✝² ≤ g i a✝²
⊢ (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a✝² ≤ (f + g) i a✝²
[PROOFSTEP]
refine' add_le_add _ _
[GOAL]
case h.refine'_1
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
i j : ι
hij : i ≤ j
a✝² : Ω
a✝¹ : (μ[f j|↑ℱ i]) a✝² ≤ f i a✝²
a✝ : (μ[g j|↑ℱ i]) a✝² ≤ g i a✝²
⊢ (μ[f j|↑ℱ i]) a✝² ≤ f i a✝²
[PROOFSTEP]
assumption
[GOAL]
case h.refine'_2
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Supermartingale g ℱ μ
i j : ι
hij : i ≤ j
a✝² : Ω
a✝¹ : (μ[f j|↑ℱ i]) a✝² ≤ f i a✝²
a✝ : (μ[g j|↑ℱ i]) a✝² ≤ g i a✝²
⊢ (μ[g j|↑ℱ i]) a✝² ≤ g i a✝²
[PROOFSTEP]
assumption
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
⊢ Submartingale (-f) ℱ μ
[PROOFSTEP]
refine' ⟨hf.1.neg, fun i j hij => _, fun i => (hf.2.2 i).neg⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ (-f) i ≤ᵐ[μ] μ[(-f) j|↑ℱ i]
[PROOFSTEP]
refine' EventuallyLE.trans _ (condexp_neg (f j)).symm.le
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ (-f) i ≤ᵐ[μ] -μ[f j|↑ℱ i]
[PROOFSTEP]
filter_upwards [hf.2.1 i j hij] with _ _
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
a✝¹ : Ω
a✝ : (μ[f j|↑ℱ i]) a✝¹ ≤ f i a✝¹
⊢ (-f) i a✝¹ ≤ (-μ[f j|↑ℱ i]) a✝¹
[PROOFSTEP]
simpa
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
⊢ Submartingale (f + g) ℱ μ
[PROOFSTEP]
refine' ⟨hf.1.add hg.1, fun i j hij => _, fun i => (hf.2.2 i).add (hg.2.2 i)⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ (f + g) i ≤ᵐ[μ] μ[(f + g) j|↑ℱ i]
[PROOFSTEP]
refine' EventuallyLE.trans _ (condexp_add (hf.integrable j) (hg.integrable j)).symm.le
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ (f + g) i ≤ᵐ[μ] μ[f j|↑ℱ i] + μ[g j|↑ℱ i]
[PROOFSTEP]
filter_upwards [hf.2.1 i j hij, hg.2.1 i j hij]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ ∀ (a : Ω), f i a ≤ (μ[f j|↑ℱ i]) a → g i a ≤ (μ[g j|↑ℱ i]) a → (f + g) i a ≤ (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a
[PROOFSTEP]
intros
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
a✝² : Ω
a✝¹ : f i a✝² ≤ (μ[f j|↑ℱ i]) a✝²
a✝ : g i a✝² ≤ (μ[g j|↑ℱ i]) a✝²
⊢ (f + g) i a✝² ≤ (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a✝²
[PROOFSTEP]
refine' add_le_add _ _
[GOAL]
case h.refine'_1
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
a✝² : Ω
a✝¹ : f i a✝² ≤ (μ[f j|↑ℱ i]) a✝²
a✝ : g i a✝² ≤ (μ[g j|↑ℱ i]) a✝²
⊢ f i a✝² ≤ (μ[f j|↑ℱ i]) a✝²
[PROOFSTEP]
assumption
[GOAL]
case h.refine'_2
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
a✝² : Ω
a✝¹ : f i a✝² ≤ (μ[f j|↑ℱ i]) a✝²
a✝ : g i a✝² ≤ (μ[g j|↑ℱ i]) a✝²
⊢ g i a✝² ≤ (μ[g j|↑ℱ i]) a✝²
[PROOFSTEP]
assumption
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
⊢ Supermartingale (-f) ℱ μ
[PROOFSTEP]
refine' ⟨hf.1.neg, fun i j hij => (condexp_neg (f j)).le.trans _, fun i => (hf.2.2 i).neg⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ -μ[f j|↑ℱ i] ≤ᵐ[μ] (-f) i
[PROOFSTEP]
filter_upwards [hf.2.1 i j hij] with _ _
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
a✝¹ : Ω
a✝ : f i a✝¹ ≤ (μ[f j|↑ℱ i]) a✝¹
⊢ (-μ[f j|↑ℱ i]) a✝¹ ≤ (-f) i a✝¹
[PROOFSTEP]
simpa
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
[PROOFSTEP]
rw [← neg_le_neg_iff, ← integral_neg, ← integral_neg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : SigmaFiniteFiltration μ ℱ
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (a : Ω) in s, -f j a ∂μ ≤ ∫ (a : Ω) in s, -f i a ∂μ
[PROOFSTEP]
exact Supermartingale.set_integral_le hf.neg hij hs
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Supermartingale g ℱ μ
⊢ Submartingale (f - g) ℱ μ
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Submartingale f ℱ μ
hg : Supermartingale g ℱ μ
⊢ Submartingale (f + -g) ℱ μ
[PROOFSTEP]
exact hf.add hg.neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g✝ : ι → Ω → E
ℱ : Filtration ι m0
f g : ι → Ω → ℝ
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
⊢ Submartingale (f ⊔ g) ℱ μ
[PROOFSTEP]
refine'
⟨fun i => @StronglyMeasurable.sup _ _ _ _ (ℱ i) _ _ _ (hf.adapted i) (hg.adapted i), fun i j hij => _, fun i =>
Integrable.sup (hf.integrable _) (hg.integrable _)⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g✝ : ι → Ω → E
ℱ : Filtration ι m0
f g : ι → Ω → ℝ
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ (f ⊔ g) i ≤ᵐ[μ] μ[(f ⊔ g) j|↑ℱ i]
[PROOFSTEP]
refine' EventuallyLE.sup_le _ _
[GOAL]
case refine'_1
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g✝ : ι → Ω → E
ℱ : Filtration ι m0
f g : ι → Ω → ℝ
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ (fun i_1 => f i i_1) ≤ᵐ[μ] μ[(f ⊔ g) j|↑ℱ i]
[PROOFSTEP]
exact
EventuallyLE.trans (hf.2.1 i j hij)
(condexp_mono (hf.integrable _) (Integrable.sup (hf.integrable j) (hg.integrable j))
(eventually_of_forall fun x => le_max_left _ _))
[GOAL]
case refine'_2
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g✝ : ι → Ω → E
ℱ : Filtration ι m0
f g : ι → Ω → ℝ
hf : Submartingale f ℱ μ
hg : Submartingale g ℱ μ
i j : ι
hij : i ≤ j
⊢ (fun i_1 => g i i_1) ≤ᵐ[μ] μ[(f ⊔ g) j|↑ℱ i]
[PROOFSTEP]
exact
EventuallyLE.trans (hg.2.1 i j hij)
(condexp_mono (hg.integrable _) (Integrable.sup (hf.integrable j) (hg.integrable j))
(eventually_of_forall fun x => le_max_right _ _))
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
⊢ Submartingale f ℱ μ
[PROOFSTEP]
refine' ⟨hadp, fun i j hij => _, hint⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i]
[PROOFSTEP]
suffices f i ≤ᵐ[μ.trim (ℱ.le i)] μ[f j|ℱ i] by exact ae_le_of_ae_le_trim this
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
this : f i ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i]
⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i]
[PROOFSTEP]
exact ae_le_of_ae_le_trim this
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
⊢ f i ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i]
[PROOFSTEP]
suffices 0 ≤ᵐ[μ.trim (ℱ.le i)] μ[f j|ℱ i] - f i
by
filter_upwards [this] with x hx
rwa [← sub_nonneg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
this : 0 ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] - f i
⊢ f i ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i]
[PROOFSTEP]
filter_upwards [this] with x hx
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
this : 0 ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] - f i
x : Ω
hx : OfNat.ofNat 0 x ≤ (μ[f j|↑ℱ i] - f i) x
⊢ f i x ≤ (μ[f j|↑ℱ i]) x
[PROOFSTEP]
rwa [← sub_nonneg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
⊢ 0 ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] - f i
[PROOFSTEP]
refine'
ae_nonneg_of_forall_set_integral_nonneg
((integrable_condexp.sub (hint i)).trim _ (stronglyMeasurable_condexp.sub <| hadp i)) fun s hs _ => _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
x✝ : ↑↑(Measure.trim μ (_ : ↑ℱ i ≤ m0)) s < ⊤
⊢ 0 ≤ ∫ (x : Ω) in s, (μ[f j|↑ℱ i] - f i) x ∂Measure.trim μ (_ : ↑ℱ i ≤ m0)
[PROOFSTEP]
specialize hf i j hij s hs
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
i j : ι
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
x✝ : ↑↑(Measure.trim μ (_ : ↑ℱ i ≤ m0)) s < ⊤
hf : ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
⊢ 0 ≤ ∫ (x : Ω) in s, (μ[f j|↑ℱ i] - f i) x ∂Measure.trim μ (_ : ↑ℱ i ≤ m0)
[PROOFSTEP]
rwa [← set_integral_trim _ (stronglyMeasurable_condexp.sub <| hadp i) hs,
integral_sub' integrable_condexp.integrableOn (hint i).integrableOn, sub_nonneg,
set_integral_condexp (ℱ.le i) (hint j) hs]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
⊢ Submartingale f ℱ μ
[PROOFSTEP]
refine' ⟨hadp, fun i j hij => _, hint⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
i j : ι
hij : i ≤ j
⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i]
[PROOFSTEP]
rw [← condexp_of_stronglyMeasurable (ℱ.le _) (hadp _) (hint _), ← eventually_sub_nonneg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
inst✝ : IsFiniteMeasure μ
f : ι → Ω → ℝ
hadp : Adapted ℱ f
hint : ∀ (i : ι), Integrable (f i)
hf : ∀ (i j : ι), i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
i j : ι
hij : i ≤ j
⊢ 0 ≤ᵐ[μ] μ[f j|↑ℱ i] - μ[f i|↑ℱ i]
[PROOFSTEP]
exact EventuallyLE.trans (hf i j hij) (condexp_sub (hint _) (hint _)).le
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
[PROOFSTEP]
by_cases h : SigmaFinite (μ.trim (ℱ.le i))
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0))
⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
case neg
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
h : ¬SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0))
⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
[PROOFSTEP]
swap
[GOAL]
case neg
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
h : ¬SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0))
⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
[PROOFSTEP]
rw [condexp_of_not_sigmaFinite (ℱ.le i) h]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0))
⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i]
[PROOFSTEP]
refine' EventuallyLE.trans _ (condexp_sub (hf.integrable _) (hf.integrable _)).symm.le
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0))
⊢ 0 ≤ᵐ[μ] μ[f j|↑ℱ i] - μ[f i|↑ℱ i]
[PROOFSTEP]
rw [eventually_sub_nonneg, condexp_of_stronglyMeasurable (ℱ.le _) (hf.adapted _) (hf.integrable _)]
[GOAL]
case pos
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝³ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : NormedAddCommGroup E
inst✝¹ : NormedSpace ℝ E
inst✝ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
f : ι → Ω → ℝ
hf : Submartingale f ℱ μ
i j : ι
hij : i ≤ j
h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0))
⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i]
[PROOFSTEP]
exact hf.2.1 i j hij
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Submartingale g ℱ μ
⊢ Supermartingale (f - g) ℱ μ
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f g : ι → Ω → E
ℱ : Filtration ι m0
inst✝¹ : Preorder E
inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
hf : Supermartingale f ℱ μ
hg : Submartingale g ℱ μ
⊢ Supermartingale (f + -g) ℱ μ
[PROOFSTEP]
exact hf.add hg.neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Supermartingale f ℱ μ
⊢ Supermartingale (c • f) ℱ μ
[PROOFSTEP]
refine' ⟨hf.1.smul c, fun i j hij => _, fun i => (hf.2.2 i).smul c⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ μ[(c • f) j|↑ℱ i] ≤ᵐ[μ] (c • f) i
[PROOFSTEP]
refine' (condexp_smul c (f j)).le.trans _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
⊢ c • μ[f j|↑ℱ i] ≤ᵐ[μ] (c • f) i
[PROOFSTEP]
filter_upwards [hf.2.1 i j hij] with _ hle
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
a✝ : Ω
hle : (μ[f j|↑ℱ i]) a✝ ≤ f i a✝
⊢ (c • μ[f j|↑ℱ i]) a✝ ≤ (c • f) i a✝
[PROOFSTEP]
simp_rw [Pi.smul_apply]
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Supermartingale f ℱ μ
i j : ι
hij : i ≤ j
a✝ : Ω
hle : (μ[f j|↑ℱ i]) a✝ ≤ f i a✝
⊢ c • (μ[f j|↑ℱ i]) a✝ ≤ c • f i a✝
[PROOFSTEP]
exact smul_le_smul_of_nonneg hle hc
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Supermartingale f ℱ μ
⊢ Submartingale (c • f) ℱ μ
[PROOFSTEP]
rw [← neg_neg c, (by ext (i x); simp : - -c • f = -(-c • f))]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Supermartingale f ℱ μ
⊢ - -c • f = -(-c • f)
[PROOFSTEP]
ext (i x)
[GOAL]
case h.h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Supermartingale f ℱ μ
i : ι
x : Ω
⊢ (- -c • f) i x = (-(-c • f)) i x
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Supermartingale f ℱ μ
⊢ Submartingale (-(-c • f)) ℱ μ
[PROOFSTEP]
exact (hf.smul_nonneg <| neg_nonneg.2 hc).neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Submartingale f ℱ μ
⊢ Submartingale (c • f) ℱ μ
[PROOFSTEP]
rw [← neg_neg c, (by ext (i x); simp : - -c • f = -(c • -f))]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Submartingale f ℱ μ
⊢ - -c • f = -(c • -f)
[PROOFSTEP]
ext (i x)
[GOAL]
case h.h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Submartingale f ℱ μ
i : ι
x : Ω
⊢ (- -c • f) i x = (-(c • -f)) i x
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : 0 ≤ c
hf : Submartingale f ℱ μ
⊢ Submartingale (-(c • -f)) ℱ μ
[PROOFSTEP]
exact Supermartingale.neg (hf.neg.smul_nonneg hc)
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Submartingale f ℱ μ
⊢ Supermartingale (c • f) ℱ μ
[PROOFSTEP]
rw [← neg_neg c, (by ext (i x); simp : - -c • f = -(-c • f))]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Submartingale f ℱ μ
⊢ - -c • f = -(-c • f)
[PROOFSTEP]
ext (i x)
[GOAL]
case h.h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Submartingale f ℱ μ
i : ι
x : Ω
⊢ (- -c • f) i x = (-(-c • f)) i x
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁷ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁶ : NormedAddCommGroup E
inst✝⁵ : NormedSpace ℝ E
inst✝⁴ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
F : Type u_4
inst✝³ : NormedLatticeAddCommGroup F
inst✝² : NormedSpace ℝ F
inst✝¹ : CompleteSpace F
inst✝ : OrderedSMul ℝ F
f : ι → Ω → F
c : ℝ
hc : c ≤ 0
hf : Submartingale f ℱ μ
⊢ Supermartingale (-(-c • f)) ℱ μ
[PROOFSTEP]
exact (hf.smul_nonneg <| neg_nonneg.2 hc).neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ
⊢ Submartingale f 𝒢 μ
[PROOFSTEP]
refine' submartingale_of_set_integral_le hadp hint fun i j hij s hs => _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ
i j : ℕ
hij : i ≤ j
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ
[PROOFSTEP]
induction' hij with k hk₁ hk₂
[GOAL]
case refl
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ
i j : ℕ
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ
[PROOFSTEP]
exact le_rfl
[GOAL]
case step
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ
i j : ℕ
s : Set Ω
hs : MeasurableSet s
k : ℕ
hk₁ : Nat.le i k
hk₂ : ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f k ω ∂μ
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (Nat.succ k) ω ∂μ
[PROOFSTEP]
exact le_trans hk₂ (hf k s (𝒢.mono hk₁ _ hs))
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ
⊢ Supermartingale f 𝒢 μ
[PROOFSTEP]
rw [← neg_neg f]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ
⊢ Supermartingale (- -f) 𝒢 μ
[PROOFSTEP]
refine' (submartingale_of_set_integral_le_succ hadp.neg (fun i => (hint i).neg) _).neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ
⊢ ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, (-f) i ω ∂μ ≤ ∫ (ω : Ω) in s, (-f) (i + 1) ω ∂μ
[PROOFSTEP]
simpa only [integral_neg, Pi.neg_apply, neg_le_neg_iff]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i]
⊢ Submartingale f 𝒢 μ
[PROOFSTEP]
refine' submartingale_of_set_integral_le_succ hadp hint fun i s hs => _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i]
i : ℕ
s : Set Ω
hs : MeasurableSet s
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ
[PROOFSTEP]
have : ∫ ω in s, f (i + 1) ω ∂μ = ∫ ω in s, (μ[f (i + 1)|𝒢 i]) ω ∂μ := (set_integral_condexp (𝒢.le i) (hint _) hs).symm
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i]
i : ℕ
s : Set Ω
hs : MeasurableSet s
this : ∫ (ω : Ω) in s, f (i + 1) ω ∂μ = ∫ (ω : Ω) in s, (μ[f (i + 1)|↑𝒢 i]) ω ∂μ
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i]
i : ℕ
s : Set Ω
hs : MeasurableSet s
this : ∫ (ω : Ω) in s, f (i + 1) ω ∂μ = ∫ (ω : Ω) in s, (μ[f (i + 1)|↑𝒢 i]) ω ∂μ
⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, (μ[f (i + 1)|↑𝒢 i]) ω ∂μ
[PROOFSTEP]
exact set_integral_mono_ae (hint i).integrableOn integrable_condexp.integrableOn (hf i)
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1)|↑𝒢 i] ≤ᵐ[μ] f i
⊢ Supermartingale f 𝒢 μ
[PROOFSTEP]
rw [← neg_neg f]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1)|↑𝒢 i] ≤ᵐ[μ] f i
⊢ Supermartingale (- -f) 𝒢 μ
[PROOFSTEP]
refine' (submartingale_nat hadp.neg (fun i => (hint i).neg) fun i => EventuallyLE.trans _ (condexp_neg _).symm.le).neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1)|↑𝒢 i] ≤ᵐ[μ] f i
i : ℕ
⊢ (-f) i ≤ᵐ[μ] -μ[fun i_1 => f (i + 1) i_1|↑𝒢 i]
[PROOFSTEP]
filter_upwards [hf i] with x hx using neg_le_neg hx
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f (i + 1) - f i|↑𝒢 i]
⊢ Submartingale f 𝒢 μ
[PROOFSTEP]
refine' submartingale_nat hadp hint fun i => _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f (i + 1) - f i|↑𝒢 i]
i : ℕ
⊢ f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i]
[PROOFSTEP]
rw [← condexp_of_stronglyMeasurable (𝒢.le _) (hadp _) (hint _), ← eventually_sub_nonneg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f (i + 1) - f i|↑𝒢 i]
i : ℕ
⊢ 0 ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] - μ[f i|↑𝒢 i]
[PROOFSTEP]
exact EventuallyLE.trans (hf i) (condexp_sub (hint _) (hint _)).le
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i]
⊢ Supermartingale f 𝒢 μ
[PROOFSTEP]
rw [← neg_neg f]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i]
⊢ Supermartingale (- -f) 𝒢 μ
[PROOFSTEP]
refine' (submartingale_of_condexp_sub_nonneg_nat hadp.neg (fun i => (hint i).neg) _).neg
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i]
⊢ ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[(-f) (i + 1) - (-f) i|↑𝒢 i]
[PROOFSTEP]
simpa only [Pi.zero_apply, Pi.neg_apply, neg_sub_neg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0
⊢ Martingale f 𝒢 μ
[PROOFSTEP]
refine'
martingale_iff.2
⟨supermartingale_of_condexp_sub_nonneg_nat hadp hint fun i => _,
submartingale_of_condexp_sub_nonneg_nat hadp hint fun i => (hf i).symm.le⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0
i : ℕ
⊢ 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i]
[PROOFSTEP]
rw [← neg_sub]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0
i : ℕ
⊢ 0 ≤ᵐ[μ] μ[-(f (i + 1) - f i)|↑𝒢 i]
[PROOFSTEP]
refine' (EventuallyEq.trans _ (condexp_neg _).symm).le
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0
i : ℕ
⊢ 0 =ᵐ[μ] -μ[f (i + 1) - f i|↑𝒢 i]
[PROOFSTEP]
filter_upwards [hf i] with x hx
[GOAL]
case h
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
f : ℕ → Ω → ℝ
hadp : Adapted 𝒢 f
hint : ∀ (i : ℕ), Integrable (f i)
hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0
i : ℕ
x : Ω
hx : (μ[f (i + 1) - f i|↑𝒢 i]) x = OfNat.ofNat 0 x
⊢ OfNat.ofNat 0 x = (-μ[f (i + 1) - f i|↑𝒢 i]) x
[PROOFSTEP]
simpa only [Pi.zero_apply, Pi.neg_apply, zero_eq_neg]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝¹ : Preorder E
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Submartingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
n : ℕ
⊢ f 0 ≤ᵐ[μ] f n
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝¹ : Preorder E
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Submartingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
⊢ f 0 ≤ᵐ[μ] f Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case succ
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝¹ : Preorder E
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Submartingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
k : ℕ
ih : f 0 ≤ᵐ[μ] f k
⊢ f 0 ≤ᵐ[μ] f (Nat.succ k)
[PROOFSTEP]
exact
ih.trans
((hfmgle.2.1 k (k + 1) k.le_succ).trans_eq <|
Germ.coe_eq.mp <| congr_arg Germ.ofFun <| condexp_of_stronglyMeasurable (𝒢.le _) (hfadp _) <| hfmgle.integrable _)
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝¹ : Preorder E
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Supermartingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
n : ℕ
⊢ f n ≤ᵐ[μ] f 0
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝¹ : Preorder E
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Supermartingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
⊢ f Nat.zero ≤ᵐ[μ] f 0
[PROOFSTEP]
rfl
[GOAL]
case succ
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁵ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace ℝ E
inst✝² : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝¹ : Preorder E
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Supermartingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
k : ℕ
ih : f k ≤ᵐ[μ] f 0
⊢ f (Nat.succ k) ≤ᵐ[μ] f 0
[PROOFSTEP]
exact
((Germ.coe_eq.mp <|
congr_arg Germ.ofFun <|
condexp_of_stronglyMeasurable (𝒢.le _) (hfadp _) <| hfmgle.integrable _).symm.trans_le
(hfmgle.2.1 k (k + 1) k.le_succ)).trans
ih
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Martingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
n : ℕ
⊢ f n =ᵐ[μ] f 0
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Martingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
⊢ f Nat.zero =ᵐ[μ] f 0
[PROOFSTEP]
rfl
[GOAL]
case succ
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : SigmaFiniteFiltration μ 𝒢
f : ℕ → Ω → E
hfmgle : Martingale f 𝒢 μ
hfadp : Adapted 𝒢 fun n => f (n + 1)
k : ℕ
ih : f k =ᵐ[μ] f 0
⊢ f (Nat.succ k) =ᵐ[μ] f 0
[PROOFSTEP]
exact
((Germ.coe_eq.mp
(congr_arg Germ.ofFun <| condexp_of_stronglyMeasurable (𝒢.le _) (hfadp _) (hfmgle.integrable _))).symm.trans
(hfmgle.2 k (k + 1) k.le_succ)).trans
ih
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ
[PROOFSTEP]
have hξbdd : ∀ i, ∃ C, ∀ ω, |ξ i ω| ≤ C := fun i => ⟨R, fun ω => (abs_of_nonneg (hnonneg i ω)).trans_le (hbdd i ω)⟩
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ
[PROOFSTEP]
have hint : ∀ m, Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) μ := fun m =>
integrable_finset_sum' _ fun i _ =>
Integrable.bdd_mul ((hf.integrable _).sub (hf.integrable _)) hξ.stronglyMeasurable.aestronglyMeasurable (hξbdd _)
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ
[PROOFSTEP]
have hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k) :=
by
intro m
refine' Finset.stronglyMeasurable_sum' _ fun i hi => _
rw [Finset.mem_range] at hi
exact
(hξ.stronglyMeasurable_le hi.le).mul
((hf.adapted.stronglyMeasurable_le (Nat.succ_le_of_lt hi)).sub (hf.adapted.stronglyMeasurable_le hi.le))
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
⊢ Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)
[PROOFSTEP]
intro m
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
m : ℕ
⊢ StronglyMeasurable ((fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) m)
[PROOFSTEP]
refine' Finset.stronglyMeasurable_sum' _ fun i hi => _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
m i : ℕ
hi : i ∈ Finset.range m
⊢ StronglyMeasurable (ξ i * (f (i + 1) - f i))
[PROOFSTEP]
rw [Finset.mem_range] at hi
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
m i : ℕ
hi : i < m
⊢ StronglyMeasurable (ξ i * (f (i + 1) - f i))
[PROOFSTEP]
exact
(hξ.stronglyMeasurable_le hi.le).mul
((hf.adapted.stronglyMeasurable_le (Nat.succ_le_of_lt hi)).sub (hf.adapted.stronglyMeasurable_le hi.le))
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)
⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ
[PROOFSTEP]
refine' submartingale_of_condexp_sub_nonneg_nat hadp hint fun i => _
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)
i : ℕ
⊢ 0 ≤ᵐ[μ] μ[∑ k in Finset.range (i + 1), ξ k * (f (k + 1) - f k) - ∑ k in Finset.range i, ξ k * (f (k + 1) - f k)|↑𝒢 i]
[PROOFSTEP]
simp only [← Finset.sum_Ico_eq_sub _ (Nat.le_succ _), Finset.sum_apply, Pi.mul_apply, Pi.sub_apply,
Nat.Ico_succ_singleton, Finset.sum_singleton]
[GOAL]
Ω : Type u_1
E : Type u_2
ι : Type u_3
inst✝⁴ : Preorder ι
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
f✝ g : ι → Ω → E
ℱ : Filtration ι m0
𝒢 : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
R : ℝ
ξ f : ℕ → Ω → ℝ
hf : Submartingale f 𝒢 μ
hξ : Adapted 𝒢 ξ
hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R
hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω
hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C
hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k))
hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)
i : ℕ
⊢ 0 ≤ᵐ[μ] μ[ξ i * (f (i + 1) - f i)|↑𝒢 i]
[PROOFSTEP]
exact
EventuallyLE.trans
(EventuallyLE.mul_nonneg (eventually_of_forall (hnonneg _)) (hf.condexp_sub_nonneg (Nat.le_succ _)))
(condexp_stronglyMeasurable_mul (hξ _)
(((hf.integrable _).sub (hf.integrable _)).bdd_mul hξ.stronglyMeasurable.aestronglyMeasurable (hξbdd _))
((hf.integrable _).sub (hf.integrable _))).symm.le
| {"mathlib_filename": "Mathlib.Probability.Martingale.Basic", "llama_tokens": 37958} |
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : Preorder ι
inst✝¹ : OrderBot ι
inst✝ : InfSet ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
⊢ upperCrossingTime a b f N (n + 1) ω =
hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω
[PROOFSTEP]
rw [upperCrossingTime]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : Preorder ι
inst✝¹ : OrderBot ι
inst✝ : InfSet ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω✝ ω : Ω
⊢ upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω
[PROOFSTEP]
simp only [upperCrossingTime_succ]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝² : Preorder ι
inst✝¹ : OrderBot ι
inst✝ : InfSet ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω✝ ω : Ω
⊢ hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω =
hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
⊢ upperCrossingTime a b f N n ω ≤ N
[PROOFSTEP]
cases n
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
m : ℕ
ω : Ω
⊢ upperCrossingTime a b f N Nat.zero ω ≤ N
[PROOFSTEP]
simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq]
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
m : ℕ
ω : Ω
n✝ : ℕ
⊢ upperCrossingTime a b f N (Nat.succ n✝) ω ≤ N
[PROOFSTEP]
simp only [upperCrossingTime_succ, hitting_le]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
⊢ lowerCrossingTime a b f N n ω ≤ N
[PROOFSTEP]
simp only [lowerCrossingTime, hitting_le ω]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
⊢ upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω
[PROOFSTEP]
simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
⊢ lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω
[PROOFSTEP]
rw [upperCrossingTime_succ]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
⊢ lowerCrossingTime a b f N n ω ≤
hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω
[PROOFSTEP]
exact le_hitting lowerCrossingTime_le ω
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
hnm : n ≤ m
⊢ lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω
[PROOFSTEP]
suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
hnm : n ≤ m
this : Monotone fun n => lowerCrossingTime a b f N n ω
⊢ lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω
[PROOFSTEP]
exact this hnm
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
hnm : n ≤ m
⊢ Monotone fun n => lowerCrossingTime a b f N n ω
[PROOFSTEP]
exact
monotone_nat_of_le_succ fun n =>
le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
hnm : n ≤ m
⊢ upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω
[PROOFSTEP]
suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
hnm : n ≤ m
this : Monotone fun n => upperCrossingTime a b f N n ω
⊢ upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω
[PROOFSTEP]
exact this hnm
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
inst✝ : ConditionallyCompleteLinearOrderBot ι
a b : ℝ
f : ι → Ω → ℝ
N : ι
n m : ℕ
ω : Ω
hnm : n ≤ m
⊢ Monotone fun n => upperCrossingTime a b f N n ω
[PROOFSTEP]
exact
monotone_nat_of_le_succ fun n =>
le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
h : lowerCrossingTime a b f N n ω ≠ N
⊢ stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
h : lowerCrossingTime a b f N n ω ≠ N
j : ℕ
hj₁ : j ∈ Set.Icc (upperCrossingTime a b f N n ω) (lowerCrossingTime a b f N n ω)
hj₂ : f j ω ∈ Set.Iic a
⊢ stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a
[PROOFSTEP]
exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
h : upperCrossingTime a b f N (n + 1) ω ≠ N
⊢ b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
h : upperCrossingTime a b f N (n + 1) ω ≠ N
j : ℕ
hj₁ :
j ∈
Set.Icc (lowerCrossingTimeAux a f (upperCrossingTime a b f N (Nat.add n 0) ω) N ω)
(upperCrossingTime a b f N (n + 1) ω)
hj₂ : f j ω ∈ Set.Ici b
⊢ b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω
[PROOFSTEP]
exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : lowerCrossingTime a b f N (n + 1) ω ≠ N
⊢ upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω
[PROOFSTEP]
refine'
lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h =>
not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : lowerCrossingTime a b f N (n + 1) ω ≠ N
h : upperCrossingTime a b f N (n + 1) ω = lowerCrossingTime a b f N (n + 1) ω
⊢ b ≤ stoppedValue f (lowerCrossingTime a b f N (n + 1)) ω
[PROOFSTEP]
simp only [stoppedValue]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : lowerCrossingTime a b f N (n + 1) ω ≠ N
h : upperCrossingTime a b f N (n + 1) ω = lowerCrossingTime a b f N (n + 1) ω
⊢ b ≤ f (lowerCrossingTime a b f N (n + 1) ω) ω
[PROOFSTEP]
rw [← h]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : lowerCrossingTime a b f N (n + 1) ω ≠ N
h : upperCrossingTime a b f N (n + 1) ω = lowerCrossingTime a b f N (n + 1) ω
⊢ b ≤ f (upperCrossingTime a b f N (n + 1) ω) ω
[PROOFSTEP]
exact stoppedValue_upperCrossingTime (h.symm ▸ hn)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : upperCrossingTime a b f N (n + 1) ω ≠ N
⊢ lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω
[PROOFSTEP]
refine'
lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h =>
not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : upperCrossingTime a b f N (n + 1) ω ≠ N
h : lowerCrossingTime a b f N n ω = upperCrossingTime a b f N (n + 1) ω
⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω ≤ a
[PROOFSTEP]
simp only [stoppedValue]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : upperCrossingTime a b f N (n + 1) ω ≠ N
h : lowerCrossingTime a b f N n ω = upperCrossingTime a b f N (n + 1) ω
⊢ f (upperCrossingTime a b f N (n + 1) ω) ω ≤ a
[PROOFSTEP]
rw [← h]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
hn : upperCrossingTime a b f N (n + 1) ω ≠ N
h : lowerCrossingTime a b f N n ω = upperCrossingTime a b f N (n + 1) ω
⊢ f (lowerCrossingTime a b f N n ω) ω ≤ a
[PROOFSTEP]
exact stoppedValue_lowerCrossingTime (h.symm ▸ hn)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
⊢ ∃ n, upperCrossingTime a b f N n ω = N
[PROOFSTEP]
by_contra h
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
h : ¬∃ n, upperCrossingTime a b f N n ω = N
⊢ False
[PROOFSTEP]
push_neg at h
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
h : ∀ (n : ℕ), upperCrossingTime a b f N n ω ≠ N
⊢ False
[PROOFSTEP]
have : StrictMono fun n => upperCrossingTime a b f N n ω :=
strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
h : ∀ (n : ℕ), upperCrossingTime a b f N n ω ≠ N
this : StrictMono fun n => upperCrossingTime a b f N n ω
⊢ False
[PROOFSTEP]
obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m :=
⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩
[GOAL]
case intro.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
h : ∀ (n : ℕ), upperCrossingTime a b f N n ω ≠ N
this : StrictMono fun n => upperCrossingTime a b f N n ω
k : ℕ
hk : N < (fun n => upperCrossingTime a b f N n ω) k
⊢ False
[PROOFSTEP]
exact not_le.2 hk upperCrossingTime_le
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
⊢ BddAbove {n | upperCrossingTime a b f N n ω < N}
[PROOFSTEP]
obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
hab : a < b
k : ℕ
hk : upperCrossingTime a b f N k ω = N
⊢ BddAbove {n | upperCrossingTime a b f N n ω < N}
[PROOFSTEP]
refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
hab : a < b
k : ℕ
hk : upperCrossingTime a b f N k ω = N
n : ℕ
hn : upperCrossingTime a b f N n ω < N
⊢ n ≤ k
[PROOFSTEP]
by_contra hn'
[GOAL]
case intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
hab : a < b
k : ℕ
hk : upperCrossingTime a b f N k ω = N
n : ℕ
hn : upperCrossingTime a b f N n ω < N
hn' : ¬n ≤ k
⊢ False
[PROOFSTEP]
exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
⊢ upperCrossingTime a b f N N ω = N
[PROOFSTEP]
by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab)
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
⊢ upperCrossingTime a b f N N ω = N
[PROOFSTEP]
refine' le_antisymm upperCrossingTime_le _
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
⊢ N ≤ upperCrossingTime a b f N N ω
[PROOFSTEP]
have hmono :
StrictMonoOn (fun n => upperCrossingTime a b f N n ω)
(Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) :=
by
refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _
rw [Nat.lt_pred_iff] at hm
convert Nat.find_min _ hm
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
⊢ StrictMonoOn (fun n => upperCrossingTime a b f N n ω)
(Set.Iic (Nat.pred (Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N))))
[PROOFSTEP]
refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m✝ : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
m : ℕ
hm : m < Nat.pred (Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N))
⊢ upperCrossingTime a b f N (m + 1) ω ≠ N
[PROOFSTEP]
rw [Nat.lt_pred_iff] at hm
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m✝ : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
m : ℕ
hm : Nat.succ m < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
⊢ upperCrossingTime a b f N (m + 1) ω ≠ N
[PROOFSTEP]
convert Nat.find_min _ hm
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
hmono :
StrictMonoOn (fun n => upperCrossingTime a b f N n ω)
(Set.Iic (Nat.pred (Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N))))
⊢ N ≤ upperCrossingTime a b f N N ω
[PROOFSTEP]
convert StrictMonoOn.Iic_id_le hmono N (Nat.le_pred_of_lt hN')
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : ¬N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)
⊢ upperCrossingTime a b f N N ω = N
[PROOFSTEP]
rw [not_lt] at hN'
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
f : ℕ → Ω → ℝ
N : ℕ
ω : Ω
hab : a < b
hN' : Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ≤ N
⊢ upperCrossingTime a b f N N ω = N
[PROOFSTEP]
exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab))
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
⊢ IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n)
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
⊢ IsStoppingTime ℱ (upperCrossingTime a b f N Nat.zero) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N Nat.zero)
[PROOFSTEP]
refine' ⟨isStoppingTime_const _ 0, _⟩
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
⊢ IsStoppingTime ℱ (lowerCrossingTime a b f N Nat.zero)
[PROOFSTEP]
simp [hitting_isStoppingTime hf measurableSet_Iic]
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
ih : IsStoppingTime ℱ (upperCrossingTime a b f N k) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N k)
⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (Nat.succ k)) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k))
[PROOFSTEP]
obtain ⟨_, ih₂⟩ := ih
[GOAL]
case succ.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (Nat.succ k)) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k))
[PROOFSTEP]
have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) :=
by
intro n
simp_rw [upperCrossingTime_succ_eq]
exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1))
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
n : ℕ
⊢ MeasurableSet {ω | upperCrossingTime a b f N (k + 1) ω ≤ n}
[PROOFSTEP]
simp_rw [upperCrossingTime_succ_eq]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
n : ℕ
⊢ MeasurableSet {ω | hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω ≤ n}
[PROOFSTEP]
exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _
[GOAL]
case succ.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
this : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1))
⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (Nat.succ k)) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k))
[PROOFSTEP]
refine' ⟨this, _⟩
[GOAL]
case succ.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
this : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1))
⊢ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k))
[PROOFSTEP]
intro n
[GOAL]
case succ.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
k : ℕ
left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k)
ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k)
this : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1))
n : ℕ
⊢ MeasurableSet {ω | lowerCrossingTime a b f N (Nat.succ k) ω ≤ n}
[PROOFSTEP]
exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ upcrossingStrat a b f N n ω ≤ 1
[PROOFSTEP]
rw [upcrossingStrat, ← Set.indicator_finset_biUnion_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ Set.indicator
(⋃ (i : ℕ) (_ : i ∈ Finset.range N),
Set.Ico (lowerCrossingTime a b f N i ω) (upperCrossingTime a b f N (i + 1) ω))
1 n ≤
1
[PROOFSTEP]
exact Set.indicator_le_self' (fun _ _ => zero_le_one) _
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ ∀ (i : ℕ),
i ∈ Finset.range N →
∀ (j : ℕ),
j ∈ Finset.range N →
i ≠ j →
Disjoint (Set.Ico (lowerCrossingTime a b f N i ω) (upperCrossingTime a b f N (i + 1) ω))
(Set.Ico (lowerCrossingTime a b f N j ω) (upperCrossingTime a b f N (j + 1) ω))
[PROOFSTEP]
intro i _ j _ hij
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
⊢ Disjoint (Set.Ico (lowerCrossingTime a b f N i ω) (upperCrossingTime a b f N (i + 1) ω))
(Set.Ico (lowerCrossingTime a b f N j ω) (upperCrossingTime a b f N (j + 1) ω))
[PROOFSTEP]
rw [Set.Ico_disjoint_Ico]
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤
max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω)
[PROOFSTEP]
obtain hij' | hij' := lt_or_gt_of_ne hij
[GOAL]
case h.inl
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
hij' : i < j
⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤
max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω)
[PROOFSTEP]
rw [min_eq_left
(upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω),
max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)]
[GOAL]
case h.inl
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
hij' : i < j
⊢ upperCrossingTime a b f N (Nat.succ i) ω ≤ lowerCrossingTime a b f N j ω
[PROOFSTEP]
refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij'))
[GOAL]
case h.inr
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
hij' : i > j
⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤
max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω)
[PROOFSTEP]
rw [gt_iff_lt] at hij'
[GOAL]
case h.inr
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
hij' : j < i
⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤
max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω)
[PROOFSTEP]
rw [min_eq_right
(upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω),
max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)]
[GOAL]
case h.inr
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
i : ℕ
a✝¹ : i ∈ Finset.range N
j : ℕ
a✝ : j ∈ Finset.range N
hij : i ≠ j
hij' : j < i
⊢ upperCrossingTime a b f N (Nat.succ j) ω ≤ lowerCrossingTime a b f N i ω
[PROOFSTEP]
refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij'))
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
⊢ Adapted ℱ (upcrossingStrat a b f N)
[PROOFSTEP]
intro n
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
n : ℕ
⊢ StronglyMeasurable (upcrossingStrat a b f N n)
[PROOFSTEP]
change
StronglyMeasurable[ℱ n] fun ω =>
∑ k in Finset.range N,
({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
n : ℕ
⊢ StronglyMeasurable fun ω =>
∑ k in Finset.range N,
Set.indicator ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}) 1 n
[PROOFSTEP]
refine'
Finset.stronglyMeasurable_sum _ fun i _ =>
stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
n i : ℕ
x✝ : i ∈ Finset.range N
⊢ MeasurableSet fun ω => setOf (fun n => n < upperCrossingTime a b f N (i + 1) ω) n
[PROOFSTEP]
simp_rw [← not_le]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n✝ m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
n i : ℕ
x✝ : i ∈ Finset.range N
⊢ MeasurableSet fun ω => setOf (fun n => ¬upperCrossingTime a b f N (i + 1) ω ≤ n) n
[PROOFSTEP]
exact (hf.isStoppingTime_upperCrossingTime n).compl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
a b : ℝ
N : ℕ
⊢ Submartingale (fun n => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ
[PROOFSTEP]
refine'
hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n))
(_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
a b : ℝ
N : ℕ
⊢ ∀ (n : ℕ) (ω : Ω), (1 - upcrossingStrat a b f N n) ω ≤ 1
[PROOFSTEP]
exact fun n ω => sub_le_self _ upcrossingStrat_nonneg
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
a b : ℝ
N : ℕ
⊢ ∀ (n : ℕ) (ω : Ω), 0 ≤ (1 - upcrossingStrat a b f N n) ω
[PROOFSTEP]
intro n ω
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n✝ m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
a b : ℝ
N n : ℕ
ω : Ω
⊢ 0 ≤ (1 - upcrossingStrat a b f N n) ω
[PROOFSTEP]
simp [upcrossingStrat_le_one]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ
[PROOFSTEP]
have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] :=
by
have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ
rw [integral_univ, integral_univ] at this
refine' le_trans _ this
simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
this :
∫ (ω : Ω) in Set.univ,
Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ω ∂μ ≤
∫ (ω : Ω) in Set.univ,
Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ω ∂μ
⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
rw [integral_univ, integral_univ] at this
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
this :
∫ (x : Ω), Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
refine' le_trans _ this
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
this :
∫ (x : Ω), Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ
[PROOFSTEP]
have h₂ :
μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] =
μ[∑ k in Finset.range n, (f (k + 1) - f k)] -
μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] :=
by
simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply]
refine'
integral_sub
(Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _)
(integrable_finset_sum _ fun i _ => hf.integrable _))
_
convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1
ext; simp
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ =
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ -
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ ∫ (x : Ω),
∑ x_1 in Finset.range n, f (x_1 + 1) x - ∑ x_1 in Finset.range n, f x_1 x -
∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x) ∂μ =
∫ (x : Ω), ∑ x_1 in Finset.range n, f (x_1 + 1) x - ∑ x_1 in Finset.range n, f x_1 x ∂μ -
∫ (x : Ω), ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x) ∂μ
[PROOFSTEP]
refine'
integral_sub
(Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _)
(integrable_finset_sum _ fun i _ => hf.integrable _))
_
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ Integrable fun x => ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x)
[PROOFSTEP]
convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1
[GOAL]
case h.e'_5
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
⊢ (fun x => ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x)) =
∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)
[PROOFSTEP]
ext
[GOAL]
case h.e'_5.h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
x✝ : Ω
⊢ ∑ x in Finset.range n, upcrossingStrat a b f N x x✝ * (f (x + 1) x✝ - f x x✝) =
Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x✝
[PROOFSTEP]
simp
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ
h₂ :
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ =
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ -
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ
[PROOFSTEP]
rw [h₂, sub_nonneg] at h₁
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ :
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ
h₂ :
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ =
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ -
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ
[PROOFSTEP]
refine' le_trans h₁ _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
h₁ :
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ
h₂ :
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ =
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ -
∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ ≤ ∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ
[PROOFSTEP]
simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f✝ : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝² : Preorder ι
inst✝¹ : OrderBot ι
inst✝ : InfSet ι
a b : ℝ
f : ι → Ω → ℝ
ω : Ω
⊢ upcrossingsBefore a b f ⊥ ω = ⊥
[PROOFSTEP]
simp [upcrossingsBefore]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ upcrossingsBefore a b f 0 ω = 0
[PROOFSTEP]
simp [upcrossingsBefore]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ upcrossingsBefore a b f 0 = 0
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
ω : Ω
⊢ upcrossingsBefore a b f 0 ω = OfNat.ofNat 0 ω
[PROOFSTEP]
exact upcrossingsBefore_zero
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : upcrossingsBefore a b f N ω < n
⊢ upperCrossingTime a b f N n ω = N
[PROOFSTEP]
refine' le_antisymm upperCrossingTime_le (not_lt.1 _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : upcrossingsBefore a b f N ω < n
⊢ ¬upperCrossingTime a b f N n ω < N
[PROOFSTEP]
convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
hab : a < b
⊢ upcrossingsBefore a b f N ω ≤ N
[PROOFSTEP]
by_cases hN : N = 0
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
hab : a < b
hN : N = 0
⊢ upcrossingsBefore a b f N ω ≤ N
[PROOFSTEP]
subst hN
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
hab : a < b
⊢ upcrossingsBefore a b f 0 ω ≤ 0
[PROOFSTEP]
rw [upcrossingsBefore_zero]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
hab : a < b
hN : ¬N = 0
⊢ upcrossingsBefore a b f N ω ≤ N
[PROOFSTEP]
refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N n✝ m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
hab : a < b
hN : ¬N = 0
n : ℕ
hn : upperCrossingTime a b f N n ω < N
⊢ n ≤ N
[PROOFSTEP]
by_contra hnN
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f✝ : ℕ → Ω → ℝ
N n✝ m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
f : ℕ → Ω → ℝ
ω : Ω
hab : a < b
hN : ¬N = 0
n : ℕ
hn : upperCrossingTime a b f N n ω < N
hnN : ¬n ≤ N
⊢ False
[PROOFSTEP]
exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : lowerCrossingTime a b f N n ω < N
⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧
lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
[PROOFSTEP]
have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : lowerCrossingTime a b f N n ω < N
h' : upperCrossingTime a b f N n ω < N
⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧
lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h : lowerCrossingTime a b f N Nat.zero ω < N
h' : upperCrossingTime a b f N Nat.zero ω < N
⊢ upperCrossingTime a b f M Nat.zero ω = upperCrossingTime a b f N Nat.zero ω ∧
lowerCrossingTime a b f M Nat.zero ω = lowerCrossingTime a b f N Nat.zero ω
[PROOFSTEP]
simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff,
eq_comm]
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h : lowerCrossingTime a b f N Nat.zero ω < N
h' : upperCrossingTime a b f N Nat.zero ω < N
⊢ hitting f (Set.Iic a) 0 N ω = hitting f (Set.Iic a) 0 M ω
[PROOFSTEP]
refine' hitting_eq_hitting_of_exists hNM _
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h : lowerCrossingTime a b f N Nat.zero ω < N
h' : upperCrossingTime a b f N Nat.zero ω < N
⊢ ∃ j, j ∈ Set.Icc 0 N ∧ f j ω ∈ Set.Iic a
[PROOFSTEP]
rw [lowerCrossingTime, hitting_lt_iff] at h
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h : ∃ j, j ∈ Set.Ico (upperCrossingTime a b f N Nat.zero ω) N ∧ f j ω ∈ Set.Iic a
h' : upperCrossingTime a b f N Nat.zero ω < N
⊢ ∃ j, j ∈ Set.Icc 0 N ∧ f j ω ∈ Set.Iic a
case zero.hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h : hitting f (Set.Iic a) (upperCrossingTime a b f N Nat.zero ω) N ω < N
h' : upperCrossingTime a b f N Nat.zero ω < N
⊢ N ≤ N
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h
[GOAL]
case zero.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h' : upperCrossingTime a b f N Nat.zero ω < N
j : ℕ
hj₁ : j ∈ Set.Ico (upperCrossingTime a b f N Nat.zero ω) N
hj₂ : f j ω ∈ Set.Iic a
⊢ ∃ j, j ∈ Set.Icc 0 N ∧ f j ω ∈ Set.Iic a
case zero.hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
h : hitting f (Set.Iic a) (upperCrossingTime a b f N Nat.zero ω) N ω < N
h' : upperCrossingTime a b f N Nat.zero ω < N
⊢ N ≤ N
[PROOFSTEP]
exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl]
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
ih :
lowerCrossingTime a b f N k ω < N →
upperCrossingTime a b f N k ω < N →
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ∧
lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω
[PROOFSTEP]
specialize
ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h)
(lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h')
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ∧
lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω
[PROOFSTEP]
have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω :=
by
rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h'
simp only [upperCrossingTime_succ_eq]
obtain ⟨j, hj₁, hj₂⟩ := h'
rw [eq_comm, ih.2]
exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
[PROOFSTEP]
rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h'
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
case hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ N ≤ N
[PROOFSTEP]
simp only [upperCrossingTime_succ_eq]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f M k ω) M ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω
case hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ N ≤ N
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h'
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h' : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
j : ℕ
hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N
hj₂ : f j ω ∈ Set.Ici b
⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f M k ω) M ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω
case hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ N ≤ N
[PROOFSTEP]
rw [eq_comm, ih.2]
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h' : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
j : ℕ
hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N
hj₂ : f j ω ∈ Set.Ici b
⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) M ω
case hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
⊢ N ≤ N
[PROOFSTEP]
exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl]
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ∧
lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω
[PROOFSTEP]
refine' ⟨this, _⟩
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
⊢ lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω
[PROOFSTEP]
simp only [lowerCrossingTime, eq_comm, this]
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
⊢ hitting f (Set.Iic a) (upperCrossingTime a b f N (Nat.succ k) ω) N ω =
hitting f (Set.Iic a) (upperCrossingTime a b f N (Nat.succ k) ω) M ω
[PROOFSTEP]
refine' hitting_eq_hitting_of_exists hNM _
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : lowerCrossingTime a b f N (Nat.succ k) ω < N
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
[PROOFSTEP]
rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h✝ : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h : ∃ j, j ∈ Set.Ico (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h
[GOAL]
case succ.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : lowerCrossingTime a b f N n ω < N
h'✝ : upperCrossingTime a b f N n ω < N
k : ℕ
h' : upperCrossingTime a b f N (Nat.succ k) ω < N
ih :
upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧
lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω
this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω
j : ℕ
hj₁ : j ∈ Set.Ico (upperCrossingTime a b f N (Nat.succ k) ω) N
hj₂ : f j ω ∈ Set.Iic a
⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
[PROOFSTEP]
exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N (n + 1) ω < N
⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧
lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
[PROOFSTEP]
have :=
(crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N (n + 1) ω < N
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧
lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
[PROOFSTEP]
refine' ⟨_, this⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N (n + 1) ω < N
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω
[PROOFSTEP]
rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N (n + 1) ω < N
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) M ω
[PROOFSTEP]
refine' hitting_eq_hitting_of_exists hNM _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N (n + 1) ω < N
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b
[PROOFSTEP]
rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b
case hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω < N
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ N ≤ N
[PROOFSTEP]
obtain ⟨j, hj₁, hj₂⟩ := h
[GOAL]
case intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
j : ℕ
hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N
hj₂ : f j ω ∈ Set.Ici b
⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b
case hi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω < N
this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω
⊢ N ≤ N
[PROOFSTEP]
exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N n ω < N
⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω
[PROOFSTEP]
cases n
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
h : upperCrossingTime a b f N Nat.zero ω < N
⊢ upperCrossingTime a b f M Nat.zero ω = upperCrossingTime a b f N Nat.zero ω
[PROOFSTEP]
simp
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
