text
stringlengths
0
3.06M
meta
stringlengths
57
121
[GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ HomologicalComplex.Hom.f (P q) 0 = 𝟙 (HomologicalComplex.X K[X] 0) [PROOFSTEP] induction' q with q hq [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ HomologicalComplex.Hom.f (P Nat.zero) 0 = 𝟙 (HomologicalComplex.X K[X] 0) [PROOFSTEP] rfl [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : HomologicalComplex.Hom.f (P q) 0 = 𝟙 (HomologicalComplex.X K[X] 0) ⊢ HomologicalComplex.Hom.f (P (Nat.succ q)) 0 = 𝟙 (HomologicalComplex.X K[X] 0) [PROOFSTEP] simp only [P_succ, HomologicalComplex.add_f_apply, HomologicalComplex.comp_f, HomologicalComplex.id_f, id_comp, hq, Hσ_eq_zero, add_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ P q + Q q = 𝟙 K[X] [PROOFSTEP] rw [Q] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ P q + (𝟙 K[X] - P q) = 𝟙 K[X] [PROOFSTEP] abel [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ P q + (𝟙 K[X] - P q) = 𝟙 K[X] [PROOFSTEP] abel [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ Q (q + 1) = Q q - P q ≫ Hσ q [PROOFSTEP] simp only [Q, P_succ, comp_add, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ 𝟙 K[X] - (P q + P q ≫ Hσ q) = 𝟙 K[X] - P q - P q ≫ Hσ q [PROOFSTEP] abel [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ 𝟙 K[X] - (P q + P q ≫ Hσ q) = 𝟙 K[X] - P q - P q ≫ Hσ q [PROOFSTEP] abel [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ HomologicalComplex.Hom.f (Q q) 0 = 0 [PROOFSTEP] simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, Q, P_f_0_eq, sub_self] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + 0 ⊢ HomologicalComplex.Hom.f (P 0) (n + 1) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] exfalso [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + 0 ⊢ False [PROOFSTEP] have hj₂ := Fin.is_lt j [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + 0 hj₂ : ↑j < n + 1 ⊢ False [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ ⊢ HigherFacesVanish (q + 1) (HomologicalComplex.Hom.f (P (q + 1)) (n + 1)) [PROOFSTEP] simp only [P_succ] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ ⊢ HigherFacesVanish (q + 1) (HomologicalComplex.Hom.f (P q ≫ (𝟙 K[X] + Hσ q)) (n + 1)) [PROOFSTEP] exact (of_P q n).induction [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) v : HigherFacesVanish q φ ⊢ φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ [PROOFSTEP] induction' q with q hq [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q φ v : HigherFacesVanish Nat.zero φ ⊢ φ ≫ HomologicalComplex.Hom.f (P Nat.zero) (n + 1) = φ [PROOFSTEP] simp only [P_zero] [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q φ v : HigherFacesVanish Nat.zero φ ⊢ φ ≫ HomologicalComplex.Hom.f (𝟙 K[X]) (n + 1) = φ [PROOFSTEP] apply comp_id [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ ⊢ φ ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = φ [PROOFSTEP] simp only [P_succ, comp_add, HomologicalComplex.comp_f, HomologicalComplex.add_f_apply, comp_id, ← assoc, hq v.of_succ, add_right_eq_self] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0 [PROOFSTEP] by_cases hqn : n < q [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : n < q ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0 [PROOFSTEP] exact v.of_succ.comp_Hσ_eq_zero hqn [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0 [PROOFSTEP] obtain ⟨a, ha⟩ := Nat.le.dest (not_lt.mp hqn) [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0 [PROOFSTEP] have hnaq : n = a + q := by linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n ⊢ n = a + q [PROOFSTEP] linarith [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0 [PROOFSTEP] simp only [v.of_succ.comp_Hσ_eq hnaq, neg_eq_zero, ← assoc] [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q ⊢ (φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] have eq := v ⟨a, by linarith⟩ (by simp only [hnaq, Nat.succ_eq_add_one, add_assoc] rfl) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q ⊢ a < n + 1 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q ⊢ n + 1 ≤ ↑{ val := a, isLt := (_ : a < n + 1) } + Nat.succ q [PROOFSTEP] simp only [hnaq, Nat.succ_eq_add_one, add_assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q ⊢ a + (q + 1) ≤ a + (q + 1) [PROOFSTEP] rfl [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q eq : φ ≫ δ X (Fin.succ { val := a, isLt := (_ : a < n + 1) }) = 0 ⊢ (φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] simp only [Fin.succ_mk] at eq [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q✝ : ℕ φ : Y ⟶ X.obj (op [n + 1]) v✝ : HigherFacesVanish q✝ φ q : ℕ hq : HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ v : HigherFacesVanish (Nat.succ q) φ hqn : ¬n < q a : ℕ ha : q + a = n hnaq : n = a + q eq : φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } = 0 ⊢ (φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] simp only [eq, zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) ⊢ φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ ↔ HigherFacesVanish q φ [PROOFSTEP] constructor [GOAL] case mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) ⊢ φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ → HigherFacesVanish q φ [PROOFSTEP] intro hφ [GOAL] case mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) hφ : φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ ⊢ HigherFacesVanish q φ [PROOFSTEP] rw [← hφ] [GOAL] case mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) hφ : φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ ⊢ HigherFacesVanish q (φ ≫ HomologicalComplex.Hom.f (P q) (n + 1)) [PROOFSTEP] apply HigherFacesVanish.of_comp [GOAL] case mp.v C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) hφ : φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ ⊢ HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (n + 1)) [PROOFSTEP] apply HigherFacesVanish.of_P [GOAL] case mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (op [n + 1]) ⊢ HigherFacesVanish q φ → φ ≫ HomologicalComplex.Hom.f (P q) (n + 1) = φ [PROOFSTEP] exact HigherFacesVanish.comp_P_eq_self [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ ⊢ HomologicalComplex.Hom.f (P q) n ≫ HomologicalComplex.Hom.f (P q) n = HomologicalComplex.Hom.f (P q) n [PROOFSTEP] rcases n with (_ | n) [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ HomologicalComplex.Hom.f (P q) Nat.zero ≫ HomologicalComplex.Hom.f (P q) Nat.zero = HomologicalComplex.Hom.f (P q) Nat.zero [PROOFSTEP] rw [P_f_0_eq q, comp_id] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ ⊢ HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n) = HomologicalComplex.Hom.f (P q) (Nat.succ n) [PROOFSTEP] exact (HigherFacesVanish.of_P q n).comp_P_eq_self [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ P q ≫ P q = P q [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ ⊢ HomologicalComplex.Hom.f (P q ≫ P q) n = HomologicalComplex.Hom.f (P q) n [PROOFSTEP] exact P_f_idem q n [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ Q q ≫ Q q = Q q [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ ⊢ HomologicalComplex.Hom.f (Q q ≫ Q q) n = HomologicalComplex.Hom.f (Q q) n [PROOFSTEP] exact Q_f_idem q n [GOAL] C : Type u_1 inst✝¹ : Category.{?u.247062, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] induction' q with q hq [GOAL] case zero C : Type u_1 inst✝¹ : Category.{?u.247062, u_1} C inst✝ : Preadditive C X x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => P Nat.zero) x✝ = (fun X => P Nat.zero) x✝¹ ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] dsimp [alternatingFaceMapComplex] [GOAL] case zero C : Type u_1 inst✝¹ : Category.{?u.247062, u_1} C inst✝ : Preadditive C X x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ AlternatingFaceMapComplex.map f ≫ P 0 = P 0 ≫ AlternatingFaceMapComplex.map f [PROOFSTEP] simp only [P_zero, id_comp, comp_id] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.247062, u_1} C inst✝ : Preadditive C X x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ q : ℕ hq : (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f ⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => P (Nat.succ q)) x✝ = (fun X => P (Nat.succ q)) x✝¹ ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] simp only [P_succ, add_comp, comp_add, assoc, comp_id, hq, reassoc_of% hq] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.247062, u_1} C inst✝ : Preadditive C X x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ q : ℕ hq : (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f ⊢ P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ (alternatingFaceMapComplex C).map f ≫ Hσ q = P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ Hσ q ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] erw [(natTransHσ q).naturality f] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.247062, u_1} C inst✝ : Preadditive C X x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ q : ℕ hq : (alternatingFaceMapComplex C).map f ≫ (fun X => P q) x✝ = (fun X => P q) x✝¹ ≫ (alternatingFaceMapComplex C).map f ⊢ P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ NatTrans.app (natTransHσ q) x✝¹ ≫ (alternatingFaceMapComplex C).map f = P q ≫ (alternatingFaceMapComplex C).map f + P q ≫ Hσ q ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y ⊢ NatTrans.app f (op [n]) ≫ HomologicalComplex.Hom.f (Q q) n = HomologicalComplex.Hom.f (Q q) n ≫ NatTrans.app f (op [n]) [PROOFSTEP] simp only [Q, HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, comp_sub, P_f_naturality, sub_comp, sub_left_inj] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y ⊢ NatTrans.app f (op [n]) ≫ 𝟙 (HomologicalComplex.X K[Y] n) = 𝟙 (HomologicalComplex.X K[X] n) ≫ NatTrans.app f (op [n]) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y ⊢ NatTrans.app f (op [n]) ≫ 𝟙 (Y.obj (op [n])) = 𝟙 (X.obj (op [n])) ≫ NatTrans.app f (op [n]) [PROOFSTEP] simp only [comp_id, id_comp] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ ⊢ G.map (HomologicalComplex.Hom.f (P q) n) = HomologicalComplex.Hom.f (P q) n [PROOFSTEP] induction' q with q hq [GOAL] case zero C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C n : ℕ ⊢ G.map (HomologicalComplex.Hom.f (P Nat.zero) n) = HomologicalComplex.Hom.f (P Nat.zero) n [PROOFSTEP] simp only [P_zero] [GOAL] case zero C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C n : ℕ ⊢ G.map (HomologicalComplex.Hom.f (𝟙 K[X]) n) = HomologicalComplex.Hom.f (𝟙 K[((whiskering C D).obj G).obj X]) n [PROOFSTEP] apply G.map_id [GOAL] case succ C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C n q : ℕ hq : G.map (HomologicalComplex.Hom.f (P q) n) = HomologicalComplex.Hom.f (P q) n ⊢ G.map (HomologicalComplex.Hom.f (P (Nat.succ q)) n) = HomologicalComplex.Hom.f (P (Nat.succ q)) n [PROOFSTEP] simp only [P_succ, comp_add, HomologicalComplex.comp_f, HomologicalComplex.add_f_apply, comp_id, Functor.map_add, Functor.map_comp, hq, map_Hσ] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ ⊢ G.map (HomologicalComplex.Hom.f (Q q) n) = HomologicalComplex.Hom.f (Q q) n [PROOFSTEP] rw [← add_right_inj (G.map ((P q : K[X] ⟶ _).f n)), ← G.map_add, map_P G X q n, P_add_Q_f, P_add_Q_f] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ ⊢ G.map (𝟙 (X.obj (op [n]))) = 𝟙 ((((whiskering C D).obj G).obj X).obj (op [n])) [PROOFSTEP] apply G.map_id
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Projections", "llama_tokens": 10111}
[GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.10521, u_3} B inst✝ : Category.{u_5, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor ⊢ (equivalence₁ hF).counitIso = equivalence₁CounitIso hF [PROOFSTEP] ext Y [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.10521, u_3} B inst✝ : Category.{u_5, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor Y : B' ⊢ NatTrans.app (equivalence₁ hF).counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y [PROOFSTEP] dsimp [equivalence₁] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.10521, u_3} B inst✝ : Category.{u_5, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor Y : B' ⊢ NatTrans.app (Functor.asEquivalence F).counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y [PROOFSTEP] unfold Functor.asEquivalence [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.10521, u_3} B inst✝ : Category.{u_5, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor Y : B' ⊢ NatTrans.app (Equivalence.mk' F (IsEquivalence.inverse F) IsEquivalence.unitIso IsEquivalence.counitIso).counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y [PROOFSTEP] dsimp [equivalence₀, IsEquivalence.inverse, IsEquivalence.ofEquivalence] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.10521, u_3} B inst✝ : Category.{u_5, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor Y : B' ⊢ NatTrans.app IsEquivalence.counitIso.hom Y = NatTrans.app (equivalence₁CounitIso hF).hom Y [PROOFSTEP] simp [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.21328, u_3} B inst✝ : Category.{u_6, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor ⊢ (equivalence₁ hF).unitIso = equivalence₁UnitIso hF [PROOFSTEP] ext X [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.21328, u_3} B inst✝ : Category.{u_6, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app (equivalence₁ hF).unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X [PROOFSTEP] dsimp [equivalence₁] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.21328, u_3} B inst✝ : Category.{u_6, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app (Functor.asEquivalence F).unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X [PROOFSTEP] unfold Functor.asEquivalence [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.21328, u_3} B inst✝ : Category.{u_6, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app (Equivalence.mk' F (IsEquivalence.inverse F) IsEquivalence.unitIso IsEquivalence.counitIso).unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X [PROOFSTEP] dsimp [NatIso.hcomp, IsEquivalence.ofEquivalence] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{?u.21328, u_3} B inst✝ : Category.{u_6, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app IsEquivalence.unitIso.hom X = NatTrans.app (equivalence₁UnitIso hF).hom X [PROOFSTEP] simp [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor ⊢ (equivalence₂ eB hF).counitIso = equivalence₂CounitIso eB hF [PROOFSTEP] ext Y' [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor Y' : B ⊢ NatTrans.app (equivalence₂ eB hF).counitIso.hom Y' = NatTrans.app (equivalence₂CounitIso eB hF).hom Y' [PROOFSTEP] dsimp [equivalence₂, Iso.refl] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor Y' : B ⊢ eB.inverse.map (NatTrans.app (equivalence₁ hF).counitIso.hom (eB.functor.obj Y')) ≫ NatTrans.app eB.unitIso.inv Y' = NatTrans.app (equivalence₂CounitIso eB hF).hom Y' [PROOFSTEP] simp only [equivalence₁CounitIso_eq, equivalence₂CounitIso_hom_app, equivalence₁CounitIso_hom_app, Functor.map_comp, assoc] [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor ⊢ (equivalence₂ eB hF).unitIso = equivalence₂UnitIso eB hF [PROOFSTEP] ext X [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app (equivalence₂ eB hF).unitIso.hom X = NatTrans.app (equivalence₂UnitIso eB hF).hom X [PROOFSTEP] dsimp [equivalence₂] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app (equivalence₁ hF).unitIso.hom X ≫ (equivalence₁ hF).inverse.map (NatTrans.app eB.counitIso.inv (F.obj X)) = NatTrans.app (equivalence₂UnitIso eB hF).hom X [PROOFSTEP] simp only [equivalence₂UnitIso_hom_app, equivalence₁UnitIso_eq, equivalence₁UnitIso_hom_app, assoc, NatIso.cancel_natIso_hom_left] [GOAL] case w.w.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor X : A ⊢ NatTrans.app eA.unitIso.hom X ≫ eA.inverse.map (NatTrans.app e'.unitIso.hom (eA.functor.obj X)) ≫ eA.inverse.map (e'.inverse.map (NatTrans.app hF.hom X)) ≫ (equivalence₁ hF).inverse.map (NatTrans.app eB.counitIso.inv (F.obj X)) = NatTrans.app eA.unitIso.hom X ≫ eA.inverse.map (NatTrans.app e'.unitIso.hom (eA.functor.obj X)) ≫ eA.inverse.map (e'.inverse.map (NatTrans.app hF.hom X)) ≫ eA.inverse.map (e'.inverse.map (NatTrans.app eB.counitIso.inv (F.obj X))) [PROOFSTEP] rfl [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{?u.46977, u_1} A inst✝² : Category.{?u.46981, u_2} A' inst✝¹ : Category.{?u.46985, u_3} B inst✝ : Category.{?u.46989, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor ⊢ IsEquivalence G [PROOFSTEP] refine' IsEquivalence.ofIso _ (IsEquivalence.ofEquivalence (equivalence₂ eB hF).symm) [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{?u.46977, u_1} A inst✝² : Category.{?u.46981, u_2} A' inst✝¹ : Category.{?u.46985, u_3} B inst✝ : Category.{?u.46989, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor ⊢ (CategoryTheory.Equivalence.symm (equivalence₂ eB hF)).functor ≅ G [PROOFSTEP] calc eB.functor ⋙ e'.inverse ⋙ eA.inverse ≅ (eB.functor ⋙ e'.inverse) ⋙ eA.inverse := Iso.refl _ _ ≅ (G ⋙ eA.functor) ⋙ eA.inverse := (isoWhiskerRight hG _) _ ≅ G ⋙ 𝟭 A := (isoWhiskerLeft _ eA.unitIso.symm) _ ≅ G := Functor.rightUnitor G [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{?u.52568, u_1} A inst✝² : Category.{?u.52572, u_2} A' inst✝¹ : Category.{?u.52576, u_3} B inst✝ : Category.{?u.52580, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor ⊢ (G ⋙ eA.functor) ⋙ e'.functor ≅ G ⋙ eA.functor ⋙ e'.functor [PROOFSTEP] rfl [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ⊢ (equivalence hF hG).counitIso = equivalenceCounitIso η [PROOFSTEP] ext1 [GOAL] case w A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ⊢ (equivalence hF hG).counitIso.hom = (equivalenceCounitIso η).hom [PROOFSTEP] apply NatTrans.ext [GOAL] case w.app A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ⊢ (equivalence hF hG).counitIso.hom.app = (equivalenceCounitIso η).hom.app [PROOFSTEP] ext Y [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ NatTrans.app (equivalence hF hG).counitIso.hom Y = NatTrans.app (equivalenceCounitIso η).hom Y [PROOFSTEP] dsimp [equivalence, Functor.asEquivalence, IsEquivalence.ofEquivalence] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ NatTrans.app IsEquivalence.unitIso.inv Y = NatTrans.app (equivalenceCounitIso η).hom Y [PROOFSTEP] rw [equivalenceCounitIso_hom_app, IsEquivalence.ofIso_unitIso_inv_app] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ (IsEquivalence.inverse (equivalence₂ eB hF).inverse).map (NatTrans.app (((Iso.refl (eB.functor ⋙ e'.inverse ⋙ eA.inverse) ≪≫ isoWhiskerRight hG eA.inverse) ≪≫ isoWhiskerLeft G eA.unitIso.symm) ≪≫ Functor.rightUnitor G).inv Y) ≫ NatTrans.app IsEquivalence.unitIso.inv Y = eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y [PROOFSTEP] dsimp [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ eB.inverse.map (F.map (𝟙 (G.obj Y) ≫ NatTrans.app eA.unitIso.hom (G.obj Y) ≫ eA.inverse.map (NatTrans.app hG.inv Y) ≫ 𝟙 (eA.inverse.obj (e'.inverse.obj (eB.functor.obj Y))))) ≫ NatTrans.app (equivalence₂ eB hF).counitIso.hom Y = eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y [PROOFSTEP] simp only [comp_id, id_comp, F.map_comp, assoc, equivalence₂CounitIso_eq, equivalence₂CounitIso_hom_app, ← eB.inverse.map_comp_assoc, ← τ₀_hom_app, hη, τ₁_hom_app] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ eB.inverse.map (F.map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫ F.map (eA.inverse.map (NatTrans.app hG.inv Y)) ≫ NatTrans.app hF.inv (eA.inverse.obj (e'.inverse.obj (eB.functor.obj Y))) ≫ e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫ e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y = eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y [PROOFSTEP] erw [hF.inv.naturality_assoc, hF.inv.naturality_assoc] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ eB.inverse.map (NatTrans.app hF.inv (G.obj Y) ≫ (eA.functor ⋙ e'.functor).map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫ (eA.functor ⋙ e'.functor).map (eA.inverse.map (NatTrans.app hG.inv Y)) ≫ e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫ e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y = eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y [PROOFSTEP] dsimp [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ eB.inverse.map (NatTrans.app hF.inv (G.obj Y) ≫ e'.functor.map (eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y))) ≫ e'.functor.map (eA.functor.map (eA.inverse.map (NatTrans.app hG.inv Y))) ≫ e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫ e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y = eB.inverse.map (NatTrans.app η.hom Y) ≫ NatTrans.app eB.unitIso.inv Y [PROOFSTEP] congr 2 [GOAL] case w.app.h.e_a.e_a A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ NatTrans.app hF.inv (G.obj Y) ≫ e'.functor.map (eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y))) ≫ e'.functor.map (eA.functor.map (eA.inverse.map (NatTrans.app hG.inv Y))) ≫ e'.functor.map (NatTrans.app eA.counitIso.hom (e'.inverse.obj (eB.functor.obj Y))) ≫ e'.functor.map (NatTrans.app hG.hom Y) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y = NatTrans.app η.hom Y [PROOFSTEP] simp only [assoc, ← e'.functor.map_comp_assoc, Equivalence.fun_inv_map, Iso.inv_hom_id_app_assoc, hG.inv_hom_id_app] [GOAL] case w.app.h.e_a.e_a A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ NatTrans.app hF.inv (G.obj Y) ≫ e'.functor.map (eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫ NatTrans.app (Equivalence.counit eA) (eA.functor.obj (G.obj Y)) ≫ 𝟙 ((G ⋙ eA.functor).obj Y)) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y = NatTrans.app η.hom Y [PROOFSTEP] dsimp [GOAL] case w.app.h.e_a.e_a A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_6, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_5, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η Y : B ⊢ NatTrans.app hF.inv (G.obj Y) ≫ e'.functor.map (eA.functor.map (NatTrans.app eA.unitIso.hom (G.obj Y)) ≫ NatTrans.app (Equivalence.counit eA) (eA.functor.obj (G.obj Y)) ≫ 𝟙 (eA.functor.obj (G.obj Y))) ≫ NatTrans.app hF.hom (G.obj Y) ≫ NatTrans.app η.hom Y = NatTrans.app η.hom Y [PROOFSTEP] rw [comp_id, eA.functor_unitIso_comp, e'.functor.map_id, id_comp, hF.inv_hom_id_app_assoc] [GOAL] A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε ⊢ (equivalence hF hG).unitIso = equivalenceUnitIso hG ε [PROOFSTEP] ext1 [GOAL] case w A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε ⊢ (equivalence hF hG).unitIso.hom = (equivalenceUnitIso hG ε).hom [PROOFSTEP] apply NatTrans.ext [GOAL] case w.app A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε ⊢ (equivalence hF hG).unitIso.hom.app = (equivalenceUnitIso hG ε).hom.app [PROOFSTEP] ext X [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε X : A ⊢ NatTrans.app (equivalence hF hG).unitIso.hom X = NatTrans.app (equivalenceUnitIso hG ε).hom X [PROOFSTEP] dsimp [equivalence, Functor.asEquivalence, IsEquivalence.ofEquivalence, IsEquivalence.inverse] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε X : A ⊢ NatTrans.app IsEquivalence.counitIso.inv X = NatTrans.app (equivalenceUnitIso hG ε).hom X [PROOFSTEP] rw [IsEquivalence.ofIso_counitIso_inv_app] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε X : A ⊢ NatTrans.app IsEquivalence.counitIso.inv X ≫ NatTrans.app (((Iso.refl (eB.functor ⋙ e'.inverse ⋙ eA.inverse) ≪≫ isoWhiskerRight hG eA.inverse) ≪≫ isoWhiskerLeft G eA.unitIso.symm) ≪≫ Functor.rightUnitor G).hom ((IsEquivalence.inverse (equivalence₂ eB hF).inverse).obj X) = NatTrans.app (equivalenceUnitIso hG ε).hom X [PROOFSTEP] dsimp [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε X : A ⊢ NatTrans.app (equivalence₂ eB hF).unitIso.hom X ≫ ((𝟙 (eA.inverse.obj (e'.inverse.obj (eB.functor.obj (eB.inverse.obj (F.obj X))))) ≫ eA.inverse.map (NatTrans.app hG.hom (eB.inverse.obj (F.obj X)))) ≫ NatTrans.app eA.unitIso.inv (G.obj (eB.inverse.obj (F.obj X)))) ≫ 𝟙 (G.obj (eB.inverse.obj (F.obj X))) = NatTrans.app (equivalenceUnitIso hG ε).hom X [PROOFSTEP] erw [id_comp, comp_id] [GOAL] case w.app.h A : Type u_1 A' : Type u_2 B : Type u_3 B' : Type u_4 inst✝³ : Category.{u_5, u_1} A inst✝² : Category.{u_7, u_2} A' inst✝¹ : Category.{u_6, u_3} B inst✝ : Category.{u_8, u_4} B' eA : A ≌ A' eB : B ≌ B' e' : A' ≌ B' F : A ⥤ B' hF : eA.functor ⋙ e'.functor ≅ F G : B ⥤ A hG : eB.functor ⋙ e'.inverse ≅ G ⋙ eA.functor η : G ⋙ F ≅ eB.functor hη : τ₀ = τ₁ hF hG η ε : eA.functor ≅ F ⋙ e'.inverse hε : υ hF = ε X : A ⊢ NatTrans.app (equivalence₂ eB hF).unitIso.hom X ≫ eA.inverse.map (NatTrans.app hG.hom (eB.inverse.obj (F.obj X))) ≫ NatTrans.app eA.unitIso.inv (G.obj (eB.inverse.obj (F.obj X))) = NatTrans.app (equivalenceUnitIso hG ε).hom X [PROOFSTEP] simp only [equivalence₂UnitIso_eq eB hF, equivalence₂UnitIso_hom_app, assoc, equivalenceUnitIso_hom_app, ← eA.inverse.map_comp_assoc, ← hε, υ_hom_app]
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Compatibility", "llama_tokens": 14854}
[GOAL] A : Type u_1 inst✝¹ : Category.{?u.183203, u_1} A inst✝ : Abelian A ⊢ SimplicialObject A ≌ ChainComplex A ℕ [PROOFSTEP] let F : SimplicialObject A ⥤ _ := Idempotents.DoldKan.N [GOAL] A : Type u_1 inst✝¹ : Category.{?u.183203, u_1} A inst✝ : Abelian A F : SimplicialObject A ⥤ ChainComplex A ℕ := Idempotents.DoldKan.N ⊢ SimplicialObject A ≌ ChainComplex A ℕ [PROOFSTEP] let hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence [GOAL] A : Type u_1 inst✝¹ : Category.{?u.183203, u_1} A inst✝ : Abelian A F : SimplicialObject A ⥤ ChainComplex A ℕ := Idempotents.DoldKan.N hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence ⊢ SimplicialObject A ≌ ChainComplex A ℕ [PROOFSTEP] letI : IsEquivalence (N : SimplicialObject A ⥤ _) := IsEquivalence.ofIso comparisonN.symm hF [GOAL] A : Type u_1 inst✝¹ : Category.{?u.183203, u_1} A inst✝ : Abelian A F : SimplicialObject A ⥤ ChainComplex A ℕ := Idempotents.DoldKan.N hF : IsEquivalence F := IsEquivalence.ofEquivalence Idempotents.DoldKan.equivalence this : IsEquivalence N := IsEquivalence.ofIso comparisonN.symm hF ⊢ SimplicialObject A ≌ ChainComplex A ℕ [PROOFSTEP] exact N.asEquivalence
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Equivalence", "llama_tokens": 569}
[GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ ⊢ HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] induction' q with q hq [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (Q Nat.zero) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.zero) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] simp only [Nat.zero_eq, Q_zero, HomologicalComplex.zero_f_apply, Nat.not_lt_zero, Finset.filter_False, Finset.sum_empty] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) ⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] by_cases hqn : q + 1 ≤ n + 1 [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 ⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 ⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] swap [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 ⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] rw [Q_is_eventually_constant (show n + 1 ≤ q by linarith), hq] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 ⊢ n + 1 ≤ q [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 ⊢ ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] congr 1 [GOAL] case neg.e_s C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 ⊢ Finset.filter (fun i => ↑i < q) Finset.univ = Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ [PROOFSTEP] ext ⟨x, hx⟩ [GOAL] case neg.e_s.a.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 x : ℕ hx : x < n + 1 ⊢ { val := x, isLt := hx } ∈ Finset.filter (fun i => ↑i < q) Finset.univ ↔ { val := x, isLt := hx } ∈ Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ [PROOFSTEP] simp only [Nat.succ_eq_add_one, Finset.mem_filter, Finset.mem_univ, true_and] [GOAL] case neg.e_s.a.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 x : ℕ hx : x < n + 1 ⊢ x < q ↔ x < q + 1 [PROOFSTEP] constructor [GOAL] case neg.e_s.a.mk.mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 x : ℕ hx : x < n + 1 ⊢ x < q → x < q + 1 [PROOFSTEP] intro [GOAL] case neg.e_s.a.mk.mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 x : ℕ hx : x < n + 1 ⊢ x < q + 1 → x < q [PROOFSTEP] intro [GOAL] case neg.e_s.a.mk.mp C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 x : ℕ hx : x < n + 1 a✝ : x < q ⊢ x < q + 1 [PROOFSTEP] linarith [GOAL] case neg.e_s.a.mk.mpr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : ¬q + 1 ≤ n + 1 x : ℕ hx : x < n + 1 a✝ : x < q + 1 ⊢ x < q [PROOFSTEP] linarith [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 ⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] cases' Nat.le.dest (Nat.succ_le_succ_iff.mp hqn) with a ha [GOAL] case pos.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n ⊢ HomologicalComplex.Hom.f (Q (Nat.succ q)) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] rw [Q_succ, HomologicalComplex.sub_f_apply, HomologicalComplex.comp_f, hq] [GOAL] case pos.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n ⊢ ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) - HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] symm [GOAL] case pos.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n ⊢ ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) - HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) [PROOFSTEP] conv_rhs => rw [sub_eq_add_neg, add_comm] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n | ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) - HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) [PROOFSTEP] rw [sub_eq_add_neg, add_comm] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n | ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) - HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) [PROOFSTEP] rw [sub_eq_add_neg, add_comm] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n | ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) - HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) [PROOFSTEP] rw [sub_eq_add_neg, add_comm] [GOAL] case pos.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n ⊢ ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) = -HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) + ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] let q' : Fin (n + 1) := ⟨q, Nat.succ_le_iff.mp hqn⟩ [GOAL] case pos.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } ⊢ ∑ i in Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) = -HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) + ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] rw [← @Finset.add_sum_erase _ _ _ _ _ _ q' (by simp)] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } ⊢ q' ∈ Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ [PROOFSTEP] simp [GOAL] case pos.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } ⊢ HomologicalComplex.Hom.f (P ↑q') (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm q')) ≫ SimplicialObject.σ X (↑Fin.revPerm q') + ∑ x in Finset.erase (Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ) q', HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ SimplicialObject.σ X (↑Fin.revPerm x) = -HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) + ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] congr [GOAL] case pos.intro.e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } ⊢ HomologicalComplex.Hom.f (P ↑q') (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm q')) ≫ SimplicialObject.σ X (↑Fin.revPerm q') = -HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) [PROOFSTEP] have hnaq' : n = a + q := by linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } ⊢ n = a + q [PROOFSTEP] linarith [GOAL] case pos.intro.e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } hnaq' : n = a + q ⊢ HomologicalComplex.Hom.f (P ↑q') (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm q')) ≫ SimplicialObject.σ X (↑Fin.revPerm q') = -HomologicalComplex.Hom.f (P q) (n + 1) ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) [PROOFSTEP] simp only [Fin.val_mk, (HigherFacesVanish.of_P q n).comp_Hσ_eq hnaq', q'.revPerm_eq hnaq', neg_neg] [GOAL] case pos.intro.e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } hnaq' : n = a + q ⊢ HomologicalComplex.Hom.f (P q) (n + 1) ≫ SimplicialObject.δ X (Fin.succ { val := a, isLt := (_ : a < Nat.succ n) }) ≫ SimplicialObject.σ X { val := a, isLt := (_ : a < Nat.succ n) } = HomologicalComplex.Hom.f (P q) (n + 1) ≫ SimplicialObject.δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ SimplicialObject.σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rfl [GOAL] case pos.intro.e_a.e_s C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } ⊢ Finset.erase (Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ) q' = Finset.filter (fun i => ↑i < q) Finset.univ [PROOFSTEP] ext ⟨i, hi⟩ [GOAL] case pos.intro.e_a.e_s.a.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } i : ℕ hi : i < n + 1 ⊢ { val := i, isLt := hi } ∈ Finset.erase (Finset.filter (fun i => ↑i < Nat.succ q) Finset.univ) q' ↔ { val := i, isLt := hi } ∈ Finset.filter (fun i => ↑i < q) Finset.univ [PROOFSTEP] simp only [Nat.succ_eq_add_one, Nat.lt_succ_iff_lt_or_eq, Finset.mem_univ, forall_true_left, Finset.mem_filter, lt_self_iff_false, or_true, and_self, not_true, Finset.mem_erase, ne_eq, Fin.mk.injEq, true_and] [GOAL] case pos.intro.e_a.e_s.a.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n q : ℕ hq : HomologicalComplex.Hom.f (Q q) (n + 1) = ∑ i in Finset.filter (fun i => ↑i < q) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) hqn : q + 1 ≤ n + 1 a : ℕ ha : q + a = n q' : Fin (n + 1) := { val := q, isLt := (_ : q < n + 1) } i : ℕ hi : i < n + 1 ⊢ ¬i = q ∧ (i < q ∨ i = q) ↔ i < q [PROOFSTEP] aesop [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ φ (id X n) = 𝟙 (X.obj (op [n + 1])) [PROOFSTEP] simp only [← P_add_Q_f (n + 1) (n + 1), φ] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ (id X n).a + ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b (id X n) (↑Fin.revPerm x) = HomologicalComplex.Hom.f (P (n + 1)) (n + 1) + HomologicalComplex.Hom.f (Q (n + 1)) (n + 1) [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ (id X n).a = HomologicalComplex.Hom.f (P (n + 1)) (n + 1) [PROOFSTEP] simp only [id, PInfty_f, P_f_idem] [GOAL] case e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b (id X n) (↑Fin.revPerm x) = HomologicalComplex.Hom.f (Q (n + 1)) (n + 1) [PROOFSTEP] exact Eq.trans (by congr; simp) (decomposition_Q n (n + 1)).symm [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b (id X n) (↑Fin.revPerm x) = ∑ i in Finset.filter (fun i => ↑i < n + 1) Finset.univ, HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i) [PROOFSTEP] congr [GOAL] case e_s C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ Finset.univ = Finset.filter (fun i => ↑i < n + 1) Finset.univ [PROOFSTEP] simp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ φ (postComp f h) = φ f ≫ h [PROOFSTEP] unfold φ postComp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ { a := f.a ≫ h, b := fun i => b f i ≫ h }.a + ∑ i : Fin (n + 1), HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ b { a := f.a ≫ h, b := fun i => b f i ≫ h } (↑Fin.revPerm i) = (HomologicalComplex.Hom.f PInfty (n + 1) ≫ f.a + ∑ i : Fin (n + 1), HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ b f (↑Fin.revPerm i)) ≫ h [PROOFSTEP] simp only [add_comp, sum_comp, assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ φ (preComp f g) = NatTrans.app g (op [n + 1]) ≫ φ f [PROOFSTEP] unfold φ preComp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ { a := NatTrans.app g (op [n + 1]) ≫ f.a, b := fun i => NatTrans.app g (op [n]) ≫ b f i }.a + ∑ i : Fin (n + 1), HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X' (Fin.succ (↑Fin.revPerm i)) ≫ b { a := NatTrans.app g (op [n + 1]) ≫ f.a, b := fun i => NatTrans.app g (op [n]) ≫ b f i } (↑Fin.revPerm i) = NatTrans.app g (op [n + 1]) ≫ (HomologicalComplex.Hom.f PInfty (n + 1) ≫ f.a + ∑ i : Fin (n + 1), HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ b f (↑Fin.revPerm i)) [PROOFSTEP] simp only [PInfty_f, comp_add] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ NatTrans.app g (op [n + 1]) ≫ f.a + ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X' (Fin.succ (↑Fin.revPerm x)) ≫ NatTrans.app g (op [n]) ≫ b f (↑Fin.revPerm x) = NatTrans.app g (op [n + 1]) ≫ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ f.a + NatTrans.app g (op [n + 1]) ≫ ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b f (↑Fin.revPerm x) [PROOFSTEP] congr 1 [GOAL] case e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ NatTrans.app g (op [n + 1]) ≫ f.a = NatTrans.app g (op [n + 1]) ≫ HomologicalComplex.Hom.f (P (n + 1)) (n + 1) ≫ f.a [PROOFSTEP] simp only [P_f_naturality_assoc] [GOAL] case e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X X' : SimplicialObject C n : ℕ Z Z' : C f : MorphComponents X n Z g : X' ⟶ X h : Z ⟶ Z' ⊢ ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X' (Fin.succ (↑Fin.revPerm x)) ≫ NatTrans.app g (op [n]) ≫ b f (↑Fin.revPerm x) = NatTrans.app g (op [n + 1]) ≫ ∑ x : Fin (n + 1), HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ b f (↑Fin.revPerm x) [PROOFSTEP] simp only [comp_sum, P_f_naturality_assoc, SimplicialObject.δ_naturality_assoc]
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Decomposition", "llama_tokens": 14271}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.725, u_1} C inst✝ : Preadditive C X : SimplicialObject C j : ℕ ⊢ ¬ComplexShape.Rel c 0 j [PROOFSTEP] intro hj [GOAL] C : Type u_1 inst✝¹ : Category.{?u.725, u_1} C inst✝ : Preadditive C X : SimplicialObject C j : ℕ hj : ComplexShape.Rel c 0 j ⊢ False [PROOFSTEP] dsimp at hj [GOAL] C : Type u_1 inst✝¹ : Category.{?u.725, u_1} C inst✝ : Preadditive C X : SimplicialObject C j : ℕ hj : j + 1 = 0 ⊢ False [PROOFSTEP] apply Nat.not_succ_le_zero j [GOAL] C : Type u_1 inst✝¹ : Category.{?u.725, u_1} C inst✝ : Preadditive C X : SimplicialObject C j : ℕ hj : j + 1 = 0 ⊢ Nat.succ j ≤ 0 [PROOFSTEP] rw [Nat.succ_eq_add_one, hj] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.35594, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n ⊢ X.obj (op [n + 1]) = HomologicalComplex.X K[X] m [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n m : ℕ hnq : n < q hnm : ComplexShape.Rel c m n ⊢ hσ' q n m hnm = 0 [PROOFSTEP] simp only [hσ', hσ] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n m : ℕ hnq : n < q hnm : ComplexShape.Rel c m n ⊢ (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = 0 [PROOFSTEP] split_ifs [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n m : ℕ hnq : n < q hnm : ComplexShape.Rel c m n ⊢ 0 ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = 0 [PROOFSTEP] exact zero_comp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.71579, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n ⊢ X.obj (op [n + 1]) = HomologicalComplex.X K[X] m [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n ⊢ hσ' q n m hnm = ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) [PROOFSTEP] simp only [hσ', hσ] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n ⊢ (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) [PROOFSTEP] split_ifs [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n h✝ : n < q ⊢ 0 ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) [PROOFSTEP] exfalso [GOAL] case pos.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n h✝ : n < q ⊢ False [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n h✝ : ¬n < q ⊢ ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) [PROOFSTEP] have h' := tsub_eq_of_eq_add ha [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a m : ℕ ha : n = a + q hnm : ComplexShape.Rel c m n h✝ : ¬n < q h' : n - q = a ⊢ ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) = ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m])) [PROOFSTEP] congr [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n a : ℕ ha : n = a + q ⊢ hσ' q n (n + 1) (_ : n + 1 = n + 1) = (-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [hσ'_eq ha rfl, eqToHom_refl, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ HomologicalComplex.Hom.f (Hσ q) 0 = 0 [PROOFSTEP] unfold Hσ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) 0 = 0 [PROOFSTEP] rw [nullHomotopicMap'_f_of_not_rel_left (c_mk 1 0 rfl) cs_down_0_not_rel_left] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ hσ' q 0 1 (_ : ComplexShape.Rel c 1 0) ≫ HomologicalComplex.d K[X] 1 0 = 0 [PROOFSTEP] rcases q with (_ | q) [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ hσ' Nat.zero 0 1 (_ : ComplexShape.Rel c 1 0) ≫ HomologicalComplex.d K[X] 1 0 = 0 [PROOFSTEP] rw [hσ'_eq (show 0 = 0 + 0 by rfl) (c_mk 1 0 rfl)] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ 0 = 0 + 0 [PROOFSTEP] rfl [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ (((-1) ^ 0 • σ X { val := 0, isLt := (_ : 0 < Nat.succ 0) }) ≫ eqToHom (_ : X.obj (op [0 + 1]) = X.obj (op [1]))) ≫ HomologicalComplex.d K[X] 1 0 = 0 [PROOFSTEP] simp only [pow_zero, Fin.mk_zero, one_zsmul, eqToHom_refl, Category.comp_id] [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ σ X 0 ≫ HomologicalComplex.d K[X] 1 0 = 0 [PROOFSTEP] erw [ChainComplex.of_d] [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ σ X 0 ≫ AlternatingFaceMapComplex.objD X 0 = 0 [PROOFSTEP] rw [AlternatingFaceMapComplex.objD, Fin.sum_univ_two, Fin.val_zero, Fin.val_one, pow_zero, pow_one, one_smul, neg_smul, one_smul, comp_add, comp_neg, add_neg_eq_zero] [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ σ X 0 ≫ δ X 0 = σ X 0 ≫ δ X 1 [PROOFSTEP] erw [δ_comp_σ_self, δ_comp_σ_succ] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ hσ' (Nat.succ q) 0 1 (_ : ComplexShape.Rel c 1 0) ≫ HomologicalComplex.d K[X] 1 0 = 0 [PROOFSTEP] rw [hσ'_eq_zero (Nat.succ_pos q) (c_mk 1 0 rfl), zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n X Y : SimplicialObject C f : X ⟶ Y ⊢ NatTrans.app f (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ NatTrans.app f (op [m]) [PROOFSTEP] have h : n + 1 = m := hnm [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n X Y : SimplicialObject C f : X ⟶ Y h : n + 1 = m ⊢ NatTrans.app f (op [n]) ≫ hσ' q n m hnm = hσ' q n m hnm ≫ NatTrans.app f (op [m]) [PROOFSTEP] subst h [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ NatTrans.app f (op [n]) ≫ hσ' q n (n + 1) hnm = hσ' q n (n + 1) hnm ≫ NatTrans.app f (op [n + 1]) [PROOFSTEP] simp only [hσ', eqToHom_refl, comp_id] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ NatTrans.app f (op [n]) ≫ hσ q n = hσ q n ≫ NatTrans.app f (op [n + 1]) [PROOFSTEP] unfold hσ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n ⊢ (NatTrans.app f (op [n]) ≫ if n < q then 0 else (-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) = (if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ NatTrans.app f (op [n + 1]) [PROOFSTEP] split_ifs [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : n < q ⊢ NatTrans.app f (op [n]) ≫ 0 = 0 ≫ NatTrans.app f (op [n + 1]) [PROOFSTEP] rw [zero_comp, comp_zero] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ NatTrans.app f (op [n]) ≫ ((-1) ^ (n - q) • σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) }) = ((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ NatTrans.app f (op [n + 1]) [PROOFSTEP] simp only [zsmul_comp, comp_zsmul] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ (-1) ^ (n - q) • NatTrans.app f (op [n]) ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } = (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) } ≫ NatTrans.app f (op [n + 1]) [PROOFSTEP] erw [f.naturality] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X✝ : SimplicialObject C q n : ℕ X Y : SimplicialObject C f : X ⟶ Y hnm : ComplexShape.Rel c (n + 1) n h✝ : ¬n < q ⊢ (-1) ^ (n - q) • NatTrans.app f (op [n]) ≫ σ Y { val := n - q, isLt := (_ : n - q < Nat.succ n) } = (-1) ^ (n - q) • NatTrans.app f (op [n]) ≫ Y.map (SimplexCategory.σ { val := n - q, isLt := (_ : n - q < Nat.succ n) }).op [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝¹ : Category.{?u.259122, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => Hσ q) x✝ = (fun X => Hσ q) x✝¹ ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] unfold Hσ [GOAL] C : Type u_1 inst✝¹ : Category.{?u.259122, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ (alternatingFaceMapComplex C).map f ≫ (fun X => nullHomotopicMap' (hσ' q)) x✝ = (fun X => nullHomotopicMap' (hσ' q)) x✝¹ ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] rw [nullHomotopicMap'_comp, comp_nullHomotopicMap'] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.259122, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ (nullHomotopicMap' fun i j hij => HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) i ≫ hσ' q i j hij) = nullHomotopicMap' fun i j hij => hσ' q i j hij ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) j [PROOFSTEP] congr [GOAL] case e_h C : Type u_1 inst✝¹ : Category.{?u.259122, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ ⊢ (fun i j hij => HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) i ≫ hσ' q i j hij) = fun i j hij => hσ' q i j hij ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) j [PROOFSTEP] ext n m hnm [GOAL] case e_h.h.h.h C : Type u_1 inst✝¹ : Category.{?u.259122, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ x✝¹ x✝ : SimplicialObject C f : x✝¹ ⟶ x✝ n m : ℕ hnm : ComplexShape.Rel (ComplexShape.down ℕ) m n ⊢ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) n ≫ hσ' q n m hnm = hσ' q n m hnm ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f) m [PROOFSTEP] simp only [alternatingFaceMapComplex_map_f, hσ'_naturality] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n ⊢ hσ' q n m hnm = G.map (hσ' q n m hnm) [PROOFSTEP] unfold hσ' hσ [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n ⊢ (if n < q then 0 else (-1) ^ (n - q) • σ (((whiskering C D).obj G).obj X) { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) = G.map ((if n < q then 0 else (-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))) [PROOFSTEP] split_ifs [GOAL] case pos C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n h✝ : n < q ⊢ 0 ≫ eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) = G.map (0 ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))) [PROOFSTEP] simp only [Functor.map_zero, zero_comp] [GOAL] case neg C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n h✝ : ¬n < q ⊢ ((-1) ^ (n - q) • σ (((whiskering C D).obj G).obj X) { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) = G.map (((-1) ^ (n - q) • σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : X.obj (op [n + 1]) = X.obj (op [m]))) [PROOFSTEP] simp only [eqToHom_map, Functor.map_comp, Functor.map_zsmul] [GOAL] case neg C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n m : ℕ hnm : ComplexShape.Rel c m n h✝ : ¬n < q ⊢ ((-1) ^ (n - q) • σ (((whiskering C D).obj G).obj X) { val := n - q, isLt := (_ : n - q < Nat.succ n) }) ≫ eqToHom (_ : (((whiskering C D).obj G).obj X).obj (op [n + 1]) = (((whiskering C D).obj G).obj X).obj (op [m])) = ((-1) ^ (n - q) • G.map (σ X { val := n - q, isLt := (_ : n - q < Nat.succ n) })) ≫ eqToHom (_ : G.obj (X.obj (op [n + 1])) = G.obj (HomologicalComplex.X K[X] m)) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ ⊢ HomologicalComplex.Hom.f (Hσ q) n = G.map (HomologicalComplex.Hom.f (Hσ q) n) [PROOFSTEP] unfold Hσ [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ ⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n = G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) [PROOFSTEP] have eq := HomologicalComplex.congr_hom (map_nullHomotopicMap' G (@hσ' _ _ _ X q)) n [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ eq : HomologicalComplex.Hom.f ((Functor.mapHomologicalComplex G c).map (nullHomotopicMap' (hσ' q))) n = HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => G.map (hσ' q i j hij)) n ⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n = G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) [PROOFSTEP] simp only [Functor.mapHomologicalComplex_map_f, ← map_hσ'] at eq [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ eq : G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) = HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n ⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n = G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) [PROOFSTEP] rw [eq] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ eq : G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) = HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n ⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n = HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n [PROOFSTEP] let h := (Functor.congr_obj (map_alternatingFaceMapComplex G) X).symm [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C q n : ℕ eq : G.map (HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n) = HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n h : ((whiskering C D).obj G ⋙ alternatingFaceMapComplex D).obj X = (alternatingFaceMapComplex C ⋙ Functor.mapHomologicalComplex G (ComplexShape.down ℕ)).obj X := Eq.symm (Functor.congr_obj (map_alternatingFaceMapComplex G) X) ⊢ HomologicalComplex.Hom.f (nullHomotopicMap' (hσ' q)) n = HomologicalComplex.Hom.f (nullHomotopicMap' fun i j hij => hσ' q i j hij) n [PROOFSTEP] congr
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Homotopies", "llama_tokens": 9332}
[GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ ∀ (i j : ℕ), ComplexShape.Rel (ComplexShape.down ℕ) i j → ((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) i).hom ≫ HomologicalComplex.d K i j = HomologicalComplex.d (Splitting.nondegComplex (Γ₀.splitting K)) i j ≫ ((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) j).hom [PROOFSTEP] rintro _ n (rfl : n + 1 = _) [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ ((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) (n + 1)).hom ≫ HomologicalComplex.d K (n + 1) n = HomologicalComplex.d (Splitting.nondegComplex (Γ₀.splitting K)) (n + 1) n ≫ ((fun n => Iso.refl (HomologicalComplex.X (Splitting.nondegComplex (Γ₀.splitting K)) n)) n).hom [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ 𝟙 (Splitting.N (Γ₀.splitting K) (n + 1)) ≫ HomologicalComplex.d K (n + 1) n = (Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj (Γ₀.obj K)) (n + 1) n ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n]))) ≫ 𝟙 (Splitting.N (Γ₀.splitting K) n) [PROOFSTEP] simp only [id_comp, comp_id, AlternatingFaceMapComplex.obj_d_eq, Preadditive.sum_comp, Preadditive.comp_sum] [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.d K (n + 1) n = Finset.sum Finset.univ fun j => Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ ((-1) ^ ↑j • δ (Γ₀.obj K) j) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] rw [Fintype.sum_eq_single (0 : Fin (n + 2))] [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.d K (n + 1) n = Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ ((-1) ^ ↑0 • δ (Γ₀.obj K) 0) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] simp only [Fin.val_zero, pow_zero, one_zsmul] [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.d K (n + 1) n = Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ δ (Γ₀.obj K) 0 ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] erw [Γ₀.Obj.mapMono_on_summand_id_assoc, Γ₀.Obj.Termwise.mapMono_δ₀, Splitting.ι_πSummand_eq_id, comp_id] [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ ∀ (x : Fin (n + 2)), x ≠ 0 → Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ ((-1) ^ ↑x • δ (Γ₀.obj K) x) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) = 0 [PROOFSTEP] intro i hi [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ ((-1) ^ ↑i • δ (Γ₀.obj K) i) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) = 0 [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ ((-1) ^ ↑i • δ (Γ₀.obj K) i) ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) = 0 [PROOFSTEP] simp only [Preadditive.zsmul_comp, Preadditive.comp_zsmul, assoc] [GOAL] C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 ⊢ (-1) ^ ↑i • Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ δ (Γ₀.obj K) i ≫ Splitting.πSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) = 0 [PROOFSTEP] erw [Γ₀.Obj.mapMono_on_summand_id_assoc, Γ₀.Obj.Termwise.mapMono_eq_zero, zero_comp, zsmul_zero] [GOAL] case h₁ C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 ⊢ [n + 1] ≠ [n] [PROOFSTEP] intro h [GOAL] case h₁ C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 h : [n + 1] = [n] ⊢ False [PROOFSTEP] replace h := congr_arg SimplexCategory.len h [GOAL] case h₁ C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 h : SimplexCategory.len [n + 1] = SimplexCategory.len [n] ⊢ False [PROOFSTEP] change n + 1 = n at h [GOAL] case h₁ C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 h : n + 1 = n ⊢ False [PROOFSTEP] linarith [GOAL] case h₂ C : Type u_1 inst✝² : Category.{?u.42, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ i : Fin (n + 2) hi : i ≠ 0 ⊢ ¬Isδ₀ (SimplexCategory.δ i) [PROOFSTEP] simpa only [Isδ₀.iff] using hi [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ N₁Γ₀.app K = (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫ (toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K) [PROOFSTEP] ext1 [GOAL] case w C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ (N₁Γ₀.app K).hom = ((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫ (toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)).hom [PROOFSTEP] dsimp [N₁Γ₀] [GOAL] case w C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ (((Karoubi.Hom.mk PInfty ≫ NatTrans.app Split.toKaroubiNondegComplexFunctorIsoN₁.inv (Split.mk' (Γ₀.splitting K))) ≫ Karoubi.Hom.mk (𝟙 (Splitting.nondegComplex (Γ₀.splitting K)))) ≫ (toKaroubi (ChainComplex C ℕ)).map (NatTrans.app Γ₀'CompNondegComplexFunctor.hom K)) ≫ Karoubi.Hom.mk (𝟙 K) = (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom [PROOFSTEP] erw [id_comp, comp_id, comp_id] [GOAL] case w C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ NatTrans.app Split.toKaroubiNondegComplexFunctorIsoN₁.inv (Split.mk' (Γ₀.splitting K)) ≫ (toKaroubi (ChainComplex C ℕ)).map (NatTrans.app Γ₀'CompNondegComplexFunctor.hom K) = (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ NatTrans.app N₁Γ₀.hom K = (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom [PROOFSTEP] change (N₁Γ₀.app K).hom = _ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ (N₁Γ₀.app K).hom = (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom [PROOFSTEP] simp only [N₁Γ₀_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ ((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫ (toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)).hom = (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ NatTrans.app N₁Γ₀.inv K = (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫ (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom [PROOFSTEP] change (N₁Γ₀.app K).inv = _ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ (N₁Γ₀.app K).inv = (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫ (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom [PROOFSTEP] simp only [N₁Γ₀_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ ((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).symm ≪≫ (toKaroubi (ChainComplex C ℕ)).mapIso (Γ₀NondegComplexIso K)).inv = (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫ (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.Hom.f (NatTrans.app N₁Γ₀.hom K).f n = HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv.f n [PROOFSTEP] rw [N₁Γ₀_hom_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.Hom.f ((Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv ≫ (toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).hom).f n = HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).inv.f n [PROOFSTEP] apply comp_id [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.Hom.f (NatTrans.app N₁Γ₀.inv K).f n = HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom.f n [PROOFSTEP] rw [N₁Γ₀_inv_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HomologicalComplex.Hom.f ((toKaroubi (ChainComplex C ℕ)).map (Γ₀NondegComplexIso K).inv ≫ (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom).f n = HomologicalComplex.Hom.f (Splitting.toKaroubiNondegComplexIsoN₁ (Γ₀.splitting K)).hom.f n [PROOFSTEP] apply id_comp [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁ [PROOFSTEP] have h := Functor.congr_obj (functorExtension₂_comp_whiskeringLeft_toKaroubi (ChainComplex C ℕ) (SimplicialObject C)) Γ₀ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C h : (functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C) ⋙ (whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (SimplicialObject C))).obj (toKaroubi (ChainComplex C ℕ))).obj Γ₀ = ((whiskeringRight (ChainComplex C ℕ) (SimplicialObject C) (Karoubi (SimplicialObject C))).obj (toKaroubi (SimplicialObject C))).obj Γ₀ ⊢ toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁ [PROOFSTEP] have h' := Functor.congr_obj (functorExtension₁_comp_whiskeringLeft_toKaroubi (SimplicialObject C) (ChainComplex C ℕ)) N₁ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C h : (functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C) ⋙ (whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (SimplicialObject C))).obj (toKaroubi (ChainComplex C ℕ))).obj Γ₀ = ((whiskeringRight (ChainComplex C ℕ) (SimplicialObject C) (Karoubi (SimplicialObject C))).obj (toKaroubi (SimplicialObject C))).obj Γ₀ h' : (functorExtension₁ (SimplicialObject C) (ChainComplex C ℕ) ⋙ (whiskeringLeft (SimplicialObject C) (Karoubi (SimplicialObject C)) (Karoubi (ChainComplex C ℕ))).obj (toKaroubi (SimplicialObject C))).obj N₁ = (𝟭 (SimplicialObject C ⥤ Karoubi (ChainComplex C ℕ))).obj N₁ ⊢ toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ = Γ₀ ⋙ N₁ [PROOFSTEP] dsimp [N₂, Γ₂, functorExtension₁] at h h' ⊢ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C h : toKaroubi (ChainComplex C ℕ) ⋙ (functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C)).obj Γ₀ = Γ₀ ⋙ toKaroubi (SimplicialObject C) h' : toKaroubi (SimplicialObject C) ⋙ FunctorExtension₁.obj N₁ = N₁ ⊢ toKaroubi (ChainComplex C ℕ) ⋙ (functorExtension₂ (ChainComplex C ℕ) (SimplicialObject C)).obj Γ₀ ⋙ FunctorExtension₁.obj N₁ = Γ₀ ⋙ N₁ [PROOFSTEP] rw [← Functor.assoc, h, Functor.assoc, h'] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X : Karoubi (ChainComplex C ℕ) n : ℕ ⊢ HomologicalComplex.Hom.f (NatTrans.app N₂Γ₂.inv X).f n = HomologicalComplex.Hom.f X.p n ≫ Splitting.ιSummand (Γ₀.splitting X.X) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] simp only [N₂Γ₂, Functor.preimageIso, Iso.trans, whiskeringLeft_obj_preimage_app, N₂Γ₂ToKaroubiIso_inv, assoc, Functor.id_map, NatTrans.comp_app, eqToHom_app, Karoubi.comp_f, Karoubi.eqToHom_f, Karoubi.decompId_p_f, HomologicalComplex.comp_f, N₁Γ₀_inv_app_f_f, Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, Functor.comp_map, Functor.comp_obj, Karoubi.decompId_i_f, eqToHom_refl, comp_id, N₂_map_f_f, Γ₂_map_f_app, N₁_obj_p, PInfty_on_Γ₀_splitting_summand_eq_self_assoc, toKaroubi_obj_X, Splitting.ι_desc, Splitting.IndexSet.id_fst, SimplexCategory.len_mk, unop_op, Karoubi.HomologicalComplex.p_idem_assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C ⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom [PROOFSTEP] let e : _ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 _ := N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C e : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 (Karoubi (ChainComplex C ℕ)) := N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀ ⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom [PROOFSTEP] have h := ((whiskeringLeft _ _ (Karoubi (ChainComplex C ℕ))).obj (toKaroubi (ChainComplex C ℕ))).image_preimage e.hom [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C e : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 (Karoubi (ChainComplex C ℕ)) := N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀ h : ((whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (ChainComplex C ℕ))).obj (toKaroubi (ChainComplex C ℕ))).map (((whiskeringLeft (ChainComplex C ℕ) (Karoubi (ChainComplex C ℕ)) (Karoubi (ChainComplex C ℕ))).obj (toKaroubi (ChainComplex C ℕ))).preimage e.hom) = e.hom ⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) N₂Γ₂.hom = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom [PROOFSTEP] dsimp only [whiskeringLeft, N₂Γ₂, Functor.preimageIso] at h ⊢ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C e : toKaroubi (ChainComplex C ℕ) ⋙ Γ₂ ⋙ N₂ ≅ toKaroubi (ChainComplex C ℕ) ⋙ 𝟭 (Karoubi (ChainComplex C ℕ)) := N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀ h : whiskerLeft (toKaroubi (ChainComplex C ℕ)) ((CategoryTheory.Functor.mk { obj := fun G => toKaroubi (ChainComplex C ℕ) ⋙ G, map := fun {X Y} α => whiskerLeft (toKaroubi (ChainComplex C ℕ)) α }).preimage (N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀).hom) = (N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀).hom ⊢ whiskerLeft (toKaroubi (ChainComplex C ℕ)) ((CategoryTheory.Functor.mk { obj := fun G => toKaroubi (ChainComplex C ℕ) ⋙ G, map := fun {X Y} α => whiskerLeft (toKaroubi (ChainComplex C ℕ)) α }).preimage (N₂Γ₂ToKaroubiIso ≪≫ N₁Γ₀).hom) = N₂Γ₂ToKaroubiIso.hom ≫ N₁Γ₀.hom [PROOFSTEP] exact h
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.GammaCompN", "llama_tokens": 8245}
[GOAL] d x y x' y' : ℤ h : { re := x, im := y } = { re := x', im := y' } ⊢ { re := x, im := y }.re = { re := x', im := y' }.re ∧ { re := x, im := y }.im = { re := x', im := y' }.im [PROOFSTEP] injection h [GOAL] d x y x' y' : ℤ re_eq✝ : x = x' im_eq✝ : y = y' ⊢ { re := x, im := y }.re = { re := x', im := y' }.re ∧ { re := x, im := y }.im = { re := x', im := y' }.im [PROOFSTEP] constructor [GOAL] case left d x y x' y' : ℤ re_eq✝ : x = x' im_eq✝ : y = y' ⊢ { re := x, im := y }.re = { re := x', im := y' }.re [PROOFSTEP] assumption [GOAL] case right d x y x' y' : ℤ re_eq✝ : x = x' im_eq✝ : y = y' ⊢ { re := x, im := y }.im = { re := x', im := y' }.im [PROOFSTEP] assumption [GOAL] d x y x' y' : ℤ x✝ : { re := x, im := y }.re = { re := x', im := y' }.re ∧ { re := x, im := y }.im = { re := x', im := y' }.im h₁ : { re := x, im := y }.re = { re := x', im := y' }.re h₂ : { re := x, im := y }.im = { re := x', im := y' }.im ⊢ { re := x, im := y } = { re := x', im := y' } [PROOFSTEP] congr [GOAL] d : ℤ z : ℤ√d ⊢ (bit1 z).im = bit0 z.im [PROOFSTEP] simp [bit1] [GOAL] d : ℤ ⊢ AddCommGroup (ℤ√d) [PROOFSTEP] refine { add := (· + ·) zero := (0 : ℤ√d) sub := fun a b => a + -b neg := Neg.neg zsmul := @zsmulRec (ℤ√d) ⟨0⟩ ⟨(· + ·)⟩ ⟨Neg.neg⟩ nsmul := @nsmulRec (ℤ√d) ⟨0⟩ ⟨(· + ·)⟩ add_assoc := ?_ zero_add := ?_ add_zero := ?_ add_left_neg := ?_ add_comm := ?_ } [GOAL] case refine_1 d : ℤ ⊢ ∀ (a b c : ℤ√d), a + b + c = a + (b + c) [PROOFSTEP] intros [GOAL] case refine_2 d : ℤ ⊢ ∀ (a : ℤ√d), 0 + a = a [PROOFSTEP] intros [GOAL] case refine_3 d : ℤ ⊢ ∀ (a : ℤ√d), a + 0 = a [PROOFSTEP] intros [GOAL] case refine_4 d : ℤ ⊢ ∀ (a : ℤ√d), -a + a = 0 [PROOFSTEP] intros [GOAL] case refine_5 d : ℤ ⊢ ∀ (a b : ℤ√d), a + b = b + a [PROOFSTEP] intros [GOAL] case refine_1 d : ℤ a✝ b✝ c✝ : ℤ√d ⊢ a✝ + b✝ + c✝ = a✝ + (b✝ + c✝) [PROOFSTEP] simp [ext, add_comm, add_left_comm] [GOAL] case refine_2 d : ℤ a✝ : ℤ√d ⊢ 0 + a✝ = a✝ [PROOFSTEP] simp [ext, add_comm, add_left_comm] [GOAL] case refine_3 d : ℤ a✝ : ℤ√d ⊢ a✝ + 0 = a✝ [PROOFSTEP] simp [ext, add_comm, add_left_comm] [GOAL] case refine_4 d : ℤ a✝ : ℤ√d ⊢ -a✝ + a✝ = 0 [PROOFSTEP] simp [ext, add_comm, add_left_comm] [GOAL] case refine_5 d : ℤ a✝ b✝ : ℤ√d ⊢ a✝ + b✝ = b✝ + a✝ [PROOFSTEP] simp [ext, add_comm, add_left_comm] [GOAL] d : ℤ ⊢ CommRing (ℤ√d) [PROOFSTEP] refine { Zsqrtd.addGroupWithOne with add := (· + ·) zero := (0 : ℤ√d) mul := (· * ·) one := 1 npow := @npowRec (ℤ√d) ⟨1⟩ ⟨(· * ·)⟩, add_comm := ?_ left_distrib := ?_ right_distrib := ?_ zero_mul := ?_ mul_zero := ?_ mul_assoc := ?_ one_mul := ?_ mul_one := ?_ mul_comm := ?_ } [GOAL] case refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a b : ℤ√d), a + b = b + a [PROOFSTEP] intros [GOAL] case refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a b c : ℤ√d), a * (b + c) = a * b + a * c [PROOFSTEP] intros [GOAL] case refine_3 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a b c : ℤ√d), (a + b) * c = a * c + b * c [PROOFSTEP] intros [GOAL] case refine_4 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a : ℤ√d), 0 * a = 0 [PROOFSTEP] intros [GOAL] case refine_5 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a : ℤ√d), a * 0 = 0 [PROOFSTEP] intros [GOAL] case refine_6 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a b c : ℤ√d), a * b * c = a * (b * c) [PROOFSTEP] intros [GOAL] case refine_7 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a : ℤ√d), 1 * a = a [PROOFSTEP] intros [GOAL] case refine_8 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a : ℤ√d), a * 1 = a [PROOFSTEP] intros [GOAL] case refine_9 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne ⊢ ∀ (a b : ℤ√d), a * b = b * a [PROOFSTEP] intros [GOAL] case refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ a✝ + b✝ = b✝ + a✝ [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ a✝ * (b✝ + c✝) = a✝ * b✝ + a✝ * c✝ [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_3 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝ + b✝) * c✝ = a✝ * c✝ + b✝ * c✝ [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_4 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ 0 * a✝ = 0 [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_5 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ a✝ * 0 = 0 [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_6 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ a✝ * b✝ * c✝ = a✝ * (b✝ * c✝) [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_7 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ 1 * a✝ = a✝ [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_8 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ a✝ * 1 = a✝ [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_9 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ a✝ * b✝ = b✝ * a✝ [PROOFSTEP] refine ext.mpr ⟨?_, ?_⟩ [GOAL] case refine_1.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ (a✝ + b✝).re = (b✝ + a✝).re [PROOFSTEP] simp [GOAL] case refine_1.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ (a✝ + b✝).im = (b✝ + a✝).im [PROOFSTEP] simp [GOAL] case refine_2.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝ * (b✝ + c✝)).re = (a✝ * b✝ + a✝ * c✝).re [PROOFSTEP] simp [GOAL] case refine_2.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝ * (b✝ + c✝)).im = (a✝ * b✝ + a✝ * c✝).im [PROOFSTEP] simp [GOAL] case refine_3.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ ((a✝ + b✝) * c✝).re = (a✝ * c✝ + b✝ * c✝).re [PROOFSTEP] simp [GOAL] case refine_3.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ ((a✝ + b✝) * c✝).im = (a✝ * c✝ + b✝ * c✝).im [PROOFSTEP] simp [GOAL] case refine_4.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (0 * a✝).re = 0.re [PROOFSTEP] simp [GOAL] case refine_4.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (0 * a✝).im = 0.im [PROOFSTEP] simp [GOAL] case refine_5.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (a✝ * 0).re = 0.re [PROOFSTEP] simp [GOAL] case refine_5.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (a✝ * 0).im = 0.im [PROOFSTEP] simp [GOAL] case refine_6.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝ * b✝ * c✝).re = (a✝ * (b✝ * c✝)).re [PROOFSTEP] simp [GOAL] case refine_6.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝ * b✝ * c✝).im = (a✝ * (b✝ * c✝)).im [PROOFSTEP] simp [GOAL] case refine_7.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (1 * a✝).re = a✝.re [PROOFSTEP] simp [GOAL] case refine_7.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (1 * a✝).im = a✝.im [PROOFSTEP] simp [GOAL] case refine_8.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (a✝ * 1).re = a✝.re [PROOFSTEP] simp [GOAL] case refine_8.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ : ℤ√d ⊢ (a✝ * 1).im = a✝.im [PROOFSTEP] simp [GOAL] case refine_9.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ (a✝ * b✝).re = (b✝ * a✝).re [PROOFSTEP] simp [GOAL] case refine_9.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ (a✝ * b✝).im = (b✝ * a✝).im [PROOFSTEP] simp [GOAL] case refine_1.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ a✝.re + b✝.re = b✝.re + a✝.re [PROOFSTEP] ring [GOAL] case refine_1.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ a✝.im + b✝.im = b✝.im + a✝.im [PROOFSTEP] ring [GOAL] case refine_2.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ a✝.re * (b✝.re + c✝.re) + d * a✝.im * (b✝.im + c✝.im) = a✝.re * b✝.re + d * a✝.im * b✝.im + (a✝.re * c✝.re + d * a✝.im * c✝.im) [PROOFSTEP] ring [GOAL] case refine_2.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ a✝.re * (b✝.im + c✝.im) + a✝.im * (b✝.re + c✝.re) = a✝.re * b✝.im + a✝.im * b✝.re + (a✝.re * c✝.im + a✝.im * c✝.re) [PROOFSTEP] ring [GOAL] case refine_3.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝.re + b✝.re) * c✝.re + d * (a✝.im + b✝.im) * c✝.im = a✝.re * c✝.re + d * a✝.im * c✝.im + (b✝.re * c✝.re + d * b✝.im * c✝.im) [PROOFSTEP] ring [GOAL] case refine_3.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝.re + b✝.re) * c✝.im + (a✝.im + b✝.im) * c✝.re = a✝.re * c✝.im + a✝.im * c✝.re + (b✝.re * c✝.im + b✝.im * c✝.re) [PROOFSTEP] ring [GOAL] case refine_6.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝.re * b✝.re + d * a✝.im * b✝.im) * c✝.re + d * (a✝.re * b✝.im + a✝.im * b✝.re) * c✝.im = a✝.re * (b✝.re * c✝.re + d * b✝.im * c✝.im) + d * a✝.im * (b✝.re * c✝.im + b✝.im * c✝.re) [PROOFSTEP] ring [GOAL] case refine_6.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ c✝ : ℤ√d ⊢ (a✝.re * b✝.re + d * a✝.im * b✝.im) * c✝.im + (a✝.re * b✝.im + a✝.im * b✝.re) * c✝.re = a✝.re * (b✝.re * c✝.im + b✝.im * c✝.re) + a✝.im * (b✝.re * c✝.re + d * b✝.im * c✝.im) [PROOFSTEP] ring [GOAL] case refine_9.refine_1 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ a✝.re * b✝.re + d * a✝.im * b✝.im = b✝.re * a✝.re + d * b✝.im * a✝.im [PROOFSTEP] ring [GOAL] case refine_9.refine_2 d : ℤ src✝ : AddGroupWithOne (ℤ√d) := addGroupWithOne a✝ b✝ : ℤ√d ⊢ a✝.re * b✝.im + a✝.im * b✝.re = b✝.re * a✝.im + b✝.im * a✝.re [PROOFSTEP] ring [GOAL] d : ℤ ⊢ AddMonoid (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ Monoid (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ CommMonoid (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ CommSemigroup (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ Semigroup (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ AddCommSemigroup (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ AddSemigroup (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ CommSemiring (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ Semiring (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ Ring (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ ⊢ Distrib (ℤ√d) [PROOFSTEP] infer_instance [GOAL] d : ℤ a b : ℤ√d ⊢ (star (a * b)).re = (star b * star a).re [PROOFSTEP] simp [GOAL] d : ℤ a b : ℤ√d ⊢ a.re * b.re + d * a.im * b.im = b.re * a.re + d * b.im * a.im [PROOFSTEP] ring [GOAL] d : ℤ a b : ℤ√d ⊢ (star (a * b)).im = (star b * star a).im [PROOFSTEP] simp [GOAL] d : ℤ a b : ℤ√d ⊢ -(a.im * b.re) + -(a.re * b.im) = -(b.re * a.im) + -(b.im * a.re) [PROOFSTEP] ring [GOAL] d : ℤ ⊢ ¬(0.re = 1.re ∧ 0.im = 1.im) [PROOFSTEP] simp [GOAL] d n : ℤ ⊢ (↑n).re = n [PROOFSTEP] cases n [GOAL] case ofNat d : ℤ a✝ : ℕ ⊢ (↑(Int.ofNat a✝)).re = Int.ofNat a✝ [PROOFSTEP] rfl [GOAL] case negSucc d : ℤ a✝ : ℕ ⊢ (↑(Int.negSucc a✝)).re = Int.negSucc a✝ [PROOFSTEP] rfl [GOAL] d n : ℤ ⊢ (↑n).im = 0 [PROOFSTEP] cases n [GOAL] case ofNat d : ℤ a✝ : ℕ ⊢ (↑(Int.ofNat a✝)).im = 0 [PROOFSTEP] rfl [GOAL] case negSucc d : ℤ a✝ : ℕ ⊢ (↑(Int.negSucc a✝)).im = 0 [PROOFSTEP] rfl [GOAL] d n : ℤ ⊢ ↑n = { re := n, im := 0 } [PROOFSTEP] simp [ext] [GOAL] d : ℤ m n : ℕ ⊢ ↑m = ↑n → m = n [PROOFSTEP] simp [ext] [GOAL] d n : ℤ ⊢ ofInt n = ↑n [PROOFSTEP] simp [ext, ofInt_re, ofInt_im] [GOAL] d n x y : ℤ ⊢ ↑n * { re := x, im := y } = { re := n * x, im := n * y } [PROOFSTEP] simp [ext] [GOAL] d a : ℤ b : ℤ√d ⊢ (↑a * b).re = a * b.re [PROOFSTEP] simp [GOAL] d a : ℤ b : ℤ√d ⊢ (↑a * b).im = a * b.im [PROOFSTEP] simp [GOAL] d x y : ℤ ⊢ sqrtd * { re := x, im := y } = { re := d * y, im := x } [PROOFSTEP] simp [ext] [GOAL] d : ℤ ⊢ sqrtd * sqrtd = ↑d [PROOFSTEP] simp [ext] [GOAL] d n x y : ℤ ⊢ sqrtd * ↑n * { re := x, im := y } = { re := d * n * y, im := n * x } [PROOFSTEP] simp [ext] [GOAL] d x y : ℤ ⊢ { re := x, im := y } = ↑x + sqrtd * ↑y [PROOFSTEP] simp [ext] [GOAL] d x y : ℤ ⊢ { re := x, im := y } * star { re := x, im := y } = ↑x * ↑x - ↑d * ↑y * ↑y [PROOFSTEP] simp [ext, sub_eq_add_neg, mul_comm] [GOAL] d m n : ℤ h : ↑m = ↑n ⊢ m = n [PROOFSTEP] simpa using congr_arg re h [GOAL] d z : ℤ a : ℤ√d ⊢ ↑z ∣ a ↔ z ∣ a.re ∧ z ∣ a.im [PROOFSTEP] constructor [GOAL] case mp d z : ℤ a : ℤ√d ⊢ ↑z ∣ a → z ∣ a.re ∧ z ∣ a.im [PROOFSTEP] rintro ⟨x, rfl⟩ [GOAL] case mp.intro d z : ℤ x : ℤ√d ⊢ z ∣ (↑z * x).re ∧ z ∣ (↑z * x).im [PROOFSTEP] simp only [add_zero, coe_int_re, zero_mul, mul_im, dvd_mul_right, and_self_iff, mul_re, mul_zero, coe_int_im] [GOAL] case mpr d z : ℤ a : ℤ√d ⊢ z ∣ a.re ∧ z ∣ a.im → ↑z ∣ a [PROOFSTEP] rintro ⟨⟨r, hr⟩, ⟨i, hi⟩⟩ [GOAL] case mpr.intro.intro.intro d z : ℤ a : ℤ√d r : ℤ hr : a.re = z * r i : ℤ hi : a.im = z * i ⊢ ↑z ∣ a [PROOFSTEP] use⟨r, i⟩ [GOAL] case h d z : ℤ a : ℤ√d r : ℤ hr : a.re = z * r i : ℤ hi : a.im = z * i ⊢ a = ↑z * { re := r, im := i } [PROOFSTEP] rw [smul_val, ext] [GOAL] case h d z : ℤ a : ℤ√d r : ℤ hr : a.re = z * r i : ℤ hi : a.im = z * i ⊢ a.re = { re := z * r, im := z * i }.re ∧ a.im = { re := z * r, im := z * i }.im [PROOFSTEP] exact ⟨hr, hi⟩ [GOAL] d a b : ℤ ⊢ ↑a ∣ ↑b ↔ a ∣ b [PROOFSTEP] rw [coe_int_dvd_iff] [GOAL] d a b : ℤ ⊢ a ∣ (↑b).re ∧ a ∣ (↑b).im ↔ a ∣ b [PROOFSTEP] constructor [GOAL] case mp d a b : ℤ ⊢ a ∣ (↑b).re ∧ a ∣ (↑b).im → a ∣ b [PROOFSTEP] rintro ⟨hre, -⟩ [GOAL] case mp.intro d a b : ℤ hre : a ∣ (↑b).re ⊢ a ∣ b [PROOFSTEP] rwa [coe_int_re] at hre [GOAL] case mpr d a b : ℤ ⊢ a ∣ b → a ∣ (↑b).re ∧ a ∣ (↑b).im [PROOFSTEP] rw [coe_int_re, coe_int_im] [GOAL] case mpr d a b : ℤ ⊢ a ∣ b → a ∣ b ∧ a ∣ 0 [PROOFSTEP] exact fun hc => ⟨hc, dvd_zero a⟩ [GOAL] d a : ℤ b c : ℤ√d ha : a ≠ 0 h : ↑a * b = ↑a * c ⊢ b = c [PROOFSTEP] rw [ext] at h ⊢ [GOAL] d a : ℤ b c : ℤ√d ha : a ≠ 0 h : (↑a * b).re = (↑a * c).re ∧ (↑a * b).im = (↑a * c).im ⊢ b.re = c.re ∧ b.im = c.im [PROOFSTEP] apply And.imp _ _ h [GOAL] d a : ℤ b c : ℤ√d ha : a ≠ 0 h : (↑a * b).re = (↑a * c).re ∧ (↑a * b).im = (↑a * c).im ⊢ (↑a * b).re = (↑a * c).re → b.re = c.re [PROOFSTEP] simpa only [smul_re, smul_im] using mul_left_cancel₀ ha [GOAL] d a : ℤ b c : ℤ√d ha : a ≠ 0 h : (↑a * b).re = (↑a * c).re ∧ (↑a * b).im = (↑a * c).im ⊢ (↑a * b).im = (↑a * c).im → b.im = c.im [PROOFSTEP] simpa only [smul_re, smul_im] using mul_left_cancel₀ ha [GOAL] d : ℤ a : ℤ√d ⊢ Int.gcd a.re a.im = 0 ↔ a = 0 [PROOFSTEP] simp only [Int.gcd_eq_zero_iff, ext, eq_self_iff_true, zero_im, zero_re] [GOAL] d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a ⊢ IsCoprime b.re b.im [PROOFSTEP] apply isCoprime_of_dvd [GOAL] case nonzero d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a ⊢ ¬(b.re = 0 ∧ b.im = 0) [PROOFSTEP] rintro ⟨hre, him⟩ [GOAL] case nonzero.intro d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a hre : b.re = 0 him : b.im = 0 ⊢ False [PROOFSTEP] obtain rfl : b = 0 := by simp only [ext, hre, eq_self_iff_true, zero_im, him, and_self_iff, zero_re] [GOAL] d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a hre : b.re = 0 him : b.im = 0 ⊢ b = 0 [PROOFSTEP] simp only [ext, hre, eq_self_iff_true, zero_im, him, and_self_iff, zero_re] [GOAL] case nonzero.intro d : ℤ a : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : 0 ∣ a hre : 0.re = 0 him : 0.im = 0 ⊢ False [PROOFSTEP] rw [zero_dvd_iff] at hdvd [GOAL] case nonzero.intro d : ℤ a : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : a = 0 hre : 0.re = 0 him : 0.im = 0 ⊢ False [PROOFSTEP] simp [hdvd, zero_im, zero_re, not_isCoprime_zero_zero] at hcoprime [GOAL] case H d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a ⊢ ∀ (z : ℤ), z ∈ nonunits ℤ → z ≠ 0 → z ∣ b.re → ¬z ∣ b.im [PROOFSTEP] rintro z hz - hzdvdu hzdvdv [GOAL] case H d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ⊢ False [PROOFSTEP] apply hz [GOAL] case H d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ⊢ IsUnit z [PROOFSTEP] obtain ⟨ha, hb⟩ : z ∣ a.re ∧ z ∣ a.im := by rw [← coe_int_dvd_iff] apply dvd_trans _ hdvd rw [coe_int_dvd_iff] exact ⟨hzdvdu, hzdvdv⟩ [GOAL] d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ⊢ z ∣ a.re ∧ z ∣ a.im [PROOFSTEP] rw [← coe_int_dvd_iff] [GOAL] d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ⊢ ↑z ∣ a [PROOFSTEP] apply dvd_trans _ hdvd [GOAL] d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ⊢ ↑z ∣ b [PROOFSTEP] rw [coe_int_dvd_iff] [GOAL] d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ⊢ z ∣ b.re ∧ z ∣ b.im [PROOFSTEP] exact ⟨hzdvdu, hzdvdv⟩ [GOAL] case H.intro d : ℤ a b : ℤ√d hcoprime : IsCoprime a.re a.im hdvd : b ∣ a z : ℤ hz : z ∈ nonunits ℤ hzdvdu : z ∣ b.re hzdvdv : z ∣ b.im ha : z ∣ a.re hb : z ∣ a.im ⊢ IsUnit z [PROOFSTEP] exact hcoprime.isUnit_of_dvd' ha hb [GOAL] d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im ⊢ ∃ b, a = ↑↑(Int.gcd a.re a.im) * b ∧ IsCoprime b.re b.im [PROOFSTEP] obtain ⟨re, im, H1, Hre, Him⟩ := Int.exists_gcd_one hgcd [GOAL] case intro.intro.intro.intro d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = re * ↑(Int.gcd a.re a.im) Him : a.im = im * ↑(Int.gcd a.re a.im) ⊢ ∃ b, a = ↑↑(Int.gcd a.re a.im) * b ∧ IsCoprime b.re b.im [PROOFSTEP] rw [mul_comm] at Hre Him [GOAL] case intro.intro.intro.intro d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = ↑(Int.gcd a.re a.im) * re Him : a.im = ↑(Int.gcd a.re a.im) * im ⊢ ∃ b, a = ↑↑(Int.gcd a.re a.im) * b ∧ IsCoprime b.re b.im [PROOFSTEP] refine' ⟨⟨re, im⟩, _, _⟩ [GOAL] case intro.intro.intro.intro.refine'_1 d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = ↑(Int.gcd a.re a.im) * re Him : a.im = ↑(Int.gcd a.re a.im) * im ⊢ a = ↑↑(Int.gcd a.re a.im) * { re := re, im := im } [PROOFSTEP] rw [smul_val, ext, ← Hre, ← Him] [GOAL] case intro.intro.intro.intro.refine'_1 d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = ↑(Int.gcd a.re a.im) * re Him : a.im = ↑(Int.gcd a.re a.im) * im ⊢ a.re = { re := a.re, im := a.im }.re ∧ a.im = { re := a.re, im := a.im }.im [PROOFSTEP] constructor [GOAL] case intro.intro.intro.intro.refine'_1.left d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = ↑(Int.gcd a.re a.im) * re Him : a.im = ↑(Int.gcd a.re a.im) * im ⊢ a.re = { re := a.re, im := a.im }.re [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.refine'_1.right d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = ↑(Int.gcd a.re a.im) * re Him : a.im = ↑(Int.gcd a.re a.im) * im ⊢ a.im = { re := a.re, im := a.im }.im [PROOFSTEP] rfl [GOAL] case intro.intro.intro.intro.refine'_2 d : ℤ a : ℤ√d hgcd : 0 < Int.gcd a.re a.im re im : ℤ H1 : Int.gcd re im = 1 Hre : a.re = ↑(Int.gcd a.re a.im) * re Him : a.im = ↑(Int.gcd a.re a.im) * im ⊢ IsCoprime { re := re, im := im }.re { re := re, im := im }.im [PROOFSTEP] rw [← Int.gcd_eq_one_iff_coprime, H1] [GOAL] d✝ : ℤ c d x y z w : ℕ xy : SqLe x c y d zw : SqLe z c w d ⊢ c * (x * z) * (c * (x * z)) ≤ d * (y * w) * (d * (y * w)) [PROOFSTEP] simpa [mul_comm, mul_left_comm] using mul_le_mul xy zw (Nat.zero_le _) (Nat.zero_le _) [GOAL] d✝ : ℤ c d x y z w : ℕ xy : SqLe x c y d zw : SqLe z c w d ⊢ SqLe (x + z) c (y + w) d [PROOFSTEP] have xz := sqLe_add_mixed xy zw [GOAL] d✝ : ℤ c d x y z w : ℕ xy : SqLe x c y d zw : SqLe z c w d xz : c * (x * z) ≤ d * (y * w) ⊢ SqLe (x + z) c (y + w) d [PROOFSTEP] simp [SqLe, mul_assoc] at xy zw [GOAL] d✝ : ℤ c d x y z w : ℕ xz : c * (x * z) ≤ d * (y * w) xy : c * (x * x) ≤ d * (y * y) zw : c * (z * z) ≤ d * (w * w) ⊢ SqLe (x + z) c (y + w) d [PROOFSTEP] simp [SqLe, mul_add, mul_comm, mul_left_comm, add_le_add, *] [GOAL] d✝ : ℤ c d x y z w : ℕ zw : SqLe y d x c h : SqLe (x + z) c (y + w) d ⊢ SqLe z c w d [PROOFSTEP] apply le_of_not_gt [GOAL] case a d✝ : ℤ c d x y z w : ℕ zw : SqLe y d x c h : SqLe (x + z) c (y + w) d ⊢ ¬c * z * z > d * w * w [PROOFSTEP] intro l [GOAL] case a d✝ : ℤ c d x y z w : ℕ zw : SqLe y d x c h : SqLe (x + z) c (y + w) d l : c * z * z > d * w * w ⊢ False [PROOFSTEP] refine' not_le_of_gt _ h [GOAL] case a d✝ : ℤ c d x y z w : ℕ zw : SqLe y d x c h : SqLe (x + z) c (y + w) d l : c * z * z > d * w * w ⊢ c * (x + z) * (x + z) > d * (y + w) * (y + w) [PROOFSTEP] simp only [SqLe, mul_add, mul_comm, mul_left_comm, add_assoc, gt_iff_lt] [GOAL] case a d✝ : ℤ c d x y z w : ℕ zw : SqLe y d x c h : SqLe (x + z) c (y + w) d l : c * z * z > d * w * w ⊢ d * (y * y) + (d * (y * w) + (d * (y * w) + d * (w * w))) < c * (x * x) + (c * (x * z) + (c * (x * z) + c * (z * z))) [PROOFSTEP] have hm := sqLe_add_mixed zw (le_of_lt l) [GOAL] case a d✝ : ℤ c d x y z w : ℕ zw : SqLe y d x c h : SqLe (x + z) c (y + w) d l : c * z * z > d * w * w hm : d * (y * w) ≤ c * (x * z) ⊢ d * (y * y) + (d * (y * w) + (d * (y * w) + d * (w * w))) < c * (x * x) + (c * (x * z) + (c * (x * z) + c * (z * z))) [PROOFSTEP] simp only [SqLe, mul_assoc, gt_iff_lt] at l zw [GOAL] case a d✝ : ℤ c d x y z w : ℕ h : SqLe (x + z) c (y + w) d hm : d * (y * w) ≤ c * (x * z) l : d * (w * w) < c * (z * z) zw : d * (y * y) ≤ c * (x * x) ⊢ d * (y * y) + (d * (y * w) + (d * (y * w) + d * (w * w))) < c * (x * x) + (c * (x * z) + (c * (x * z) + c * (z * z))) [PROOFSTEP] exact lt_of_le_of_lt (add_le_add_right zw _) (add_lt_add_left (add_lt_add_of_le_of_lt hm (add_lt_add_of_le_of_lt hm l)) _) [GOAL] d✝ : ℤ c d x y n : ℕ xy : SqLe x c y d ⊢ SqLe (n * x) c (n * y) d [PROOFSTEP] simpa [SqLe, mul_left_comm, mul_assoc] using Nat.mul_le_mul_left (n * n) xy [GOAL] d✝ : ℤ d x y z w : ℕ ⊢ (SqLe x 1 y d → SqLe z 1 w d → SqLe (x * w + y * z) d (x * z + d * y * w) 1) ∧ (SqLe x 1 y d → SqLe w d z 1 → SqLe (x * z + d * y * w) 1 (x * w + y * z) d) ∧ (SqLe y d x 1 → SqLe z 1 w d → SqLe (x * z + d * y * w) 1 (x * w + y * z) d) ∧ (SqLe y d x 1 → SqLe w d z 1 → SqLe (x * w + y * z) d (x * z + d * y * w) 1) [PROOFSTEP] refine' ⟨_, _, _, _⟩ [GOAL] case refine'_1 d✝ : ℤ d x y z w : ℕ ⊢ SqLe x 1 y d → SqLe z 1 w d → SqLe (x * w + y * z) d (x * z + d * y * w) 1 [PROOFSTEP] intro xy zw [GOAL] case refine'_1 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe z 1 w d ⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1 [PROOFSTEP] have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw)) [GOAL] case refine'_1 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe z 1 w d this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1 [PROOFSTEP] refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _) [GOAL] case refine'_1 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe z 1 w d this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ 0 ≤ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z)) [PROOFSTEP] convert this using 1 [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe z 1 w d this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z)) = (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z)) [PROOFSTEP] simp only [one_mul, Int.ofNat_add, Int.ofNat_mul] [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe z 1 w d this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) - ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) = (↑d * ↑y * ↑y - ↑x * ↑x) * (↑d * ↑w * ↑w - ↑z * ↑z) [PROOFSTEP] ring [GOAL] case refine'_2 d✝ : ℤ d x y z w : ℕ ⊢ SqLe x 1 y d → SqLe w d z 1 → SqLe (x * z + d * y * w) 1 (x * w + y * z) d [PROOFSTEP] intro xy zw [GOAL] case refine'_2 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe w d z 1 ⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d [PROOFSTEP] have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw)) [GOAL] case refine'_2 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe w d z 1 this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d [PROOFSTEP] refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _) [GOAL] case refine'_2 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe w d z 1 this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ 0 ≤ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) [PROOFSTEP] convert this using 1 [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe w d z 1 this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) = (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w)) [PROOFSTEP] simp only [one_mul, Int.ofNat_add, Int.ofNat_mul] [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe x 1 y d zw : SqLe w d z 1 this : 0 ≤ (↑(d * y * y) - ↑(1 * x * x)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) - (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) = (↑d * ↑y * ↑y - ↑x * ↑x) * (↑z * ↑z - ↑d * ↑w * ↑w) [PROOFSTEP] ring [GOAL] case refine'_3 d✝ : ℤ d x y z w : ℕ ⊢ SqLe y d x 1 → SqLe z 1 w d → SqLe (x * z + d * y * w) 1 (x * w + y * z) d [PROOFSTEP] intro xy zw [GOAL] case refine'_3 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe z 1 w d ⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d [PROOFSTEP] have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw)) [GOAL] case refine'_3 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe z 1 w d this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ SqLe (x * z + d * y * w) 1 (x * w + y * z) d [PROOFSTEP] refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _) [GOAL] case refine'_3 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe z 1 w d this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ 0 ≤ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) [PROOFSTEP] convert this using 1 [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe z 1 w d this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ ↑(d * (x * w + y * z) * (x * w + y * z)) - ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) = (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z)) [PROOFSTEP] simp only [one_mul, Int.ofNat_add, Int.ofNat_mul] [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe z 1 w d this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(d * w * w) - ↑(1 * z * z)) ⊢ ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) - (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) = (↑x * ↑x - ↑d * ↑y * ↑y) * (↑d * ↑w * ↑w - ↑z * ↑z) [PROOFSTEP] ring [GOAL] case refine'_4 d✝ : ℤ d x y z w : ℕ ⊢ SqLe y d x 1 → SqLe w d z 1 → SqLe (x * w + y * z) d (x * z + d * y * w) 1 [PROOFSTEP] intro xy zw [GOAL] case refine'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe w d z 1 ⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1 [PROOFSTEP] have := Int.mul_nonneg (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le xy)) (sub_nonneg_of_le (Int.ofNat_le_ofNat_of_le zw)) [GOAL] case refine'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe w d z 1 this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ SqLe (x * w + y * z) d (x * z + d * y * w) 1 [PROOFSTEP] refine' Int.le_of_ofNat_le_ofNat (le_of_sub_nonneg _) [GOAL] case refine'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe w d z 1 this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ 0 ≤ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z)) [PROOFSTEP] convert this using 1 [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe w d z 1 this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ ↑(1 * (x * z + d * y * w) * (x * z + d * y * w)) - ↑(d * (x * w + y * z) * (x * w + y * z)) = (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w)) [PROOFSTEP] simp only [one_mul, Int.ofNat_add, Int.ofNat_mul] [GOAL] case h.e'_4 d✝ : ℤ d x y z w : ℕ xy : SqLe y d x 1 zw : SqLe w d z 1 this : 0 ≤ (↑(1 * x * x) - ↑(d * y * y)) * (↑(1 * z * z) - ↑(d * w * w)) ⊢ (↑x * ↑z + ↑d * ↑y * ↑w) * (↑x * ↑z + ↑d * ↑y * ↑w) - ↑d * (↑x * ↑w + ↑y * ↑z) * (↑x * ↑w + ↑y * ↑z) = (↑x * ↑x - ↑d * ↑y * ↑y) * (↑z * ↑z - ↑d * ↑w * ↑w) [PROOFSTEP] ring [GOAL] d✝ : ℤ c d : ℕ x y : ℤ ⊢ Nonnegg c d x y = Nonnegg d c y x [PROOFSTEP] induction x [GOAL] case ofNat d✝ : ℤ c d : ℕ y : ℤ a✝ : ℕ ⊢ Nonnegg c d (Int.ofNat a✝) y = Nonnegg d c y (Int.ofNat a✝) [PROOFSTEP] induction y [GOAL] case negSucc d✝ : ℤ c d : ℕ y : ℤ a✝ : ℕ ⊢ Nonnegg c d (Int.negSucc a✝) y = Nonnegg d c y (Int.negSucc a✝) [PROOFSTEP] induction y [GOAL] case ofNat.ofNat d✝ : ℤ c d a✝¹ a✝ : ℕ ⊢ Nonnegg c d (Int.ofNat a✝¹) (Int.ofNat a✝) = Nonnegg d c (Int.ofNat a✝) (Int.ofNat a✝¹) [PROOFSTEP] rfl [GOAL] case ofNat.negSucc d✝ : ℤ c d a✝¹ a✝ : ℕ ⊢ Nonnegg c d (Int.ofNat a✝¹) (Int.negSucc a✝) = Nonnegg d c (Int.negSucc a✝) (Int.ofNat a✝¹) [PROOFSTEP] rfl [GOAL] case negSucc.ofNat d✝ : ℤ c d a✝¹ a✝ : ℕ ⊢ Nonnegg c d (Int.negSucc a✝¹) (Int.ofNat a✝) = Nonnegg d c (Int.ofNat a✝) (Int.negSucc a✝¹) [PROOFSTEP] rfl [GOAL] case negSucc.negSucc d✝ : ℤ c d a✝¹ a✝ : ℕ ⊢ Nonnegg c d (Int.negSucc a✝¹) (Int.negSucc a✝) = Nonnegg d c (Int.negSucc a✝) (Int.negSucc a✝¹) [PROOFSTEP] rfl [GOAL] d✝ : ℤ c d b : ℕ ⊢ Nonnegg c d (-↑0) ↑b → SqLe 0 d b c [PROOFSTEP] simp [SqLe, Nat.zero_le] [GOAL] d✝ : ℤ c d a b : ℕ ⊢ Nonnegg c d (-↑(a + 1)) ↑b ↔ SqLe (a + 1) d b c [PROOFSTEP] rw [← Int.negSucc_coe] [GOAL] d✝ : ℤ c d a b : ℕ ⊢ Nonnegg c d (Int.negSucc a) ↑b ↔ SqLe (a + 1) d b c [PROOFSTEP] rfl [GOAL] d✝ : ℤ c d a b : ℕ ⊢ Nonnegg c d (↑a) (-↑b) ↔ SqLe b c a d [PROOFSTEP] rw [nonnegg_comm] [GOAL] d✝ : ℤ c d a b : ℕ ⊢ Nonnegg d c (-↑b) ↑a ↔ SqLe b c a d [PROOFSTEP] exact nonnegg_neg_pos [GOAL] d : ℤ ⊢ norm 0 = 0 [PROOFSTEP] simp [norm] [GOAL] d : ℤ ⊢ norm 1 = 1 [PROOFSTEP] simp [norm] [GOAL] d n : ℤ ⊢ norm ↑n = n * n [PROOFSTEP] simp [norm] [GOAL] d : ℤ n m : ℤ√d ⊢ norm (n * m) = norm n * norm m [PROOFSTEP] simp only [norm, mul_im, mul_re] [GOAL] d : ℤ n m : ℤ√d ⊢ (n.re * m.re + d * n.im * m.im) * (n.re * m.re + d * n.im * m.im) - d * (n.re * m.im + n.im * m.re) * (n.re * m.im + n.im * m.re) = (n.re * n.re - d * n.im * n.im) * (m.re * m.re - d * m.im * m.im) [PROOFSTEP] ring [GOAL] d : ℤ n : ℤ√d ⊢ ↑(norm n) = n * star n [PROOFSTEP] cases n [GOAL] case mk d re✝ im✝ : ℤ ⊢ ↑(norm { re := re✝, im := im✝ }) = { re := re✝, im := im✝ } * star { re := re✝, im := im✝ } [PROOFSTEP] simp [norm, star, Zsqrtd.ext, mul_comm, sub_eq_add_neg] [GOAL] d : ℤ x : ℤ√d ⊢ ↑(norm (-x)) = ↑(norm x) [PROOFSTEP] rw [norm_eq_mul_conj, star_neg, neg_mul_neg, norm_eq_mul_conj] [GOAL] d : ℤ x : ℤ√d ⊢ ↑(norm (star x)) = ↑(norm x) [PROOFSTEP] rw [norm_eq_mul_conj, star_star, mul_comm, norm_eq_mul_conj] [GOAL] d : ℤ hd : d ≤ 0 n : ℤ√d ⊢ 0 ≤ -(d * n.im * n.im) [PROOFSTEP] rw [mul_assoc, neg_mul_eq_neg_mul] [GOAL] d : ℤ hd : d ≤ 0 n : ℤ√d ⊢ 0 ≤ -d * (n.im * n.im) [PROOFSTEP] exact mul_nonneg (neg_nonneg.2 hd) (mul_self_nonneg _) [GOAL] d : ℤ x : ℤ√d h : Int.natAbs (norm x) = 1 hx : 0 ≤ norm x ⊢ 1 = x * star x [PROOFSTEP] rwa [← Int.coe_nat_inj', Int.natAbs_of_nonneg hx, ← @Int.cast_inj (ℤ√d) _ _, norm_eq_mul_conj, eq_comm] at h [GOAL] d : ℤ x : ℤ√d h : Int.natAbs (norm x) = 1 hx : norm x ≤ 0 ⊢ 1 = x * -star x [PROOFSTEP] rwa [← Int.coe_nat_inj', Int.ofNat_natAbs_of_nonpos hx, ← @Int.cast_inj (ℤ√d) _ _, Int.cast_neg, norm_eq_mul_conj, neg_mul_eq_mul_neg, eq_comm] at h [GOAL] d : ℤ x : ℤ√d h : IsUnit x ⊢ Int.natAbs (norm x) = 1 [PROOFSTEP] let ⟨y, hy⟩ := isUnit_iff_dvd_one.1 h [GOAL] d : ℤ x : ℤ√d h : IsUnit x y : ℤ√d hy : 1 = x * y ⊢ Int.natAbs (norm x) = 1 [PROOFSTEP] have := congr_arg (Int.natAbs ∘ norm) hy [GOAL] d : ℤ x : ℤ√d h : IsUnit x y : ℤ√d hy : 1 = x * y this : (Int.natAbs ∘ norm) 1 = (Int.natAbs ∘ norm) (x * y) ⊢ Int.natAbs (norm x) = 1 [PROOFSTEP] rw [Function.comp_apply, Function.comp_apply, norm_mul, Int.natAbs_mul, norm_one, Int.natAbs_one, eq_comm, mul_eq_one] at this [GOAL] d : ℤ x : ℤ√d h : IsUnit x y : ℤ√d hy : 1 = x * y this : Int.natAbs (norm x) = 1 ∧ Int.natAbs (norm y) = 1 ⊢ Int.natAbs (norm x) = 1 [PROOFSTEP] exact this.1 [GOAL] d✝ d : ℤ z : ℤ√d ⊢ IsUnit z ↔ IsUnit (norm z) [PROOFSTEP] rw [Int.isUnit_iff_natAbs_eq, norm_eq_one_iff] [GOAL] d✝ d : ℤ hd : d ≤ 0 z : ℤ√d ⊢ norm z = 1 ↔ IsUnit z [PROOFSTEP] rw [← norm_eq_one_iff, ← Int.coe_nat_inj', Int.natAbs_of_nonneg (norm_nonneg hd z), Int.ofNat_one] [GOAL] d✝ d : ℤ hd : d < 0 z : ℤ√d ⊢ norm z = 0 ↔ z = 0 [PROOFSTEP] constructor [GOAL] case mp d✝ d : ℤ hd : d < 0 z : ℤ√d ⊢ norm z = 0 → z = 0 [PROOFSTEP] intro h [GOAL] case mp d✝ d : ℤ hd : d < 0 z : ℤ√d h : norm z = 0 ⊢ z = 0 [PROOFSTEP] rw [ext, zero_re, zero_im] [GOAL] case mp d✝ d : ℤ hd : d < 0 z : ℤ√d h : norm z = 0 ⊢ z.re = 0 ∧ z.im = 0 [PROOFSTEP] rw [norm_def, sub_eq_add_neg, mul_assoc] at h [GOAL] case mp d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 ⊢ z.re = 0 ∧ z.im = 0 [PROOFSTEP] have left := mul_self_nonneg z.re [GOAL] case mp d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re ⊢ z.re = 0 ∧ z.im = 0 [PROOFSTEP] have right := neg_nonneg.mpr (mul_nonpos_of_nonpos_of_nonneg hd.le (mul_self_nonneg z.im)) [GOAL] case mp d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ⊢ z.re = 0 ∧ z.im = 0 [PROOFSTEP] obtain ⟨ha, hb⟩ := (add_eq_zero_iff' left right).mp h [GOAL] case mp.intro d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ha : z.re * z.re = 0 hb : -(d * (z.im * z.im)) = 0 ⊢ z.re = 0 ∧ z.im = 0 [PROOFSTEP] constructor [GOAL] case mp.intro.left d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ha : z.re * z.re = 0 hb : -(d * (z.im * z.im)) = 0 ⊢ z.re = 0 [PROOFSTEP] apply eq_zero_of_mul_self_eq_zero [GOAL] case mp.intro.right d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ha : z.re * z.re = 0 hb : -(d * (z.im * z.im)) = 0 ⊢ z.im = 0 [PROOFSTEP] apply eq_zero_of_mul_self_eq_zero [GOAL] case mp.intro.left.h d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ha : z.re * z.re = 0 hb : -(d * (z.im * z.im)) = 0 ⊢ z.re * z.re = 0 [PROOFSTEP] exact ha [GOAL] case mp.intro.right.h d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ha : z.re * z.re = 0 hb : -(d * (z.im * z.im)) = 0 ⊢ z.im * z.im = 0 [PROOFSTEP] rw [neg_eq_zero, mul_eq_zero] at hb [GOAL] case mp.intro.right.h d✝ d : ℤ hd : d < 0 z : ℤ√d h : z.re * z.re + -(d * (z.im * z.im)) = 0 left : 0 ≤ z.re * z.re right : 0 ≤ -(d * (z.im * z.im)) ha : z.re * z.re = 0 hb : d = 0 ∨ z.im * z.im = 0 ⊢ z.im * z.im = 0 [PROOFSTEP] exact hb.resolve_left hd.ne [GOAL] case mpr d✝ d : ℤ hd : d < 0 z : ℤ√d ⊢ z = 0 → norm z = 0 [PROOFSTEP] rintro rfl [GOAL] case mpr d✝ d : ℤ hd : d < 0 ⊢ norm 0 = 0 [PROOFSTEP] exact norm_zero [GOAL] d✝ d : ℤ hd : d ≤ 0 x y : ℤ√d h : Associated x y ⊢ norm x = norm y [PROOFSTEP] obtain ⟨u, rfl⟩ := h [GOAL] case intro d✝ d : ℤ hd : d ≤ 0 x : ℤ√d u : (ℤ√d)ˣ ⊢ norm x = norm (x * ↑u) [PROOFSTEP] rw [norm_mul, (norm_eq_one_iff' hd _).mpr u.isUnit, mul_one] [GOAL] d✝ c d : ℕ a b : ℤ ⊢ Decidable (Nonnegg c d a b) [PROOFSTEP] cases a [GOAL] case ofNat d✝ c d : ℕ b : ℤ a✝ : ℕ ⊢ Decidable (Nonnegg c d (Int.ofNat a✝) b) [PROOFSTEP] cases b [GOAL] case negSucc d✝ c d : ℕ b : ℤ a✝ : ℕ ⊢ Decidable (Nonnegg c d (Int.negSucc a✝) b) [PROOFSTEP] cases b [GOAL] case ofNat.ofNat d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (Nonnegg c d (Int.ofNat a✝¹) (Int.ofNat a✝)) [PROOFSTEP] unfold Nonnegg SqLe [GOAL] case ofNat.negSucc d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (Nonnegg c d (Int.ofNat a✝¹) (Int.negSucc a✝)) [PROOFSTEP] unfold Nonnegg SqLe [GOAL] case negSucc.ofNat d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (Nonnegg c d (Int.negSucc a✝¹) (Int.ofNat a✝)) [PROOFSTEP] unfold Nonnegg SqLe [GOAL] case negSucc.negSucc d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (Nonnegg c d (Int.negSucc a✝¹) (Int.negSucc a✝)) [PROOFSTEP] unfold Nonnegg SqLe [GOAL] case ofNat.ofNat d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (match Int.ofNat a✝¹, Int.ofNat a✝ with | Int.ofNat a, Int.ofNat b => True | Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a | Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b | Int.negSucc a, Int.negSucc a_1 => False) [PROOFSTEP] infer_instance [GOAL] case ofNat.negSucc d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (match Int.ofNat a✝¹, Int.negSucc a✝ with | Int.ofNat a, Int.ofNat b => True | Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a | Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b | Int.negSucc a, Int.negSucc a_1 => False) [PROOFSTEP] infer_instance [GOAL] case negSucc.ofNat d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (match Int.negSucc a✝¹, Int.ofNat a✝ with | Int.ofNat a, Int.ofNat b => True | Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a | Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b | Int.negSucc a, Int.negSucc a_1 => False) [PROOFSTEP] infer_instance [GOAL] case negSucc.negSucc d✝ c d a✝¹ a✝ : ℕ ⊢ Decidable (match Int.negSucc a✝¹, Int.negSucc a✝ with | Int.ofNat a, Int.ofNat b => True | Int.ofNat a, Int.negSucc b => c * (b + 1) * (b + 1) ≤ d * a * a | Int.negSucc a, Int.ofNat b => d * (a + 1) * (a + 1) ≤ c * b * b | Int.negSucc a, Int.negSucc a_1 => False) [PROOFSTEP] infer_instance [GOAL] d x y z w : ℕ xy : Nonneg { re := ↑x, im := -↑y } zw : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] have : Nonneg ⟨Int.subNatNat x z, Int.subNatNat w y⟩ := Int.subNatNat_elim x z (fun m n i => SqLe y d m 1 → SqLe n 1 w d → Nonneg ⟨i, Int.subNatNat w y⟩) (fun j k => Int.subNatNat_elim w y (fun m n i => SqLe n d (k + j) 1 → SqLe k 1 m d → Nonneg ⟨Int.ofNat j, i⟩) (fun _ _ _ _ => trivial) fun m n xy zw => sqLe_cancel zw xy) (fun j k => Int.subNatNat_elim w y (fun m n i => SqLe n d k 1 → SqLe (k + j + 1) 1 m d → Nonneg ⟨-[j+1], i⟩) (fun m n xy zw => sqLe_cancel xy zw) fun m n xy zw => let t := Nat.le_trans zw (sqLe_of_le (Nat.le_add_right n (m + 1)) le_rfl xy) have : k + j + 1 ≤ k := Nat.mul_self_le_mul_self_iff.2 (by simpa [one_mul] using t) absurd this (not_le_of_gt <| Nat.succ_le_succ <| Nat.le_add_right _ _)) (nonnegg_pos_neg.1 xy) (nonnegg_neg_pos.1 zw) [GOAL] d x y z w : ℕ xy✝ : Nonneg { re := ↑x, im := -↑y } zw✝ : Nonneg { re := -↑z, im := ↑w } j k m n : ℕ xy : SqLe (n + m + 1) d k 1 zw : SqLe (k + j + 1) 1 n d t : 1 * (k + j + 1) * (k + j + 1) ≤ 1 * k * k := Nat.le_trans zw (sqLe_of_le (Nat.le_add_right n (m + 1)) le_rfl xy) ⊢ (k + j + 1) * (k + j + 1) ≤ k * k [PROOFSTEP] simpa [one_mul] using t [GOAL] d x y z w : ℕ xy : Nonneg { re := ↑x, im := -↑y } zw : Nonneg { re := -↑z, im := ↑w } this : Nonneg { re := subNatNat x z, im := subNatNat w y } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] rw [add_def, neg_add_eq_sub] [GOAL] d x y z w : ℕ xy : Nonneg { re := ↑x, im := -↑y } zw : Nonneg { re := -↑z, im := ↑w } this : Nonneg { re := subNatNat x z, im := subNatNat w y } ⊢ Nonneg { re := ↑x + -↑z, im := ↑w - ↑y } [PROOFSTEP] rwa [Int.subNatNat_eq_coe, Int.subNatNat_eq_coe] at this [GOAL] d : ℕ a b : ℤ√↑d ha : Nonneg a hb : Nonneg b ⊢ Nonneg (a + b) [PROOFSTEP] rcases nonneg_cases ha with ⟨x, y, rfl | rfl | rfl⟩ [GOAL] case intro.intro.inl d : ℕ b : ℤ√↑d hb : Nonneg b x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } ⊢ Nonneg ({ re := ↑x, im := ↑y } + b) [PROOFSTEP] rcases nonneg_cases hb with ⟨z, w, rfl | rfl | rfl⟩ [GOAL] case intro.intro.inr.inl d : ℕ b : ℤ√↑d hb : Nonneg b x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } ⊢ Nonneg ({ re := ↑x, im := -↑y } + b) [PROOFSTEP] rcases nonneg_cases hb with ⟨z, w, rfl | rfl | rfl⟩ [GOAL] case intro.intro.inr.inr d : ℕ b : ℤ√↑d hb : Nonneg b x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } ⊢ Nonneg ({ re := -↑x, im := ↑y } + b) [PROOFSTEP] rcases nonneg_cases hb with ⟨z, w, rfl | rfl | rfl⟩ [GOAL] case intro.intro.inl.intro.intro.inl d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := ↑y } + { re := ↑z, im := ↑w }) [PROOFSTEP] trivial [GOAL] case intro.intro.inl.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg ({ re := ↑x, im := ↑y } + { re := ↑z, im := -↑w }) [PROOFSTEP] refine' nonnegg_cases_right fun i h => sqLe_of_le _ _ (nonnegg_pos_neg.1 hb) [GOAL] case intro.intro.inl.intro.intro.inr.inl.refine'_1 d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } i : ℕ h : { re := ↑x, im := ↑y }.im + { re := ↑z, im := -↑w }.im = -↑i ⊢ i ≤ w [PROOFSTEP] dsimp only at h [GOAL] case intro.intro.inl.intro.intro.inr.inl.refine'_1 d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } i : ℕ h : ↑y + -↑w = -↑i ⊢ i ≤ w [PROOFSTEP] exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro y (by simp [add_comm, *]))) [GOAL] d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } i : ℕ h : ↑y + -↑w = -↑i ⊢ -↑w + ↑y = -↑i [PROOFSTEP] simp [add_comm, *] [GOAL] case intro.intro.inl.intro.intro.inr.inl.refine'_2 d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } i : ℕ h : { re := ↑x, im := ↑y }.im + { re := ↑z, im := -↑w }.im = -↑i ⊢ z ≤ x + z [PROOFSTEP] apply Nat.le_add_left [GOAL] case intro.intro.inl.intro.intro.inr.inr d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := ↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] refine' nonnegg_cases_left fun i h => sqLe_of_le _ _ (nonnegg_neg_pos.1 hb) [GOAL] case intro.intro.inl.intro.intro.inr.inr.refine'_1 d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } i : ℕ h : { re := ↑x, im := ↑y }.re + { re := -↑z, im := ↑w }.re = -↑i ⊢ i ≤ z [PROOFSTEP] dsimp only at h [GOAL] case intro.intro.inl.intro.intro.inr.inr.refine'_1 d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } i : ℕ h : ↑x + -↑z = -↑i ⊢ i ≤ z [PROOFSTEP] exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro x (by simp [add_comm, *]))) [GOAL] d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } i : ℕ h : ↑x + -↑z = -↑i ⊢ -↑z + ↑x = -↑i [PROOFSTEP] simp [add_comm, *] [GOAL] case intro.intro.inl.intro.intro.inr.inr.refine'_2 d x y : ℕ ha : Nonneg { re := ↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } i : ℕ h : { re := ↑x, im := ↑y }.re + { re := -↑z, im := ↑w }.re = -↑i ⊢ w ≤ y + w [PROOFSTEP] apply Nat.le_add_left [GOAL] case intro.intro.inr.inl.intro.intro.inl d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := ↑w }) [PROOFSTEP] refine' nonnegg_cases_right fun i h => sqLe_of_le _ _ (nonnegg_pos_neg.1 ha) [GOAL] case intro.intro.inr.inl.intro.intro.inl.refine'_1 d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : { re := ↑x, im := -↑y }.im + { re := ↑z, im := ↑w }.im = -↑i ⊢ i ≤ y [PROOFSTEP] dsimp only at h [GOAL] case intro.intro.inr.inl.intro.intro.inl.refine'_1 d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : -↑y + ↑w = -↑i ⊢ i ≤ y [PROOFSTEP] exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro w (by simp [*]))) [GOAL] d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : -↑y + ↑w = -↑i ⊢ -↑y + ↑w = -↑i [PROOFSTEP] simp [*] [GOAL] case intro.intro.inr.inl.intro.intro.inl.refine'_2 d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : { re := ↑x, im := -↑y }.im + { re := ↑z, im := ↑w }.im = -↑i ⊢ x ≤ x + z [PROOFSTEP] apply Nat.le_add_right [GOAL] case intro.intro.inr.inl.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := -↑w }) [PROOFSTEP] have : Nonneg ⟨_, _⟩ := nonnegg_pos_neg.2 (sqLe_add (nonnegg_pos_neg.1 ha) (nonnegg_pos_neg.1 hb)) [GOAL] case intro.intro.inr.inl.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } this : Nonneg { re := ↑(x + z), im := -↑(y + w) } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := -↑w }) [PROOFSTEP] rw [Nat.cast_add, Nat.cast_add, neg_add] at this [GOAL] case intro.intro.inr.inl.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } this : Nonneg { re := ↑x + ↑z, im := -↑y + -↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := ↑z, im := -↑w }) [PROOFSTEP] rwa [add_def] -- Porting note: was -- simpa [add_comm] using -- nonnegg_pos_neg.2 (sqLe_add (nonnegg_pos_neg.1 ha) (nonnegg_pos_neg.1 hb)) [GOAL] case intro.intro.inr.inl.intro.intro.inr.inr d x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] exact nonneg_add_lem ha hb [GOAL] case intro.intro.inr.inr.intro.intro.inl d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := ↑z, im := ↑w }) [PROOFSTEP] refine' nonnegg_cases_left fun i h => sqLe_of_le _ _ (nonnegg_neg_pos.1 ha) [GOAL] case intro.intro.inr.inr.intro.intro.inl.refine'_1 d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : { re := -↑x, im := ↑y }.re + { re := ↑z, im := ↑w }.re = -↑i ⊢ i ≤ x [PROOFSTEP] dsimp only at h [GOAL] case intro.intro.inr.inr.intro.intro.inl.refine'_1 d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : -↑x + ↑z = -↑i ⊢ i ≤ x [PROOFSTEP] exact Int.ofNat_le.1 (le_of_neg_le_neg (Int.le.intro _ h)) [GOAL] case intro.intro.inr.inr.intro.intro.inl.refine'_2 d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := ↑w } i : ℕ h : { re := -↑x, im := ↑y }.re + { re := ↑z, im := ↑w }.re = -↑i ⊢ y ≤ y + w [PROOFSTEP] apply Nat.le_add_right [GOAL] case intro.intro.inr.inr.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := ↑z, im := -↑w }) [PROOFSTEP] dsimp [GOAL] case intro.intro.inr.inr.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg { re := -↑x + ↑z, im := ↑y + -↑w } [PROOFSTEP] rw [add_comm, add_comm (y : ℤ)] [GOAL] case intro.intro.inr.inr.intro.intro.inr.inl d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg { re := ↑z + -↑x, im := -↑w + ↑y } [PROOFSTEP] exact nonneg_add_lem hb ha [GOAL] case intro.intro.inr.inr.intro.intro.inr.inr d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] have : Nonneg ⟨_, _⟩ := nonnegg_neg_pos.2 (sqLe_add (nonnegg_neg_pos.1 ha) (nonnegg_neg_pos.1 hb)) [GOAL] case intro.intro.inr.inr.intro.intro.inr.inr d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } this : Nonneg { re := -↑(x + z), im := ↑(y + w) } ⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] rw [Nat.cast_add, Nat.cast_add, neg_add] at this [GOAL] case intro.intro.inr.inr.intro.intro.inr.inr d x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } z w : ℕ hb : Nonneg { re := -↑z, im := ↑w } this : Nonneg { re := -↑x + -↑z, im := ↑y + ↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } + { re := -↑z, im := ↑w }) [PROOFSTEP] rwa [add_def] -- Porting note: was -- simpa [add_comm] using -- nonnegg_neg_pos.2 (sqLe_add (nonnegg_neg_pos.1 ha) (nonnegg_neg_pos.1 hb)) [GOAL] d : ℕ a : ℤ√↑d ⊢ Nonneg a ↔ Nonneg (a - 0) [PROOFSTEP] simp [GOAL] d : ℕ a b : ℤ√↑d ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] have t := (b - a).nonneg_total [GOAL] d : ℕ a b : ℤ√↑d t : Nonneg (b - a) ∨ Nonneg (-(b - a)) ⊢ a ≤ b ∨ b ≤ a [PROOFSTEP] rwa [neg_sub] at t [GOAL] d : ℕ a : ℤ√↑d ⊢ Nonneg (a - a) [PROOFSTEP] simp only [sub_self] [GOAL] d : ℕ a : ℤ√↑d ⊢ Nonneg 0 [PROOFSTEP] trivial [GOAL] d : ℕ a b c : ℤ√↑d hab : a ≤ b hbc : b ≤ c ⊢ a ≤ c [PROOFSTEP] simpa [sub_add_sub_cancel'] using hab.add hbc [GOAL] d : ℕ a : ℤ√↑d ⊢ ∃ n, a ≤ ↑n [PROOFSTEP] obtain ⟨x, y, (h : a ≤ ⟨x, y⟩)⟩ : ∃ x y : ℕ, Nonneg (⟨x, y⟩ + -a) := match -a with | ⟨Int.ofNat x, Int.ofNat y⟩ => ⟨0, 0, by trivial⟩ | ⟨Int.ofNat x, -[y+1]⟩ => ⟨0, y + 1, by simp [add_def, Int.negSucc_coe, add_assoc]; trivial⟩ | ⟨-[x+1], Int.ofNat y⟩ => ⟨x + 1, 0, by simp [Int.negSucc_coe, add_assoc]; trivial⟩ | ⟨-[x+1], -[y+1]⟩ => ⟨x + 1, y + 1, by simp [Int.negSucc_coe, add_assoc]; trivial⟩ [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg ({ re := ↑0, im := ↑0 } + { re := ofNat x, im := ofNat y }) [PROOFSTEP] trivial [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg ({ re := ↑0, im := ↑(y + 1) } + { re := ofNat x, im := -[y+1] }) [PROOFSTEP] simp [add_def, Int.negSucc_coe, add_assoc] [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg { re := ↑x, im := 0 } [PROOFSTEP] trivial [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg ({ re := ↑(x + 1), im := ↑0 } + { re := -[x+1], im := ofNat y }) [PROOFSTEP] simp [Int.negSucc_coe, add_assoc] [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg { re := 0, im := ↑y } [PROOFSTEP] trivial [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg ({ re := ↑(x + 1), im := ↑(y + 1) } + { re := -[x+1], im := -[y+1] }) [PROOFSTEP] simp [Int.negSucc_coe, add_assoc] [GOAL] d : ℕ a : ℤ√↑d x y : ℕ ⊢ Nonneg { re := 0, im := 0 } [PROOFSTEP] trivial [GOAL] case intro.intro d : ℕ a : ℤ√↑d x y : ℕ h : a ≤ { re := ↑x, im := ↑y } ⊢ ∃ n, a ≤ ↑n [PROOFSTEP] refine' ⟨x + d * y, h.trans _⟩ [GOAL] case intro.intro d : ℕ a : ℤ√↑d x y : ℕ h : a ≤ { re := ↑x, im := ↑y } ⊢ { re := ↑x, im := ↑y } ≤ ↑(x + d * y) [PROOFSTEP] change Nonneg ⟨↑x + d * y - ↑x, 0 - ↑y⟩ [GOAL] case intro.intro d : ℕ a : ℤ√↑d x y : ℕ h : a ≤ { re := ↑x, im := ↑y } ⊢ Nonneg { re := ↑x + ↑d * ↑y - ↑x, im := 0 - ↑y } [PROOFSTEP] cases' y with y [GOAL] case intro.intro.zero d : ℕ a : ℤ√↑d x : ℕ h : a ≤ { re := ↑x, im := ↑Nat.zero } ⊢ Nonneg { re := ↑x + ↑d * ↑Nat.zero - ↑x, im := 0 - ↑Nat.zero } [PROOFSTEP] simp [GOAL] case intro.intro.zero d : ℕ a : ℤ√↑d x : ℕ h : a ≤ { re := ↑x, im := ↑Nat.zero } ⊢ Nonneg { re := 0, im := 0 } [PROOFSTEP] trivial [GOAL] case intro.intro.succ d : ℕ a : ℤ√↑d x y : ℕ h : a ≤ { re := ↑x, im := ↑(Nat.succ y) } ⊢ Nonneg { re := ↑x + ↑d * ↑(Nat.succ y) - ↑x, im := 0 - ↑(Nat.succ y) } [PROOFSTEP] have h : ∀ y, SqLe y d (d * y) 1 := fun y => by simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_right (y * y) (Nat.le_mul_self d) [GOAL] d : ℕ a : ℤ√↑d x y✝ : ℕ h : a ≤ { re := ↑x, im := ↑(Nat.succ y✝) } y : ℕ ⊢ SqLe y d (d * y) 1 [PROOFSTEP] simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_right (y * y) (Nat.le_mul_self d) [GOAL] case intro.intro.succ d : ℕ a : ℤ√↑d x y : ℕ h✝ : a ≤ { re := ↑x, im := ↑(Nat.succ y) } h : ∀ (y : ℕ), SqLe y d (d * y) 1 ⊢ Nonneg { re := ↑x + ↑d * ↑(Nat.succ y) - ↑x, im := 0 - ↑(Nat.succ y) } [PROOFSTEP] rw [show (x : ℤ) + d * Nat.succ y - x = d * Nat.succ y by simp] [GOAL] d : ℕ a : ℤ√↑d x y : ℕ h✝ : a ≤ { re := ↑x, im := ↑(Nat.succ y) } h : ∀ (y : ℕ), SqLe y d (d * y) 1 ⊢ ↑x + ↑d * ↑(Nat.succ y) - ↑x = ↑d * ↑(Nat.succ y) [PROOFSTEP] simp [GOAL] case intro.intro.succ d : ℕ a : ℤ√↑d x y : ℕ h✝ : a ≤ { re := ↑x, im := ↑(Nat.succ y) } h : ∀ (y : ℕ), SqLe y d (d * y) 1 ⊢ Nonneg { re := ↑d * ↑(Nat.succ y), im := 0 - ↑(Nat.succ y) } [PROOFSTEP] exact h (y + 1) [GOAL] d : ℕ a b : ℤ√↑d ab : a ≤ b c : ℤ√↑d ⊢ Nonneg (c + b - (c + a)) [PROOFSTEP] rw [add_sub_add_left_eq_sub] [GOAL] d : ℕ a b : ℤ√↑d ab : a ≤ b c : ℤ√↑d ⊢ Nonneg (b - a) [PROOFSTEP] exact ab [GOAL] d : ℕ a b c : ℤ√↑d h : c + a ≤ c + b ⊢ a ≤ b [PROOFSTEP] simpa using Zsqrtd.add_le_add_left _ _ h (-c) [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha : Nonneg a ⊢ Nonneg (↑n * a) [PROOFSTEP] rw [← Int.cast_ofNat n] [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha : Nonneg a ⊢ Nonneg (↑↑n * a) [PROOFSTEP] exact match a, nonneg_cases ha, ha with | _, ⟨x, y, Or.inl rfl⟩, _ => by rw [smul_val]; trivial | _, ⟨x, y, Or.inr <| Or.inl rfl⟩, ha => by rw [smul_val]; simpa using nonnegg_pos_neg.2 (sqLe_smul n <| nonnegg_pos_neg.1 ha) | _, ⟨x, y, Or.inr <| Or.inr rfl⟩, ha => by rw [smul_val]; simpa using nonnegg_neg_pos.2 (sqLe_smul n <| nonnegg_neg_pos.1 ha) [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha : Nonneg a x y : ℕ x✝ : Nonneg { re := ↑x, im := ↑y } ⊢ Nonneg (↑↑n * { re := ↑x, im := ↑y }) [PROOFSTEP] rw [smul_val] [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha : Nonneg a x y : ℕ x✝ : Nonneg { re := ↑x, im := ↑y } ⊢ Nonneg { re := ↑n * ↑x, im := ↑n * ↑y } [PROOFSTEP] trivial [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } ⊢ Nonneg (↑↑n * { re := ↑x, im := -↑y }) [PROOFSTEP] rw [smul_val] [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } ⊢ Nonneg { re := ↑n * ↑x, im := ↑n * -↑y } [PROOFSTEP] simpa using nonnegg_pos_neg.2 (sqLe_smul n <| nonnegg_pos_neg.1 ha) [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } ⊢ Nonneg (↑↑n * { re := -↑x, im := ↑y }) [PROOFSTEP] rw [smul_val] [GOAL] d : ℕ a : ℤ√↑d n : ℕ ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } ⊢ Nonneg { re := ↑n * -↑x, im := ↑n * ↑y } [PROOFSTEP] simpa using nonnegg_neg_pos.2 (sqLe_smul n <| nonnegg_neg_pos.1 ha) [GOAL] d : ℕ a : ℤ√↑d ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } ⊢ Nonneg (sqrtd * { re := ↑x, im := -↑y }) [PROOFSTEP] simp only [muld_val, mul_neg] [GOAL] d : ℕ a : ℤ√↑d ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } ⊢ Nonneg { re := -(↑d * ↑y), im := ↑x } [PROOFSTEP] apply nonnegg_neg_pos.2 [GOAL] d : ℕ a : ℤ√↑d ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := ↑x, im := -↑y } ⊢ SqLe (d * y) 1 x d [PROOFSTEP] simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_left d (nonnegg_pos_neg.1 ha) [GOAL] d : ℕ a : ℤ√↑d ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } ⊢ Nonneg (sqrtd * { re := -↑x, im := ↑y }) [PROOFSTEP] simp only [muld_val] [GOAL] d : ℕ a : ℤ√↑d ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } ⊢ Nonneg { re := ↑d * ↑y, im := -↑x } [PROOFSTEP] apply nonnegg_pos_neg.2 [GOAL] d : ℕ a : ℤ√↑d ha✝ : Nonneg a x y : ℕ ha : Nonneg { re := -↑x, im := ↑y } ⊢ SqLe x d (d * y) 1 [PROOFSTEP] simpa [SqLe, mul_comm, mul_left_comm] using Nat.mul_le_mul_left d (nonnegg_neg_pos.1 ha) [GOAL] d x y : ℕ a : ℤ√↑d ha : Nonneg a ⊢ Nonneg ({ re := ↑x, im := ↑y } * a) [PROOFSTEP] have : (⟨x, y⟩ * a : ℤ√d) = (x : ℤ√d) * a + sqrtd * ((y : ℤ√d) * a) := by rw [decompose, right_distrib, mul_assoc, Int.cast_ofNat, Int.cast_ofNat] [GOAL] d x y : ℕ a : ℤ√↑d ha : Nonneg a ⊢ { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a) [PROOFSTEP] rw [decompose, right_distrib, mul_assoc, Int.cast_ofNat, Int.cast_ofNat] [GOAL] d x y : ℕ a : ℤ√↑d ha : Nonneg a this : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a) ⊢ Nonneg ({ re := ↑x, im := ↑y } * a) [PROOFSTEP] rw [this] [GOAL] d x y : ℕ a : ℤ√↑d ha : Nonneg a this : { re := ↑x, im := ↑y } * a = ↑x * a + sqrtd * (↑y * a) ⊢ Nonneg (↑x * a + sqrtd * (↑y * a)) [PROOFSTEP] exact (nonneg_smul ha).add (nonneg_muld <| nonneg_smul ha) [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } x✝ : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } * { re := ↑z, im := ↑w }) [PROOFSTEP] rw [mul_comm] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } x✝ : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := ↑z, im := ↑w } * { re := -↑x, im := ↑y }) [PROOFSTEP] exact nonneg_mul_lem ha [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } x✝ : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } * { re := ↑z, im := ↑w }) [PROOFSTEP] rw [mul_comm] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } x✝ : Nonneg { re := ↑z, im := ↑w } ⊢ Nonneg ({ re := ↑z, im := ↑w } * { re := ↑x, im := -↑y }) [PROOFSTEP] exact nonneg_mul_lem ha [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } * { re := -↑z, im := ↑w }) [PROOFSTEP] rw [calc (⟨-x, y⟩ * ⟨-z, w⟩ : ℤ√d) = ⟨_, _⟩ := rfl _ = ⟨x * z + d * y * w, -(x * w + y * z)⟩ := by simp [add_comm]] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } hb : Nonneg { re := -↑z, im := ↑w } ⊢ { re := { re := -↑x, im := ↑y }.re * { re := -↑z, im := ↑w }.re + ↑d * { re := -↑x, im := ↑y }.im * { re := -↑z, im := ↑w }.im, im := { re := -↑x, im := ↑y }.re * { re := -↑z, im := ↑w }.im + { re := -↑x, im := ↑y }.im * { re := -↑z, im := ↑w }.re } = { re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) } [PROOFSTEP] simp [add_comm] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg { re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) } [PROOFSTEP] exact nonnegg_pos_neg.2 (sqLe_mul.left (nonnegg_neg_pos.1 ha) (nonnegg_neg_pos.1 hb)) [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg ({ re := -↑x, im := ↑y } * { re := ↑z, im := -↑w }) [PROOFSTEP] rw [calc (⟨-x, y⟩ * ⟨z, -w⟩ : ℤ√d) = ⟨_, _⟩ := rfl _ = ⟨-(x * z + d * y * w), x * w + y * z⟩ := by simp [add_comm]] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } hb : Nonneg { re := ↑z, im := -↑w } ⊢ { re := { re := -↑x, im := ↑y }.re * { re := ↑z, im := -↑w }.re + ↑d * { re := -↑x, im := ↑y }.im * { re := ↑z, im := -↑w }.im, im := { re := -↑x, im := ↑y }.re * { re := ↑z, im := -↑w }.im + { re := -↑x, im := ↑y }.im * { re := ↑z, im := -↑w }.re } = { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z } [PROOFSTEP] simp [add_comm] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := -↑x, im := ↑y } hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z } [PROOFSTEP] exact nonnegg_neg_pos.2 (sqLe_mul.right.left (nonnegg_neg_pos.1 ha) (nonnegg_pos_neg.1 hb)) [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } * { re := -↑z, im := ↑w }) [PROOFSTEP] rw [calc (⟨x, -y⟩ * ⟨-z, w⟩ : ℤ√d) = ⟨_, _⟩ := rfl _ = ⟨-(x * z + d * y * w), x * w + y * z⟩ := by simp [add_comm]] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } hb : Nonneg { re := -↑z, im := ↑w } ⊢ { re := { re := ↑x, im := -↑y }.re * { re := -↑z, im := ↑w }.re + ↑d * { re := ↑x, im := -↑y }.im * { re := -↑z, im := ↑w }.im, im := { re := ↑x, im := -↑y }.re * { re := -↑z, im := ↑w }.im + { re := ↑x, im := -↑y }.im * { re := -↑z, im := ↑w }.re } = { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z } [PROOFSTEP] simp [add_comm] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } hb : Nonneg { re := -↑z, im := ↑w } ⊢ Nonneg { re := -(↑x * ↑z + ↑d * ↑y * ↑w), im := ↑x * ↑w + ↑y * ↑z } [PROOFSTEP] exact nonnegg_neg_pos.2 (sqLe_mul.right.right.left (nonnegg_pos_neg.1 ha) (nonnegg_neg_pos.1 hb)) [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg ({ re := ↑x, im := -↑y } * { re := ↑z, im := -↑w }) [PROOFSTEP] rw [calc (⟨x, -y⟩ * ⟨z, -w⟩ : ℤ√d) = ⟨_, _⟩ := rfl _ = ⟨x * z + d * y * w, -(x * w + y * z)⟩ := by simp [add_comm]] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } hb : Nonneg { re := ↑z, im := -↑w } ⊢ { re := { re := ↑x, im := -↑y }.re * { re := ↑z, im := -↑w }.re + ↑d * { re := ↑x, im := -↑y }.im * { re := ↑z, im := -↑w }.im, im := { re := ↑x, im := -↑y }.re * { re := ↑z, im := -↑w }.im + { re := ↑x, im := -↑y }.im * { re := ↑z, im := -↑w }.re } = { re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) } [PROOFSTEP] simp [add_comm] [GOAL] d : ℕ a b : ℤ√↑d ha✝ : Nonneg a hb✝ : Nonneg b x y z w : ℕ ha : Nonneg { re := ↑x, im := -↑y } hb : Nonneg { re := ↑z, im := -↑w } ⊢ Nonneg { re := ↑x * ↑z + ↑d * ↑y * ↑w, im := -(↑x * ↑w + ↑y * ↑z) } [PROOFSTEP] exact nonnegg_pos_neg.2 (sqLe_mul.right.right.right (nonnegg_pos_neg.1 ha) (nonnegg_pos_neg.1 hb)) [GOAL] d : ℕ a b : ℤ√↑d ⊢ 0 ≤ a → 0 ≤ b → 0 ≤ a * b [PROOFSTEP] simp_rw [← nonneg_iff_zero_le] [GOAL] d : ℕ a b : ℤ√↑d ⊢ Nonneg a → Nonneg b → Nonneg (a * b) [PROOFSTEP] exact nonneg_mul [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ h : x * x = d * y * y g : ℕ := Nat.gcd x y gpos : g > 0 ⊢ False [PROOFSTEP] let ⟨m, n, co, (hx : x = m * g), (hy : y = n * g)⟩ := Nat.exists_coprime gpos [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ h : x * x = d * y * y g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ co : Nat.coprime m n hx : x = m * g hy : y = n * g ⊢ False [PROOFSTEP] rw [hx, hy] at h [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g ⊢ False [PROOFSTEP] have : m * m = d * (n * n) := by refine mul_left_cancel₀ (mul_pos gpos gpos).ne' ?_ -- Porting note: was `simpa [mul_comm, mul_left_comm] using h` calc g * g * (m * m) _ = m * g * (m * g) := by ring _ = d * (n * g) * (n * g) := h _ = g * g * (d * (n * n)) := by ring [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g ⊢ m * m = d * (n * n) [PROOFSTEP] refine mul_left_cancel₀ (mul_pos gpos gpos).ne' ?