M : ℕ
hNM : N ≤ M
n✝ : ℕ
h : upperCrossingTime a b f N (Nat.succ n✝) ω < N
⊢ upperCrossingTime a b f M (Nat.succ n✝) ω = upperCrossingTime a b f N (Nat.succ n✝) ω
[PROOFSTEP]
exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
⊢ Monotone fun N ω => upcrossingsBefore a b f N ω
[PROOFSTEP]
intro N M hNM ω
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
⊢ (fun N ω => upcrossingsBefore a b f N ω) N ω ≤ (fun N ω => upcrossingsBefore a b f N ω) M ω
[PROOFSTEP]
simp only [upcrossingsBefore]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
[PROOFSTEP]
by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N}
⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
[PROOFSTEP]
refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n✝ m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N}
n : ℕ
hn : n ∈ {n | upperCrossingTime a b f N n ω < N}
⊢ n ∈ {n | upperCrossingTime a b f M n ω < M}
[PROOFSTEP]
rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n✝ m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N}
n : ℕ
hn : n ∈ {n | upperCrossingTime a b f N n ω < N}
⊢ upperCrossingTime a b f N n ω < M
[PROOFSTEP]
exact lt_of_lt_of_le hn hNM
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
hemp : ¬Set.Nonempty {n | upperCrossingTime a b f N n ω < N}
⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
[PROOFSTEP]
rw [Set.not_nonempty_iff_eq_empty] at hemp
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
N M : ℕ
hNM : N ≤ M
ω : Ω
hemp : {n | upperCrossingTime a b f N n ω < N} = ∅
⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M}
[PROOFSTEP]
simp [hemp, csSup_empty, bot_eq_zero', zero_le']
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
⊢ upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω
[PROOFSTEP]
refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
⊢ Nat.succ (upcrossingsBefore a b f N ω) ∈ {n | upperCrossingTime a b f (N₂ + 1) n ω < N₂ + 1}
[PROOFSTEP]
rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
⊢ ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω) (N₂ + 1) ∧ f j ω ∈ Set.Ici b
[PROOFSTEP]
refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
⊢ lowerCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N₂
[PROOFSTEP]
rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω) N₂ ∧ f j ω ∈ Set.Iic a
[PROOFSTEP]
refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
[PROOFSTEP]
by_cases hN : 0 < N
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
hN : 0 < N
⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
[PROOFSTEP]
have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N :=
Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab)
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
hN : 0 < N
this : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N
⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
[PROOFSTEP]
rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
hN : 0 < N
this : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N
⊢ upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω ≤ N
[PROOFSTEP]
exact this.le
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
hN : ¬0 < N
⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
[PROOFSTEP]
rw [not_lt, le_zero_iff] at hN
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
hN : N = 0
⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N
[PROOFSTEP]
rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
N₁ N₂ : ℕ
hN₁ : N ≤ N₁
hN₁' : f N₁ ω < a
hN₂ : N₁ ≤ N₂
hN₂' : b < f N₂ ω
hN : N = 0
⊢ ⊥ ω ≤ 0
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : upcrossingsBefore a b f N ω < n
⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
[PROOFSTEP]
have : N ≤ upperCrossingTime a b f N n ω := by
rw [upcrossingsBefore] at hn
rw [← not_lt]
exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : upcrossingsBefore a b f N ω < n
⊢ N ≤ upperCrossingTime a b f N n ω
[PROOFSTEP]
rw [upcrossingsBefore] at hn
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : sSup {n | upperCrossingTime a b f N n ω < N} < n
⊢ N ≤ upperCrossingTime a b f N n ω
[PROOFSTEP]
rw [← not_lt]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : sSup {n | upperCrossingTime a b f N n ω < N} < n
⊢ ¬upperCrossingTime a b f N n ω < N
[PROOFSTEP]
exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hn : upcrossingsBefore a b f N ω < n
this : N ≤ upperCrossingTime a b f N n ω
⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0
[PROOFSTEP]
simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this,
lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
[PROOFSTEP]
classical
by_cases hN : N = 0
· simp [hN]
simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply,
Pi.sub_apply, one_mul]
rw [Finset.sum_comm]
have h₁ :
∀ k,
∑ n in Finset.range N,
(Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω :=
by
intro k
rw [Finset.sum_indicator_eq_sum_filter,
(_ :
Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(Finset.range N) =
Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)),
Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω,
Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel]
· rfl
· ext i
simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp]
exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
simp_rw [h₁]
have h₂ :
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
calc
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range (upcrossingsBefore a b f N ω),
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
rwa [Finset.mem_range] at hi
_ ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
refine'
Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
by_cases hi' : i = upcrossingsBefore a b f N ω
· subst hi'
simp only [stoppedValue]
rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
· rw [heq, sub_self]
· rw [sub_nonneg]
exact le_trans (stoppedValue_lowerCrossingTime heq) hf
· rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
rw [Finset.mem_range, not_lt] at hi
exact lt_of_le_of_ne hi (Ne.symm hi')
refine' le_trans _ h₂
rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
[PROOFSTEP]
by_cases hN : N = 0
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : N = 0
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
[PROOFSTEP]
simp [hN]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω
[PROOFSTEP]
simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply,
Pi.sub_apply, one_mul]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤
∑ x in Finset.range N,
∑ x_1 in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N x_1 ω) (upperCrossingTime a b f N (x_1 + 1) ω))
(fun a => f (a + 1) ω - f a ω) x
[PROOFSTEP]
rw [Finset.sum_comm]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤
∑ y in Finset.range N,
∑ x in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N y ω) (upperCrossingTime a b f N (y + 1) ω))
(fun a => f (a + 1) ω - f a ω) x
[PROOFSTEP]
have h₁ :
∀ k,
∑ n in Finset.range N,
(Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω :=
by
intro k
rw [Finset.sum_indicator_eq_sum_filter,
(_ :
Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(Finset.range N) =
Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)),
Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω,
Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel]
· rfl
· ext i
simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp]
exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
⊢ ∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
[PROOFSTEP]
intro k
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
k : ℕ
⊢ ∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
[PROOFSTEP]
rw [Finset.sum_indicator_eq_sum_filter,
(_ :
Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(Finset.range N) =
Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)),
Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω,
Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
k : ℕ
⊢ f (upperCrossingTime a b f N (k + 1) ω) ω - f (lowerCrossingTime a b f N k ω) ω =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
k : ℕ
⊢ Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(Finset.range N) =
Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)
[PROOFSTEP]
ext i
[GOAL]
case a
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
k i : ℕ
⊢ i ∈
Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(Finset.range N) ↔
i ∈ Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)
[PROOFSTEP]
simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp]
[GOAL]
case a
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
k i : ℕ
⊢ lowerCrossingTime a b f N k ω ≤ i → i < upperCrossingTime a b f N (k + 1) ω → i < N
[PROOFSTEP]
exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤
∑ y in Finset.range N,
∑ x in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N y ω) (upperCrossingTime a b f N (y + 1) ω))
(fun a => f (a + 1) ω - f a ω) x
[PROOFSTEP]
simp_rw [h₁]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤
∑ x in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (x + 1)) ω - stoppedValue f (lowerCrossingTime a b f N x) ω)
[PROOFSTEP]
have h₂ :
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
calc
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range (upcrossingsBefore a b f N ω),
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
rwa [Finset.mem_range] at hi
_ ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
refine'
Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
by_cases hi' : i = upcrossingsBefore a b f N ω
· subst hi'
simp only [stoppedValue]
rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
· rw [heq, sub_self]
· rw [sub_nonneg]
exact le_trans (stoppedValue_lowerCrossingTime heq) hf
· rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
rw [Finset.mem_range, not_lt] at hi
exact lt_of_le_of_ne hi (Ne.symm hi')
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
⊢ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
[PROOFSTEP]
calc
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range (upcrossingsBefore a b f N ω),
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
rwa [Finset.mem_range] at hi
_ ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) :=
by
refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
by_cases hi' : i = upcrossingsBefore a b f N ω
· subst hi'
simp only [stoppedValue]
rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
· rw [heq, sub_self]
· rw [sub_nonneg]
exact le_trans (stoppedValue_lowerCrossingTime heq) hf
· rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
rw [Finset.mem_range, not_lt] at hi
exact lt_of_le_of_ne hi (Ne.symm hi')
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
⊢ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range (upcrossingsBefore a b f N ω),
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
[PROOFSTEP]
refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
i : ℕ
hi : i ∈ Finset.range (upcrossingsBefore a b f N ω)
⊢ i < upcrossingsBefore a b f N ω
[PROOFSTEP]
rwa [Finset.mem_range] at hi
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
⊢ ∑ k in Finset.range (upcrossingsBefore a b f N ω),
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
[PROOFSTEP]
refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
i : ℕ
x✝ : i ∈ Finset.range N
hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω)
⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω
[PROOFSTEP]
by_cases hi' : i = upcrossingsBefore a b f N ω
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
i : ℕ
x✝ : i ∈ Finset.range N
hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω)
hi' : i = upcrossingsBefore a b f N ω
⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω
[PROOFSTEP]
subst hi'
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N
hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω)
⊢ 0 ≤
stoppedValue f (upperCrossingTime a b f N (upcrossingsBefore a b f N ω + 1)) ω -
stoppedValue f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω)) ω
[PROOFSTEP]
simp only [stoppedValue]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N
hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω)
⊢ 0 ≤
f (upperCrossingTime a b f N (upcrossingsBefore a b f N ω + 1) ω) ω -
f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
[PROOFSTEP]
rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N
hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω)
⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
[PROOFSTEP]
by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N
hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω)
heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
[PROOFSTEP]
rw [heq, sub_self]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N
hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω)
heq : ¬lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω
[PROOFSTEP]
rw [sub_nonneg]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N
hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω)
heq : ¬lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N
⊢ f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω ≤ f N ω
[PROOFSTEP]
exact le_trans (stoppedValue_lowerCrossingTime heq) hf
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
i : ℕ
x✝ : i ∈ Finset.range N
hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω)
hi' : ¬i = upcrossingsBefore a b f N ω
⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω
[PROOFSTEP]
rw [sub_eq_zero_of_upcrossingsBefore_lt hab]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
i : ℕ
x✝ : i ∈ Finset.range N
hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω)
hi' : ¬i = upcrossingsBefore a b f N ω
⊢ upcrossingsBefore a b f N ω < i
[PROOFSTEP]
rw [Finset.mem_range, not_lt] at hi
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
i : ℕ
x✝ : i ∈ Finset.range N
hi : upcrossingsBefore a b f N ω ≤ i
hi' : ¬i = upcrossingsBefore a b f N ω
⊢ upcrossingsBefore a b f N ω < i
[PROOFSTEP]
exact lt_of_le_of_ne hi (Ne.symm hi')
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
h₂ :
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤
∑ x in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (x + 1)) ω - stoppedValue f (lowerCrossingTime a b f N x) ω)
[PROOFSTEP]
refine' le_trans _ h₂
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : a ≤ f N ω
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
∑ n in Finset.range N,
Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω))
(fun m => f (m + 1) ω - f m ω) n =
stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω
h₂ :
∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤
∑ k in Finset.range N,
(stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω)
⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a)
[PROOFSTEP]
rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hfN : ∀ (ω : Ω), a ≤ f N ω
hfzero : 0 ≤ f 0
hab : a < b
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤
∫ (x : Ω), Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
rw [← integral_mul_left]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hfN : ∀ (ω : Ω), a ≤ f N ω
hfzero : 0 ≤ f 0
hab : a < b
⊢ ∫ (a_1 : Ω), (b - a) * ↑(upcrossingsBefore a b f N a_1) ∂μ ≤
∫ (x : Ω), Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ
[PROOFSTEP]
refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hfN : ∀ (ω : Ω), a ≤ f N ω
hfzero : 0 ≤ f 0
hab : a < b
⊢ 0 ≤ᵐ[μ] fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)
[PROOFSTEP]
exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _)
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hfN : ∀ (ω : Ω), a ≤ f N ω
hfzero : 0 ≤ f 0
hab : a < b
⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ≤ᵐ[μ] fun x =>
Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x
[PROOFSTEP]
refine' eventually_of_forall fun ω => _
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hfN : ∀ (ω : Ω), a ≤ f N ω
hfzero : 0 ≤ f 0
hab : a < b
ω : Ω
⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ω ≤
(fun x => Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x) ω
[PROOFSTEP]
simpa using mul_upcrossingsBefore_le (hfN ω) hab
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
[PROOFSTEP]
have hab' : 0 < b - a := sub_pos.2 hab
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
[PROOFSTEP]
have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by
intro i ω
refine' ⟨fun h => _, fun h => _⟩
· rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)]
· rw [← sub_le_sub_iff_right a] at h
rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
⊢ ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
[PROOFSTEP]
intro i ω
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
i : Ω
ω : ℕ
⊢ b - a ≤ (f ω i - a)⁺ ↔ b ≤ f ω i
[PROOFSTEP]
refine' ⟨fun h => _, fun h => _⟩
[GOAL]
case refine'_1
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
i : Ω
ω : ℕ
h : b - a ≤ (f ω i - a)⁺
⊢ b ≤ f ω i
[PROOFSTEP]
rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)]
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
i : Ω
ω : ℕ
h : b ≤ f ω i
⊢ b - a ≤ (f ω i - a)⁺
[PROOFSTEP]
rw [← sub_le_sub_iff_right a] at h
[GOAL]
case refine'_2
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
i : Ω
ω : ℕ
h : b - a ≤ f ω i - a
⊢ b - a ≤ (f ω i - a)⁺
[PROOFSTEP]
rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
[PROOFSTEP]
have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by
intro ω i
rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
⊢ ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
[PROOFSTEP]
intro ω i
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
ω : Ω
i : ℕ
⊢ (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
[PROOFSTEP]
rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n
[PROOFSTEP]
induction' n with k ih
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = upperCrossingTime a b f N Nat.zero ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = lowerCrossingTime a b f N Nat.zero
[PROOFSTEP]
refine' ⟨rfl, _⟩
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = lowerCrossingTime a b f N Nat.zero
[PROOFSTEP]
simp only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq]
[GOAL]
case zero
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
⊢ (fun x =>
if ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j x - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i x - a)⁺ ≤ 0}) else N) =
fun x => if ∃ j, j ∈ Set.Icc ⊥ N ∧ f j x ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i x ≤ a}) else N
[PROOFSTEP]
ext ω
[GOAL]
case zero.h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
⊢ (if ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) else N) =
if ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) else N
[PROOFSTEP]
split_ifs with h₁ h₂ h₂
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
h₁ : ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a
⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
[PROOFSTEP]
simp_rw [hf']
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
h₁ : ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a
⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N
[PROOFSTEP]
simp_rw [Set.mem_Iic, ← hf' _ _] at h₂
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
h₁ : ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ≤ 0
⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N
[PROOFSTEP]
exact False.elim (h₂ h₁)
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
h₁ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a
⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
[PROOFSTEP]
simp_rw [Set.mem_Iic, hf' _ _] at h₁
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
h₂ : ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a
h₁ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ≤ a
⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a})
[PROOFSTEP]
exact False.elim (h₁ h₂)
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
ω : Ω
h₁ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a
⊢ N = N
[PROOFSTEP]
rfl
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = upperCrossingTime a b f N (Nat.succ k) ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k)
[PROOFSTEP]
have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) :=
by
ext ω
simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right]
split_ifs with h₁ h₂ h₂
· simp_rw [← sub_le_iff_le_add, hf ω]
· refine' False.elim (h₂ _)
simp_all only [Set.mem_Ici]
· refine' False.elim (h₁ _)
simp_all only [Set.mem_Ici]
· rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) ω = upperCrossingTime a b f N (k + 1) ω
[PROOFSTEP]
simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right]
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
⊢ (if
∃ j,
j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧
(f j ω - a)⁺ ∈ Set.Ici (b - a) then
sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a})
else N) =
if ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b then
sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω})
else N
[PROOFSTEP]
split_ifs with h₁ h₂ h₂
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
h₁ : ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
h₂ : ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
⊢ sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) =
sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω})
[PROOFSTEP]
simp_rw [← sub_le_iff_le_add, hf ω]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
h₁ : ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
h₂ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
⊢ sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) = N
[PROOFSTEP]
refine' False.elim (h₂ _)
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
h₁ : ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
h₂ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
[PROOFSTEP]
simp_all only [Set.mem_Ici]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
h₁ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
h₂ : ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
⊢ N = sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω})
[PROOFSTEP]
refine' False.elim (h₁ _)
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
h₁ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
h₂ : ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
[PROOFSTEP]
simp_all only [Set.mem_Ici]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
ω : Ω
h₁ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a)
h₂ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b
⊢ N = N
[PROOFSTEP]
rfl
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = upperCrossingTime a b f N (Nat.succ k) ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k)
[PROOFSTEP]
refine' ⟨this, _⟩
[GOAL]
case succ
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k)
[PROOFSTEP]
ext ω
[GOAL]
case succ.h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω
[PROOFSTEP]
simp only [lowerCrossingTime, this, hitting, Set.mem_Iic]
[GOAL]
case succ.h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
⊢ (if
∃ j,
j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧
(f j ω - a)⁺ ∈ Set.Iic 0 then
sInf (Set.Icc (upperCrossingTime a b f N (k + 1) ω) N ∩ {i | (f i ω - a)⁺ ≤ 0})
else N) =
if ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a then
sInf (Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∩ {i | f i ω ≤ a})
else N
[PROOFSTEP]
split_ifs with h₁ h₂ h₂
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
h₁ :
∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
⊢ sInf (Set.Icc (upperCrossingTime a b f N (k + 1) ω) N ∩ {i | (f i ω - a)⁺ ≤ 0}) =
sInf (Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∩ {i | f i ω ≤ a})
[PROOFSTEP]
simp_rw [hf' ω]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
h₁ :
∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
⊢ sInf (Set.Icc (upperCrossingTime a b f N (k + 1) ω) N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N
[PROOFSTEP]
refine' False.elim (h₂ _)
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
h₁ :
∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
[PROOFSTEP]
simp_all only [Set.mem_Iic]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
h₁ :
¬∃ j,
j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
⊢ N = sInf (Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∩ {i | f i ω ≤ a})
[PROOFSTEP]
refine' False.elim (h₁ _)
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
h₁ :
¬∃ j,
j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
[PROOFSTEP]
simp_all only [Set.mem_Iic]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hab : a < b
hab' : 0 < b - a
hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω
hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a
k : ℕ
ih :
upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧
lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k
this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1)
ω : Ω
h₁ :
¬∃ j,
j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0
h₂ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a
⊢ N = N
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
⊢ upcrossingsBefore 0 (b - a) (fun n ω => (f n ω - a)⁺) N ω = upcrossingsBefore a b f N ω
[PROOFSTEP]
simp_rw [upcrossingsBefore, (crossing_pos_eq hab).1]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ
[PROOFSTEP]
refine'
le_trans (le_of_eq _)
(integral_mul_upcrossingsBefore_le_integral (hf.sub_martingale (martingale_const _ _ _)).pos
(fun ω => LatticeOrderedGroup.pos_nonneg _) (fun ω => LatticeOrderedGroup.pos_nonneg _) (sub_pos.2 hab))
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ =
(b - a - 0) * ∫ (x : Ω), ↑(upcrossingsBefore 0 (b - a) (f - fun x x => a)⁺ N x) ∂μ
[PROOFSTEP]
simp_rw [sub_zero, ← upcrossingsBefore_pos_eq hab]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Submartingale f ℱ μ
hab : a < b
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore 0 (b - a) (fun n ω => (f n ω - a)⁺) N x) ∂μ =
(b - a) * ∫ (x : Ω), ↑(upcrossingsBefore 0 (b - a) (f - fun x x => a)⁺ N x) ∂μ
[PROOFSTEP]
rfl
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
N : ℕ
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ
[PROOFSTEP]
by_cases hab : a < b
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
N : ℕ
hab : a < b
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ
[PROOFSTEP]
exact mul_integral_upcrossingsBefore_le_integral_pos_part_aux hf hab
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
N : ℕ
hab : ¬a < b
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ
[PROOFSTEP]
rw [not_lt, ← sub_nonpos] at hab
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
N : ℕ
hab✝ : b ≤ a
hab : b - a ≤ 0
⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ
[PROOFSTEP]
exact
le_trans (mul_nonpos_of_nonpos_of_nonneg hab (integral_nonneg fun ω => Nat.cast_nonneg _))
(integral_nonneg fun ω => LatticeOrderedGroup.pos_nonneg _)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
by_cases hN : N = 0
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : N = 0
⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
simp [hN]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
rw [← Finset.sum_Ico_consecutive _ (Nat.succ_le_succ zero_le') (Nat.succ_le_succ (upcrossingsBefore_le f ω hab))]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
⊢ upcrossingsBefore a b f N ω =
∑ i in Finset.Ico (Nat.succ 0) (Nat.succ (upcrossingsBefore a b f N ω)),
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i +
∑ i in Finset.Ico (Nat.succ (upcrossingsBefore a b f N ω)) (Nat.succ N),
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
have h₁ :
∀ k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1), {n : ℕ | upperCrossingTime a b f N n ω < N}.indicator 1 k = 1 :=
by
rintro k hk
rw [Finset.mem_Ico] at hk
rw [Set.indicator_of_mem]
· rfl
· exact upperCrossingTime_lt_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab (Nat.lt_succ_iff.1 hk.2)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
⊢ ∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
[PROOFSTEP]
rintro k hk
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
k : ℕ
hk : k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1)
⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
[PROOFSTEP]
rw [Finset.mem_Ico] at hk
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
k : ℕ
hk : 1 ≤ k ∧ k < upcrossingsBefore a b f N ω + 1
⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
[PROOFSTEP]
rw [Set.indicator_of_mem]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
k : ℕ
hk : 1 ≤ k ∧ k < upcrossingsBefore a b f N ω + 1
⊢ OfNat.ofNat 1 k = 1
[PROOFSTEP]
rfl
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
k : ℕ
hk : 1 ≤ k ∧ k < upcrossingsBefore a b f N ω + 1
⊢ k ∈ {n | upperCrossingTime a b f N n ω < N}
[PROOFSTEP]
exact upperCrossingTime_lt_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab (Nat.lt_succ_iff.1 hk.2)
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
⊢ upcrossingsBefore a b f N ω =
∑ i in Finset.Ico (Nat.succ 0) (Nat.succ (upcrossingsBefore a b f N ω)),
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i +
∑ i in Finset.Ico (Nat.succ (upcrossingsBefore a b f N ω)) (Nat.succ N),
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
have h₂ :
∀ k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1),
{n : ℕ | upperCrossingTime a b f N n ω < N}.indicator 1 k = 0 :=
by
rintro k hk
rw [Finset.mem_Ico, Nat.succ_le_iff] at hk
rw [Set.indicator_of_not_mem]
simp only [Set.mem_setOf_eq, not_lt]
exact (upperCrossingTime_eq_of_upcrossingsBefore_lt hab hk.1).symm.le
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
⊢ ∀ (k : ℕ),
k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1) →
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0
[PROOFSTEP]
rintro k hk
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
k : ℕ
hk : k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1)
⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0
[PROOFSTEP]
rw [Finset.mem_Ico, Nat.succ_le_iff] at hk
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
k : ℕ
hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1
⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0
[PROOFSTEP]
rw [Set.indicator_of_not_mem]
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
k : ℕ
hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1
⊢ ¬k ∈ {n | upperCrossingTime a b f N n ω < N}
[PROOFSTEP]
simp only [Set.mem_setOf_eq, not_lt]
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
k : ℕ
hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1
⊢ N ≤ upperCrossingTime a b f N k ω
[PROOFSTEP]
exact (upperCrossingTime_eq_of_upcrossingsBefore_lt hab hk.1).symm.le
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hab : a < b
hN : ¬N = 0
h₁ :
∀ (k : ℕ),
k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1
h₂ :
∀ (k : ℕ),
k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1) →
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0
⊢ upcrossingsBefore a b f N ω =
∑ i in Finset.Ico (Nat.succ 0) (Nat.succ (upcrossingsBefore a b f N ω)),
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i +
∑ i in Finset.Ico (Nat.succ (upcrossingsBefore a b f N ω)) (Nat.succ N),
Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
rw [Finset.sum_congr rfl h₁, Finset.sum_congr rfl h₂, Finset.sum_const, Finset.sum_const, smul_eq_mul, mul_one,
smul_eq_mul, mul_zero, Nat.card_Ico, Nat.add_succ_sub_one, add_zero, add_zero]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
hab : a < b
⊢ Measurable (upcrossingsBefore a b f N)
[PROOFSTEP]
have :
upcrossingsBefore a b f N = fun ω =>
∑ i in Finset.Ico 1 (N + 1), {n | upperCrossingTime a b f N n ω < N}.indicator 1 i :=
by
ext ω
exact upcrossingsBefore_eq_sum hab
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
hab : a < b
⊢ upcrossingsBefore a b f N = fun ω =>
∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
ext ω
[GOAL]
case h
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
hab : a < b
ω : Ω
⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
exact upcrossingsBefore_eq_sum hab
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
hab : a < b
this :
upcrossingsBefore a b f N = fun ω =>
∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
⊢ Measurable (upcrossingsBefore a b f N)
[PROOFSTEP]
rw [this]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
hf : Adapted ℱ f
hab : a < b
this :
upcrossingsBefore a b f N = fun ω =>
∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
⊢ Measurable fun ω => ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i
[PROOFSTEP]
exact
Finset.measurable_sum _ fun i _ =>
Measurable.indicator measurable_const <| ℱ.le N _ (hf.isStoppingTime_upperCrossingTime.measurableSet_lt_of_pred N)
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Adapted ℱ f
hab : a < b
⊢ ∀ᵐ (ω : Ω) ∂μ, ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N
[PROOFSTEP]
refine' eventually_of_forall fun ω => _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Adapted ℱ f
hab : a < b
ω : Ω
⊢ ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N
[PROOFSTEP]
rw [Real.norm_eq_abs, Nat.abs_cast, Nat.cast_le]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
hf : Adapted ℱ f
hab : a < b
ω : Ω
⊢ upcrossingsBefore a b f N ω ≤ N
[PROOFSTEP]
refine' upcrossingsBefore_le _ _ hab
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ upcrossings a b f ω < ⊤ ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
[PROOFSTEP]
have : upcrossings a b f ω < ∞ ↔ ∃ k : ℝ≥0, upcrossings a b f ω ≤ k :=
by
constructor
· intro h
lift upcrossings a b f ω to ℝ≥0 using h.ne with r hr
exact ⟨r, le_rfl⟩
· rintro ⟨k, hk⟩
exact lt_of_le_of_lt hk ENNReal.coe_lt_top
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ upcrossings a b f ω < ⊤ → ∃ k, upcrossings a b f ω ≤ ↑k
[PROOFSTEP]
intro h
[GOAL]
case mp
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
h : upcrossings a b f ω < ⊤
⊢ ∃ k, upcrossings a b f ω ≤ ↑k
[PROOFSTEP]
lift upcrossings a b f ω to ℝ≥0 using h.ne with r hr
[GOAL]
case mp.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
r : ℝ≥0
hr : ↑r = upcrossings a b f ω
upcrossings_lt_top_iff✝ upcrossings_lt_top_iff : ↑r < ⊤ ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
h✝ h : ↑r < ⊤
⊢ ∃ k, ↑r ≤ ↑k
[PROOFSTEP]
exact ⟨r, le_rfl⟩
[GOAL]
case mpr
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
⊢ (∃ k, upcrossings a b f ω ≤ ↑k) → upcrossings a b f ω < ⊤
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mpr.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
k : ℝ≥0
hk : upcrossings a b f ω ≤ ↑k
⊢ upcrossings a b f ω < ⊤
[PROOFSTEP]
exact lt_of_le_of_lt hk ENNReal.coe_lt_top
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
⊢ upcrossings a b f ω < ⊤ ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
[PROOFSTEP]
simp_rw [this, upcrossings, iSup_le_iff]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
⊢ (∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k) ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
[PROOFSTEP]
constructor
[GOAL]
case mp
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
⊢ (∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k) → ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mpr
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
⊢ (∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k) → ∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k
[PROOFSTEP]
rintro ⟨k, hk⟩
[GOAL]
case mp.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
k : ℝ≥0
hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k
⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
[PROOFSTEP]
obtain ⟨m, hm⟩ := exists_nat_ge k
[GOAL]
case mp.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m✝ : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
k : ℝ≥0
hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k
m : ℕ
hm : k ≤ ↑m
⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
[PROOFSTEP]
refine' ⟨m, fun N => Nat.cast_le.1 ((hk N).trans _)⟩
[GOAL]
case mp.intro.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m✝ : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
k : ℝ≥0
hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k
m : ℕ
hm : k ≤ ↑m
N : ℕ
⊢ ↑k ≤ ↑m
[PROOFSTEP]
rwa [← ENNReal.coe_nat, ENNReal.coe_le_coe]
[GOAL]
case mpr.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
k : ℕ
hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
⊢ ∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k
[PROOFSTEP]
refine' ⟨k, fun N => _⟩
[GOAL]
case mpr.intro
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a b : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k
k : ℕ
hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k
N : ℕ
⊢ ↑(upcrossingsBefore a b f N ω) ≤ ↑↑k
[PROOFSTEP]
simp only [ENNReal.coe_nat, Nat.cast_le, hk N]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
by_cases hab : a < b
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
simp_rw [upcrossings]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), ⨆ (N : ℕ), ↑(upcrossingsBefore a b f N ω) ∂μ ≤
⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
have : ∀ N, ∫⁻ ω, ENNReal.ofReal ((f N ω - a)⁺) ∂μ = ENNReal.ofReal (∫ ω, (f N ω - a)⁺ ∂μ) :=
by
intro N
rw [ofReal_integral_eq_lintegral_ofReal]
· exact (hf.sub_martingale (martingale_const _ _ _)).pos.integrable _
· exact eventually_of_forall fun ω => LatticeOrderedGroup.pos_nonneg _
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
⊢ ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
[PROOFSTEP]
intro N
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
N : ℕ
⊢ ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
[PROOFSTEP]
rw [ofReal_integral_eq_lintegral_ofReal]
[GOAL]
case hfi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
N : ℕ
⊢ Integrable fun ω => (f N ω - a)⁺
[PROOFSTEP]
exact (hf.sub_martingale (martingale_const _ _ _)).pos.integrable _
[GOAL]
case f_nn
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
N : ℕ
⊢ 0 ≤ᵐ[μ] fun ω => (f N ω - a)⁺
[PROOFSTEP]
exact eventually_of_forall fun ω => LatticeOrderedGroup.pos_nonneg _
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), ⨆ (N : ℕ), ↑(upcrossingsBefore a b f N ω) ∂μ ≤
⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
rw [lintegral_iSup']
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
⊢ ENNReal.ofReal (b - a) * ⨆ (n : ℕ), ∫⁻ (a_1 : Ω), ↑(upcrossingsBefore a b f n a_1) ∂μ ≤
⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
simp_rw [this, ENNReal.mul_iSup, iSup_le_iff]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
⊢ ∀ (i : ℕ),
ENNReal.ofReal (b - a) * ∫⁻ (a_1 : Ω), ↑(upcrossingsBefore a b f i a_1) ∂μ ≤
⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
[PROOFSTEP]
intro N
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
N : ℕ
⊢ ENNReal.ofReal (b - a) * ∫⁻ (a_1 : Ω), ↑(upcrossingsBefore a b f N a_1) ∂μ ≤
⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
[PROOFSTEP]
rw [(by simp : ∫⁻ ω, upcrossingsBefore a b f N ω ∂μ = ∫⁻ ω, ↑(upcrossingsBefore a b f N ω : ℝ≥0) ∂μ),
lintegral_coe_eq_integral, ← ENNReal.ofReal_mul (sub_pos.2 hab).le]
[GOAL]
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
N : ℕ
⊢ ∫⁻ (ω : Ω), ↑(upcrossingsBefore a b f N ω) ∂μ = ∫⁻ (ω : Ω), ↑↑(upcrossingsBefore a b f N ω) ∂μ
[PROOFSTEP]
simp
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
N : ℕ
⊢ ENNReal.ofReal ((b - a) * ∫ (a_1 : Ω), ↑↑(upcrossingsBefore a b f N a_1) ∂μ) ≤
⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
[PROOFSTEP]
simp_rw [NNReal.coe_nat_cast]
[GOAL]
case pos
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
N : ℕ
⊢ ENNReal.ofReal ((b - a) * ∫ (a_1 : Ω), ↑(upcrossingsBefore a b f N a_1) ∂μ) ≤
⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
[PROOFSTEP]
exact
(ENNReal.ofReal_le_ofReal (hf.mul_integral_upcrossingsBefore_le_integral_pos_part a b N)).trans
(le_iSup (α := ℝ≥0∞) _ N)
[GOAL]
case pos.hfi
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
N : ℕ
⊢ Integrable fun x => ↑↑(upcrossingsBefore a b f N x)
[PROOFSTEP]
simp only [NNReal.coe_nat_cast, hf.adapted.integrable_upcrossingsBefore hab]
[GOAL]
case pos.hf
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
⊢ ∀ (n : ℕ), AEMeasurable fun ω => ↑(upcrossingsBefore a b f n ω)
[PROOFSTEP]
exact fun n => measurable_from_top.comp_aemeasurable (hf.adapted.measurable_upcrossingsBefore hab).aemeasurable
[GOAL]
case pos.h_mono
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
⊢ ∀ᵐ (x : Ω) ∂μ, Monotone fun n => ↑(upcrossingsBefore a b f n x)
[PROOFSTEP]
refine' eventually_of_forall fun ω N M hNM => _
[GOAL]
case pos.h_mono
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
ω : Ω
N M : ℕ
hNM : N ≤ M
⊢ (fun n => ↑(upcrossingsBefore a b f n ω)) N ≤ (fun n => ↑(upcrossingsBefore a b f n ω)) M
[PROOFSTEP]
rw [Nat.cast_le]
[GOAL]
case pos.h_mono
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N✝ n m : ℕ
ω✝ : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : a < b
this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ)
ω : Ω
N M : ℕ
hNM : N ≤ M
⊢ upcrossingsBefore a b f N ω ≤ upcrossingsBefore a b f M ω
[PROOFSTEP]
exact upcrossingsBefore_mono hab hNM ω
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab : ¬a < b
⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
rw [not_lt, ← sub_nonpos] at hab
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab✝ : b ≤ a
hab : b - a ≤ 0
⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
rw [ENNReal.ofReal_of_nonpos hab, zero_mul]
[GOAL]
case neg
Ω : Type u_1
ι : Type u_2
m0 : MeasurableSpace Ω
μ : Measure Ω
a✝ b✝ : ℝ
f : ℕ → Ω → ℝ
N n m : ℕ
ω : Ω
ℱ : Filtration ℕ m0
inst✝ : IsFiniteMeasure μ
a b : ℝ
hf : Submartingale f ℱ μ
hab✝ : b ≤ a
hab : b - a ≤ 0
⊢ 0 ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ
[PROOFSTEP]
exact zero_le _
| {"mathlib_filename": "Mathlib.Probability.Martingale.Upcrossing", "llama_tokens": 82297} |
[GOAL]
⊢ eval zero' = fun v => pure (0 :: v)
[PROOFSTEP]
simp [eval]
[GOAL]
⊢ eval succ = fun v => pure [Nat.succ (List.headI v)]
[PROOFSTEP]
simp [eval]
[GOAL]
⊢ eval tail = fun v => pure (List.tail v)
[PROOFSTEP]
simp [eval]
[GOAL]
f fs : Code
⊢ eval (cons f fs) = fun v => do
let n ← eval f v
let ns ← eval fs v
pure (List.headI n :: ns)
[PROOFSTEP]
simp [eval]
[GOAL]
f g : Code
⊢ eval (comp f g) = fun v => eval g v >>= eval f
[PROOFSTEP]
simp [eval]
[GOAL]
f g : Code
⊢ eval (case f g) = fun v => Nat.rec (eval f (List.tail v)) (fun y x => eval g (y :: List.tail v)) (List.headI v)
[PROOFSTEP]
simp [eval]
[GOAL]
f : Code
⊢ eval (fix f) =
PFun.fix fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (eval f v)
[PROOFSTEP]
simp [eval]
[GOAL]
v : List ℕ
⊢ eval nil v = pure []
[PROOFSTEP]
simp [nil]
[GOAL]
v : List ℕ
⊢ eval id v = pure v
[PROOFSTEP]
simp [id]
[GOAL]
v : List ℕ
⊢ eval head v = pure [List.headI v]
[PROOFSTEP]
simp [head]
[GOAL]
v : List ℕ
⊢ eval zero v = pure [0]
[PROOFSTEP]
simp [zero]
[GOAL]
v : List ℕ
⊢ eval pred v = pure [Nat.pred (List.headI v)]
[PROOFSTEP]
simp [pred]
[GOAL]
v : List ℕ
⊢ Nat.rec (Part.some [0]) (fun y x => Part.some [y]) (List.headI v) = Part.some [Nat.pred (List.headI v)]
[PROOFSTEP]
cases v.headI
[GOAL]
case zero
v : List ℕ
⊢ Nat.rec (Part.some [0]) (fun y x => Part.some [y]) Nat.zero = Part.some [Nat.pred Nat.zero]
[PROOFSTEP]
simp
[GOAL]
case succ
v : List ℕ
n✝ : ℕ
⊢ Nat.rec (Part.some [0]) (fun y x => Part.some [y]) (Nat.succ n✝) = Part.some [Nat.pred (Nat.succ n✝)]
[PROOFSTEP]
simp
[GOAL]
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
hf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v
hg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f)
[PROOFSTEP]
rsuffices ⟨cg, hg⟩ : ∃ c : Code, ∀ v : Vector ℕ m, c.eval v.1 = Subtype.val <$> Vector.mOfFn fun i => g i v
[GOAL]
case intro
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
hf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f)
[PROOFSTEP]
obtain ⟨cf, hf⟩ := hf
[GOAL]
case intro.intro
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
cf : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> f v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f)
[PROOFSTEP]
exact
⟨cf.comp cg, fun v => by
simp [hg, hf, map_bind, seq_bind_eq, Function.comp]
rfl⟩
[GOAL]
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
cf : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> f v
v : Vector ℕ m
⊢ eval (Code.comp cf cg) ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f)
[PROOFSTEP]
simp [hg, hf, map_bind, seq_bind_eq, Function.comp]
[GOAL]
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
cf : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> f v
v : Vector ℕ m
⊢ (do
let x ← Vector.mOfFn fun i => g i v
pure <$> f x) =
do
let a ← Vector.mOfFn fun i => g i v
pure <$> f a
[PROOFSTEP]
rfl
[GOAL]
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
hf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v
hg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
clear hf f
[GOAL]
m n : ℕ
g : Fin n → Vector ℕ m →. ℕ
hg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
m n : ℕ
g✝ : Fin n → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
g : Fin Nat.zero → Vector ℕ m →. ℕ
hg : ∀ (i : Fin Nat.zero), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
exact ⟨nil, fun v => by simp [Vector.mOfFn, Bind.bind]; rfl⟩
[GOAL]
m n : ℕ
g✝ : Fin n → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
g : Fin Nat.zero → Vector ℕ m →. ℕ
hg : ∀ (i : Fin Nat.zero), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
v : Vector ℕ m
⊢ eval nil ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
simp [Vector.mOfFn, Bind.bind]
[GOAL]
m n : ℕ
g✝ : Fin n → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
g : Fin Nat.zero → Vector ℕ m →. ℕ
hg : ∀ (i : Fin Nat.zero), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
v : Vector ℕ m
⊢ Part.some [] = Subtype.val <$> Part.some Vector.nil
[PROOFSTEP]
rfl
[GOAL]
case succ
m n✝ : ℕ
g✝ : Fin n✝ → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
n : ℕ
IH :
∀ {g : Fin n → Vector ℕ m →. ℕ},
(∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) →
∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
g : Fin (Nat.succ n) → Vector ℕ m →. ℕ
hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
obtain ⟨cg, hg₁⟩ := hg 0
[GOAL]
case succ.intro
m n✝ : ℕ
g✝ : Fin n✝ → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
n : ℕ
IH :
∀ {g : Fin n → Vector ℕ m →. ℕ},
(∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) →
∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
g : Fin (Nat.succ n) → Vector ℕ m →. ℕ
hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
obtain ⟨cl, hl⟩ := IH fun i => hg i.succ
[GOAL]
case succ.intro.intro
m n✝ : ℕ
g✝ : Fin n✝ → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
n : ℕ
IH :
∀ {g : Fin n → Vector ℕ m →. ℕ},
(∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) →
∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
g : Fin (Nat.succ n) → Vector ℕ m →. ℕ
hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v
cl : Code
hl : ∀ (v : Vector ℕ m), eval cl ↑v = Subtype.val <$> Vector.mOfFn fun i => g (Fin.succ i) v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
exact
⟨cons cg cl, fun v => by
simp [Vector.mOfFn, hg₁, map_bind, seq_bind_eq, bind_assoc, (· ∘ ·), hl]
rfl⟩
[GOAL]
m n✝ : ℕ
g✝ : Fin n✝ → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
n : ℕ
IH :
∀ {g : Fin n → Vector ℕ m →. ℕ},
(∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) →
∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
g : Fin (Nat.succ n) → Vector ℕ m →. ℕ
hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v
cl : Code
hl : ∀ (v : Vector ℕ m), eval cl ↑v = Subtype.val <$> Vector.mOfFn fun i => g (Fin.succ i) v
v : Vector ℕ m
⊢ eval (cons cg cl) ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
[PROOFSTEP]
simp [Vector.mOfFn, hg₁, map_bind, seq_bind_eq, bind_assoc, (· ∘ ·), hl]
[GOAL]
m n✝ : ℕ
g✝ : Fin n✝ → Vector ℕ m →. ℕ
hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v
n : ℕ
IH :
∀ {g : Fin n → Vector ℕ m →. ℕ},
(∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) →
∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v
g : Fin (Nat.succ n) → Vector ℕ m →. ℕ
hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
cg : Code
hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v
cl : Code
hl : ∀ (v : Vector ℕ m), eval cl ↑v = Subtype.val <$> Vector.mOfFn fun i => g (Fin.succ i) v
v : Vector ℕ m
⊢ (do
let x ← g 0 v
let x_1 ← Vector.mOfFn fun i => g (Fin.succ i) v
Part.some (List.headI (pure x) :: ↑x_1)) =
do
let a ← g 0 v
let a_1 ← Vector.mOfFn fun i => g (Fin.succ i) v
Subtype.val <$> Part.some (a ::ᵥ a_1)
[PROOFSTEP]
rfl
[GOAL]
n : ℕ
f : Vector ℕ n →. ℕ
hf : Nat.Partrec' f
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v
[PROOFSTEP]
induction' hf with n f hf
[GOAL]
case prim
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
hf : Nat.Primrec' f
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
induction hf
[GOAL]
case prim.zero
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 0), eval c ↑v = pure <$> (↑fun x => 0) v
case prim.succ
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v
case prim.get
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
i✝ : Fin n✝
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (↑fun v => Vector.get v i✝) v
case prim.comp
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v
case prim.prec
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : Nat.Primrec' g✝
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v
⊢ ∃ c,
∀ (v : Vector ℕ (n✝ + 1)),
eval c ↑v =
pure <$>
(↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case prim.zero => exact ⟨zero', fun ⟨[], _⟩ => rfl⟩
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 0), eval c ↑v = pure <$> (↑fun x => 0) v
[PROOFSTEP]
case prim.zero => exact ⟨zero', fun ⟨[], _⟩ => rfl⟩
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 0), eval c ↑v = pure <$> (↑fun x => 0) v
[PROOFSTEP]
exact ⟨zero', fun ⟨[], _⟩ => rfl⟩
[GOAL]
case prim.succ
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v
case prim.get
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
i✝ : Fin n✝
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (↑fun v => Vector.get v i✝) v
case prim.comp
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v
case prim.prec
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : Nat.Primrec' g✝
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v
⊢ ∃ c,
∀ (v : Vector ℕ (n✝ + 1)),
eval c ↑v =
pure <$>
(↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case prim.succ => exact ⟨succ, fun ⟨[v], _⟩ => rfl⟩
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v
[PROOFSTEP]
case prim.succ => exact ⟨succ, fun ⟨[v], _⟩ => rfl⟩
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v
[PROOFSTEP]
exact ⟨succ, fun ⟨[v], _⟩ => rfl⟩
[GOAL]
case prim.get
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
i✝ : Fin n✝
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (↑fun v => Vector.get v i✝) v
case prim.comp
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v
case prim.prec
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : Nat.Primrec' g✝
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v
⊢ ∃ c,
∀ (v : Vector ℕ (n✝ + 1)),
eval c ↑v =
pure <$>
(↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case prim.get n i =>
refine' Fin.succRec (fun n => _) (fun n i IH => _) i
· exact ⟨head, fun ⟨List.cons a as, _⟩ => by simp [Bind.bind]; rfl⟩
· obtain ⟨c, h⟩ := IH
exact ⟨c.comp tail, fun v => by simpa [← Vector.get_tail, Bind.bind] using h v.tail⟩
[GOAL]
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
n : ℕ
i : Fin n
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v
[PROOFSTEP]
case prim.get n i =>
refine' Fin.succRec (fun n => _) (fun n i IH => _) i
· exact ⟨head, fun ⟨List.cons a as, _⟩ => by simp [Bind.bind]; rfl⟩
· obtain ⟨c, h⟩ := IH
exact ⟨c.comp tail, fun v => by simpa [← Vector.get_tail, Bind.bind] using h v.tail⟩
[GOAL]
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
n : ℕ
i : Fin n
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v
[PROOFSTEP]
refine' Fin.succRec (fun n => _) (fun n i IH => _) i
[GOAL]
case refine'_1
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
i : Fin n✝
n : ℕ
⊢ ∃ c, ∀ (v : Vector ℕ (Nat.succ n)), eval c ↑v = pure <$> (↑fun v => Vector.get v 0) v
[PROOFSTEP]
exact ⟨head, fun ⟨List.cons a as, _⟩ => by simp [Bind.bind]; rfl⟩
[GOAL]
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
i : Fin n✝
n : ℕ
x✝ : Vector ℕ (Nat.succ n)
a : ℕ
as : List ℕ
property✝ : List.length (a :: as) = Nat.succ n
⊢ eval head ↑{ val := a :: as, property := property✝ } =
pure <$> (↑fun v => Vector.get v 0) { val := a :: as, property := property✝ }
[PROOFSTEP]
simp [Bind.bind]
[GOAL]
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
i : Fin n✝
n : ℕ
x✝ : Vector ℕ (Nat.succ n)
a : ℕ
as : List ℕ
property✝ : List.length (a :: as) = Nat.succ n
⊢ Part.some [a] = pure <$> Part.some (Vector.head { val := a :: as, property := property✝ })
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
i✝ : Fin n✝
n : ℕ
i : Fin n
IH : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v
⊢ ∃ c, ∀ (v : Vector ℕ (Nat.succ n)), eval c ↑v = pure <$> (↑fun v => Vector.get v (Fin.succ i)) v
[PROOFSTEP]
obtain ⟨c, h⟩ := IH
[GOAL]
case refine'_2.intro
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
i✝ : Fin n✝
n : ℕ
i : Fin n
c : Code
h : ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v
⊢ ∃ c, ∀ (v : Vector ℕ (Nat.succ n)), eval c ↑v = pure <$> (↑fun v => Vector.get v (Fin.succ i)) v
[PROOFSTEP]