_ -- Porting note: was `simpa [mul_comm, mul_left_comm] using h` [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g ⊢ g * g * (m * m) = g * g * (d * (n * n)) [PROOFSTEP] calc g * g * (m * m) _ = m * g * (m * g) := by ring _ = d * (n * g) * (n * g) := h _ = g * g * (d * (n * n)) := by ring [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g ⊢ g * g * (m * m) = m * g * (m * g) [PROOFSTEP] ring [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g ⊢ d * (n * g) * (n * g) = g * g * (d * (n * n)) [PROOFSTEP] ring [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g this : m * m = d * (n * n) ⊢ False [PROOFSTEP] have co2 := let co1 := co.mul_right co co1.mul co1 [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g this : m * m = d * (n * n) co2 : Nat.coprime (m * m) (n * n) ⊢ False [PROOFSTEP] exact Nonsquare.ns d m (Nat.dvd_antisymm (by rw [this]; apply dvd_mul_right) <| co2.dvd_of_dvd_mul_right <| by simp [this]) [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g this : m * m = d * (n * n) co2 : Nat.coprime (m * m) (n * n) ⊢ d ∣ m * m [PROOFSTEP] rw [this] [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g this : m * m = d * (n * n) co2 : Nat.coprime (m * m) (n * n) ⊢ d ∣ d * (n * n) [PROOFSTEP] apply dvd_mul_right [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ g : ℕ := Nat.gcd x y gpos : g > 0 m n : ℕ h : m * g * (m * g) = d * (n * g) * (n * g) co : Nat.coprime m n hx : x = m * g hy : y = n * g this : m * m = d * (n * n) co2 : Nat.coprime (m * m) (n * n) ⊢ m * m ∣ d * (n * n) [PROOFSTEP] simp [this] [GOAL] d : ℕ dnsq : Nonsquare d x y : ℤ h : x * x = ↑d * y * y ⊢ x = 0 ∧ y = 0 [PROOFSTEP] rw [mul_assoc, ← Int.natAbs_mul_self, ← Int.natAbs_mul_self, ← Int.ofNat_mul, ← mul_assoc] at h [GOAL] d : ℕ dnsq : Nonsquare d x y : ℤ h : ↑(Int.natAbs x * Int.natAbs x) = ↑(d * Int.natAbs y * Int.natAbs y) ⊢ x = 0 ∧ y = 0 [PROOFSTEP] exact let ⟨h1, h2⟩ := divides_sq_eq_zero (Int.ofNat.inj h) ⟨Int.natAbs_eq_zero.mp h1, Int.natAbs_eq_zero.mp h2⟩ [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ e : (x + 1) * (x + 1) = d * (y + 1) * (y + 1) ⊢ False [PROOFSTEP] have t := (divides_sq_eq_zero e).left [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ e : (x + 1) * (x + 1) = d * (y + 1) * (y + 1) t : x + 1 = 0 ⊢ False [PROOFSTEP] contradiction [GOAL] d : ℕ dnsq : Nonsquare d x : ℕ xy : Nonneg { re := -[x+1], im := 0 } x✝ : Nonneg (-{ re := -[x+1], im := 0 }) ⊢ 0 < 1 [PROOFSTEP] decide [GOAL] d : ℕ dnsq : Nonsquare d x : ℕ x✝ : Nonneg { re := ↑(x + 1), im := 0 } yx : Nonneg (-{ re := ↑(x + 1), im := 0 }) ⊢ 0 < 1 [PROOFSTEP] decide [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ xy : SqLe (y + 1) d (x + 1) 1 yx : SqLe (Nat.add x 0 + 1) 1 (Nat.succ y) d ⊢ { re := ↑(x + 1), im := -[y+1] } = 0 [PROOFSTEP] let t := le_antisymm yx xy [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ xy : SqLe (y + 1) d (x + 1) 1 yx : SqLe (Nat.add x 0 + 1) 1 (Nat.succ y) d t : 1 * (Nat.add x 0 + 1) * (Nat.add x 0 + 1) = d * Nat.succ y * Nat.succ y := le_antisymm yx xy ⊢ { re := ↑(x + 1), im := -[y+1] } = 0 [PROOFSTEP] rw [one_mul] at t [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ xy : SqLe (y + 1) d (x + 1) 1 yx : SqLe (Nat.add x 0 + 1) 1 (Nat.succ y) d t : (Nat.add x 0 + 1) * (Nat.add x 0 + 1) = d * Nat.succ y * Nat.succ y ⊢ { re := ↑(x + 1), im := -[y+1] } = 0 [PROOFSTEP] exact absurd t (not_divides_sq _ _) [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ xy : SqLe (x + 1) 1 (y + 1) d yx : SqLe (Nat.add y 0 + 1) d (Nat.succ x) 1 ⊢ { re := -[x+1], im := ↑(y + 1) } = 0 [PROOFSTEP] let t := le_antisymm xy yx [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ xy : SqLe (x + 1) 1 (y + 1) d yx : SqLe (Nat.add y 0 + 1) d (Nat.succ x) 1 t : 1 * (x + 1) * (x + 1) = d * (y + 1) * (y + 1) := le_antisymm xy yx ⊢ { re := -[x+1], im := ↑(y + 1) } = 0 [PROOFSTEP] rw [one_mul] at t [GOAL] d : ℕ dnsq : Nonsquare d x y : ℕ xy : SqLe (x + 1) 1 (y + 1) d yx : SqLe (Nat.add y 0 + 1) d (Nat.succ x) 1 t : (x + 1) * (x + 1) = d * (y + 1) * (y + 1) ⊢ { re := -[x+1], im := ↑(y + 1) } = 0 [PROOFSTEP] exact absurd t (not_divides_sq _ _) [GOAL] d : ℕ dnsq : Nonsquare d a b : ℤ√↑d ab : a ≤ b ba : b ≤ a ⊢ Nonneg (-(a - b)) [PROOFSTEP] rwa [neg_sub] [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h : { re := x, im := y } * { re := z, im := w } = 0 ⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0 [PROOFSTEP] injection h with h1 h2 [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1 : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2 : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 ⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0 [PROOFSTEP] have h1 : x * z = -(d * y * w) := eq_neg_of_add_eq_zero_left h1 [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2 : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) ⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0 [PROOFSTEP] have h2 : x * w = -(y * z) := eq_neg_of_add_eq_zero_left h2 [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) h2 : x * w = -(y * z) ⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0 [PROOFSTEP] have fin : x * x = d * y * y → (⟨x, y⟩ : ℤ√d) = 0 := fun e => match x, y, divides_sq_eq_zero_z e with | _, _, ⟨rfl, rfl⟩ => rfl [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) h2 : x * w = -(y * z) fin : x * x = ↑d * y * y → { re := x, im := y } = 0 ⊢ { re := x, im := y } = 0 ∨ { re := z, im := w } = 0 [PROOFSTEP] exact if z0 : z = 0 then if w0 : w = 0 then Or.inr (match z, w, z0, w0 with | _, _, rfl, rfl => rfl) else Or.inl <| fin <| mul_right_cancel₀ w0 <| calc x * x * w = -y * (x * z) := by simp [h2, mul_assoc, mul_left_comm] _ = d * y * y * w := by simp [h1, mul_assoc, mul_left_comm] else Or.inl <| fin <| mul_right_cancel₀ z0 <| calc x * x * z = d * -y * (x * w) := by simp [h1, mul_assoc, mul_left_comm] _ = d * y * y * z := by simp [h2, mul_assoc, mul_left_comm] [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) h2 : x * w = -(y * z) fin : x * x = ↑d * y * y → { re := x, im := y } = 0 z0 : z = 0 w0 : ¬w = 0 ⊢ x * x * w = -y * (x * z) [PROOFSTEP] simp [h2, mul_assoc, mul_left_comm] [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) h2 : x * w = -(y * z) fin : x * x = ↑d * y * y → { re := x, im := y } = 0 z0 : z = 0 w0 : ¬w = 0 ⊢ -y * (x * z) = ↑d * y * y * w [PROOFSTEP] simp [h1, mul_assoc, mul_left_comm] [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) h2 : x * w = -(y * z) fin : x * x = ↑d * y * y → { re := x, im := y } = 0 z0 : ¬z = 0 ⊢ x * x * z = ↑d * -y * (x * w) [PROOFSTEP] simp [h1, mul_assoc, mul_left_comm] [GOAL] d : ℕ dnsq : Nonsquare d x y z w : ℤ h1✝ : { re := x, im := y }.re * { re := z, im := w }.re + ↑d * { re := x, im := y }.im * { re := z, im := w }.im = 0 h2✝ : { re := x, im := y }.re * { re := z, im := w }.im + { re := x, im := y }.im * { re := z, im := w }.re = 0 h1 : x * z = -(↑d * y * w) h2 : x * w = -(y * z) fin : x * x = ↑d * y * y → { re := x, im := y } = 0 z0 : ¬z = 0 ⊢ ↑d * -y * (x * w) = ↑d * y * y * z [PROOFSTEP] simp [h2, mul_assoc, mul_left_comm] [GOAL] d : ℕ dnsq : Nonsquare d src✝² : CommRing (ℤ√↑d) := commRing src✝¹ : LinearOrder (ℤ√↑d) := linearOrder src✝ : Nontrivial (ℤ√↑d) := nontrivial ⊢ 0 ≤ 1 [PROOFSTEP] trivial [GOAL] d : ℕ dnsq : Nonsquare d ⊢ LinearOrderedRing (ℤ√↑d) [PROOFSTEP] infer_instance [GOAL] d : ℕ dnsq : Nonsquare d ⊢ OrderedRing (ℤ√↑d) [PROOFSTEP] infer_instance [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ⊢ norm a = 0 ↔ a = 0 [PROOFSTEP] refine' ⟨fun ha => ext.mpr _, fun h => by rw [h, norm_zero]⟩ [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d h : a = 0 ⊢ norm a = 0 [PROOFSTEP] rw [h, norm_zero] [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : norm a = 0 ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] dsimp only [norm] at ha [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re - d * a.im * a.im = 0 ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] rw [sub_eq_zero] at ha [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] by_cases h : 0 ≤ d [GOAL] case pos d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : 0 ≤ d ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] obtain ⟨d', rfl⟩ := Int.eq_ofNat_of_zero_le h [GOAL] case pos.intro d' : ℕ h_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n a : ℤ√↑d' ha : a.re * a.re = ↑d' * a.im * a.im h : 0 ≤ ↑d' ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] haveI : Nonsquare d' := ⟨fun n h => h_nonsquare n <| by exact_mod_cast h⟩ [GOAL] d' : ℕ h_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n a : ℤ√↑d' ha : a.re * a.re = ↑d' * a.im * a.im h✝ : 0 ≤ ↑d' n : ℕ h : d' = n * n ⊢ ↑d' = ↑n * ↑n [PROOFSTEP] exact_mod_cast h [GOAL] case pos.intro d' : ℕ h_nonsquare : ∀ (n : ℤ), ↑d' ≠ n * n a : ℤ√↑d' ha : a.re * a.re = ↑d' * a.im * a.im h : 0 ≤ ↑d' this : Nonsquare d' ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] exact divides_sq_eq_zero_z ha [GOAL] case neg d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : ¬0 ≤ d ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] push_neg at h [GOAL] case neg d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : d < 0 ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] suffices a.re * a.re = 0 by rw [eq_zero_of_mul_self_eq_zero this] at ha ⊢ simpa only [true_and_iff, or_self_right, zero_re, zero_im, eq_self_iff_true, zero_eq_mul, mul_zero, mul_eq_zero, h.ne, false_or_iff, or_self_iff] using ha [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : d < 0 this : a.re * a.re = 0 ⊢ a.re = 0.re ∧ a.im = 0.im [PROOFSTEP] rw [eq_zero_of_mul_self_eq_zero this] at ha ⊢ [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : 0 * 0 = d * a.im * a.im h : d < 0 this : a.re * a.re = 0 ⊢ 0 = 0.re ∧ a.im = 0.im [PROOFSTEP] simpa only [true_and_iff, or_self_right, zero_re, zero_im, eq_self_iff_true, zero_eq_mul, mul_zero, mul_eq_zero, h.ne, false_or_iff, or_self_iff] using ha [GOAL] case neg d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : d < 0 ⊢ a.re * a.re = 0 [PROOFSTEP] apply _root_.le_antisymm _ (mul_self_nonneg _) [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : d < 0 ⊢ a.re * a.re ≤ 0 [PROOFSTEP] rw [ha, mul_assoc] [GOAL] d : ℤ h_nonsquare : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : a.re * a.re = d * a.im * a.im h : d < 0 ⊢ d * (a.im * a.im) ≤ 0 [PROOFSTEP] exact mul_nonpos_of_nonpos_of_nonneg h.le (mul_self_nonneg _) [GOAL] R : Type inst✝ : Ring R d : ℤ f g : ℤ√d →+* R h : ↑f sqrtd = ↑g sqrtd ⊢ f = g [PROOFSTEP] ext ⟨x_re, x_im⟩ [GOAL] case a.mk R : Type inst✝ : Ring R d : ℤ f g : ℤ√d →+* R h : ↑f sqrtd = ↑g sqrtd x_re x_im : ℤ ⊢ ↑f { re := x_re, im := x_im } = ↑g { re := x_re, im := x_im } [PROOFSTEP] simp [decompose, h] [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } ⊢ (fun a => ↑a.re + ↑a.im * ↑r) 1 = 1 [PROOFSTEP] simp [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } a b : ℤ√d ⊢ OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b [PROOFSTEP] have : (a.re + a.im * r : R) * (b.re + b.im * r) = a.re * b.re + (a.re * b.im + a.im * b.re) * r + a.im * b.im * (r * r) := by ring [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } a b : ℤ√d ⊢ (↑a.re + ↑a.im * ↑r) * (↑b.re + ↑b.im * ↑r) = ↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * (↑r * ↑r) [PROOFSTEP] ring [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } a b : ℤ√d this : (↑a.re + ↑a.im * ↑r) * (↑b.re + ↑b.im * ↑r) = ↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * (↑r * ↑r) ⊢ OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b [PROOFSTEP] simp [this, r.prop] [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } a b : ℤ√d this : (↑a.re + ↑a.im * ↑r) * (↑b.re + ↑b.im * ↑r) = ↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * (↑r * ↑r) ⊢ ↑a.re * ↑b.re + ↑d * ↑a.im * ↑b.im + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r = ↑a.re * ↑b.re + (↑a.re * ↑b.im + ↑a.im * ↑b.re) * ↑r + ↑a.im * ↑b.im * ↑d [PROOFSTEP] ring [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) 0 = 0 [PROOFSTEP] simp [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } a b : ℤ√d ⊢ OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) b [PROOFSTEP] simp [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } a b : ℤ√d ⊢ ↑a.re + ↑b.re + (↑a.im + ↑b.im) * ↑r = ↑a.re + ↑a.im * ↑r + (↑b.re + ↑b.im * ↑r) [PROOFSTEP] ring [GOAL] R : Type inst✝ : CommRing R d : ℤ f : ℤ√d →+* R ⊢ ↑f sqrtd * ↑f sqrtd = ↑d [PROOFSTEP] rw [← f.map_mul, dmuld, map_intCast] [GOAL] R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } ⊢ (fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) }) ((fun r => { toMonoidHom := { toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }, map_zero' := (_ : ↑0 + ↑0 * ↑r = 0), map_add' := (_ : ∀ (a b : ℤ√d), OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) b) }) r) = r [PROOFSTEP] ext [GOAL] case a R : Type inst✝ : CommRing R d : ℤ r : { r // r * r = ↑d } ⊢ ↑((fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) }) ((fun r => { toMonoidHom := { toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }, map_zero' := (_ : ↑0 + ↑0 * ↑r = 0), map_add' := (_ : ∀ (a b : ℤ√d), OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) b) }) r)) = ↑r [PROOFSTEP] simp [GOAL] R : Type inst✝ : CommRing R d : ℤ f : ℤ√d →+* R ⊢ (fun r => { toMonoidHom := { toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }, map_zero' := (_ : ↑0 + ↑0 * ↑r = 0), map_add' := (_ : ∀ (a b : ℤ√d), OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) b) }) ((fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) }) f) = f [PROOFSTEP] refine hom_ext _ _ ?_ [GOAL] R : Type inst✝ : CommRing R d : ℤ f : ℤ√d →+* R ⊢ ↑((fun r => { toMonoidHom := { toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }, map_zero' := (_ : ↑0 + ↑0 * ↑r = 0), map_add' := (_ : ∀ (a b : ℤ√d), OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) (a + b) = OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) a + OneHom.toFun (↑{ toOneHom := { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) }, map_mul' := (_ : ∀ (a b : ℤ√d), OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } (a * b) = OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } a * OneHom.toFun { toFun := fun a => ↑a.re + ↑a.im * ↑r, map_one' := (_ : ↑1 + ↑0 * ↑r = 1) } b) }) b) }) ((fun f => { val := ↑f sqrtd, property := (_ : ↑f sqrtd * ↑f sqrtd = ↑d) }) f)) sqrtd = ↑f sqrtd [PROOFSTEP] simp [GOAL] R : Type inst✝¹ : CommRing R inst✝ : CharZero R d : ℤ r : { r // r * r = ↑d } hd : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : ↑(↑lift r) a = 0 ⊢ a = 0 [PROOFSTEP] have h_inj : Function.Injective ((↑) : ℤ → R) := Int.cast_injective [GOAL] R : Type inst✝¹ : CommRing R inst✝ : CharZero R d : ℤ r : { r // r * r = ↑d } hd : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : ↑(↑lift r) a = 0 h_inj : Function.Injective Int.cast ⊢ a = 0 [PROOFSTEP] suffices lift r a.norm = 0 by simp only [coe_int_re, add_zero, lift_apply_apply, coe_int_im, Int.cast_zero, zero_mul] at this rwa [← Int.cast_zero, h_inj.eq_iff, norm_eq_zero hd] at this [GOAL] R : Type inst✝¹ : CommRing R inst✝ : CharZero R d : ℤ r : { r // r * r = ↑d } hd : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : ↑(↑lift r) a = 0 h_inj : Function.Injective Int.cast this : ↑(↑lift r) ↑(norm a) = 0 ⊢ a = 0 [PROOFSTEP] simp only [coe_int_re, add_zero, lift_apply_apply, coe_int_im, Int.cast_zero, zero_mul] at this [GOAL] R : Type inst✝¹ : CommRing R inst✝ : CharZero R d : ℤ r : { r // r * r = ↑d } hd : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : ↑(↑lift r) a = 0 h_inj : Function.Injective Int.cast this : ↑(norm a) = 0 ⊢ a = 0 [PROOFSTEP] rwa [← Int.cast_zero, h_inj.eq_iff, norm_eq_zero hd] at this [GOAL] R : Type inst✝¹ : CommRing R inst✝ : CharZero R d : ℤ r : { r // r * r = ↑d } hd : ∀ (n : ℤ), d ≠ n * n a : ℤ√d ha : ↑(↑lift r) a = 0 h_inj : Function.Injective Int.cast ⊢ ↑(↑lift r) ↑(norm a) = 0 [PROOFSTEP] rw [norm_eq_mul_conj, RingHom.map_mul, ha, zero_mul] [GOAL] R : Type inst✝ : CommRing R d : ℤ a : ℤ√d ⊢ norm a = 1 ↔ a ∈ unitary (ℤ√d) [PROOFSTEP] rw [unitary.mem_iff_self_mul_star, ← norm_eq_mul_conj] [GOAL] R : Type inst✝ : CommRing R d : ℤ a : ℤ√d ⊢ norm a = 1 ↔ ↑(norm a) = 1 [PROOFSTEP] norm_cast
{"mathlib_filename": "Mathlib.NumberTheory.Zsqrtd.Basic", "llama_tokens": 53655}
[GOAL] ⊢ ∀ (x y : ZMod 4), OneHom.toFun { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) } (x * y) = OneHom.toFun { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) } x * OneHom.toFun { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) } y [PROOFSTEP] decide [GOAL] ⊢ ∀ (a : ZMod 4), ¬IsUnit a → OneHom.toFun (↑{ toOneHom := { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) }, map_mul' := (_ : ∀ (x y : ZMod 4), OneHom.toFun { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) } (x * y) = OneHom.toFun { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) } x * OneHom.toFun { toFun := ![0, 1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, -1] 1) } y) }) a = 0 [PROOFSTEP] decide [GOAL] ⊢ MulChar.IsQuadratic χ₄ [PROOFSTEP] intro a [GOAL] a : ZMod 4 ⊢ ↑χ₄ a = 0 ∨ ↑χ₄ a = 1 ∨ ↑χ₄ a = -1 [PROOFSTEP] fin_cases a [GOAL] case head ⊢ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 0 ∨ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 1 ∨ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = -1 case tail.head ⊢ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 0 ∨ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 1 ∨ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = -1 case tail.tail.head ⊢ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 0 ∨ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 1 ∨ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = -1 case tail.tail.tail.head ⊢ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 0 ∨ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 1 ∨ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = -1 [PROOFSTEP] all_goals decide [GOAL] case head ⊢ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 0 ∨ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = 1 ∨ ↑χ₄ { val := 0, isLt := (_ : 0 < 3 + 1) } = -1 [PROOFSTEP] decide [GOAL] case tail.head ⊢ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 0 ∨ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = 1 ∨ ↑χ₄ { val := 1, isLt := (_ : (fun a => a < 3 + 1) 1) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.head ⊢ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 0 ∨ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = 1 ∨ ↑χ₄ { val := 2, isLt := (_ : (fun a => (fun a => a < 3 + 1) a) 2) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.head ⊢ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 0 ∨ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = 1 ∨ ↑χ₄ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 3 + 1) a) a) 3) } = -1 [PROOFSTEP] decide [GOAL] n : ℕ ⊢ ↑χ₄ ↑n = ↑χ₄ ↑(n % 4) [PROOFSTEP] rw [← ZMod.nat_cast_mod n 4] [GOAL] n : ℤ ⊢ ↑χ₄ ↑n = ↑χ₄ ↑(n % 4) [PROOFSTEP] rw [← ZMod.int_cast_mod n 4] [GOAL] n : ℤ ⊢ ↑χ₄ ↑(n % ↑4) = ↑χ₄ ↑(n % 4) [PROOFSTEP] norm_cast [GOAL] n : ℤ ⊢ ↑χ₄ ↑n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1 [PROOFSTEP] have help : ∀ m : ℤ, 0 ≤ m → m < 4 → χ₄ m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 := by decide [GOAL] n : ℤ ⊢ ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 [PROOFSTEP] decide [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 ⊢ ↑χ₄ ↑n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1 [PROOFSTEP] rw [← Int.emod_emod_of_dvd n (by norm_num : (2 : ℤ) ∣ 4), ← ZMod.int_cast_mod n 4] [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 ⊢ 2 ∣ 4 [PROOFSTEP] norm_num [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 ⊢ ↑χ₄ ↑(n % ↑4) = if n % 4 % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1 [PROOFSTEP] exact help (n % 4) (Int.emod_nonneg n (by norm_num)) (Int.emod_lt n (by norm_num)) [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 ⊢ 4 ≠ 0 [PROOFSTEP] norm_num [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 4 → ↑χ₄ ↑m = if m % 2 = 0 then 0 else if m = 1 then 1 else -1 ⊢ 4 ≠ 0 [PROOFSTEP] norm_num [GOAL] n : ℕ ⊢ ↑χ₄ ↑n = if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1 [PROOFSTEP] exact_mod_cast χ₄_int_eq_if_mod_four n [GOAL] n : ℕ hn : n % 2 = 1 ⊢ ↑χ₄ ↑n = (-1) ^ (n / 2) [PROOFSTEP] rw [χ₄_nat_eq_if_mod_four] [GOAL] n : ℕ hn : n % 2 = 1 ⊢ (if n % 2 = 0 then 0 else if n % 4 = 1 then 1 else -1) = (-1) ^ (n / 2) [PROOFSTEP] simp only [hn, Nat.one_ne_zero, if_false] [GOAL] n : ℕ hn : n % 2 = 1 ⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ (n / 2) [PROOFSTEP] conv_rhs => -- Porting note: was `nth_rw` arg 2; rw [← Nat.div_add_mod n 4] enter [1, 1, 1]; rw [(by norm_num : 4 = 2 * 2)] [GOAL] n : ℕ hn : n % 2 = 1 | (-1) ^ (n / 2) [PROOFSTEP] arg 2; rw [← Nat.div_add_mod n 4] enter [1, 1, 1]; rw [(by norm_num : 4 = 2 * 2)] [GOAL] n : ℕ hn : n % 2 = 1 | (-1) ^ (n / 2) [PROOFSTEP] arg 2; rw [← Nat.div_add_mod n 4] enter [1, 1, 1]; rw [(by norm_num : 4 = 2 * 2)] [GOAL] n : ℕ hn : n % 2 = 1 | (-1) ^ (n / 2) [PROOFSTEP] arg 2 [GOAL] n : ℕ hn : n % 2 = 1 | n / 2 [PROOFSTEP] rw [← Nat.div_add_mod n 4] [GOAL] n : ℕ hn : n % 2 = 1 | (4 * (n / 4) + n % 4) / 2 [PROOFSTEP] enter [1, 1, 1] [GOAL] n : ℕ hn : n % 2 = 1 | 4 [PROOFSTEP] rw [(by norm_num : 4 = 2 * 2)] [GOAL] n : ℕ hn : n % 2 = 1 ⊢ 4 = 2 * 2 [PROOFSTEP] norm_num [GOAL] n : ℕ hn : n % 2 = 1 ⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ ((2 * 2 * (n / 4) + n % 4) / 2) [PROOFSTEP] rw [mul_assoc, add_comm, Nat.add_mul_div_left _ _ (by norm_num : 0 < 2), pow_add, pow_mul, neg_one_sq, one_pow, mul_one] [GOAL] n : ℕ hn : n % 2 = 1 ⊢ 0 < 2 [PROOFSTEP] norm_num [GOAL] n : ℕ hn : n % 2 = 1 ⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ (n % 4 / 2) [PROOFSTEP] have help : ∀ m : ℕ, m < 4 → m % 2 = 1 → ite (m = 1) (1 : ℤ) (-1) = (-1) ^ (m / 2) := by decide [GOAL] n : ℕ hn : n % 2 = 1 ⊢ ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2) [PROOFSTEP] decide [GOAL] n : ℕ hn : n % 2 = 1 help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2) ⊢ (if n % 4 = 1 then 1 else -1) = (-1) ^ (n % 4 / 2) [PROOFSTEP] exact help (n % 4) (Nat.mod_lt n (by norm_num)) ((Nat.mod_mod_of_dvd n (by norm_num : 2 ∣ 4)).trans hn) [GOAL] n : ℕ hn : n % 2 = 1 help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2) ⊢ 4 > 0 [PROOFSTEP] norm_num [GOAL] n : ℕ hn : n % 2 = 1 help : ∀ (m : ℕ), m < 4 → m % 2 = 1 → (if m = 1 then 1 else -1) = (-1) ^ (m / 2) ⊢ 2 ∣ 4 [PROOFSTEP] norm_num [GOAL] n : ℕ hn : n % 4 = 1 ⊢ ↑χ₄ ↑n = 1 [PROOFSTEP] rw [χ₄_nat_mod_four, hn] [GOAL] n : ℕ hn : n % 4 = 1 ⊢ ↑χ₄ ↑1 = 1 [PROOFSTEP] rfl [GOAL] n : ℕ hn : n % 4 = 3 ⊢ ↑χ₄ ↑n = -1 [PROOFSTEP] rw [χ₄_nat_mod_four, hn] [GOAL] n : ℕ hn : n % 4 = 3 ⊢ ↑χ₄ ↑3 = -1 [PROOFSTEP] rfl [GOAL] n : ℤ hn : n % 4 = 1 ⊢ ↑χ₄ ↑n = 1 [PROOFSTEP] rw [χ₄_int_mod_four, hn] [GOAL] n : ℤ hn : n % 4 = 1 ⊢ ↑χ₄ ↑1 = 1 [PROOFSTEP] rfl [GOAL] n : ℤ hn : n % 4 = 3 ⊢ ↑χ₄ ↑n = -1 [PROOFSTEP] rw [χ₄_int_mod_four, hn] [GOAL] n : ℤ hn : n % 4 = 3 ⊢ ↑χ₄ ↑3 = -1 [PROOFSTEP] rfl [GOAL] n : ℕ hn : n % 4 = 1 ⊢ (-1) ^ (n / 2) = 1 [PROOFSTEP] rw [← χ₄_eq_neg_one_pow (Nat.odd_of_mod_four_eq_one hn), ← nat_cast_mod, hn] [GOAL] n : ℕ hn : n % 4 = 1 ⊢ ↑χ₄ ↑1 = 1 [PROOFSTEP] rfl [GOAL] n : ℕ hn : n % 4 = 3 ⊢ (-1) ^ (n / 2) = -1 [PROOFSTEP] rw [← χ₄_eq_neg_one_pow (Nat.odd_of_mod_four_eq_three hn), ← nat_cast_mod, hn] [GOAL] n : ℕ hn : n % 4 = 3 ⊢ ↑χ₄ ↑3 = -1 [PROOFSTEP] rfl [GOAL] ⊢ ∀ (x y : ZMod 8), OneHom.toFun { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) } (x * y) = OneHom.toFun { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) } x * OneHom.toFun { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) } y [PROOFSTEP] decide [GOAL] ⊢ ∀ (a : ZMod 8), ¬IsUnit a → OneHom.toFun (↑{ toOneHom := { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) }, map_mul' := (_ : ∀ (x y : ZMod 8), OneHom.toFun { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) } (x * y) = OneHom.toFun { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) } x * OneHom.toFun { toFun := ![0, 1, 0, -1, 0, -1, 0, 1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1 = Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) } y) }) a = 0 [PROOFSTEP] decide [GOAL] ⊢ MulChar.IsQuadratic χ₈ [PROOFSTEP] intro a [GOAL] a : ZMod 8 ⊢ ↑χ₈ a = 0 ∨ ↑χ₈ a = 1 ∨ ↑χ₈ a = -1 [PROOFSTEP] fin_cases a [GOAL] case head ⊢ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = -1 case tail.head ⊢ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1 case tail.tail.head ⊢ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1 case tail.tail.tail.head ⊢ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1 case tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1 case tail.tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1 case tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 0 ∨ ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 1 ∨ ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = -1 case tail.tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 0 ∨ ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 1 ∨ ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = -1 [PROOFSTEP] all_goals decide [GOAL] case head ⊢ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } = -1 [PROOFSTEP] decide [GOAL] case tail.head ⊢ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨ ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.head ⊢ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨ ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.head ⊢ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨ ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨ ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨ ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 0 ∨ ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 1 ∨ ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 0 ∨ ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 1 ∨ ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = -1 [PROOFSTEP] decide [GOAL] n : ℕ ⊢ ↑χ₈ ↑n = ↑χ₈ ↑(n % 8) [PROOFSTEP] rw [← ZMod.nat_cast_mod n 8] [GOAL] n : ℤ ⊢ ↑χ₈ ↑n = ↑χ₈ ↑(n % 8) [PROOFSTEP] rw [← ZMod.int_cast_mod n 8] [GOAL] n : ℤ ⊢ ↑χ₈ ↑(n % ↑8) = ↑χ₈ ↑(n % 8) [PROOFSTEP] norm_cast [GOAL] n : ℤ ⊢ ↑χ₈ ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1 [PROOFSTEP] have help : ∀ m : ℤ, 0 ≤ m → m < 8 → χ₈ m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 := by decide [GOAL] n : ℤ ⊢ ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 [PROOFSTEP] decide [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 ⊢ ↑χ₈ ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1 [PROOFSTEP] rw [← Int.emod_emod_of_dvd n (by norm_num : (2 : ℤ) ∣ 8), ← ZMod.int_cast_mod n 8] [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 ⊢ 2 ∣ 8 [PROOFSTEP] norm_num [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 ⊢ ↑χ₈ ↑(n % ↑8) = if n % 8 % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1 [PROOFSTEP] exact help (n % 8) (Int.emod_nonneg n (by norm_num)) (Int.emod_lt n (by norm_num)) [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 ⊢ 8 ≠ 0 [PROOFSTEP] norm_num [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈ ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 7 then 1 else -1 ⊢ 8 ≠ 0 [PROOFSTEP] norm_num [GOAL] n : ℕ ⊢ ↑χ₈ ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 7 then 1 else -1 [PROOFSTEP] exact_mod_cast χ₈_int_eq_if_mod_eight n [GOAL] ⊢ ∀ (x y : ZMod 8), OneHom.toFun { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) } (x * y) = OneHom.toFun { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) } x * OneHom.toFun { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) } y [PROOFSTEP] decide [GOAL] ⊢ ∀ (a : ZMod 8), ¬IsUnit a → OneHom.toFun (↑{ toOneHom := { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) }, map_mul' := (_ : ∀ (x y : ZMod 8), OneHom.toFun { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) } (x * y) = OneHom.toFun { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) } x * OneHom.toFun { toFun := ![0, 1, 0, 1, 0, -1, 0, -1], map_one' := (_ : Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1 = Matrix.vecCons 0 ![1, 0, 1, 0, -1, 0, -1] 1) } y) }) a = 0 [PROOFSTEP] decide [GOAL] ⊢ MulChar.IsQuadratic χ₈' [PROOFSTEP] intro a [GOAL] a : ZMod 8 ⊢ ↑χ₈' a = 0 ∨ ↑χ₈' a = 1 ∨ ↑χ₈' a = -1 [PROOFSTEP] fin_cases a [GOAL] case head ⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = -1 case tail.head ⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1 case tail.tail.head ⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1 case tail.tail.tail.head ⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1 case tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1 case tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1 case tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 0 ∨ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 1 ∨ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = -1 case tail.tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 0 ∨ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 1 ∨ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = -1 [PROOFSTEP] all_goals decide [GOAL] case head ⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 0 ∨ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = 1 ∨ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = -1 [PROOFSTEP] decide [GOAL] case tail.head ⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 0 ∨ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = 1 ∨ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.head ⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 0 ∨ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = 1 ∨ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.head ⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 0 ∨ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = 1 ∨ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 0 ∨ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = 1 ∨ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 0 ∨ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = 1 ∨ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 0 ∨ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = 1 ∨ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = -1 [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 0 ∨ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = 1 ∨ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = -1 [PROOFSTEP] decide [GOAL] n : ℤ ⊢ ↑χ₈' ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1 [PROOFSTEP] have help : ∀ m : ℤ, 0 ≤ m → m < 8 → χ₈' m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 := by decide [GOAL] n : ℤ ⊢ ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 [PROOFSTEP] decide [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 ⊢ ↑χ₈' ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1 [PROOFSTEP] rw [← Int.emod_emod_of_dvd n (by norm_num : (2 : ℤ) ∣ 8), ← ZMod.int_cast_mod n 8] [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 ⊢ 2 ∣ 8 [PROOFSTEP] norm_num [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 ⊢ ↑χ₈' ↑(n % ↑8) = if n % 8 % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1 [PROOFSTEP] exact help (n % 8) (Int.emod_nonneg n (by norm_num)) (Int.emod_lt n (by norm_num)) [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 ⊢ 8 ≠ 0 [PROOFSTEP] norm_num [GOAL] n : ℤ help : ∀ (m : ℤ), 0 ≤ m → m < 8 → ↑χ₈' ↑m = if m % 2 = 0 then 0 else if m = 1 ∨ m = 3 then 1 else -1 ⊢ 8 ≠ 0 [PROOFSTEP] norm_num [GOAL] n : ℕ ⊢ ↑χ₈' ↑n = if n % 2 = 0 then 0 else if n % 8 = 1 ∨ n % 8 = 3 then 1 else -1 [PROOFSTEP] exact_mod_cast χ₈'_int_eq_if_mod_eight n [GOAL] a : ZMod 8 ⊢ ↑χ₈' a = ↑χ₄ ↑a * ↑χ₈ a [PROOFSTEP] fin_cases a [GOAL] case head ⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = ↑χ₄ ↑{ val := 0, isLt := (_ : 0 < 7 + 1) } * ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } case tail.head ⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = ↑χ₄ ↑{ val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } * ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } case tail.tail.head ⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = ↑χ₄ ↑{ val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } * ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } case tail.tail.tail.head ⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = ↑χ₄ ↑{ val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } * ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } case tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = ↑χ₄ ↑{ val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } * ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } case tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = ↑χ₄ ↑{ val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } * ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } case tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = ↑χ₄ ↑{ val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } * ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } case tail.tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = ↑χ₄ ↑{ val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } * ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } [PROOFSTEP] all_goals decide [GOAL] case head ⊢ ↑χ₈' { val := 0, isLt := (_ : 0 < 7 + 1) } = ↑χ₄ ↑{ val := 0, isLt := (_ : 0 < 7 + 1) } * ↑χ₈ { val := 0, isLt := (_ : 0 < 7 + 1) } [PROOFSTEP] decide [GOAL] case tail.head ⊢ ↑χ₈' { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } = ↑χ₄ ↑{ val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } * ↑χ₈ { val := 1, isLt := (_ : (fun a => a < 7 + 1) 1) } [PROOFSTEP] decide [GOAL] case tail.tail.head ⊢ ↑χ₈' { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } = ↑χ₄ ↑{ val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } * ↑χ₈ { val := 2, isLt := (_ : (fun a => (fun a => a < 7 + 1) a) 2) } [PROOFSTEP] decide [GOAL] case tail.tail.tail.head ⊢ ↑χ₈' { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } = ↑χ₄ ↑{ val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } * ↑χ₈ { val := 3, isLt := (_ : (fun a => (fun a => (fun a => a < 7 + 1) a) a) 3) } [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } = ↑χ₄ ↑{ val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } * ↑χ₈ { val := 4, isLt := (_ : (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) 4) } [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } = ↑χ₄ ↑{ val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } * ↑χ₈ { val := 5, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) 5) } [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } = ↑χ₄ ↑{ val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } * ↑χ₈ { val := 6, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) 6) } [PROOFSTEP] decide [GOAL] case tail.tail.tail.tail.tail.tail.tail.head ⊢ ↑χ₈' { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } = ↑χ₄ ↑{ val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } * ↑χ₈ { val := 7, isLt := (_ : (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => (fun a => a < 7 + 1) a) a) a) a) a) a) 7) } [PROOFSTEP] decide [GOAL] a : ℤ ⊢ ↑χ₈' ↑a = ↑χ₄ ↑a * ↑χ₈ ↑a [PROOFSTEP] rw [← @cast_int_cast 8 (ZMod 4) _ 4 _ (by norm_num) a] [GOAL] a : ℤ ⊢ 4 ∣ 8 [PROOFSTEP] norm_num [GOAL] a : ℤ ⊢ ↑χ₈' ↑a = ↑χ₄ ↑↑a * ↑χ₈ ↑a [PROOFSTEP] exact χ₈'_eq_χ₄_mul_χ₈ a
{"mathlib_filename": "Mathlib.NumberTheory.LegendreSymbol.ZModChar", "llama_tokens": 17702}
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Notations", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.LongNames", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.Cli", "llama_tokens": 0}
[GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ j : Fin (n + 1) x✝ : n + 1 ≤ ↑j + (n + 1) ⊢ HomologicalComplex.Hom.f (AlgebraicTopology.inclusionOfMooreComplexMap X) (n + 1) ≫ SimplicialObject.δ X (Fin.succ j) = 0 [PROOFSTEP] dsimp [AlgebraicTopology.inclusionOfMooreComplexMap, NormalizedMooreComplex.objX] [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ j : Fin (n + 1) x✝ : n + 1 ≤ ↑j + (n + 1) ⊢ arrow (Finset.inf Finset.univ fun k => kernelSubobject (SimplicialObject.δ X (Fin.succ k))) ≫ SimplicialObject.δ X (Fin.succ j) = 0 [PROOFSTEP] rw [← factorThru_arrow _ _ (finset_inf_arrow_factors Finset.univ _ j (by simp only [Finset.mem_univ])), assoc, kernelSubobject_arrow_comp, comp_zero] [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ j : Fin (n + 1) x✝ : n + 1 ≤ ↑j + (n + 1) ⊢ j ∈ Finset.univ [PROOFSTEP] simp only [Finset.mem_univ] [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ ⊢ Factors (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n) [PROOFSTEP] rcases n with _ | n [GOAL] case zero A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A ⊢ Factors (NormalizedMooreComplex.objX X Nat.zero) (HomologicalComplex.Hom.f PInfty Nat.zero) [PROOFSTEP] apply top_factors [GOAL] case succ A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ ⊢ Factors (NormalizedMooreComplex.objX X (Nat.succ n)) (HomologicalComplex.Hom.f PInfty (Nat.succ n)) [PROOFSTEP] rw [PInfty_f, NormalizedMooreComplex.objX, finset_inf_factors] [GOAL] case succ A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ ⊢ ∀ (i : Fin (n + 1)), i ∈ Finset.univ → Factors (kernelSubobject (SimplicialObject.δ X (Fin.succ i))) (HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n)) [PROOFSTEP] intro i _ [GOAL] case succ A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ i : Fin (n + 1) a✝ : i ∈ Finset.univ ⊢ Factors (kernelSubobject (SimplicialObject.δ X (Fin.succ i))) (HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n)) [PROOFSTEP] apply kernelSubobject_factors [GOAL] case succ.w A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X : SimplicialObject A n : ℕ i : Fin (n + 1) a✝ : i ∈ Finset.univ ⊢ HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n) ≫ SimplicialObject.δ X (Fin.succ i) = 0 [PROOFSTEP] exact (HigherFacesVanish.of_P (n + 1) n) i le_add_self [GOAL] A : Type u_1 inst✝¹ : Category.{?u.88673, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A n : ℕ ⊢ (fun n => factorThru (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n) (_ : Factors (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n))) (n + 1) ≫ NormalizedMooreComplex.objD X n = AlternatingFaceMapComplex.objD X n ≫ (fun n => factorThru (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n) (_ : Factors (NormalizedMooreComplex.objX X n) (HomologicalComplex.Hom.f PInfty n))) n [PROOFSTEP] rw [← cancel_mono (NormalizedMooreComplex.objX X n).arrow, assoc, assoc, factorThru_arrow, ← inclusionOfMooreComplexMap_f, ← normalizedMooreComplex_objD, ← (inclusionOfMooreComplexMap X).comm (n + 1) n, inclusionOfMooreComplexMap_f, factorThru_arrow_assoc, ← alternatingFaceMapComplex_obj_d] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.88673, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A n : ℕ ⊢ HomologicalComplex.Hom.f PInfty (n + 1) ≫ HomologicalComplex.d ((alternatingFaceMapComplex A).obj X) (n + 1) n = HomologicalComplex.d ((alternatingFaceMapComplex A).obj X) (n + 1) n ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] exact PInfty.comm (n + 1) n [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ PInftyToNormalizedMooreComplex X ≫ inclusionOfMooreComplexMap X = PInfty [PROOFSTEP] aesop_cat [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X Y : SimplicialObject A f : X ⟶ Y ⊢ AlternatingFaceMapComplex.map f ≫ PInftyToNormalizedMooreComplex Y = PInftyToNormalizedMooreComplex X ≫ NormalizedMooreComplex.map f [PROOFSTEP] aesop_cat [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ PInfty ≫ PInftyToNormalizedMooreComplex X = PInftyToNormalizedMooreComplex X [PROOFSTEP] aesop_cat [GOAL] A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ inclusionOfMooreComplexMap X ≫ PInfty = inclusionOfMooreComplexMap X [PROOFSTEP] ext (_ | n) [GOAL] case h.zero A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X ≫ PInfty) Nat.zero = HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) Nat.zero [PROOFSTEP] dsimp [GOAL] case h.zero A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) 0 ≫ 𝟙 (X.obj (Opposite.op (SimplexCategory.mk 0))) = HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) 0 [PROOFSTEP] simp only [comp_id] [GOAL] case h.succ A : Type u_1 inst✝¹ : Category.{u_2, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A n : ℕ ⊢ HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X ≫ PInfty) (Nat.succ n) = HomologicalComplex.Hom.f (inclusionOfMooreComplexMap X) (Nat.succ n) [PROOFSTEP] exact (HigherFacesVanish.inclusionOfMooreComplexMap n).comp_P_eq_self [GOAL] A : Type u_1 inst✝¹ : Category.{?u.108671, u_1} A inst✝ : Abelian A X : SimplicialObject A Z✝ : ChainComplex A ℕ x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X ⊢ x✝¹ = x✝ [PROOFSTEP] ext n [GOAL] case h A : Type u_1 inst✝¹ : Category.{?u.108671, u_1} A inst✝ : Abelian A X : SimplicialObject A Z✝ : ChainComplex A ℕ x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X n : ℕ ⊢ HomologicalComplex.Hom.f x✝¹ n = HomologicalComplex.Hom.f x✝ n [PROOFSTEP] dsimp [GOAL] case h A : Type u_1 inst✝¹ : Category.{?u.108671, u_1} A inst✝ : Abelian A X : SimplicialObject A Z✝ : ChainComplex A ℕ x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X n : ℕ ⊢ HomologicalComplex.Hom.f x✝¹ n = HomologicalComplex.Hom.f x✝ n [PROOFSTEP] ext [GOAL] case h.h A : Type u_1 inst✝¹ : Category.{?u.108671, u_1} A inst✝ : Abelian A X : SimplicialObject A Z✝ : ChainComplex A ℕ x✝¹ x✝ : Z✝ ⟶ (normalizedMooreComplex A).obj X hf : x✝¹ ≫ inclusionOfMooreComplexMap X = x✝ ≫ inclusionOfMooreComplexMap X n : ℕ ⊢ HomologicalComplex.Hom.f x✝¹ n ≫ arrow (NormalizedMooreComplex.objX X n) = HomologicalComplex.Hom.f x✝ n ≫ arrow (NormalizedMooreComplex.objX X n) [PROOFSTEP] exact HomologicalComplex.congr_hom hf n [GOAL] A : Type u_1 inst✝¹ : Category.{?u.109759, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ inclusionOfMooreComplexMap X ≫ PInftyToNormalizedMooreComplex X = 𝟙 ((normalizedMooreComplex A).obj X) [PROOFSTEP] simp only [← cancel_mono (inclusionOfMooreComplexMap X), assoc, id_comp, PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, inclusionOfMooreComplexMap_comp_PInfty] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ PInftyToNormalizedMooreComplex X = (N₁.obj X).p ≫ PInftyToNormalizedMooreComplex X ≫ ((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).obj X).p [PROOFSTEP] erw [comp_id, PInfty_comp_PInftyToNormalizedMooreComplex] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X Y : SimplicialObject A f : X ⟶ Y ⊢ N₁.map f ≫ (fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) Y = (fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) X ≫ (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).map f [PROOFSTEP] simp only [Functor.comp_map, normalizedMooreComplex_map, PInftyToNormalizedMooreComplex_naturality, Karoubi.hom_ext_iff, Karoubi.comp_f, N₁_map_f, PInfty_comp_PInftyToNormalizedMooreComplex_assoc, toKaroubi_map_f, assoc] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ inclusionOfMooreComplexMap X = ((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).obj X).p ≫ inclusionOfMooreComplexMap X ≫ (N₁.obj X).p [PROOFSTEP] erw [inclusionOfMooreComplexMap_comp_PInfty, id_comp] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X Y : SimplicialObject A f : X ⟶ Y ⊢ (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).map f ≫ (fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) Y = (fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) X ≫ N₁.map f [PROOFSTEP] ext [GOAL] case h.h A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X Y : SimplicialObject A f : X ⟶ Y i✝ : ℕ ⊢ HomologicalComplex.Hom.f ((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).map f ≫ (fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) Y).f i✝ = HomologicalComplex.Hom.f ((fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) X ≫ N₁.map f).f i✝ [PROOFSTEP] simp only [Functor.comp_map, normalizedMooreComplex_map, Karoubi.comp_f, toKaroubi_map_f, HomologicalComplex.comp_f, NormalizedMooreComplex.map_f, inclusionOfMooreComplexMap_f, factorThru_arrow, N₁_map_f, inclusionOfMooreComplexMap_comp_PInfty_assoc, AlternatingFaceMapComplex.map_f] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X : SimplicialObject A ⊢ ((NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) ≫ NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) = 𝟙 N₁ [PROOFSTEP] ext X : 3 [GOAL] case w.h.h A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ (NatTrans.app ((NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) ≫ NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) X).f = (NatTrans.app (𝟙 N₁) X).f [PROOFSTEP] simp only [PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, NatTrans.comp_app, Karoubi.comp_f, N₁_obj_p, NatTrans.id_app, Karoubi.id_eq] [GOAL] A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X : SimplicialObject A ⊢ ((NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) ≫ NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) = 𝟙 (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)) [PROOFSTEP] ext X : 3 [GOAL] case w.h.h A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ (NatTrans.app ((NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) ≫ NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) X).f = (NatTrans.app (𝟙 (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ))) X).f [PROOFSTEP] rw [← cancel_mono (inclusionOfMooreComplexMap X)] [GOAL] case w.h.h A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ (NatTrans.app ((NatTrans.mk fun X => Karoubi.Hom.mk (inclusionOfMooreComplexMap X)) ≫ NatTrans.mk fun X => Karoubi.Hom.mk (PInftyToNormalizedMooreComplex X)) X).f ≫ inclusionOfMooreComplexMap X = (NatTrans.app (𝟙 (normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ))) X).f ≫ inclusionOfMooreComplexMap X [PROOFSTEP] simp only [NatTrans.comp_app, Karoubi.comp_f, assoc, NatTrans.id_app, Karoubi.id_eq, PInftyToNormalizedMooreComplex_comp_inclusionOfMooreComplexMap, inclusionOfMooreComplexMap_comp_PInfty] [GOAL] case w.h.h A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ inclusionOfMooreComplexMap X = ((normalizedMooreComplex A ⋙ toKaroubi (ChainComplex A ℕ)).obj X).p ≫ inclusionOfMooreComplexMap X [PROOFSTEP] dsimp only [Functor.comp_obj, toKaroubi] [GOAL] case w.h.h A : Type u_1 inst✝¹ : Category.{?u.110631, u_1} A inst✝ : Abelian A X✝ X : SimplicialObject A ⊢ inclusionOfMooreComplexMap X = 𝟙 ((normalizedMooreComplex A).obj X) ≫ inclusionOfMooreComplexMap X [PROOFSTEP] erw [id_comp]