exact ⟨c.comp tail, fun v => by simpa [← Vector.get_tail, Bind.bind] using h v.tail⟩
[GOAL]
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
i✝ : Fin n✝
n : ℕ
i : Fin n
c : Code
h : ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v
v : Vector ℕ (Nat.succ n)
⊢ eval (comp c tail) ↑v = pure <$> (↑fun v => Vector.get v (Fin.succ i)) v
[PROOFSTEP]
simpa [← Vector.get_tail, Bind.bind] using h v.tail
[GOAL]
case prim.comp
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Fin n✝ → Vector ℕ m✝ → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v
case prim.prec
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : Nat.Primrec' g✝
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v
⊢ ∃ c,
∀ (v : Vector ℕ (n✝ + 1)),
eval c ↑v =
pure <$>
(↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case prim.comp m n f g hf hg IHf IHg => simpa [Part.bind_eq_bind] using exists_code.comp IHf IHg
[GOAL]
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
m n : ℕ
f : Vector ℕ n → ℕ
g : Fin n → Vector ℕ m → ℕ
hf : Nat.Primrec' f
hg : ∀ (i : Fin n), Nat.Primrec' (g i)
IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v
IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ↑(g i) v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (↑fun a => f (Vector.ofFn fun i => g i a)) v
[PROOFSTEP]
case prim.comp m n f g hf hg IHf IHg => simpa [Part.bind_eq_bind] using exists_code.comp IHf IHg
[GOAL]
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
m n : ℕ
f : Vector ℕ n → ℕ
g : Fin n → Vector ℕ m → ℕ
hf : Nat.Primrec' f
hg : ∀ (i : Fin n), Nat.Primrec' (g i)
IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v
IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ↑(g i) v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (↑fun a => f (Vector.ofFn fun i => g i a)) v
[PROOFSTEP]
simpa [Part.bind_eq_bind] using exists_code.comp IHf IHg
[GOAL]
case prim.prec
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n : ℕ
f : Vector ℕ n → ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
g✝ : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f✝
a✝ : Nat.Primrec' g✝
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v
⊢ ∃ c,
∀ (v : Vector ℕ (n✝ + 1)),
eval c ↑v =
pure <$>
(↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case prim.prec n f g _ _ IHf IHg =>
obtain ⟨cf, hf⟩ := IHf
obtain ⟨cg, hg⟩ := IHg
simp only [Part.map_eq_map, Part.map_some, PFun.coe_val] at hf hg
refine' ⟨prec cf cg, fun v => _⟩
rw [← v.cons_head_tail]
specialize hf v.tail
replace hg := fun a b => hg (a ::ᵥ b ::ᵥ v.tail)
simp only [Vector.cons_val, Vector.tail_val] at hf hg
simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, Vector.tail_cons, Vector.head_cons, PFun.coe_val,
Vector.tail_val]
simp only [← Part.pure_eq_some] at hf hg ⊢
induction' v.head with n _ <;>
simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl,
Bind.bind, Functor.map]
suffices
∀ a b,
a + b = n →
(n.succ :: 0 :: g (n ::ᵥ Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) n ::ᵥ v.tail) :: v.val.tail :
List ℕ) ∈
PFun.fix
(fun v : List ℕ =>
Part.bind (cg.eval (v.headI :: v.tail.tail))
(fun x =>
Part.some
(if v.tail.headI = 0 then
Sum.inl (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail : List ℕ)
else Sum.inr (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail))))
(a :: b :: Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) a :: v.val.tail)
by
erw [Part.eq_some_iff.2 (this 0 n (zero_add n))]
simp only [List.headI, Part.bind_some, List.tail_cons]
intro a b e
induction' b with b IH generalizing a
· refine' PFun.mem_fix_iff.2 (Or.inl <| Part.eq_some_iff.1 _)
simp only [hg, ← e, Part.bind_some, List.tail_cons, pure]
rfl
· refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH (a + 1) (by rwa [add_right_comm])⟩)
simp only [hg, eval, Part.bind_some, Nat.rec_add_one, List.tail_nil, List.tail_cons, pure]
exact Part.mem_some_iff.2 rfl
[GOAL]
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v
IHg : ∃ c, ∀ (v : Vector ℕ (n + 2)), eval c ↑v = pure <$> ↑g v
⊢ ∃ c,
∀ (v : Vector ℕ (n + 1)),
eval c ↑v =
pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
[PROOFSTEP]
case prim.prec n f g _ _ IHf IHg =>
obtain ⟨cf, hf⟩ := IHf
obtain ⟨cg, hg⟩ := IHg
simp only [Part.map_eq_map, Part.map_some, PFun.coe_val] at hf hg
refine' ⟨prec cf cg, fun v => _⟩
rw [← v.cons_head_tail]
specialize hf v.tail
replace hg := fun a b => hg (a ::ᵥ b ::ᵥ v.tail)
simp only [Vector.cons_val, Vector.tail_val] at hf hg
simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, Vector.tail_cons, Vector.head_cons, PFun.coe_val,
Vector.tail_val]
simp only [← Part.pure_eq_some] at hf hg ⊢
induction' v.head with n _ <;>
simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl,
Bind.bind, Functor.map]
suffices
∀ a b,
a + b = n →
(n.succ :: 0 :: g (n ::ᵥ Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) n ::ᵥ v.tail) :: v.val.tail :
List ℕ) ∈
PFun.fix
(fun v : List ℕ =>
Part.bind (cg.eval (v.headI :: v.tail.tail))
(fun x =>
Part.some
(if v.tail.headI = 0 then
Sum.inl (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail : List ℕ)
else Sum.inr (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail))))
(a :: b :: Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) a :: v.val.tail)
by
erw [Part.eq_some_iff.2 (this 0 n (zero_add n))]
simp only [List.headI, Part.bind_some, List.tail_cons]
intro a b e
induction' b with b IH generalizing a
· refine' PFun.mem_fix_iff.2 (Or.inl <| Part.eq_some_iff.1 _)
simp only [hg, ← e, Part.bind_some, List.tail_cons, pure]
rfl
· refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH (a + 1) (by rwa [add_right_comm])⟩)
simp only [hg, eval, Part.bind_some, Nat.rec_add_one, List.tail_nil, List.tail_cons, pure]
exact Part.mem_some_iff.2 rfl
[GOAL]
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v
IHg : ∃ c, ∀ (v : Vector ℕ (n + 2)), eval c ↑v = pure <$> ↑g v
⊢ ∃ c,
∀ (v : Vector ℕ (n + 1)),
eval c ↑v =
pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
[PROOFSTEP]
obtain ⟨cf, hf⟩ := IHf
[GOAL]
case intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
IHg : ∃ c, ∀ (v : Vector ℕ (n + 2)), eval c ↑v = pure <$> ↑g v
cf : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> ↑f v
⊢ ∃ c,
∀ (v : Vector ℕ (n + 1)),
eval c ↑v =
pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
[PROOFSTEP]
obtain ⟨cg, hg⟩ := IHg
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> ↑f v
cg : Code
hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = pure <$> ↑g v
⊢ ∃ c,
∀ (v : Vector ℕ (n + 1)),
eval c ↑v =
pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
[PROOFSTEP]
simp only [Part.map_eq_map, Part.map_some, PFun.coe_val] at hf hg
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = Part.some (pure (f v))
hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v))
⊢ ∃ c,
∀ (v : Vector ℕ (n + 1)),
eval c ↑v =
pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
[PROOFSTEP]
refine' ⟨prec cf cg, fun v => _⟩
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = Part.some (pure (f v))
hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v))
v : Vector ℕ (n + 1)
⊢ eval (prec cf cg) ↑v =
pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v
[PROOFSTEP]
rw [← v.cons_head_tail]
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
hf : ∀ (v : Vector ℕ n), eval cf ↑v = Part.some (pure (f v))
hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v))
v : Vector ℕ (n + 1)
⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) =
pure <$>
(↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v))
(Vector.head v ::ᵥ Vector.tail v)
[PROOFSTEP]
specialize hf v.tail
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v))
v : Vector ℕ (n + 1)
hf : eval cf ↑(Vector.tail v) = Part.some (pure (f (Vector.tail v)))
⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) =
pure <$>
(↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v))
(Vector.head v ::ᵥ Vector.tail v)
[PROOFSTEP]
replace hg := fun a b => hg (a ::ᵥ b ::ᵥ v.tail)
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n + 1)
hf : eval cf ↑(Vector.tail v) = Part.some (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg ↑(a ::ᵥ b ::ᵥ Vector.tail v) = Part.some (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) =
pure <$>
(↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v))
(Vector.head v ::ᵥ Vector.tail v)
[PROOFSTEP]
simp only [Vector.cons_val, Vector.tail_val] at hf hg
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n + 1)
hf : eval cf (List.tail ↑v) = Part.some (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = Part.some (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) =
pure <$>
(↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v))
(Vector.head v ::ᵥ Vector.tail v)
[PROOFSTEP]
simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, Vector.tail_cons, Vector.head_cons, PFun.coe_val,
Vector.tail_val]
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n + 1)
hf : eval cf (List.tail ↑v) = Part.some (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = Part.some (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
⊢ eval (prec cf cg) (Vector.head v :: List.tail ↑v) =
Part.some (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)))
[PROOFSTEP]
simp only [← Part.pure_eq_some] at hf hg ⊢
[GOAL]
case intro.intro
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
⊢ eval (prec cf cg) (Vector.head v :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)))
[PROOFSTEP]
induction' v.head with n _
[GOAL]
case intro.intro.zero
n✝¹ : ℕ
f✝¹ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f✝ : Vector ℕ n✝ → ℕ
n : ℕ
f : Vector ℕ n → ℕ
g : Vector ℕ (n + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
⊢ eval (prec cf cg) (Nat.zero :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) Nat.zero))
[PROOFSTEP]
simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl,
Bind.bind, Functor.map]
[GOAL]
case intro.intro.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
⊢ eval (prec cf cg) (Nat.succ n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Nat.succ n)))
[PROOFSTEP]
simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl,
Bind.bind, Functor.map]
[GOAL]
case intro.intro.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
⊢ (Part.bind
(PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(0 :: n :: f (Vector.tail v) :: List.tail ↑v))
fun x => Part.some [List.headI (List.tail (List.tail x))]) =
Part.some [g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v)]
[PROOFSTEP]
suffices
∀ a b,
a + b = n →
(n.succ :: 0 :: g (n ::ᵥ Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) n ::ᵥ v.tail) :: v.val.tail :
List ℕ) ∈
PFun.fix
(fun v : List ℕ =>
Part.bind (cg.eval (v.headI :: v.tail.tail))
(fun x =>
Part.some
(if v.tail.headI = 0 then
Sum.inl (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail : List ℕ)
else Sum.inr (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail))))
(a :: b :: Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) a :: v.val.tail)
by
erw [Part.eq_some_iff.2 (this 0 n (zero_add n))]
simp only [List.headI, Part.bind_some, List.tail_cons]
[GOAL]
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
this :
∀ (a b : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
⊢ (Part.bind
(PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(0 :: n :: f (Vector.tail v) :: List.tail ↑v))
fun x => Part.some [List.headI (List.tail (List.tail x))]) =
Part.some [g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v)]
[PROOFSTEP]
erw [Part.eq_some_iff.2 (this 0 n (zero_add n))]
[GOAL]
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
this :
∀ (a b : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
⊢ (Part.bind
(Part.some
(Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v))
fun x => Part.some [List.headI (List.tail (List.tail x))]) =
Part.some [g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v)]
[PROOFSTEP]
simp only [List.headI, Part.bind_some, List.tail_cons]
[GOAL]
case intro.intro.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
⊢ ∀ (a b : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
[PROOFSTEP]
intro a b e
[GOAL]
case intro.intro.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝¹ : Nat.Primrec' f
a✝ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a b : ℕ
e : a + b = n
⊢ Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
[PROOFSTEP]
induction' b with b IH generalizing a
[GOAL]
case intro.intro.succ.zero
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b : ℕ
e✝ : a✝ + b = n
a : ℕ
e : a + Nat.zero = n
⊢ Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
[PROOFSTEP]
refine' PFun.mem_fix_iff.2 (Or.inl <| Part.eq_some_iff.1 _)
[GOAL]
case intro.intro.succ.zero
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b : ℕ
e✝ : a✝ + b = n
a : ℕ
e : a + Nat.zero = n
⊢ (Part.bind
(eval cg
(List.headI
(a ::
Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ::
List.tail
(List.tail
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))))
fun x =>
Part.some
(if
List.headI
(List.tail
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) =
0 then
Sum.inl
(Nat.succ
(List.headI
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(List.tail
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v))) ::
List.headI x ::
List.tail
(List.tail
(List.tail
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v))))
else
Sum.inr
(Nat.succ
(List.headI
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(List.tail
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v))) ::
List.headI x ::
List.tail
(List.tail
(List.tail
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v)))))) =
Part.some
(Sum.inl
(Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v))
[PROOFSTEP]
simp only [hg, ← e, Part.bind_some, List.tail_cons, pure]
[GOAL]
case intro.intro.succ.zero
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b : ℕ
e✝ : a✝ + b = n
a : ℕ
e : a + Nat.zero = n
⊢ Part.some
(if
List.headI
(Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) =
0 then
Sum.inl
(Nat.succ
(List.headI
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
List.headI
(List.ret
(g
(List.headI
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v) ::ᵥ
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ
Vector.tail v))) ::
List.tail ↑v)
else
Sum.inr
(Nat.succ
(List.headI
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
List.headI
(List.ret
(g
(List.headI
(a ::
Nat.zero ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v) ::ᵥ
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ
Vector.tail v))) ::
List.tail ↑v)) =
Part.some
(Sum.inl
(Nat.succ (a + Nat.zero) ::
0 ::
g
((a + Nat.zero) ::ᵥ
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (a + Nat.zero) ::ᵥ
Vector.tail v) ::
List.tail ↑v))
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.succ.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b✝ : ℕ
e✝ : a✝ + b✝ = n
b : ℕ
IH :
∀ (a : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
a : ℕ
e : a + Nat.succ b = n
⊢ Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
[PROOFSTEP]
refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH (a + 1) (by rwa [add_right_comm])⟩)
[GOAL]
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b✝ : ℕ
e✝ : a✝ + b✝ = n
b : ℕ
IH :
∀ (a : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
a : ℕ
e : a + Nat.succ b = n
⊢ a + 1 + b = n
[PROOFSTEP]
rwa [add_right_comm]
[GOAL]
case intro.intro.succ.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b✝ : ℕ
e✝ : a✝ + b✝ = n
b : ℕ
IH :
∀ (a : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
a : ℕ
e : a + Nat.succ b = n
⊢ Sum.inr
((a + 1) ::
b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (a + 1) :: List.tail ↑v) ∈
Part.bind
(eval cg
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ::
List.tail
(List.tail
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))))
fun x =>
Part.some
(if
List.headI
(List.tail
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) =
0 then
Sum.inl
(Nat.succ
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(List.tail
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v))) ::
List.headI x ::
List.tail
(List.tail
(List.tail
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v))))
else
Sum.inr
(Nat.succ
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(List.tail
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v))) ::
List.headI x ::
List.tail
(List.tail
(List.tail
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v)))))
[PROOFSTEP]
simp only [hg, eval, Part.bind_some, Nat.rec_add_one, List.tail_nil, List.tail_cons, pure]
[GOAL]
case intro.intro.succ.succ
n✝² : ℕ
f✝¹ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ → ℕ
n✝ : ℕ
f : Vector ℕ n✝ → ℕ
g : Vector ℕ (n✝ + 2) → ℕ
a✝² : Nat.Primrec' f
a✝¹ : Nat.Primrec' g
cf cg : Code
v : Vector ℕ (n✝ + 1)
hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v)))
hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v)))
n : ℕ
n_ih✝ :
eval (prec cf cg) (n :: List.tail ↑v) =
pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n))
a✝ b✝ : ℕ
e✝ : a✝ + b✝ = n
b : ℕ
IH :
∀ (a : ℕ),
a + b = n →
Nat.succ n ::
0 ::
g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) ::
List.tail ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x =>
Part.some
(if List.headI (List.tail v) = 0 then
Sum.inl
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))
else
Sum.inr
(Nat.succ (List.headI v) ::
Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v)))))
(a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)
a : ℕ
e : a + Nat.succ b = n
⊢ Sum.inr
((a + 1) ::
b ::
g (a ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ Vector.tail v) ::
List.tail ↑v) ∈
Part.some
(if
List.headI
(Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) =
0 then
Sum.inl
(Nat.succ
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
List.headI
(List.ret
(g
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v) ::ᵥ
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ
Vector.tail v))) ::
List.tail ↑v)
else
Sum.inr
(Nat.succ
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
Nat.pred
(List.headI
(Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) ::
List.headI
(List.ret
(g
(List.headI
(a ::
Nat.succ b ::
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::
List.tail ↑v) ::ᵥ
Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ
Vector.tail v))) ::
List.tail ↑v))
[PROOFSTEP]
exact Part.mem_some_iff.2 rfl
[GOAL]
case comp
n : ℕ
f : Vector ℕ n →. ℕ
m✝ n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ
a✝¹ : Nat.Partrec' f✝
a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i)
a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v
a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v
⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case comp m n f g _ _ IHf IHg => exact exists_code.comp IHf IHg
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
a✝¹ : Nat.Partrec' f
a✝ : ∀ (i : Fin n), Nat.Partrec' (g i)
IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v
IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g i v) >>= f) v
[PROOFSTEP]
case comp m n f g _ _ IHf IHg => exact exists_code.comp IHf IHg
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
m n : ℕ
f : Vector ℕ n →. ℕ
g : Fin n → Vector ℕ m →. ℕ
a✝¹ : Nat.Partrec' f
a✝ : ∀ (i : Fin n), Nat.Partrec' (g i)
IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v
IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v
⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g i v) >>= f) v
[PROOFSTEP]
exact exists_code.comp IHf IHg
[GOAL]
case rfind
n : ℕ
f : Vector ℕ n →. ℕ
n✝ : ℕ
f✝ : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f✝
a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v
⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v
[PROOFSTEP]
case rfind n f _ IHf =>
obtain ⟨cf, hf⟩ := IHf; refine' ⟨rfind cf, fun v => _⟩
replace hf := fun a => hf (a ::ᵥ v)
simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, PFun.coe_val, show ∀ x, pure x = [x] from fun _ => rfl] at
hf ⊢
refine' Part.ext fun x => _
simp only [rfind, Part.bind_eq_bind, Part.pure_eq_some, Part.map_eq_map, Part.bind_some, exists_prop, cons_eval,
comp_eval, fix_eval, tail_eval, succ_eval, zero'_eval, List.headI_nil, List.headI_cons, pred_eval, Part.map_some,
Bool.false_eq_decide_iff, Part.mem_bind_iff, List.length, Part.mem_map_iff, Nat.mem_rfind, List.tail_nil,
List.tail_cons, Bool.true_eq_decide_iff, Part.mem_some_iff, Part.map_bind]
constructor
· rintro ⟨v', h1, rfl⟩
suffices
∀ v₁ : List ℕ,
v' ∈
PFun.fix
(fun v =>
(cf.eval v).bind fun y =>
Part.some <|
if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))
v₁ →
∀ n,
(v₁ = n :: v.val) →
(∀ m < n, ¬f (m ::ᵥ v) = 0) →
∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred]
by exact this _ h1 0 rfl (by rintro _ ⟨⟩)
clear h1
intro v₀ h1
refine' PFun.fixInduction h1 fun v₁ h2 IH => _
clear h1
rintro n rfl hm
have := PFun.mem_fix_iff.1 h2
simp only [hf, Part.bind_some] at this
split_ifs at this with h
· simp only [List.headI_nil, List.headI_cons, exists_false, or_false_iff, Part.mem_some_iff, List.tail_cons,
false_and_iff, Sum.inl.injEq] at this
subst this
exact ⟨_, ⟨h, @(hm)⟩, rfl⟩
· refine' IH (n.succ :: v.val) (by simp_all) _ rfl fun m h' => _
obtain h | rfl := Nat.lt_succ_iff_lt_or_eq.1 h'
exacts [hm _ h, h]
· rintro ⟨n, ⟨hn, hm⟩, rfl⟩
refine' ⟨n.succ :: v.1, _, rfl⟩
have :
(n.succ :: v.1 : List ℕ) ∈
PFun.fix
(fun v =>
(cf.eval v).bind fun y =>
Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))
(n :: v.val) :=
PFun.mem_fix_iff.2 (Or.inl (by simp [hf, hn]))
generalize (n.succ :: v.1 : List ℕ) = w at this ⊢
clear hn
induction' n with n IH
· exact this
refine' IH (fun {m} h' => hm (Nat.lt_succ_of_lt h')) (PFun.mem_fix_iff.2 (Or.inr ⟨_, _, this⟩))
simp only [hf, hm n.lt_succ_self, Part.bind_some, List.headI, eq_self_iff_true, if_false, Part.mem_some_iff,
and_self_iff, List.tail_cons]
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
IHf : ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> ↑f v
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v
[PROOFSTEP]
case rfind n f _ IHf =>
obtain ⟨cf, hf⟩ := IHf; refine' ⟨rfind cf, fun v => _⟩
replace hf := fun a => hf (a ::ᵥ v)
simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, PFun.coe_val, show ∀ x, pure x = [x] from fun _ => rfl] at
hf ⊢
refine' Part.ext fun x => _
simp only [rfind, Part.bind_eq_bind, Part.pure_eq_some, Part.map_eq_map, Part.bind_some, exists_prop, cons_eval,
comp_eval, fix_eval, tail_eval, succ_eval, zero'_eval, List.headI_nil, List.headI_cons, pred_eval, Part.map_some,
Bool.false_eq_decide_iff, Part.mem_bind_iff, List.length, Part.mem_map_iff, Nat.mem_rfind, List.tail_nil,
List.tail_cons, Bool.true_eq_decide_iff, Part.mem_some_iff, Part.map_bind]
constructor
· rintro ⟨v', h1, rfl⟩
suffices
∀ v₁ : List ℕ,
v' ∈
PFun.fix
(fun v =>
(cf.eval v).bind fun y =>
Part.some <|
if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))
v₁ →
∀ n,
(v₁ = n :: v.val) →
(∀ m < n, ¬f (m ::ᵥ v) = 0) →
∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred]
by exact this _ h1 0 rfl (by rintro _ ⟨⟩)
clear h1
intro v₀ h1
refine' PFun.fixInduction h1 fun v₁ h2 IH => _
clear h1
rintro n rfl hm
have := PFun.mem_fix_iff.1 h2
simp only [hf, Part.bind_some] at this
split_ifs at this with h
· simp only [List.headI_nil, List.headI_cons, exists_false, or_false_iff, Part.mem_some_iff, List.tail_cons,
false_and_iff, Sum.inl.injEq] at this
subst this
exact ⟨_, ⟨h, @(hm)⟩, rfl⟩
· refine' IH (n.succ :: v.val) (by simp_all) _ rfl fun m h' => _
obtain h | rfl := Nat.lt_succ_iff_lt_or_eq.1 h'
exacts [hm _ h, h]
· rintro ⟨n, ⟨hn, hm⟩, rfl⟩
refine' ⟨n.succ :: v.1, _, rfl⟩
have :
(n.succ :: v.1 : List ℕ) ∈
PFun.fix
(fun v =>
(cf.eval v).bind fun y =>
Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))
(n :: v.val) :=
PFun.mem_fix_iff.2 (Or.inl (by simp [hf, hn]))
generalize (n.succ :: v.1 : List ℕ) = w at this ⊢
clear hn
induction' n with n IH
· exact this
refine' IH (fun {m} h' => hm (Nat.lt_succ_of_lt h')) (PFun.mem_fix_iff.2 (Or.inr ⟨_, _, this⟩))
simp only [hf, hm n.lt_succ_self, Part.bind_some, List.headI, eq_self_iff_true, if_false, Part.mem_some_iff,
and_self_iff, List.tail_cons]
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
IHf : ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> ↑f v
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v
[PROOFSTEP]
obtain ⟨cf, hf⟩ := IHf
[GOAL]
case intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
hf : ∀ (v : Vector ℕ (n + 1)), eval cf ↑v = pure <$> ↑f v
⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v
[PROOFSTEP]
refine' ⟨rfind cf, fun v => _⟩
[GOAL]
case intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
hf : ∀ (v : Vector ℕ (n + 1)), eval cf ↑v = pure <$> ↑f v
v : Vector ℕ n
⊢ eval (rfind cf) ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v
[PROOFSTEP]
replace hf := fun a => hf (a ::ᵥ v)
[GOAL]
case intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf ↑(a ::ᵥ v) = pure <$> ↑f (a ::ᵥ v)
⊢ eval (rfind cf) ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v
[PROOFSTEP]
simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, PFun.coe_val, show ∀ x, pure x = [x] from fun _ => rfl] at
hf ⊢
[GOAL]
case intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
⊢ eval (rfind cf) ↑v = Part.map pure (Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0)))
[PROOFSTEP]
refine' Part.ext fun x => _
[GOAL]
case intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
x : List ℕ
⊢ x ∈ eval (rfind cf) ↑v ↔ x ∈ Part.map pure (Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0)))
[PROOFSTEP]
simp only [rfind, Part.bind_eq_bind, Part.pure_eq_some, Part.map_eq_map, Part.bind_some, exists_prop, cons_eval,
comp_eval, fix_eval, tail_eval, succ_eval, zero'_eval, List.headI_nil, List.headI_cons, pred_eval, Part.map_some,
Bool.false_eq_decide_iff, Part.mem_bind_iff, List.length, Part.mem_map_iff, Nat.mem_rfind, List.tail_nil,
List.tail_cons, Bool.true_eq_decide_iff, Part.mem_some_iff, Part.map_bind]
[GOAL]
case intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
x : List ℕ
⊢ (∃ a,
a ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v) ∧
x = [Nat.pred (List.headI a)]) ↔
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x
[PROOFSTEP]
constructor
[GOAL]
case intro.mp
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
x : List ℕ
⊢ (∃ a,
a ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v) ∧
x = [Nat.pred (List.headI a)]) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x
[PROOFSTEP]
rintro ⟨v', h1, rfl⟩
[GOAL]
case intro.mp.intro.intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' : List ℕ
h1 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = [Nat.pred (List.headI v')]
[PROOFSTEP]
suffices
∀ v₁ : List ℕ,
v' ∈
PFun.fix
(fun v =>
(cf.eval v).bind fun y =>
Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))
v₁ →
∀ n,
(v₁ = n :: v.val) →
(∀ m < n, ¬f (m ::ᵥ v) = 0) →
∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred]
by exact this _ h1 0 rfl (by rintro _ ⟨⟩)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' : List ℕ
h1 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
this :
∀ (v₁ : List ℕ),
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₁ →
∀ (n_1 : ℕ),
v₁ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = [Nat.pred (List.headI v')]
[PROOFSTEP]
exact this _ h1 0 rfl (by rintro _ ⟨⟩)
[GOAL]
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' : List ℕ
h1 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
this :
∀ (v₁ : List ℕ),
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₁ →
∀ (n_1 : ℕ),
v₁ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
⊢ ∀ (m : ℕ), m < 0 → ¬f (m ::ᵥ v) = 0
[PROOFSTEP]
rintro _ ⟨⟩
[GOAL]
case intro.mp.intro.intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' : List ℕ
h1 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
⊢ ∀ (v₁ : List ℕ),
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₁ →
∀ (n_1 : ℕ),
v₁ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
clear h1
[GOAL]
case intro.mp.intro.intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' : List ℕ
⊢ ∀ (v₁ : List ℕ),
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₁ →
∀ (n_1 : ℕ),
v₁ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
intro v₀ h1
[GOAL]
case intro.mp.intro.intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
h1 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₀
⊢ ∀ (n_1 : ℕ),
v₀ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
refine' PFun.fixInduction h1 fun v₁ h2 IH => _
[GOAL]
case intro.mp.intro.intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
h1 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₀
v₁ : List ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₁
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf v₁) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v₁) :: List.tail v₁)
else Sum.inr (Nat.succ (List.headI v₁) :: List.tail v₁))) →
∀ (n_1 : ℕ),
a'' = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
⊢ ∀ (n_1 : ℕ),
v₁ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
clear h1
[GOAL]
case intro.mp.intro.intro
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ v₁ : List ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
v₁
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf v₁) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v₁) :: List.tail v₁)
else Sum.inr (Nat.succ (List.headI v₁) :: List.tail v₁))) →
∀ (n_1 : ℕ),
a'' = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
⊢ ∀ (n_1 : ℕ),
v₁ = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
rintro n rfl hm
[GOAL]
case intro.mp.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
have := PFun.mem_fix_iff.1 h2
[GOAL]
case intro.mp.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
this :
(Sum.inl v' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) ∨
∃ a',
(Sum.inr a' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
simp only [hf, Part.bind_some] at this
[GOAL]
case intro.mp.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
this :
Sum.inl v' ∈
Part.some
(if List.headI [f (n ::ᵥ v)] = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨
∃ a',
Sum.inr a' ∈
Part.some
(if List.headI [f (n ::ᵥ v)] = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
split_ifs at this with h
[GOAL]
case pos
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h : List.headI [f (n ::ᵥ v)] = 0
this :
Sum.inl v' ∈ Part.some (Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
simp only [List.headI_nil, List.headI_cons, exists_false, or_false_iff, Part.mem_some_iff, List.tail_cons,
false_and_iff, Sum.inl.injEq] at this
[GOAL]
case pos
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h : List.headI [f (n ::ᵥ v)] = 0
this : v' = Nat.succ n :: ↑v
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
subst this
[GOAL]
case pos
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v₀ : List ℕ
n : ℕ
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h : List.headI [f (n ::ᵥ v)] = 0
h2 :
Nat.succ n :: ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n_1 : ℕ),
a'' = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a,
(f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI (Nat.succ n :: ↑v))]
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI (Nat.succ n :: ↑v))]
[PROOFSTEP]
exact ⟨_, ⟨h, @(hm)⟩, rfl⟩
[GOAL]
case neg
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h : ¬List.headI [f (n ::ᵥ v)] = 0
this :
Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
[PROOFSTEP]
refine' IH (n.succ :: v.val) (by simp_all) _ rfl fun m h' => _
[GOAL]
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h : ¬List.headI [f (n ::ᵥ v)] = 0
this :
Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
⊢ Sum.inr (Nat.succ n :: ↑v) ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))
[PROOFSTEP]
simp_all
[GOAL]
case neg
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h : ¬List.headI [f (n ::ᵥ v)] = 0
this :
Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
m : ℕ
h' : m < Nat.succ n
⊢ ¬f (m ::ᵥ v) = 0
[PROOFSTEP]
obtain h | rfl := Nat.lt_succ_iff_lt_or_eq.1 h'
[GOAL]
case neg.inl
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
n : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) →
∀ (n : ℕ),
a'' = n :: ↑v →
(∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0
h✝ : ¬List.headI [f (n ::ᵥ v)] = 0
this :
Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
m : ℕ
h' : m < Nat.succ n
h : m < n
⊢ ¬f (m ::ᵥ v) = 0
case neg.inr
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
v' v₀ : List ℕ
m : ℕ
h2 :
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(m :: ↑v)
IH :
∀ (a'' : List ℕ),
(Sum.inr a'' ∈
Part.bind (eval cf (m :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v))
else Sum.inr (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v)))) →
∀ (n_1 : ℕ),
a'' = n_1 :: ↑v →
(∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) →
∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')]
hm : ∀ (m_1 : ℕ), m_1 < m → ¬f (m_1 ::ᵥ v) = 0
h : ¬List.headI [f (m ::ᵥ v)] = 0
this :
Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v))) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v))) ∧
v' ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
a'
h' : m < Nat.succ m
⊢ ¬f (m ::ᵥ v) = 0
[PROOFSTEP]
exacts [hm _ h, h]
[GOAL]
case intro.mpr
n✝ : ℕ
f✝ : Vector ℕ n✝ →. ℕ
n : ℕ
f : Vector ℕ (n + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
x : List ℕ
⊢ (∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x) →
∃ a,
a ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v) ∧
x = [Nat.pred (List.headI a)]
[PROOFSTEP]
rintro ⟨n, ⟨hn, hm⟩, rfl⟩
[GOAL]
case intro.mpr.intro.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hn : f (n ::ᵥ v) = 0
hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
⊢ ∃ a,
a ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v) ∧
pure n = [Nat.pred (List.headI a)]
[PROOFSTEP]
refine' ⟨n.succ :: v.1, _, rfl⟩
[GOAL]
case intro.mpr.intro.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hn : f (n ::ᵥ v) = 0
hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
⊢ Nat.succ n :: ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
[PROOFSTEP]
have :
(n.succ :: v.1 : List ℕ) ∈
PFun.fix
(fun v =>
(cf.eval v).bind fun y =>
Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail))
(n :: v.val) :=
PFun.mem_fix_iff.2 (Or.inl (by simp [hf, hn]))
[GOAL]
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hn : f (n ::ᵥ v) = 0
hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
⊢ Sum.inl (Nat.succ n :: ↑v) ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))
[PROOFSTEP]
simp [hf, hn]
[GOAL]
case intro.mpr.intro.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hn : f (n ::ᵥ v) = 0
hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
this :
Nat.succ n :: ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
⊢ Nat.succ n :: ↑v ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
[PROOFSTEP]
generalize (n.succ :: v.1 : List ℕ) = w at this ⊢
[GOAL]
case intro.mpr.intro.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hn : f (n ::ᵥ v) = 0
hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
w : List ℕ
this :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
⊢ w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
[PROOFSTEP]
clear hn
[GOAL]
case intro.mpr.intro.intro.intro
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
w : List ℕ
this :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
⊢ w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
[PROOFSTEP]
induction' n with n IH
[GOAL]
case intro.mpr.intro.intro.intro.zero
n✝¹ : ℕ
f✝ : Vector ℕ n✝¹ →. ℕ
n✝ : ℕ
f : Vector ℕ (n✝ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n : ℕ
hm✝ : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0
w : List ℕ
this✝ :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v)
hm : ∀ {m : ℕ}, m < Nat.zero → ¬f (m ::ᵥ v) = 0
this :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(Nat.zero :: ↑v)
⊢ w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
[PROOFSTEP]
exact this
[GOAL]
case intro.mpr.intro.intro.intro.succ
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ (n✝¹ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝¹
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n✝ : ℕ
hm✝ : ∀ {m : ℕ}, m < n✝ → ¬f (m ::ᵥ v) = 0
w : List ℕ
this✝ :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n✝ :: ↑v)
n : ℕ
IH :
(∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0) →
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v) →
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
hm : ∀ {m : ℕ}, m < Nat.succ n → ¬f (m ::ᵥ v) = 0
this :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(Nat.succ n :: ↑v)
⊢ w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
[PROOFSTEP]
refine' IH (fun {m} h' => hm (Nat.lt_succ_of_lt h')) (PFun.mem_fix_iff.2 (Or.inr ⟨_, _, this⟩))
[GOAL]
case intro.mpr.intro.intro.intro.succ
n✝² : ℕ
f✝ : Vector ℕ n✝² →. ℕ
n✝¹ : ℕ
f : Vector ℕ (n✝¹ + 1) → ℕ
a✝ : Nat.Partrec' ↑f
cf : Code
v : Vector ℕ n✝¹
hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)]
n✝ : ℕ
hm✝ : ∀ {m : ℕ}, m < n✝ → ¬f (m ::ᵥ v) = 0
w : List ℕ
this✝ :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n✝ :: ↑v)
n : ℕ
IH :
(∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0) →
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(n :: ↑v) →
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(0 :: ↑v)
hm : ∀ {m : ℕ}, m < Nat.succ n → ¬f (m ::ᵥ v) = 0
this :
w ∈
PFun.fix
(fun v =>
Part.bind (eval cf v) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v)
else Sum.inr (Nat.succ (List.headI v) :: List.tail v)))
(Nat.succ n :: ↑v)
⊢ Sum.inr (Nat.succ n :: ↑v) ∈
Part.bind (eval cf (n :: ↑v)) fun y =>
Part.some
(if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))
else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))
[PROOFSTEP]
simp only [hf, hm n.lt_succ_self, Part.bind_some, List.headI, eq_self_iff_true, if_false, Part.mem_some_iff,
and_self_iff, List.tail_cons]
[GOAL]
k k' : Cont
v : List ℕ
⊢ eval (then k k') v = eval k v >>= eval k'
[PROOFSTEP]
induction' k with _ _ _ _ _ _ _ _ _ k_ih _ _ k_ih generalizing v
[GOAL]
case halt
k' : Cont
v✝ v : List ℕ
⊢ eval (then halt k') v = eval halt v >>= eval k'
[PROOFSTEP]
simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *]
[GOAL]
case cons₁
k' : Cont
v✝ : List ℕ
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ eval (then (cons₁ a✝² a✝¹ a✝) k') v = eval (cons₁ a✝² a✝¹ a✝) v >>= eval k'
[PROOFSTEP]
simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *]
[GOAL]
case cons₂
k' : Cont
v✝ a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ eval (then (cons₂ a✝¹ a✝) k') v = eval (cons₂ a✝¹ a✝) v >>= eval k'
[PROOFSTEP]
simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *]
[GOAL]
case comp
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ eval (then (comp a✝¹ a✝) k') v = eval (comp a✝¹ a✝) v >>= eval k'
[PROOFSTEP]
simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *]
[GOAL]
case fix
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ eval (then (fix a✝¹ a✝) k') v = eval (fix a✝¹ a✝) v >>= eval k'
[PROOFSTEP]
simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *]
[GOAL]
case comp
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ Code.eval a✝¹ v >>= eval (then a✝ k') = Code.eval a✝¹ v >>= fun x => eval a✝ x >>= eval k'
[PROOFSTEP]
simp only [← k_ih]
[GOAL]
case fix
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ (if List.headI v = 0 then eval a✝ (List.tail v) >>= eval k'
else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval (then a✝ k')) =
(if List.headI v = 0 then eval a✝ (List.tail v) else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval a✝) >>= eval k'
[PROOFSTEP]
split_ifs <;> [rfl; simp only [← k_ih, bind_assoc]]
[GOAL]
case fix
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
⊢ (if List.headI v = 0 then eval a✝ (List.tail v) >>= eval k'
else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval (then a✝ k')) =
(if List.headI v = 0 then eval a✝ (List.tail v) else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval a✝) >>= eval k'
[PROOFSTEP]
split_ifs
[GOAL]
case pos
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
h✝ : List.headI v = 0
⊢ eval a✝ (List.tail v) >>= eval k' = eval a✝ (List.tail v) >>= eval k'
[PROOFSTEP]
rfl
[GOAL]
case neg
k' : Cont
v✝ : List ℕ
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k'
v : List ℕ
h✝ : ¬List.headI v = 0
⊢ Code.eval (Code.fix a✝¹) (List.tail v) >>= eval (then a✝ k') =
Code.eval (Code.fix a✝¹) (List.tail v) >>= eval a✝ >>= eval k'
[PROOFSTEP]
simp only [← k_ih, bind_assoc]
[GOAL]
c : Code
k k' : Cont
v : List ℕ
⊢ stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
[PROOFSTEP]
induction c generalizing k v
[GOAL]
case zero'
k' k : Cont
v : List ℕ
⊢ stepNormal Code.zero' (Cont.then k k') v = Cfg.then (stepNormal Code.zero' k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case succ
k' k : Cont
v : List ℕ
⊢ stepNormal Code.succ (Cont.then k k') v = Cfg.then (stepNormal Code.succ k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case tail
k' k : Cont
v : List ℕ
⊢ stepNormal Code.tail (Cont.then k k') v = Cfg.then (stepNormal Code.tail k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case cons
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal (Code.cons a✝¹ a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.cons a✝¹ a✝) k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal (Code.comp a✝¹ a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.comp a✝¹ a✝) k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal (Code.case a✝¹ a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.case a✝¹ a✝) k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal (Code.fix a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.fix a✝) k v) k'
[PROOFSTEP]
simp only [Cont.then, stepNormal, *]
[GOAL]
case zero'
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') (0 :: v) = Cfg.then (Cfg.ret k (0 :: v)) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case zero'
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') (0 :: v) = Cfg.then (Cfg.ret k (0 :: v)) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case zero'
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') (0 :: v) = Cfg.then (Cfg.ret k (0 :: v)) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') [Nat.succ (List.headI v)] = Cfg.then (Cfg.ret k [Nat.succ (List.headI v)]) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case succ
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') [Nat.succ (List.headI v)] = Cfg.then (Cfg.ret k [Nat.succ (List.headI v)]) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case succ
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') [Nat.succ (List.headI v)] = Cfg.then (Cfg.ret k [Nat.succ (List.headI v)]) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
[PROOFSTEP]
done
[GOAL]
case tail
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') (List.tail v) = Cfg.then (Cfg.ret k (List.tail v)) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case tail
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') (List.tail v) = Cfg.then (Cfg.ret k (List.tail v)) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case tail
k' k : Cont
v : List ℕ
⊢ Cfg.ret (Cont.then k k') (List.tail v) = Cfg.then (Cfg.ret k (List.tail v)) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
[PROOFSTEP]
done
[GOAL]
case cons
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case cons
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case cons
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case cons
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v =
(match (motive := Cfg → Cont → Cfg) stepNormal a✝¹ (Cont.cons₁ a✝ v k) v with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v =
(match (motive := Cfg → Cont → Cfg) stepNormal a✝ (Cont.comp a✝¹ k) v with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(List.headI v) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(List.headI v) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(List.headI v) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec
((match (motive := Cfg → Cont → Cfg) stepNormal a✝¹ k (List.tail v) with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k')
(fun y x =>
(match (motive := Cfg → Cont → Cfg) stepNormal a✝ k (y :: List.tail v) with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k')
(List.headI v) =
(match (motive := Cfg → Cont → Cfg)
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v) with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v =
(match (motive := Cfg → Cont → Cfg) stepNormal a✝ (Cont.fix a✝ k) v with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case cons
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k'
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(List.headI v) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k'
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'
[PROOFSTEP]
case cons c c' ih _ => rw [← ih, Cont.then]
[GOAL]
k' : Cont
c c' : Code
ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k'
k : Cont
v : List ℕ
⊢ stepNormal c (Cont.cons₁ c' v (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.cons₁ c' v k) v) k'
[PROOFSTEP]
case cons c c' ih _ => rw [← ih, Cont.then]
[GOAL]
k' : Cont
c c' : Code
ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k'
k : Cont
v : List ℕ
⊢ stepNormal c (Cont.cons₁ c' v (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.cons₁ c' v k) v) k'
[PROOFSTEP]
rw [← ih, Cont.then]
[GOAL]
case comp
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k'
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(List.headI v) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k'
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'
[PROOFSTEP]
case comp c c' _ ih' => rw [← ih', Cont.then]
[GOAL]
k' : Cont
c c' : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
ih' : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k'
k : Cont
v : List ℕ
⊢ stepNormal c' (Cont.comp c (Cont.then k k')) v = Cfg.then (stepNormal c' (Cont.comp c k) v) k'
[PROOFSTEP]
case comp c c' _ ih' => rw [← ih', Cont.then]
[GOAL]
k' : Cont
c c' : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
ih' : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k'
k : Cont
v : List ℕ
⊢ stepNormal c' (Cont.comp c (Cont.then k k')) v = Cfg.then (stepNormal c' (Cont.comp c k) v) k'
[PROOFSTEP]
rw [← ih', Cont.then]
[GOAL]
case case
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(List.headI v) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k'
[PROOFSTEP]
cases v.headI
[GOAL]
case case.zero
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
Nat.zero =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) Nat.zero) k'
[PROOFSTEP]
simp only [Nat.rec]
[GOAL]
case case.succ
k' : Cont
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
n✝ : ℕ
⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k')
(Nat.succ n✝) =
Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (Nat.succ n✝)) k'
[PROOFSTEP]
simp only [Nat.rec]
[GOAL]
case fix
k' : Cont
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k'
k : Cont
v : List ℕ
⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k'
[PROOFSTEP]
case fix c ih => rw [← ih, Cont.then]
[GOAL]
k' : Cont
c : Code
ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
k : Cont
v : List ℕ
⊢ stepNormal c (Cont.fix c (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.fix c k) v) k'
[PROOFSTEP]
case fix c ih => rw [← ih, Cont.then]
[GOAL]
k' : Cont
c : Code
ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k'
k : Cont
v : List ℕ
⊢ stepNormal c (Cont.fix c (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.fix c k) v) k'
[PROOFSTEP]
rw [← ih, Cont.then]
[GOAL]
k k' : Cont
v : List ℕ
⊢ stepRet (Cont.then k k') v = Cfg.then (stepRet k v) k'
[PROOFSTEP]
induction k generalizing v
[GOAL]
case halt
k' : Cont
v : List ℕ
⊢ stepRet (Cont.then Cont.halt k') v = Cfg.then (stepRet Cont.halt v) k'
[PROOFSTEP]
simp only [Cont.then, stepRet, *]
[GOAL]
case cons₁
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepRet (Cont.then (Cont.cons₁ a✝² a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) k'
[PROOFSTEP]
simp only [Cont.then, stepRet, *]
[GOAL]
case cons₂
k' : Cont
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepRet (Cont.then (Cont.cons₂ a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.cons₂ a✝¹ a✝) v) k'
[PROOFSTEP]
simp only [Cont.then, stepRet, *]
[GOAL]
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepRet (Cont.then (Cont.comp a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.comp a✝¹ a✝) v) k'
[PROOFSTEP]
simp only [Cont.then, stepRet, *]
[GOAL]
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepRet (Cont.then (Cont.fix a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.fix a✝¹ a✝) v) k'
[PROOFSTEP]
simp only [Cont.then, stepRet, *]
[GOAL]
case halt
k' : Cont
v : List ℕ
⊢ stepRet k' v = Cfg.then (Cfg.halt v) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case halt
k' : Cont
v : List ℕ
⊢ stepRet k' v = Cfg.then (Cfg.halt v) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case halt
k' : Cont
v : List ℕ
⊢ stepRet k' v = Cfg.then (Cfg.halt v) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
[PROOFSTEP]
done
[GOAL]
case cons₁
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case cons₁
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case cons₁
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case cons₁
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ =
(match (motive := Cfg → Cont → Cfg) stepNormal a✝² (Cont.cons₂ v a✝) a✝¹ with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v =
(match (motive := Cfg → Cont → Cfg) stepNormal a✝¹ a✝ v with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
try {simp only [Cfg.then]; done
}
[GOAL]
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
{simp only [Cfg.then]; done
}
[GOAL]
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
simp only [Cfg.then]
[GOAL]
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then
(match (motive := Cfg → Cont → Cfg) stepRet a✝ (List.tail v) with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
(match (motive := Cfg → Cont → Cfg)
if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v) with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
k'
[PROOFSTEP]
done
[GOAL]
case cons₁
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k'
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
case cons₁ =>
rw [← stepNormal_then]
rfl
[GOAL]
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k'
[PROOFSTEP]
case cons₁ =>
rw [← stepNormal_then]
rfl
[GOAL]
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k'
[PROOFSTEP]
rw [← stepNormal_then]
[GOAL]
k' : Cont
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = stepNormal a✝² (Cont.then (Cont.cons₂ v a✝) k') a✝¹
[PROOFSTEP]
rfl
[GOAL]
case comp
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
case comp => rw [← stepNormal_then]
[GOAL]
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
[PROOFSTEP]
case comp => rw [← stepNormal_then]
[GOAL]
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k'
[PROOFSTEP]
rw [← stepNormal_then]
[GOAL]
case fix
k' : Cont
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
case fix _ k_ih =>
split_ifs
· rw [← k_ih]
· rw [← stepNormal_then]
rfl
[GOAL]
k' : Cont
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
case fix _ k_ih =>
split_ifs
· rw [← k_ih]
· rw [← stepNormal_then]
rfl
[GOAL]
k' : Cont
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k'
else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) =
Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
split_ifs
[GOAL]
case pos
k' : Cont
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
h✝ : List.headI v = 0
⊢ Cfg.then (stepRet a✝ (List.tail v)) k' = Cfg.then (stepRet a✝ (List.tail v)) k'
[PROOFSTEP]
rw [← k_ih]
[GOAL]
case neg
k' : Cont
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
h✝ : ¬List.headI v = 0
⊢ stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v) =
Cfg.then (stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k'
[PROOFSTEP]
rw [← stepNormal_then]
[GOAL]
case neg
k' : Cont
a✝¹ : Code
a✝ : Cont
k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k'
v : List ℕ
h✝ : ¬List.headI v = 0
⊢ stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v) =
stepNormal a✝¹ (Cont.then (Cont.fix a✝¹ a✝) k') (List.tail v)
[PROOFSTEP]
rfl
[GOAL]
c : Code
h : Ok c
v : List ℕ
⊢ Turing.eval step (stepNormal c Cont.halt v) = Cfg.halt <$> eval c v
[PROOFSTEP]
rw [h, ← bind_pure_comp]
[GOAL]
c : Code
h : Ok c
v : List ℕ
⊢ (do
let v ← eval c v
Turing.eval step (Cfg.ret Cont.halt v)) =
do
let a ← eval c v
pure (Cfg.halt a)
[PROOFSTEP]
congr
[GOAL]
case e_a
c : Code
h : Ok c
v : List ℕ
⊢ (fun v => Turing.eval step (Cfg.ret Cont.halt v)) = fun a => pure (Cfg.halt a)
[PROOFSTEP]
funext v
[GOAL]
case e_a.h
c : Code
h : Ok c
v✝ v : List ℕ
⊢ Turing.eval step (Cfg.ret Cont.halt v) = pure (Cfg.halt v)
[PROOFSTEP]
exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.single rfl, rfl⟩)
[GOAL]
c : Code
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal c k v = Cfg.ret k' v'
[PROOFSTEP]
induction c generalizing k v
[GOAL]
case zero'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.zero' k v = Cfg.ret k' v'
case succ
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.succ k v = Cfg.ret k' v'
case tail
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v'
case cons
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v'
case comp
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v'
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
iterate 3 exact ⟨_, _, rfl⟩
[GOAL]
case zero'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.zero' k v = Cfg.ret k' v'
case succ
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.succ k v = Cfg.ret k' v'
case tail
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v'
case cons
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v'
case comp
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v'
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
exact ⟨_, _, rfl⟩
[GOAL]
case succ
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.succ k v = Cfg.ret k' v'
case tail
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v'
case cons
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v'
case comp
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v'
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
exact ⟨_, _, rfl⟩
[GOAL]
case tail
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v'
case cons
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v'
case comp
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v'
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
exact ⟨_, _, rfl⟩
[GOAL]
case cons
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v'
case comp
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v'
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
case cons _f fs IHf _IHfs => apply IHf
[GOAL]
_f fs : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _f k v = Cfg.ret k' v'
_IHfs : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal fs k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons _f fs) k v = Cfg.ret k' v'
[PROOFSTEP]
case cons _f fs IHf _IHfs => apply IHf
[GOAL]
_f fs : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _f k v = Cfg.ret k' v'
_IHfs : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal fs k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.cons _f fs) k v = Cfg.ret k' v'
[PROOFSTEP]
apply IHf
[GOAL]
case comp
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v'
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
case comp f _g _IHf IHg => apply IHg
[GOAL]
f _g : Code
_IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp f _g) k v = Cfg.ret k' v'
[PROOFSTEP]
case comp f _g _IHf IHg => apply IHg
[GOAL]
f _g : Code
_IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.comp f _g) k v = Cfg.ret k' v'
[PROOFSTEP]
apply IHg
[GOAL]
case case
a✝¹ a✝ : Code
a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v'
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v'
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
case case f g IHf IHg =>
rw [stepNormal]
simp only []
cases v.headI <;> simp only [] <;> [apply IHf; apply IHg]
[GOAL]
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case f g) k v = Cfg.ret k' v'
[PROOFSTEP]
case case f g IHf IHg =>
rw [stepNormal]
simp only []
cases v.headI <;> simp only [] <;> [apply IHf; apply IHg]
[GOAL]
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.case f g) k v = Cfg.ret k' v'
[PROOFSTEP]
rw [stepNormal]
[GOAL]
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v',
(fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) k
v =
Cfg.ret k' v'
[PROOFSTEP]
simp only []
[GOAL]
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v',
Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v) = Cfg.ret k' v'
[PROOFSTEP]
cases v.headI <;> simp only [] <;> [apply IHf; apply IHg]
[GOAL]
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v',
Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v) = Cfg.ret k' v'
[PROOFSTEP]
cases v.headI
[GOAL]
case zero
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v',
Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero = Cfg.ret k' v'
[PROOFSTEP]
simp only []
[GOAL]
case succ
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
n✝ : ℕ
⊢ ∃ k' v',
Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n✝) = Cfg.ret k' v'
[PROOFSTEP]
simp only []
[GOAL]
case zero
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal f k (List.tail v) = Cfg.ret k' v'
[PROOFSTEP]
apply IHf
[GOAL]
case succ
f g : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v'
k : Cont
v : List ℕ
n✝ : ℕ
⊢ ∃ k' v', stepNormal g k (n✝ :: List.tail v) = Cfg.ret k' v'
[PROOFSTEP]
apply IHg
[GOAL]
case fix
a✝ : Code
a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v'
[PROOFSTEP]
case fix f IHf => apply IHf
[GOAL]
f : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix f) k v = Cfg.ret k' v'
[PROOFSTEP]
case fix f IHf => apply IHf
[GOAL]
f : Code
IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v'
k : Cont
v : List ℕ
⊢ ∃ k' v', stepNormal (Code.fix f) k v = Cfg.ret k' v'
[PROOFSTEP]
apply IHf
[GOAL]
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
⊢ eval step (stepNormal f (Cont.fix f k) v) = do
let v ← Code.eval (Code.fix f) v
eval step (Cfg.ret k v)
[PROOFSTEP]
refine' Part.ext fun x => _
[GOAL]
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) ↔
x ∈ do
let v ← Code.eval (Code.fix f) v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Part.bind_eq_bind, Part.mem_bind_iff]
[GOAL]
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) ↔ ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)
[PROOFSTEP]
constructor
[GOAL]
case mp
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) → ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)
[PROOFSTEP]
suffices
∀ c,
x ∈ eval step c →
∀ v c',
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁ ∈ f.eval v,
∃ v₂ ∈ if List.headI v₁ = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂)
by
intro h
obtain ⟨v₁, hv₁, v₂, hv₂, h₃⟩ := this _ h _ _ (stepNormal_then _ Cont.halt _ _) ReflTransGen.refl
refine' ⟨v₂, PFun.mem_fix_iff.2 _, h₃⟩
simp only [Part.eq_some_iff.2 hv₁, Part.map_some]
split_ifs at hv₂ ⊢
· rw [Part.mem_some_iff.1 hv₂]
exact Or.inl (Part.mem_some _)
· exact Or.inr ⟨_, Part.mem_some _, hv₂⟩
[GOAL]
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) → ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)
[PROOFSTEP]
intro h
[GOAL]
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
⊢ ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)
[PROOFSTEP]
obtain ⟨v₁, hv₁, v₂, hv₂, h₃⟩ := this _ h _ _ (stepNormal_then _ Cont.halt _ _) ReflTransGen.refl
[GOAL]
case intro.intro.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f v
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)
[PROOFSTEP]
refine' ⟨v₂, PFun.mem_fix_iff.2 _, h₃⟩
[GOAL]
case intro.intro.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f v
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ Sum.inl v₂ ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ∨
∃ a',
Sum.inr a' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
simp only [Part.eq_some_iff.2 hv₁, Part.map_some]
[GOAL]
case intro.intro.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f v
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ Sum.inl v₂ ∈ Part.some (if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∨
∃ a',
Sum.inr a' ∈ Part.some (if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
split_ifs at hv₂ ⊢
[GOAL]
case pos
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f v
v₂ : List ℕ
h₃ : x ∈ eval step (Cfg.ret k v₂)
h✝ : List.headI v₁ = 0
hv₂ : v₂ ∈ pure (List.tail v₁)
⊢ Sum.inl v₂ ∈ Part.some (Sum.inl (List.tail v₁)) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inl (List.tail v₁)) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
rw [Part.mem_some_iff.1 hv₂]
[GOAL]
case pos
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f v
v₂ : List ℕ
h₃ : x ∈ eval step (Cfg.ret k v₂)
h✝ : List.headI v₁ = 0
hv₂ : v₂ ∈ pure (List.tail v₁)
⊢ Sum.inl (List.tail v₁) ∈ Part.some (Sum.inl (List.tail v₁)) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inl (List.tail v₁)) ∧
List.tail v₁ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
exact Or.inl (Part.mem_some _)
[GOAL]
case neg
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
this :
∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
h : x ∈ eval step (stepNormal f (Cont.fix f k) v)
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f v
v₂ : List ℕ
h₃ : x ∈ eval step (Cfg.ret k v₂)
h✝ : ¬List.headI v₁ = 0
hv₂ : v₂ ∈ Code.eval (Code.fix f) (List.tail v₁)
⊢ Sum.inl v₂ ∈ Part.some (Sum.inr (List.tail v₁)) ∨
∃ a',
Sum.inr a' ∈ Part.some (Sum.inr (List.tail v₁)) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
exact Or.inr ⟨_, Part.mem_some _, hv₂⟩
[GOAL]
case mp
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
⊢ ∀ (c : Cfg),
x ∈ eval step c →
∀ (v : List ℕ) (c' : Cfg),
c = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
refine' fun c he => evalInduction he fun y h IH => _
[GOAL]
case mp
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
y : Cfg
h : x ∈ eval step y
IH :
∀ (a' : Cfg),
step y = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
⊢ ∀ (v : List ℕ) (c' : Cfg),
y = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rintro v (⟨v'⟩ | ⟨k', v'⟩) rfl hr
[GOAL]
case mp.halt
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (Cfg.then (Cfg.halt v') (Cont.fix f k))
IH :
∀ (a' : Cfg),
step (Cfg.then (Cfg.halt v') (Cont.fix f k)) = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rw [Cfg.then] at h IH
[GOAL]
case mp.ret
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v : List ℕ
k' : Cont
v' : List ℕ
h : x ∈ eval step (Cfg.then (Cfg.ret k' v') (Cont.fix f k))
IH :
∀ (a' : Cfg),
step (Cfg.then (Cfg.ret k' v') (Cont.fix f k)) = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.ret k' v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rw [Cfg.then] at h IH
[GOAL]
case mp.halt
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h :
x ∈
eval step
((match (motive := Cfg → Cont → Cfg) Cfg.halt v' with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
(Cont.fix f k))
IH :
∀ (a' : Cfg),
step
((match (motive := Cfg → Cont → Cfg) Cfg.halt v' with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
(Cont.fix f k)) =
some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
simp only [] at h IH
[GOAL]
case mp.ret
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v : List ℕ
k' : Cont
v' : List ℕ
h :
x ∈
eval step
((match (motive := Cfg → Cont → Cfg) Cfg.ret k' v' with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
(Cont.fix f k))
IH :
∀ (a' : Cfg),
step
((match (motive := Cfg → Cont → Cfg) Cfg.ret k' v' with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
(Cont.fix f k)) =
some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.ret k' v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
simp only [] at h IH
[GOAL]
case mp.halt
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
have := mem_eval.2 ⟨hr, rfl⟩
[GOAL]
case mp.halt
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
this : Cfg.halt v' ∈ eval step (stepNormal f Cont.halt v)
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rw [fok, Part.bind_eq_bind, Part.mem_bind_iff] at this
[GOAL]
case mp.halt
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
this : ∃ a, a ∈ Code.eval f v ∧ Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt a)
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
obtain ⟨v'', h₁, h₂⟩ := this
[GOAL]
case mp.halt.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rw [reaches_eval] at h₂
[GOAL]
case mp.halt.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
h₂ : Cfg.halt v' ∈ eval step ?m.194513
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
case mp.halt.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
⊢ Reaches step (Cfg.ret Cont.halt v'') ?m.194513
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case mp.halt.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
⊢ Reaches step (Cfg.ret Cont.halt v'') ?m.194513
case mp.halt.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
h₂ : Cfg.halt v' ∈ eval step ?m.194513
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case mp.halt.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
v'' : List ℕ
h₁ : v'' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v'')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
cases Part.mem_unique h₂ (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩)
[GOAL]
case mp.halt.intro.intro.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
refine' ⟨v', h₁, _⟩
[GOAL]
case mp.halt.intro.intro.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (stepRet (Cont.fix f k) v')
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
⊢ ∃ v₂,
(v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rw [stepRet] at h
[GOAL]
case mp.halt.intro.intro.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
h : x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v'))
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
⊢ ∃ v₂,
(v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
revert h
[GOAL]
case mp.halt.intro.intro.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
⊢ x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) →
∃ v₂,
(v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
by_cases he : v'.headI = 0
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
⊢ x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) →
∃ v₂,
(v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
simp only [exists_prop, if_pos, if_false, he]
[GOAL]
case neg
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
⊢ x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) →
∃ v₂,
(v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
simp only [exists_prop, if_pos, if_false, he]
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
⊢ x ∈ eval step (stepRet k (List.tail v')) → ∃ v₂, v₂ ∈ pure (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
intro h
[GOAL]
case neg
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) →
∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
intro h
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
h : x ∈ eval step (stepRet k (List.tail v'))
⊢ ∃ v₂, v₂ ∈ pure (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
refine' ⟨_, Part.mem_some _, _⟩
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
h : x ∈ eval step (stepRet k (List.tail v'))
⊢ x ∈ eval step (Cfg.ret k (List.tail v'))
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
h : x ∈ eval step (stepRet k (List.tail v'))
⊢ x ∈ eval step ?m.195505
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
h : x ∈ eval step (stepRet k (List.tail v'))
⊢ Reaches step (Cfg.ret k (List.tail v')) ?m.195505
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
h : x ∈ eval step (stepRet k (List.tail v'))
⊢ Cfg
[PROOFSTEP]
exact h
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : List.headI v' = 0
h : x ∈ eval step (stepRet k (List.tail v'))
⊢ Reaches step (Cfg.ret k (List.tail v')) (stepRet k (List.tail v'))
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case neg
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
obtain ⟨k₀, v₀, e₀⟩ := stepNormal.is_ret f Cont.halt v'.tail
[GOAL]
case neg.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
have e₁ := stepNormal_then f Cont.halt (Cont.fix f k) v'.tail
[GOAL]
case neg.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ :
stepNormal f (Cont.then Cont.halt (Cont.fix f k)) (List.tail v') =
Cfg.then (stepNormal f Cont.halt (List.tail v')) (Cont.fix f k)
⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
rw [e₀, Cont.then, Cfg.then] at e₁
[GOAL]
case neg.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ :
stepNormal f ((fun k' => k') (Cont.fix f k)) (List.tail v') =
(match (motive := Cfg → Cont → Cfg) Cfg.ret k₀ v₀ with
| Cfg.halt v => fun k' => stepRet k' v
| Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v)
(Cont.fix f k)
⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
simp only [] at e₁
[GOAL]
case neg.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
obtain ⟨v₁, hv₁, v₂, hv₂, h₃⟩ :=
IH (stepRet (k₀.then (Cont.fix f k)) v₀) (by rw [stepRet, if_neg he, e₁]; rfl) v'.tail _ stepRet_then
(by apply ReflTransGen.single; rw [e₀]; rfl)
[GOAL]
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
⊢ step (stepRet (Cont.fix f k) v') = some (stepRet (Cont.then k₀ (Cont.fix f k)) v₀)
[PROOFSTEP]
rw [stepRet, if_neg he, e₁]
[GOAL]
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
⊢ step (Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀) = some (stepRet (Cont.then k₀ (Cont.fix f k)) v₀)
[PROOFSTEP]
rfl
[GOAL]
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
⊢ Reaches step (stepNormal f Cont.halt (List.tail v')) (stepRet k₀ v₀)
[PROOFSTEP]
apply ReflTransGen.single
[GOAL]
case hab
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
⊢ stepRet k₀ v₀ ∈ step (stepNormal f Cont.halt (List.tail v'))
[PROOFSTEP]
rw [e₀]
[GOAL]
case hab
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
⊢ stepRet k₀ v₀ ∈ step (Cfg.ret k₀ v₀)
[PROOFSTEP]
rfl
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f (List.tail v')
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
refine' ⟨_, PFun.mem_fix_iff.2 _, h₃⟩
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f (List.tail v')
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ Sum.inl v₂ ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f (List.tail v')) ∨
∃ a',
Sum.inr a' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f (List.tail v')) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
simp only [Part.eq_some_iff.2 hv₁, Part.map_some, Part.mem_some_iff]
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f (List.tail v')
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ (Sum.inl v₂ = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∨
∃ a',
(Sum.inr a' = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
split_ifs at hv₂ ⊢ <;> [exact Or.inl (congr_arg Sum.inl (Part.mem_some_iff.1 hv₂)); exact Or.inr ⟨_, rfl, hv₂⟩]
[GOAL]
case neg.intro.intro.intro.intro.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f (List.tail v')
v₂ : List ℕ
hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)
h₃ : x ∈ eval step (Cfg.ret k v₂)
⊢ (Sum.inl v₂ = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∨
∃ a',
(Sum.inr a' = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
split_ifs at hv₂ ⊢
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f (List.tail v')
v₂ : List ℕ
h₃ : x ∈ eval step (Cfg.ret k v₂)
h✝ : List.headI v₁ = 0
hv₂ : v₂ ∈ pure (List.tail v₁)
⊢ Sum.inl v₂ = Sum.inl (List.tail v₁) ∨
∃ a',
False ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
exact Or.inl (congr_arg Sum.inl (Part.mem_some_iff.1 hv₂))
[GOAL]
case neg
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he✝ : x ∈ eval step c
v v' : List ℕ
IH :
∀ (a' : Cfg),
step (stepRet (Cont.fix f k) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v')
h₁ : v' ∈ Code.eval f v
h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v')
h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v')
he : ¬List.headI v' = 0
h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v'))
k₀ : Cont
v₀ : List ℕ
e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀
e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀
v₁ : List ℕ
hv₁ : v₁ ∈ Code.eval f (List.tail v')
v₂ : List ℕ
h₃ : x ∈ eval step (Cfg.ret k v₂)
h✝ : ¬List.headI v₁ = 0
hv₂ : v₂ ∈ Code.eval (Code.fix f) (List.tail v₁)
⊢ False ∨
∃ a',
Sum.inr a' = Sum.inr (List.tail v₁) ∧
v₂ ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v))
(Code.eval f v))
a'
[PROOFSTEP]
exact Or.inr ⟨_, rfl, hv₂⟩
[GOAL]
case mp.ret
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x c : Cfg
he : x ∈ eval step c
v : List ℕ
k' : Cont
v' : List ℕ
h : x ∈ eval step (Cfg.ret (Cont.then k' (Cont.fix f k)) v')
IH :
∀ (a' : Cfg),
step (Cfg.ret (Cont.then k' (Cont.fix f k)) v') = some a' →
∀ (v : List ℕ) (c' : Cfg),
a' = Cfg.then c' (Cont.fix f k) →
Reaches step (stepNormal f Cont.halt v) c' →
∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
hr : Reaches step (stepNormal f Cont.halt v) (Cfg.ret k' v')
⊢ ∃ v₁,
v₁ ∈ Code.eval f v ∧
∃ v₂,
(v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧
x ∈ eval step (Cfg.ret k v₂)
[PROOFSTEP]
exact IH _ rfl _ _ stepRet_then (ReflTransGen.tail hr rfl)
[GOAL]
case mpr
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
⊢ (∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)) → x ∈ eval step (stepNormal f (Cont.fix f k) v)
[PROOFSTEP]
rintro ⟨v', he, hr⟩
[GOAL]
case mpr.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr : x ∈ eval step (Cfg.ret k v')
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v)
[PROOFSTEP]
rw [reaches_eval] at hr
[GOAL]
case mpr.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step ?m.197483
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v)
case mpr.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr : x ∈ eval step (Cfg.ret k v')
⊢ Reaches step (Cfg.ret k v') ?m.197483
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr : x ∈ eval step (Cfg.ret k v')
⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case mpr.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr : x ∈ eval step (Cfg.ret k v')
⊢ Reaches step (Cfg.ret k v') ?m.197483
case mpr.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step ?m.197483
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v)
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr : x ∈ eval step (Cfg.ret k v')
⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case mpr.intro.intro
f : Code
k : Cont
v : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v)
[PROOFSTEP]
refine' PFun.fixInduction he fun v (he : v' ∈ f.fix.eval v) IH => _
[GOAL]
case mpr.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v)
[PROOFSTEP]
rw [fok, Part.bind_eq_bind, Part.mem_bind_iff]
[GOAL]
case mpr.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
obtain he | ⟨v'', he₁', _⟩ := PFun.mem_fix_iff.1 he
[GOAL]
case mpr.intro.intro.inl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝¹ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
he :
Sum.inl v' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
obtain ⟨v', he₁, he₂⟩ := (Part.mem_map_iff _).1 he
[GOAL]
case mpr.intro.intro.inl.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v'✝ : List ℕ
he✝¹ : v'✝ ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v'✝)
hr : x ∈ eval step (stepRet k v'✝)
v : List ℕ
he✝ : v'✝ ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
he :
Sum.inl v'✝ ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
v' : List ℕ
he₁ : v' ∈ Code.eval f v
he₂ : (if List.headI v' = 0 then Sum.inl (List.tail v') else Sum.inr (List.tail v')) = Sum.inl v'✝
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
split_ifs at he₂ with h
[GOAL]
case pos
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v'✝ : List ℕ
he✝¹ : v'✝ ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v'✝)
hr : x ∈ eval step (stepRet k v'✝)
v : List ℕ
he✝ : v'✝ ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
he :
Sum.inl v'✝ ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he₂ : Sum.inl (List.tail v') = Sum.inl v'✝
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
cases he₂
[GOAL]
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
refine' ⟨_, he₁, _⟩
[GOAL]
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ x ∈ eval step (Cfg.ret (Cont.fix f k) v')
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ x ∈ eval step ?m.198384
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ Reaches step (Cfg.ret (Cont.fix f k) v') ?m.198384
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ Reaches step (Cfg.ret (Cont.fix f k) v') ?m.198384
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ x ∈ eval step ?m.198384
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case pos.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v : List ℕ
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v' : List ℕ
he₁ : v' ∈ Code.eval f v
h : List.headI v' = 0
he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k (List.tail v'))
hr : x ∈ eval step (stepRet k (List.tail v'))
he✝ : List.tail v' ∈ Code.eval (Code.fix f) v
he :
Sum.inl (List.tail v') ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
⊢ x ∈ eval step (stepRet (Cont.fix f k) v')
[PROOFSTEP]
rwa [stepRet, if_pos h]
[GOAL]
case mpr.intro.intro.inr.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v'' : List ℕ
he₁' :
Sum.inr v'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
v''
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
obtain ⟨v₁, he₁, he₂⟩ := (Part.mem_map_iff _).1 he₁'
[GOAL]
case mpr.intro.intro.inr.intro.intro.intro.intro
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v'' : List ℕ
he₁' :
Sum.inr v'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
v''
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
he₂ : (if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) = Sum.inr v''
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
split_ifs at he₂ with h
[GOAL]
case neg
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v'' : List ℕ
he₁' :
Sum.inr v'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
v''
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
he₂ : Sum.inr (List.tail v₁) = Sum.inr v''
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
cases he₂
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
he₁' :
Sum.inr (List.tail v₁) ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
clear he₁'
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a)
[PROOFSTEP]
refine' ⟨_, he₁, _⟩
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ x ∈ eval step (Cfg.ret (Cont.fix f k) v₁)
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ x ∈ eval step ?m.199070
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ Reaches step (Cfg.ret (Cont.fix f k) v₁) ?m.199070
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ Reaches step (Cfg.ret (Cont.fix f k) v₁) ?m.199070
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ x ∈ eval step ?m.199070
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ x ∈ eval step (stepRet (Cont.fix f k) v₁)
[PROOFSTEP]
rw [stepRet, if_neg h]
[GOAL]
case neg.refl
f : Code
k : Cont
v✝ : List ℕ
fok : Code.Ok f
x : Cfg
v' : List ℕ
he✝ : v' ∈ Code.eval (Code.fix f) v✝
hr✝ : x ∈ eval step (Cfg.ret k v')
hr : x ∈ eval step (stepRet k v')
v : List ℕ
he : v' ∈ Code.eval (Code.fix f) v
IH :
∀ (a'' : List ℕ),
Sum.inr a'' ∈
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) →
x ∈ eval step (stepNormal f (Cont.fix f k) a'')
v₁ : List ℕ
he₁ : v₁ ∈ Code.eval f v
h : ¬List.headI v₁ = 0
right✝ :
v' ∈
PFun.fix
(fun v =>
Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v))
(List.tail v₁)
⊢ x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v₁))
[PROOFSTEP]
exact IH v₁.tail ((Part.mem_map_iff _).2 ⟨_, he₁, if_neg h⟩)
[GOAL]
c : Code
⊢ Code.Ok c
[PROOFSTEP]
induction c
[GOAL]
case zero'
⊢ Code.Ok Code.zero'
[PROOFSTEP]
intro k v
[GOAL]
case succ
⊢ Code.Ok Code.succ
[PROOFSTEP]
intro k v
[GOAL]
case tail
⊢ Code.Ok Code.tail
[PROOFSTEP]
intro k v
[GOAL]
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
⊢ Code.Ok (Code.cons a✝¹ a✝)
[PROOFSTEP]
intro k v
[GOAL]
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
⊢ Code.Ok (Code.comp a✝¹ a✝)
[PROOFSTEP]
intro k v
[GOAL]
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
⊢ Code.Ok (Code.case a✝¹ a✝)
[PROOFSTEP]
intro k v
[GOAL]
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
⊢ Code.Ok (Code.fix a✝)
[PROOFSTEP]
intro k v
[GOAL]
case zero'
k : Cont
v : List ℕ
⊢ eval step (stepNormal Code.zero' k v) = do
let v ← Code.eval Code.zero' v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case succ
k : Cont
v : List ℕ
⊢ eval step (stepNormal Code.succ k v) = do
let v ← Code.eval Code.succ v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case tail
k : Cont
v : List ℕ
⊢ eval step (stepNormal Code.tail k v) = do
let v ← Code.eval Code.tail v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step (stepNormal (Code.cons a✝¹ a✝) k v) = do
let v ← Code.eval (Code.cons a✝¹ a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step (stepNormal (Code.comp a✝¹ a✝) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step (stepNormal (Code.case a✝¹ a✝) k v) = do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step (stepNormal (Code.fix a✝) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepNormal]
[GOAL]
case zero'
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k (0 :: v)) k v) = do
let v ← Code.eval Code.zero' v
eval step (Cfg.ret k v)
case succ
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k [Nat.succ (List.headI v)]) k v) = do
let v ← Code.eval Code.succ v
eval step (Cfg.ret k v)
case tail
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do
let v ← Code.eval Code.tail v
eval step (Cfg.ret k v)
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do
let v ← Code.eval (Code.cons a✝¹ a✝) v
eval step (Cfg.ret k v)
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
iterate 3 simp only [Code.eval, pure_bind]
[GOAL]
case zero'
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k (0 :: v)) k v) = do
let v ← Code.eval Code.zero' v
eval step (Cfg.ret k v)
case succ
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k [Nat.succ (List.headI v)]) k v) = do
let v ← Code.eval Code.succ v
eval step (Cfg.ret k v)
case tail
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do
let v ← Code.eval Code.tail v
eval step (Cfg.ret k v)
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do
let v ← Code.eval (Code.cons a✝¹ a✝) v
eval step (Cfg.ret k v)
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Code.eval, pure_bind]
[GOAL]
case succ
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k [Nat.succ (List.headI v)]) k v) = do
let v ← Code.eval Code.succ v
eval step (Cfg.ret k v)
case tail
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do
let v ← Code.eval Code.tail v
eval step (Cfg.ret k v)
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do
let v ← Code.eval (Code.cons a✝¹ a✝) v
eval step (Cfg.ret k v)
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Code.eval, pure_bind]
[GOAL]
case tail
k : Cont
v : List ℕ
⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do
let v ← Code.eval Code.tail v
eval step (Cfg.ret k v)
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do
let v ← Code.eval (Code.cons a✝¹ a✝) v
eval step (Cfg.ret k v)
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Code.eval, pure_bind]
[GOAL]
case cons
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do
let v ← Code.eval (Code.cons a✝¹ a✝) v
eval step (Cfg.ret k v)
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case cons f fs IHf IHfs =>
rw [Code.eval, IHf]
simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [stepRet, IHfs]; congr; funext v'
refine' Eq.trans _ (Eq.symm _) <;> try exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal f (Cont.cons₁ fs v k) v) k v) = do
let v ← Code.eval (Code.cons f fs) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case cons f fs IHf IHfs =>
rw [Code.eval, IHf]
simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [stepRet, IHfs]; congr; funext v'
refine' Eq.trans _ (Eq.symm _) <;> try exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal f (Cont.cons₁ fs v k) v) k v) = do
let v ← Code.eval (Code.cons f fs) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [Code.eval, IHf]
[GOAL]
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v : List ℕ
⊢ (do
let v_1 ← Code.eval f v
eval step (Cfg.ret (Cont.cons₁ fs v k) v_1)) =
do
let v ←
(fun v => do
let n ← Code.eval f v
let ns ← Code.eval fs v
pure (List.headI n :: ns))
v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [bind_assoc, Cont.eval, pure_bind]
[GOAL]
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v : List ℕ
⊢ (do
let v_1 ← Code.eval f v
eval step (Cfg.ret (Cont.cons₁ fs v k) v_1)) =
do
let x ← Code.eval f v
let x_1 ← Code.eval fs v
eval step (Cfg.ret k (List.headI x :: x_1))
[PROOFSTEP]
congr
[GOAL]
case e_a
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v : List ℕ
⊢ (fun v_1 => eval step (Cfg.ret (Cont.cons₁ fs v k) v_1)) = fun x => do
let x_1 ← Code.eval fs v
eval step (Cfg.ret k (List.headI x :: x_1))
[PROOFSTEP]
funext v
[GOAL]
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ eval step (Cfg.ret (Cont.cons₁ fs v✝ k) v) = do
let x ← Code.eval fs v✝
eval step (Cfg.ret k (List.headI v :: x))
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ eval step ?m.200491 = do
let x ← Code.eval fs v✝
eval step (Cfg.ret k (List.headI v :: x))
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ Reaches step (Cfg.ret (Cont.cons₁ fs v✝ k) v) ?m.200491
f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ Reaches step (Cfg.ret (Cont.cons₁ fs v✝ k) v) ?m.200491
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ eval step ?m.200491 = do
let x ← Code.eval fs v✝
eval step (Cfg.ret k (List.headI v :: x))
f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ eval step (stepRet (Cont.cons₁ fs v✝ k) v) = do
let x ← Code.eval fs v✝
eval step (Cfg.ret k (List.headI v :: x))
[PROOFSTEP]
rw [stepRet, IHfs]
[GOAL]
case e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ (do
let v_1 ← Code.eval fs v✝
eval step (Cfg.ret (Cont.cons₂ v k) v_1)) =
do
let x ← Code.eval fs v✝
eval step (Cfg.ret k (List.headI v :: x))
[PROOFSTEP]
congr
[GOAL]
case e_a.h.e_a
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v : List ℕ
⊢ (fun v_1 => eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = fun x => eval step (Cfg.ret k (List.headI v :: x))
[PROOFSTEP]
funext v'
[GOAL]
case e_a.h.e_a.h
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v v' : List ℕ
⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = eval step (Cfg.ret k (List.headI v :: v'))
[PROOFSTEP]
refine' Eq.trans _ (Eq.symm _)
[GOAL]
case e_a.h.e_a.h.refine'_1
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v v' : List ℕ
⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = ?e_a.h.e_a.h.refine'_2✝
[PROOFSTEP]
try exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
case e_a.h.e_a.h.refine'_1
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v v' : List ℕ
⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = ?e_a.h.e_a.h.refine'_2✝
[PROOFSTEP]
exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
case e_a.h.e_a.h.refine'_3
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v v' : List ℕ
⊢ eval step (Cfg.ret k (List.headI v :: v')) = eval step (stepRet (Cont.cons₂ v k) v')
[PROOFSTEP]
try exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
case e_a.h.e_a.h.refine'_3
f fs : Code
IHf : Code.Ok f
IHfs : Code.Ok fs
k : Cont
v✝ v v' : List ℕ
⊢ eval step (Cfg.ret k (List.headI v :: v')) = eval step (stepRet (Cont.cons₂ v k) v')
[PROOFSTEP]
exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
case comp
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do
let v ← Code.eval (Code.comp a✝¹ a✝) v
eval step (Cfg.ret k v)
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case comp f g IHf IHg =>
rw [Code.eval, IHg]
simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [stepRet, IHf]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal g (Cont.comp f k) v) k v) = do
let v ← Code.eval (Code.comp f g) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case comp f g IHf IHg =>
rw [Code.eval, IHg]
simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [stepRet, IHf]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal g (Cont.comp f k) v) k v) = do
let v ← Code.eval (Code.comp f g) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [Code.eval, IHg]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ (do
let v ← Code.eval g v
eval step (Cfg.ret (Cont.comp f k) v)) =
do
let v ← (fun v => Code.eval g v >>= Code.eval f) v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [bind_assoc, Cont.eval, pure_bind]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ (do
let v ← Code.eval g v
eval step (Cfg.ret (Cont.comp f k) v)) =
do
let x ← Code.eval g v
let v ← Code.eval f x
eval step (Cfg.ret k v)
[PROOFSTEP]
congr
[GOAL]
case e_a
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ (fun v => eval step (Cfg.ret (Cont.comp f k) v)) = fun x => do
let v ← Code.eval f x
eval step (Cfg.ret k v)
[PROOFSTEP]
funext v
[GOAL]
case e_a.h
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v✝ v : List ℕ
⊢ eval step (Cfg.ret (Cont.comp f k) v) = do
let v ← Code.eval f v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case e_a.h
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v✝ v : List ℕ
⊢ eval step ?m.201265 = do
let v ← Code.eval f v
eval step (Cfg.ret k v)
case e_a.h
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v✝ v : List ℕ
⊢ Reaches step (Cfg.ret (Cont.comp f k) v) ?m.201265
f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case e_a.h
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v✝ v : List ℕ
⊢ Reaches step (Cfg.ret (Cont.comp f k) v) ?m.201265
case e_a.h
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v✝ v : List ℕ
⊢ eval step ?m.201265 = do
let v ← Code.eval f v
eval step (Cfg.ret k v)
f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case e_a.h
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v✝ v : List ℕ
⊢ eval step (stepRet (Cont.comp f k) v) = do
let v ← Code.eval f v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [stepRet, IHf]
[GOAL]
case case
a✝¹ a✝ : Code
a_ih✝¹ : Code.Ok a✝¹
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step
((fun k v =>
Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case a✝¹ a✝) v
eval step (Cfg.ret k v)
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case case f g IHf IHg =>
simp only [Code.eval]
cases v.headI <;> simp only [Code.eval] <;> [apply IHf; apply IHg]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step
((fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case f g) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case case f g IHf IHg =>
simp only [Code.eval]
cases v.headI <;> simp only [Code.eval] <;> [apply IHf; apply IHg]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step
((fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v))
k v) =
do
let v ← Code.eval (Code.case f g) v
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Code.eval]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) = do
let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) (List.headI v)
eval step (Cfg.ret k v)
[PROOFSTEP]
cases v.headI <;> simp only [Code.eval] <;> [apply IHf; apply IHg]
[GOAL]
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) = do
let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) (List.headI v)
eval step (Cfg.ret k v)
[PROOFSTEP]
cases v.headI
[GOAL]
case zero
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) = do
let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) Nat.zero
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Code.eval]
[GOAL]
case succ
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
n✝ : ℕ
⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n✝)) = do
let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) (Nat.succ n✝)
eval step (Cfg.ret k v)
[PROOFSTEP]
simp only [Code.eval]
[GOAL]
case zero
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
⊢ eval step (stepNormal f k (List.tail v)) = do
let v ← Code.eval f (List.tail v)
eval step (Cfg.ret k v)
[PROOFSTEP]
apply IHf
[GOAL]
case succ
f g : Code
IHf : Code.Ok f
IHg : Code.Ok g
k : Cont
v : List ℕ
n✝ : ℕ
⊢ eval step (stepNormal g k (n✝ :: List.tail v)) = do
let v ← Code.eval g (n✝ :: List.tail v)
eval step (Cfg.ret k v)
[PROOFSTEP]
apply IHg
[GOAL]
case fix
a✝ : Code
a_ih✝ : Code.Ok a✝
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do
let v ← Code.eval (Code.fix a✝) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case fix f IHf => rw [cont_eval_fix IHf]
[GOAL]
f : Code
IHf : Code.Ok f
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal f (Cont.fix f k) v) k v) = do
let v ← Code.eval (Code.fix f) v
eval step (Cfg.ret k v)
[PROOFSTEP]
case fix f IHf => rw [cont_eval_fix IHf]
[GOAL]
f : Code
IHf : Code.Ok f
k : Cont
v : List ℕ
⊢ eval step ((fun k v => stepNormal f (Cont.fix f k) v) k v) = do
let v ← Code.eval (Code.fix f) v
eval step (Cfg.ret k v)
[PROOFSTEP]
rw [cont_eval_fix IHf]
[GOAL]
k : Cont
v : List ℕ
⊢ eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
[PROOFSTEP]
induction k generalizing v
[GOAL]
case halt
v : List ℕ
⊢ eval step (stepRet Cont.halt v) = Cfg.halt <$> Cont.eval Cont.halt v
case cons₁
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ a✝² a✝¹ a✝) v
case cons₂
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₂ a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ a✝¹ a✝) v
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v
[PROOFSTEP]
case halt =>
simp only [mem_eval, Cont.eval, map_pure]
exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩)
[GOAL]
v : List ℕ
⊢ eval step (stepRet Cont.halt v) = Cfg.halt <$> Cont.eval Cont.halt v
[PROOFSTEP]
case halt =>
simp only [mem_eval, Cont.eval, map_pure]
exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩)
[GOAL]
v : List ℕ
⊢ eval step (stepRet Cont.halt v) = Cfg.halt <$> Cont.eval Cont.halt v
[PROOFSTEP]
simp only [mem_eval, Cont.eval, map_pure]
[GOAL]
v : List ℕ
⊢ eval step (stepRet Cont.halt v) = pure (Cfg.halt v)
[PROOFSTEP]
exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩)
[GOAL]
case cons₁
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ a✝² a✝¹ a✝) v
case cons₂
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₂ a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ a✝¹ a✝) v
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v
[PROOFSTEP]
case cons₁ fs as k IH =>
rw [Cont.eval, stepRet, code_is_ok]
simp only [← bind_pure_comp, bind_assoc]; congr; funext v'
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [stepRet, IH, bind_pure_comp]
[GOAL]
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₁ fs as k) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ fs as k) v
[PROOFSTEP]
case cons₁ fs as k IH =>
rw [Cont.eval, stepRet, code_is_ok]
simp only [← bind_pure_comp, bind_assoc]; congr; funext v'
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [stepRet, IH, bind_pure_comp]
[GOAL]
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₁ fs as k) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ fs as k) v
[PROOFSTEP]
rw [Cont.eval, stepRet, code_is_ok]
[GOAL]
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ (do
let v_1 ← Code.eval fs as
eval step (Cfg.ret (Cont.cons₂ v k) v_1)) =
Cfg.halt <$>
(fun v => do
let ns ← Code.eval fs as
Cont.eval k (List.headI v :: ns))
v
[PROOFSTEP]
simp only [← bind_pure_comp, bind_assoc]
[GOAL]
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ (do
let v_1 ← Code.eval fs as
eval step (Cfg.ret (Cont.cons₂ v k) v_1)) =
do
let x ← Code.eval fs as
let a ← Cont.eval k (List.headI v :: x)
pure (Cfg.halt a)
[PROOFSTEP]
congr
[GOAL]
case e_a
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ (fun v_1 => eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = fun x => do
let a ← Cont.eval k (List.headI v :: x)
pure (Cfg.halt a)
[PROOFSTEP]
funext v'
[GOAL]
case e_a.h
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = do
let a ← Cont.eval k (List.headI v :: v')
pure (Cfg.halt a)
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case e_a.h
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step ?m.203004 = do
let a ← Cont.eval k (List.headI v :: v')
pure (Cfg.halt a)
case e_a.h
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ Reaches step (Cfg.ret (Cont.cons₂ v k) v') ?m.203004
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case e_a.h
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ Reaches step (Cfg.ret (Cont.cons₂ v k) v') ?m.203004
case e_a.h
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step ?m.203004 = do
let a ← Cont.eval k (List.headI v :: v')
pure (Cfg.halt a)
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case e_a.h
fs : Code
as : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step (stepRet (Cont.cons₂ v k) v') = do
let a ← Cont.eval k (List.headI v :: v')
pure (Cfg.halt a)
[PROOFSTEP]
rw [stepRet, IH, bind_pure_comp]
[GOAL]
case cons₂
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₂ a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ a✝¹ a✝) v
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v
[PROOFSTEP]
case cons₂ ns k IH => rw [Cont.eval, stepRet]; exact IH
[GOAL]
ns : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₂ ns k) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ ns k) v
[PROOFSTEP]
case cons₂ ns k IH => rw [Cont.eval, stepRet]; exact IH
[GOAL]
ns : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.cons₂ ns k) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ ns k) v
[PROOFSTEP]
rw [Cont.eval, stepRet]
[GOAL]
ns : List ℕ
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet k (List.headI ns :: v)) = Cfg.halt <$> (fun v => Cont.eval k (List.headI ns :: v)) v
[PROOFSTEP]
exact IH
[GOAL]
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v
[PROOFSTEP]
case comp f k IH =>
rw [Cont.eval, stepRet, code_is_ok]
simp only [← bind_pure_comp, bind_assoc]; congr; funext v'
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [IH, bind_pure_comp]
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.comp f k) v) = Cfg.halt <$> Cont.eval (Cont.comp f k) v
[PROOFSTEP]
case comp f k IH =>
rw [Cont.eval, stepRet, code_is_ok]
simp only [← bind_pure_comp, bind_assoc]; congr; funext v'
rw [reaches_eval]; swap; exact ReflTransGen.single rfl
rw [IH, bind_pure_comp]
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.comp f k) v) = Cfg.halt <$> Cont.eval (Cont.comp f k) v
[PROOFSTEP]
rw [Cont.eval, stepRet, code_is_ok]
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ (do
let v ← Code.eval f v
eval step (Cfg.ret k v)) =
Cfg.halt <$> (fun v => Code.eval f v >>= Cont.eval k) v
[PROOFSTEP]
simp only [← bind_pure_comp, bind_assoc]
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ (do
let v ← Code.eval f v
eval step (Cfg.ret k v)) =
do
let x ← Code.eval f v
let a ← Cont.eval k x
pure (Cfg.halt a)
[PROOFSTEP]
congr
[GOAL]
case e_a
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ (fun v => eval step (Cfg.ret k v)) = fun x => do
let a ← Cont.eval k x
pure (Cfg.halt a)
[PROOFSTEP]
funext v'
[GOAL]
case e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step (Cfg.ret k v') = do
let a ← Cont.eval k v'
pure (Cfg.halt a)
[PROOFSTEP]
rw [reaches_eval]
[GOAL]
case e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step ?m.203696 = do
let a ← Cont.eval k v'
pure (Cfg.halt a)
case e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ Reaches step (Cfg.ret k v') ?m.203696
f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Cfg
[PROOFSTEP]
swap
[GOAL]
case e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ Reaches step (Cfg.ret k v') ?m.203696
case e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step ?m.203696 = do
let a ← Cont.eval k v'
pure (Cfg.halt a)
f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Cfg
[PROOFSTEP]
exact ReflTransGen.single rfl
[GOAL]
case e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v v' : List ℕ
⊢ eval step (stepRet k v') = do
let a ← Cont.eval k v'
pure (Cfg.halt a)
[PROOFSTEP]
rw [IH, bind_pure_comp]
[GOAL]
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v
v : List ℕ
⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v
[PROOFSTEP]
case fix f k IH =>
rw [Cont.eval, stepRet]; simp only [bind_pure_comp]
split_ifs; · exact IH
simp only [← bind_pure_comp, bind_assoc, cont_eval_fix (code_is_ok _)]
congr; funext; rw [bind_pure_comp, ← IH]
exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.fix f k) v) = Cfg.halt <$> Cont.eval (Cont.fix f k) v
[PROOFSTEP]
case fix f k IH =>
rw [Cont.eval, stepRet]; simp only [bind_pure_comp]
split_ifs; · exact IH
simp only [← bind_pure_comp, bind_assoc, cont_eval_fix (code_is_ok _)]
congr; funext; rw [bind_pure_comp, ← IH]
exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (stepRet (Cont.fix f k) v) = Cfg.halt <$> Cont.eval (Cont.fix f k) v
[PROOFSTEP]
rw [Cont.eval, stepRet]
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) =
Cfg.halt <$>
(fun v =>
if List.headI v = 0 then Cont.eval k (List.tail v) else Code.eval (Code.fix f) (List.tail v) >>= Cont.eval k)
v
[PROOFSTEP]
simp only [bind_pure_comp]
[GOAL]
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
⊢ eval step (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) =
Cfg.halt <$>
if List.headI v = 0 then Cont.eval k (List.tail v) else Code.eval (Code.fix f) (List.tail v) >>= Cont.eval k
[PROOFSTEP]
split_ifs
[GOAL]
case pos
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
h✝ : List.headI v = 0
⊢ eval step (stepRet k (List.tail v)) = Cfg.halt <$> Cont.eval k (List.tail v)
[PROOFSTEP]
exact IH
[GOAL]
case neg
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
h✝ : ¬List.headI v = 0
⊢ eval step (stepNormal f (Cont.fix f k) (List.tail v)) =
Cfg.halt <$> (Code.eval (Code.fix f) (List.tail v) >>= Cont.eval k)
[PROOFSTEP]
simp only [← bind_pure_comp, bind_assoc, cont_eval_fix (code_is_ok _)]
[GOAL]
case neg
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
h✝ : ¬List.headI v = 0
⊢ (do
let v ← Code.eval (Code.fix f) (List.tail v)
eval step (Cfg.ret k v)) =
do
let x ← Code.eval (Code.fix f) (List.tail v)
let a ← Cont.eval k x
pure (Cfg.halt a)
[PROOFSTEP]
congr
[GOAL]
case neg.e_a
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
h✝ : ¬List.headI v = 0
⊢ (fun v => eval step (Cfg.ret k v)) = fun x => do
let a ← Cont.eval k x
pure (Cfg.halt a)
[PROOFSTEP]
funext
[GOAL]
case neg.e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
h✝ : ¬List.headI v = 0
x✝ : List ℕ
⊢ eval step (Cfg.ret k x✝) = do
let a ← Cont.eval k x✝
pure (Cfg.halt a)
[PROOFSTEP]
rw [bind_pure_comp, ← IH]
[GOAL]
case neg.e_a.h
f : Code
k : Cont
IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v
v : List ℕ
h✝ : ¬List.headI v = 0
x✝ : List ℕ
⊢ eval step (Cfg.ret k x✝) = eval step (stepRet k x✝)
[PROOFSTEP]
exact reaches_eval (ReflTransGen.single rfl)
[GOAL]
a b : Λ'
⊢ Decidable (a = b)
[PROOFSTEP]
induction a generalizing b
[GOAL]
case move
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
b : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case clear
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
b : Λ'
⊢ Decidable (clear p✝ k✝ q✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case copy
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
b : Λ'
⊢ Decidable (copy q✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case push
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
b : Λ'
⊢ Decidable (push k✝ s✝ q✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case read
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
b : Λ'
⊢ Decidable (read f✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case succ
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
b : Λ'
⊢ Decidable (succ q✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case pred
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
b : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case ret
k✝ : Cont'
b : Λ'
⊢ Decidable (ret k✝ = b)
[PROOFSTEP]
cases b
[GOAL]
case move.move
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.move
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.move.h
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case move.move.h.refl
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case move.clear
p✝¹ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝ k₂✝ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.clear
p✝¹ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝ k₂✝ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.clear.h
p✝¹ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬move p✝¹ k₁✝ k₂✝ q✝¹ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case move.copy
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.copy
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.copy.h
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬move p✝ k₁✝ k₂✝ q✝¹ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case move.push
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.push
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.push.h
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬move p✝ k₁✝ k₂✝ q✝¹ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case move.read
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.read
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.read.h
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ ¬move p✝ k₁✝ k₂✝ q✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case move.succ
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.succ
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.succ.h
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬move p✝ k₁✝ k₂✝ q✝¹ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case move.pred
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.pred
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.pred.h
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ ¬move p✝ k₁✝ k₂✝ q✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case move.ret
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case move.ret
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case move.ret.h