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Normalized", "llama_tokens": 5906}
{"mathlib_filename": "Mathlib.Util.Superscript", "llama_tokens": 0}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ i : Fin (j + 2) ⊢ Isδ₀ (SimplexCategory.δ i) ↔ i = 0 [PROOFSTEP] constructor [GOAL] case mp C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ i : Fin (j + 2) ⊢ Isδ₀ (SimplexCategory.δ i) → i = 0 [PROOFSTEP] rintro ⟨_, h₂⟩ [GOAL] case mp.intro C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ i : Fin (j + 2) left✝ : len [j + 1] = len [j] + 1 h₂ : ↑(Hom.toOrderHom (SimplexCategory.δ i)) 0 ≠ 0 ⊢ i = 0 [PROOFSTEP] by_contra h [GOAL] case mp.intro C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ i : Fin (j + 2) left✝ : len [j + 1] = len [j] + 1 h₂ : ↑(Hom.toOrderHom (SimplexCategory.δ i)) 0 ≠ 0 h : ¬i = 0 ⊢ False [PROOFSTEP] exact h₂ (Fin.succAbove_ne_zero_zero h) [GOAL] case mpr C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ i : Fin (j + 2) ⊢ i = 0 → Isδ₀ (SimplexCategory.δ i) [PROOFSTEP] rintro rfl [GOAL] case mpr C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ ⊢ Isδ₀ (SimplexCategory.δ 0) [PROOFSTEP] exact ⟨rfl, by dsimp; exact Fin.succ_ne_zero (0 : Fin (j + 1))⟩ [GOAL] C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ ⊢ ↑(Hom.toOrderHom (SimplexCategory.δ 0)) 0 ≠ 0 [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{?u.1159, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory j : ℕ ⊢ ¬↑(Hom.toOrderHom (SimplexCategory.δ 0)) 0 = 0 [PROOFSTEP] exact Fin.succ_ne_zero (0 : Fin (j + 1)) [GOAL] C : Type u_1 inst✝² : Category.{?u.2609, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory n : ℕ i : [n] ⟶ [n + 1] inst✝ : Mono i hi : Isδ₀ i ⊢ i = SimplexCategory.δ 0 [PROOFSTEP] obtain ⟨j, rfl⟩ := SimplexCategory.eq_δ_of_mono i [GOAL] case intro C : Type u_1 inst✝² : Category.{?u.2609, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory n : ℕ j : Fin (n + 2) inst✝ : Mono (SimplexCategory.δ j) hi : Isδ₀ (SimplexCategory.δ j) ⊢ SimplexCategory.δ j = SimplexCategory.δ 0 [PROOFSTEP] rw [iff] at hi [GOAL] case intro C : Type u_1 inst✝² : Category.{?u.2609, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory n : ℕ j : Fin (n + 2) inst✝ : Mono (SimplexCategory.δ j) hi : j = 0 ⊢ SimplexCategory.δ j = SimplexCategory.δ 0 [PROOFSTEP] rw [hi] [GOAL] C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] by_cases Δ = Δ' [GOAL] C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] by_cases Δ = Δ' [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h : Δ = Δ' ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] exact eqToHom (by congr) [GOAL] C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h : Δ = Δ' ⊢ HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ') [PROOFSTEP] congr [GOAL] case neg C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h : ¬Δ = Δ' ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] by_cases Isδ₀ i [GOAL] case neg C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h : ¬Δ = Δ' ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] by_cases Isδ₀ i [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h✝ : ¬Δ = Δ' h : Isδ₀ i ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] exact K.d Δ.len Δ'.len [GOAL] case neg C : Type u_1 inst✝² : Category.{?u.36495, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory K : ChainComplex C ℕ Δ' Δ : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h✝ : ¬Δ = Δ' h : ¬Isδ₀ i ⊢ HomologicalComplex.X K (len Δ) ⟶ HomologicalComplex.X K (len Δ') [PROOFSTEP] exact 0 [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory ⊢ mapMono K (𝟙 Δ) = 𝟙 (HomologicalComplex.X K (len Δ)) [PROOFSTEP] unfold mapMono [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory ⊢ (if h : Δ = Δ then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ)) else if h : Isδ₀ (𝟙 Δ) then HomologicalComplex.d K (len Δ) (len Δ) else 0) = 𝟙 (HomologicalComplex.X K (len Δ)) [PROOFSTEP] simp only [eq_self_iff_true, eqToHom_refl, dite_eq_ite, if_true] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i hi : Isδ₀ i ⊢ mapMono K i = HomologicalComplex.d K (len Δ) (len Δ') [PROOFSTEP] unfold mapMono [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i hi : Isδ₀ i ⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ')) else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) = HomologicalComplex.d K (len Δ) (len Δ') [PROOFSTEP] suffices Δ ≠ Δ' by simp only [dif_neg this, dif_pos hi] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i hi : Isδ₀ i this : Δ ≠ Δ' ⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ')) else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) = HomologicalComplex.d K (len Δ) (len Δ') [PROOFSTEP] simp only [dif_neg this, dif_pos hi] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i hi : Isδ₀ i ⊢ Δ ≠ Δ' [PROOFSTEP] rintro rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ'' : SimplexCategory i : Δ ⟶ Δ inst✝ : Mono i hi : Isδ₀ i ⊢ False [PROOFSTEP] simpa only [self_eq_add_right, Nat.one_ne_zero] using hi.1 [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory n : ℕ ⊢ Isδ₀ (SimplexCategory.δ 0) [PROOFSTEP] rw [Isδ₀.iff] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h₁ : Δ ≠ Δ' h₂ : ¬Isδ₀ i ⊢ mapMono K i = 0 [PROOFSTEP] unfold mapMono [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h₁ : Δ ≠ Δ' h₂ : ¬Isδ₀ i ⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ')) else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) = 0 [PROOFSTEP] rw [Ne.def] at h₁ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Isδ₀ i ⊢ (if h : Δ = Δ' then eqToHom (_ : HomologicalComplex.X K (len Δ) = HomologicalComplex.X K (len Δ')) else if h : Isδ₀ i then HomologicalComplex.d K (len Δ) (len Δ') else 0) = 0 [PROOFSTEP] split_ifs [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Isδ₀ i ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ ⟶ Δ' inst✝ : Mono i ⊢ mapMono K i ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ mapMono K' i [PROOFSTEP] unfold mapMono [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ ⟶ Δ' inst✝ : Mono i ⊢ (if h : Δ' = Δ then eqToHom (_ : HomologicalComplex.X K (len Δ') = HomologicalComplex.X K (len Δ)) else if h : Isδ₀ i then HomologicalComplex.d K (len Δ') (len Δ) else 0) ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ if h : Δ' = Δ then eqToHom (_ : HomologicalComplex.X K' (len Δ') = HomologicalComplex.X K' (len Δ)) else if h : Isδ₀ i then HomologicalComplex.d K' (len Δ') (len Δ) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ ⟶ Δ' inst✝ : Mono i h : Δ' = Δ ⊢ eqToHom (_ : HomologicalComplex.X K (len Δ') = HomologicalComplex.X K (len Δ)) ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ eqToHom (_ : HomologicalComplex.X K' (len Δ') = HomologicalComplex.X K' (len Δ)) [PROOFSTEP] subst h [GOAL] case pos C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ' Δ'' : SimplexCategory i : Δ' ⟶ Δ' inst✝ : Mono i ⊢ eqToHom (_ : HomologicalComplex.X K (len Δ') = HomologicalComplex.X K (len Δ')) ≫ HomologicalComplex.Hom.f f (len Δ') = HomologicalComplex.Hom.f f (len Δ') ≫ eqToHom (_ : HomologicalComplex.X K' (len Δ') = HomologicalComplex.X K' (len Δ')) [PROOFSTEP] simp only [id_comp, eqToHom_refl, comp_id] [GOAL] case pos C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ ⟶ Δ' inst✝ : Mono i h : ¬Δ' = Δ h✝ : Isδ₀ i ⊢ HomologicalComplex.d K (len Δ') (len Δ) ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ HomologicalComplex.d K' (len Δ') (len Δ) [PROOFSTEP] rw [HomologicalComplex.Hom.comm] [GOAL] case neg C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i : Δ ⟶ Δ' inst✝ : Mono i h : ¬Δ' = Δ h✝ : ¬Isδ₀ i ⊢ 0 ≫ HomologicalComplex.Hom.f f (len Δ) = HomologicalComplex.Hom.f f (len Δ') ≫ 0 [PROOFSTEP] rw [zero_comp, comp_zero] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] by_cases h₁ : Δ = Δ' [GOAL] case pos C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : Δ = Δ' ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] subst h₁ [GOAL] case pos C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ'' : SimplexCategory i' : Δ'' ⟶ Δ i : Δ ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] simp only [SimplexCategory.eq_id_of_mono i, comp_id, id_comp, mapMono_id K, eqToHom_refl] -- case where i' : Δ'' ⟶ Δ' is the identity [GOAL] case neg C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] by_cases h₂ : Δ' = Δ'' [GOAL] case pos C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : Δ' = Δ'' ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] subst h₂ [GOAL] case pos C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' : SimplexCategory i : Δ' ⟶ Δ inst✝¹ : Mono i h₁ : ¬Δ = Δ' i' : Δ' ⟶ Δ' inst✝ : Mono i' ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] simp only [SimplexCategory.eq_id_of_mono i', comp_id, id_comp, mapMono_id K, eqToHom_refl] -- then the RHS is always zero [GOAL] case neg C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] obtain ⟨k, hk⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i h₁) [GOAL] case neg.intro C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] obtain ⟨k', hk'⟩ := Nat.exists_eq_add_of_lt (len_lt_of_mono i' h₂) [GOAL] case neg.intro.intro C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] have eq : Δ.len = Δ''.len + (k + k' + 2) := by linarith [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 ⊢ len Δ = len Δ'' + (k + k' + 2) [PROOFSTEP] linarith [GOAL] case neg.intro.intro C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ mapMono K i ≫ mapMono K i' = mapMono K (i' ≫ i) [PROOFSTEP] rw [mapMono_eq_zero K (i' ≫ i) _ _] [GOAL] case neg.intro.intro C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ mapMono K i ≫ mapMono K i' = 0 C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ Δ ≠ Δ'' C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ ¬Isδ₀ (i' ≫ i) [PROOFSTEP] rotate_left [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ Δ ≠ Δ'' [PROOFSTEP] by_contra h [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) h : Δ = Δ'' ⊢ False [PROOFSTEP] simp only [self_eq_add_right, h, add_eq_zero_iff, and_false] at eq [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ ¬Isδ₀ (i' ≫ i) [PROOFSTEP] by_contra h [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) h : Isδ₀ (i' ≫ i) ⊢ False [PROOFSTEP] simp only [h.1, add_right_inj] at eq [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 h : Isδ₀ (i' ≫ i) eq : 1 = k + k' + 2 ⊢ False [PROOFSTEP] linarith -- in all cases, the LHS is also zero, either by definition, or because d ≫ d = 0 [GOAL] case neg.intro.intro C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) ⊢ mapMono K i ≫ mapMono K i' = 0 [PROOFSTEP] by_cases h₃ : Isδ₀ i [GOAL] case pos C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) h₃ : Isδ₀ i ⊢ mapMono K i ≫ mapMono K i' = 0 [PROOFSTEP] by_cases h₄ : Isδ₀ i' [GOAL] case pos C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) h₃ : Isδ₀ i h₄ : Isδ₀ i' ⊢ mapMono K i ≫ mapMono K i' = 0 [PROOFSTEP] rw [mapMono_δ₀' K i h₃, mapMono_δ₀' K i' h₄, HomologicalComplex.d_comp_d] [GOAL] case neg C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) h₃ : Isδ₀ i h₄ : ¬Isδ₀ i' ⊢ mapMono K i ≫ mapMono K i' = 0 [PROOFSTEP] simp only [mapMono_eq_zero K i' h₂ h₄, comp_zero] [GOAL] case neg C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ Δ' Δ'' : SimplexCategory i' : Δ'' ⟶ Δ' i : Δ' ⟶ Δ inst✝¹ : Mono i' inst✝ : Mono i h₁ : ¬Δ = Δ' h₂ : ¬Δ' = Δ'' k : ℕ hk : len Δ = len Δ' + k + 1 k' : ℕ hk' : len Δ' = len Δ'' + k' + 1 eq : len Δ = len Δ'' + (k + k' + 2) h₃ : ¬Isδ₀ i ⊢ mapMono K i ≫ mapMono K i' = 0 [PROOFSTEP] simp only [mapMono_eq_zero K i h₁ h₃, zero_comp] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' Δ'' : SimplexCategory e : Δ'.unop ⟶ Δ'' i : Δ'' ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Sigma.ι (summand K Δ) A ≫ map K θ = Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e) [PROOFSTEP] simp only [map, colimit.ι_desc, Cofan.mk_ι_app] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' Δ'' : SimplexCategory e : Δ'.unop ⟶ Δ'' i : Δ'' ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.pull A θ) = Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e) [PROOFSTEP] have h := SimplexCategory.image_eq fac [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' Δ'' : SimplexCategory e : Δ'.unop ⟶ Δ'' i : Δ'' ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A h : image (θ.unop ≫ Splitting.IndexSet.e A) = Δ'' ⊢ Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.pull A θ) = Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e) [PROOFSTEP] subst h [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A) i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.pull A θ) = Termwise.mapMono K i ≫ Sigma.ι (summand K Δ') (Splitting.IndexSet.mk e) [PROOFSTEP] congr [GOAL] case e_a.e_i C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A) i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ image.ι (θ.unop ≫ Splitting.IndexSet.e A) = i [PROOFSTEP] exact SimplexCategory.image_ι_eq fac [GOAL] case e_a.h.e_6.h C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A) i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Splitting.IndexSet.pull A θ = Splitting.IndexSet.mk e [PROOFSTEP] dsimp only [SimplicialObject.Splitting.IndexSet.pull] [GOAL] case e_a.h.e_6.h C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A) i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Splitting.IndexSet.mk (factorThruImage (θ.unop ≫ Splitting.IndexSet.e A)) = Splitting.IndexSet.mk e [PROOFSTEP] congr [GOAL] case e_a.h.e_6.h.e_f C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' e : Δ'.unop ⟶ image (θ.unop ≫ Splitting.IndexSet.e A) i : image (θ.unop ≫ Splitting.IndexSet.e A) ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ factorThruImage (θ.unop ≫ Splitting.IndexSet.e A) = e [PROOFSTEP] exact SimplexCategory.factorThruImage_eq fac [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ x✝ : Discrete (Splitting.IndexSet Δ) A : Splitting.IndexSet Δ ⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (𝟙 Δ) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ 𝟙 ({ obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.obj Δ) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ x✝ : Discrete (Splitting.IndexSet Δ) A : Splitting.IndexSet Δ ⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ Obj.map K (𝟙 Δ) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ 𝟙 (Obj.obj₂ K Δ) [PROOFSTEP] have fac : A.e ≫ 𝟙 A.1.unop = (𝟙 Δ).unop ≫ A.e := by rw [unop_id, comp_id, id_comp] [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ x✝ : Discrete (Splitting.IndexSet Δ) A : Splitting.IndexSet Δ ⊢ Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (𝟙 Δ).unop ≫ Splitting.IndexSet.e A [PROOFSTEP] rw [unop_id, comp_id, id_comp] [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ x✝ : Discrete (Splitting.IndexSet Δ) A : Splitting.IndexSet Δ fac : Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (𝟙 Δ).unop ≫ Splitting.IndexSet.e A ⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ Obj.map K (𝟙 Δ) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } ≫ 𝟙 (Obj.obj₂ K Δ) [PROOFSTEP] erw [Obj.map_on_summand₀ K A fac, Obj.Termwise.mapMono_id, id_comp, comp_id] [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ x✝ : Discrete (Splitting.IndexSet Δ) A : Splitting.IndexSet Δ fac : Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (𝟙 Δ).unop ≫ Splitting.IndexSet.e A ⊢ Sigma.ι (Obj.summand K Δ) (Splitting.IndexSet.mk (Splitting.IndexSet.e A)) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ A) { as := A } [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ'' Δ' Δ : SimplexCategoryᵒᵖ θ' : Δ'' ⟶ Δ' θ : Δ' ⟶ Δ x✝ : Discrete (Splitting.IndexSet Δ'') A : Splitting.IndexSet Δ'' ⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (θ' ≫ θ) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ' ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ [PROOFSTEP] have fac : θ.unop ≫ θ'.unop ≫ A.e = (θ' ≫ θ).unop ≫ A.e := by rw [unop_comp, assoc] [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ'' Δ' Δ : SimplexCategoryᵒᵖ θ' : Δ'' ⟶ Δ' θ : Δ' ⟶ Δ x✝ : Discrete (Splitting.IndexSet Δ'') A : Splitting.IndexSet Δ'' ⊢ θ.unop ≫ θ'.unop ≫ Splitting.IndexSet.e A = (θ' ≫ θ).unop ≫ Splitting.IndexSet.e A [PROOFSTEP] rw [unop_comp, assoc] [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ'' Δ' Δ : SimplexCategoryᵒᵖ θ' : Δ'' ⟶ Δ' θ : Δ' ⟶ Δ x✝ : Discrete (Splitting.IndexSet Δ'') A : Splitting.IndexSet Δ'' fac : θ.unop ≫ θ'.unop ≫ Splitting.IndexSet.e A = (θ' ≫ θ).unop ≫ Splitting.IndexSet.e A ⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (θ' ≫ θ) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ' ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ [PROOFSTEP] rw [← image.fac (θ'.unop ≫ A.e), ← assoc, ← image.fac (θ.unop ≫ factorThruImage (θ'.unop ≫ A.e)), assoc] at fac [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ'' Δ' Δ : SimplexCategoryᵒᵖ θ' : Δ'' ⟶ Δ' θ : Δ' ⟶ Δ x✝ : Discrete (Splitting.IndexSet Δ'') A : Splitting.IndexSet Δ'' fac : factorThruImage (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ image.ι (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ image.ι (θ'.unop ≫ Splitting.IndexSet.e A) = (θ' ≫ θ).unop ≫ Splitting.IndexSet.e A ⊢ colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map (θ' ≫ θ) = colimit.ι (Discrete.functor fun A => Obj.summand K Δ'' A) { as := A } ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ' ≫ { obj := fun Δ => Obj.obj₂ K Δ, map := fun {X Y} θ => Obj.map K θ }.map θ [PROOFSTEP] simp only [Obj.map_on_summand₀'_assoc K A θ', Obj.map_on_summand₀' K _ θ, Obj.Termwise.mapMono_comp_assoc, Obj.map_on_summand₀ K A fac] [GOAL] C : Type u_1 inst✝² : Category.{?u.105445, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ'' Δ' Δ : SimplexCategoryᵒᵖ θ' : Δ'' ⟶ Δ' θ : Δ' ⟶ Δ x✝ : Discrete (Splitting.IndexSet Δ'') A : Splitting.IndexSet Δ'' fac : factorThruImage (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ image.ι (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ image.ι (θ'.unop ≫ Splitting.IndexSet.e A) = (θ' ≫ θ).unop ≫ Splitting.IndexSet.e A ⊢ Obj.Termwise.mapMono K (image.ι (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ image.ι (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ Sigma.ι (Obj.summand K Δ) (Splitting.IndexSet.mk (factorThruImage (θ.unop ≫ factorThruImage (θ'.unop ≫ Splitting.IndexSet.e A)))) = Obj.Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e (Splitting.IndexSet.pull A θ')) ≫ image.ι (θ'.unop ≫ Splitting.IndexSet.e A)) ≫ Sigma.ι (Obj.summand K Δ) (Splitting.IndexSet.pull (Splitting.IndexSet.pull A θ') θ) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ : SimplexCategoryᵒᵖ x✝ : Discrete (Splitting.IndexSet Δ) A : Splitting.IndexSet Δ ⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ)) { as := A } ≫ Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ = colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ)) { as := A } ≫ 𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ) [PROOFSTEP] induction' Δ using Opposite.rec' with Δ [GOAL] case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝¹ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ✝ : SimplexCategoryᵒᵖ x✝¹ : Discrete (Splitting.IndexSet Δ✝) A✝ : Splitting.IndexSet Δ✝ Δ : SimplexCategory x✝ : Discrete (Splitting.IndexSet (op Δ)) A : Splitting.IndexSet (op Δ) ⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op Δ))) { as := A } ≫ Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) (op Δ) = colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op Δ))) { as := A } ≫ 𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op Δ)) [PROOFSTEP] induction' Δ using SimplexCategory.rec with n [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝¹ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ✝ : SimplexCategoryᵒᵖ x✝² : Discrete (Splitting.IndexSet Δ✝) A✝¹ : Splitting.IndexSet Δ✝ Δ : SimplexCategory x✝¹ : Discrete (Splitting.IndexSet (op Δ)) A✝ : Splitting.IndexSet (op Δ) n : ℕ x✝ : Discrete (Splitting.IndexSet (op [n])) A : Splitting.IndexSet (op [n]) ⊢ colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n]))) { as := A } ≫ Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) (op [n]) = colimit.ι (Discrete.functor (Splitting.summand (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n]))) { as := A } ≫ 𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n])) [PROOFSTEP] dsimp [Splitting.map] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝¹ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ✝ : SimplexCategoryᵒᵖ x✝² : Discrete (Splitting.IndexSet Δ✝) A✝¹ : Splitting.IndexSet Δ✝ Δ : SimplexCategory x✝¹ : Discrete (Splitting.IndexSet (op Δ)) A✝ : Splitting.IndexSet (op Δ) n : ℕ x✝ : Discrete (Splitting.IndexSet (op [n])) A : Splitting.IndexSet (op [n]) ⊢ (colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫ Sigma.desc fun A => Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op) = colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫ 𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n])) [PROOFSTEP] simp only [colimit.ι_desc, Cofan.mk_ι_app, Γ₀.obj_map] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝¹ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ✝ : SimplexCategoryᵒᵖ x✝² : Discrete (Splitting.IndexSet Δ✝) A✝¹ : Splitting.IndexSet Δ✝ Δ : SimplexCategory x✝¹ : Discrete (Splitting.IndexSet (op Δ)) A✝ : Splitting.IndexSet (op Δ) n : ℕ x✝ : Discrete (Splitting.IndexSet (op [n])) A : Splitting.IndexSet (op [n]) ⊢ Sigma.ι (Obj.summand K A.fst) (Splitting.IndexSet.id A.fst) ≫ Obj.map K (Splitting.IndexSet.e A).op = colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := A } ≫ 𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) (op [n])) [PROOFSTEP] erw [Γ₀.Obj.map_on_summand₀ K (SimplicialObject.Splitting.IndexSet.id A.1) (show A.e ≫ 𝟙 _ = A.e.op.unop ≫ 𝟙 _ by rfl), Γ₀.Obj.Termwise.mapMono_id, A.ext', id_comp, comp_id] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝¹ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ✝ : SimplexCategoryᵒᵖ x✝² : Discrete (Splitting.IndexSet Δ✝) A✝¹ : Splitting.IndexSet Δ✝ Δ : SimplexCategory x✝¹ : Discrete (Splitting.IndexSet (op Δ)) A✝ : Splitting.IndexSet (op Δ) n : ℕ x✝ : Discrete (Splitting.IndexSet (op [n])) A : Splitting.IndexSet (op [n]) ⊢ Splitting.IndexSet.e A ≫ 𝟙 A.fst.unop = (Splitting.IndexSet.e A).op.unop ≫ 𝟙 (op A.fst.unop).unop [PROOFSTEP] rfl [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝¹ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ✝ : SimplexCategoryᵒᵖ x✝² : Discrete (Splitting.IndexSet Δ✝) A✝¹ : Splitting.IndexSet Δ✝ Δ : SimplexCategory x✝¹ : Discrete (Splitting.IndexSet (op Δ)) A✝ : Splitting.IndexSet (op Δ) n : ℕ x✝ : Discrete (Splitting.IndexSet (op [n])) A : Splitting.IndexSet (op [n]) ⊢ Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.mk (Splitting.IndexSet.e { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } })) = colimit.ι (Discrete.functor fun A => Obj.summand K A.fst (Splitting.IndexSet.id A.fst)) { as := { fst := A.fst, snd := { val := Splitting.IndexSet.e A, property := (_ : Epi ↑A.snd) } } } [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{?u.135855, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ ⊢ IsIso (Splitting.map (obj K) (fun n => Sigma.ι (Obj.summand K (op [n])) (Splitting.IndexSet.id (op [n]))) Δ) [PROOFSTEP] rw [Γ₀.splitting_map_eq_id] [GOAL] C : Type u_1 inst✝² : Category.{?u.135855, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ✝ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ Δ : SimplexCategoryᵒᵖ ⊢ IsIso (𝟙 (Splitting.coprod (fun n => Obj.summand K (op [n]) (Splitting.IndexSet.id (op [n]))) Δ)) [PROOFSTEP] apply IsIso.id [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' Δ'' : SimplexCategory e : Δ'.unop ⟶ Δ'' i : Δ'' ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Splitting.ιSummand (splitting K) A ≫ (obj K).map θ = Termwise.mapMono K i ≫ Splitting.ιSummand (splitting K) (Splitting.IndexSet.mk e) [PROOFSTEP] dsimp only [SimplicialObject.Splitting.ιSummand, SimplicialObject.Splitting.ιCoprod] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' Δ'' : SimplexCategory e : Δ'.unop ⟶ Δ'' i : Δ'' ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ (Sigma.ι (Splitting.summand (splitting K).N Δ) A ≫ (Splitting.iso (splitting K) Δ).hom) ≫ (obj K).map θ = Termwise.mapMono K i ≫ Sigma.ι (Splitting.summand (splitting K).N (op Δ'.unop)) (Splitting.IndexSet.mk e) ≫ (Splitting.iso (splitting K) (op Δ'.unop)).hom [PROOFSTEP] simp only [assoc, Γ₀.splitting_iso_hom_eq_id, id_comp, comp_id] [GOAL] C : Type u_1 inst✝⁴ : Category.{u_2, u_1} C inst✝³ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ''✝ : SimplexCategory inst✝² : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' Δ'' : SimplexCategory e : Δ'.unop ⟶ Δ'' i : Δ'' ⟶ A.fst.unop inst✝¹ : Epi e inst✝ : Mono i fac : e ≫ i = θ.unop ≫ Splitting.IndexSet.e A ⊢ Sigma.ι (Splitting.summand (splitting K).N Δ) A ≫ (obj K).map θ = Termwise.mapMono K i ≫ Sigma.ι (Splitting.summand (splitting K).N (op Δ'.unop)) (Splitting.IndexSet.mk e) [PROOFSTEP] exact Γ₀.Obj.map_on_summand₀ K A fac [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' ⊢ Splitting.ιSummand (splitting K) A ≫ (obj K).map θ = Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ Splitting.ιSummand (splitting K) (Splitting.IndexSet.pull A θ) [PROOFSTEP] apply Obj.map_on_summand [GOAL] case fac C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C Δ Δ' : SimplexCategoryᵒᵖ A : Splitting.IndexSet Δ θ : Δ ⟶ Δ' ⊢ factorThruImage (θ.unop ≫ Splitting.IndexSet.e A) ≫ image.ι (θ.unop ≫ Splitting.IndexSet.e A) = θ.unop ≫ Splitting.IndexSet.e A [PROOFSTEP] apply image.fac [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C K K' : ChainComplex C ℕ f : K ⟶ K' Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝¹ : HasFiniteCoproducts C Δ Δ' : SimplexCategory e : Δ' ⟶ Δ inst✝ : Epi e ⊢ Splitting.ιSummand (splitting K) (Splitting.IndexSet.id (op Δ)) ≫ (obj K).map e.op = Splitting.ιSummand (splitting K) (Splitting.IndexSet.mk e) [PROOFSTEP] simpa only [Γ₀.Obj.map_on_summand K (Splitting.IndexSet.id (op Δ)) e.op (rfl : e ≫ 𝟙 Δ = e ≫ 𝟙 Δ), Γ₀.Obj.Termwise.mapMono_id] using id_comp _ [GOAL] C : Type u_1 inst✝² : Category.{?u.164164, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' Δ' Δ : SimplexCategoryᵒᵖ θ : Δ' ⟶ Δ ⊢ (obj K).map θ ≫ (fun Δ => Splitting.desc (splitting K) Δ fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A) Δ = (fun Δ => Splitting.desc (splitting K) Δ fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A) Δ' ≫ (obj K').map θ [PROOFSTEP] apply (Γ₀.splitting K).hom_ext' [GOAL] case h C : Type u_1 inst✝² : Category.{?u.164164, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' Δ' Δ : SimplexCategoryᵒᵖ θ : Δ' ⟶ Δ ⊢ ∀ (A : Splitting.IndexSet Δ'), Splitting.ιSummand (splitting K) A ≫ (obj K).map θ ≫ (fun Δ => Splitting.desc (splitting K) Δ fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A) Δ = Splitting.ιSummand (splitting K) A ≫ (fun Δ => Splitting.desc (splitting K) Δ fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A) Δ' ≫ (obj K').map θ [PROOFSTEP] intro A [GOAL] case h C : Type u_1 inst✝² : Category.{?u.164164, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' Δ' Δ : SimplexCategoryᵒᵖ θ : Δ' ⟶ Δ A : Splitting.IndexSet Δ' ⊢ Splitting.ιSummand (splitting K) A ≫ (obj K).map θ ≫ (fun Δ => Splitting.desc (splitting K) Δ fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A) Δ = Splitting.ιSummand (splitting K) A ≫ (fun Δ => Splitting.desc (splitting K) Δ fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (splitting K') A) Δ' ≫ (obj K').map θ [PROOFSTEP] simp only [(splitting K).ι_desc_assoc, Obj.map_on_summand'_assoc K _ θ, (splitting K).ι_desc, assoc, Obj.map_on_summand' K' _ θ] [GOAL] case h C : Type u_1 inst✝² : Category.{?u.164164, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ✝ Δ'✝ Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' Δ' Δ : SimplexCategoryᵒᵖ θ : Δ' ⟶ Δ A : Splitting.IndexSet Δ' ⊢ Obj.Termwise.mapMono K (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ HomologicalComplex.Hom.f f (len (Splitting.IndexSet.pull A θ).fst.unop) ≫ Splitting.ιSummand (splitting K') (Splitting.IndexSet.pull A θ) = HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Obj.Termwise.mapMono K' (image.ι (θ.unop ≫ Splitting.IndexSet.e A)) ≫ Splitting.ιSummand (splitting K') (Splitting.IndexSet.pull A θ) [PROOFSTEP] apply Obj.Termwise.mapMono_naturality_assoc [GOAL] C : Type u_1 inst✝² : Category.{?u.167032, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' n : ℕ ⊢ Splitting.ι ((fun K => Split.mk' (Γ₀.splitting K)) K).s n ≫ NatTrans.app (Γ₀.map f) (op [n]) = HomologicalComplex.Hom.f f n ≫ Splitting.ι ((fun K => Split.mk' (Γ₀.splitting K)) K').s n [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.167032, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' n : ℕ ⊢ (Splitting.ι (Γ₀.splitting K) n ≫ Splitting.desc (Γ₀.splitting K) (op [n]) fun A => HomologicalComplex.Hom.f f (len A.fst.unop) ≫ Splitting.ιSummand (Γ₀.splitting K') A) = HomologicalComplex.Hom.f f n ≫ Splitting.ι (Γ₀.splitting K') n [PROOFSTEP] simp only [← Splitting.ιSummand_id, (Γ₀.splitting K).ι_desc] [GOAL] C : Type u_1 inst✝² : Category.{?u.167032, u_1} C inst✝¹ : Preadditive C K✝ K'✝ : ChainComplex C ℕ f✝ : K✝ ⟶ K'✝ Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K K' : ChainComplex C ℕ f : K ⟶ K' n : ℕ ⊢ HomologicalComplex.Hom.f f (len (Splitting.IndexSet.id (op [n])).fst.unop) ≫ Splitting.ιSummand (Γ₀.splitting K') (Splitting.IndexSet.id (op [n])) = HomologicalComplex.Hom.f f n ≫ Splitting.ιSummand (Γ₀.splitting K') (Splitting.IndexSet.id (op [n])) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ HigherFacesVanish (n + 1) (Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1]))) [PROOFSTEP] intro j _ [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) = 0 [PROOFSTEP] have eq := Γ₀.Obj.mapMono_on_summand_id K (SimplexCategory.δ j.succ) [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) = 0 [PROOFSTEP] rw [Γ₀.Obj.Termwise.mapMono_eq_zero K, zero_comp] at eq [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = 0 ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) = 0 case h₁ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ⊢ [n + 1] ≠ [n] case h₂ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ⊢ ¬Isδ₀ (SimplexCategory.δ (Fin.succ j)) [PROOFSTEP] rotate_left [GOAL] case h₁ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ⊢ [n + 1] ≠ [n] [PROOFSTEP] intro h [GOAL] case h₁ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) h : [n + 1] = [n] ⊢ False [PROOFSTEP] exact (Nat.succ_ne_self n) (congr_arg SimplexCategory.len h) [GOAL] case h₂ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ⊢ ¬Isδ₀ (SimplexCategory.δ (Fin.succ j)) [PROOFSTEP] exact fun h => Fin.succ_ne_zero j (by simpa only [Isδ₀.iff] using h) [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = Γ₀.Obj.Termwise.mapMono K (SimplexCategory.δ (Fin.succ j)) ≫ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) h : Isδ₀ (SimplexCategory.δ (Fin.succ j)) ⊢ Fin.succ j = 0 [PROOFSTEP] simpa only [Isδ₀.iff] using h [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ j : Fin (n + 1) a✝ : n + 1 ≤ ↑j + (n + 1) eq : Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ (Γ₀.obj K).map (SimplexCategory.δ (Fin.succ j)).op = 0 ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n + 1])) ≫ SimplicialObject.δ (Γ₀.obj K) (Fin.succ j) = 0 [PROOFSTEP] exact eq [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] rw [PInfty_f] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f (P n) n = Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [n])) [PROOFSTEP] rcases n with _ | n [GOAL] case zero C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.zero])) ≫ HomologicalComplex.Hom.f (P Nat.zero) Nat.zero = Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.zero])) [PROOFSTEP] simpa only [P_f_0_eq] using comp_id _ [GOAL] case succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : Preadditive C K✝ K' : ChainComplex C ℕ f : K✝ ⟶ K' Δ Δ' Δ'' : SimplexCategory inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ n : ℕ ⊢ Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.succ n])) ≫ HomologicalComplex.Hom.f (P (Nat.succ n)) (Nat.succ n) = Splitting.ιSummand (Γ₀.splitting K) (Splitting.IndexSet.id (op [Nat.succ n])) [PROOFSTEP] exact (HigherFacesVanish.on_Γ₀_summand_id K n).comp_P_eq_self
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.FunctorGamma", "llama_tokens": 29711}