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ ¬move p✝ k₁✝ k₂✝ q✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.move
p✝¹ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.move
p✝¹ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.move.h
p✝¹ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬clear p✝¹ k✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.clear
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.clear
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.clear.h
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case clear.clear.h.refl
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case clear.copy
p✝ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (clear p✝ k✝ q✝¹ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.copy
p✝ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (clear p✝ k✝ q✝¹ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.copy.h
p✝ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬clear p✝ k✝ q✝¹ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.push
p✝ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (clear p✝ k✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.push
p✝ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (clear p✝ k✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.push.h
p✝ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬clear p✝ k✝¹ q✝¹ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.read
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (clear p✝ k✝ q✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.read
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (clear p✝ k✝ q✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.read.h
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ ¬clear p✝ k✝ q✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.succ
p✝ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (clear p✝ k✝ q✝¹ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.succ
p✝ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (clear p✝ k✝ q✝¹ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.succ.h
p✝ : Γ' → Bool
k✝ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬clear p✝ k✝ q✝¹ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.pred
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (clear p✝ k✝ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.pred
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (clear p✝ k✝ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.pred.h
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ ¬clear p✝ k✝ q✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case clear.ret
p✝ : Γ' → Bool
k✝¹ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (clear p✝ k✝¹ q✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case clear.ret
p✝ : Γ' → Bool
k✝¹ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (clear p✝ k✝¹ q✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case clear.ret.h
p✝ : Γ' → Bool
k✝¹ : K'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ ¬clear p✝ k✝¹ q✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.move
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (copy q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.move
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (copy q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.move.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬copy q✝¹ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.clear
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (copy q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.clear
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (copy q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.clear.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬copy q✝¹ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.copy.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬copy q✝¹ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case copy.copy.h.refl
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case copy.push
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (copy q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.push
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (copy q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.push.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬copy q✝¹ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.read
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (copy q✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.read
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (copy q✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.read.h
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ ¬copy q✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.succ.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬copy q✝¹ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.pred
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (copy q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.pred
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (copy q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.pred.h
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ ¬copy q✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case copy.ret
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (copy q✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case copy.ret
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (copy q✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case copy.ret.h
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ ¬copy q✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.move
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.move
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.move.h
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬push k✝ s✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.clear
k✝¹ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.clear
k✝¹ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.clear.h
k✝¹ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬push k✝¹ s✝ q✝¹ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.copy
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝¹ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.copy
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝¹ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.copy.h
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬push k✝ s✝ q✝¹ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.push
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.push
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.push.h
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case push.push.h.refl
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case push.read
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (push k✝ s✝ q✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.read
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (push k✝ s✝ q✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.read.h
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ ¬push k✝ s✝ q✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.succ
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝¹ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.succ
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝¹ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.succ.h
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬push k✝ s✝ q✝¹ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.pred
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.pred
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (push k✝ s✝ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.pred.h
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ ¬push k✝ s✝ q✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case push.ret
k✝¹ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (push k✝¹ s✝ q✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case push.ret
k✝¹ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (push k✝¹ s✝ q✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case push.ret.h
k✝¹ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ ¬push k✝¹ s✝ q✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.move
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (read f✝ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.move
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (read f✝ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.move.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬read f✝ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.clear
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (read f✝ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.clear
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (read f✝ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.clear.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬read f✝ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.copy
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q✝ : Λ'
⊢ Decidable (read f✝ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.copy
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q✝ : Λ'
⊢ Decidable (read f✝ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.copy.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q✝ : Λ'
⊢ ¬read f✝ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.push
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (read f✝ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.push
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (read f✝ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.push.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬read f✝ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.read.h
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ ¬read f✝¹ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case read.read.h.refl
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case read.succ
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q✝ : Λ'
⊢ Decidable (read f✝ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.succ
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q✝ : Λ'
⊢ Decidable (read f✝ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.succ.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q✝ : Λ'
⊢ ¬read f✝ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.pred
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (read f✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.pred
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (read f✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.pred.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
q₁✝ q₂✝ : Λ'
⊢ ¬read f✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case read.ret
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
k✝ : Cont'
⊢ Decidable (read f✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case read.ret
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
k✝ : Cont'
⊢ Decidable (read f✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case read.ret.h
f✝ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b)
k✝ : Cont'
⊢ ¬read f✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.move
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (succ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.move
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (succ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.move.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬succ q✝¹ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.clear
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (succ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.clear
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (succ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.clear.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬succ q✝¹ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.copy.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬succ q✝¹ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.push
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (succ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.push
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (succ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.push.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬succ q✝¹ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.read
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (succ q✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.read
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (succ q✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.read.h
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
f✝ : Option Γ' → Λ'
⊢ ¬succ q✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.succ.h
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ ¬succ q✝¹ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case succ.succ.h.refl
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case succ.pred
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (succ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.pred
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (succ q✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.pred.h
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
q₁✝ q₂✝ : Λ'
⊢ ¬succ q✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case succ.ret
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (succ q✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case succ.ret
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ Decidable (succ q✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case succ.ret.h
q✝ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝ = b)
k✝ : Cont'
⊢ ¬succ q✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.move
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.move
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.move.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬pred q₁✝ q₂✝ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.clear
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.clear
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.clear.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬pred q₁✝ q₂✝ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.copy
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.copy
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.copy.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
q✝ : Λ'
⊢ ¬pred q₁✝ q₂✝ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.push
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.push
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.push.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬pred q₁✝ q₂✝ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.read
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (pred q₁✝ q₂✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.read
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (pred q₁✝ q₂✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.read.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
f✝ : Option Γ' → Λ'
⊢ ¬pred q₁✝ q₂✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.succ
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.succ
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
q✝ : Λ'
⊢ Decidable (pred q₁✝ q₂✝ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.succ.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
q✝ : Λ'
⊢ ¬pred q₁✝ q₂✝ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.pred.h
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ ¬pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case pred.pred.h.refl
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
⊢ False
[PROOFSTEP]
done
[GOAL]
case pred.ret
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
k✝ : Cont'
⊢ Decidable (pred q₁✝ q₂✝ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case pred.ret
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
k✝ : Cont'
⊢ Decidable (pred q₁✝ q₂✝ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case pred.ret.h
q₁✝ q₂✝ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b)
k✝ : Cont'
⊢ ¬pred q₁✝ q₂✝ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.move
k✝ : Cont'
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (ret k✝ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.move
k✝ : Cont'
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (ret k✝ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.move.h
k✝ : Cont'
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ ¬ret k✝ = move p✝ k₁✝ k₂✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.clear
k✝¹ : Cont'
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (ret k✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.clear
k✝¹ : Cont'
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (ret k✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.clear.h
k✝¹ : Cont'
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ ¬ret k✝¹ = clear p✝ k✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.copy
k✝ : Cont'
q✝ : Λ'
⊢ Decidable (ret k✝ = copy q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.copy
k✝ : Cont'
q✝ : Λ'
⊢ Decidable (ret k✝ = copy q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.copy.h
k✝ : Cont'
q✝ : Λ'
⊢ ¬ret k✝ = copy q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.push
k✝¹ : Cont'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (ret k✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.push
k✝¹ : Cont'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (ret k✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.push.h
k✝¹ : Cont'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ ¬ret k✝¹ = push k✝ s✝ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.read
k✝ : Cont'
f✝ : Option Γ' → Λ'
⊢ Decidable (ret k✝ = read f✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.read
k✝ : Cont'
f✝ : Option Γ' → Λ'
⊢ Decidable (ret k✝ = read f✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.read.h
k✝ : Cont'
f✝ : Option Γ' → Λ'
⊢ ¬ret k✝ = read f✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.succ
k✝ : Cont'
q✝ : Λ'
⊢ Decidable (ret k✝ = succ q✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.succ
k✝ : Cont'
q✝ : Λ'
⊢ Decidable (ret k✝ = succ q✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.succ.h
k✝ : Cont'
q✝ : Λ'
⊢ ¬ret k✝ = succ q✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.pred
k✝ : Cont'
q₁✝ q₂✝ : Λ'
⊢ Decidable (ret k✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.pred
k✝ : Cont'
q₁✝ q₂✝ : Λ'
⊢ Decidable (ret k✝ = pred q₁✝ q₂✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.pred.h
k✝ : Cont'
q₁✝ q₂✝ : Λ'
⊢ ¬ret k✝ = pred q₁✝ q₂✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
[PROOFSTEP]
done
[GOAL]
case ret.ret
k✝¹ k✝ : Cont'
⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done
[GOAL]
case ret.ret
k✝¹ k✝ : Cont'
⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
apply Decidable.isFalse
[GOAL]
case ret.ret.h
k✝¹ k✝ : Cont'
⊢ ¬ret k✝¹ = ret k✝
[PROOFSTEP]
rintro ⟨⟨⟩⟩
[GOAL]
case ret.ret.h.refl
k✝ : Cont'
⊢ False
[PROOFSTEP]
done
[GOAL]
case move.move
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
case clear.clear
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
case copy.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
case push.push
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case move.move _ _ _ _ I _ _ _ _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
case move.move _ _ _ _ I _ _ _ _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
letI := I
[GOAL]
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝ ↔ ?m.224030
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
p✝¹ : Γ' → Bool
k₁✝¹ k₂✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ (∀ (a : Γ'), p✝¹ a = p✝ a) ∧ k₁✝¹ = k₁✝ ∧ k₂✝¹ = k₂✝ ∧ q✝¹ = q✝ ↔ ?m.224030
[PROOFSTEP]
rfl
[GOAL]
case clear.clear
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
case copy.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
case push.push
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case clear.clear _ _ _ I _ _ _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
case clear.clear _ _ _ I _ _ _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
letI := I
[GOAL]
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝ ↔ ?m.227323
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
p✝¹ : Γ' → Bool
k✝¹ : K'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ (∀ (a : Γ'), p✝¹ a = p✝ a) ∧ k✝¹ = k✝ ∧ q✝¹ = q✝ ↔ ?m.227323
[PROOFSTEP]
rfl
[GOAL]
case copy.copy
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
case push.push
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case copy.copy _ I _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
[PROOFSTEP]
case copy.copy _ I _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (copy q✝¹ = copy q✝)
[PROOFSTEP]
letI := I
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ Decidable (copy q✝¹ = copy q✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ copy q✝¹ = copy q✝ ↔ ?m.230273
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ q✝¹ = q✝ ↔ ?m.230273
[PROOFSTEP]
rfl
[GOAL]
case push.push
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case push.push _ _ _ I _ _ _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
case push.push _ _ _ I _ _ _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
letI := I
[GOAL]
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝ ↔ ?m.231623
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
k✝¹ : K'
s✝¹ : Option Γ' → Option Γ'
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ k✝¹ = k✝ ∧ (∀ (a : Option Γ'), s✝¹ a = s✝ a) ∧ q✝¹ = q✝ ↔ ?m.231623
[PROOFSTEP]
rfl
[GOAL]
case read.read
f✝¹ : Option Γ' → Λ'
f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case read.read _ I _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
f✝¹ : Option Γ' → Λ'
I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
[PROOFSTEP]
case read.read _ I _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
f✝¹ : Option Γ' → Λ'
I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
⊢ Decidable (read f✝¹ = read f✝)
[PROOFSTEP]
letI := I
[GOAL]
f✝¹ : Option Γ' → Λ'
I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
this : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) := I
⊢ Decidable (read f✝¹ = read f✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
f✝¹ : Option Γ' → Λ'
I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
this : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) := I
⊢ read f✝¹ = read f✝ ↔ ?m.235705
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
f✝¹ : Option Γ' → Λ'
I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b)
f✝ : Option Γ' → Λ'
this : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) := I
⊢ (∀ (a : Option Γ'), f✝¹ a = f✝ a) ↔ ?m.235705
[PROOFSTEP]
rfl
[GOAL]
case succ.succ
q✝¹ : Λ'
q_ih✝ : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case succ.succ _ I _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
[PROOFSTEP]
case succ.succ _ I _ =>
letI := I
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
⊢ Decidable (succ q✝¹ = succ q✝)
[PROOFSTEP]
letI := I
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ Decidable (succ q✝¹ = succ q✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ succ q✝¹ = succ q✝ ↔ ?m.239621
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
q✝¹ : Λ'
I : (b : Λ') → Decidable (q✝¹ = b)
q✝ : Λ'
this : (b : Λ') → Decidable (q✝¹ = b) := I
⊢ q✝¹ = q✝ ↔ ?m.239621
[PROOFSTEP]
rfl
[GOAL]
case pred.pred
q₁✝¹ q₂✝¹ : Λ'
q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b)
q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case pred.pred _ _ I₁ I₂ _ _ =>
letI := I₁
letI := I₂
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q₁✝¹ q₂✝¹ : Λ'
I₁ : (b : Λ') → Decidable (q₁✝¹ = b)
I₂ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
[PROOFSTEP]
case pred.pred _ _ I₁ I₂ _ _ =>
letI := I₁
letI := I₂
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q₁✝¹ q₂✝¹ : Λ'
I₁ : (b : Λ') → Decidable (q₁✝¹ = b)
I₂ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
[PROOFSTEP]
letI := I₁
[GOAL]
q₁✝¹ q₂✝¹ : Λ'
I₁ : (b : Λ') → Decidable (q₁✝¹ = b)
I₂ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
this : (b : Λ') → Decidable (q₁✝¹ = b) := I₁
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
[PROOFSTEP]
letI := I₂
[GOAL]
q₁✝¹ q₂✝¹ : Λ'
I₁ : (b : Λ') → Decidable (q₁✝¹ = b)
I₂ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
this✝ : (b : Λ') → Decidable (q₁✝¹ = b) := I₁
this : (b : Λ') → Decidable (q₂✝¹ = b) := I₂
⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
q₁✝¹ q₂✝¹ : Λ'
I₁ : (b : Λ') → Decidable (q₁✝¹ = b)
I₂ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
this✝ : (b : Λ') → Decidable (q₁✝¹ = b) := I₁
this : (b : Λ') → Decidable (q₂✝¹ = b) := I₂
⊢ pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝ ↔ ?m.240977
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
q₁✝¹ q₂✝¹ : Λ'
I₁ : (b : Λ') → Decidable (q₁✝¹ = b)
I₂ : (b : Λ') → Decidable (q₂✝¹ = b)
q₁✝ q₂✝ : Λ'
this✝ : (b : Λ') → Decidable (q₁✝¹ = b) := I₁
this : (b : Λ') → Decidable (q₂✝¹ = b) := I₂
⊢ q₁✝¹ = q₁✝ ∧ q₂✝¹ = q₂✝ ↔ ?m.240977
[PROOFSTEP]
rfl
[GOAL]
case ret.ret
k✝¹ k✝ : Cont'
⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case ret.ret _ _ => exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
k✝¹ k✝ : Cont'
⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
case ret.ret _ _ => exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
k✝¹ k✝ : Cont'
⊢ Decidable (ret k✝¹ = ret k✝)
[PROOFSTEP]
exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl)
[GOAL]
k✝¹ k✝ : Cont'
⊢ ret k✝¹ = ret k✝ ↔ ?m.242367
[PROOFSTEP]
simp [Function.funext_iff]
[GOAL]
k✝¹ k✝ : Cont'
⊢ k✝¹ = k✝ ↔ ?m.242367
[PROOFSTEP]
rfl
[GOAL]
⊢ trNat 0 = []
[PROOFSTEP]
rw [trNat, Nat.cast_zero]
[GOAL]
⊢ trNum 0 = []
[PROOFSTEP]
rfl
[GOAL]
a b c d a' : List Γ'
⊢ update (elim a b c d) main a' = elim a' b c d
[PROOFSTEP]
funext x
[GOAL]
case h
a b c d a' : List Γ'
x : K'
⊢ update (elim a b c d) main a' x = elim a' b c d x
[PROOFSTEP]
cases x
[GOAL]
case h.main
a b c d a' : List Γ'
⊢ update (elim a b c d) main a' main = elim a' b c d main
[PROOFSTEP]
rfl
[GOAL]
case h.rev
a b c d a' : List Γ'
⊢ update (elim a b c d) main a' rev = elim a' b c d rev
[PROOFSTEP]
rfl
[GOAL]
case h.aux
a b c d a' : List Γ'
⊢ update (elim a b c d) main a' aux = elim a' b c d aux
[PROOFSTEP]
rfl
[GOAL]
case h.stack
a b c d a' : List Γ'
⊢ update (elim a b c d) main a' stack = elim a' b c d stack
[PROOFSTEP]
rfl
[GOAL]
a b c d b' : List Γ'
⊢ update (elim a b c d) rev b' = elim a b' c d
[PROOFSTEP]
funext x
[GOAL]
case h
a b c d b' : List Γ'
x : K'
⊢ update (elim a b c d) rev b' x = elim a b' c d x
[PROOFSTEP]
cases x
[GOAL]
case h.main
a b c d b' : List Γ'
⊢ update (elim a b c d) rev b' main = elim a b' c d main
[PROOFSTEP]
rfl
[GOAL]
case h.rev
a b c d b' : List Γ'
⊢ update (elim a b c d) rev b' rev = elim a b' c d rev
[PROOFSTEP]
rfl
[GOAL]
case h.aux
a b c d b' : List Γ'
⊢ update (elim a b c d) rev b' aux = elim a b' c d aux
[PROOFSTEP]
rfl
[GOAL]
case h.stack
a b c d b' : List Γ'
⊢ update (elim a b c d) rev b' stack = elim a b' c d stack
[PROOFSTEP]
rfl
[GOAL]
a b c d c' : List Γ'
⊢ update (elim a b c d) aux c' = elim a b c' d
[PROOFSTEP]
funext x
[GOAL]
case h
a b c d c' : List Γ'
x : K'
⊢ update (elim a b c d) aux c' x = elim a b c' d x
[PROOFSTEP]
cases x
[GOAL]
case h.main
a b c d c' : List Γ'
⊢ update (elim a b c d) aux c' main = elim a b c' d main
[PROOFSTEP]
rfl
[GOAL]
case h.rev
a b c d c' : List Γ'
⊢ update (elim a b c d) aux c' rev = elim a b c' d rev
[PROOFSTEP]
rfl
[GOAL]
case h.aux
a b c d c' : List Γ'
⊢ update (elim a b c d) aux c' aux = elim a b c' d aux
[PROOFSTEP]
rfl
[GOAL]
case h.stack
a b c d c' : List Γ'
⊢ update (elim a b c d) aux c' stack = elim a b c' d stack
[PROOFSTEP]
rfl
[GOAL]
a b c d d' : List Γ'
⊢ update (elim a b c d) stack d' = elim a b c d'
[PROOFSTEP]
funext x
[GOAL]
case h
a b c d d' : List Γ'
x : K'
⊢ update (elim a b c d) stack d' x = elim a b c d' x
[PROOFSTEP]
cases x
[GOAL]
case h.main
a b c d d' : List Γ'
⊢ update (elim a b c d) stack d' main = elim a b c d' main
[PROOFSTEP]
rfl
[GOAL]
case h.rev
a b c d d' : List Γ'
⊢ update (elim a b c d) stack d' rev = elim a b c d' rev
[PROOFSTEP]
rfl
[GOAL]
case h.aux
a b c d d' : List Γ'
⊢ update (elim a b c d) stack d' aux = elim a b c d' aux
[PROOFSTEP]
rfl
[GOAL]
case h.stack
a b c d d' : List Γ'
⊢ update (elim a b c d) stack d' stack = elim a b c d' stack
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
p : α → Bool
l₁ : List α
o : α
l₂ : List α
x✝ : ∀ (x : α), x ∈ l₁ → p x = false
left✝ : p o = true
h₃ : [] = l₁ ++ o :: l₂
⊢ splitAtPred p [] = (l₁, some o, l₂)
[PROOFSTEP]
simp at h₃
[GOAL]
α : Type u_1
p : α → Bool
a : α
L l₁ : List α
o : Option α
l₂ : List α
h₁ : ∀ (x : α), x ∈ l₁ → p x = false
h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) o
⊢ splitAtPred p (a :: L) = (l₁, o, l₂)
[PROOFSTEP]
rw [splitAtPred]
[GOAL]
α : Type u_1
p : α → Bool
a : α
L l₁ : List α
o : Option α
l₂ : List α
h₁ : ∀ (x : α), x ∈ l₁ → p x = false
h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) o
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(l₁, o, l₂)
[PROOFSTEP]
have IH := splitAtPred_eq p L
[GOAL]
α : Type u_1
p : α → Bool
a : α
L l₁ : List α
o : Option α
l₂ : List α
h₁ : ∀ (x : α), x ∈ l₁ → p x = false
h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) o
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(l₁, o, l₂)
[PROOFSTEP]
cases' o with o
[GOAL]
case none
α : Type u_1
p : α → Bool
a : α
L l₁ l₂ : List α
h₁ : ∀ (x : α), x ∈ l₁ → p x = false
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) none
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(l₁, none, l₂)
[PROOFSTEP]
cases' l₁ with a' l₁
[GOAL]
case none.nil
α : Type u_1
p : α → Bool
a : α
L l₂ : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
h₁ : ∀ (x : α), x ∈ [] → p x = false
h₂ : Option.elim' (a :: L = [] ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = [] ++ a_1 :: l₂) none
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
([], none, l₂)
[PROOFSTEP]
rcases h₂ with ⟨⟨⟩, rfl⟩
[GOAL]
case none.cons
α : Type u_1
p : α → Bool
a : α
L l₂ : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
a' : α
l₁ : List α
h₁ : ∀ (x : α), x ∈ a' :: l₁ → p x = false
h₂ : Option.elim' (a :: L = a' :: l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = a' :: l₁ ++ a_1 :: l₂) none
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(a' :: l₁, none, l₂)
[PROOFSTEP]
rcases h₂ with ⟨⟨⟩, rfl⟩
[GOAL]
case none.cons.intro.refl
α : Type u_1
p : α → Bool
a : α
L : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
h₁ : ∀ (x : α), x ∈ a :: L → p x = false
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(a :: L, none, [])
[PROOFSTEP]
rw [h₁ a (List.Mem.head _), cond, IH L none [] _ ⟨rfl, rfl⟩]
[GOAL]
α : Type u_1
p : α → Bool
a : α
L : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
h₁ : ∀ (x : α), x ∈ a :: L → p x = false
⊢ ∀ (x : α), x ∈ L → p x = false
[PROOFSTEP]
exact fun x h => h₁ x (List.Mem.tail _ h)
[GOAL]
case some
α : Type u_1
p : α → Bool
a : α
L l₁ l₂ : List α
h₁ : ∀ (x : α), x ∈ l₁ → p x = false
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
o : α
h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) (some o)
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(l₁, some o, l₂)
[PROOFSTEP]
cases' l₁ with a' l₁
[GOAL]
case some.nil
α : Type u_1
p : α → Bool
a : α
L l₂ : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
o : α
h₁ : ∀ (x : α), x ∈ [] → p x = false
h₂ : Option.elim' (a :: L = [] ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = [] ++ a_1 :: l₂) (some o)
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
([], some o, l₂)
[PROOFSTEP]
rcases h₂ with ⟨h₂, ⟨⟩⟩
[GOAL]
case some.cons
α : Type u_1
p : α → Bool
a : α
L l₂ : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
o a' : α
l₁ : List α
h₁ : ∀ (x : α), x ∈ a' :: l₁ → p x = false
h₂ : Option.elim' (a :: L = a' :: l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = a' :: l₁ ++ a_1 :: l₂) (some o)
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(a' :: l₁, some o, l₂)
[PROOFSTEP]
rcases h₂ with ⟨h₂, ⟨⟩⟩
[GOAL]
case some.nil.intro.refl
α : Type u_1
p : α → Bool
a : α
L : List α
IH :
∀ (l₁ : List α) (o : Option α) (l₂ : List α),
(∀ (x : α), x ∈ l₁ → p x = false) →
Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂)
h₁ : ∀ (x : α), x ∈ [] → p x = false
h₂ : p a = true
⊢ (bif p a then ([], some a, L)
else
match splitAtPred p L with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
([], some a, L)
[PROOFSTEP]
rw [h₂, cond]
[GOAL]
case some.cons.intro.refl
α : Type u_1
p : α → Bool
a : α
l₂ : List α
o : α
l₁ : List α
h₂ : p o = true
h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false
IH :
∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α),
(∀ (x : α), x ∈ l₁_1 → p x = false) →
Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = [])
(fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 →
splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1)
⊢ (bif p a then ([], some a, List.append l₁ (o :: l₂))
else
match splitAtPred p (List.append l₁ (o :: l₂)) with
| (l₁, o, l₂) => (a :: l₁, o, l₂)) =
(a :: l₁, some o, l₂)
[PROOFSTEP]
rw [h₁ a (List.Mem.head _), cond, IH l₁ (some o) l₂ _ ⟨h₂, _⟩]
[GOAL]
α : Type u_1
p : α → Bool
a : α
l₂ : List α
o : α
l₁ : List α
h₂ : p o = true
h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false
IH :
∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α),
(∀ (x : α), x ∈ l₁_1 → p x = false) →
Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = [])
(fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 →
splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1)
⊢ ∀ (x : α), x ∈ l₁ → p x = false
[PROOFSTEP]
try rfl
[GOAL]
α : Type u_1
p : α → Bool
a : α
l₂ : List α
o : α
l₁ : List α
h₂ : p o = true
h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false
IH :
∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α),
(∀ (x : α), x ∈ l₁_1 → p x = false) →
Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = [])
(fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 →
splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1)
⊢ ∀ (x : α), x ∈ l₁ → p x = false
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
p : α → Bool
a : α
l₂ : List α
o : α
l₁ : List α
h₂ : p o = true
h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false
IH :
∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α),
(∀ (x : α), x ∈ l₁_1 → p x = false) →
Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = [])
(fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 →
splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1)
⊢ List.append l₁ (o :: l₂) = l₁ ++ o :: l₂
[PROOFSTEP]
try rfl
[GOAL]
α : Type u_1
p : α → Bool
a : α
l₂ : List α
o : α
l₁ : List α
h₂ : p o = true
h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false
IH :
∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α),
(∀ (x : α), x ∈ l₁_1 → p x = false) →
Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = [])
(fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 →
splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1)
⊢ List.append l₁ (o :: l₂) = l₁ ++ o :: l₂
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
p : α → Bool
a : α
l₂ : List α
o : α
l₁ : List α
h₂ : p o = true
h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false
IH :
∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α),
(∀ (x : α), x ∈ l₁_1 → p x = false) →
Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = [])
(fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 →
splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1)
⊢ ∀ (x : α), x ∈ l₁ → p x = false
[PROOFSTEP]
exact fun x h => h₁ x (List.Mem.tail _ h)
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S k₁) = (L₁, o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
[PROOFSTEP]
induction' L₁ with a L₁ IH generalizing S s
[GOAL]
case nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux [] (S k₂)) }
[PROOFSTEP]
rw [(_ : [].reverseAux _ = _), Function.update_eq_self]
[GOAL]
case nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update S k₁ L₂ }
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ List.reverseAux [] (S k₂) = update S k₁ L₂ k₂
[PROOFSTEP]
swap
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ List.reverseAux [] (S k₂) = update S k₁ L₂ k₂
[PROOFSTEP]
rw [Function.update_noteq h₁.symm]
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ List.reverseAux [] (S k₂) = S k₂
[PROOFSTEP]
rfl
[GOAL]
case nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
refine' TransGen.head' rfl _
[GOAL]
case nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ ReflTransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.move p k₁ k₂ q)) s S)
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
simp
[GOAL]
case nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = ([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (S k₁), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (S k₁), stk := update S k₁ (List.tail (S k₁)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (S k₁),
stk :=
update (update S k₁ (List.tail (S k₁))) k₂
(Option.iget (List.head? (S k₁)) :: update S k₁ (List.tail (S k₁)) k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
revert e
[GOAL]
case nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
⊢ splitAtPred p (S k₁) = ([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (S k₁), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (S k₁), stk := update S k₁ (List.tail (S k₁)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (S k₁),
stk :=
update (update S k₁ (List.tail (S k₁))) k₂
(Option.iget (List.head? (S k₁)) :: update S k₁ (List.tail (S k₁)) k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
cases' S k₁ with a Sk
[GOAL]
case nil.nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
⊢ splitAtPred p [] = ([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k₁ (List.tail []) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? [],
stk :=
update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ splitAtPred p (a :: Sk) = ([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a :: Sk), stk := update S k₁ (List.tail (a :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a :: Sk),
stk :=
update (update S k₁ (List.tail (a :: Sk))) k₂
(Option.iget (List.head? (a :: Sk)) :: update S k₁ (List.tail (a :: Sk)) k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p [] = ([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k₁ (List.tail []) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? [],
stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
cases e
[GOAL]
case nil.nil.refl
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S✝ k₁) = (L₁, none, [])
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k₁ (List.tail []) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? [],
stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) })
{ l := some q, var := none, stk := update S k₁ [] }
[PROOFSTEP]
rfl
[GOAL]
case nil.cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e : splitAtPred p (a :: Sk) = ([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a :: Sk), stk := update S k₁ (List.tail (a :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a :: Sk),
stk :=
update (update S k₁ (List.tail (a :: Sk))) k₂
(Option.iget (List.head? (a :: Sk)) :: update S k₁ (List.tail (a :: Sk)) k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
simp only [splitAtPred, Option.elim, List.head?, List.tail_cons, Option.iget_some] at e ⊢
[GOAL]
case nil.cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e :
(bif p a then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif p a then { l := some q, var := some a, stk := update S k₁ Sk }
else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
revert e
[GOAL]
case nil.cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ (bif p a then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif p a then { l := some q, var := some a, stk := update S k₁ Sk }
else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
cases p a
[GOAL]
case nil.cons.false
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ (bif false then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif false then { l := some q, var := some a, stk := update S k₁ Sk }
else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ (bif true then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif true then { l := some q, var := some a, stk := update S k₁ Sk }
else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.cons.false
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e :
(bif false then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif false then { l := some q, var := some a, stk := update S k₁ Sk }
else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢
[GOAL]
case nil.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e :
(bif true then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif true then { l := some q, var := some a, stk := update S k₁ Sk }
else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) })
{ l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢
[GOAL]
case nil.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e : some a = o ∧ Sk = L₂
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some q, var := some a, stk := update S k₁ Sk } { l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
simp only [e]
[GOAL]
case nil.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e : some a = o ∧ Sk = L₂
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some q, var := o, stk := update S k₁ L₂ } { l := some q, var := o, stk := update S k₁ L₂ }
[PROOFSTEP]
rfl
[GOAL]
case cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = (a :: L₁, o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux (a :: L₁) (S k₂)) }
[PROOFSTEP]
refine' TransGen.head rfl _
[GOAL]
case cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = (a :: L₁, o, L₂)
⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.move p k₁ k₂ q)) s S)
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux (a :: L₁) (S k₂)) }
[PROOFSTEP]
simp
[GOAL]
case cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (S k₁), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (S k₁), stk := update S k₁ (List.tail (S k₁)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (S k₁),
stk :=
update (update S k₁ (List.tail (S k₁))) k₂
(Option.iget (List.head? (S k₁)) :: update S k₁ (List.tail (S k₁)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
cases' e₁ : S k₁ with a' Sk
[GOAL]
case cons.nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = (a :: L₁, o, L₂)
e₁ : S k₁ = []
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k₁ (List.tail []) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? [],
stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
rw [e₁, splitAtPred] at e
[GOAL]
case cons.cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k₁) = (a :: L₁, o, L₂)
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
rw [e₁, splitAtPred] at e
[GOAL]
case cons.nil
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
e : ([], none, []) = (a :: L₁, o, L₂)
e₁ : S k₁ = []
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k₁ (List.tail []) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? [],
stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
cases e
[GOAL]
case cons.cons
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e :
(bif p a' then ([], some a', Sk)
else
match splitAtPred p Sk with
| (l₁, o, l₂) => (a' :: l₁, o, l₂)) =
(a :: L₁, o, L₂)
e₁ : S k₁ = a' :: Sk
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
cases e₂ : p a'
[GOAL]
case cons.cons.false
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e :
(bif p a' then ([], some a', Sk)
else
match splitAtPred p Sk with
| (l₁, o, l₂) => (a' :: l₁, o, l₂)) =
(a :: L₁, o, L₂)
e₁ : S k₁ = a' :: Sk
e₂ : p a' = false
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
simp only [e₂, cond] at e
[GOAL]
case cons.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e :
(bif p a' then ([], some a', Sk)
else
match splitAtPred p Sk with
| (l₁, o, l₂) => (a' :: l₁, o, l₂)) =
(a :: L₁, o, L₂)
e₁ : S k₁ = a' :: Sk
e₂ : p a' = true
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
simp only [e₂, cond] at e
[GOAL]
case cons.cons.false
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
e₂ : p a' = false
e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
case cons.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
e₂ : p a' = true
e : ([], some a', Sk) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
swap
[GOAL]
case cons.cons.true
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
e₂ : p a' = true
e : ([], some a', Sk) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
cases e
[GOAL]
case cons.cons.false
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
e₂ : p a' = false
e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
rcases e₃ : splitAtPred p Sk with ⟨_, _, _⟩
[GOAL]
case cons.cons.false.mk.mk
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
e₂ : p a' = false
e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂)
fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
rw [e₃] at e
[GOAL]
case cons.cons.false.mk.mk
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k₁ = a' :: Sk
e₂ : p a' = false
fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e : (a' :: (fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) = (a :: L₁, o, L₂)
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk),
stk :=
update (update S k₁ (List.tail (a' :: Sk))) k₂
(Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) })
{ l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) }
[PROOFSTEP]
cases e
[GOAL]
case cons.cons.false.mk.mk.refl
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k₁ = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) }
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a :: Sk), stk := update S k₁ (List.tail (a :: Sk)) }
else
{ l := some (Λ'.move p k₁ k₂ q), var := List.head? (a :: Sk),
stk :=
update (update S k₁ (List.tail (a :: Sk))) k₂
(Option.iget (List.head? (a :: Sk)) :: update S k₁ (List.tail (a :: Sk)) k₂) })
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (a :: S k₂)) }
[PROOFSTEP]
simp [e₂]
[GOAL]
case cons.cons.false.mk.mk.refl
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k₁ = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) }
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.move p k₁ k₂ q), var := some a,
stk := update (update S k₁ Sk) k₂ (Option.iget (some a) :: update S k₁ Sk k₂) }
{ l := some q, var := fst✝, stk := update (update S k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) }
[PROOFSTEP]
convert @IH _ (update (update S k₁ Sk) k₂ (a :: S k₂)) _ using 2
[GOAL]
case h.e'_1.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k₁ = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) }
⊢ update (update S k₁ Sk) k₂ (Option.iget (some a) :: update S k₁ Sk k₂) = update (update S k₁ Sk) k₂ (a :: S k₂)
[PROOFSTEP]
simp [Function.update_noteq, h₁, h₁.symm, e₃, List.reverseAux]
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k₁ = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) }
⊢ update (update S k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) =
update (update (update (update S k₁ Sk) k₂ (a :: S k₂)) k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂
(List.reverseAux (fst✝¹, fst✝, snd✝).fst (update (update S k₁ Sk) k₂ (a :: S k₂) k₂))
[PROOFSTEP]
simp [Function.update_noteq, h₁, h₁.symm, e₃, List.reverseAux]
[GOAL]
case cons.cons.false.mk.mk.refl.convert_2
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k₁ = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) }
⊢ splitAtPred p (update (update S k₁ Sk) k₂ (a :: S k₂) k₁) =
((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
[PROOFSTEP]
simp [Function.update_noteq, h₁, h₁.symm, e₃, List.reverseAux]
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
h₁ : k₁ ≠ k₂
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k₁ = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst,
stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) }
⊢ update (update S k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) =
update (update (update (update S k₁ Sk) k₂ (a :: S k₂)) k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂))
[PROOFSTEP]
simp [Function.update_comm h₁.symm]
[GOAL]
q : Λ'
s : Option Γ'
S : K' → List Γ'
⊢ rev ≠ main
[PROOFSTEP]
decide
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (move₂ p k₁ k₂ q), var := s, stk := S }
{ l := some q, var := none, stk := update (update S k₁ (Option.elim o id List.cons L₂)) k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
refine' (move_ok h₁.1 e).trans (TransGen.head rfl _)
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, o, L₂)
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux (tr (Λ'.push k₁ id (Λ'.move (fun x => false) rev k₂ q))) o
(update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))))
{ l := some q, var := none, stk := update (update S k₁ (Option.elim o id List.cons L₂)) k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
simp
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif Option.isSome o then
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := o,
stk :=
update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget o :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) }
else
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := o,
stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) })
{ l := some q, var := none,
stk :=
update
(update S k₁
((match (motive := Option Γ' → (List Γ' → List Γ') → (Γ' → List Γ' → List Γ') → List Γ' → List Γ') o, id,
List.cons with
| some x, x_1, f => f x
| none, y, x => y)
L₂))
k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
cases o
[GOAL]
case none
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif Option.isSome none then
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := none,
stk :=
update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget none :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) }
else
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := none,
stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) })
{ l := some q, var := none,
stk :=
update
(update S k₁
((match (motive := Option Γ' → (List Γ' → List Γ') → (Γ' → List Γ' → List Γ') → List Γ' → List Γ') none, id,
List.cons with
| some x, x_1, f => f x
| none, y, x => y)
L₂))
k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
simp only [Option.elim, id.def]
[GOAL]
case some
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif Option.isSome (some val✝) then
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝,
stk :=
update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) }
else
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝,
stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) })
{ l := some q, var := none,
stk :=
update
(update S k₁
((match (motive := Option Γ' → (List Γ' → List Γ') → (Γ' → List Γ' → List Γ') → List Γ' → List Γ')
some val✝, id, List.cons with
| some x, x_1, f => f x
| none, y, x => y)
L₂))
k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
simp only [Option.elim, id.def]
[GOAL]
case none
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif Option.isSome none then
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := none,
stk :=
update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget none :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) }
else
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := none,
stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) })
{ l := some q, var := none, stk := update (update S k₁ L₂) k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
simp only [TM2.stepAux, Option.isSome, cond_false]
[GOAL]
case none
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := none,
stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) }
{ l := some q, var := none, stk := update (update S k₁ L₂) k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
convert move_ok h₁.2.1.symm (splitAtPred_false _) using 2
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ update (update S k₁ L₂) k₂ (L₁ ++ S k₂) =
update (update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) rev []) k₂
(List.reverseAux (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) rev)
(update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₂))
[PROOFSTEP]
simp only [Function.update_comm h₁.1, Function.update_idem]
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ update (update S k₁ L₂) k₂ (L₁ ++ S k₂) =
update (update (update S rev []) k₁ L₂) k₂
(List.reverseAux (update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ rev)
(update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ k₂))
[PROOFSTEP]
rw [show update S rev [] = S by rw [← h₂, Function.update_eq_self]]
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ update S rev [] = S
[PROOFSTEP]
rw [← h₂, Function.update_eq_self]
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
e : splitAtPred p (S k₁) = (L₁, none, L₂)
⊢ update (update S k₁ L₂) k₂ (L₁ ++ S k₂) =
update (update S k₁ L₂) k₂
(List.reverseAux (update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ rev)
(update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ k₂))
[PROOFSTEP]
simp only [Function.update_noteq h₁.2.2.symm, Function.update_noteq h₁.2.1, Function.update_noteq h₁.1.symm,
List.reverseAux_eq, h₂, Function.update_same, List.append_nil, List.reverse_reverse]
[GOAL]
case some
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif Option.isSome (some val✝) then
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝,
stk :=
update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) }
else
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝,
stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) })
{ l := some q, var := none, stk := update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
simp only [TM2.stepAux, Option.isSome, cond_true]
[GOAL]
case some
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝,
stk :=
update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) }
{ l := some q, var := none, stk := update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) }
[PROOFSTEP]
convert move_ok h₁.2.1.symm (splitAtPred_false _) using 2
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) =
update
(update
(update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁))
rev [])
k₂
(List.reverseAux
(update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) rev)
(update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁
(Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) k₂))
[PROOFSTEP]
simp only [h₂, Function.update_comm h₁.1, List.reverseAux_eq, Function.update_same, List.append_nil,
Function.update_idem]
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) =
update (update (update S rev []) k₁ (Option.iget (some val✝) :: L₂)) k₂
(List.reverse (update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) rev) ++
update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) k₂)
[PROOFSTEP]
rw [show update S rev [] = S by rw [← h₂, Function.update_eq_self]]
[GOAL]
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ update S rev [] = S
[PROOFSTEP]
rw [← h₂, Function.update_eq_self]
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k₁ k₂ : K'
q : Λ'
s : Option Γ'
L₁ L₂ : List Γ'
S : K' → List Γ'
h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂
h₂ : S rev = []
val✝ : Γ'
e : splitAtPred p (S k₁) = (L₁, some val✝, L₂)
⊢ update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) =
update (update S k₁ (Option.iget (some val✝) :: L₂)) k₂
(List.reverse (update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) rev) ++
update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) k₂)
[PROOFSTEP]
simp only [Function.update_noteq h₁.1.symm, Function.update_noteq h₁.2.2.symm, Function.update_noteq h₁.2.1,
Function.update_same, List.reverse_reverse]
[GOAL]
p : Γ' → Bool
k : K'
q : Λ'
s : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = (L₁, o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
induction' L₁ with a L₁ IH generalizing S s
[GOAL]
case nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = ([], o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
refine' TransGen.head' rfl _
[GOAL]
case nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = ([], o, L₂)
⊢ ReflTransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.clear p k q)) s S)
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp
[GOAL]
case nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = ([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (S k), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (S k), stk := update S k (List.tail (S k)) }
else { l := some (Λ'.clear p k q), var := List.head? (S k), stk := update S k (List.tail (S k)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
revert e
[GOAL]
case nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
⊢ splitAtPred p (S k) = ([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (S k), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (S k), stk := update S k (List.tail (S k)) }
else { l := some (Λ'.clear p k q), var := List.head? (S k), stk := update S k (List.tail (S k)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases' S k with a Sk
[GOAL]
case nil.nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
⊢ splitAtPred p [] = ([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k (List.tail []) }
else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ splitAtPred p (a :: Sk) = ([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p [] = ([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k (List.tail []) }
else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases e
[GOAL]
case nil.nil.refl
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, none, [])
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k (List.tail []) }
else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) })
{ l := some q, var := none, stk := update S k [] }
[PROOFSTEP]
rfl
[GOAL]
case nil.cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e : splitAtPred p (a :: Sk) = ([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp only [splitAtPred, Option.elim, List.head?, List.tail_cons] at e ⊢
[GOAL]
case nil.cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e :
(bif p a then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif p a then { l := some q, var := some a, stk := update S k Sk }
else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
revert e
[GOAL]
case nil.cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ (bif p a then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif p a then { l := some q, var := some a, stk := update S k Sk }
else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases p a
[GOAL]
case nil.cons.false
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ (bif false then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif false then { l := some q, var := some a, stk := update S k Sk }
else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.cons.true
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
⊢ (bif true then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂) →
ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif true then { l := some q, var := some a, stk := update S k Sk }
else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
intro e
[GOAL]
case nil.cons.false
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e :
(bif false then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif false then { l := some q, var := some a, stk := update S k Sk }
else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢
[GOAL]
case nil.cons.true
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e :
(bif true then ([], some a, Sk)
else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) =
([], o, L₂)
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif true then { l := some q, var := some a, stk := update S k Sk }
else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢
[GOAL]
case nil.cons.true
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e : some a = o ∧ Sk = L₂
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some q, var := some a, stk := update S k Sk } { l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
rcases e with ⟨e₁, e₂⟩
[GOAL]
case nil.cons.true.intro
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e : splitAtPred p (S✝ k) = (L₁, o, L₂)
s : Option Γ'
S : K' → List Γ'
a : Γ'
Sk : List Γ'
e₁ : some a = o
e₂ : Sk = L₂
⊢ ReflTransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some q, var := some a, stk := update S k Sk } { l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
rw [e₁, e₂]
[GOAL]
case cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = (a :: L₁, o, L₂)
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
refine' TransGen.head rfl _
[GOAL]
case cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = (a :: L₁, o, L₂)
⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.clear p k q)) s S)
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp
[GOAL]
case cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (S k), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (S k), stk := update S k (List.tail (S k)) }
else { l := some (Λ'.clear p k q), var := List.head? (S k), stk := update S k (List.tail (S k)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases' e₁ : S k with a' Sk
[GOAL]
case cons.nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = (a :: L₁, o, L₂)
e₁ : S k = []
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k (List.tail []) }
else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
rw [e₁, splitAtPred] at e
[GOAL]
case cons.cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
e : splitAtPred p (S k) = (a :: L₁, o, L₂)
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
rw [e₁, splitAtPred] at e
[GOAL]
case cons.nil
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
e : ([], none, []) = (a :: L₁, o, L₂)
e₁ : S k = []
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? [], true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? [], stk := update S k (List.tail []) }
else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases e
[GOAL]
case cons.cons
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e :
(bif p a' then ([], some a', Sk)
else
match splitAtPred p Sk with
| (l₁, o, l₂) => (a' :: l₁, o, l₂)) =
(a :: L₁, o, L₂)
e₁ : S k = a' :: Sk
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases e₂ : p a'
[GOAL]
case cons.cons.false
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e :
(bif p a' then ([], some a', Sk)
else
match splitAtPred p Sk with
| (l₁, o, l₂) => (a' :: l₁, o, l₂)) =
(a :: L₁, o, L₂)
e₁ : S k = a' :: Sk
e₂ : p a' = false
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp only [e₂, cond] at e
[GOAL]
case cons.cons.true
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e :
(bif p a' then ([], some a', Sk)
else
match splitAtPred p Sk with
| (l₁, o, l₂) => (a' :: l₁, o, l₂)) =
(a :: L₁, o, L₂)
e₁ : S k = a' :: Sk
e₂ : p a' = true
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
simp only [e₂, cond] at e
[GOAL]
case cons.cons.false
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
e₂ : p a' = false
e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
case cons.cons.true
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
e₂ : p a' = true
e : ([], some a', Sk) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
swap
[GOAL]
case cons.cons.true
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
e₂ : p a' = true
e : ([], some a', Sk) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases e
[GOAL]
case cons.cons.false
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
e₂ : p a' = false
e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
rcases e₃ : splitAtPred p Sk with ⟨_, _, _⟩
[GOAL]
case cons.cons.false.mk.mk
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
e₂ : p a' = false
e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂)
fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
rw [e₃] at e
[GOAL]
case cons.cons.false.mk.mk
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁✝ : List Γ'
o : Option Γ'
L₂ : List Γ'
S✝ : K' → List Γ'
e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂)
a : Γ'
L₁ : List Γ'
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = (L₁, o, L₂) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := o, stk := update S k L₂ }
s : Option Γ'
S : K' → List Γ'
a' : Γ'
Sk : List Γ'
e₁ : S k = a' :: Sk
e₂ : p a' = false
fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e : (a' :: (fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) = (a :: L₁, o, L₂)
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a' :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) })
{ l := some q, var := o, stk := update S k L₂ }
[PROOFSTEP]
cases e
[GOAL]
case cons.cons.false.mk.mk.refl
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd }
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
(bif
match List.head? (a :: Sk), true, p with
| some x, x_1, f => f x
| none, y, x => y then
{ l := some q, var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) }
else { l := some (Λ'.clear p k q), var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) })
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd }
[PROOFSTEP]
simp [e₂]
[GOAL]
case cons.cons.false.mk.mk.refl
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd }
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }
{ l := some q, var := fst✝, stk := update S k snd✝ }
[PROOFSTEP]
convert @IH _ (update S k Sk) _ using 2
[GOAL]
case h.e'_2.h.e'_7
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd }
⊢ update S k snd✝ = update (update S k Sk) k (fst✝¹, fst✝, snd✝).2.snd
[PROOFSTEP]
simp [e₃]
[GOAL]
case cons.cons.false.mk.mk.refl.convert_2
p : Γ' → Bool
k : K'
q : Λ'
s✝ : Option Γ'
L₁ : List Γ'
S✝ : K' → List Γ'
a : Γ'
s : Option Γ'
S : K' → List Γ'
Sk fst✝¹ : List Γ'
fst✝ : Option Γ'
snd✝ : List Γ'
e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝)
e₁ : S k = a :: Sk
e₂ : p a = false
e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
IH :
∀ {s : Option Γ'} {S : K' → List Γ'},
splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) →
Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S }
{ l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd }
⊢ splitAtPred p (update S k Sk k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd)
[PROOFSTEP]
simp [e₃]
[GOAL]
q : Λ'
s : Option Γ'
a b c d : List Γ'
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d }
{ l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) }
[PROOFSTEP]
induction' b with x b IH generalizing a d s
[GOAL]
case nil
q : Λ'
s✝ : Option Γ'
a✝ c d✝ : List Γ'
s : Option Γ'
a d : List Γ'
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a [] c d }
{ l := some q, var := none, stk := elim (List.reverseAux [] a) [] c (List.reverseAux [] d) }
[PROOFSTEP]
refine' TransGen.single _
[GOAL]
case nil
q : Λ'
s✝ : Option Γ'
a✝ c d✝ : List Γ'
s : Option Γ'
a d : List Γ'
⊢ { l := some q, var := none, stk := elim (List.reverseAux [] a) [] c (List.reverseAux [] d) } ∈
TM2.step tr { l := some (Λ'.copy q), var := s, stk := elim a [] c d }
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s✝ : Option Γ'
a✝ c d✝ : List Γ'
x : Γ'
b : List Γ'
IH :
∀ (s : Option Γ') (a d : List Γ'),
Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d }
{ l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) }
s : Option Γ'
a d : List Γ'
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a (x :: b) c d }
{ l := some q, var := none, stk := elim (List.reverseAux (x :: b) a) [] c (List.reverseAux (x :: b) d) }
[PROOFSTEP]
refine' TransGen.head rfl _
[GOAL]
case cons
q : Λ'
s✝ : Option Γ'
a✝ c d✝ : List Γ'
x : Γ'
b : List Γ'
IH :
∀ (s : Option Γ') (a d : List Γ'),
Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d }
{ l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) }
s : Option Γ'
a d : List Γ'
⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.copy q)) s (elim a (x :: b) c d))
{ l := some q, var := none, stk := elim (List.reverseAux (x :: b) a) [] c (List.reverseAux (x :: b) d) }
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s✝ : Option Γ'
a✝ c d✝ : List Γ'
x : Γ'
b : List Γ'
IH :
∀ (s : Option Γ') (a d : List Γ'),
Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d }
{ l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) }
s : Option Γ'
a d : List Γ'
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.copy q), var := some x, stk := elim (Option.iget (some x) :: a) b c (Option.iget (some x) :: d) }
{ l := some q, var := none, stk := elim (List.reverseAux b (x :: a)) [] c (List.reverseAux b (x :: d)) }
[PROOFSTEP]
exact IH _ _ _
[GOAL]
a : ℕ
l : List ℕ
x : Γ'
h : x ∈ trList (a :: l)
⊢ x ≠ Γ'.consₗ
[PROOFSTEP]
simp [trList] at h
[GOAL]
a : ℕ
l : List ℕ
x : Γ'
h : x ∈ trNat a ∨ x = Γ'.cons ∨ x ∈ trList l
⊢ x ≠ Γ'.consₗ
[PROOFSTEP]
obtain h | rfl | h := h
[GOAL]
case inl
a : ℕ
l : List ℕ
x : Γ'
h : x ∈ trNat a
⊢ x ≠ Γ'.consₗ
[PROOFSTEP]
rintro rfl
[GOAL]
case inl
a : ℕ
l : List ℕ
h : Γ'.consₗ ∈ trNat a
⊢ False
[PROOFSTEP]
cases trNat_natEnd _ _ h
[GOAL]
case inr.inl
a : ℕ
l : List ℕ
⊢ Γ'.cons ≠ Γ'.consₗ
[PROOFSTEP]
rintro ⟨⟩
[GOAL]
case inr.inr
a : ℕ
l : List ℕ
x : Γ'
h : x ∈ trList l
⊢ x ≠ Γ'.consₗ
[PROOFSTEP]
exact trList_ne_consₗ l _ h
[GOAL]
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
⊢ Reaches₁ (TM2.step tr) { l := some (head main q), var := s, stk := elim (trList L) [] c d }
{ l := some q, var := none, stk := elim (trList [List.headI L]) [] c d }
[PROOFSTEP]
let o : Option Γ' := List.casesOn L none fun _ _ => some Γ'.cons
[GOAL]
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ Reaches₁ (TM2.step tr) { l := some (head main q), var := s, stk := elim (trList L) [] c d }
{ l := some q, var := none, stk := elim (trList [List.headI L]) [] c d }
[PROOFSTEP]
refine'
(move_ok (by decide) (splitAtPred_eq _ _ (trNat L.headI) o (trList L.tail) (trNat_natEnd _) _)).trans
(TransGen.head rfl (TransGen.head rfl _))
[GOAL]
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ main ≠ rev
[PROOFSTEP]
decide
[GOAL]
case refine'_1
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ Option.elim' (elim (trList L) [] c d main = trNat (List.headI L) ∧ trList (List.tail L) = [])
(fun a => natEnd a = true ∧ elim (trList L) [] c d main = trNat (List.headI L) ++ a :: trList (List.tail L)) o
[PROOFSTEP]
cases L
[GOAL]
case refine'_1.nil
q : Λ'
s : Option Γ'
c d : List Γ'
o : Option Γ' := List.casesOn [] none fun x x => some Γ'.cons
⊢ Option.elim' (elim (trList []) [] c d main = trNat (List.headI []) ∧ trList (List.tail []) = [])
(fun a => natEnd a = true ∧ elim (trList []) [] c d main = trNat (List.headI []) ++ a :: trList (List.tail [])) o
[PROOFSTEP]
simp
[GOAL]
case refine'_1.cons
q : Λ'
s : Option Γ'
c d : List Γ'
head✝ : ℕ
tail✝ : List ℕ
o : Option Γ' := List.casesOn (head✝ :: tail✝) none fun x x => some Γ'.cons
⊢ Option.elim'
(elim (trList (head✝ :: tail✝)) [] c d main = trNat (List.headI (head✝ :: tail✝)) ∧
trList (List.tail (head✝ :: tail✝)) = [])
(fun a =>
natEnd a = true ∧
elim (trList (head✝ :: tail✝)) [] c d main =
trNat (List.headI (head✝ :: tail✝)) ++ a :: trList (List.tail (head✝ :: tail✝)))
o
[PROOFSTEP]
simp
[GOAL]
case refine'_2
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux
(tr
((fun x =>
Λ'.read fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev q))
o))
o
(update
(update (update (elim (trList L) [] c d) main (trList (List.tail L))) rev
(List.reverseAux (trNat (List.headI L)) (elim (trList L) [] c d rev)))
rev
((fun s => Option.iget ((fun x => some Γ'.cons) s)) o ::
update (update (elim (trList L) [] c d) main (trList (List.tail L))) rev
(List.reverseAux (trNat (List.headI L)) (elim (trList L) [] c d rev)) rev)))
{ l := some q, var := none, stk := elim (trList [List.headI L]) [] c d }
[PROOFSTEP]
simp
[GOAL]
case refine'_2
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{
l :=
some
(ite (List.rec none (fun head tail tail_ih => some Γ'.cons) L = some Γ'.consₗ) id
(Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev q)),
var := List.rec none (fun head tail tail_ih => some Γ'.cons) L,
stk := elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d }
{ l := some q, var := none, stk := elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
rw [if_neg (show o ≠ some Γ'.consₗ by cases L <;> simp)]
[GOAL]
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ o ≠ some Γ'.consₗ
[PROOFSTEP]
cases L
[GOAL]
case nil
q : Λ'
s : Option Γ'
c d : List Γ'
o : Option Γ' := List.casesOn [] none fun x x => some Γ'.cons
⊢ o ≠ some Γ'.consₗ
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s : Option Γ'
c d : List Γ'
head✝ : ℕ
tail✝ : List ℕ
o : Option Γ' := List.casesOn (head✝ :: tail✝) none fun x x => some Γ'.cons
⊢ o ≠ some Γ'.consₗ
[PROOFSTEP]
simp
[GOAL]
case refine'_2
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main (unrev q)),
var := List.rec none (fun head tail tail_ih => some Γ'.cons) L,
stk := elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d }
{ l := some q, var := none, stk := elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
refine' (clear_ok (splitAtPred_eq _ _ _ none [] _ ⟨rfl, rfl⟩)).trans _
[GOAL]
case refine'_2.refine'_1
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ ∀ (x : Γ'),
x ∈ elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d main →
decide (x = Γ'.consₗ) = false
[PROOFSTEP]
exact fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)
[GOAL]
case refine'_2.refine'_2
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (unrev q), var := none,
stk :=
update
(elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d)
main [] }
{ l := some q, var := none, stk := elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q : Λ'
s : Option Γ'
L : List ℕ
c d : List Γ'
o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons
⊢ elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d =
update
(update
(update
(elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d)
main [])
rev [])
main
(List.reverseAux
(update
(elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d)
main [] rev)
(update
(elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d)
main [] main))
[PROOFSTEP]
simp [List.reverseAux_eq]
[GOAL]
q : Λ'
s : Option Γ'
L₁ L₂ : List ℕ
L₃ : List Γ'
⊢ Reaches₁ (TM2.step tr)
{ l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList L₂ ++ Γ'.consₗ :: L₃) }
{ l := some q, var := none, stk := elim (trList (List.headI L₂ :: L₁)) [] [] L₃ }
[PROOFSTEP]
cases' L₂ with a L₂
[GOAL]
case nil
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
⊢ Reaches₁ (TM2.step tr)
{ l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃) }
{ l := some q, var := none, stk := elim (trList (List.headI [] :: L₁)) [] [] L₃ }
[PROOFSTEP]
refine'
TransGen.trans (move_ok (by decide) (splitAtPred_eq _ _ [] (some Γ'.consₗ) L₃ (by rintro _ ⟨⟩) ⟨rfl, rfl⟩))
(TransGen.head rfl (TransGen.head rfl _))
[GOAL]
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
⊢ stack ≠ rev
[PROOFSTEP]
decide
[GOAL]
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
⊢ ∀ (x : Γ'), x ∈ [] → natEnd x = false
[PROOFSTEP]
rintro _ ⟨⟩
[GOAL]
case nil
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux
(tr
((fun x =>
Λ'.read fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack) (unrev q))
(some Γ'.consₗ)))
(some Γ'.consₗ)
(update
(update (update (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃)) stack L₃) rev
(List.reverseAux [] (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃) rev)))
rev
((fun s => Option.iget ((fun x => some Γ'.cons) s)) (some Γ'.consₗ) ::
update (update (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃)) stack L₃) rev
(List.reverseAux [] (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃) rev)) rev)))
{ l := some q, var := none, stk := elim (trList (List.headI [] :: L₁)) [] [] L₃ }
[PROOFSTEP]
simp
[GOAL]
case nil
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (unrev q), var := some Γ'.consₗ, stk := elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃ }
{ l := some q, var := none, stk := elim (Γ'.cons :: trList L₁) [] [] L₃ }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
⊢ elim (Γ'.cons :: trList L₁) [] [] L₃ =
update (update (elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃) rev []) main
(List.reverseAux (elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃ rev)
(elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃ main))
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ Reaches₁ (TM2.step tr)
{ l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) }
{ l := some q, var := none, stk := elim (trList (List.headI (a :: L₂) :: L₁)) [] [] L₃ }
[PROOFSTEP]
refine'
TransGen.trans
(move_ok (by decide)
(splitAtPred_eq _ _ (trNat a) (some Γ'.cons) (trList L₂ ++ Γ'.consₗ :: L₃) (trNat_natEnd _) ⟨rfl, by simp⟩))
(TransGen.head rfl (TransGen.head rfl _))
[GOAL]
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ stack ≠ rev
[PROOFSTEP]
decide
[GOAL]
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) stack =
trNat a ++ Γ'.cons :: (trList L₂ ++ Γ'.consₗ :: L₃)
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux
(tr
((fun x =>
Λ'.read fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack) (unrev q))
(some Γ'.cons)))
(some Γ'.cons)
(update
(update
(update (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃)) stack (trList L₂ ++ Γ'.consₗ :: L₃)) rev
(List.reverseAux (trNat a) (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) rev)))
rev
((fun s => Option.iget ((fun x => some Γ'.cons) s)) (some Γ'.cons) ::
update
(update (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃)) stack (trList L₂ ++ Γ'.consₗ :: L₃))
rev (List.reverseAux (trNat a) (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) rev)) rev)))
{ l := some q, var := none, stk := elim (trList (List.headI (a :: L₂) :: L₁)) [] [] L₃ }
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack (unrev q)), var := some Γ'.cons,
stk :=
elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃) }
{ l := some q, var := none, stk := elim (trNat a ++ Γ'.cons :: trList L₁) [] [] L₃ }
[PROOFSTEP]
refine'
TransGen.trans
(clear_ok
(splitAtPred_eq _ _ (trList L₂) (some Γ'.consₗ) L₃ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h))
⟨rfl, by simp⟩))
_
[GOAL]
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃) stack =
trList L₂ ++ Γ'.consₗ :: L₃
[PROOFSTEP]
simp
[GOAL]
case cons
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (unrev q), var := some Γ'.consₗ,
stk :=
update
(elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) []
(trList L₂ ++ Γ'.consₗ :: L₃))
stack L₃ }
{ l := some q, var := none, stk := elim (trNat a ++ Γ'.cons :: trList L₁) [] [] L₃ }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q : Λ'
s : Option Γ'
L₁ : List ℕ
L₃ : List Γ'
a : ℕ
L₂ : List ℕ
⊢ elim (trNat a ++ Γ'.cons :: trList L₁) [] [] L₃ =
update
(update
(update
(elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) []
(trList L₂ ++ Γ'.consₗ :: L₃))
stack L₃)
rev [])
main
(List.reverseAux
(update
(elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) []
(trList L₂ ++ Γ'.consₗ :: L₃))
stack L₃ rev)
(update
(elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) []
(trList L₂ ++ Γ'.consₗ :: L₃))
stack L₃ main))
[PROOFSTEP]
simp [List.reverseAux_eq]
[GOAL]
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trList [n]) [] c d }
{ l := some q, var := none, stk := elim (trList [Nat.succ n]) [] c d }
[PROOFSTEP]
simp [trNat, Num.add_one]
[GOAL]
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trNum ↑n ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trNum (Num.succ ↑n) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
cases' (n : Num) with a
[GOAL]
case zero
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trNum Num.zero ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
refine' TransGen.head rfl _
[GOAL]
case zero
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ TransGen
(fun a b =>
b ∈
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
a)
(TM2.stepAux (tr (Λ'.succ q)) s (elim (trNum Num.zero ++ [Γ'.cons]) [] c d))
{ l := some q, var := none, stk := elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
simp
[GOAL]
case zero
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (unrev q), var := List.head? (trNum Num.zero ++ [Γ'.cons]),
stk := elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d }
{ l := some q, var := none, stk := elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d =
update (update (elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d) rev []) main
(List.reverseAux (elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d rev)
(elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d main))
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h.e'_7
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
⊢ elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d =
elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d
[PROOFSTEP]
rfl
[GOAL]
case pos
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trNum (Num.pos a) ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trNum (Num.succ (Num.pos a)) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
simp [Num.succ, trNum, Num.succ']
[GOAL]
case pos
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
suffices
∀ l₁,
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a.succ) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) ⟨some q.succ, s, K'.elim (trPosNum a ++ [Γ'.cons]) l₁ c d⟩
⟨some (unrev q), s', K'.elim (l₂' ++ [Γ'.cons]) l₁' c d⟩
by
obtain ⟨l₁', l₂', s', e, h⟩ := this []
simp [List.reverseAux] at e
refine' h.trans _
convert unrev_ok using 2
simp [e, List.reverseAux_eq]
[GOAL]
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
obtain ⟨l₁', l₂', s', e, h⟩ := this []
[GOAL]
case intro.intro.intro.intro
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux [] (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
simp [List.reverseAux] at e
[GOAL]
case intro.intro.intro.intro
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : trPosNum (PosNum.succ a) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
refine' h.trans _
[GOAL]
case intro.intro.intro.intro
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : trPosNum (PosNum.succ a) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
{ l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : trPosNum (PosNum.succ a) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d =
update (update (elim (l₂' ++ [Γ'.cons]) l₁' c d) rev []) main
(List.reverseAux (elim (l₂' ++ [Γ'.cons]) l₁' c d rev) (elim (l₂' ++ [Γ'.cons]) l₁' c d main))
[PROOFSTEP]
simp [e, List.reverseAux_eq]
[GOAL]
case pos
q : Λ'
s : Option Γ'
n : ℕ
c d : List Γ'
a : PosNum
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
induction' a with m IH m _ generalizing s
[GOAL]
case pos.one
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
s : Option Γ'
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ PosNum.one)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum PosNum.one ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
intro l₁
[GOAL]
case pos.bit1
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit1 m))) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
intro l₁
[GOAL]
case pos.bit0
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
a_ih✝ :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit0 m))) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
intro l₁
[GOAL]
case pos.one
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
s : Option Γ'
l₁ : List Γ'
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ PosNum.one)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum PosNum.one ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
refine' ⟨Γ'.bit0 :: l₁, [Γ'.bit1], some Γ'.cons, rfl, TransGen.head rfl (TransGen.single _)⟩
[GOAL]
case pos.one
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
s : Option Γ'
l₁ : List Γ'
⊢ { l := some (unrev q), var := some Γ'.cons, stk := elim ([Γ'.bit1] ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } ∈
TM2.step tr (TM2.stepAux (tr (Λ'.succ q)) s (elim (trPosNum PosNum.one ++ [Γ'.cons]) l₁ c d))
[PROOFSTEP]
simp [trPosNum]
[GOAL]
case pos.bit1
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit1 m))) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
obtain ⟨l₁', l₂', s', e, h⟩ := IH (Γ'.bit0 :: l₁)
[GOAL]
case pos.bit1.intro.intro.intro.intro
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := ?m.523453, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit1 m))) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
refine' ⟨l₁', l₂', s', e, TransGen.head _ h⟩
[GOAL]
case pos.bit1.intro.intro.intro.intro.refine'_1
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ Option Γ'
case pos.bit1.intro.intro.intro.intro.refine'_2
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1,
stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1,
stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } ∈
TM2.step tr { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d }
[PROOFSTEP]
swap
[GOAL]
case pos.bit1.intro.intro.intro.intro.refine'_2
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1,
stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1,
stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } ∈
TM2.step tr { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d }
case pos.bit1.intro.intro.intro.intro.refine'_1
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ Option Γ'
[PROOFSTEP]
simp [PosNum.succ, trPosNum]
[GOAL]
case pos.bit1.intro.intro.intro.intro.refine'_2
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1,
stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
⊢ some Γ'.bit1 = ?pos.bit1.intro.intro.intro.intro.refine'_1
case pos.bit1.intro.intro.intro.intro.refine'_1
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
IH :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ Option Γ'
[PROOFSTEP]
rfl
[GOAL]
case pos.bit0
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
a_ih✝ :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit0 m))) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
[PROOFSTEP]
refine' ⟨l₁, _, some Γ'.bit0, rfl, TransGen.single _⟩
[GOAL]
case pos.bit0
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
a_ih✝ :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ { l := some (unrev q), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ [Γ'.cons]) l₁ c d } ∈
TM2.step tr { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) l₁ c d }
[PROOFSTEP]
simp
[GOAL]
case pos.bit0
q : Λ'
s✝ : Option Γ'
n : ℕ
c d : List Γ'
m : PosNum
a_ih✝ :
∀ {s : Option Γ'} (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d }
{ l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ (bif decide (List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) = some Γ'.bit1) then
{ l := some (Λ'.succ q), var := List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]),
stk := elim (List.tail (trPosNum (PosNum.bit0 m) ++ [Γ'.cons])) (Γ'.bit0 :: l₁) c d }
else
bif decide (List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) = some Γ'.cons) then
{ l := some (unrev q), var := List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]),
stk := elim (Γ'.bit1 :: Γ'.cons :: List.tail (trPosNum (PosNum.bit0 m) ++ [Γ'.cons])) l₁ c d }
else
{ l := some (unrev q), var := List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]),
stk := elim (Γ'.bit1 :: List.tail (trPosNum (PosNum.bit0 m) ++ [Γ'.cons])) l₁ c d }) =
{ l := some (unrev q), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ [Γ'.cons]) l₁ c d }
[PROOFSTEP]
rfl
[GOAL]
q₁ q₂ : Λ'
s : Option Γ'
v : List ℕ
c d : List Γ'
⊢ ∃ s',
Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList v) [] c d }
(Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail v)) [] c d }
(fun n x => { l := some q₂, var := s', stk := elim (trList (n :: List.tail v)) [] c d }) (List.headI v))
[PROOFSTEP]
rcases v with (_ | ⟨_ | n, v⟩)
[GOAL]
case nil
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
⊢ ∃ s',
Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList []) [] c d }
(Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail [])) [] c d }
(fun n x => { l := some q₂, var := s', stk := elim (trList (n :: List.tail [])) [] c d }) (List.headI []))
[PROOFSTEP]
refine' ⟨none, TransGen.single _⟩
[GOAL]
case nil
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
⊢ Nat.rec { l := some q₁, var := none, stk := elim (trList (List.tail [])) [] c d }
(fun n x => { l := some q₂, var := none, stk := elim (trList (n :: List.tail [])) [] c d }) (List.headI []) ∈
TM2.step tr { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList []) [] c d }
[PROOFSTEP]
simp
[GOAL]
case nil
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
⊢ { l := some q₁, var := none, stk := elim [] [] c d } =
Nat.rec { l := some q₁, var := none, stk := elim [] [] c d }
(fun n x => { l := some q₂, var := none, stk := elim (trNat n ++ [Γ'.cons]) [] c d }) default
[PROOFSTEP]
rfl
[GOAL]
case cons.zero
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
⊢ ∃ s',
Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.zero :: v)) [] c d }
(Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail (Nat.zero :: v))) [] c d }
(fun n x => { l := some q₂, var := s', stk := elim (trList (n :: List.tail (Nat.zero :: v))) [] c d })
(List.headI (Nat.zero :: v)))
[PROOFSTEP]
refine' ⟨some Γ'.cons, TransGen.single _⟩
[GOAL]
case cons.zero
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
⊢ Nat.rec { l := some q₁, var := some Γ'.cons, stk := elim (trList (List.tail (Nat.zero :: v))) [] c d }
(fun n x => { l := some q₂, var := some Γ'.cons, stk := elim (trList (n :: List.tail (Nat.zero :: v))) [] c d })
(List.headI (Nat.zero :: v)) ∈
TM2.step tr { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.zero :: v)) [] c d }
[PROOFSTEP]
simp
[GOAL]
case cons.succ
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ ∃ s',
Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.succ n :: v)) [] c d }
(Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail (Nat.succ n :: v))) [] c d }
(fun n_1 x => { l := some q₂, var := s', stk := elim (trList (n_1 :: List.tail (Nat.succ n :: v))) [] c d })
(List.headI (Nat.succ n :: v)))
[PROOFSTEP]
refine' ⟨none, _⟩
[GOAL]
case cons.succ
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.succ n :: v)) [] c d }
(Nat.rec { l := some q₁, var := none, stk := elim (trList (List.tail (Nat.succ n :: v))) [] c d }
(fun n_1 x => { l := some q₂, var := none, stk := elim (trList (n_1 :: List.tail (Nat.succ n :: v))) [] c d })
(List.headI (Nat.succ n :: v)))
[PROOFSTEP]
simp [trNat, Num.add_one, Num.succ, trNum]
[GOAL]
case cons.succ
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (Num.succ' ↑n) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none,
stk :=
elim
((match ↑n with
| Num.zero => []
| Num.pos n => trPosNum n) ++
Γ'.cons :: trList v)
[] c d }
[PROOFSTEP]
cases' (n : Num) with a
[GOAL]
case cons.succ.zero
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (Num.succ' Num.zero) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none,
stk :=
elim
((match Num.zero with
| Num.zero => []
| Num.pos n => trPosNum n) ++
Γ'.cons :: trList v)
[] c d }
[PROOFSTEP]
simp [trPosNum, trNum, show Num.zero.succ' = PosNum.one from rfl]
[GOAL]
case cons.succ.zero
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (Γ'.bit1 :: Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none, stk := elim (Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
refine' TransGen.head rfl _
[GOAL]
case cons.succ.zero
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ TransGen
(fun a b =>
b ∈
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
a)
(TM2.stepAux (tr (Λ'.pred q₁ q₂)) s (elim (Γ'.bit1 :: Γ'.cons :: trList v) [] c d))
{ l := some q₂, var := none, stk := elim (Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
simp
[GOAL]
case cons.succ.zero
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (unrev q₂), var := some Γ'.cons, stk := elim (Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none, stk := elim (Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
⊢ elim (Γ'.cons :: trList v) [] c d =
update (update (elim (Γ'.cons :: trList v) [] c d) rev []) main
(List.reverseAux (elim (Γ'.cons :: trList v) [] c d rev) (elim (Γ'.cons :: trList v) [] c d main))
[PROOFSTEP]
simp
[GOAL]
case cons.succ.pos
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (Num.succ' (Num.pos a)) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none,
stk :=
elim
((match Num.pos a with
| Num.zero => []
| Num.pos n => trPosNum n) ++
Γ'.cons :: trList v)
[] c d }
[PROOFSTEP]
simp [trNum, Num.succ']
[GOAL]
case cons.succ.pos
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
suffices
∀ l₁,
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr) ⟨some (q₁.pred q₂), s, K'.elim (trPosNum a.succ ++ Γ'.cons :: trList v) l₁ c d⟩
⟨some (unrev q₂), s', K'.elim (l₂' ++ Γ'.cons :: trList v) l₁' c d⟩
by
obtain ⟨l₁', l₂', s', e, h⟩ := this []
simp [List.reverseAux] at e
refine' h.trans _
convert unrev_ok using 2
simp [e, List.reverseAux_eq]
[GOAL]
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
obtain ⟨l₁', l₂', s', e, h⟩ := this []
[GOAL]
case intro.intro.intro.intro
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux [] (trPosNum a) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
simp [List.reverseAux] at e
[GOAL]
case intro.intro.intro.intro
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : trPosNum a = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ Reaches₁
(fun x =>
match x with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S))
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
refine' h.trans _
[GOAL]
case intro.intro.intro.intro
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : trPosNum a = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
{ l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d }
[PROOFSTEP]
convert unrev_ok using 2
[GOAL]
case h.e'_2.h.e'_7
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
this :
∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
l₁' l₂' : List Γ'
s' : Option Γ'
e : trPosNum a = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ elim (trPosNum a ++ Γ'.cons :: trList v) [] c d =
update (update (elim (l₂' ++ Γ'.cons :: trList v) l₁' c d) rev []) main
(List.reverseAux (elim (l₂' ++ Γ'.cons :: trList v) l₁' c d rev) (elim (l₂' ++ Γ'.cons :: trList v) l₁' c d main))
[PROOFSTEP]
simp [e, List.reverseAux_eq]
[GOAL]
case cons.succ.pos
q₁ q₂ : Λ'
s : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
a : PosNum
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
induction' a with m IH m IH generalizing s
[GOAL]
case cons.succ.pos.one
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
s : Option Γ'
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum PosNum.one) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
intro l₁
[GOAL]
case cons.succ.pos.bit1
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit1 m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
intro l₁
[GOAL]
case cons.succ.pos.bit0
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
⊢ ∀ (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit0 m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
intro l₁
[GOAL]
case cons.succ.pos.one
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
s : Option Γ'
l₁ : List Γ'
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum PosNum.one) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
refine' ⟨Γ'.bit1 :: l₁, [], some Γ'.cons, rfl, TransGen.head rfl (TransGen.single _)⟩
[GOAL]
case cons.succ.pos.one
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
s : Option Γ'
l₁ : List Γ'
⊢ { l := some (unrev q₂), var := some Γ'.cons, stk := elim ([] ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } ∈
TM2.step tr
(TM2.stepAux (tr (Λ'.pred q₁ q₂)) s (elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d))
[PROOFSTEP]
simp [trPosNum, show PosNum.one.succ = PosNum.one.bit0 from rfl]
[GOAL]
case cons.succ.pos.bit1
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit1 m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
obtain ⟨l₁', l₂', s', e, h⟩ := IH (some Γ'.bit0) (Γ'.bit1 :: l₁)
[GOAL]
case cons.succ.pos.bit1.intro.intro.intro.intro
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit1 :: l₁) (trPosNum m) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit1 m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
refine' ⟨l₁', l₂', s', e, TransGen.head _ h⟩
[GOAL]
case cons.succ.pos.bit1.intro.intro.intro.intro
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit1 :: l₁) (trPosNum m) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ { l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } ∈
TM2.step tr
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d }
[PROOFSTEP]
simp
[GOAL]
case cons.succ.pos.bit1.intro.intro.intro.intro
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ l₁' l₂' : List Γ'
s' : Option Γ'
e : List.reverseAux (Γ'.bit1 :: l₁) (trPosNum m) = List.reverseAux l₁' l₂'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ (bif decide (List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) = some Γ'.bit0) then
{ l := some (Λ'.pred q₁ q₂), var := List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v),
stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) (Γ'.bit1 :: l₁) c d }
else
bif
match Option.iget (List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) with
| Γ'.consₗ => true
| Γ'.cons => true
| x => false then
{ l := some q₁, var := List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v),
stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) l₁ c d }
else
bif
match
Option.iget (List.head? (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v))) with
| Γ'.consₗ => true
| Γ'.cons => true
| x => false then
{ l := some (unrev q₂),
var := List.head? (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)),
stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) l₁ c d }
else
{ l := some (unrev q₂),
var := List.head? (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)),
stk :=
elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) (Γ'.bit0 :: l₁) c d }) =
{ l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0,
stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d }
[PROOFSTEP]
rfl
[GOAL]
case cons.succ.pos.bit0
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit0 m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
obtain ⟨a, l, e, h⟩ : ∃ a l, (trPosNum m = a :: l) ∧ natEnd a = false := by cases m <;> refine' ⟨_, _, rfl, rfl⟩
[GOAL]
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
⊢ ∃ a l, trPosNum m = a :: l ∧ natEnd a = false
[PROOFSTEP]
cases m
[GOAL]
case one
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
s : Option Γ'
l₁ : List Γ'
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum PosNum.one) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ ∃ a l, trPosNum PosNum.one = a :: l ∧ natEnd a = false
[PROOFSTEP]
refine' ⟨_, _, rfl, rfl⟩
[GOAL]
case bit1
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
s : Option Γ'
l₁ : List Γ'
a✝ : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit1 a✝)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit1 a✝)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ ∃ a l, trPosNum (PosNum.bit1 a✝) = a :: l ∧ natEnd a = false
[PROOFSTEP]
refine' ⟨_, _, rfl, rfl⟩
[GOAL]
case bit0
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
s : Option Γ'
l₁ : List Γ'
a✝ : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit0 a✝)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 a✝)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
⊢ ∃ a l, trPosNum (PosNum.bit0 a✝) = a :: l ∧ natEnd a = false
[PROOFSTEP]
refine' ⟨_, _, rfl, rfl⟩
[GOAL]
case cons.succ.pos.bit0.intro.intro.intro
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
a : Γ'
l : List Γ'
e : trPosNum m = a :: l
h : natEnd a = false
⊢ ∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum (PosNum.bit0 m)) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
[PROOFSTEP]
refine' ⟨Γ'.bit0 :: l₁, _, some a, rfl, TransGen.single _⟩
[GOAL]
case cons.succ.pos.bit0.intro.intro.intro
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
a : Γ'
l : List Γ'
e : trPosNum m = a :: l
h : natEnd a = false
⊢ { l := some (unrev q₂), var := some a, stk := elim (trPosNum m ++ Γ'.cons :: trList v) (Γ'.bit0 :: l₁) c d } ∈
TM2.step tr
{ l := some (Λ'.pred q₁ q₂), var := s,
stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d }
[PROOFSTEP]
simp [trPosNum, PosNum.succ, e, h, show some Γ'.bit1 ≠ some Γ'.bit0 by decide, Option.iget, -natEnd]
[GOAL]
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
a : Γ'
l : List Γ'
e : trPosNum m = a :: l
h : natEnd a = false
⊢ some Γ'.bit1 ≠ some Γ'.bit0
[PROOFSTEP]
decide
[GOAL]
case cons.succ.pos.bit0.intro.intro.intro
q₁ q₂ : Λ'
s✝ : Option Γ'
c d : List Γ'
v : List ℕ
n : ℕ
m : PosNum
IH :
∀ (s : Option Γ') (l₁ : List Γ'),
∃ l₁' l₂' s',
List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d }
{ l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d }
s : Option Γ'
l₁ : List Γ'
a : Γ'
l : List Γ'
e : trPosNum m = a :: l
h : natEnd a = false
⊢ (bif natEnd Γ'.bit1 then { l := some q₁, var := some Γ'.bit1, stk := elim (a :: (l ++ Γ'.cons :: trList v)) l₁ c d }
else { l := some (unrev q₂), var := some a, stk := elim (a :: (l ++ Γ'.cons :: trList v)) (Γ'.bit0 :: l₁) c d }) =
{ l := some (unrev q₂), var := some a, stk := elim (a :: (l ++ Γ'.cons :: trList v)) (Γ'.bit0 :: l₁) c d }
[PROOFSTEP]
rfl
[GOAL]
c : Code
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal c k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal c (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
induction c generalizing k v s
[GOAL]
case zero'
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.zero' k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
case succ
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.succ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
case tail
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.tail k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
case cons
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case comp
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case case
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case zero' => refine' ⟨_, ⟨s, rfl⟩, TransGen.single _⟩; simp
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.zero' k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case zero' => refine' ⟨_, ⟨s, rfl⟩, TransGen.single _⟩; simp
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.zero' k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
refine' ⟨_, ⟨s, rfl⟩, TransGen.single _⟩
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList (0 :: v)) [] [] (trContStack k) } ∈
TM2.step tr { l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
[PROOFSTEP]
simp
[GOAL]
case succ
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.succ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
case tail
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.tail k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
case cons
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case comp
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case case
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case succ => refine' ⟨_, ⟨none, rfl⟩, head_main_ok.trans succ_ok⟩
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.succ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case succ => refine' ⟨_, ⟨none, rfl⟩, head_main_ok.trans succ_ok⟩
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.succ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
refine' ⟨_, ⟨none, rfl⟩, head_main_ok.trans succ_ok⟩
[GOAL]
case tail
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.tail k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
case cons
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case comp
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case case
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case tail =>
let o : Option Γ' := List.casesOn v none fun _ _ => some Γ'.cons
refine' ⟨_, ⟨o, rfl⟩, _⟩; convert clear_ok _ using 2; simp; rfl; swap
refine' splitAtPred_eq _ _ (trNat v.headI) _ _ (trNat_natEnd _) _
cases v <;> simp
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.tail k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case tail =>
let o : Option Γ' := List.casesOn v none fun _ _ => some Γ'.cons
refine' ⟨_, ⟨o, rfl⟩, _⟩; convert clear_ok _ using 2; simp; rfl; swap
refine' splitAtPred_eq _ _ (trNat v.headI) _ _ (trNat_natEnd _) _
cases v <;> simp
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal Code.tail k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
let o : Option Γ' := List.casesOn v none fun _ _ => some Γ'.cons
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ ∃ b₂,
TrCfg (stepNormal Code.tail k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
refine' ⟨_, ⟨o, rfl⟩, _⟩
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ Reaches₁ (TM2.step tr)
{ l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
{ l := some (Λ'.ret (trCont k)), var := o, stk := elim (trList (List.tail v)) [] [] (trContStack k) }
[PROOFSTEP]
convert clear_ok _ using 2
[GOAL]
case h.e'_4.h.e'_7
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ elim (trList (List.tail v)) [] [] (trContStack k) = update (elim (trList v) [] [] (trContStack k)) main ?convert_7
case convert_5
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ List Γ'
case convert_7
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ List Γ'
case convert_9
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, ?convert_7)
[PROOFSTEP]
simp
[GOAL]
case h.e'_4.h.e'_7
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ elim (trList (List.tail v)) [] [] (trContStack k) = elim ?convert_7 [] [] (trContStack k)
case convert_5
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ List Γ'
case convert_7
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ List Γ'
case convert_9
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, ?convert_7)
[PROOFSTEP]
rfl
[GOAL]
case convert_5
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ List Γ'
case convert_9
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, trList (List.tail v))
[PROOFSTEP]
swap
[GOAL]
case convert_9
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, trList (List.tail v))
case convert_5 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ'