{"mathlib_filename": "Mathlib.Util.Qq", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.Imports", "llama_tokens": 0}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.28, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q ⊢ b < n + 1 + 1 [PROOFSTEP] simp only [hnbq, Nat.lt_add_one_iff, le_add_iff_nonneg_right, zero_le] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q j : Fin (n + 1 + 1) hj : n + 1 + 1 ≤ ↑j + q ⊢ (φ ≫ SimplicialObject.σ X { val := b, isLt := (_ : b < n + 1 + 1) }) ≫ SimplicialObject.δ X (Fin.succ j) = 0 [PROOFSTEP] rw [assoc, SimplicialObject.δ_comp_σ_of_gt', Fin.pred_succ, v.comp_δ_eq_zero_assoc _ _ hj, zero_comp] [GOAL] case H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q j : Fin (n + 1 + 1) hj : n + 1 + 1 ≤ ↑j + q ⊢ Fin.succ { val := b, isLt := (_ : b < n + 1 + 1) } < Fin.succ j [PROOFSTEP] dsimp [GOAL] case H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q j : Fin (n + 1 + 1) hj : n + 1 + 1 ≤ ↑j + q ⊢ { val := b + 1, isLt := (_ : Nat.succ b < Nat.succ (n + 2)) } < Fin.succ j [PROOFSTEP] rw [Fin.lt_iff_val_lt_val, Fin.val_succ] [GOAL] case H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q j : Fin (n + 1 + 1) hj : n + 1 + 1 ≤ ↑j + q ⊢ ↑{ val := b + 1, isLt := (_ : Nat.succ b < Nat.succ (n + 2)) } < ↑j + 1 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q j : Fin (n + 1 + 1) hj : n + 1 + 1 ≤ ↑j + q ⊢ j ≠ 0 [PROOFSTEP] intro hj' [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C Y : C X : SimplicialObject C n b q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnbq : n + 1 = b + q j : Fin (n + 1 + 1) hj : n + 1 + 1 ≤ ↑j + q hj' : j = 0 ⊢ False [PROOFSTEP] simp only [hnbq, add_comm b, add_assoc, hj', Fin.val_zero, zero_add, add_le_iff_nonpos_right, nonpos_iff_eq_zero, add_eq_zero, false_and] at hj [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ i : Fin (n + 1) hi : n + 1 ≤ ↑i + q ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 [PROOFSTEP] revert i hi [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ ⊢ ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 [PROOFSTEP] induction' q with q hq [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + Nat.zero → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P Nat.zero) (n + 1) = 0 [PROOFSTEP] intro i (hi : n + 1 ≤ i) [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ i : Fin (n + 1) hi : n + 1 ≤ ↑i ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P Nat.zero) (n + 1) = 0 [PROOFSTEP] exfalso [GOAL] case zero.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ i : Fin (n + 1) hi : n + 1 ≤ ↑i ⊢ False [PROOFSTEP] linarith [Fin.is_lt i] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 ⊢ ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + Nat.succ q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0 [PROOFSTEP] intro i (hi : n + 1 ≤ i + q + 1) [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0 [PROOFSTEP] by_cases n + 1 ≤ (i : ℕ) + q [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0 [PROOFSTEP] by_cases n + 1 ≤ (i : ℕ) + q [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 h : n + 1 ≤ ↑i + q ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0 [PROOFSTEP] rw [P_succ, HomologicalComplex.comp_f, ← assoc, hq i h, zero_comp] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 h : ¬n + 1 ≤ ↑i + q ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0 [PROOFSTEP] replace hi : n = i + q := by obtain ⟨j, hj⟩ := le_iff_exists_add.mp hi rw [← Nat.lt_succ_iff, Nat.succ_eq_add_one, hj, not_lt, add_le_iff_nonpos_right, nonpos_iff_eq_zero] at h rw [← add_left_inj 1, hj, self_eq_add_right, h] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 h : ¬n + 1 ≤ ↑i + q ⊢ n = ↑i + q [PROOFSTEP] obtain ⟨j, hj⟩ := le_iff_exists_add.mp hi [GOAL] case intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 h : ¬n + 1 ≤ ↑i + q j : ℕ hj : ↑i + q + 1 = n + 1 + j ⊢ n = ↑i + q [PROOFSTEP] rw [← Nat.lt_succ_iff, Nat.succ_eq_add_one, hj, not_lt, add_le_iff_nonpos_right, nonpos_iff_eq_zero] at h [GOAL] case intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) hi : n + 1 ≤ ↑i + q + 1 j : ℕ h : j = 0 hj : ↑i + q + 1 = n + 1 + j ⊢ n = ↑i + q [PROOFSTEP] rw [← add_left_inj 1, hj, self_eq_add_right, h] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n q : ℕ hq : ∀ (i : Fin (n + 1)), n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (n + 1) = 0 i : Fin (n + 1) h : ¬n + 1 ≤ ↑i + q hi : n = ↑i + q ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (n + 1) = 0 [PROOFSTEP] rcases n with _ | n [GOAL] case neg.zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 i : Fin (Nat.zero + 1) h : ¬Nat.zero + 1 ≤ ↑i + q hi : Nat.zero = ↑i + q ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.zero + 1) = 0 [PROOFSTEP] fin_cases i [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬Nat.zero + 1 ≤ ↑{ val := 0, isLt := (_ : 0 < Nat.zero + 1) } + q hi : Nat.zero = ↑{ val := 0, isLt := (_ : 0 < Nat.zero + 1) } + q ⊢ SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.zero + 1) } ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.zero + 1) = 0 [PROOFSTEP] dsimp at h hi [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.zero + 1) } ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.zero + 1) = 0 [PROOFSTEP] rw [show q = 0 by linarith] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ q = 0 [PROOFSTEP] linarith [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.zero + 1) } ≫ HomologicalComplex.Hom.f (P (Nat.succ 0)) (Nat.zero + 1) = 0 [PROOFSTEP] change X.σ 0 ≫ (P 1).f 1 = 0 [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 1) 1 = 0 [PROOFSTEP] simp only [P_succ, HomologicalComplex.add_f_apply, comp_add, HomologicalComplex.id_f, AlternatingFaceMapComplex.obj_d_eq, Hσ, HomologicalComplex.comp_f, Homotopy.nullHomotopicMap'_f (c_mk 2 1 rfl) (c_mk 1 0 rfl), comp_id] [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 0) 1 + (SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 0) 1 ≫ (Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) ≫ hσ' 0 0 1 (_ : ComplexShape.Rel c 1 0) + SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 0) 1 ≫ hσ' 0 1 2 (_ : ComplexShape.Rel c 2 1) ≫ Finset.sum Finset.univ fun i => (-1) ^ ↑i • SimplicialObject.δ X i) = 0 [PROOFSTEP] erw [hσ'_eq' (zero_add 0).symm, hσ'_eq' (add_zero 1).symm, comp_id, Fin.sum_univ_two, Fin.sum_univ_succ, Fin.sum_univ_two] [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X 0 + (SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 0) 1 ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0 + (-1) ^ ↑1 • SimplicialObject.δ X 1) ≫ ((-1) ^ 0 • SimplicialObject.σ X { val := 0, isLt := (_ : 0 < Nat.succ 0) }) + SimplicialObject.σ X 0 ≫ HomologicalComplex.Hom.f (P 0) 1 ≫ ((-1) ^ 1 • SimplicialObject.σ X { val := 1, isLt := (_ : 1 < Nat.succ 1) }) ≫ ((-1) ^ ↑0 • SimplicialObject.δ X 0 + ((-1) ^ ↑(Fin.succ 0) • SimplicialObject.δ X (Fin.succ 0) + (-1) ^ ↑(Fin.succ 1) • SimplicialObject.δ X (Fin.succ 1)))) = 0 [PROOFSTEP] simp only [Fin.val_zero, pow_zero, pow_one, pow_add, one_smul, neg_smul, Fin.mk_one, Fin.val_succ, Fin.val_one, Fin.succ_one_eq_two, P_zero, HomologicalComplex.id_f, Fin.val_two, pow_two, mul_neg, one_mul, neg_mul, neg_neg, id_comp, add_comp, comp_add, Fin.mk_zero, neg_comp, comp_neg, Fin.succ_zero_eq_one] [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X 0 + (SimplicialObject.σ X 0 ≫ SimplicialObject.δ X 0 ≫ SimplicialObject.σ X 0 + -SimplicialObject.σ X 0 ≫ SimplicialObject.δ X 1 ≫ SimplicialObject.σ X 0 + (-SimplicialObject.σ X 0 ≫ SimplicialObject.σ X 1 ≫ SimplicialObject.δ X 0 + (SimplicialObject.σ X 0 ≫ SimplicialObject.σ X 1 ≫ SimplicialObject.δ X 1 + -SimplicialObject.σ X 0 ≫ SimplicialObject.σ X 1 ≫ SimplicialObject.δ X 2))) = 0 [PROOFSTEP] erw [SimplicialObject.δ_comp_σ_self, SimplicialObject.δ_comp_σ_self_assoc, SimplicialObject.δ_comp_σ_succ, comp_id, SimplicialObject.δ_comp_σ_of_le X (show (0 : Fin 2) ≤ Fin.castSucc 0 by rw [Fin.castSucc_zero]), SimplicialObject.δ_comp_σ_self_assoc, SimplicialObject.δ_comp_σ_succ_assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ 0 ≤ Fin.castSucc 0 [PROOFSTEP] rw [Fin.castSucc_zero] [GOAL] case neg.zero.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hq : ∀ (i : Fin (Nat.zero + 1)), Nat.zero + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.zero + 1) = 0 h : ¬0 + 1 ≤ 0 + q hi : 0 = 0 + q ⊢ SimplicialObject.σ X 0 + (SimplicialObject.σ X 0 + -SimplicialObject.σ X 0 + (-SimplicialObject.σ X 0 + (SimplicialObject.σ X 0 + -SimplicialObject.σ X 0))) = 0 [PROOFSTEP] simp only [add_right_neg, add_zero, zero_add] [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : Nat.succ n = ↑i + q ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P (Nat.succ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] rw [← id_comp (X.σ i), ← (P_add_Q_f q n.succ : _ = 𝟙 (X.obj _)), add_comp, add_comp, P_succ] [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : Nat.succ n = ↑i + q ⊢ (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) + (HomologicalComplex.Hom.f (Q q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] have v : HigherFacesVanish q ((P q).f n.succ ≫ X.σ i) := (HigherFacesVanish.of_P q n).comp_σ hi [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : Nat.succ n = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) ⊢ (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) + (HomologicalComplex.Hom.f (Q q) (Nat.succ n) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] erw [← assoc, v.comp_P_eq_self, HomologicalComplex.add_f_apply, Preadditive.comp_add, comp_id, v.comp_Hσ_eq hi, assoc, SimplicialObject.δ_comp_σ_succ_assoc, Fin.eta, decomposition_Q n q, sum_comp, sum_comp, Finset.sum_eq_zero, add_zero, add_neg_eq_zero] [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : Nat.succ n = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) ⊢ ∀ (x : Fin (n + 1)), x ∈ Finset.filter (fun i => ↑i < q) Finset.univ → ((HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ SimplicialObject.σ X (↑Fin.revPerm x)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] intro j hj [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : Nat.succ n = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : j ∈ Finset.filter (fun i => ↑i < q) Finset.univ ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] simp only [true_and_iff, Finset.mem_univ, Finset.mem_filter] at hj [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : Nat.succ n = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] simp only [Nat.succ_eq_add_one] at hi [GOAL] case neg.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] obtain ⟨k, hk⟩ := Nat.le.dest (Nat.lt_succ_iff.mp (Fin.is_lt j)) [GOAL] case neg.succ.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : ↑j + k = n ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] rw [add_comm] at hk [GOAL] case neg.succ.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] have hi' : i = Fin.castSucc ⟨i, by linarith⟩ := by ext simp only [Fin.castSucc_mk, Fin.eta] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n ⊢ ↑i < n + 1 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n ⊢ i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } [PROOFSTEP] ext [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n ⊢ ↑i = ↑(Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) }) [PROOFSTEP] simp only [Fin.castSucc_mk, Fin.eta] [GOAL] case neg.succ.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] have eq := hq j.revPerm.succ (by simp only [← hk, Fin.revPerm_eq j hk.symm, Nat.succ_eq_add_one, Fin.succ_mk, Fin.val_mk] linarith) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } ⊢ Nat.succ n + 1 ≤ ↑(Fin.succ (↑Fin.revPerm j)) + q [PROOFSTEP] simp only [← hk, Fin.revPerm_eq j hk.symm, Nat.succ_eq_add_one, Fin.succ_mk, Fin.val_mk] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } ⊢ k + ↑j + 1 + 1 ≤ k + 1 + q [PROOFSTEP] linarith [GOAL] case neg.succ.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } eq : SimplicialObject.σ X (Fin.succ (↑Fin.revPerm j)) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 ⊢ ((HomologicalComplex.Hom.f (P ↑j) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm j)) ≫ SimplicialObject.σ X (↑Fin.revPerm j)) ≫ SimplicialObject.σ X i) ≫ HomologicalComplex.Hom.f (P q ≫ (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q)) (Nat.succ n + 1) = 0 [PROOFSTEP] rw [HomologicalComplex.comp_f, assoc, assoc, assoc, hi', SimplicialObject.σ_comp_σ_assoc, reassoc_of% eq, zero_comp, comp_zero, comp_zero, comp_zero] [GOAL] case neg.succ.intro.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } eq : SimplicialObject.σ X (Fin.succ (↑Fin.revPerm j)) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 ⊢ { val := ↑i, isLt := (_ : ↑i < n + 1) } ≤ ↑Fin.revPerm j [PROOFSTEP] simp only [Fin.revPerm_eq j hk.symm, Fin.le_iff_val_le_val, Fin.val_mk] [GOAL] case neg.succ.intro.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hq : ∀ (i : Fin (Nat.succ n + 1)), Nat.succ n + 1 ≤ ↑i + q → SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 i : Fin (Nat.succ n + 1) h : ¬Nat.succ n + 1 ≤ ↑i + q hi : n + 1 = ↑i + q v : HigherFacesVanish q (HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ SimplicialObject.σ X i) j : Fin (n + 1) hj : ↑j < q k : ℕ hk : k + ↑j = n hi' : i = Fin.castSucc { val := ↑i, isLt := (_ : ↑i < n + 1) } eq : SimplicialObject.σ X (Fin.succ (↑Fin.revPerm j)) ≫ HomologicalComplex.Hom.f (P q) (Nat.succ n + 1) = 0 ⊢ ↑i ≤ k [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ SimplicialObject.σ X i ≫ HomologicalComplex.Hom.f PInfty (n + 1) = 0 [PROOFSTEP] rw [PInfty_f, σ_comp_P_eq_zero X i] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ n + 1 ≤ ↑i + (n + 1) [PROOFSTEP] simp only [le_add_iff_nonneg_left, zero_le] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory θ : [n] ⟶ Δ' hθ : ¬Mono θ ⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rw [SimplexCategory.mono_iff_injective] at hθ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ Δ' : SimplexCategory θ : [n] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) ⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] cases n [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory θ : [Nat.zero] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) ⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty Nat.zero = 0 [PROOFSTEP] exfalso [GOAL] case zero.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory θ : [Nat.zero] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) ⊢ False [PROOFSTEP] apply hθ [GOAL] case zero.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory θ : [Nat.zero] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) ⊢ Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) [PROOFSTEP] intro x y h [GOAL] case zero.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory θ : [Nat.zero] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) x y : Fin (SimplexCategory.len [Nat.zero] + 1) h : ↑(SimplexCategory.Hom.toOrderHom θ) x = ↑(SimplexCategory.Hom.toOrderHom θ) y ⊢ x = y [PROOFSTEP] fin_cases x [GOAL] case zero.h.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory θ : [Nat.zero] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) y : Fin (SimplexCategory.len [Nat.zero] + 1) h : ↑(SimplexCategory.Hom.toOrderHom θ) { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } = ↑(SimplexCategory.Hom.toOrderHom θ) y ⊢ { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } = y [PROOFSTEP] fin_cases y [GOAL] case zero.h.head.head C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory θ : [Nat.zero] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) h : ↑(SimplexCategory.Hom.toOrderHom θ) { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } = ↑(SimplexCategory.Hom.toOrderHom θ) { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } ⊢ { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } = { val := 0, isLt := (_ : 0 < SimplexCategory.len [Nat.zero] + 1) } [PROOFSTEP] rfl [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory n✝ : ℕ θ : [Nat.succ n✝] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) ⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n✝) = 0 [PROOFSTEP] obtain ⟨i, α, h⟩ := SimplexCategory.eq_σ_comp_of_not_injective θ hθ [GOAL] case succ.intro.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory n✝ : ℕ θ : [Nat.succ n✝] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) i : Fin (n✝ + 1) α : [n✝] ⟶ Δ' h : θ = SimplexCategory.σ i ≫ α ⊢ X.map θ.op ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n✝) = 0 [PROOFSTEP] rw [h, op_comp, X.map_comp, assoc, show X.map (SimplexCategory.σ i).op = X.σ i by rfl, σ_comp_PInfty, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Δ' : SimplexCategory n✝ : ℕ θ : [Nat.succ n✝] ⟶ Δ' hθ : ¬Function.Injective ↑(SimplexCategory.Hom.toOrderHom θ) i : Fin (n✝ + 1) α : [n✝] ⟶ Δ' h : θ = SimplexCategory.σ i ≫ α ⊢ X.map (SimplexCategory.σ i).op = SimplicialObject.σ X i [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Degeneracies", "llama_tokens": 17177}
{"mathlib_filename": "Mathlib.Util.Syntax", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.DummyLabelAttr", "llama_tokens": 0}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.42, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ Homotopy (P (q + 1)) (𝟙 K[X]) [PROOFSTEP] refine' Homotopy.trans (Homotopy.ofEq _) (Homotopy.trans (Homotopy.add (homotopyPToId q) (Homotopy.compLeft (homotopyHσToZero q) (P q))) (Homotopy.ofEq _)) [GOAL] case refine'_1 C : Type u_1 inst✝¹ : Category.{?u.42, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ P (q + 1) = P q + P q ≫ Hσ q [PROOFSTEP] simp only [P_succ, comp_add, comp_id] [GOAL] case refine'_2 C : Type u_1 inst✝¹ : Category.{?u.42, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ ⊢ 𝟙 K[X] + P q ≫ 0 = 𝟙 K[X] [PROOFSTEP] simp only [add_zero, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hqn : n < q ⊢ Homotopy.hom (homotopyPToId X (q + 1)) n (n + 1) = Homotopy.hom (homotopyPToId X q) n (n + 1) [PROOFSTEP] simp only [homotopyHσToZero, AlternatingFaceMapComplex.obj_X, Nat.add_eq, Homotopy.trans_hom, Homotopy.ofEq_hom, Pi.zero_apply, Homotopy.add_hom, Homotopy.compLeft_hom, add_zero, Homotopy.nullHomotopy'_hom, ComplexShape.down_Rel, hσ'_eq_zero hqn (c_mk (n + 1) n rfl), dite_eq_ite, ite_self, comp_zero, zero_add, homotopyPToId] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hqn : n < q ⊢ Homotopy.hom (homotopyPToId X (q + 0)) n (n + 1) = Homotopy.hom (homotopyPToId X q) n (n + 1) [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n = ((↑(dNext n) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) + ↑(prevD n) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) + HomologicalComplex.Hom.f (𝟙 K[X]) n [PROOFSTEP] rcases n with _ | n [GOAL] case zero C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ HomologicalComplex.Hom.f PInfty Nat.zero = ((↑(dNext Nat.zero) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) + ↑(prevD Nat.zero) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) + HomologicalComplex.Hom.f (𝟙 K[X]) Nat.zero [PROOFSTEP] simpa only [Homotopy.dNext_zero_chainComplex, Homotopy.prevD_chainComplex, PInfty_f, Nat.zero_eq, P_f_0_eq, zero_add] using (homotopyPToId X 2).comm 0 [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty (Nat.succ n) = ((↑(dNext (Nat.succ n)) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) + ↑(prevD (Nat.succ n)) fun i j => Homotopy.hom (homotopyPToId X (j + 1)) i j) + HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n) [PROOFSTEP] rw [Homotopy.dNext_succ_chainComplex, Homotopy.prevD_chainComplex, PInfty_f, ← P_is_eventually_constant (rfl.le : n + 1 ≤ n + 1)] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) = HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) + Homotopy.hom (homotopyPToId X (Nat.succ n + 1 + 1)) (Nat.succ n) (Nat.succ n + 1) ≫ HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) + HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n) [PROOFSTEP] erw [homotopyPToId_eventually_constant X (lt_add_one (Nat.succ n))] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) = HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) + Homotopy.hom (homotopyPToId X (Nat.succ n + 1)) (Nat.succ n) (Nat.succ n + 1) ≫ HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) + HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n) [PROOFSTEP] have := (homotopyPToId X (n + 2)).comm (n + 1) [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ this : HomologicalComplex.Hom.f (P (n + 2)) (n + 1) = ↑(dNext (n + 1)) (homotopyPToId X (n + 2)).hom + ↑(prevD (n + 1)) (homotopyPToId X (n + 2)).hom + HomologicalComplex.Hom.f (𝟙 K[X]) (n + 1) ⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) = HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) + Homotopy.hom (homotopyPToId X (Nat.succ n + 1)) (Nat.succ n) (Nat.succ n + 1) ≫ HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) + HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n) [PROOFSTEP] rw [Homotopy.dNext_succ_chainComplex, Homotopy.prevD_chainComplex] at this [GOAL] case succ C : Type u_1 inst✝¹ : Category.{?u.44641, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ this : HomologicalComplex.Hom.f (P (n + 2)) (n + 1) = HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 2)) n (n + 1) + Homotopy.hom (homotopyPToId X (n + 2)) (n + 1) (n + 1 + 1) ≫ HomologicalComplex.d K[X] (n + 1 + 1) (n + 1) + HomologicalComplex.Hom.f (𝟙 K[X]) (n + 1) ⊢ HomologicalComplex.Hom.f (P (n + 1 + 1)) (n + 1) = HomologicalComplex.d K[X] (n + 1) n ≫ Homotopy.hom (homotopyPToId X (n + 1 + 1)) n (n + 1) + Homotopy.hom (homotopyPToId X (Nat.succ n + 1)) (Nat.succ n) (Nat.succ n + 1) ≫ HomologicalComplex.d K[X] (Nat.succ n + 1) (Nat.succ n) + HomologicalComplex.Hom.f (𝟙 K[X]) (Nat.succ n) [PROOFSTEP] exact this
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.HomotopyEquivalence", "llama_tokens": 2859}
{"mathlib_filename": "Mathlib.Util.CountHeartbeats", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.SynthesizeUsing", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.AssertNoSorry", "llama_tokens": 0}
[GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hqn : n ≤ q ⊢ HomologicalComplex.Hom.f (P (q + 1)) n = HomologicalComplex.Hom.f (P q) n [PROOFSTEP] rcases n with (_ | n) [GOAL] case zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q : ℕ hqn : Nat.zero ≤ q ⊢ HomologicalComplex.Hom.f (P (q + 1)) Nat.zero = HomologicalComplex.Hom.f (P q) Nat.zero [PROOFSTEP] simp only [Nat.zero_eq, P_f_0_eq] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hqn : Nat.succ n ≤ q ⊢ HomologicalComplex.Hom.f (P (q + 1)) (Nat.succ n) = HomologicalComplex.Hom.f (P q) (Nat.succ n) [PROOFSTEP] simp only [P_succ, add_right_eq_self, comp_add, HomologicalComplex.comp_f, HomologicalComplex.add_f_apply, comp_id] [GOAL] case succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hqn : Nat.succ n ≤ q ⊢ HomologicalComplex.Hom.f (P q) (Nat.succ n) ≫ HomologicalComplex.Hom.f (Hσ q) (Nat.succ n) = 0 [PROOFSTEP] exact (HigherFacesVanish.of_P q n).comp_Hσ_eq_zero (Nat.succ_le_iff.mp hqn) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C q n : ℕ hqn : n ≤ q ⊢ HomologicalComplex.Hom.f (Q (q + 1)) n = HomologicalComplex.Hom.f (Q q) n [PROOFSTEP] simp only [Q, HomologicalComplex.sub_f_apply, P_is_eventually_constant hqn] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.41303, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ (fun n => HomologicalComplex.Hom.f (P n) n) (n + 1) ≫ AlternatingFaceMapComplex.objD X n = AlternatingFaceMapComplex.objD X n ≫ (fun n => HomologicalComplex.Hom.f (P n) n) n [PROOFSTEP] simpa only [← P_is_eventually_constant (show n ≤ n by rfl), AlternatingFaceMapComplex.obj_d_eq] using (P (n + 1) : K[X] ⟶ _).comm (n + 1) n [GOAL] C : Type u_1 inst✝¹ : Category.{?u.41303, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ n ≤ n [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ HomologicalComplex.Hom.f QInfty 0 = 0 [PROOFSTEP] dsimp [QInfty] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ 𝟙 (X.obj (op [0])) - 𝟙 (X.obj (op [0])) = 0 [PROOFSTEP] simp only [sub_self] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n [PROOFSTEP] simp only [PInfty_f, P_f_idem] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ PInfty ≫ PInfty = PInfty [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (PInfty ≫ PInfty) n = HomologicalComplex.Hom.f PInfty n [PROOFSTEP] exact PInfty_f_idem n [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ QInfty ≫ QInfty = QInfty [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (QInfty ≫ QInfty) n = HomologicalComplex.Hom.f QInfty n [PROOFSTEP] exact QInfty_f_idem n [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f QInfty n = 0 [PROOFSTEP] dsimp only [QInfty] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (𝟙 K[X] - PInfty) n = 0 [PROOFSTEP] simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, comp_sub, comp_id, PInfty_f_idem, sub_self] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ PInfty ≫ QInfty = 0 [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (PInfty ≫ QInfty) n = HomologicalComplex.Hom.f 0 n [PROOFSTEP] apply PInfty_f_comp_QInfty_f [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f QInfty n ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] dsimp only [QInfty] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (𝟙 K[X] - PInfty) n ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] simp only [HomologicalComplex.sub_f_apply, HomologicalComplex.id_f, sub_comp, id_comp, PInfty_f_idem, sub_self] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ QInfty ≫ PInfty = 0 [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f (QInfty ≫ PInfty) n = HomologicalComplex.Hom.f 0 n [PROOFSTEP] apply QInfty_f_comp_PInfty_f [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ PInfty + QInfty = 𝟙 K[X] [PROOFSTEP] dsimp only [QInfty] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C ⊢ PInfty + (𝟙 K[X] - PInfty) = 𝟙 K[X] [PROOFSTEP] simp only [add_sub_cancel'_right] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.354986, u_1} C inst✝ : Preadditive C X✝ X Y : SimplicialObject C f : X ⟶ Y ⊢ (alternatingFaceMapComplex C).map f ≫ (fun x => PInfty) Y = (fun x => PInfty) X ≫ (alternatingFaceMapComplex C).map f [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝¹ : Category.{?u.354986, u_1} C inst✝ : Preadditive C X✝ X Y : SimplicialObject C f : X ⟶ Y n : ℕ ⊢ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map f ≫ (fun x => PInfty) Y) n = HomologicalComplex.Hom.f ((fun x => PInfty) X ≫ (alternatingFaceMapComplex C).map f) n [PROOFSTEP] exact PInfty_f_naturality n f [GOAL] C : Type u_1 inst✝⁴ : Category.{u_4, u_1} C inst✝³ : Preadditive C X✝ : SimplicialObject C D : Type u_2 inst✝² : Category.{u_3, u_2} D inst✝¹ : Preadditive D G : C ⥤ D inst✝ : Functor.Additive G X : SimplicialObject C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n = G.map (HomologicalComplex.Hom.f PInfty n) [PROOFSTEP] simp only [PInfty_f, map_P] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let Y₁ := (karoubiFunctorCategoryEmbedding _ _).obj Y [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let Y₂ := Y.X [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let Y₃ := ((whiskering _ _).obj (toKaroubi C)).obj Y.X [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let Y₄ := (karoubiFunctorCategoryEmbedding _ _).obj ((toKaroubi _).obj Y.X) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let P₁ : K[Y₁] ⟶ _ := PInfty [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let P₂ : K[Y₂] ⟶ _ := PInfty [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let P₃ : K[Y₃] ⟶ _ := PInfty [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] let P₄ : K[Y₄] ⟶ _ := PInfty [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty ⊢ (HomologicalComplex.Hom.f PInfty n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] change (P₁.f n).f = Y.p.app (op [n]) ≫ P₂.f n [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty ⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n [PROOFSTEP] have h₃₂ : (P₃.f n).f = P₂.f n := Karoubi.hom_ext_iff.mp (map_PInfty_f (toKaroubi C) Y₂ n) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n ⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n [PROOFSTEP] have h₄₃ : P₄.f n = P₃.f n := by have h := Functor.congr_obj (toKaroubi_comp_karoubiFunctorCategoryEmbedding _ _) Y₂ simp only [← natTransPInfty_f_app] congr 1 [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n ⊢ HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n [PROOFSTEP] have h := Functor.congr_obj (toKaroubi_comp_karoubiFunctorCategoryEmbedding _ _) Y₂ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h : (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y₂ = ((whiskeringRight SimplexCategoryᵒᵖ C (Karoubi C)).obj (toKaroubi C)).obj Y₂ ⊢ HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n [PROOFSTEP] simp only [← natTransPInfty_f_app] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h : (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y₂ = ((whiskeringRight SimplexCategoryᵒᵖ C (Karoubi C)).obj (toKaroubi C)).obj Y₂ ⊢ NatTrans.app (natTransPInfty_f (Karoubi C) n) ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X)) = NatTrans.app (natTransPInfty_f (Karoubi C) n) (((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X) [PROOFSTEP] congr 1 [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n ⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n [PROOFSTEP] have h₁₄ := Idempotents.natTrans_eq ((𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C)) ◫ (natTransPInfty_f (Karoubi C) n)) Y [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : NatTrans.app (𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C) ◫ natTransPInfty_f (Karoubi C) n) Y = (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ alternatingFaceMapComplex (Karoubi C) ⋙ HomologicalComplex.eval (Karoubi C) (ComplexShape.down ℕ) n).map (Karoubi.decompId_i Y) ≫ NatTrans.app (𝟙 (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C) ◫ natTransPInfty_f (Karoubi C) n) (Karoubi.mk Y.X (𝟙 Y.X)) ≫ (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ alternatingFaceMapComplex (Karoubi C) ⋙ HomologicalComplex.eval (Karoubi C) (ComplexShape.down ℕ) n).map (Karoubi.decompId_p Y) ⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n [PROOFSTEP] dsimp [natTransPInfty_f] at h₁₄ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : (Karoubi.Hom.mk (NatTrans.app Y.p (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ Karoubi.Hom.mk (NatTrans.app Y.p (op [n])) = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ ((Karoubi.Hom.mk (𝟙 (Y.X.obj (op [n]))) ≫ HomologicalComplex.Hom.f PInfty n) ≫ Karoubi.Hom.mk (𝟙 (Y.X.obj (op [n])))) ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) ⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n [PROOFSTEP] erw [id_comp, id_comp, comp_id, comp_id] at h₁₄ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) ⊢ (HomologicalComplex.Hom.f P₁ n).f = NatTrans.app Y.p (op [n]) ≫ HomologicalComplex.Hom.f P₂ n [PROOFSTEP] rw [← h₃₂, ← h₄₃, h₁₄] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) ⊢ (NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n])).f = NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f P₄ n).f [PROOFSTEP] simp only [KaroubiFunctorCategoryEmbedding.map_app_f, Karoubi.decompId_p_f, Karoubi.decompId_i_f, Karoubi.comp_f] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) ⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) = NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f [PROOFSTEP] let π : Y₄ ⟶ Y₄ := (toKaroubi _ ⋙ karoubiFunctorCategoryEmbedding _ _).map Y.p [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p ⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) = NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f [PROOFSTEP] have eq := Karoubi.hom_ext_iff.mp (PInfty_f_naturality n π) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p eq : (NatTrans.app π (op [n]) ≫ HomologicalComplex.Hom.f PInfty n).f = (HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app π (op [n])).f ⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) = NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f [PROOFSTEP] simp only [Karoubi.comp_f] at eq [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p eq : (NatTrans.app ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p) (op [n])).f ≫ (HomologicalComplex.Hom.f PInfty n).f = (HomologicalComplex.Hom.f PInfty n).f ≫ (NatTrans.app ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p) (op [n])).f ⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) = NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f [PROOFSTEP] dsimp at eq [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : Karoubi (SimplicialObject C) n : ℕ Y₁ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj Y Y₂ : SimplicialObject C := Y.X Y₃ : SimplicialObject (Karoubi C) := ((whiskering C (Karoubi C)).obj (toKaroubi C)).obj Y.X Y₄ : SimplexCategoryᵒᵖ ⥤ Karoubi C := (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).obj ((toKaroubi (SimplexCategoryᵒᵖ ⥤ C)).obj Y.X) P₁ : K[Y₁] ⟶ K[Y₁] := PInfty P₂ : K[Y₂] ⟶ K[Y₂] := PInfty P₃ : K[Y₃] ⟶ K[Y₃] := PInfty P₄ : K[Y₄] ⟶ K[Y₄] := PInfty h₃₂ : (HomologicalComplex.Hom.f P₃ n).f = HomologicalComplex.Hom.f P₂ n h₄₃ : HomologicalComplex.Hom.f P₄ n = HomologicalComplex.Hom.f P₃ n h₁₄ : HomologicalComplex.Hom.f PInfty n = NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_i Y)) (op [n]) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app (KaroubiFunctorCategoryEmbedding.map (Karoubi.decompId_p Y)) (op [n]) π : Y₄ ⟶ Y₄ := (toKaroubi (SimplexCategoryᵒᵖ ⥤ C) ⋙ karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C).map Y.p eq : NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f = (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) ⊢ NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app Y.p (op [n]) = NatTrans.app Y.p (op [n]) ≫ (HomologicalComplex.Hom.f PInfty n).f [PROOFSTEP] rw [← eq, app_idem_assoc Y (op [n])]
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.PInfty", "llama_tokens": 14603}
[GOAL] C : Type u_1 inst✝¹ : Category.{?u.28, u_1} C inst✝ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y ⊢ ∀ [inst : IsIso (N₁.map f)], IsIso f [PROOFSTEP] intro -- restating the result in a way that allows induction on the degree n [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) ⊢ IsIso f [PROOFSTEP] suffices ∀ n : ℕ, IsIso (f.app (op [n])) by haveI : ∀ Δ : SimplexCategoryᵒᵖ, IsIso (f.app Δ) := fun Δ => this Δ.unop.len apply NatIso.isIso_of_isIso_app [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) this : ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) ⊢ IsIso f [PROOFSTEP] haveI : ∀ Δ : SimplexCategoryᵒᵖ, IsIso (f.app Δ) := fun Δ => this Δ.unop.len [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) this✝ : ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) this : ∀ (Δ : SimplexCategoryᵒᵖ), IsIso (NatTrans.app f Δ) ⊢ IsIso f [PROOFSTEP] apply NatIso.isIso_of_isIso_app [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) ⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) [PROOFSTEP] have h₁ := HomologicalComplex.congr_hom (Karoubi.hom_ext_iff.mp (IsIso.hom_inv_id (N₁.map f))) [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f (N₁.map f ≫ inv (N₁.map f)).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f i ⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) [PROOFSTEP] have h₂ := HomologicalComplex.congr_hom (Karoubi.hom_ext_iff.mp (IsIso.inv_hom_id (N₁.map f))) [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f (N₁.map f ≫ inv (N₁.map f)).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f i h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f) ≫ N₁.map f).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj Y)).f i ⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) [PROOFSTEP] have h₃ := fun n => Karoubi.HomologicalComplex.p_comm_f_assoc (inv (N₁.map f)) n (f.app (op [n])) [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f (N₁.map f ≫ inv (N₁.map f)).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f i h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f) ≫ N₁.map f).f i = HomologicalComplex.Hom.f (𝟙 (N₁.obj Y)).f i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f (N₁.obj Y).p n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f (N₁.obj X).p n ≫ NatTrans.app f (op [n]) ⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) [PROOFSTEP] simp only [N₁_map_f, Karoubi.comp_f, HomologicalComplex.comp_f, AlternatingFaceMapComplex.map_f, N₁_obj_p, Karoubi.id_eq, assoc] at h₁ h₂ h₃ [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i ⊢ ∀ (n : ℕ), IsIso (NatTrans.app f (op [n])) [PROOFSTEP] intro n [GOAL] C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i n : ℕ ⊢ IsIso (NatTrans.app f (op [n])) [PROOFSTEP] induction' n with n hn [GOAL] case zero C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i ⊢ IsIso (NatTrans.app f (op [Nat.zero])) [PROOFSTEP] use(inv (N₁.map f)).f.f 0 [GOAL] case h C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i ⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero])) [PROOFSTEP] have h₁₀ := h₁ 0 [GOAL] case h C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i h₁₀ : HomologicalComplex.Hom.f PInfty 0 ≫ NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = HomologicalComplex.Hom.f PInfty 0 ⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero])) [PROOFSTEP] have h₂₀ := h₂ 0 [GOAL] case h C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i h₁₀ : HomologicalComplex.Hom.f PInfty 0 ≫ NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = HomologicalComplex.Hom.f PInfty 0 h₂₀ : HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ HomologicalComplex.Hom.f PInfty 0 ≫ NatTrans.app f (op [0]) = HomologicalComplex.Hom.f PInfty 0 ⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero])) [PROOFSTEP] dsimp at h₁₀ h₂₀ [GOAL] case h C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i h₁₀ : 𝟙 (X.obj (op [0])) ≫ NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [0])) h₂₀ : HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ 𝟙 (X.obj (op [0])) ≫ NatTrans.app f (op [0]) = 𝟙 (Y.obj (op [0])) ⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero])) [PROOFSTEP] simp only [id_comp, comp_id] at h₁₀ h₂₀ [GOAL] case h C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i h₁₀ : NatTrans.app f (op [0]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [0])) h₂₀ : HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [0]) = 𝟙 (Y.obj (op [0])) ⊢ NatTrans.app f (op [Nat.zero]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 = 𝟙 (X.obj (op [Nat.zero])) ∧ HomologicalComplex.Hom.f (inv (N₁.map f)).f 0 ≫ NatTrans.app f (op [Nat.zero]) = 𝟙 (Y.obj (op [Nat.zero])) [PROOFSTEP] tauto [GOAL] case succ C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i n : ℕ hn : IsIso (NatTrans.app f (op [n])) ⊢ IsIso (NatTrans.app f (op [Nat.succ n])) [PROOFSTEP] haveI := hn [GOAL] case succ C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i n : ℕ hn this : IsIso (NatTrans.app f (op [n])) ⊢ IsIso (NatTrans.app f (op [Nat.succ n])) [PROOFSTEP] use φ { a := PInfty.f (n + 1) ≫ (inv (N₁.map f)).f.f (n + 1) b := fun i => inv (f.app (op [n])) ≫ X.σ i } [GOAL] case h C : Type u_1 inst✝² : Category.{?u.28, u_1} C inst✝¹ : Preadditive C X Y : SimplicialObject C f : X ⟶ Y inst✝ : IsIso (N₁.map f) h₂ : ∀ (i : ℕ), HomologicalComplex.Hom.f (inv (N₁.map f)).f i ≫ HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) = HomologicalComplex.Hom.f PInfty i h₃ : ∀ (n : ℕ), HomologicalComplex.Hom.f PInfty n ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ NatTrans.app f (op [n]) = HomologicalComplex.Hom.f (inv (N₁.map f)).f n ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f (op [n]) h₁ : ∀ (i : ℕ), HomologicalComplex.Hom.f PInfty i ≫ NatTrans.app f (op [i]) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f i = HomologicalComplex.Hom.f PInfty i n : ℕ hn this : IsIso (NatTrans.app f (op [n])) ⊢ NatTrans.app f (op [Nat.succ n]) ≫ φ { a := HomologicalComplex.Hom.f PInfty (n + 1) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f (n + 1), b := fun i => inv (NatTrans.app f (op [n])) ≫ SimplicialObject.σ X i } = 𝟙 (X.obj (op [Nat.succ n])) ∧ φ { a := HomologicalComplex.Hom.f PInfty (n + 1) ≫ HomologicalComplex.Hom.f (inv (N₁.map f)).f (n + 1), b := fun i => inv (NatTrans.app f (op [n])) ≫ SimplicialObject.σ X i } ≫ NatTrans.app f (op [Nat.succ n]) = 𝟙 (Y.obj (op [Nat.succ n])) [PROOFSTEP] simp only [MorphComponents.id, ← id_φ, ← preComp_φ, preComp, ← postComp_φ, postComp, PInfty_f_naturality_assoc, IsIso.hom_inv_id_assoc, assoc, IsIso.inv_hom_id_assoc, SimplicialObject.σ_naturality, h₁, h₂, h₃] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C ⊢ N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor = karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) [PROOFSTEP] refine' CategoryTheory.Functor.ext (fun P => _) fun P Q f => _ [GOAL] case refine'_1 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) ⊢ (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P = (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P [PROOFSTEP] refine' HomologicalComplex.ext _ _ [GOAL] case refine'_1.refine'_1 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) ⊢ ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P).X = ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P).X [PROOFSTEP] ext n [GOAL] case refine'_1.refine'_1.h.h_X C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ ⊢ (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X = (HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) n).X [PROOFSTEP] rfl [GOAL] case refine'_1.refine'_1.h.h_p C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ ⊢ (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).p ≫ eqToHom (_ : (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X = (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X) = eqToHom (_ : (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X = (HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n).X) ≫ (HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) n).p [PROOFSTEP] dsimp [GOAL] case refine'_1.refine'_1.h.h_p C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ ⊢ (HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n])) ≫ 𝟙 (P.X.obj (op [n])) = 𝟙 (P.X.obj (op [n])) ≫ (HomologicalComplex.Hom.f PInfty n).f [PROOFSTEP] simp only [karoubi_PInfty_f, comp_id, PInfty_f_naturality, id_comp, eqToHom_refl] [GOAL] case refine'_1.refine'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) ⊢ ∀ (i j : ℕ), ComplexShape.Rel (ComplexShape.down ℕ) i j → HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) i j ≫ eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) j = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) j) = eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) i = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) i) ≫ HomologicalComplex.d ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) i j [PROOFSTEP] rintro _ n (rfl : n + 1 = _) [GOAL] case refine'_1.refine'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ ⊢ HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) n ≫ eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) n) = eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) (n + 1)) ≫ HomologicalComplex.d ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) (n + 1) n [PROOFSTEP] ext [GOAL] case refine'_1.refine'_2.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ ⊢ (HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) n ≫ eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) n)).f = (eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) (n + 1)) ≫ HomologicalComplex.d ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) (n + 1) n).f [PROOFSTEP] have h := (AlternatingFaceMapComplex.map P.p).comm (n + 1) n [GOAL] case refine'_1.refine'_2.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ h : HomologicalComplex.Hom.f (AlternatingFaceMapComplex.map P.p) (n + 1) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n = HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n ≫ HomologicalComplex.Hom.f (AlternatingFaceMapComplex.map P.p) n ⊢ (HomologicalComplex.d ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) n ≫ eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) n = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) n)).f = (eqToHom (_ : HomologicalComplex.X ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P) (n + 1) = HomologicalComplex.X ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) (n + 1)) ≫ HomologicalComplex.d ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) (n + 1) n).f [PROOFSTEP] dsimp [N₂, karoubiChainComplexEquivalence, KaroubiHomologicalComplexEquivalence.Functor.obj] at h ⊢ [GOAL] case refine'_1.refine'_2.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P : Karoubi (SimplicialObject C) n : ℕ h : NatTrans.app P.p (op [n + 1]) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n = HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n ≫ NatTrans.app P.p (op [n]) ⊢ ((HomologicalComplex.Hom.f PInfty (n + 1) ≫ NatTrans.app P.p (op [n + 1])) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj P.X) (n + 1) n) ≫ (eqToHom (_ : Karoubi.mk (P.X.obj (op [n])) (HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app P.p (op [n])) = HomologicalComplex.X ((Functor.mapHomologicalComplex (KaroubiKaroubi.inverse C) (ComplexShape.down ℕ)).obj (HomologicalComplex.mk (fun n => Karoubi.mk ((KaroubiFunctorCategoryEmbedding.obj P).obj (op [n])) (HomologicalComplex.Hom.f PInfty n)) fun i j => Karoubi.Hom.mk (HomologicalComplex.Hom.f PInfty i ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)) i j))) n)).f = (eqToHom (_ : Karoubi.mk (P.X.obj (op [n + 1])) (HomologicalComplex.Hom.f PInfty (n + 1) ≫ NatTrans.app P.p (op [n + 1])) = HomologicalComplex.X ((Functor.mapHomologicalComplex (KaroubiKaroubi.inverse C) (ComplexShape.down ℕ)).obj (HomologicalComplex.mk (fun n => Karoubi.mk ((KaroubiFunctorCategoryEmbedding.obj P).obj (op [n])) (HomologicalComplex.Hom.f PInfty n)) fun i j => Karoubi.Hom.mk (HomologicalComplex.Hom.f PInfty i ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)) i j))) (n + 1))).f ≫ (HomologicalComplex.Hom.f PInfty (n + 1)).f ≫ (HomologicalComplex.d (AlternatingFaceMapComplex.obj (KaroubiFunctorCategoryEmbedding.obj P)) (n + 1) n).f [PROOFSTEP] simp only [assoc, Karoubi.eqToHom_f, eqToHom_refl, comp_id, karoubi_alternatingFaceMapComplex_d, karoubi_PInfty_f, ← HomologicalComplex.Hom.comm_assoc, ← h, app_idem_assoc] [GOAL] case refine'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P Q : Karoubi (SimplicialObject C) f : P ⟶ Q ⊢ (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).map f = eqToHom (_ : (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P = (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) ≫ (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).map f ≫ eqToHom (_ : (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj Q = (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj Q) [PROOFSTEP] ext n [GOAL] case refine'_2.h.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P Q : Karoubi (SimplicialObject C) f : P ⟶ Q n : ℕ ⊢ (HomologicalComplex.Hom.f ((N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).map f) n).f = (HomologicalComplex.Hom.f (eqToHom (_ : (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj P = (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj P) ≫ (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).map f ≫ eqToHom (_ : (karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).obj Q = (N₂ ⋙ (karoubiChainComplexEquivalence C ℕ).functor).obj Q)) n).f [PROOFSTEP] dsimp [KaroubiKaroubi.inverse, Functor.mapHomologicalComplex] [GOAL] case refine'_2.h.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C P Q : Karoubi (SimplicialObject C) f : P ⟶ Q n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app f.f (op [n]) = (HomologicalComplex.Hom.f (eqToHom (_ : (karoubiChainComplexEquivalence C ℕ).functor.obj (N₂.obj P) = HomologicalComplex.mk (fun i => Karoubi.mk (P.X.obj (op [i])) (HomologicalComplex.Hom.f PInfty i).f) fun i j => Karoubi.Hom.mk (HomologicalComplex.d ((karoubiChainComplexEquivalence (Karoubi C) ℕ).functor.obj (N₁.obj (KaroubiFunctorCategoryEmbedding.obj P))) i j).f.f)) n).f ≫ ((HomologicalComplex.Hom.f PInfty n).f ≫ NatTrans.app f.f (op [n])) ≫ (HomologicalComplex.Hom.f (eqToHom (_ : (HomologicalComplex.mk (fun i => Karoubi.mk (Q.X.obj (op [i])) (HomologicalComplex.Hom.f PInfty i).f) fun i j => Karoubi.Hom.mk (HomologicalComplex.d ((karoubiChainComplexEquivalence (Karoubi C) ℕ).functor.obj (N₁.obj (KaroubiFunctorCategoryEmbedding.obj Q))) i j).f.f) = (karoubiChainComplexEquivalence C ℕ).functor.obj (N₂.obj Q))) n).f [PROOFSTEP] simp only [karoubi_PInfty_f, HomologicalComplex.eqToHom_f, Karoubi.eqToHom_f, assoc, comp_id, PInfty_f_naturality, app_p_comp, karoubiChainComplexEquivalence_functor_obj_X_p, N₂_obj_p_f, eqToHom_refl, PInfty_f_naturality_assoc, app_comp_p, PInfty_f_idem_assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{?u.74447, u_1} C inst✝ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ ⊢ ∀ [inst : IsIso (N₂.map f)], IsIso f [PROOFSTEP] intro -- The following functor `F` reflects isomorphism because it is -- a composition of four functors which reflects isomorphisms. -- Then, it suffices to show that `F.map f` is an isomorphism. [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) ⊢ IsIso f [PROOFSTEP] let F₁ := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⊢ IsIso f [PROOFSTEP] let F₂ : SimplicialObject (Karoubi C) ⥤ _ := N₁ [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ ⊢ IsIso f [PROOFSTEP] let F₃ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⊢ IsIso f [PROOFSTEP] let F₄ := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) ⊢ IsIso f [PROOFSTEP] let F := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ ⊢ IsIso f [PROOFSTEP] haveI : ReflectsIsomorphisms F₁ := reflectsIsomorphisms_of_full_and_faithful _ [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this : ReflectsIsomorphisms F₁ ⊢ IsIso f [PROOFSTEP] haveI : ReflectsIsomorphisms F₂ := by infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this : ReflectsIsomorphisms F₁ ⊢ ReflectsIsomorphisms F₂ [PROOFSTEP] infer_instance [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝ : ReflectsIsomorphisms F₁ this : ReflectsIsomorphisms F₂ ⊢ IsIso f [PROOFSTEP] haveI : ReflectsIsomorphisms F₃ := reflectsIsomorphisms_of_full_and_faithful _ [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝¹ : ReflectsIsomorphisms F₁ this✝ : ReflectsIsomorphisms F₂ this : ReflectsIsomorphisms F₃ ⊢ IsIso f [PROOFSTEP] haveI : ReflectsIsomorphisms ((KaroubiKaroubi.equivalence C).inverse) := reflectsIsomorphisms_of_full_and_faithful _ [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝² : ReflectsIsomorphisms F₁ this✝¹ : ReflectsIsomorphisms F₂ this✝ : ReflectsIsomorphisms F₃ this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse ⊢ IsIso f [PROOFSTEP] have : IsIso (F.map f) := by simp only rw [← compatibility_N₂_N₁_karoubi, Functor.comp_map] apply Functor.map_isIso [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝² : ReflectsIsomorphisms F₁ this✝¹ : ReflectsIsomorphisms F₂ this✝ : ReflectsIsomorphisms F₃ this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse ⊢ IsIso (F.map f) [PROOFSTEP] simp only [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝² : ReflectsIsomorphisms F₁ this✝¹ : ReflectsIsomorphisms F₂ this✝ : ReflectsIsomorphisms F₃ this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse ⊢ IsIso ((karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C ⋙ N₁ ⋙ (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor ⋙ Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ)).map f) [PROOFSTEP] rw [← compatibility_N₂_N₁_karoubi, Functor.comp_map] [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝² : ReflectsIsomorphisms F₁ this✝¹ : ReflectsIsomorphisms F₂ this✝ : ReflectsIsomorphisms F₃ this : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse ⊢ IsIso ((karoubiChainComplexEquivalence C ℕ).functor.map (N₂.map f)) [PROOFSTEP] apply Functor.map_isIso [GOAL] C : Type u_1 inst✝² : Category.{?u.74447, u_1} C inst✝¹ : Preadditive C A✝ B✝ : Karoubi (SimplicialObject C) f : A✝ ⟶ B✝ inst✝ : IsIso (N₂.map f) F₁ : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ SimplexCategoryᵒᵖ ⥤ Karoubi C := karoubiFunctorCategoryEmbedding SimplexCategoryᵒᵖ C F₂ : SimplicialObject (Karoubi C) ⥤ Karoubi (ChainComplex (Karoubi C) ℕ) := N₁ F₃ : Karoubi (ChainComplex (Karoubi C) ℕ) ⥤ ChainComplex (Karoubi (Karoubi C)) ℕ := (karoubiChainComplexEquivalence (Karoubi C) ℕ).functor F₄ : HomologicalComplex (Karoubi (Karoubi C)) (ComplexShape.down ℕ) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := Functor.mapHomologicalComplex (KaroubiKaroubi.equivalence C).inverse (ComplexShape.down ℕ) F : Karoubi (SimplexCategoryᵒᵖ ⥤ C) ⥤ HomologicalComplex (Karoubi C) (ComplexShape.down ℕ) := F₁ ⋙ F₂ ⋙ F₃ ⋙ F₄ this✝³ : ReflectsIsomorphisms F₁ this✝² : ReflectsIsomorphisms F₂ this✝¹ : ReflectsIsomorphisms F₃ this✝ : ReflectsIsomorphisms (KaroubiKaroubi.equivalence C).inverse this : IsIso (F.map f) ⊢ IsIso f [PROOFSTEP] exact isIso_of_reflects_iso f F
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.NReflectsIso", "llama_tokens": 20161}
[GOAL] g✝ : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R g : SL(2, R) ⊢ IsCoprime (↑g 1 0) (↑g 1 1) [PROOFSTEP] use-(↑g : Matrix (Fin 2) (Fin 2) R) 0 1, (↑g : Matrix (Fin 2) (Fin 2) R) 0 0 [GOAL] case h g✝ : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R g : SL(2, R) ⊢ -↑g 0 1 * ↑g 1 0 + ↑g 0 0 * ↑g 1 1 = 1 [PROOFSTEP] rw [add_comm, neg_mul, ← sub_eq_add_neg, ← det_fin_two] [GOAL] case h g✝ : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R g : SL(2, R) ⊢ det ↑g = 1 [PROOFSTEP] exact g.det_coe [GOAL] g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R ⊢ Set.SurjOn (fun g => ↑g 1) Set.univ {cd | IsCoprime (cd 0) (cd 1)} [PROOFSTEP] rintro cd ⟨b₀, a, gcd_eqn⟩ [GOAL] case intro.intro g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 ⊢ cd ∈ (fun g => ↑g 1) '' Set.univ [PROOFSTEP] let A := of ![![a, -b₀], cd] [GOAL] case intro.intro g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] ⊢ cd ∈ (fun g => ↑g 1) '' Set.univ [PROOFSTEP] have det_A_1 : det A = 1 := by convert gcd_eqn rw [det_fin_two] simp [(by ring : a * cd 1 + b₀ * cd 0 = b₀ * cd 0 + a * cd 1)] [GOAL] g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] ⊢ det A = 1 [PROOFSTEP] convert gcd_eqn [GOAL] case h.e'_2 g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] ⊢ det A = b₀ * cd 0 + a * cd 1 [PROOFSTEP] rw [det_fin_two] [GOAL] case h.e'_2 g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] ⊢ A 0 0 * A 1 1 - A 0 1 * A 1 0 = b₀ * cd 0 + a * cd 1 [PROOFSTEP] simp [(by ring : a * cd 1 + b₀ * cd 0 = b₀ * cd 0 + a * cd 1)] [GOAL] g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] ⊢ a * cd 1 + b₀ * cd 0 = b₀ * cd 0 + a * cd 1 [PROOFSTEP] ring [GOAL] case intro.intro g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] det_A_1 : det A = 1 ⊢ cd ∈ (fun g => ↑g 1) '' Set.univ [PROOFSTEP] refine' ⟨⟨A, det_A_1⟩, Set.mem_univ _, _⟩ [GOAL] case intro.intro g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] det_A_1 : det A = 1 ⊢ (fun g => ↑g 1) { val := A, property := det_A_1 } = cd [PROOFSTEP] ext [GOAL] case intro.intro.h g : SL(2, ℤ) z : ℍ R : Type u_1 inst✝ : CommRing R cd : Fin 2 → R b₀ a : R gcd_eqn : b₀ * cd 0 + a * cd 1 = 1 A : (fun x => Matrix (Fin (Nat.succ (Nat.succ 0))) (Fin (Nat.succ (Nat.succ 0))) R) ![![a, -b₀], cd] := ↑of ![![a, -b₀], cd] det_A_1 : det A = 1 x✝ : Fin 2 ⊢ (fun g => ↑g 1) { val := A, property := det_A_1 } x✝ = cd x✝ [PROOFSTEP] simp [GOAL] g : SL(2, ℤ) z : ℍ ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] letI : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] let π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] let π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] let f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := π₀.smulRight (z : ℂ) + π₁.smulRight 1 [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] have f_def : ⇑f = fun p : Fin 2 → ℝ => (p 0 : ℂ) * ↑z + p 1 := by ext1 dsimp only [LinearMap.coe_proj, real_smul, LinearMap.coe_smulRight, LinearMap.add_apply] rw [mul_one] [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 ⊢ ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) [PROOFSTEP] ext1 [GOAL] case h g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 x✝ : Fin 2 → ℝ ⊢ ↑f x✝ = ↑(x✝ 0) * ↑z + ↑(x✝ 1) [PROOFSTEP] dsimp only [LinearMap.coe_proj, real_smul, LinearMap.coe_smulRight, LinearMap.add_apply] [GOAL] case h g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 x✝ : Fin 2 → ℝ ⊢ ↑(Function.eval 0 x✝) * ↑z + ↑(Function.eval 1 x✝) * 1 = ↑(x✝ 0) * ↑z + ↑(x✝ 1) [PROOFSTEP] rw [mul_one] [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] have : (fun p : Fin 2 → ℤ => normSq ((p 0 : ℂ) * ↑z + ↑(p 1))) = normSq ∘ f ∘ fun p : Fin 2 → ℤ => ((↑) : ℤ → ℝ) ∘ p := by ext1 rw [f_def] dsimp only [Function.comp] rw [ofReal_int_cast, ofReal_int_cast] [GOAL] g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) ⊢ (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p [PROOFSTEP] ext1 [GOAL] case h g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) x✝ : Fin 2 → ℤ ⊢ ↑normSq (↑(x✝ 0) * ↑z + ↑(x✝ 1)) = (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) x✝ [PROOFSTEP] rw [f_def] [GOAL] case h g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) x✝ : Fin 2 → ℤ ⊢ ↑normSq (↑(x✝ 0) * ↑z + ↑(x✝ 1)) = (↑normSq ∘ (fun p => ↑(p 0) * ↑z + ↑(p 1)) ∘ fun p => Int.cast ∘ p) x✝ [PROOFSTEP] dsimp only [Function.comp] [GOAL] case h g : SL(2, ℤ) z : ℍ this : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) x✝ : Fin 2 → ℤ ⊢ ↑normSq (↑(x✝ 0) * ↑z + ↑(x✝ 1)) = ↑normSq (↑↑(x✝ 0) * ↑z + ↑↑(x✝ 1)) [PROOFSTEP] rw [ofReal_int_cast, ofReal_int_cast] [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p ⊢ Tendsto (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) cofinite atTop [PROOFSTEP] rw [this] [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p ⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop [PROOFSTEP] have hf : LinearMap.ker f = ⊥ := by let g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, imLm.comp ((z : ℂ) • ((conjAe : ℂ →ₐ[ℝ] ℂ) : ℂ →ₗ[ℝ] ℂ))] suffices ((z : ℂ).im⁻¹ • g).comp f = LinearMap.id by exact LinearMap.ker_eq_bot_of_inverse this apply LinearMap.ext intro c have hz : (z : ℂ).im ≠ 0 := z.2.ne' rw [LinearMap.comp_apply, LinearMap.smul_apply, LinearMap.id_apply] ext i dsimp only [Pi.smul_apply, LinearMap.pi_apply, smul_eq_mul] fin_cases i · show (z : ℂ).im⁻¹ * (f c).im = c 0 rw [f_def, add_im, ofReal_mul_im, ofReal_im, add_zero, mul_left_comm, inv_mul_cancel hz, mul_one] · show (z : ℂ).im⁻¹ * ((z : ℂ) * conj (f c)).im = c 1 rw [f_def, RingHom.map_add, RingHom.map_mul, mul_add, mul_left_comm, mul_conj, conj_ofReal, conj_ofReal, ← ofReal_mul, add_im, ofReal_im, zero_add, inv_mul_eq_iff_eq_mul₀ hz] simp only [ofReal_im, ofReal_re, mul_im, zero_add, mul_zero] [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p ⊢ LinearMap.ker f = ⊥ [PROOFSTEP] let g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, imLm.comp ((z : ℂ) • ((conjAe : ℂ →ₐ[ℝ] ℂ) : ℂ →ₗ[ℝ] ℂ))] [GOAL] g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] ⊢ LinearMap.ker f = ⊥ [PROOFSTEP] suffices ((z : ℂ).im⁻¹ • g).comp f = LinearMap.id by exact LinearMap.ker_eq_bot_of_inverse this [GOAL] g✝ : SL(2, ℤ) z : ℍ this✝¹ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this✝ : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] this : LinearMap.comp ((↑z).im⁻¹ • g) f = LinearMap.id ⊢ LinearMap.ker f = ⊥ [PROOFSTEP] exact LinearMap.ker_eq_bot_of_inverse this [GOAL] g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] ⊢ LinearMap.comp ((↑z).im⁻¹ • g) f = LinearMap.id [PROOFSTEP] apply LinearMap.ext [GOAL] case h g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] ⊢ ∀ (x : Fin 2 → ℝ), ↑(LinearMap.comp ((↑z).im⁻¹ • g) f) x = ↑LinearMap.id x [PROOFSTEP] intro c [GOAL] case h g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ ⊢ ↑(LinearMap.comp ((↑z).im⁻¹ • g) f) c = ↑LinearMap.id c [PROOFSTEP] have hz : (z : ℂ).im ≠ 0 := z.2.ne' [GOAL] case h g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ ↑(LinearMap.comp ((↑z).im⁻¹ • g) f) c = ↑LinearMap.id c [PROOFSTEP] rw [LinearMap.comp_apply, LinearMap.smul_apply, LinearMap.id_apply] [GOAL] case h g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ (↑z).im⁻¹ • ↑g (↑f c) = c [PROOFSTEP] ext i [GOAL] case h.h g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 i : Fin 2 ⊢ ((↑z).im⁻¹ • ↑g (↑f c)) i = c i [PROOFSTEP] dsimp only [Pi.smul_apply, LinearMap.pi_apply, smul_eq_mul] [GOAL] case h.h g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 i : Fin 2 ⊢ (↑z).im⁻¹ * ↑(vecCons imLm ![LinearMap.comp imLm (↑z • ↑↑↑conjAe)] i) (↑(LinearMap.smulRight (LinearMap.proj 0) ↑z + LinearMap.smulRight (LinearMap.proj 1) 1) c) = c i [PROOFSTEP] fin_cases i [GOAL] case h.h.head g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ (↑z).im⁻¹ * ↑(vecCons imLm ![LinearMap.comp imLm (↑z • ↑↑↑conjAe)] { val := 0, isLt := (_ : 0 < 2) }) (↑(LinearMap.smulRight (LinearMap.proj 0) ↑z + LinearMap.smulRight (LinearMap.proj 1) 1) c) = c { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] show (z : ℂ).im⁻¹ * (f c).im = c 0 [GOAL] case h.h.head g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ (↑z).im⁻¹ * (↑f c).im = c 0 [PROOFSTEP] rw [f_def, add_im, ofReal_mul_im, ofReal_im, add_zero, mul_left_comm, inv_mul_cancel hz, mul_one] [GOAL] case h.h.tail.head g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ (↑z).im⁻¹ * ↑(vecCons imLm ![LinearMap.comp imLm (↑z • ↑↑↑conjAe)] { val := 1, isLt := (_ : (fun a => a < 2) 1) }) (↑(LinearMap.smulRight (LinearMap.proj 0) ↑z + LinearMap.smulRight (LinearMap.proj 1) 1) c) = c { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] show (z : ℂ).im⁻¹ * ((z : ℂ) * conj (f c)).im = c 1 [GOAL] case h.h.tail.head g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ (↑z).im⁻¹ * (↑z * ↑(starRingEnd ((fun x => ℂ) c)) (↑f c)).im = c 1 [PROOFSTEP] rw [f_def, RingHom.map_add, RingHom.map_mul, mul_add, mul_left_comm, mul_conj, conj_ofReal, conj_ofReal, ← ofReal_mul, add_im, ofReal_im, zero_add, inv_mul_eq_iff_eq_mul₀ hz] [GOAL] case h.h.tail.head g✝ : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p g : ℂ →ₗ[ℝ] Fin 2 → ℝ := LinearMap.pi ![imLm, LinearMap.comp imLm (↑z • ↑↑↑conjAe)] c : Fin 2 → ℝ hz : (↑z).im ≠ 0 ⊢ (↑z * ↑(c 1)).im = (↑z).im * c 1 [PROOFSTEP] simp only [ofReal_im, ofReal_re, mul_im, zero_add, mul_zero] [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ ⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop [PROOFSTEP] have hf' : ClosedEmbedding f := by have := @LinearEquiv.closedEmbedding_of_injective ℝ _ (Fin 2 → ℝ) _ _ ℂ _ _ _ f exact this hf [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ ⊢ ClosedEmbedding ↑f [PROOFSTEP] have := @LinearEquiv.closedEmbedding_of_injective ℝ _ (Fin 2 → ℝ) _ _ ℂ _ _ _ f [GOAL] g : SL(2, ℤ) z : ℍ this✝¹ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this✝ : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ this : LinearMap.ker f = ⊥ → ∀ [inst : FiniteDimensional ℝ (Fin 2 → ℝ)], ClosedEmbedding ↑f ⊢ ClosedEmbedding ↑f [PROOFSTEP] exact this hf [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ hf' : ClosedEmbedding ↑f ⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop [PROOFSTEP] have h₂ : Tendsto (fun p : Fin 2 → ℤ => ((↑) : ℤ → ℝ) ∘ p) cofinite (cocompact _) := by convert Tendsto.pi_map_coprodᵢ fun _ => Int.tendsto_coe_cofinite · rw [coprodᵢ_cofinite] · rw [coprodᵢ_cocompact] [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ hf' : ClosedEmbedding ↑f ⊢ Tendsto (fun p => Int.cast ∘ p) cofinite (cocompact (Fin 2 → ℝ)) [PROOFSTEP] convert Tendsto.pi_map_coprodᵢ fun _ => Int.tendsto_coe_cofinite [GOAL] case h.e'_4 g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ hf' : ClosedEmbedding ↑f ⊢ cofinite = Filter.coprodᵢ fun x => cofinite [PROOFSTEP] rw [coprodᵢ_cofinite] [GOAL] case h.e'_5 g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ hf' : ClosedEmbedding ↑f ⊢ cocompact (Fin 2 → ℝ) = Filter.coprodᵢ fun x => cocompact ℝ [PROOFSTEP] rw [coprodᵢ_cocompact] [GOAL] g : SL(2, ℤ) z : ℍ this✝ : Module ℝ (Fin 2 → ℝ) := NormedSpace.toModule π₀ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 0 π₁ : (Fin 2 → ℝ) →ₗ[ℝ] ℝ := LinearMap.proj 1 f : (Fin 2 → ℝ) →ₗ[ℝ] ℂ := LinearMap.smulRight π₀ ↑z + LinearMap.smulRight π₁ 1 f_def : ↑f = fun p => ↑(p 0) * ↑z + ↑(p 1) this : (fun p => ↑normSq (↑(p 0) * ↑z + ↑(p 1))) = ↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p hf : LinearMap.ker f = ⊥ hf' : ClosedEmbedding ↑f h₂ : Tendsto (fun p => Int.cast ∘ p) cofinite (cocompact (Fin 2 → ℝ)) ⊢ Tendsto (↑normSq ∘ ↑f ∘ fun p => Int.cast ∘ p) cofinite atTop [PROOFSTEP] exact tendsto_normSq_cocompact_atTop.comp (hf'.tendsto_cocompact.comp h₂) [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) ⊢ (Fin 2 → ℝ) ≃ₗ[ℝ] Fin 2 → ℝ [PROOFSTEP] refine' LinearMap.GeneralLinearGroup.generalLinearEquiv ℝ (Fin 2 → ℝ) (GeneralLinearGroup.toLinear (planeConformalMatrix (cd 0 : ℝ) (-(cd 1 : ℝ)) _)) [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) ⊢ ↑(cd 0) ^ 2 + (-↑(cd 1)) ^ 2 ≠ 0 [PROOFSTEP] norm_cast [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) ⊢ ¬cd 0 ^ 2 + (-cd 1) ^ 2 = 0 [PROOFSTEP] rw [neg_sq] [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) ⊢ ¬cd 0 ^ 2 + cd 1 ^ 2 = 0 [PROOFSTEP] exact hcd.sq_add_sq_ne_zero [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) ⊢ Tendsto (fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact ℝ) [PROOFSTEP] let mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => of ![![t, (-(1 : ℤ) : ℝ)], (↑) ∘ cd] [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] ⊢ Tendsto (fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact ℝ) [PROOFSTEP] have hmB : Continuous mB := by refine' continuous_matrix _ simp only [Fin.forall_fin_two, continuous_const, continuous_id', of_apply, cons_val_zero, cons_val_one, and_self_iff] [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] ⊢ Continuous mB [PROOFSTEP] refine' continuous_matrix _ [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] ⊢ ∀ (i j : Fin 2), Continuous fun a => mB a i j [PROOFSTEP] simp only [Fin.forall_fin_two, continuous_const, continuous_id', of_apply, cons_val_zero, cons_val_one, and_self_iff] [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB ⊢ Tendsto (fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact ℝ) [PROOFSTEP] refine' Filter.Tendsto.of_tendsto_comp _ (comap_cocompact_le hmB) [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB ⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) [PROOFSTEP] let f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g : Matrix _ _ ℤ) ((↑) : ℤ → ℝ) [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast ⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) [PROOFSTEP] have cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m : Matrix (Fin 2) (Fin 2) ℤ => Matrix.map m ((↑) : ℤ → ℝ)) cofinite (cocompact _) := by simpa only [coprodᵢ_cofinite, coprodᵢ_cocompact] using Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Int.tendsto_coe_cofinite [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast ⊢ Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) [PROOFSTEP] simpa only [coprodᵢ_cofinite, coprodᵢ_cocompact] using Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Tendsto.pi_map_coprodᵢ fun _ : Fin 2 => Int.tendsto_coe_cofinite [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) ⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) [PROOFSTEP] have hf₁ : Tendsto f₁ cofinite (cocompact _) := cocompact_ℝ_to_cofinite_ℤ_matrix.comp Subtype.coe_injective.tendsto_cofinite [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) ⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) [PROOFSTEP] have hf₂ : ClosedEmbedding (lcRow0Extend hcd) := (lcRow0Extend hcd).toContinuousLinearEquiv.toHomeomorph.closedEmbedding [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) ⊢ Tendsto (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) [PROOFSTEP] convert hf₂.tendsto_cocompact.comp (hf₁.comp Subtype.coe_injective.tendsto_cofinite) using 1 [GOAL] case h.e'_3.h g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ cd] hmB : Continuous mB f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) ⊢ (mB ∘ fun g => ↑(lcRow0 cd) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) = ↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a [PROOFSTEP] ext ⟨g, rfl⟩ i j : 3 [GOAL] case h.e'_3.h.h.mk.a.h g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) i j : Fin 2 ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } i j = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } i j [PROOFSTEP] fin_cases i <;> [fin_cases j; skip] -- the following are proved by `simp`, but it is replaced by `simp only` to avoid timeouts. [GOAL] case h.e'_3.h.h.mk.a.h g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) i j : Fin 2 ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } i j = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } i j [PROOFSTEP] fin_cases i [GOAL] case h.e'_3.h.h.mk.a.h.head g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) j : Fin 2 ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } j = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } j [PROOFSTEP] fin_cases j [GOAL] case h.e'_3.h.h.mk.a.h.tail.head g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) j : Fin 2 ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } j = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } j [PROOFSTEP] skip [GOAL] case h.e'_3.h.h.mk.a.h.head.head g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] simp only [mulVec, dotProduct, Fin.sum_univ_two, coe_matrix_coe, Int.coe_castRingHom, lcRow0_apply, Function.comp_apply, cons_val_zero, lcRow0Extend_apply, LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv, GeneralLinearGroup.coe_toLinear, planeConformalMatrix_val, neg_neg, mulVecLin_apply, cons_val_one, head_cons, of_apply, Fin.mk_zero, Fin.mk_one] [GOAL] case h.e'_3.h.h.mk.a.h.head.tail.head g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] convert congr_arg (fun n : ℤ => (-n : ℝ)) g.det_coe.symm using 1 [GOAL] case h.e'_3 g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) ⊢ (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } = -↑(Matrix.det ↑g) [PROOFSTEP] simp only [mulVec, dotProduct, Fin.sum_univ_two, Matrix.det_fin_two, Function.comp_apply, Subtype.coe_mk, lcRow0Extend_apply, cons_val_zero, LinearMap.GeneralLinearGroup.coeFn_generalLinearEquiv, GeneralLinearGroup.coe_toLinear, planeConformalMatrix_val, mulVecLin_apply, cons_val_one, head_cons, map_apply, neg_mul, Int.cast_sub, Int.cast_mul, neg_sub, of_apply, Fin.mk_zero, Fin.mk_one] [GOAL] case h.e'_3 g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) ⊢ -(↑(↑g 1 1) * ↑(↑g 0 0)) + ↑(↑g 1 0) * ↑(↑g 0 1) = ↑(↑g 0 1) * ↑(↑g 1 0) - ↑(↑g 0 0) * ↑(↑g 1 1) [PROOFSTEP] ring [GOAL] case h.e'_3.h.h.mk.a.h.tail.head g✝ : SL(2, ℤ) z : ℍ f₁ : SL(2, ℤ) → Matrix (Fin 2) (Fin 2) ℝ := fun g => Matrix.map (↑g) Int.cast cocompact_ℝ_to_cofinite_ℤ_matrix : Tendsto (fun m => Matrix.map m Int.cast) cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) hf₁ : Tendsto f₁ cofinite (cocompact (Matrix (Fin 2) (Fin 2) ℝ)) g : SL(2, ℤ) hcd : IsCoprime (↑g 1 0) (↑g 1 1) mB : ℝ → Matrix (Fin 2) (Fin 2) ℝ := fun t => ↑of ![![t, -↑1], Int.cast ∘ ↑g 1] hmB : Continuous mB hf₂ : ClosedEmbedding ↑(lcRow0Extend hcd) j : Fin 2 ⊢ (mB ∘ fun g_1 => ↑(lcRow0 (↑g 1)) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g_1)) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } j = (↑(lcRow0Extend hcd) ∘ f₁ ∘ fun a => ↑a) { val := g, property := (_ : ↑g 1 = ↑g 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } j [PROOFSTEP] rfl [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p ⊢ ↑(g • z) = ↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) + (↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) [PROOFSTEP] have nonZ1 : (p 0 : ℂ) ^ 2 + (p 1 : ℂ) ^ 2 ≠ 0 := by exact_mod_cast hp.sq_add_sq_ne_zero [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p ⊢ ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 [PROOFSTEP] exact_mod_cast hp.sq_add_sq_ne_zero [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 ⊢ ↑(g • z) = ↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) + (↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) [PROOFSTEP] have : ((↑) : ℤ → ℝ) ∘ p ≠ 0 := fun h => hp.ne_zero (by ext i; simpa using congr_fun h i) [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 h : Int.cast ∘ p = 0 ⊢ p = 0 [PROOFSTEP] ext i [GOAL] case h g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 h : Int.cast ∘ p = 0 i : Fin 2 ⊢ p i = OfNat.ofNat 0 i [PROOFSTEP] simpa using congr_fun h i [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 ⊢ ↑(g • z) = ↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) + (↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) [PROOFSTEP] have nonZ2 : (p 0 : ℂ) * z + p 1 ≠ 0 := by simpa using linear_ne_zero _ z this [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 ⊢ ↑(p 0) * ↑z + ↑(p 1) ≠ 0 [PROOFSTEP] simpa using linear_ne_zero _ z this [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0 ⊢ ↑(g • z) = ↑(↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) g)) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) + (↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) [PROOFSTEP] field_simp [nonZ1, nonZ2, denom_ne_zero, num] [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0 ⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))) = ((↑(p 0) * ↑(↑g 0 0) + ↑(p 1) * ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) + (↑(p 1) * ↑z - ↑(p 0)) * (↑(p 0) ^ 2 + ↑(p 1) ^ 2)) * denom (↑g) z [PROOFSTEP] rw [(by simp : (p 1 : ℂ) * z - p 0 = (p 1 * z - p 0) * ↑(Matrix.det (↑g : Matrix (Fin 2) (Fin 2) ℤ)))] [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0 ⊢ ↑(p 1) * ↑z - ↑(p 0) = (↑(p 1) * ↑z - ↑(p 0)) * ↑(Matrix.det ↑g) [PROOFSTEP] simp [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0 ⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))) = ((↑(p 0) * ↑(↑g 0 0) + ↑(p 1) * ↑(↑g 0 1)) * ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1))) + (↑(p 1) * ↑z - ↑(p 0)) * ↑(Matrix.det ↑g) * (↑(p 0) ^ 2 + ↑(p 1) ^ 2)) * denom (↑g) z [PROOFSTEP] rw [← hg, det_fin_two] [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0 ⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1)))) = ((↑(↑g 1 0) * ↑(↑g 0 0) + ↑(↑g 1 1) * ↑(↑g 0 1)) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1))) + (↑(↑g 1 1) * ↑z - ↑(↑g 1 0)) * ↑(↑g 0 0 * ↑g 1 1 - ↑g 0 1 * ↑g 1 0) * (↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2)) * denom (↑g) z [PROOFSTEP] simp only [Int.coe_castRingHom, coe_matrix_coe, Int.cast_mul, ofReal_int_cast, map_apply, denom, Int.cast_sub, coe_GLPos_coe_GL_coe_matrix, coe'_apply_complex] [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) hg : ↑g 1 = p nonZ1 : ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 this : Int.cast ∘ p ≠ 0 nonZ2 : ↑(p 0) * ↑z + ↑(p 1) ≠ 0 ⊢ (↑(↑g 0 0) * ↑z + ↑(↑g 0 1)) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1)))) = ((↑(↑g 1 0) * ↑(↑g 0 0) + ↑(↑g 1 1) * ↑(↑g 0 1)) * ((↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1))) + (↑(↑g 1 1) * ↑z - ↑(↑g 1 0)) * (↑(↑g 0 0) * ↑(↑g 1 1) - ↑(↑g 0 1) * ↑(↑g 1 0)) * (↑(↑g 1 0) ^ 2 + ↑(↑g 1 1) ^ 2)) * (↑(↑g 1 0) * ↑z + ↑(↑g 1 1)) [PROOFSTEP] ring [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) ⊢ Tendsto (fun g => |UpperHalfPlane.re (↑g • z)|) cofinite atTop [PROOFSTEP] suffices Tendsto (fun g : (fun g : SL(2, ℤ) => (↑ₘg) 1) ⁻¹' { p } => ((g : SL(2, ℤ)) • z).re) cofinite (cocompact ℝ) by exact tendsto_norm_cocompact_atTop.comp this [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) this : Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ) ⊢ Tendsto (fun g => |UpperHalfPlane.re (↑g • z)|) cofinite atTop [PROOFSTEP] exact tendsto_norm_cocompact_atTop.comp this [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) ⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ) [PROOFSTEP] have : ((p 0 : ℝ) ^ 2 + (p 1 : ℝ) ^ 2)⁻¹ ≠ 0 := by apply inv_ne_zero exact_mod_cast hp.sq_add_sq_ne_zero [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) ⊢ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0 [PROOFSTEP] apply inv_ne_zero [GOAL] case h g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) ⊢ ↑(p 0) ^ 2 + ↑(p 1) ^ 2 ≠ 0 [PROOFSTEP] exact_mod_cast hp.sq_add_sq_ne_zero [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0 ⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ) [PROOFSTEP] let f := Homeomorph.mulRight₀ _ this [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0 f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this ⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ) [PROOFSTEP] let ff := Homeomorph.addRight (((p 1 : ℂ) * z - p 0) / (((p 0 : ℂ) ^ 2 + (p 1 : ℂ) ^ 2) * (p 0 * z + p 1))).re [GOAL] g : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0 f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this ff : ℝ ≃ₜ ℝ := Homeomorph.addRight ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re ⊢ Tendsto (fun g => UpperHalfPlane.re (↑g • z)) cofinite (cocompact ℝ) [PROOFSTEP] convert (f.trans ff).closedEmbedding.tendsto_cocompact.comp (tendsto_lcRow0 hp) with _ _ g [GOAL] case h.e'_3.h.h g✝ : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0 f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this ff : ℝ ≃ₜ ℝ := Homeomorph.addRight ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re e_1✝ : ↑((fun g => ↑g 1) ⁻¹' {p}) = { g // ↑g 1 = p } g : ↑((fun g => ↑g 1) ⁻¹' {p}) ⊢ UpperHalfPlane.re (↑g • z) = (↑(Homeomorph.trans f ff) ∘ fun g => ↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g)) g [PROOFSTEP] change ((g : SL(2, ℤ)) • z).re = lcRow0 p ↑(↑g : SL(2, ℝ)) / ((p 0 : ℝ) ^ 2 + (p 1 : ℝ) ^ 2) + Complex.re (((p 1 : ℂ) * z - p 0) / (((p 0 : ℂ) ^ 2 + (p 1 : ℂ) ^ 2) * (p 0 * z + p 1))) [GOAL] case h.e'_3.h.h g✝ : SL(2, ℤ) z : ℍ p : Fin 2 → ℤ hp : IsCoprime (p 0) (p 1) this : (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ ≠ 0 f : ℝ ≃ₜ ℝ := Homeomorph.mulRight₀ (↑(p 0) ^ 2 + ↑(p 1) ^ 2)⁻¹ this ff : ℝ ≃ₜ ℝ := Homeomorph.addRight ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re e_1✝ : ↑((fun g => ↑g 1) ⁻¹' {p}) = { g // ↑g 1 = p } g : ↑((fun g => ↑g 1) ⁻¹' {p}) ⊢ UpperHalfPlane.re (↑g • z) = ↑(lcRow0 p) ↑(↑(SpecialLinearGroup.map (Int.castRingHom ℝ)) ↑g) / (↑(p 0) ^ 2 + ↑(p 1) ^ 2) + ((↑(p 1) * ↑z - ↑(p 0)) / ((↑(p 0) ^ 2 + ↑(p 1) ^ 2) * (↑(p 0) * ↑z + ↑(p 1)))).re [PROOFSTEP] exact_mod_cast congr_arg Complex.re (smul_eq_lcRow0_add z hp g.2) [GOAL] g : SL(2, ℤ) z : ℍ ⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] classical let s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} have hs : s.Nonempty := ⟨![1, 1], isCoprime_one_left⟩ obtain ⟨p, hp_coprime, hp⟩ := Filter.Tendsto.exists_within_forall_le hs (tendsto_normSq_coprime_pair z) obtain ⟨g, -, hg⟩ := bottom_row_surj hp_coprime refine' ⟨g, fun g' => _⟩ rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, div_le_div_left] · simpa [← hg] using hp ((↑ₘg') 1) (bottom_row_coprime g') · exact z.im_pos · exact normSq_denom_pos g' z · exact normSq_denom_pos g z [GOAL] g : SL(2, ℤ) z : ℍ ⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] let s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} [GOAL] g : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} ⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] have hs : s.Nonempty := ⟨![1, 1], isCoprime_one_left⟩ [GOAL] g : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s ⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] obtain ⟨p, hp_coprime, hp⟩ := Filter.Tendsto.exists_within_forall_le hs (tendsto_normSq_coprime_pair z) [GOAL] case intro.intro g : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) ⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] obtain ⟨g, -, hg⟩ := bottom_row_surj hp_coprime [GOAL] case intro.intro.intro.intro g✝ : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) g : SL(2, ℤ) hg : (fun g => ↑g 1) g = p ⊢ ∃ g, ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] refine' ⟨g, fun g' => _⟩ [GOAL] case intro.intro.intro.intro g✝ : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) g : SL(2, ℤ) hg : (fun g => ↑g 1) g = p g' : SL(2, ℤ) ⊢ UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, div_le_div_left] [GOAL] case intro.intro.intro.intro g✝ : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) g : SL(2, ℤ) hg : (fun g => ↑g 1) g = p g' : SL(2, ℤ) ⊢ ↑normSq (denom (↑g) z) ≤ ↑normSq (denom (↑g') z) [PROOFSTEP] simpa [← hg] using hp ((↑ₘg') 1) (bottom_row_coprime g') [GOAL] case intro.intro.intro.intro.ha g✝ : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) g : SL(2, ℤ) hg : (fun g => ↑g 1) g = p g' : SL(2, ℤ) ⊢ 0 < UpperHalfPlane.im z [PROOFSTEP] exact z.im_pos [GOAL] case intro.intro.intro.intro.hb g✝ : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) g : SL(2, ℤ) hg : (fun g => ↑g 1) g = p g' : SL(2, ℤ) ⊢ 0 < ↑normSq (denom (↑g') z) [PROOFSTEP] exact normSq_denom_pos g' z [GOAL] case intro.intro.intro.intro.hc g✝ : SL(2, ℤ) z : ℍ s : Set (Fin 2 → ℤ) := {cd | IsCoprime (cd 0) (cd 1)} hs : Set.Nonempty s p : Fin 2 → ℤ hp_coprime : p ∈ s hp : ∀ (a : Fin 2 → ℤ), a ∈ s → ↑normSq (↑(p 0) * ↑z + ↑(p 1)) ≤ ↑normSq (↑(a 0) * ↑z + ↑(a 1)) g : SL(2, ℤ) hg : (fun g => ↑g 1) g = p g' : SL(2, ℤ) ⊢ 0 < ↑normSq (denom (↑g) z) [PROOFSTEP] exact normSq_denom_pos g z [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) ⊢ ∃ g, ↑g 1 = cd ∧ ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| [PROOFSTEP] haveI : Nonempty { g : SL(2, ℤ) // (↑ₘg) 1 = cd } := let ⟨x, hx⟩ := bottom_row_surj hcd ⟨⟨x, hx.2⟩⟩ [GOAL] g : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this : Nonempty { g // ↑g 1 = cd } ⊢ ∃ g, ↑g 1 = cd ∧ ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| [PROOFSTEP] obtain ⟨g, hg⟩ := Filter.Tendsto.exists_forall_le (tendsto_abs_re_smul z hcd) [GOAL] case intro g✝ : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this : Nonempty { g // ↑g 1 = cd } g : { g // ↑g 1 = cd } hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)| ⊢ ∃ g, ↑g 1 = cd ∧ ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| [PROOFSTEP] refine' ⟨g, g.2, _⟩ [GOAL] case intro g✝ : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this : Nonempty { g // ↑g 1 = cd } g : { g // ↑g 1 = cd } hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)| ⊢ ∀ (g' : SL(2, ℤ)), ↑↑g 1 = ↑g' 1 → |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (g' • z)| [PROOFSTEP] intro g1 hg1 [GOAL] case intro g✝ : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this : Nonempty { g // ↑g 1 = cd } g : { g // ↑g 1 = cd } hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)| g1 : SL(2, ℤ) hg1 : ↑↑g 1 = ↑g1 1 ⊢ |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (g1 • z)| [PROOFSTEP] have : g1 ∈ (fun g : SL(2, ℤ) => (↑ₘg) 1) ⁻¹' { cd } := by rw [Set.mem_preimage, Set.mem_singleton_iff] exact Eq.trans hg1.symm (Set.mem_singleton_iff.mp (Set.mem_preimage.mp g.2)) [GOAL] g✝ : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this : Nonempty { g // ↑g 1 = cd } g : { g // ↑g 1 = cd } hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)| g1 : SL(2, ℤ) hg1 : ↑↑g 1 = ↑g1 1 ⊢ g1 ∈ (fun g => ↑g 1) ⁻¹' {cd} [PROOFSTEP] rw [Set.mem_preimage, Set.mem_singleton_iff] [GOAL] g✝ : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this : Nonempty { g // ↑g 1 = cd } g : { g // ↑g 1 = cd } hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)| g1 : SL(2, ℤ) hg1 : ↑↑g 1 = ↑g1 1 ⊢ ↑g1 1 = cd [PROOFSTEP] exact Eq.trans hg1.symm (Set.mem_singleton_iff.mp (Set.mem_preimage.mp g.2)) [GOAL] case intro g✝ : SL(2, ℤ) z : ℍ cd : Fin 2 → ℤ hcd : IsCoprime (cd 0) (cd 1) this✝ : Nonempty { g // ↑g 1 = cd } g : { g // ↑g 1 = cd } hg : ∀ (a : { g // ↑g 1 = cd }), |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (↑a • z)| g1 : SL(2, ℤ) hg1 : ↑↑g 1 = ↑g1 1 this : g1 ∈ (fun g => ↑g 1) ⁻¹' {cd} ⊢ |UpperHalfPlane.re (↑g • z)| ≤ |UpperHalfPlane.re (g1 • z)| [PROOFSTEP] exact hg ⟨g1, this⟩ [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ ⊢ ↑(T ^ n • z) = ↑z + ↑n [PROOFSTEP] rw [sl_moeb, UpperHalfPlane.coe_smul] [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ ⊢ num (↑(T ^ n)) z / denom (↑(T ^ n)) z = ↑z + ↑n [PROOFSTEP] simp [coe_T_zpow, denom, num, -map_zpow] [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ ⊢ UpperHalfPlane.re (T ^ n • z) = UpperHalfPlane.re z + ↑n [PROOFSTEP] rw [← coe_re, coe_T_zpow_smul_eq, add_re, int_cast_re, coe_re] [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ ⊢ UpperHalfPlane.im (T ^ n • z) = UpperHalfPlane.im z [PROOFSTEP] rw [← coe_im, coe_T_zpow_smul_eq, add_im, int_cast_im, add_zero, coe_im] [GOAL] g : SL(2, ℤ) z : ℍ ⊢ UpperHalfPlane.re (T • z) = UpperHalfPlane.re z + 1 [PROOFSTEP] simpa using re_T_zpow_smul z 1 [GOAL] g : SL(2, ℤ) z : ℍ ⊢ UpperHalfPlane.im (T • z) = UpperHalfPlane.im z [PROOFSTEP] simpa using im_T_zpow_smul z 1 [GOAL] g : SL(2, ℤ) z : ℍ ⊢ UpperHalfPlane.re (T⁻¹ • z) = UpperHalfPlane.re z - 1 [PROOFSTEP] simpa using re_T_zpow_smul z (-1) [GOAL] g : SL(2, ℤ) z : ℍ ⊢ UpperHalfPlane.im (T⁻¹ • z) = UpperHalfPlane.im z [PROOFSTEP] simpa using im_T_zpow_smul z (-1) [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 ⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z [PROOFSTEP] have had := g.det_coe [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : det ↑g = 1 ⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z [PROOFSTEP] replace had : (↑ₘg) 0 0 * (↑ₘg) 1 1 = 1 [GOAL] case had g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : det ↑g = 1 ⊢ ↑g 0 0 * ↑g 1 1 = 1 [PROOFSTEP] rw [det_fin_two, hc] at had [GOAL] case had g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 - ↑g 0 1 * 0 = 1 ⊢ ↑g 0 0 * ↑g 1 1 = 1 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z [PROOFSTEP] rcases Int.eq_one_or_neg_one_of_mul_eq_one' had with (⟨ha, hd⟩ | ⟨ha, hd⟩) [GOAL] case inl.intro g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z [PROOFSTEP] use(↑ₘg) 0 1 [GOAL] case h g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ ∀ (z : ℍ), g • z = T ^ ↑g 0 1 • z [PROOFSTEP] suffices g = T ^ (↑ₘg) 0 1 by intro z; conv_lhs => rw [this] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 this : g = T ^ ↑g 0 1 ⊢ ∀ (z : ℍ), g • z = T ^ ↑g 0 1 • z [PROOFSTEP] intro z [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 this : g = T ^ ↑g 0 1 z : ℍ ⊢ g • z = T ^ ↑g 0 1 • z [PROOFSTEP] conv_lhs => rw [this] [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 this : g = T ^ ↑g 0 1 z : ℍ | g • z [PROOFSTEP] rw [this] [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 this : g = T ^ ↑g 0 1 z : ℍ | g • z [PROOFSTEP] rw [this] [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 this : g = T ^ ↑g 0 1 z : ℍ | g • z [PROOFSTEP] rw [this] [GOAL] case h g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ g = T ^ ↑g 0 1 [PROOFSTEP] ext i j [GOAL] case h.a g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 i j : Fin 2 ⊢ ↑g i j = ↑(T ^ ↑g 0 1) i j [PROOFSTEP] fin_cases i [GOAL] case h.a.