[PROOFSTEP]
refine' splitAtPred_eq _ _ (trNat v.headI) _ _ (trNat_natEnd _) _
[GOAL]
case convert_9
k : Cont
v : List ℕ
s : Option Γ'
o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons
⊢ Option.elim' (elim (trList v) [] [] (trContStack k) main = trNat (List.headI v) ∧ trList (List.tail v) = [])
(fun a =>
natEnd a = true ∧ elim (trList v) [] [] (trContStack k) main = trNat (List.headI v) ++ a :: trList (List.tail v))
o
[PROOFSTEP]
cases v
[GOAL]
case convert_9.nil
k : Cont
s : Option Γ'
o : Option Γ' := List.casesOn [] none fun x x => some Γ'.cons
⊢ Option.elim' (elim (trList []) [] [] (trContStack k) main = trNat (List.headI []) ∧ trList (List.tail []) = [])
(fun a =>
natEnd a = true ∧
elim (trList []) [] [] (trContStack k) main = trNat (List.headI []) ++ a :: trList (List.tail []))
o
[PROOFSTEP]
simp
[GOAL]
case convert_9.cons
k : Cont
s : Option Γ'
head✝ : ℕ
tail✝ : List ℕ
o : Option Γ' := List.casesOn (head✝ :: tail✝) none fun x x => some Γ'.cons
⊢ Option.elim'
(elim (trList (head✝ :: tail✝)) [] [] (trContStack k) main = trNat (List.headI (head✝ :: tail✝)) ∧
trList (List.tail (head✝ :: tail✝)) = [])
(fun a =>
natEnd a = true ∧
elim (trList (head✝ :: tail✝)) [] [] (trContStack k) main =
trNat (List.headI (head✝ :: tail✝)) ++ a :: trList (List.tail (head✝ :: tail✝)))
o
[PROOFSTEP]
simp
[GOAL]
case cons
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case comp
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case case
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case cons f fs IHf _ =>
obtain ⟨c, h₁, h₂⟩ := IHf (Cont.cons₁ fs v k) v none
refine' ⟨c, h₁, TransGen.head rfl <| (move_ok (by decide) (splitAtPred_false _)).trans _⟩
simp [stepNormal]
refine' (copy_ok _ none [] (trList v).reverse _ _).trans _
convert h₂ using 2
simp [List.reverseAux_eq, trContStack]
[GOAL]
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons f fs) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons f fs) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case cons f fs IHf _ =>
obtain ⟨c, h₁, h₂⟩ := IHf (Cont.cons₁ fs v k) v none
refine' ⟨c, h₁, TransGen.head rfl <| (move_ok (by decide) (splitAtPred_false _)).trans _⟩
simp [stepNormal]
refine' (copy_ok _ none [] (trList v).reverse _ _).trans _
convert h₂ using 2
simp [List.reverseAux_eq, trContStack]
[GOAL]
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons f fs) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons f fs) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
obtain ⟨c, h₁, h₂⟩ := IHf (Cont.cons₁ fs v k) v none
[GOAL]
case intro.intro
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) }
c
⊢ ∃ b₂,
TrCfg (stepNormal (Code.cons f fs) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.cons f fs) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
refine' ⟨c, h₁, TransGen.head rfl <| (move_ok (by decide) (splitAtPred_false _)).trans _⟩
[GOAL]
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) }
c
⊢ main ≠ rev
[PROOFSTEP]
decide
[GOAL]
case intro.intro
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) }
c
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (Λ'.copy (trNormal f (Cont'.cons₁ fs (trCont k)))), var := none,
stk :=
update
(update
(update (elim (trList v) [] [] (trContStack k)) stack
((fun s => Option.iget ((fun x => some Γ'.consₗ) s)) s :: elim (trList v) [] [] (trContStack k) stack))
main [])
rev
(List.reverseAux
(update (elim (trList v) [] [] (trContStack k)) stack
((fun s => Option.iget ((fun x => some Γ'.consₗ) s)) s :: elim (trList v) [] [] (trContStack k) stack)
main)
(update (elim (trList v) [] [] (trContStack k)) stack
((fun s => Option.iget ((fun x => some Γ'.consₗ) s)) s :: elim (trList v) [] [] (trContStack k) stack)
rev)) }
c
[PROOFSTEP]
simp [stepNormal]
[GOAL]
case intro.intro
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) }
c
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (Λ'.copy (trNormal f (Cont'.cons₁ fs (trCont k)))), var := none,
stk := elim [] (List.reverseAux (trList v) []) [] (Option.iget (some Γ'.consₗ) :: trContStack k) }
c
[PROOFSTEP]
refine' (copy_ok _ none [] (trList v).reverse _ _).trans _
[GOAL]
case intro.intro
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) }
c
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (trNormal f (Cont'.cons₁ fs (trCont k))), var := none,
stk :=
elim (List.reverseAux (List.reverse (trList v)) []) [] []
(List.reverseAux (List.reverse (trList v)) (Option.iget (some Γ'.consₗ) :: trContStack k)) }
c
[PROOFSTEP]
convert h₂ using 2
[GOAL]
case h.e'_1.h.e'_7
f fs : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal fs k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) }
c
⊢ elim (List.reverseAux (List.reverse (trList v)) []) [] []
(List.reverseAux (List.reverse (trList v)) (Option.iget (some Γ'.consₗ) :: trContStack k)) =
elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k))
[PROOFSTEP]
simp [List.reverseAux_eq, trContStack]
[GOAL]
case comp
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case case
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case comp f _ _ IHg => exact IHg (Cont.comp f k) v s
[GOAL]
f a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp f a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp f a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case comp f _ _ IHg => exact IHg (Cont.comp f k) v s
[GOAL]
f a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.comp f a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.comp f a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
exact IHg (Cont.comp f k) v s
[GOAL]
case case
a✝¹ a✝ : Code
a_ih✝¹ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝¹ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case case f g IHf IHg =>
rw [stepNormal]
simp only
obtain ⟨s', h⟩ := pred_ok _ _ s v _ _
revert h; cases' v.headI with n <;> intro h
· obtain ⟨c, h₁, h₂⟩ := IHf k _ s'
exact ⟨_, h₁, h.trans h₂⟩
· obtain ⟨c, h₁, h₂⟩ := IHg k _ s'
exact ⟨_, h₁, h.trans h₂⟩
[GOAL]
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case f g) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case case f g IHf IHg =>
rw [stepNormal]
simp only
obtain ⟨s', h⟩ := pred_ok _ _ s v _ _
revert h; cases' v.headI with n <;> intro h
· obtain ⟨c, h₁, h₂⟩ := IHf k _ s'
exact ⟨_, h₁, h.trans h₂⟩
· obtain ⟨c, h₁, h₂⟩ := IHg k _ s'
exact ⟨_, h₁, h.trans h₂⟩
[GOAL]
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.case f g) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
rw [stepNormal]
[GOAL]
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg
((fun k v =>
Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v))
k v)
b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
simp only
[GOAL]
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
obtain ⟨s', h⟩ := pred_ok _ _ s v _ _
[GOAL]
case intro
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 }
(Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 }
(fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 })
(List.headI v))
⊢ ∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
revert h
[GOAL]
case intro
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
⊢ Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 }
(Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 }
(fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 })
(List.headI v)) →
∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
cases' v.headI with n
[GOAL]
case intro.zero
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
⊢ Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 }
(Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 }
(fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 })
Nat.zero) →
∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
intro h
[GOAL]
case intro.succ
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
n : ℕ
⊢ Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 }
(Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 }
(fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 })
(Nat.succ n)) →
∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
intro h
[GOAL]
case intro.zero
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 }
(Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 }
(fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 })
Nat.zero)
⊢ ∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
obtain ⟨c, h₁, h₂⟩ := IHf k _ s'
[GOAL]
case intro.zero.intro.intro
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 }
(Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 }
(fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 })
Nat.zero)
c : Cfg'
h₁ : TrCfg (stepNormal f k ?m.585742) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s', stk := elim (trList ?m.585742) [] [] (trContStack k) } c
⊢ ∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
exact ⟨_, h₁, h.trans h₂⟩
[GOAL]
case intro.succ
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
n : ℕ
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred (trNormal f (trCont k)) (trNormal g (trCont k))), var := s,
stk := elim (trList v) [] [] (trContStack k) }
(Nat.rec { l := some (trNormal f (trCont k)), var := s', stk := elim (trList (List.tail v)) [] [] (trContStack k) }
(fun n x =>
{ l := some (trNormal g (trCont k)), var := s', stk := elim (trList (n :: List.tail v)) [] [] (trContStack k) })
(Nat.succ n))
⊢ ∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
obtain ⟨c, h₁, h₂⟩ := IHg k _ s'
[GOAL]
case intro.succ.intro.intro
f g : Code
IHf :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
IHg :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal g k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s s' : Option Γ'
n : ℕ
h :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.pred (trNormal f (trCont k)) (trNormal g (trCont k))), var := s,
stk := elim (trList v) [] [] (trContStack k) }
(Nat.rec { l := some (trNormal f (trCont k)), var := s', stk := elim (trList (List.tail v)) [] [] (trContStack k) }
(fun n x =>
{ l := some (trNormal g (trCont k)), var := s', stk := elim (trList (n :: List.tail v)) [] [] (trContStack k) })
(Nat.succ n))
c : Cfg'
h₁ : TrCfg (stepNormal g k ?m.585866) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal g (trCont k)), var := s', stk := elim (trList ?m.585866) [] [] (trContStack k) } c
⊢ ∃ b₂,
TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
exact ⟨_, h₁, h.trans h₂⟩
[GOAL]
case fix
a✝ : Code
a_ih✝ :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal a✝ k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case fix f IH => apply IH
[GOAL]
f : Code
IH :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix f) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix f) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
case fix f IH => apply IH
[GOAL]
f : Code
IH :
∀ (k : Cont) (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepNormal f k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepNormal (Code.fix f) k v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (trNormal (Code.fix f) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂
[PROOFSTEP]
apply IH
[GOAL]
k : Cont
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
[PROOFSTEP]
induction k generalizing v s
[GOAL]
case halt
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet Cont.halt v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont Cont.halt)), var := s, stk := elim (trList v) [] [] (trContStack Cont.halt) } b₂
case cons₁
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₁ a✝² a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ a✝² a✝¹ a✝)) }
b₂
case cons₂
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₂ a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₂ a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₂ a✝¹ a✝)) }
b₂
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) }
b₂
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) }
b₂
[PROOFSTEP]
case halt => exact ⟨_, rfl, TransGen.single rfl⟩
[GOAL]
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet Cont.halt v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont Cont.halt)), var := s, stk := elim (trList v) [] [] (trContStack Cont.halt) } b₂
[PROOFSTEP]
case halt => exact ⟨_, rfl, TransGen.single rfl⟩
[GOAL]
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet Cont.halt v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont Cont.halt)), var := s, stk := elim (trList v) [] [] (trContStack Cont.halt) } b₂
[PROOFSTEP]
exact ⟨_, rfl, TransGen.single rfl⟩
[GOAL]
case cons₁
a✝² : Code
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₁ a✝² a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ a✝² a✝¹ a✝)) }
b₂
case cons₂
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₂ a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₂ a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₂ a✝¹ a✝)) }
b₂
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) }
b₂
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) }
b₂
[PROOFSTEP]
case cons₁ fs as k _ =>
obtain ⟨s', h₁, h₂⟩ := trNormal_respects fs (Cont.cons₂ v k) as none
refine' ⟨s', h₁, TransGen.head rfl _⟩; simp
refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl
simp
refine' (move₂_ok (by decide) _ _).trans _; pick_goal 4; · rfl
pick_goal 4;
· exact splitAtPred_eq _ _ _ (some Γ'.consₗ) _ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, rfl⟩
refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl
simp
exact h₂
[GOAL]
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₁ fs as k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₁ fs as k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) }
b₂
[PROOFSTEP]
case cons₁ fs as k _ =>
obtain ⟨s', h₁, h₂⟩ := trNormal_respects fs (Cont.cons₂ v k) as none
refine' ⟨s', h₁, TransGen.head rfl _⟩; simp
refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl
simp
refine' (move₂_ok (by decide) _ _).trans _; pick_goal 4; · rfl
pick_goal 4;
· exact splitAtPred_eq _ _ _ (some Γ'.consₗ) _ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, rfl⟩
refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl
simp
exact h₂
[GOAL]
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₁ fs as k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₁ fs as k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) }
b₂
[PROOFSTEP]
obtain ⟨s', h₁, h₂⟩ := trNormal_respects fs (Cont.cons₂ v k) as none
[GOAL]
case intro.intro
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₁ fs as k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₁ fs as k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) }
b₂
[PROOFSTEP]
refine' ⟨s', h₁, TransGen.head rfl _⟩
[GOAL]
case intro.intro
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux (tr (Λ'.ret (trCont (Cont.cons₁ fs as k)))) s
(elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k))))
s'
[PROOFSTEP]
simp
[GOAL]
case intro.intro
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{
l :=
some
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))))),
var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) }
s'
[PROOFSTEP]
refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _
[GOAL]
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ main ≠ rev ∧ aux ≠ rev ∧ main ≠ aux
[PROOFSTEP]
decide
[GOAL]
case intro.intro.refine'_1
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) rev = []
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.refine'_2
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{
l :=
some
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k))))),
var := none,
stk :=
update
(update (elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k))) main (Option.elim none id List.cons []))
aux
(elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) main ++
elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) aux) }
s'
[PROOFSTEP]
simp
[GOAL]
case intro.intro.refine'_2
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{
l :=
some
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k))))),
var := none, stk := elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) }
s'
[PROOFSTEP]
refine' (move₂_ok (by decide) _ _).trans _
[GOAL]
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ stack ≠ rev ∧ main ≠ rev ∧ stack ≠ main
[PROOFSTEP]
decide
[GOAL]
case intro.intro.refine'_2.refine'_1
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ List Γ'
case intro.intro.refine'_2.refine'_2
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ Option Γ'
case intro.intro.refine'_2.refine'_3
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ List Γ'
case intro.intro.refine'_2.refine'_4
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) rev = []
case intro.intro.refine'_2.refine'_5
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ splitAtPred (fun s => decide (s = Γ'.consₗ)) (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) stack) =
(?intro.intro.refine'_2.refine'_1, ?intro.intro.refine'_2.refine'_2, ?intro.intro.refine'_2.refine'_3)
case intro.intro.refine'_2.refine'_6
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))), var := none,
stk :=
update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim ?intro.intro.refine'_2.refine'_2 id List.cons ?intro.intro.refine'_2.refine'_3))
main (?intro.intro.refine'_2.refine'_1 ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) }
s'
[PROOFSTEP]
pick_goal 4
[GOAL]
case intro.intro.refine'_2.refine'_4
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) rev = []
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.refine'_2.refine'_1
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ List Γ'
case intro.intro.refine'_2.refine'_2
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ Option Γ'
case intro.intro.refine'_2.refine'_3
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ List Γ'
case intro.intro.refine'_2.refine'_5
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ splitAtPred (fun s => decide (s = Γ'.consₗ)) (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) stack) =
(?intro.intro.refine'_2.refine'_1, ?intro.intro.refine'_2.refine'_2, ?intro.intro.refine'_2.refine'_3)
case intro.intro.refine'_2.refine'_6
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))), var := none,
stk :=
update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim ?intro.intro.refine'_2.refine'_2 id List.cons ?intro.intro.refine'_2.refine'_3))
main (?intro.intro.refine'_2.refine'_1 ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) }
s'
[PROOFSTEP]
pick_goal 4
[GOAL]
case intro.intro.refine'_2.refine'_5
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ splitAtPred (fun s => decide (s = Γ'.consₗ)) (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) stack) =
(?intro.intro.refine'_2.refine'_1, ?intro.intro.refine'_2.refine'_2, ?intro.intro.refine'_2.refine'_3)
[PROOFSTEP]
exact splitAtPred_eq _ _ _ (some Γ'.consₗ) _ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, rfl⟩
[GOAL]
case intro.intro.refine'_2.refine'_6
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))), var := none,
stk :=
update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k))))
main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) }
s'
[PROOFSTEP]
refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _
[GOAL]
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ aux ≠ rev ∧ stack ≠ rev ∧ aux ≠ stack
[PROOFSTEP]
decide
[GOAL]
case intro.intro.refine'_2.refine'_6.refine'_1
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k))))
main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) rev =
[]
[PROOFSTEP]
rfl
[GOAL]
case intro.intro.refine'_2.refine'_6.refine'_2
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
{ l := some (trNormal fs (Cont'.cons₂ (trCont k))), var := none,
stk :=
update
(update
(update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k))))
main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main))
aux (Option.elim none id List.cons []))
stack
(update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k))))
main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) aux ++
update
(update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack
(Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k))))
main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) stack) }
s'
[PROOFSTEP]
simp
[GOAL]
case intro.intro.refine'_2.refine'_6.refine'_2
fs : Code
as : List ℕ
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none,
stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) }
s'
⊢ TransGen
(fun a b =>
(match a with
| { l := none, var := var, stk := stk } => none
| { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) =
some b)
{ l := some (trNormal fs (Cont'.cons₂ (trCont k))), var := none,
stk := elim (trList as) [] [] (trList v ++ Γ'.consₗ :: trLList (contStack k)) }
s'
[PROOFSTEP]
exact h₂
[GOAL]
case cons₂
a✝¹ : List ℕ
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₂ a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₂ a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₂ a✝¹ a✝)) }
b₂
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) }
b₂
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) }
b₂
[PROOFSTEP]
case cons₂ ns k IH =>
obtain ⟨c, h₁, h₂⟩ := IH (ns.headI :: v) none
exact ⟨c, h₁, TransGen.head rfl <| head_stack_ok.trans h₂⟩
[GOAL]
ns : List ℕ
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₂ ns k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₂ ns k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₂ ns k)) }
b₂
[PROOFSTEP]
case cons₂ ns k IH =>
obtain ⟨c, h₁, h₂⟩ := IH (ns.headI :: v) none
exact ⟨c, h₁, TransGen.head rfl <| head_stack_ok.trans h₂⟩
[GOAL]
ns : List ℕ
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₂ ns k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₂ ns k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₂ ns k)) }
b₂
[PROOFSTEP]
obtain ⟨c, h₁, h₂⟩ := IH (ns.headI :: v) none
[GOAL]
case intro.intro
ns : List ℕ
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
c : Cfg'
h₁ : TrCfg (stepRet k (List.headI ns :: v)) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont k)), var := none, stk := elim (trList (List.headI ns :: v)) [] [] (trContStack k) } c
⊢ ∃ b₂,
TrCfg (stepRet (Cont.cons₂ ns k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.cons₂ ns k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.cons₂ ns k)) }
b₂
[PROOFSTEP]
exact ⟨c, h₁, TransGen.head rfl <| head_stack_ok.trans h₂⟩
[GOAL]
case comp
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) }
b₂
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) }
b₂
[PROOFSTEP]
case comp f k _ =>
obtain ⟨s', h₁, h₂⟩ := trNormal_respects f k v s
exact ⟨_, h₁, TransGen.head rfl h₂⟩
[GOAL]
f : Code
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp f k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp f k)) }
b₂
[PROOFSTEP]
case comp f k _ =>
obtain ⟨s', h₁, h₂⟩ := trNormal_respects f k v s
exact ⟨_, h₁, TransGen.head rfl h₂⟩
[GOAL]
f : Code
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp f k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp f k)) }
b₂
[PROOFSTEP]
obtain ⟨s', h₁, h₂⟩ := trNormal_respects f k v s
[GOAL]
case intro.intro
f : Code
k : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
s' : Cfg'
h₁ : TrCfg (stepNormal f k v) s'
h₂ :
Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
s'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.comp f k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.comp f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.comp f k)) }
b₂
[PROOFSTEP]
exact ⟨_, h₁, TransGen.head rfl h₂⟩
[GOAL]
case fix
a✝¹ : Code
a✝ : Cont
a_ih✝ :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet a✝ v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) }
b₂
[PROOFSTEP]
case fix f k IH =>
rw [stepRet]
have :
if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail
else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail :=
by
cases' v with n
· exact ⟨rfl, rfl⟩
cases' n with n
· simp
rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail]
cases (n : Num).succ' <;> exact ⟨rfl, rfl⟩
by_cases v.headI = 0 <;> simp only [h, ite_true, ite_false] at this ⊢
· obtain ⟨c, h₁, h₂⟩ := IH v.tail (trList v).head?
refine' ⟨c, h₁, TransGen.head rfl _⟩
simp [trCont, trContStack, this, -TM2.step, -natEnd]
exact h₂
· obtain ⟨s', h₁, h₂⟩ := trNormal_respects f (Cont.fix f k) v.tail (some Γ'.cons)
refine' ⟨_, h₁, TransGen.head rfl <| TransGen.trans _ h₂⟩
simp [trCont, this.1, -TM2.step, -natEnd]
convert clear_ok (splitAtPred_eq _ _ (trNat v.headI).tail (some Γ'.cons) _ _ _) using 2
· simp
convert rfl
· exact fun x h => trNat_natEnd _ _ (List.tail_subset _ h)
· exact ⟨rfl, this.2⟩
[GOAL]
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix f k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
case fix f k IH =>
rw [stepRet]
have :
if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail
else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail :=
by
cases' v with n
· exact ⟨rfl, rfl⟩
cases' n with n
· simp
rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail]
cases (n : Num).succ' <;> exact ⟨rfl, rfl⟩
by_cases v.headI = 0 <;> simp only [h, ite_true, ite_false] at this ⊢
· obtain ⟨c, h₁, h₂⟩ := IH v.tail (trList v).head?
refine' ⟨c, h₁, TransGen.head rfl _⟩
simp [trCont, trContStack, this, -TM2.step, -natEnd]
exact h₂
· obtain ⟨s', h₁, h₂⟩ := trNormal_respects f (Cont.fix f k) v.tail (some Γ'.cons)
refine' ⟨_, h₁, TransGen.head rfl <| TransGen.trans _ h₂⟩
simp [trCont, this.1, -TM2.step, -natEnd]
convert clear_ok (splitAtPred_eq _ _ (trNat v.headI).tail (some Γ'.cons) _ _ _) using 2
· simp
convert rfl
· exact fun x h => trNat_natEnd _ _ (List.tail_subset _ h)
· exact ⟨rfl, this.2⟩
[GOAL]
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (stepRet (Cont.fix f k) v) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
rw [stepRet]
[GOAL]
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ ∃ b₂,
TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
have :
if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail
else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail :=
by
cases' v with n
· exact ⟨rfl, rfl⟩
cases' n with n
· simp
rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail]
cases (n : Num).succ' <;> exact ⟨rfl, rfl⟩
[GOAL]
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
⊢ if List.headI v = 0 then
natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
else
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
[PROOFSTEP]
cases' v with n
[GOAL]
case nil
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
⊢ if List.headI [] = 0 then
natEnd (Option.iget (List.head? (trList []))) = true ∧ List.tail (trList []) = trList (List.tail [])
else
natEnd (Option.iget (List.head? (trList []))) = false ∧
List.tail (trList []) = List.tail (trNat (List.headI [])) ++ Γ'.cons :: trList (List.tail [])
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
case cons
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
n : ℕ
tail✝ : List ℕ
⊢ if List.headI (n :: tail✝) = 0 then
natEnd (Option.iget (List.head? (trList (n :: tail✝)))) = true ∧
List.tail (trList (n :: tail✝)) = trList (List.tail (n :: tail✝))
else
natEnd (Option.iget (List.head? (trList (n :: tail✝)))) = false ∧
List.tail (trList (n :: tail✝)) =
List.tail (trNat (List.headI (n :: tail✝))) ++ Γ'.cons :: trList (List.tail (n :: tail✝))
[PROOFSTEP]
cases' n with n
[GOAL]
case cons.zero
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
tail✝ : List ℕ
⊢ if List.headI (Nat.zero :: tail✝) = 0 then
natEnd (Option.iget (List.head? (trList (Nat.zero :: tail✝)))) = true ∧
List.tail (trList (Nat.zero :: tail✝)) = trList (List.tail (Nat.zero :: tail✝))
else
natEnd (Option.iget (List.head? (trList (Nat.zero :: tail✝)))) = false ∧
List.tail (trList (Nat.zero :: tail✝)) =
List.tail (trNat (List.headI (Nat.zero :: tail✝))) ++ Γ'.cons :: trList (List.tail (Nat.zero :: tail✝))
[PROOFSTEP]
simp
[GOAL]
case cons.succ
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
tail✝ : List ℕ
n : ℕ
⊢ if List.headI (Nat.succ n :: tail✝) = 0 then
natEnd (Option.iget (List.head? (trList (Nat.succ n :: tail✝)))) = true ∧
List.tail (trList (Nat.succ n :: tail✝)) = trList (List.tail (Nat.succ n :: tail✝))
else
natEnd (Option.iget (List.head? (trList (Nat.succ n :: tail✝)))) = false ∧
List.tail (trList (Nat.succ n :: tail✝)) =
List.tail (trNat (List.headI (Nat.succ n :: tail✝))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝))
[PROOFSTEP]
rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail]
[GOAL]
case cons.succ
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
tail✝ : List ℕ
n : ℕ
⊢ if
(match Nat.succ n :: tail✝ with
| [] => default
| a :: tail => a) =
0 then
natEnd (Option.iget (List.head? (trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝))) = true ∧
(match trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
trList (List.tail (Nat.succ n :: tail✝))
else
natEnd (Option.iget (List.head? (trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝))) = false ∧
(match trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
List.tail (trNum (Num.pos (Num.succ' ↑n))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝))
[PROOFSTEP]
cases (n : Num).succ'
[GOAL]
case cons.succ.one
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
tail✝ : List ℕ
n : ℕ
⊢ if
(match Nat.succ n :: tail✝ with
| [] => default
| a :: tail => a) =
0 then
natEnd (Option.iget (List.head? (trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝))) = true ∧
(match trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
trList (List.tail (Nat.succ n :: tail✝))
else
natEnd (Option.iget (List.head? (trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝))) = false ∧
(match trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
List.tail (trNum (Num.pos PosNum.one)) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝))
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
case cons.succ.bit1
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
tail✝ : List ℕ
n : ℕ
a✝ : PosNum
⊢ if
(match Nat.succ n :: tail✝ with
| [] => default
| a :: tail => a) =
0 then
natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝))) = true ∧
(match trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
trList (List.tail (Nat.succ n :: tail✝))
else
natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝))) = false ∧
(match trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
List.tail (trNum (Num.pos (PosNum.bit1 a✝))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝))
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
case cons.succ.bit0
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
s : Option Γ'
tail✝ : List ℕ
n : ℕ
a✝ : PosNum
⊢ if
(match Nat.succ n :: tail✝ with
| [] => default
| a :: tail => a) =
0 then
natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝))) = true ∧
(match trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
trList (List.tail (Nat.succ n :: tail✝))
else
natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝))) = false ∧
(match trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝ with
| [] => []
| head :: as => as) =
List.tail (trNum (Num.pos (PosNum.bit0 a✝))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝))
[PROOFSTEP]
exact ⟨rfl, rfl⟩
[GOAL]
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
this :
if List.headI v = 0 then
natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
else
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
⊢ ∃ b₂,
TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
by_cases v.headI = 0
[GOAL]
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
this :
if List.headI v = 0 then
natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
else
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
⊢ ∃ b₂,
TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
by_cases v.headI = 0
[GOAL]
case pos
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
this :
if List.headI v = 0 then
natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
else
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
h : List.headI v = 0
⊢ ∃ b₂,
TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
simp only [h, ite_true, ite_false] at this ⊢
[GOAL]
case neg
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
this :
if List.headI v = 0 then
natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
else
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
h : ¬List.headI v = 0
⊢ ∃ b₂,
TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
simp only [h, ite_true, ite_false] at this ⊢
[GOAL]
case pos
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : List.headI v = 0
this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
⊢ ∃ b₂,
TrCfg (stepRet k (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
obtain ⟨c, h₁, h₂⟩ := IH v.tail (trList v).head?
[GOAL]
case pos.intro.intro
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : List.headI v = 0
this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
c : Cfg'
h₁ : TrCfg (stepRet k (List.tail v)) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont k)), var := List.head? (trList v),
stk := elim (trList (List.tail v)) [] [] (trContStack k) }
c
⊢ ∃ b₂,
TrCfg (stepRet k (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
refine' ⟨c, h₁, TransGen.head rfl _⟩
[GOAL]
case pos.intro.intro
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : List.headI v = 0
this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
c : Cfg'
h₁ : TrCfg (stepRet k (List.tail v)) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont k)), var := List.head? (trList v),
stk := elim (trList (List.tail v)) [] [] (trContStack k) }
c
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux (tr (Λ'.ret (trCont (Cont.fix f k)))) s (elim (trList v) [] [] (trContStack (Cont.fix f k)))) c
[PROOFSTEP]
simp [trCont, trContStack, this, -TM2.step, -natEnd]
[GOAL]
case pos.intro.intro
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : List.headI v = 0
this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v)
c : Cfg'
h₁ : TrCfg (stepRet k (List.tail v)) c
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont k)), var := List.head? (trList v),
stk := elim (trList (List.tail v)) [] [] (trContStack k) }
c
⊢ TransGen (fun a b => TM2.step tr a = some b)
{ l := some (Λ'.ret (trCont k)), var := List.head? (trList v),
stk := elim (trList (List.tail v)) [] [] (trLList (contStack k)) }
c
[PROOFSTEP]
exact h₂
[GOAL]
case neg
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
⊢ ∃ b₂,
TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
obtain ⟨s', h₁, h₂⟩ := trNormal_respects f (Cont.fix f k) v.tail (some Γ'.cons)
[GOAL]
case neg.intro.intro
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ ∃ b₂,
TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧
Reaches₁ (TM2.step tr)
{ l := some (Λ'.ret (trCont (Cont.fix f k))), var := s,
stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) }
b₂
[PROOFSTEP]
refine' ⟨_, h₁, TransGen.head rfl <| TransGen.trans _ h₂⟩
[GOAL]
case neg.intro.intro
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ TransGen (fun a b => b ∈ TM2.step tr a)
(TM2.stepAux (tr (Λ'.ret (trCont (Cont.fix f k)))) s (elim (trList v) [] [] (trContStack (Cont.fix f k))))
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
[PROOFSTEP]
simp [trCont, this.1, -TM2.step, -natEnd]
[GOAL]
case neg.intro.intro
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ TransGen (fun a b => TM2.step tr a = some b)
{ l := some (Λ'.clear natEnd main (trNormal f (Cont'.fix f (trCont k)))), var := List.head? (trList v),
stk := elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k)) }
{ l := some (trNormal f (Cont'.fix f (trCont k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
[PROOFSTEP]
convert clear_ok (splitAtPred_eq _ _ (trNat v.headI).tail (some Γ'.cons) _ _ _) using 2
[GOAL]
case h.e'_2.h.e'_7
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) =
update (elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k))) main ?neg.intro.intro.convert_6✝
[PROOFSTEP]
simp
[GOAL]
case h.e'_2.h.e'_7
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) =
elim ?neg.intro.intro.convert_6✝ [] [] (trContStack (Cont.fix f k))
[PROOFSTEP]
convert rfl
[GOAL]
case neg.intro.intro.convert_7
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ ∀ (x : Γ'), x ∈ List.tail (trNat (List.headI v)) → natEnd x = false
[PROOFSTEP]
exact fun x h => trNat_natEnd _ _ (List.tail_subset _ h)
[GOAL]
case neg.intro.intro.convert_8
f : Code
k : Cont
IH :
∀ (v : List ℕ) (s : Option Γ'),
∃ b₂,
TrCfg (stepRet k v) b₂ ∧
Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) }
b₂
v : List ℕ
s : Option Γ'
h : ¬List.headI v = 0
this :
natEnd (Option.iget (List.head? (trList v))) = false ∧
List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v)
s' : Cfg'
h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s'
h₂ :
Reaches₁ (TM2.step tr)
{ l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons,
stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) }
s'
⊢ Option.elim'
(elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k)) main = List.tail (trNat (List.headI v)) ∧
trList (List.tail v) = [])
(fun a =>
natEnd a = true ∧
elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k)) main =
List.tail (trNat (List.headI v)) ++ a :: trList (List.tail v))
(some Γ'.cons)
[PROOFSTEP]
exact ⟨rfl, this.2⟩
[GOAL]
c : Code
v : List ℕ
⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v
[PROOFSTEP]
obtain ⟨i, h₁, h₂⟩ := tr_init c v
[GOAL]
case intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v
[PROOFSTEP]
refine' Part.ext fun x => _
[GOAL]
case intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
⊢ x ∈ eval (TM2.step tr) (init c v) ↔ x ∈ halt <$> Code.eval c v
[PROOFSTEP]
rw [reaches_eval h₂.to_reflTransGen]
[GOAL]
case intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ x ∈ halt <$> Code.eval c v
[PROOFSTEP]
simp [-TM2.step]
[GOAL]
case intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ ∃ a, a ∈ Code.eval c v ∧ halt a = x
[PROOFSTEP]
refine' ⟨fun h => _, _⟩
[GOAL]
case intro.intro.refine'_1
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
h : x ∈ eval (fun a => TM2.step tr a) i
⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x
[PROOFSTEP]
obtain ⟨c, hc₁, hc₂⟩ := tr_eval_rev tr_respects h₁ h
[GOAL]
case intro.intro.refine'_1.intro.intro
c✝ : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c✝ Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c✝ v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
h : x ∈ eval (fun a => TM2.step tr a) i
c : Cfg
hc₁ : TrCfg c x
hc₂ : c ∈ eval step (stepNormal c✝ Cont.halt v)
⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x
[PROOFSTEP]
simp [stepNormal_eval] at hc₂
[GOAL]
case intro.intro.refine'_1.intro.intro
c✝ : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c✝ Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c✝ v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
h : x ∈ eval (fun a => TM2.step tr a) i
c : Cfg
hc₁ : TrCfg c x
hc₂ : ∃ a, a ∈ Code.eval c✝ v ∧ Cfg.halt a = c
⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x
[PROOFSTEP]
obtain ⟨v', hv, rfl⟩ := hc₂
[GOAL]
case intro.intro.refine'_1.intro.intro.intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
h : x ∈ eval (fun a => TM2.step tr a) i
v' : List ℕ
hv : v' ∈ Code.eval c v
hc₁ : TrCfg (Cfg.halt v') x
⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x
[PROOFSTEP]
exact ⟨_, hv, hc₁.symm⟩
[GOAL]
case intro.intro.refine'_2
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
x : TM2.Cfg (fun x => Γ') Λ' (Option Γ')
⊢ (∃ a, a ∈ Code.eval c v ∧ halt a = x) → x ∈ eval (fun a => TM2.step tr a) i
[PROOFSTEP]
rintro ⟨v', hv, rfl⟩
[GOAL]
case intro.intro.refine'_2.intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
v' : List ℕ
hv : v' ∈ Code.eval c v
⊢ halt v' ∈ eval (fun a => TM2.step tr a) i
[PROOFSTEP]
have := Turing.tr_eval (b₁ := Cfg.halt v') tr_respects h₁
[GOAL]
case intro.intro.refine'_2.intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
v' : List ℕ
hv : v' ∈ Code.eval c v
this : Cfg.halt v' ∈ eval step (stepNormal c Cont.halt v) → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i
⊢ halt v' ∈ eval (fun a => TM2.step tr a) i
[PROOFSTEP]
simp [stepNormal_eval, -TM2.step] at this
[GOAL]
case intro.intro.refine'_2.intro.intro
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
v' : List ℕ
hv : v' ∈ Code.eval c v
this : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i
⊢ halt v' ∈ eval (fun a => TM2.step tr a) i
[PROOFSTEP]
obtain ⟨_, ⟨⟩, h⟩ := this hv
[GOAL]
case intro.intro.refine'_2.intro.intro.intro.intro.refl
c : Code
v : List ℕ
i : Cfg'
h₁ : TrCfg (stepNormal c Cont.halt v) i
h₂ : Reaches₁ (TM2.step tr) (init c v) i
v' : List ℕ
hv : v' ∈ Code.eval c v
this : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i
h : halt v' ∈ eval (TM2.step tr) i
⊢ halt v' ∈ eval (fun a => TM2.step tr a) i
[PROOFSTEP]
exact h
[GOAL]
q q' : Λ'
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
[PROOFSTEP]
induction' q with _ _ _ q q_ih _ _ q q_ih q q_ih _ _ q q_ih q q_ih q q_ih q₁ q₂ q₁_ih q₂_ih _
[GOAL]
case move
q' : Λ'
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case clear
q' : Λ'
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ (Λ'.clear p✝ k✝ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.clear p✝ k✝ q)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case copy
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ (Λ'.copy q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.copy q)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case push
q' : Λ'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ (Λ'.push k✝ s✝ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.push k✝ s✝ q)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ q' ∈ trStmts₁ (Λ'.read q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.read q)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ (Λ'.succ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.succ q)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ q' ∈ trStmts₁ (Λ'.pred q₁ q₂) → trStmts₁ q' ⊆ trStmts₁ (Λ'.pred q₁ q₂)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case ret
q' : Λ'
k✝ : Cont'
⊢ q' ∈ trStmts₁ (Λ'.ret k✝) → trStmts₁ q' ⊆ trStmts₁ (Λ'.ret k✝)
[PROOFSTEP]
simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp,
Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff]
[GOAL]
case move
q' : Λ'
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)
case clear
q' : Λ'
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)
case copy
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q)
case push
q' : Λ'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q)
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) →
trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ (q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧
(q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)))
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' = unrev q₂ →
insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆
insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)))
[PROOFSTEP]
iterate 4 exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _)
[GOAL]
case move
q' : Λ'
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)
case clear
q' : Λ'
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)
case copy
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q)
case push
q' : Λ'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q)
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) →
trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ (q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧
(q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)))
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' = unrev q₂ →
insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆
insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)))
[PROOFSTEP]
exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _)
[GOAL]
case clear
q' : Λ'
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)
case copy
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q)
case push
q' : Λ'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q)
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) →
trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ (q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧
(q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)))
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' = unrev q₂ →
insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆
insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)))
[PROOFSTEP]
exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _)
[GOAL]
case copy
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q)
case push
q' : Λ'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q)
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) →
trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ (q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧
(q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)))
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' = unrev q₂ →
insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆
insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)))
[PROOFSTEP]
exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _)
[GOAL]
case push
q' : Λ'
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q)
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) →
trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ (q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧
(q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)))
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' = unrev q₂ →
insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆
insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)))
[PROOFSTEP]
exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _)
[GOAL]
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) →
trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
[PROOFSTEP]
simp
[GOAL]
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
⊢ ∀ (x : Option Γ'),
q' ∈ trStmts₁ (q x) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
[PROOFSTEP]
intro s h x h'
[GOAL]
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
s : Option Γ'
h : q' ∈ trStmts₁ (q s)
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x ∈ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))
[PROOFSTEP]
simp
[GOAL]
case read
q' : Λ'
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a)
s : Option Γ'
h : q' ∈ trStmts₁ (q s)
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x = Λ'.read q ∨ ∃ a, x ∈ trStmts₁ (q a)
[PROOFSTEP]
exact Or.inr ⟨_, q_ih s h h'⟩
[GOAL]
case succ
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ (q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧
(q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)))
[PROOFSTEP]
constructor
[GOAL]
case succ.left
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' = unrev q →
insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))
[PROOFSTEP]
rintro rfl
[GOAL]
case succ.left
q : Λ'
q_ih : unrev q ∈ trStmts₁ q → trStmts₁ (unrev q) ⊆ trStmts₁ q
⊢ insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))
[PROOFSTEP]
apply Finset.subset_insert
[GOAL]
case succ.right
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))
[PROOFSTEP]
intro h x h'
[GOAL]
case succ.right
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
h : q' ∈ trStmts₁ q
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x ∈ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))
[PROOFSTEP]
simp
[GOAL]
case succ.right
q' q : Λ'
q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q
h : q' ∈ trStmts₁ q
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x = Λ'.succ q ∨ x = unrev q ∨ x ∈ trStmts₁ q
[PROOFSTEP]
exact Or.inr (Or.inr <| q_ih h h')
[GOAL]
case pred
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' = unrev q₂ →
insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆
insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧
(q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)))
[PROOFSTEP]
refine' ⟨fun h x h' => _, fun _ x h' => _, fun h x h' => _⟩
[GOAL]
case pred.refine'_1
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
h : q' ∈ trStmts₁ q₁
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x ∈ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))
[PROOFSTEP]
simp
[GOAL]
case pred.refine'_2
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
x✝ : q' = unrev q₂
x : Λ'
h' : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂)
⊢ x ∈ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))
[PROOFSTEP]
simp
[GOAL]
case pred.refine'_3
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
h : q' ∈ trStmts₁ q₂
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x ∈ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))
[PROOFSTEP]
simp
[GOAL]
case pred.refine'_1
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
h : q' ∈ trStmts₁ q₁
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂
[PROOFSTEP]
exact Or.inr (Or.inr <| Or.inl <| q₁_ih h h')
[GOAL]
case pred.refine'_2
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
x✝ : q' = unrev q₂
x : Λ'
h' : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂)
⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂
[PROOFSTEP]
cases' Finset.mem_insert.1 h' with h' h'
[GOAL]
case pred.refine'_2.inl
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
x✝ : q' = unrev q₂
x : Λ'
h'✝ : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂)
h' : x = Λ'.move (fun x => false) rev main q₂
⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂
[PROOFSTEP]
simp [h', unrev]
[GOAL]
case pred.refine'_2.inr
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
x✝ : q' = unrev q₂
x : Λ'
h'✝ : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂)
h' : x ∈ trStmts₁ q₂
⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂
[PROOFSTEP]
simp [h', unrev]
[GOAL]
case pred.refine'_3
q' q₁ q₂ : Λ'
q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁
q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂
h : q' ∈ trStmts₁ q₂
x : Λ'
h' : x ∈ trStmts₁ q'
⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂
[PROOFSTEP]
exact Or.inr (Or.inr <| Or.inr <| q₂_ih h h')
[GOAL]
q : Λ'
⊢ q ∈ trStmts₁ q
[PROOFSTEP]
induction q
[GOAL]
case move
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.move p✝ k₁✝ k₂✝ q✝ ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case move
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.move p✝ k₁✝ k₂✝ q✝ ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case move
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.move p✝ k₁✝ k₂✝ q✝ ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case clear
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.clear p✝ k✝ q✝ ∈ trStmts₁ (Λ'.clear p✝ k✝ q✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case clear
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.clear p✝ k✝ q✝ ∈ trStmts₁ (Λ'.clear p✝ k✝ q✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case clear
p✝ : Γ' → Bool
k✝ : K'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.clear p✝ k✝ q✝ ∈ trStmts₁ (Λ'.clear p✝ k✝ q✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case copy
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.copy q✝ ∈ trStmts₁ (Λ'.copy q✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case copy
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.copy q✝ ∈ trStmts₁ (Λ'.copy q✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case copy
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.copy q✝ ∈ trStmts₁ (Λ'.copy q✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case push
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.push k✝ s✝ q✝ ∈ trStmts₁ (Λ'.push k✝ s✝ q✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case push
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.push k✝ s✝ q✝ ∈ trStmts₁ (Λ'.push k✝ s✝ q✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case push
k✝ : K'
s✝ : Option Γ' → Option Γ'
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.push k✝ s✝ q✝ ∈ trStmts₁ (Λ'.push k✝ s✝ q✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case read
f✝ : Option Γ' → Λ'
f_ih✝ : ∀ (a : Option Γ'), f✝ a ∈ trStmts₁ (f✝ a)
⊢ Λ'.read f✝ ∈ trStmts₁ (Λ'.read f✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case read
f✝ : Option Γ' → Λ'
f_ih✝ : ∀ (a : Option Γ'), f✝ a ∈ trStmts₁ (f✝ a)
⊢ Λ'.read f✝ ∈ trStmts₁ (Λ'.read f✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case read
f✝ : Option Γ' → Λ'
f_ih✝ : ∀ (a : Option Γ'), f✝ a ∈ trStmts₁ (f✝ a)
⊢ Λ'.read f✝ ∈ trStmts₁ (Λ'.read f✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case succ
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.succ q✝ ∈ trStmts₁ (Λ'.succ q✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case succ
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.succ q✝ ∈ trStmts₁ (Λ'.succ q✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case succ
q✝ : Λ'
q_ih✝ : q✝ ∈ trStmts₁ q✝
⊢ Λ'.succ q✝ ∈ trStmts₁ (Λ'.succ q✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case pred
q₁✝ q₂✝ : Λ'
q₁_ih✝ : q₁✝ ∈ trStmts₁ q₁✝
q₂_ih✝ : q₂✝ ∈ trStmts₁ q₂✝
⊢ Λ'.pred q₁✝ q₂✝ ∈ trStmts₁ (Λ'.pred q₁✝ q₂✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case pred
q₁✝ q₂✝ : Λ'
q₁_ih✝ : q₁✝ ∈ trStmts₁ q₁✝
q₂_ih✝ : q₂✝ ∈ trStmts₁ q₂✝
⊢ Λ'.pred q₁✝ q₂✝ ∈ trStmts₁ (Λ'.pred q₁✝ q₂✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
case pred
q₁✝ q₂✝ : Λ'
q₁_ih✝ : q₁✝ ∈ trStmts₁ q₁✝
q₂_ih✝ : q₂✝ ∈ trStmts₁ q₂✝
⊢ Λ'.pred q₁✝ q₂✝ ∈ trStmts₁ (Λ'.pred q₁✝ q₂✝)
[PROOFSTEP]
apply Finset.mem_insert_self
[GOAL]
case ret
k✝ : Cont'
⊢ Λ'.ret k✝ ∈ trStmts₁ (Λ'.ret k✝)
[PROOFSTEP]
first
| apply Finset.mem_singleton_self
| apply Finset.mem_insert_self
[GOAL]
case ret
k✝ : Cont'
⊢ Λ'.ret k✝ ∈ trStmts₁ (Λ'.ret k✝)
[PROOFSTEP]
apply Finset.mem_singleton_self
[GOAL]
c : Code
k : Cont'
⊢ trStmts₁ (trNormal c k) ⊆ codeSupp' c k
[PROOFSTEP]
cases c
[GOAL]
case zero'
k : Cont'
⊢ trStmts₁ (trNormal Code.zero' k) ⊆ codeSupp' Code.zero' k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case zero'
k : Cont'
⊢ trStmts₁ (trNormal Code.zero' k) ⊆ codeSupp' Code.zero' k
[PROOFSTEP]
rfl
[GOAL]
case succ
k : Cont'
⊢ trStmts₁ (trNormal Code.succ k) ⊆ codeSupp' Code.succ k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case succ
k : Cont'
⊢ trStmts₁ (trNormal Code.succ k) ⊆ codeSupp' Code.succ k
[PROOFSTEP]
rfl
[GOAL]
case tail
k : Cont'
⊢ trStmts₁ (trNormal Code.tail k) ⊆ codeSupp' Code.tail k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case tail
k : Cont'
⊢ trStmts₁ (trNormal Code.tail k) ⊆ codeSupp' Code.tail k
[PROOFSTEP]
rfl
[GOAL]
case cons
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.cons a✝¹ a✝) k) ⊆ codeSupp' (Code.cons a✝¹ a✝) k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case cons
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.cons a✝¹ a✝) k) ⊆ codeSupp' (Code.cons a✝¹ a✝) k
[PROOFSTEP]
rfl
[GOAL]
case cons
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.cons a✝¹ a✝) k) ⊆ codeSupp' (Code.cons a✝¹ a✝) k
[PROOFSTEP]
exact Finset.subset_union_left _ _
[GOAL]
case comp
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.comp a✝¹ a✝) k) ⊆ codeSupp' (Code.comp a✝¹ a✝) k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case comp
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.comp a✝¹ a✝) k) ⊆ codeSupp' (Code.comp a✝¹ a✝) k
[PROOFSTEP]
rfl
[GOAL]
case comp
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.comp a✝¹ a✝) k) ⊆ codeSupp' (Code.comp a✝¹ a✝) k
[PROOFSTEP]
exact Finset.subset_union_left _ _
[GOAL]
case case
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.case a✝¹ a✝) k) ⊆ codeSupp' (Code.case a✝¹ a✝) k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case case
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.case a✝¹ a✝) k) ⊆ codeSupp' (Code.case a✝¹ a✝) k
[PROOFSTEP]
rfl
[GOAL]
case case
k : Cont'
a✝¹ a✝ : Code
⊢ trStmts₁ (trNormal (Code.case a✝¹ a✝) k) ⊆ codeSupp' (Code.case a✝¹ a✝) k
[PROOFSTEP]
exact Finset.subset_union_left _ _
[GOAL]
case fix
k : Cont'
a✝ : Code
⊢ trStmts₁ (trNormal (Code.fix a✝) k) ⊆ codeSupp' (Code.fix a✝) k
[PROOFSTEP]
first
| rfl
| exact Finset.subset_union_left _ _
[GOAL]
case fix
k : Cont'
a✝ : Code
⊢ trStmts₁ (trNormal (Code.fix a✝) k) ⊆ codeSupp' (Code.fix a✝) k
[PROOFSTEP]
rfl
[GOAL]
case fix
k : Cont'
a✝ : Code
⊢ trStmts₁ (trNormal (Code.fix a✝) k) ⊆ codeSupp' (Code.fix a✝) k
[PROOFSTEP]
exact Finset.subset_union_left _ _
[GOAL]
f fs : Code
k : Cont'
⊢ codeSupp (Code.cons f fs) k = trStmts₁ (trNormal (Code.cons f fs) k) ∪ codeSupp f (Cont'.cons₁ fs k)
[PROOFSTEP]
simp [codeSupp, codeSupp', contSupp, Finset.union_assoc]
[GOAL]
f g : Code
k : Cont'
⊢ codeSupp (Code.comp f g) k = trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k)
[PROOFSTEP]
simp [codeSupp, codeSupp', contSupp, Finset.union_assoc]
[GOAL]
f g : Code
k : Cont'
⊢ trStmts₁ (trNormal g (Cont'.comp f k)) ∪
(codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ (codeSupp' f k ∪ contSupp k))) =
trStmts₁ (trNormal g (Cont'.comp f k)) ∪ (codeSupp' g (Cont'.comp f k) ∪ (codeSupp' f k ∪ contSupp k))
[PROOFSTEP]
rw [← Finset.union_assoc _ _ (contSupp k), Finset.union_eq_right_iff_subset.2 (codeSupp'_self _ _)]
[GOAL]
f g : Code
k : Cont'
⊢ codeSupp (Code.case f g) k = trStmts₁ (trNormal (Code.case f g) k) ∪ (codeSupp f k ∪ codeSupp g k)
[PROOFSTEP]
simp [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.union_left_comm]
[GOAL]
f : Code
k : Cont'
⊢ codeSupp (Code.fix f) k = trStmts₁ (trNormal (Code.fix f) k) ∪ codeSupp f (Cont'.fix f k)
[PROOFSTEP]
simp [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.union_left_comm, Finset.union_left_idem]
[GOAL]
fs : Code
k : Cont'
⊢ contSupp (Cont'.cons₁ fs k) =
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
codeSupp fs (Cont'.cons₂ k)
[PROOFSTEP]
simp [codeSupp, codeSupp', contSupp, Finset.union_assoc]
[GOAL]
f : Code
k : Cont'
⊢ contSupp (Cont'.fix f k) = codeSupp f (Cont'.fix f k)
[PROOFSTEP]
simp (config := { contextual := true }) [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.subset_iff]
[GOAL]
K S : Finset Λ'
q : Λ'
⊢ Supports (insert q K) S ↔ TM2.SupportsStmt S (tr q) ∧ Supports K S
[PROOFSTEP]
simp [Supports]
[GOAL]
S : Finset Λ'
q : Λ'
⊢ Supports {q} S ↔ TM2.SupportsStmt S (tr q)
[PROOFSTEP]
simp [Supports]
[GOAL]
K₁ K₂ S : Finset Λ'
⊢ Supports (K₁ ∪ K₂) S ↔ Supports K₁ S ∧ Supports K₂ S
[PROOFSTEP]
simp [Supports, or_imp, forall_and]
[GOAL]
K : Option Γ' → Finset Λ'
S : Finset Λ'
⊢ Supports (Finset.biUnion Finset.univ K) S ↔ ∀ (a : Option Γ'), Supports (K a) S
[PROOFSTEP]
simp [Supports]
[GOAL]
K : Option Γ' → Finset Λ'
S : Finset Λ'
⊢ (∀ (q : Λ') (x : Option Γ'), q ∈ K x → TM2.SupportsStmt S (tr q)) ↔
∀ (a : Option Γ') (q : Λ'), q ∈ K a → TM2.SupportsStmt S (tr q)
[PROOFSTEP]
apply forall_swap
[GOAL]
S : Finset Λ'
k : K'
q : Λ'
H : Λ'.Supports S q
x✝ : Option Γ'
⊢ Λ'.Supports S ((fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) k) (unrev q)) x✝)
[PROOFSTEP]
dsimp only
[GOAL]
S : Finset Λ'
k : K'
q : Λ'
H : Λ'.Supports S q
x✝ : Option Γ'
⊢ Λ'.Supports S (ite (x✝ = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) k) (unrev q))
[PROOFSTEP]
split_ifs
[GOAL]
case pos
S : Finset Λ'
k : K'
q : Λ'
H : Λ'.Supports S q
x✝ : Option Γ'
h✝ : x✝ = some Γ'.consₗ
⊢ Λ'.Supports S (id (unrev q))
[PROOFSTEP]
exact H
[GOAL]
case neg
S : Finset Λ'
k : K'
q : Λ'
H : Λ'.Supports S q
x✝ : Option Γ'
h✝ : ¬x✝ = some Γ'.consₗ
⊢ Λ'.Supports S (Λ'.clear (fun x => decide (x = Γ'.consₗ)) k (unrev q))
[PROOFSTEP]
exact H
[GOAL]
S : Finset Λ'
k : Cont'
H₁ : contSupp k ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret k))
[PROOFSTEP]
have W := fun {q} => trStmts₁_self q
[GOAL]
S : Finset Λ'
k : Cont'
H₁ : contSupp k ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
⊢ TM2.SupportsStmt S (tr (Λ'.ret k))
[PROOFSTEP]
cases k
[GOAL]
case halt
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
H₁ : contSupp Cont'.halt ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret Cont'.halt))
case cons₁
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝)))
case cons₂
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝ : Cont'
H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝)))
case comp
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
case fix
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
case halt => trivial
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
H₁ : contSupp Cont'.halt ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret Cont'.halt))
[PROOFSTEP]
case halt => trivial
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
H₁ : contSupp Cont'.halt ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret Cont'.halt))
[PROOFSTEP]
trivial
[GOAL]
case cons₁
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝)))
case cons₂
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝ : Cont'
H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝)))
case comp
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
case fix
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
case cons₁ => rw [contSupp_cons₁, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝)))
[PROOFSTEP]
case cons₁ => rw [contSupp_cons₁, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝)))
[PROOFSTEP]
rw [contSupp_cons₁, Finset.union_subset_iff] at H₁
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ :
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal a✝¹ (Cont'.cons₂ a✝))))) ⊆
S ∧
codeSupp a✝¹ (Cont'.cons₂ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝)))
[PROOFSTEP]
exact fun _ => H₁.1 W
[GOAL]
case cons₂
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝ : Cont'
H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝)))
case comp
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
case fix
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
case cons₂ => rw [contSupp_cons₂, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝ : Cont'
H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝)))
[PROOFSTEP]
case cons₂ => rw [contSupp_cons₂, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝ : Cont'
H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝)))
[PROOFSTEP]
rw [contSupp_cons₂, Finset.union_subset_iff] at H₁
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝ : Cont'
H₁ : trStmts₁ (head stack (Λ'.ret a✝)) ⊆ S ∧ contSupp a✝ ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝)))
[PROOFSTEP]
exact fun _ => H₁.1 W
[GOAL]
case comp
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
case fix
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
case comp => rw [contSupp_comp] at H₁ ; exact fun _ => H₁ (codeSupp_self _ _ W)
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
[PROOFSTEP]
case comp => rw [contSupp_comp] at H₁ ; exact fun _ => H₁ (codeSupp_self _ _ W)
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
[PROOFSTEP]
rw [contSupp_comp] at H₁
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ a✝ ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝)))
[PROOFSTEP]
exact fun _ => H₁ (codeSupp_self _ _ W)
[GOAL]
case fix
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
case fix =>
rw [contSupp_fix] at H₁
have L := @Finset.mem_union_left; have R := @Finset.mem_union_right
intro s; dsimp only; cases natEnd s.iget
· refine' H₁ (R _ <| L _ <| R _ <| R _ <| L _ W)
· exact H₁ (R _ <| L _ <| R _ <| R _ <| R _ <| Finset.mem_singleton_self _)
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
case fix =>
rw [contSupp_fix] at H₁
have L := @Finset.mem_union_left; have R := @Finset.mem_union_right
intro s; dsimp only; cases natEnd s.iget
· refine' H₁ (R _ <| L _ <| R _ <| R _ <| L _ W)
· exact H₁ (R _ <| L _ <| R _ <| R _ <| R _ <| Finset.mem_singleton_self _)
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
rw [contSupp_fix] at H₁
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
have L := @Finset.mem_union_left
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
have R := @Finset.mem_union_right
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t
R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t
⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝)))
[PROOFSTEP]
intro s
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t
R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t
s : Option Γ'
⊢ (fun s => bif natEnd (Option.iget s) then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) s ∈ S
[PROOFSTEP]
dsimp only
[GOAL]
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t
R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t
s : Option Γ'
⊢ (bif natEnd (Option.iget s) then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) ∈ S
[PROOFSTEP]
cases natEnd s.iget
[GOAL]
case false
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t
R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t
s : Option Γ'
⊢ (bif false then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) ∈ S
[PROOFSTEP]
refine' H₁ (R _ <| L _ <| R _ <| R _ <| L _ W)
[GOAL]
case true
S : Finset Λ'
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
a✝¹ : Code
a✝ : Cont'
H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S
L : ∀ {α : Type} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t
R : ∀ {α : Type} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t
s : Option Γ'
⊢ (bif true then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) ∈ S
[PROOFSTEP]
exact H₁ (R _ <| L _ <| R _ <| R _ <| R _ <| Finset.mem_singleton_self _)
[GOAL]
S : Finset Λ'
q : Λ'
H₁ : Λ'.Supports S q
HS₁ : trStmts₁ q ⊆ S
⊢ Supports (trStmts₁ q) S
[PROOFSTEP]
have W := fun {q} => trStmts₁_self q
[GOAL]
S : Finset Λ'
q : Λ'
H₁ : Λ'.Supports S q
HS₁ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
⊢ Supports (trStmts₁ q) S
[PROOFSTEP]
induction' q with _ _ _ q q_ih _ _ q q_ih q q_ih _ _ q q_ih q q_ih q q_ih q₁ q₂ q₁_ih q₂_ih _
[GOAL]
case move
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q)
HS₁ : trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q) ⊆ S
⊢ Supports (trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case clear
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q)
HS₁ : trStmts₁ (Λ'.clear p✝ k✝ q) ⊆ S
⊢ Supports (trStmts₁ (Λ'.clear p✝ k✝ q)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case copy
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.copy q)
HS₁ : trStmts₁ (Λ'.copy q) ⊆ S
⊢ Supports (trStmts₁ (Λ'.copy q)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case push
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q)
HS₁ : trStmts₁ (Λ'.push k✝ s✝ q) ⊆ S
⊢ Supports (trStmts₁ (Λ'.push k✝ s✝ q)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case read
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : trStmts₁ (Λ'.read q) ⊆ S
⊢ Supports (trStmts₁ (Λ'.read q)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case succ
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : trStmts₁ (Λ'.succ q) ⊆ S
⊢ Supports (trStmts₁ (Λ'.succ q)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case pred
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : trStmts₁ (Λ'.pred q₁ q₂) ⊆ S
⊢ Supports (trStmts₁ (Λ'.pred q₁ q₂)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case ret
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : Cont'
H₁ : Λ'.Supports S (Λ'.ret k✝)
HS₁ : trStmts₁ (Λ'.ret k✝) ⊆ S
⊢ Supports (trStmts₁ (Λ'.ret k✝)) S
[PROOFSTEP]
simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢
[GOAL]
case move
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q)
HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S
case clear
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q)
HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S
case copy
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.copy q)
HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S
case push
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q)
HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S
case read
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
case succ
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
case pred
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
case ret
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : Cont'
H₁ : Λ'.Supports S (Λ'.ret k✝)
HS₁ : {Λ'.ret k✝} ⊆ S
⊢ Supports {Λ'.ret k✝} S
[PROOFSTEP]
any_goals
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case move
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q)
HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case move.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q)
HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.move p✝ k₁✝ k₂✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case move.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q)
HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.move p✝ k₁✝ k₂✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case clear
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q)
HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case clear.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q)
HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.clear p✝ k✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case clear.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q)
HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.clear p✝ k✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case copy
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.copy q)
HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case copy.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.copy q)
HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S
h₁ : Λ'.copy q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case copy.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.copy q)
HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S
h₁ : Λ'.copy q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case push
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q)
HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case push.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q)
HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.push k✝ s✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case push.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q)
HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.push k✝ s✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case read
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case read.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
h₁ : Λ'.read q ∈ S
h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case read.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
h₁ : Λ'.read q ∈ S
h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case read.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
h₁ : Λ'.read q ∈ S
h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
[PROOFSTEP]
try simp [Finset.subset_iff] at h₂
[GOAL]
case read.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
h₁ : Λ'.read q ∈ S
h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
[PROOFSTEP]
simp [Finset.subset_iff] at h₂
[GOAL]
case succ
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case succ.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
h₁ : Λ'.succ q ∈ S
h₂ : insert (unrev q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case succ.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
h₁ : Λ'.succ q ∈ S
h₂ : insert (unrev q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case succ.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
h₁ : Λ'.succ q ∈ S
h₂ : insert (unrev q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
[PROOFSTEP]
try simp [Finset.subset_iff] at h₂
[GOAL]
case succ.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
h₁ : Λ'.succ q ∈ S
h₂ : insert (unrev q) (trStmts₁ q) ⊆ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
[PROOFSTEP]
simp [Finset.subset_iff] at h₂
[GOAL]
case pred
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
[PROOFSTEP]
first
| have h₃ := h₂ W
| try simp [Finset.subset_iff] at h₂
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
[PROOFSTEP]
have h₃ := h₂ W
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
[PROOFSTEP]
try simp [Finset.subset_iff] at h₂
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
[PROOFSTEP]
simp [Finset.subset_iff] at h₂
[GOAL]
case ret
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : Cont'
H₁ : Λ'.Supports S (Λ'.ret k✝)
HS₁ : {Λ'.ret k✝} ⊆ S
⊢ Supports {Λ'.ret k✝} S
[PROOFSTEP]
cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂
[GOAL]
case move.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k₁✝ k₂✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q)
HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.move p✝ k₁✝ k₂✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
h₃ : q ∈ S
⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S
[PROOFSTEP]
exact
supports_insert.2
⟨⟨fun _ => h₃, fun _ => h₁⟩, q_ih H₁ h₂⟩
-- move
[GOAL]
case clear.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
p✝ : Γ' → Bool
k✝ : K'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q)
HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.clear p✝ k✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
h₃ : q ∈ S
⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S
[PROOFSTEP]
exact
supports_insert.2
⟨⟨fun _ => h₃, fun _ => h₁⟩, q_ih H₁ h₂⟩
-- clear
[GOAL]
case copy.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.copy q)
HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S
h₁ : Λ'.copy q ∈ S
h₂ : trStmts₁ q ⊆ S
h₃ : q ∈ S
⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S
[PROOFSTEP]
exact
supports_insert.2
⟨⟨fun _ => h₁, fun _ => h₃⟩, q_ih H₁ h₂⟩
-- copy
[GOAL]
case push.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : K'
s✝ : Option Γ' → Option Γ'
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q)
HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S
h₁ : Λ'.push k✝ s✝ q ∈ S
h₂ : trStmts₁ q ⊆ S
h₃ : q ∈ S
⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S
[PROOFSTEP]
exact
supports_insert.2
⟨⟨fun _ => h₃, fun _ => h₃⟩, q_ih H₁ h₂⟩
-- push
[GOAL]
case read.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
h₁ : Λ'.read q ∈ S
h₂ : ∀ ⦃x : Λ'⦄ (x_1 : Option Γ'), x ∈ trStmts₁ (q x_1) → x ∈ S
⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S
[PROOFSTEP]
refine'
supports_insert.2
⟨fun _ => h₂ _ W, _⟩
-- read
[GOAL]
case read.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Option Γ' → Λ'
q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S
H₁ : Λ'.Supports S (Λ'.read q)
HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S
h₁ : Λ'.read q ∈ S
h₂ : ∀ ⦃x : Λ'⦄ (x_1 : Option Γ'), x ∈ trStmts₁ (q x_1) → x ∈ S
⊢ Supports (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) S
[PROOFSTEP]
exact supports_biUnion.2 fun _ => q_ih _ (H₁ _) fun _ h => h₂ _ h
[GOAL]
case succ.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
h₁ : Λ'.succ q ∈ S
h₂ : unrev q ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q → a ∈ S
⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S
[PROOFSTEP]
refine'
supports_insert.2
⟨⟨fun _ => h₁, fun _ => h₂.1, fun _ => h₂.1⟩, _⟩
-- succ
[GOAL]
case succ.intro
S : Finset Λ'
q✝ : Λ'
H₁✝ : Λ'.Supports S q✝
HS₁✝ : trStmts₁ q✝ ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q : Λ'
q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S
H₁ : Λ'.Supports S (Λ'.succ q)
HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S
h₁ : Λ'.succ q ∈ S
h₂ : unrev q ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q → a ∈ S
⊢ Supports (insert (unrev q) (trStmts₁ q)) S
[PROOFSTEP]
exact supports_insert.2 ⟨⟨fun _ => h₂.2 _ W, fun _ => h₂.1⟩, q_ih H₁ h₂.2⟩
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S
⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S
[PROOFSTEP]
refine'
-- predsupports_insert.2 ⟨⟨fun _ => h₁, fun _ => h₂.2 _ (Or.inl W), fun _ => h₂.1, fun _ => h₂.1⟩, _⟩
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S
⊢ Supports (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) S
[PROOFSTEP]
refine' supports_insert.2 ⟨⟨fun _ => h₂.2 _ (Or.inr W), fun _ => h₂.1⟩, _⟩
[GOAL]
case pred.intro
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S
⊢ Supports (trStmts₁ q₁ ∪ trStmts₁ q₂) S
[PROOFSTEP]
refine' supports_union.2 ⟨_, _⟩
[GOAL]
case pred.intro.refine'_1
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S
⊢ Supports (trStmts₁ q₁) S
[PROOFSTEP]
exact q₁_ih H₁.1 fun _ h => h₂.2 _ (Or.inl h)
[GOAL]
case pred.intro.refine'_2
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
q₁ q₂ : Λ'
q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S
q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S
H₁ : Λ'.Supports S (Λ'.pred q₁ q₂)
HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S
h₁ : Λ'.pred q₁ q₂ ∈ S
h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S
⊢ Supports (trStmts₁ q₂) S
[PROOFSTEP]
exact q₂_ih H₁.2 fun _ h => h₂.2 _ (Or.inr h)
[GOAL]
case ret
S : Finset Λ'
q : Λ'
H₁✝ : Λ'.Supports S q
HS₁✝ : trStmts₁ q ⊆ S
W : ∀ {q : Λ'}, q ∈ trStmts₁ q
k✝ : Cont'
H₁ : Λ'.Supports S (Λ'.ret k✝)
HS₁ : {Λ'.ret k✝} ⊆ S
⊢ Supports {Λ'.ret k✝} S
[PROOFSTEP]
exact
supports_singleton.2
(ret_supports H₁)
-- ret
[GOAL]
S : Finset Λ'
q : Λ'
K : Finset Λ'
H₁ : Λ'.Supports S q
H₂ : trStmts₁ q ∪ K ⊆ S
H₃ : K ⊆ S → Supports K S
⊢ Supports (trStmts₁ q ∪ K) S
[PROOFSTEP]
simp [Finset.union_subset_iff] at H₂
[GOAL]
S : Finset Λ'
q : Λ'
K : Finset Λ'
H₁ : Λ'.Supports S q
H₃ : K ⊆ S → Supports K S
H₂ : trStmts₁ q ⊆ S ∧ K ⊆ S
⊢ Supports (trStmts₁ q ∪ K) S
[PROOFSTEP]
exact supports_union.2 ⟨trStmts₁_supports H₁ H₂.1, H₃ H₂.2⟩
[GOAL]
S : Finset Λ'
c : Code
k : Cont'
Hk : codeSupp c k ⊆ S
⊢ Λ'.Supports S (trNormal c k)
[PROOFSTEP]
induction c generalizing k
[GOAL]
case zero'
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.zero' k ⊆ S
⊢ Λ'.Supports S (trNormal Code.zero' k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case succ
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
⊢ Λ'.Supports S (trNormal Code.succ k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case tail
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.tail k ⊆ S
⊢ Λ'.Supports S (trNormal Code.tail k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal (Code.cons a✝¹ a✝) k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal (Code.comp a✝¹ a✝) k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal (Code.case a✝¹ a✝) k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal (Code.fix a✝) k)
[PROOFSTEP]
simp [Λ'.Supports, head]
[GOAL]
case zero'
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.zero' k ⊆ S
⊢ contSupp k ⊆ S
case succ
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
⊢ ∀ (s : Option Γ'),
Λ'.Supports S
(ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k))))
case tail
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.tail k ⊆ S
⊢ contSupp k ⊆ S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k))
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k))
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k)
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case zero' => exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.zero' k ⊆ S
⊢ contSupp k ⊆ S
[PROOFSTEP]
case zero' => exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.zero' k ⊆ S
⊢ contSupp k ⊆ S
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
case succ
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
⊢ ∀ (s : Option Γ'),
Λ'.Supports S
(ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k))))
case tail
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.tail k ⊆ S
⊢ contSupp k ⊆ S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k))
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k))
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k)
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case succ => intro; split_ifs <;> exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
⊢ ∀ (s : Option Γ'),
Λ'.Supports S
(ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k))))
[PROOFSTEP]
case succ => intro; split_ifs <;> exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
⊢ ∀ (s : Option Γ'),
Λ'.Supports S
(ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k))))
[PROOFSTEP]
intro
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
s✝ : Option Γ'
⊢ Λ'.Supports S
(ite (s✝ = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k))))
[PROOFSTEP]
split_ifs
[GOAL]
case pos
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
s✝ : Option Γ'
h✝ : s✝ = some Γ'.consₗ
⊢ Λ'.Supports S (id (unrev (Λ'.succ (Λ'.ret k))))
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
case neg
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.succ k ⊆ S
s✝ : Option Γ'
h✝ : ¬s✝ = some Γ'.consₗ
⊢ Λ'.Supports S (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main (unrev (Λ'.succ (Λ'.ret k))))
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
case tail
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.tail k ⊆ S
⊢ contSupp k ⊆ S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k))
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k))
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k)
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case tail => exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.tail k ⊆ S
⊢ contSupp k ⊆ S
[PROOFSTEP]
case tail => exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
k : Cont'
Hk : codeSupp Code.tail k ⊆ S
⊢ contSupp k ⊆ S
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k))
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k))
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k)
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case cons f fs IHf _ =>
apply IHf
rw [codeSupp_cons] at Hk
exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k)
k : Cont'
Hk : codeSupp (Code.cons f fs) k ⊆ S
⊢ Λ'.Supports S (trNormal f (Cont'.cons₁ fs k))
[PROOFSTEP]
case cons f fs IHf _ =>
apply IHf
rw [codeSupp_cons] at Hk
exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k)
k : Cont'
Hk : codeSupp (Code.cons f fs) k ⊆ S
⊢ Λ'.Supports S (trNormal f (Cont'.cons₁ fs k))
[PROOFSTEP]
apply IHf
[GOAL]
case Hk
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k)
k : Cont'
Hk : codeSupp (Code.cons f fs) k ⊆ S
⊢ codeSupp f (Cont'.cons₁ fs k) ⊆ S
[PROOFSTEP]
rw [codeSupp_cons] at Hk
[GOAL]
case Hk
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k)
k : Cont'
Hk : trStmts₁ (trNormal (Code.cons f fs) k) ∪ codeSupp f (Cont'.cons₁ fs k) ⊆ S
⊢ codeSupp f (Cont'.cons₁ fs k) ⊆ S
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k))
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k)
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case comp f g _ IHg => apply IHg; rw [codeSupp_comp] at Hk ; exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
f g : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : codeSupp (Code.comp f g) k ⊆ S
⊢ Λ'.Supports S (trNormal g (Cont'.comp f k))
[PROOFSTEP]
case comp f g _ IHg => apply IHg; rw [codeSupp_comp] at Hk ; exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
f g : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : codeSupp (Code.comp f g) k ⊆ S
⊢ Λ'.Supports S (trNormal g (Cont'.comp f k))
[PROOFSTEP]
apply IHg
[GOAL]
case Hk
S : Finset Λ'
f g : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : codeSupp (Code.comp f g) k ⊆ S
⊢ codeSupp g (Cont'.comp f k) ⊆ S
[PROOFSTEP]
rw [codeSupp_comp] at Hk
[GOAL]
case Hk
S : Finset Λ'
f g : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
⊢ codeSupp g (Cont'.comp f k) ⊆ S
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k)
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k)
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case case f g IHf IHg =>
simp only [codeSupp_case, Finset.union_subset_iff] at Hk
exact ⟨IHf Hk.2.1, IHg Hk.2.2⟩
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : codeSupp (Code.case f g) k ⊆ S
⊢ Λ'.Supports S (trNormal f k) ∧ Λ'.Supports S (trNormal g k)
[PROOFSTEP]
case case f g IHf IHg =>
simp only [codeSupp_case, Finset.union_subset_iff] at Hk
exact ⟨IHf Hk.2.1, IHg Hk.2.2⟩
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : codeSupp (Code.case f g) k ⊆ S
⊢ Λ'.Supports S (trNormal f k) ∧ Λ'.Supports S (trNormal g k)
[PROOFSTEP]
simp only [codeSupp_case, Finset.union_subset_iff] at Hk
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k)
k : Cont'
Hk : trStmts₁ (trNormal (Code.case f g) k) ⊆ S ∧ codeSupp f k ⊆ S ∧ codeSupp g k ⊆ S
⊢ Λ'.Supports S (trNormal f k) ∧ Λ'.Supports S (trNormal g k)
[PROOFSTEP]
exact ⟨IHf Hk.2.1, IHg Hk.2.2⟩
[GOAL]
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k)
k : Cont'
Hk : codeSupp (Code.fix a✝) k ⊆ S
⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k))
[PROOFSTEP]
case fix f IHf => apply IHf; rw [codeSupp_fix] at Hk ; exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
k : Cont'
Hk : codeSupp (Code.fix f) k ⊆ S
⊢ Λ'.Supports S (trNormal f (Cont'.fix f k))
[PROOFSTEP]
case fix f IHf => apply IHf; rw [codeSupp_fix] at Hk ; exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
k : Cont'
Hk : codeSupp (Code.fix f) k ⊆ S
⊢ Λ'.Supports S (trNormal f (Cont'.fix f k))
[PROOFSTEP]
apply IHf
[GOAL]
case Hk
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
k : Cont'
Hk : codeSupp (Code.fix f) k ⊆ S
⊢ codeSupp f (Cont'.fix f k) ⊆ S
[PROOFSTEP]
rw [codeSupp_fix] at Hk
[GOAL]
case Hk
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k)
k : Cont'
Hk : trStmts₁ (trNormal (Code.fix f) k) ∪ codeSupp f (Cont'.fix f k) ⊆ S
⊢ codeSupp f (Cont'.fix f k) ⊆ S
[PROOFSTEP]
exact Finset.union_subset_right Hk
[GOAL]
S : Finset Λ'
c : Code
k : Cont'
H : codeSupp c k ⊆ S
⊢ Supports (codeSupp' c k) S
[PROOFSTEP]
induction c generalizing k
[GOAL]
case zero'
S : Finset Λ'
k : Cont'
H : codeSupp Code.zero' k ⊆ S
⊢ Supports (codeSupp' Code.zero' k) S
case succ
S : Finset Λ'
k : Cont'
H : codeSupp Code.succ k ⊆ S
⊢ Supports (codeSupp' Code.succ k) S
case tail
S : Finset Λ'
k : Cont'
H : codeSupp Code.tail k ⊆ S
⊢ Supports (codeSupp' Code.tail k) S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
iterate 3 exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H)
[GOAL]
case zero'
S : Finset Λ'
k : Cont'
H : codeSupp Code.zero' k ⊆ S
⊢ Supports (codeSupp' Code.zero' k) S
case succ
S : Finset Λ'
k : Cont'
H : codeSupp Code.succ k ⊆ S
⊢ Supports (codeSupp' Code.succ k) S
case tail
S : Finset Λ'
k : Cont'
H : codeSupp Code.tail k ⊆ S
⊢ Supports (codeSupp' Code.tail k) S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H)
[GOAL]
case succ
S : Finset Λ'
k : Cont'
H : codeSupp Code.succ k ⊆ S
⊢ Supports (codeSupp' Code.succ k) S
case tail
S : Finset Λ'
k : Cont'
H : codeSupp Code.tail k ⊆ S
⊢ Supports (codeSupp' Code.tail k) S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H)
[GOAL]
case tail
S : Finset Λ'
k : Cont'
H : codeSupp Code.tail k ⊆ S
⊢ Supports (codeSupp' Code.tail k) S
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H)
[GOAL]
case cons
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
case cons f fs IHf IHfs =>
have H' := H; simp only [codeSupp_cons, Finset.union_subset_iff] at H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
refine' supports_union.2 ⟨IHf H'.2, _⟩
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun h => _
· simp only [codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
exact ⟨h.2.2.1, h.2.2.2, H.2⟩
refine' supports_union.2 ⟨IHfs _, _⟩
· rw [codeSupp, contSupp_cons₁] at H'
exact Finset.union_subset_right (Finset.union_subset_right H'.2)
exact trStmts₁_supports (head_supports <| Finset.union_subset_right H) (Finset.union_subset_right h)
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
⊢ Supports (codeSupp' (Code.cons f fs) k) S
[PROOFSTEP]
case cons f fs IHf IHfs =>
have H' := H; simp only [codeSupp_cons, Finset.union_subset_iff] at H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
refine' supports_union.2 ⟨IHf H'.2, _⟩
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun h => _
· simp only [codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
exact ⟨h.2.2.1, h.2.2.2, H.2⟩
refine' supports_union.2 ⟨IHfs _, _⟩
· rw [codeSupp, contSupp_cons₁] at H'
exact Finset.union_subset_right (Finset.union_subset_right H'.2)
exact trStmts₁_supports (head_supports <| Finset.union_subset_right H) (Finset.union_subset_right h)
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
⊢ Supports (codeSupp' (Code.cons f fs) k) S
[PROOFSTEP]
have H' := H
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H H' : codeSupp (Code.cons f fs) k ⊆ S
⊢ Supports (codeSupp' (Code.cons f fs) k) S
[PROOFSTEP]
simp only [codeSupp_cons, Finset.union_subset_iff] at H'
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
⊢ Supports (codeSupp' (Code.cons f fs) k) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
⊢ Supports
(codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))))
S
[PROOFSTEP]
refine' supports_union.2 ⟨IHf H'.2, _⟩
[GOAL]
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
⊢ Supports
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k))))
S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun h => _
[GOAL]
case refine'_1
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
⊢ codeSupp fs (Cont'.cons₂ k) ⊆ S
[PROOFSTEP]
simp only [codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
[GOAL]
case refine'_1
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h :
codeSupp' f (Cont'.cons₁ fs k) ⊆ S ∧
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ⊆
S ∧
codeSupp' fs (Cont'.cons₂ k) ⊆ S ∧ trStmts₁ (head stack (Λ'.ret k)) ⊆ S
H : codeSupp' (Code.cons f fs) k ⊆ S ∧ contSupp k ⊆ S
⊢ codeSupp' fs (Cont'.cons₂ k) ⊆ S ∧ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ∧ contSupp k ⊆ S
[PROOFSTEP]
exact ⟨h.2.2.1, h.2.2.2, H.2⟩
[GOAL]
case refine'_2
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h✝ :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S
⊢ Supports (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k))) S
[PROOFSTEP]
refine' supports_union.2 ⟨IHfs _, _⟩
[GOAL]
case refine'_2.refine'_1
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h✝ :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S
⊢ codeSupp fs (Cont'.cons₂ k) ⊆ S
[PROOFSTEP]
rw [codeSupp, contSupp_cons₁] at H'
[GOAL]
case refine'_2.refine'_1
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' :
trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
codeSupp fs (Cont'.cons₂ k)) ⊆
S
h✝ :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S
⊢ codeSupp fs (Cont'.cons₂ k) ⊆ S
[PROOFSTEP]
exact Finset.union_subset_right (Finset.union_subset_right H'.2)
[GOAL]
case refine'_2.refine'_2
S : Finset Λ'
f fs : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S
k : Cont'
H : codeSupp (Code.cons f fs) k ⊆ S
H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S
h✝ :
codeSupp' f (Cont'.cons₁ fs k) ∪
(trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪
(codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆
S
h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S
⊢ Supports (trStmts₁ (head stack (Λ'.ret k))) S
[PROOFSTEP]
exact trStmts₁_supports (head_supports <| Finset.union_subset_right H) (Finset.union_subset_right h)
[GOAL]
case comp
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
case comp f g IHf IHg =>
have H' := H; rw [codeSupp_comp] at H' ; have H' := Finset.union_subset_right H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
refine' supports_union.2 ⟨IHg H', _⟩
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _
· simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
exact ⟨h.2.2, H.2⟩
exact IHf (Finset.union_subset_right H')
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
⊢ Supports (codeSupp' (Code.comp f g) k) S
[PROOFSTEP]
case comp f g IHf IHg =>
have H' := H; rw [codeSupp_comp] at H' ; have H' := Finset.union_subset_right H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
refine' supports_union.2 ⟨IHg H', _⟩
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _
· simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
exact ⟨h.2.2, H.2⟩
exact IHf (Finset.union_subset_right H')
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
⊢ Supports (codeSupp' (Code.comp f g) k) S
[PROOFSTEP]
have H' := H
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H H' : codeSupp (Code.comp f g) k ⊆ S
⊢ Supports (codeSupp' (Code.comp f g) k) S
[PROOFSTEP]
rw [codeSupp_comp] at H'
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
H' : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
⊢ Supports (codeSupp' (Code.comp f g) k) S
[PROOFSTEP]
have H' := Finset.union_subset_right H'
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
H' : codeSupp g (Cont'.comp f k) ⊆ S
⊢ Supports (codeSupp' (Code.comp f g) k) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
H' : codeSupp g (Cont'.comp f k) ⊆ S
h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S
⊢ Supports (codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k)) S
[PROOFSTEP]
refine' supports_union.2 ⟨IHg H', _⟩
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
H' : codeSupp g (Cont'.comp f k) ⊆ S
h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S
⊢ Supports (trStmts₁ (trNormal f k) ∪ codeSupp' f k) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _
[GOAL]
case refine'_1
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
H' : codeSupp g (Cont'.comp f k) ⊆ S
h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S
⊢ codeSupp f k ⊆ S
[PROOFSTEP]
simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢
[GOAL]
case refine'_1
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
H' : codeSupp g (Cont'.comp f k) ⊆ S
h : codeSupp' g (Cont'.comp f k) ⊆ S ∧ trStmts₁ (trNormal f k) ⊆ S ∧ codeSupp' f k ⊆ S
H :
(trStmts₁ (trNormal (Code.comp f g) k) ⊆ S ∧
codeSupp' g (Cont'.comp f k) ⊆ S ∧ trStmts₁ (trNormal f k) ⊆ S ∧ codeSupp' f k ⊆ S) ∧
contSupp k ⊆ S
⊢ codeSupp' f k ⊆ S ∧ contSupp k ⊆ S
[PROOFSTEP]
exact ⟨h.2.2, H.2⟩
[GOAL]
case refine'_2
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.comp f g) k ⊆ S
H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S
H' : codeSupp g (Cont'.comp f k) ⊆ S
h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S
x✝ : codeSupp' f k ⊆ S
⊢ Supports (codeSupp' f k) S
[PROOFSTEP]
exact IHf (Finset.union_subset_right H')
[GOAL]
case case
S : Finset Λ'
a✝¹ a✝ : Code
a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.case a✝¹ a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
case case f g IHf IHg =>
have H' := H; simp only [codeSupp_case, Finset.union_subset_iff] at H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun _ => _
exact supports_union.2 ⟨IHf H'.2.1, IHg H'.2.2⟩
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.case f g) k ⊆ S
⊢ Supports (codeSupp' (Code.case f g) k) S
[PROOFSTEP]
case case f g IHf IHg =>
have H' := H; simp only [codeSupp_case, Finset.union_subset_iff] at H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun _ => _
exact supports_union.2 ⟨IHf H'.2.1, IHg H'.2.2⟩
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.case f g) k ⊆ S
⊢ Supports (codeSupp' (Code.case f g) k) S
[PROOFSTEP]
have H' := H
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H H' : codeSupp (Code.case f g) k ⊆ S
⊢ Supports (codeSupp' (Code.case f g) k) S
[PROOFSTEP]
simp only [codeSupp_case, Finset.union_subset_iff] at H'
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.case f g) k ⊆ S
H' : trStmts₁ (trNormal (Code.case f g) k) ⊆ S ∧ codeSupp f k ⊆ S ∧ codeSupp g k ⊆ S
⊢ Supports (codeSupp' (Code.case f g) k) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun _ => _
[GOAL]
S : Finset Λ'
f g : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S
k : Cont'
H : codeSupp (Code.case f g) k ⊆ S
H' : trStmts₁ (trNormal (Code.case f g) k) ⊆ S ∧ codeSupp f k ⊆ S ∧ codeSupp g k ⊆ S
x✝ : codeSupp' f k ∪ codeSupp' g k ⊆ S
⊢ Supports (codeSupp' f k ∪ codeSupp' g k) S
[PROOFSTEP]
exact supports_union.2 ⟨IHf H'.2.1, IHg H'.2.2⟩
[GOAL]
case fix
S : Finset Λ'
a✝ : Code
a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S
k : Cont'
H : codeSupp (Code.fix a✝) k ⊆ S
⊢ Supports (codeSupp' (Code.fix a✝) k) S
[PROOFSTEP]
case fix f IHf =>
have H' := H; simp only [codeSupp_fix, Finset.union_subset_iff] at H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
refine' supports_union.2 ⟨IHf H'.2, _⟩
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _
· simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp, trStmts₁, Finset.insert_subset_iff] at h H ⊢
exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩
exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H)
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
⊢ Supports (codeSupp' (Code.fix f) k) S
[PROOFSTEP]
case fix f IHf =>
have H' := H; simp only [codeSupp_fix, Finset.union_subset_iff] at H'
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
refine' supports_union.2 ⟨IHf H'.2, _⟩
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _
· simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp, trStmts₁, Finset.insert_subset_iff] at h H ⊢
exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩
exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H)
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
⊢ Supports (codeSupp' (Code.fix f) k) S
[PROOFSTEP]
have H' := H
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H H' : codeSupp (Code.fix f) k ⊆ S
⊢ Supports (codeSupp' (Code.fix f) k) S
[PROOFSTEP]
simp only [codeSupp_fix, Finset.union_subset_iff] at H'
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S
⊢ Supports (codeSupp' (Code.fix f) k) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S
h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S
⊢ Supports (codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k})) S
[PROOFSTEP]
refine' supports_union.2 ⟨IHf H'.2, _⟩
[GOAL]
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S
h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S
⊢ Supports (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _
[GOAL]
case refine'_1
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S
h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S
⊢ codeSupp f (Cont'.fix f k) ⊆ S
[PROOFSTEP]
simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp, trStmts₁, Finset.insert_subset_iff] at h H ⊢
[GOAL]
case refine'_1
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S
h :
codeSupp' f (Cont'.fix f k) ⊆ S ∧
(Λ'.clear natEnd main (trNormal f (Cont'.fix f k)) ∈ S ∧ trStmts₁ (trNormal f (Cont'.fix f k)) ⊆ S) ∧ {Λ'.ret k} ⊆ S
H :
(trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧
codeSupp' f (Cont'.fix f k) ⊆ S ∧
(Λ'.clear natEnd main (trNormal f (Cont'.fix f k)) ∈ S ∧ trStmts₁ (trNormal f (Cont'.fix f k)) ⊆ S) ∧
{Λ'.ret k} ⊆ S) ∧
contSupp k ⊆ S
⊢ codeSupp' f (Cont'.fix f k) ⊆ S ∧
(trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧
codeSupp' f (Cont'.fix f k) ⊆ S ∧
(Λ'.clear natEnd main (trNormal f (Cont'.fix f k)) ∈ S ∧ trStmts₁ (trNormal f (Cont'.fix f k)) ⊆ S) ∧
{Λ'.ret k} ⊆ S) ∧
contSupp k ⊆ S
[PROOFSTEP]
exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩
[GOAL]
case refine'_2
S : Finset Λ'
f : Code
IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S
k : Cont'
H : codeSupp (Code.fix f) k ⊆ S
H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S
h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S
x✝ : {Λ'.ret k} ⊆ S
⊢ Supports {Λ'.ret k} S
[PROOFSTEP]
exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H)
[GOAL]
S : Finset Λ'
k : Cont'
H : contSupp k ⊆ S
⊢ Supports (contSupp k) S
[PROOFSTEP]
induction k
[GOAL]
case halt
S : Finset Λ'
H : contSupp Cont'.halt ⊆ S
⊢ Supports (contSupp Cont'.halt) S
[PROOFSTEP]
simp [contSupp_halt, Supports]
[GOAL]
case cons₁
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.cons₁ a✝¹ a✝)) S
case cons₂
S : Finset Λ'
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.cons₂ a✝)) S
case comp
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.comp a✝¹ a✝)) S
case fix
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S
[PROOFSTEP]
case cons₁ f k IH =>
have H₁ := H; rw [contSupp_cons₁] at H₁ ; have H₂ := Finset.union_subset_right H₁
refine' trStmts₁_supports' (trNormal_supports H₂) H₁ fun h => _
refine' supports_union.2 ⟨codeSupp'_supports H₂, _⟩
simp only [codeSupp, contSupp_cons₂, Finset.union_subset_iff] at H₂
exact trStmts₁_supports' (head_supports H₂.2.2) (Finset.union_subset_right h) IH
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₁ f k)) S
[PROOFSTEP]
case cons₁ f k IH =>
have H₁ := H; rw [contSupp_cons₁] at H₁ ; have H₂ := Finset.union_subset_right H₁
refine' trStmts₁_supports' (trNormal_supports H₂) H₁ fun h => _
refine' supports_union.2 ⟨codeSupp'_supports H₂, _⟩
simp only [codeSupp, contSupp_cons₂, Finset.union_subset_iff] at H₂
exact trStmts₁_supports' (head_supports H₂.2.2) (Finset.union_subset_right h) IH
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₁ f k)) S
[PROOFSTEP]
have H₁ := H
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H H₁ : contSupp (Cont'.cons₁ f k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₁ f k)) S
[PROOFSTEP]
rw [contSupp_cons₁] at H₁
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
H₁ :
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪
codeSupp f (Cont'.cons₂ k) ⊆
S
⊢ Supports (contSupp (Cont'.cons₁ f k)) S
[PROOFSTEP]
have H₂ := Finset.union_subset_right H₁
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
H₁ :
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪
codeSupp f (Cont'.cons₂ k) ⊆
S
H₂ : codeSupp f (Cont'.cons₂ k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₁ f k)) S
[PROOFSTEP]
refine' trStmts₁_supports' (trNormal_supports H₂) H₁ fun h => _
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
H₁ :
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪
codeSupp f (Cont'.cons₂ k) ⊆
S
H₂ : codeSupp f (Cont'.cons₂ k) ⊆ S
h : codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) ⊆ S
⊢ Supports (codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k)) S
[PROOFSTEP]
refine' supports_union.2 ⟨codeSupp'_supports H₂, _⟩
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
H₁ :
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪
codeSupp f (Cont'.cons₂ k) ⊆
S
H₂ : codeSupp f (Cont'.cons₂ k) ⊆ S
h : codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) ⊆ S
⊢ Supports (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) S
[PROOFSTEP]
simp only [codeSupp, contSupp_cons₂, Finset.union_subset_iff] at H₂
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₁ f k) ⊆ S
H₁ :
trStmts₁
(move₂ (fun x => false) main aux
(move₂ (fun s => decide (s = Γ'.consₗ)) stack main
(move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪
codeSupp f (Cont'.cons₂ k) ⊆
S
h : codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) ⊆ S
H₂ : codeSupp' f (Cont'.cons₂ k) ⊆ S ∧ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ∧ contSupp k ⊆ S
⊢ Supports (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) S
[PROOFSTEP]
exact trStmts₁_supports' (head_supports H₂.2.2) (Finset.union_subset_right h) IH
[GOAL]
case cons₂
S : Finset Λ'
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.cons₂ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.cons₂ a✝)) S
case comp
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.comp a✝¹ a✝)) S
case fix
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S
[PROOFSTEP]
case cons₂ k IH =>
have H' := H; rw [contSupp_cons₂] at H'
exact trStmts₁_supports' (head_supports <| Finset.union_subset_right H') H' IH
[GOAL]
S : Finset Λ'
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₂ k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₂ k)) S
[PROOFSTEP]
case cons₂ k IH =>
have H' := H; rw [contSupp_cons₂] at H'
exact trStmts₁_supports' (head_supports <| Finset.union_subset_right H') H' IH
[GOAL]
S : Finset Λ'
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₂ k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₂ k)) S
[PROOFSTEP]
have H' := H
[GOAL]
S : Finset Λ'
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H H' : contSupp (Cont'.cons₂ k) ⊆ S
⊢ Supports (contSupp (Cont'.cons₂ k)) S
[PROOFSTEP]
rw [contSupp_cons₂] at H'
[GOAL]
S : Finset Λ'
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.cons₂ k) ⊆ S
H' : trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k ⊆ S
⊢ Supports (contSupp (Cont'.cons₂ k)) S
[PROOFSTEP]
exact trStmts₁_supports' (head_supports <| Finset.union_subset_right H') H' IH
[GOAL]
case comp
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.comp a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.comp a✝¹ a✝)) S
case fix
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S
[PROOFSTEP]
case comp f k IH =>
have H' := H; rw [contSupp_comp] at H' ; have H₂ := Finset.union_subset_right H'
exact supports_union.2 ⟨codeSupp'_supports H', IH H₂⟩
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.comp f k) ⊆ S
⊢ Supports (contSupp (Cont'.comp f k)) S
[PROOFSTEP]
case comp f k IH =>
have H' := H; rw [contSupp_comp] at H' ; have H₂ := Finset.union_subset_right H'
exact supports_union.2 ⟨codeSupp'_supports H', IH H₂⟩
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.comp f k) ⊆ S
⊢ Supports (contSupp (Cont'.comp f k)) S
[PROOFSTEP]
have H' := H
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H H' : contSupp (Cont'.comp f k) ⊆ S
⊢ Supports (contSupp (Cont'.comp f k)) S
[PROOFSTEP]
rw [contSupp_comp] at H'
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.comp f k) ⊆ S
H' : codeSupp f k ⊆ S
⊢ Supports (contSupp (Cont'.comp f k)) S
[PROOFSTEP]
have H₂ := Finset.union_subset_right H'
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.comp f k) ⊆ S
H' : codeSupp f k ⊆ S
H₂ : contSupp k ⊆ S
⊢ Supports (contSupp (Cont'.comp f k)) S
[PROOFSTEP]
exact supports_union.2 ⟨codeSupp'_supports H', IH H₂⟩
[GOAL]
case fix
S : Finset Λ'
a✝¹ : Code
a✝ : Cont'
a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S
H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S
⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S
[PROOFSTEP]
case fix f k IH =>
rw [contSupp] at H
exact supports_union.2 ⟨codeSupp'_supports H, IH (Finset.union_subset_right H)⟩
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.fix f k) ⊆ S
⊢ Supports (contSupp (Cont'.fix f k)) S
[PROOFSTEP]
case fix f k IH =>
rw [contSupp] at H
exact supports_union.2 ⟨codeSupp'_supports H, IH (Finset.union_subset_right H)⟩
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : contSupp (Cont'.fix f k) ⊆ S
⊢ Supports (contSupp (Cont'.fix f k)) S
[PROOFSTEP]
rw [contSupp] at H
[GOAL]
S : Finset Λ'
f : Code
k : Cont'
IH : contSupp k ⊆ S → Supports (contSupp k) S
H : codeSupp' (Code.fix f) k ∪ contSupp k ⊆ S
⊢ Supports (contSupp (Cont'.fix f k)) S
[PROOFSTEP]
exact supports_union.2 ⟨codeSupp'_supports H, IH (Finset.union_subset_right H)⟩
| {"mathlib_filename": "Mathlib.Computability.TMToPartrec", "llama_tokens": 364962} |