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 j : Fin 2 ⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } j = ↑(T ^ ↑g 0 1) { val := 0, isLt := (_ : 0 < 2) } j [PROOFSTEP] fin_cases j [GOAL] case h.a.tail.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 j : Fin 2 ⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } j = ↑(T ^ ↑g 0 1) { val := 1, isLt := (_ : (fun a => a < 2) 1) } j [PROOFSTEP] fin_cases j [GOAL] case h.a.head.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } = ↑(T ^ ↑g 0 1) { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case h.a.head.tail.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } = ↑(T ^ ↑g 0 1) { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case h.a.tail.head.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } = ↑(T ^ ↑g 0 1) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case h.a.tail.head.tail.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = 1 hd : ↑g 1 1 = 1 ⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } = ↑(T ^ ↑g 0 1) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case inr.intro g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ ∃ n, ∀ (z : ℍ), g • z = T ^ n • z [PROOFSTEP] use-((↑ₘg) 0 1) [GOAL] case h g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ ∀ (z : ℍ), g • z = T ^ (-↑g 0 1) • z [PROOFSTEP] suffices g = -T ^ (-((↑ₘg) 0 1)) by intro z; conv_lhs => rw [this, SL_neg_smul] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 this : g = -T ^ (-↑g 0 1) ⊢ ∀ (z : ℍ), g • z = T ^ (-↑g 0 1) • z [PROOFSTEP] intro z [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 this : g = -T ^ (-↑g 0 1) z : ℍ ⊢ g • z = T ^ (-↑g 0 1) • z [PROOFSTEP] conv_lhs => rw [this, SL_neg_smul] [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 this : g = -T ^ (-↑g 0 1) z : ℍ | g • z [PROOFSTEP] rw [this, SL_neg_smul] [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 this : g = -T ^ (-↑g 0 1) z : ℍ | g • z [PROOFSTEP] rw [this, SL_neg_smul] [GOAL] g : SL(2, ℤ) z✝ : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 this : g = -T ^ (-↑g 0 1) z : ℍ | g • z [PROOFSTEP] rw [this, SL_neg_smul] [GOAL] case h g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ g = -T ^ (-↑g 0 1) [PROOFSTEP] ext i j [GOAL] case h.a g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 i j : Fin 2 ⊢ ↑g i j = ↑(-T ^ (-↑g 0 1)) i j [PROOFSTEP] fin_cases i [GOAL] case h.a.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 j : Fin 2 ⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } j = ↑(-T ^ (-↑g 0 1)) { val := 0, isLt := (_ : 0 < 2) } j [PROOFSTEP] fin_cases j [GOAL] case h.a.tail.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 j : Fin 2 ⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } j = ↑(-T ^ (-↑g 0 1)) { val := 1, isLt := (_ : (fun a => a < 2) 1) } j [PROOFSTEP] fin_cases j [GOAL] case h.a.head.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } = ↑(-T ^ (-↑g 0 1)) { val := 0, isLt := (_ : 0 < 2) } { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case h.a.head.tail.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ ↑g { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } = ↑(-T ^ (-↑g 0 1)) { val := 0, isLt := (_ : 0 < 2) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case h.a.tail.head.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } = ↑(-T ^ (-↑g 0 1)) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 0, isLt := (_ : 0 < 2) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] case h.a.tail.head.tail.head g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 0 had : ↑g 0 0 * ↑g 1 1 = 1 ha : ↑g 0 0 = -1 hd : ↑g 1 1 = -1 ⊢ ↑g { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } = ↑(-T ^ (-↑g 0 1)) { val := 1, isLt := (_ : (fun a => a < 2) 1) } { val := 1, isLt := (_ : (fun a => a < 2) 1) } [PROOFSTEP] simp [ha, hc, hd, coe_T_zpow, show (1 : Fin (0 + 2)) = (1 : Fin 2) from rfl] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 ⊢ g = T ^ ↑g 0 0 * S * T ^ ↑g 1 1 [PROOFSTEP] have hg := g.det_coe.symm [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : 1 = det ↑g ⊢ g = T ^ ↑g 0 0 * S * T ^ ↑g 1 1 [PROOFSTEP] replace hg : (↑ₘg) 0 1 = (↑ₘg) 0 0 * (↑ₘg) 1 1 - 1 [GOAL] case hg g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : 1 = det ↑g ⊢ ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 [PROOFSTEP] rw [det_fin_two, hc] at hg [GOAL] case hg g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : 1 = ↑g 0 0 * ↑g 1 1 - ↑g 0 1 * 1 ⊢ ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ g = T ^ ↑g 0 0 * S * T ^ ↑g 1 1 [PROOFSTEP] refine' Subtype.ext _ [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑g = ↑(T ^ ↑g 0 0 * S * T ^ ↑g 1 1) [PROOFSTEP] conv_lhs => rw [Matrix.eta_fin_two (↑ₘg)] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 | ↑g [PROOFSTEP] rw [Matrix.eta_fin_two (↑ₘg)] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 | ↑g [PROOFSTEP] rw [Matrix.eta_fin_two (↑ₘg)] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 | ↑g [PROOFSTEP] rw [Matrix.eta_fin_two (↑ₘg)] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑of ![![↑g 0 0, ↑g 0 1], ![↑g 1 0, ↑g 1 1]] = ↑(T ^ ↑g 0 0 * S * T ^ ↑g 1 1) [PROOFSTEP] rw [hc, hg] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑of ![![↑g 0 0, ↑g 0 0 * ↑g 1 1 - 1], ![1, ↑g 1 1]] = ↑(T ^ ↑g 0 0 * S * T ^ ↑g 1 1) [PROOFSTEP] simp only [coe_mul, coe_T_zpow, coe_S, mul_fin_two] -- Porting note: Was `congrm !![_, _; _, _] <;> ring`. [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑of ![![↑g 0 0, ↑g 0 0 * ↑g 1 1 - 1], ![1, ↑g 1 1]] = ↑of ![![(1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0, (1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1], ![(0 * 0 + 1 * 1) * 1 + (0 * -1 + 1 * 0) * 0, (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1]] [PROOFSTEP] congr! 3 <;> [skip; congr! 1; congr! 2] [GOAL] g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑of ![![↑g 0 0, ↑g 0 0 * ↑g 1 1 - 1], ![1, ↑g 1 1]] = ↑of ![![(1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0, (1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1], ![(0 * 0 + 1 * 1) * 1 + (0 * -1 + 1 * 0) * 0, (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1]] [PROOFSTEP] congr! 3 [GOAL] case h.e'_6.h.e'_3.h.e'_3 g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑g 0 0 = (1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0 [PROOFSTEP] skip [GOAL] case h.e'_6.h.e'_3.h.e'_4 g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ![↑g 0 0 * ↑g 1 1 - 1] = ![(1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1] [PROOFSTEP] congr! 1 [GOAL] case h.e'_6.h.e'_4.h.e'_3 g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ![1, ↑g 1 1] = ![(0 * 0 + 1 * 1) * 1 + (0 * -1 + 1 * 0) * 0, (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1] [PROOFSTEP] congr! 2 [GOAL] case h.e'_6.h.e'_3.h.e'_3 g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑g 0 0 = (1 * 0 + ↑g 0 0 * 1) * 1 + (1 * -1 + ↑g 0 0 * 0) * 0 [PROOFSTEP] ring [GOAL] case h.e'_6.h.e'_3.h.e'_4.h.e'_3 g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑g 0 0 * ↑g 1 1 - 1 = (1 * 0 + ↑g 0 0 * 1) * ↑g 1 1 + (1 * -1 + ↑g 0 0 * 0) * 1 [PROOFSTEP] ring [GOAL] case h.e'_6.h.e'_4.h.e'_3.h.e'_4.h.e'_3 g : SL(2, ℤ) z : ℍ hc : ↑g 1 0 = 1 hg : ↑g 0 1 = ↑g 0 0 * ↑g 1 1 - 1 ⊢ ↑g 1 1 = (0 * 0 + 1 * 1) * ↑g 1 1 + (0 * -1 + 1 * 0) * 1 [PROOFSTEP] ring [GOAL] g : SL(2, ℤ) z : ℍ h : 1 < ↑normSq ↑z ⊢ ↑normSq ↑(S • z) < 1 [PROOFSTEP] simpa [coe_S, num, denom] using (inv_lt_inv z.normSq_pos zero_lt_one).mpr h [GOAL] g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 ⊢ UpperHalfPlane.im z < UpperHalfPlane.im (S • z) [PROOFSTEP] have : z.im < z.im / normSq (z : ℂ) := by have imz : 0 < z.im := im_pos z apply (lt_div_iff z.normSq_pos).mpr nlinarith [GOAL] g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 ⊢ UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z [PROOFSTEP] have imz : 0 < z.im := im_pos z [GOAL] g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 imz : 0 < UpperHalfPlane.im z ⊢ UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z [PROOFSTEP] apply (lt_div_iff z.normSq_pos).mpr [GOAL] g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 imz : 0 < UpperHalfPlane.im z ⊢ UpperHalfPlane.im z * ↑normSq ↑z < UpperHalfPlane.im z [PROOFSTEP] nlinarith [GOAL] g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 this : UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z ⊢ UpperHalfPlane.im z < UpperHalfPlane.im (S • z) [PROOFSTEP] convert this [GOAL] case h.e'_4 g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 this : UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z ⊢ UpperHalfPlane.im (S • z) = UpperHalfPlane.im z / ↑normSq ↑z [PROOFSTEP] simp only [SpecialLinearGroup.im_smul_eq_div_normSq] [GOAL] case h.e'_4 g : SL(2, ℤ) z : ℍ h : ↑normSq ↑z < 1 this : UpperHalfPlane.im z < UpperHalfPlane.im z / ↑normSq ↑z ⊢ UpperHalfPlane.im z / ↑normSq (denom (↑S) z) = UpperHalfPlane.im z / ↑normSq ↑z [PROOFSTEP] simp [denom, coe_S] [GOAL] g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ ⊢ |2 * UpperHalfPlane.re z| < 1 [PROOFSTEP] rw [abs_mul, abs_two, ← lt_div_iff' (zero_lt_two' ℝ)] [GOAL] g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ ⊢ |UpperHalfPlane.re z| < 1 / 2 [PROOFSTEP] exact h.2 [GOAL] g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ ⊢ 3 < 4 * UpperHalfPlane.im z ^ 2 [PROOFSTEP] have : 1 < z.re * z.re + z.im * z.im := by simpa [Complex.normSq_apply] using h.1 [GOAL] g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ ⊢ 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z [PROOFSTEP] simpa [Complex.normSq_apply] using h.1 [GOAL] g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ this : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z ⊢ 3 < 4 * UpperHalfPlane.im z ^ 2 [PROOFSTEP] have := h.2 [GOAL] g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ this✝ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z this : |UpperHalfPlane.re z| < 1 / 2 ⊢ 3 < 4 * UpperHalfPlane.im z ^ 2 [PROOFSTEP] cases abs_cases z.re [GOAL] case inl g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ this✝ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z this : |UpperHalfPlane.re z| < 1 / 2 h✝ : |UpperHalfPlane.re z| = UpperHalfPlane.re z ∧ 0 ≤ UpperHalfPlane.re z ⊢ 3 < 4 * UpperHalfPlane.im z ^ 2 [PROOFSTEP] nlinarith [GOAL] case inr g : SL(2, ℤ) z : ℍ h : z ∈ 𝒟ᵒ this✝ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z this : |UpperHalfPlane.re z| < 1 / 2 h✝ : |UpperHalfPlane.re z| = -UpperHalfPlane.re z ∧ UpperHalfPlane.re z < 0 ⊢ 3 < 4 * UpperHalfPlane.im z ^ 2 [PROOFSTEP] nlinarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ n : ℤ ⊢ 1 < ↑normSq ↑(T ^ n • z) [PROOFSTEP] have hz₁ : 1 < z.re * z.re + z.im * z.im := hz.1 [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ n : ℤ hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z ⊢ 1 < ↑normSq ↑(T ^ n • z) [PROOFSTEP] have hzn := Int.nneg_mul_add_sq_of_abs_le_one n (abs_two_mul_re_lt_one_of_mem_fdo hz).le [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ n : ℤ hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z hzn : 0 ≤ ↑n * (2 * UpperHalfPlane.re z) + ↑n * ↑n ⊢ 1 < ↑normSq ↑(T ^ n • z) [PROOFSTEP] have : 1 < (z.re + ↑n) * (z.re + ↑n) + z.im * z.im := by linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ n : ℤ hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z hzn : 0 ≤ ↑n * (2 * UpperHalfPlane.re z) + ↑n * ↑n ⊢ 1 < (UpperHalfPlane.re z + ↑n) * (UpperHalfPlane.re z + ↑n) + UpperHalfPlane.im z * UpperHalfPlane.im z [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ n : ℤ hz₁ : 1 < UpperHalfPlane.re z * UpperHalfPlane.re z + UpperHalfPlane.im z * UpperHalfPlane.im z hzn : 0 ≤ ↑n * (2 * UpperHalfPlane.re z) + ↑n * ↑n this : 1 < (UpperHalfPlane.re z + ↑n) * (UpperHalfPlane.re z + ↑n) + UpperHalfPlane.im z * UpperHalfPlane.im z ⊢ 1 < ↑normSq ↑(T ^ n • z) [PROOFSTEP] simpa [coe_T_zpow, normSq, num, denom, -map_zpow] [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ hz : z ∈ 𝒟ᵒ hg : T ^ n • z ∈ 𝒟ᵒ ⊢ n = 0 [PROOFSTEP] suffices |(n : ℝ)| < 1 by rwa [← Int.cast_abs, ← Int.cast_one, Int.cast_lt, Int.abs_lt_one_iff] at this [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ hz : z ∈ 𝒟ᵒ hg : T ^ n • z ∈ 𝒟ᵒ this : |↑n| < 1 ⊢ n = 0 [PROOFSTEP] rwa [← Int.cast_abs, ← Int.cast_one, Int.cast_lt, Int.abs_lt_one_iff] at this [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ hz : z ∈ 𝒟ᵒ hg : T ^ n • z ∈ 𝒟ᵒ ⊢ |↑n| < 1 [PROOFSTEP] have h₁ := hz.2 [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ hz : z ∈ 𝒟ᵒ hg : T ^ n • z ∈ 𝒟ᵒ h₁ : |UpperHalfPlane.re z| < 1 / 2 ⊢ |↑n| < 1 [PROOFSTEP] have h₂ := hg.2 [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ hz : z ∈ 𝒟ᵒ hg : T ^ n • z ∈ 𝒟ᵒ h₁ : |UpperHalfPlane.re z| < 1 / 2 h₂ : |UpperHalfPlane.re (T ^ n • z)| < 1 / 2 ⊢ |↑n| < 1 [PROOFSTEP] rw [re_T_zpow_smul] at h₂ [GOAL] g : SL(2, ℤ) z : ℍ n : ℤ hz : z ∈ 𝒟ᵒ hg : T ^ n • z ∈ 𝒟ᵒ h₁ : |UpperHalfPlane.re z| < 1 / 2 h₂ : |UpperHalfPlane.re z + ↑n| < 1 / 2 ⊢ |↑n| < 1 [PROOFSTEP] calc |(n : ℝ)| ≤ |z.re| + |z.re + (n : ℝ)| := abs_add' (n : ℝ) z.re _ < 1 / 2 + 1 / 2 := (add_lt_add h₁ h₂) _ = 1 := add_halves 1 [GOAL] g : SL(2, ℤ) z✝ z : ℍ ⊢ ∃ g, g • z ∈ 𝒟 [PROOFSTEP] obtain ⟨g₀, hg₀⟩ := exists_max_im z [GOAL] case intro g : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) ⊢ ∃ g, g • z ∈ 𝒟 [PROOFSTEP] obtain ⟨g, hg, hg'⟩ := exists_row_one_eq_and_min_re z (bottom_row_coprime g₀) [GOAL] case intro.intro.intro g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| ⊢ ∃ g, g • z ∈ 𝒟 [PROOFSTEP] refine' ⟨g, _⟩ -- `g` has same max im property as `g₀` [GOAL] case intro.intro.intro g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| ⊢ g • z ∈ 𝒟 [PROOFSTEP] have hg₀' : ∀ g' : SL(2, ℤ), (g' • z).im ≤ (g • z).im := by have hg'' : (g • z).im = (g₀ • z).im := by rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, denom_apply, denom_apply, hg] simpa only [hg''] using hg₀ [GOAL] g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| ⊢ ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] have hg'' : (g • z).im = (g₀ • z).im := by rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, denom_apply, denom_apply, hg] [GOAL] g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| ⊢ UpperHalfPlane.im (g • z) = UpperHalfPlane.im (g₀ • z) [PROOFSTEP] rw [SpecialLinearGroup.im_smul_eq_div_normSq, SpecialLinearGroup.im_smul_eq_div_normSq, denom_apply, denom_apply, hg] [GOAL] g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg'' : UpperHalfPlane.im (g • z) = UpperHalfPlane.im (g₀ • z) ⊢ ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) [PROOFSTEP] simpa only [hg''] using hg₀ [GOAL] case intro.intro.intro g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ g • z ∈ 𝒟 [PROOFSTEP] constructor [GOAL] case intro.intro.intro.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ 1 ≤ ↑normSq ↑(g • z) [PROOFSTEP] contrapose! hg₀' [GOAL] case intro.intro.intro.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ↑normSq ↑(g • z) < 1 ⊢ ∃ g', UpperHalfPlane.im (g • z) < UpperHalfPlane.im (g' • z) [PROOFSTEP] refine' ⟨S * g, _⟩ [GOAL] case intro.intro.intro.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ↑normSq ↑(g • z) < 1 ⊢ UpperHalfPlane.im (g • z) < UpperHalfPlane.im ((S * g) • z) [PROOFSTEP] rw [mul_smul] [GOAL] case intro.intro.intro.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ↑normSq ↑(g • z) < 1 ⊢ UpperHalfPlane.im (g • z) < UpperHalfPlane.im (S • g • z) [PROOFSTEP] exact im_lt_im_S_smul hg₀' [GOAL] case intro.intro.intro.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ |UpperHalfPlane.re (g • z)| ≤ 1 / 2 [PROOFSTEP] show |(g • z).re| ≤ 1 / 2 -- if not, then either `T` or `T'` decrease |Re|. [GOAL] case intro.intro.intro.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ |UpperHalfPlane.re (g • z)| ≤ 1 / 2 [PROOFSTEP] rw [abs_le] [GOAL] case intro.intro.intro.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ -(1 / 2) ≤ UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) ≤ 1 / 2 [PROOFSTEP] constructor [GOAL] case intro.intro.intro.right.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ -(1 / 2) ≤ UpperHalfPlane.re (g • z) [PROOFSTEP] contrapose! hg' [GOAL] case intro.intro.intro.right.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) ⊢ ∃ g', ↑g 1 = ↑g' 1 ∧ |UpperHalfPlane.re (g' • z)| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] refine' ⟨T * g, (T_mul_apply_one _).symm, _⟩ [GOAL] case intro.intro.intro.right.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) ⊢ |UpperHalfPlane.re ((T * g) • z)| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] rw [mul_smul, re_T_smul] [GOAL] case intro.intro.intro.right.left g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] cases abs_cases ((g • z).re + 1) [GOAL] case intro.intro.intro.right.left.inl g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) h✝ : |UpperHalfPlane.re (g • z) + 1| = UpperHalfPlane.re (g • z) + 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) + 1 ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] cases abs_cases (g • z).re [GOAL] case intro.intro.intro.right.left.inr g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) h✝ : |UpperHalfPlane.re (g • z) + 1| = -(UpperHalfPlane.re (g • z) + 1) ∧ UpperHalfPlane.re (g • z) + 1 < 0 ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] cases abs_cases (g • z).re [GOAL] case intro.intro.intro.right.left.inl.inl g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) h✝¹ : |UpperHalfPlane.re (g • z) + 1| = UpperHalfPlane.re (g • z) + 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) + 1 h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z) ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.left.inl.inr g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) h✝¹ : |UpperHalfPlane.re (g • z) + 1| = UpperHalfPlane.re (g • z) + 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) + 1 h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0 ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.left.inr.inl g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) h✝¹ : |UpperHalfPlane.re (g • z) + 1| = -(UpperHalfPlane.re (g • z) + 1) ∧ UpperHalfPlane.re (g • z) + 1 < 0 h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z) ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.left.inr.inr g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : UpperHalfPlane.re (g • z) < -(1 / 2) h✝¹ : |UpperHalfPlane.re (g • z) + 1| = -(UpperHalfPlane.re (g • z) + 1) ∧ UpperHalfPlane.re (g • z) + 1 < 0 h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0 ⊢ |UpperHalfPlane.re (g • z) + 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg' : ∀ (g' : SL(2, ℤ)), ↑g 1 = ↑g' 1 → |UpperHalfPlane.re (g • z)| ≤ |UpperHalfPlane.re (g' • z)| hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) ⊢ UpperHalfPlane.re (g • z) ≤ 1 / 2 [PROOFSTEP] contrapose! hg' [GOAL] case intro.intro.intro.right.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) ⊢ ∃ g', ↑g 1 = ↑g' 1 ∧ |UpperHalfPlane.re (g' • z)| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] refine' ⟨T⁻¹ * g, (T_inv_mul_apply_one _).symm, _⟩ [GOAL] case intro.intro.intro.right.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) ⊢ |UpperHalfPlane.re ((T⁻¹ * g) • z)| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] rw [mul_smul, re_T_inv_smul] [GOAL] case intro.intro.intro.right.right g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] cases abs_cases ((g • z).re - 1) [GOAL] case intro.intro.intro.right.right.inl g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) h✝ : |UpperHalfPlane.re (g • z) - 1| = UpperHalfPlane.re (g • z) - 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) - 1 ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] cases abs_cases (g • z).re [GOAL] case intro.intro.intro.right.right.inr g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) h✝ : |UpperHalfPlane.re (g • z) - 1| = -(UpperHalfPlane.re (g • z) - 1) ∧ UpperHalfPlane.re (g • z) - 1 < 0 ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] cases abs_cases (g • z).re [GOAL] case intro.intro.intro.right.right.inl.inl g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) h✝¹ : |UpperHalfPlane.re (g • z) - 1| = UpperHalfPlane.re (g • z) - 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) - 1 h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z) ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.right.inl.inr g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) h✝¹ : |UpperHalfPlane.re (g • z) - 1| = UpperHalfPlane.re (g • z) - 1 ∧ 0 ≤ UpperHalfPlane.re (g • z) - 1 h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0 ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.right.inr.inl g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) h✝¹ : |UpperHalfPlane.re (g • z) - 1| = -(UpperHalfPlane.re (g • z) - 1) ∧ UpperHalfPlane.re (g • z) - 1 < 0 h✝ : |UpperHalfPlane.re (g • z)| = UpperHalfPlane.re (g • z) ∧ 0 ≤ UpperHalfPlane.re (g • z) ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] case intro.intro.intro.right.right.inr.inr g✝ : SL(2, ℤ) z✝ z : ℍ g₀ : SL(2, ℤ) hg₀ : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g₀ • z) g : SL(2, ℤ) hg : ↑g 1 = ↑g₀ 1 hg₀' : ∀ (g' : SL(2, ℤ)), UpperHalfPlane.im (g' • z) ≤ UpperHalfPlane.im (g • z) hg' : 1 / 2 < UpperHalfPlane.re (g • z) h✝¹ : |UpperHalfPlane.re (g • z) - 1| = -(UpperHalfPlane.re (g • z) - 1) ∧ UpperHalfPlane.re (g • z) - 1 < 0 h✝ : |UpperHalfPlane.re (g • z)| = -UpperHalfPlane.re (g • z) ∧ UpperHalfPlane.re (g • z) < 0 ⊢ |UpperHalfPlane.re (g • z) - 1| < |UpperHalfPlane.re (g • z)| [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ ⊢ |↑g 1 0| ≤ 1 [PROOFSTEP] let c' : ℤ := (↑ₘg) 1 0 [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 ⊢ |↑g 1 0| ≤ 1 [PROOFSTEP] let c : ℝ := (c' : ℝ) [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' ⊢ |↑g 1 0| ≤ 1 [PROOFSTEP] suffices 3 * c ^ 2 < 4 by rw [← Int.cast_pow, ← Int.cast_three, ← Int.cast_four, ← Int.cast_mul, Int.cast_lt] at this replace this : c' ^ 2 ≤ 1 ^ 2; · linarith rwa [sq_le_sq, abs_one] at this [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : 3 * c ^ 2 < 4 ⊢ |↑g 1 0| ≤ 1 [PROOFSTEP] rw [← Int.cast_pow, ← Int.cast_three, ← Int.cast_four, ← Int.cast_mul, Int.cast_lt] at this [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : 3 * c' ^ 2 < 4 ⊢ |↑g 1 0| ≤ 1 [PROOFSTEP] replace this : c' ^ 2 ≤ 1 ^ 2 [GOAL] case this g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : 3 * c' ^ 2 < 4 ⊢ c' ^ 2 ≤ 1 ^ 2 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c' ^ 2 ≤ 1 ^ 2 ⊢ |↑g 1 0| ≤ 1 [PROOFSTEP] rwa [sq_le_sq, abs_one] at this [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' ⊢ 3 * c ^ 2 < 4 [PROOFSTEP] suffices c ≠ 0 → 9 * c ^ 4 < 16 by rcases eq_or_ne c 0 with (hc | hc) · rw [hc]; norm_num · refine' (abs_lt_of_sq_lt_sq' _ (by norm_num)).2 specialize this hc linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c ≠ 0 → 9 * c ^ 4 < 16 ⊢ 3 * c ^ 2 < 4 [PROOFSTEP] rcases eq_or_ne c 0 with (hc | hc) [GOAL] case inl g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c ≠ 0 → 9 * c ^ 4 < 16 hc : c = 0 ⊢ 3 * c ^ 2 < 4 [PROOFSTEP] rw [hc] [GOAL] case inl g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c ≠ 0 → 9 * c ^ 4 < 16 hc : c = 0 ⊢ 3 * 0 ^ 2 < 4 [PROOFSTEP] norm_num [GOAL] case inr g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c ≠ 0 → 9 * c ^ 4 < 16 hc : c ≠ 0 ⊢ 3 * c ^ 2 < 4 [PROOFSTEP] refine' (abs_lt_of_sq_lt_sq' _ (by norm_num)).2 [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c ≠ 0 → 9 * c ^ 4 < 16 hc : c ≠ 0 ⊢ 0 ≤ 4 [PROOFSTEP] norm_num [GOAL] case inr g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' this : c ≠ 0 → 9 * c ^ 4 < 16 hc : c ≠ 0 ⊢ (3 * c ^ 2) ^ 2 < 4 ^ 2 [PROOFSTEP] specialize this hc [GOAL] case inr g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : c ≠ 0 this : 9 * c ^ 4 < 16 ⊢ (3 * c ^ 2) ^ 2 < 4 ^ 2 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' ⊢ c ≠ 0 → 9 * c ^ 4 < 16 [PROOFSTEP] intro hc [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : c ≠ 0 ⊢ 9 * c ^ 4 < 16 [PROOFSTEP] replace hc : 0 < c ^ 4 [GOAL] case hc g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : c ≠ 0 ⊢ 0 < c ^ 4 [PROOFSTEP] change 0 < c ^ (2 * 2) [GOAL] case hc g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : c ≠ 0 ⊢ 0 < c ^ (2 * 2) [PROOFSTEP] rw [pow_mul] [GOAL] case hc g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : c ≠ 0 ⊢ 0 < (c ^ 2) ^ 2 [PROOFSTEP] apply sq_pos_of_pos (sq_pos_of_ne_zero _ hc) [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 ⊢ 9 * c ^ 4 < 16 [PROOFSTEP] have h₁ := mul_lt_mul_of_pos_right (mul_lt_mul'' (three_lt_four_mul_im_sq_of_mem_fdo hg) (three_lt_four_mul_im_sq_of_mem_fdo hz) (by linarith) (by linarith)) hc [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 ⊢ 0 ≤ 3 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 ⊢ 0 ≤ 3 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 ⊢ 9 * c ^ 4 < 16 [PROOFSTEP] have h₂ : (c * z.im) ^ 4 / normSq (denom (↑g) z) ^ 2 ≤ 1 := div_le_one_of_le (pow_four_le_pow_two_of_pow_two_le (UpperHalfPlane.c_mul_im_sq_le_normSq_denom z g)) (sq_nonneg _) [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 ⊢ 9 * c ^ 4 < 16 [PROOFSTEP] let nsq := normSq (denom g z) [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z) ⊢ 9 * c ^ 4 < 16 [PROOFSTEP] calc 9 * c ^ 4 < c ^ 4 * z.im ^ 2 * (g • z).im ^ 2 * 16 := by linarith _ = c ^ 4 * z.im ^ 4 / nsq ^ 2 * 16 := by rw [SpecialLinearGroup.im_smul_eq_div_normSq, div_pow] ring _ ≤ 16 := by rw [← mul_pow]; linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z) ⊢ 9 * c ^ 4 < c ^ 4 * UpperHalfPlane.im z ^ 2 * UpperHalfPlane.im (g • z) ^ 2 * 16 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z) ⊢ c ^ 4 * UpperHalfPlane.im z ^ 2 * UpperHalfPlane.im (g • z) ^ 2 * 16 = c ^ 4 * UpperHalfPlane.im z ^ 4 / nsq ^ 2 * 16 [PROOFSTEP] rw [SpecialLinearGroup.im_smul_eq_div_normSq, div_pow] [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z) ⊢ c ^ 4 * UpperHalfPlane.im z ^ 2 * (UpperHalfPlane.im z ^ 2 / ↑normSq (denom (↑g) z) ^ 2) * 16 = c ^ 4 * UpperHalfPlane.im z ^ 4 / nsq ^ 2 * 16 [PROOFSTEP] ring [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z) ⊢ c ^ 4 * UpperHalfPlane.im z ^ 4 / nsq ^ 2 * 16 ≤ 16 [PROOFSTEP] rw [← mul_pow] [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ c' : ℤ := ↑g 1 0 c : ℝ := ↑c' hc : 0 < c ^ 4 h₁ : 3 * 3 * c ^ 4 < 4 * UpperHalfPlane.im (g • z) ^ 2 * (4 * UpperHalfPlane.im z ^ 2) * c ^ 4 h₂ : (c * UpperHalfPlane.im z) ^ 4 / ↑normSq (denom (↑g) z) ^ 2 ≤ 1 nsq : (fun x => ℝ) (denom (↑g) z) := ↑normSq (denom (↑g) z) ⊢ (c * UpperHalfPlane.im z) ^ 4 / nsq ^ 2 * 16 ≤ 16 [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ ⊢ ↑g 1 0 = 0 [PROOFSTEP] have hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → (↑ₘg') 1 0 ≠ 1 := by intro g' hg' by_contra hc let a := (↑ₘg') 0 0 let d := (↑ₘg') 1 1 have had : T ^ (-a) * g' = S * T ^ d := by rw [g_eq_of_c_eq_one hc]; group let w := T ^ (-a) • g' • z have h₁ : w = S • T ^ d • z := by simp only [← mul_smul, had] replace h₁ : normSq w < 1 := h₁.symm ▸ normSq_S_smul_lt_one (one_lt_normSq_T_zpow_smul hz d) have h₂ : 1 < normSq w := one_lt_normSq_T_zpow_smul hg' (-a) linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ ⊢ ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 [PROOFSTEP] intro g' hg' [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ ⊢ ↑g' 1 0 ≠ 1 [PROOFSTEP] by_contra hc [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 ⊢ False [PROOFSTEP] let a := (↑ₘg') 0 0 [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 ⊢ False [PROOFSTEP] let d := (↑ₘg') 1 1 [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 ⊢ False [PROOFSTEP] have had : T ^ (-a) * g' = S * T ^ d := by rw [g_eq_of_c_eq_one hc]; group [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 ⊢ T ^ (-a) * g' = S * T ^ d [PROOFSTEP] rw [g_eq_of_c_eq_one hc] [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 ⊢ T ^ (-a) * (T ^ ↑g' 0 0 * S * T ^ ↑g' 1 1) = S * T ^ d [PROOFSTEP] group [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 had : T ^ (-a) * g' = S * T ^ d ⊢ False [PROOFSTEP] let w := T ^ (-a) • g' • z [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 had : T ^ (-a) * g' = S * T ^ d w : ℍ := T ^ (-a) • g' • z ⊢ False [PROOFSTEP] have h₁ : w = S • T ^ d • z := by simp only [← mul_smul, had] [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 had : T ^ (-a) * g' = S * T ^ d w : ℍ := T ^ (-a) • g' • z ⊢ w = S • T ^ d • z [PROOFSTEP] simp only [← mul_smul, had] [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 had : T ^ (-a) * g' = S * T ^ d w : ℍ := T ^ (-a) • g' • z h₁ : w = S • T ^ d • z ⊢ False [PROOFSTEP] replace h₁ : normSq w < 1 := h₁.symm ▸ normSq_S_smul_lt_one (one_lt_normSq_T_zpow_smul hz d) [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 had : T ^ (-a) * g' = S * T ^ d w : ℍ := T ^ (-a) • g' • z h₁ : ↑normSq ↑w < 1 ⊢ False [PROOFSTEP] have h₂ : 1 < normSq w := one_lt_normSq_T_zpow_smul hg' (-a) [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ g' : SL(2, ℤ) hg' : g' • z ∈ 𝒟ᵒ hc : ↑g' 1 0 = 1 a : ℤ := ↑g' 0 0 d : ℤ := ↑g' 1 1 had : T ^ (-a) * g' = S * T ^ d w : ℍ := T ^ (-a) • g' • z h₁ : ↑normSq ↑w < 1 h₂ : 1 < ↑normSq ↑w ⊢ False [PROOFSTEP] linarith [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 ⊢ ↑g 1 0 = 0 [PROOFSTEP] have hn : (↑ₘg) 1 0 ≠ -1 := by intro hc replace hc : (↑ₘ(-g)) 1 0 = 1; · simp [← neg_eq_iff_eq_neg.mpr hc] replace hg : -g • z ∈ 𝒟ᵒ := (SL_neg_smul g z).symm ▸ hg exact hp hg hc [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 ⊢ ↑g 1 0 ≠ -1 [PROOFSTEP] intro hc [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 hc : ↑g 1 0 = -1 ⊢ False [PROOFSTEP] replace hc : (↑ₘ(-g)) 1 0 = 1 [GOAL] case hc g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 hc : ↑g 1 0 = -1 ⊢ (-↑g) 1 0 = 1 [PROOFSTEP] simp [← neg_eq_iff_eq_neg.mpr hc] [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 hc : (-↑g) 1 0 = 1 ⊢ False [PROOFSTEP] replace hg : -g • z ∈ 𝒟ᵒ := (SL_neg_smul g z).symm ▸ hg [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 hc : (-↑g) 1 0 = 1 hg : -g • z ∈ 𝒟ᵒ ⊢ False [PROOFSTEP] exact hp hg hc [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hp : ∀ {g' : SL(2, ℤ)}, g' • z ∈ 𝒟ᵒ → ↑g' 1 0 ≠ 1 hn : ↑g 1 0 ≠ -1 ⊢ ↑g 1 0 = 0 [PROOFSTEP] specialize hp hg [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hn : ↑g 1 0 ≠ -1 hp : ↑g 1 0 ≠ 1 ⊢ ↑g 1 0 = 0 [PROOFSTEP] rcases Int.abs_le_one_iff.mp <| abs_c_le_one hz hg with ⟨⟩ [GOAL] case inl g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hn : ↑g 1 0 ≠ -1 hp : ↑g 1 0 ≠ 1 h✝ : ↑g 1 0 = 0 ⊢ ↑g 1 0 = 0 [PROOFSTEP] tauto [GOAL] case inr g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ hn : ↑g 1 0 ≠ -1 hp : ↑g 1 0 ≠ 1 h✝ : ↑g 1 0 = 1 ∨ ↑g 1 0 = -1 ⊢ ↑g 1 0 = 0 [PROOFSTEP] tauto [GOAL] g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ ⊢ z = g • z [PROOFSTEP] obtain ⟨n, hn⟩ := exists_eq_T_zpow_of_c_eq_zero (c_eq_zero hz hg) [GOAL] case intro g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ hg : g • z ∈ 𝒟ᵒ n : ℤ hn : ∀ (z : ℍ), g • z = T ^ n • z ⊢ z = g • z [PROOFSTEP] rw [hn] at hg ⊢ [GOAL] case intro g : SL(2, ℤ) z : ℍ hz : z ∈ 𝒟ᵒ n : ℤ hg : T ^ n • z ∈ 𝒟ᵒ hn : ∀ (z : ℍ), g • z = T ^ n • z ⊢ z = T ^ n • z [PROOFSTEP] simp [eq_zero_of_mem_fdo_of_T_zpow_mem_fdo hz hg, one_smul]
{"mathlib_filename": "Mathlib.NumberTheory.Modular", "llama_tokens": 64408}
{"mathlib_filename": "Mathlib.Util.AssertExists", "llama_tokens": 0}
[GOAL] C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ X.obj Δ ⟶ N s (SimplexCategory.len A.fst.unop) [PROOFSTEP] refine' (s.iso Δ).inv ≫ Sigma.desc fun B => _ [GOAL] C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ ⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop) [PROOFSTEP] by_cases B = A [GOAL] C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ ⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop) [PROOFSTEP] by_cases B = A [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : B = A ⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop) [PROOFSTEP] exact eqToHom (by subst h; rfl) [GOAL] C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : B = A ⊢ summand s.N Δ B = N s (SimplexCategory.len A.fst.unop) [PROOFSTEP] subst h [GOAL] C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ B : IndexSet Δ ⊢ summand s.N Δ B = N s (SimplexCategory.len B.fst.unop) [PROOFSTEP] rfl [GOAL] case neg C : Type u_1 inst✝² : Category.{?u.243, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : ¬B = A ⊢ summand s.N Δ B ⟶ N s (SimplexCategory.len A.fst.unop) [PROOFSTEP] exact 0 [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ ιSummand s A ≫ πSummand s A = 𝟙 (N s (SimplexCategory.len A.fst.unop)) [PROOFSTEP] dsimp only [ιSummand, iso_hom, πSummand, iso_inv, summand] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ ((ιCoprod s.N A ≫ map X s.ι Δ) ≫ inv (map X s.ι Δ) ≫ Sigma.desc fun B => if h : B = A then eqToHom (_ : summand s.N Δ B = N s (SimplexCategory.len A.fst.unop)) else 0) = 𝟙 (N s (SimplexCategory.len A.fst.unop)) [PROOFSTEP] simp only [summand, assoc, IsIso.hom_inv_id_assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ (ιCoprod s.N A ≫ Sigma.desc fun B => if h : B = A then eqToHom (_ : summand s.N Δ B = N s (SimplexCategory.len A.fst.unop)) else 0) = 𝟙 (N s (SimplexCategory.len A.fst.unop)) [PROOFSTEP] erw [colimit.ι_desc, Cofan.mk_ι_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ (if h : { as := A }.as = A then eqToHom (_ : summand s.N Δ { as := A }.as = N s (SimplexCategory.len A.fst.unop)) else 0) = 𝟙 (N s (SimplexCategory.len A.fst.unop)) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ (if h : A = A then 𝟙 (N s (SimplexCategory.len A.fst.unop)) else 0) = 𝟙 (N s (SimplexCategory.len A.fst.unop)) [PROOFSTEP] simp only [dite_eq_ite, ite_true] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : B ≠ A ⊢ ιSummand s A ≫ πSummand s B = 0 [PROOFSTEP] dsimp only [ιSummand, iso_hom, πSummand, iso_inv, summand] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : B ≠ A ⊢ ((ιCoprod s.N A ≫ map X s.ι Δ) ≫ inv (map X s.ι Δ) ≫ Sigma.desc fun B_1 => if h : B_1 = B then eqToHom (_ : summand s.N Δ B_1 = N s (SimplexCategory.len B.fst.unop)) else 0) = 0 [PROOFSTEP] simp only [summand, assoc, IsIso.hom_inv_id_assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : B ≠ A ⊢ (ιCoprod s.N A ≫ Sigma.desc fun B_1 => if h : B_1 = B then eqToHom (_ : summand s.N Δ B_1 = N s (SimplexCategory.len B.fst.unop)) else 0) = 0 [PROOFSTEP] erw [colimit.ι_desc, Cofan.mk_ι_app] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : HasZeroMorphisms C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ h : B ≠ A ⊢ (if h : { as := A }.as = B then eqToHom (_ : summand s.N Δ { as := A }.as = N s (SimplexCategory.len B.fst.unop)) else 0) = 0 [PROOFSTEP] exact dif_neg h.symm [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Δ : SimplexCategoryᵒᵖ ⊢ 𝟙 (X.obj Δ) = ∑ A : IndexSet Δ, πSummand s A ≫ ιSummand s A [PROOFSTEP] apply s.hom_ext' [GOAL] case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Δ : SimplexCategoryᵒᵖ ⊢ ∀ (A : IndexSet Δ), ιSummand s A ≫ 𝟙 (X.obj Δ) = ιSummand s A ≫ ∑ A : IndexSet Δ, πSummand s A ≫ ιSummand s A [PROOFSTEP] intro A [GOAL] case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ ιSummand s A ≫ 𝟙 (X.obj Δ) = ιSummand s A ≫ ∑ A : IndexSet Δ, πSummand s A ≫ ιSummand s A [PROOFSTEP] rw [comp_id, comp_sum, Finset.sum_eq_single A, ι_πSummand_eq_id_assoc] [GOAL] case h.h₀ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ ∀ (b : IndexSet Δ), b ∈ Finset.univ → b ≠ A → ιSummand s A ≫ πSummand s b ≫ ιSummand s b = 0 [PROOFSTEP] intro B _ h₂ [GOAL] case h.h₀ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Δ : SimplexCategoryᵒᵖ A B : IndexSet Δ a✝ : B ∈ Finset.univ h₂ : B ≠ A ⊢ ιSummand s A ≫ πSummand s B ≫ ιSummand s B = 0 [PROOFSTEP] rw [s.ι_πSummand_eq_zero_assoc _ _ h₂, zero_comp] [GOAL] case h.h₁ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Δ : SimplexCategoryᵒᵖ A : IndexSet Δ ⊢ ¬A ∈ Finset.univ → ιSummand s A ≫ πSummand s A ≫ ιSummand s A = 0 [PROOFSTEP] simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) ⊢ SimplicialObject.σ X i ≫ πSummand s (IndexSet.id (op [n + 1])) = 0 [PROOFSTEP] apply s.hom_ext' [GOAL] case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) ⊢ ∀ (A : IndexSet (op [n])), ιSummand s A ≫ SimplicialObject.σ X i ≫ πSummand s (IndexSet.id (op [n + 1])) = ιSummand s A ≫ 0 [PROOFSTEP] intro A [GOAL] case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) ⊢ ιSummand s A ≫ SimplicialObject.σ X i ≫ πSummand s (IndexSet.id (op [n + 1])) = ιSummand s A ≫ 0 [PROOFSTEP] dsimp only [SimplicialObject.σ] [GOAL] case h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) ⊢ ιSummand s A ≫ X.map (SimplexCategory.σ i).op ≫ πSummand s (IndexSet.id (op [n + 1])) = ιSummand s A ≫ 0 [PROOFSTEP] rw [comp_zero, s.ιSummand_epi_naturality_assoc A (SimplexCategory.σ i).op, ι_πSummand_eq_zero] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) ⊢ IndexSet.id (op [n + 1]) ≠ IndexSet.epiComp A (SimplexCategory.σ i).op [PROOFSTEP] rw [ne_comm] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) ⊢ IndexSet.epiComp A (SimplexCategory.σ i).op ≠ IndexSet.id (op [n + 1]) [PROOFSTEP] change ¬(A.epiComp (SimplexCategory.σ i).op).EqId [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) ⊢ ¬IndexSet.EqId (IndexSet.epiComp A (SimplexCategory.σ i).op) [PROOFSTEP] rw [IndexSet.eqId_iff_len_eq] [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) ⊢ ¬SimplexCategory.len (IndexSet.epiComp A (SimplexCategory.σ i).op).fst.unop = SimplexCategory.len (op [n + 1]).unop [PROOFSTEP] have h := SimplexCategory.len_le_of_epi (inferInstance : Epi A.e) [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) h : SimplexCategory.len A.fst.unop ≤ SimplexCategory.len (op [n]).unop ⊢ ¬SimplexCategory.len (IndexSet.epiComp A (SimplexCategory.σ i).op).fst.unop = SimplexCategory.len (op [n + 1]).unop [PROOFSTEP] dsimp at h ⊢ [GOAL] case h.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ i : Fin (n + 1) A : IndexSet (op [n]) h : SimplexCategory.len A.fst.unop ≤ n ⊢ ¬SimplexCategory.len A.fst.unop = n + 1 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X✝ : SimplicialObject C s✝ : Splitting X✝ inst✝ : Preadditive C X : SimplicialObject C s : Splitting X n : ℕ A : IndexSet (op [n]) hA : ¬IndexSet.EqId A ⊢ ιSummand s A ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rw [SimplicialObject.Splitting.IndexSet.eqId_iff_mono] at hA [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X✝ : SimplicialObject C s✝ : Splitting X✝ inst✝ : Preadditive C X : SimplicialObject C s : Splitting X n : ℕ A : IndexSet (op [n]) hA : ¬Mono (IndexSet.e A) ⊢ ιSummand s A ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rw [SimplicialObject.Splitting.ιSummand_eq, assoc, degeneracy_comp_PInfty X n A.e hA, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) ⊢ f ≫ HomologicalComplex.Hom.f PInfty n = 0 ↔ f ≫ πSummand s (IndexSet.id (op [n])) = 0 [PROOFSTEP] constructor [GOAL] case mp C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) ⊢ f ≫ HomologicalComplex.Hom.f PInfty n = 0 → f ≫ πSummand s (IndexSet.id (op [n])) = 0 [PROOFSTEP] intro h [GOAL] case mp C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ HomologicalComplex.Hom.f PInfty n = 0 ⊢ f ≫ πSummand s (IndexSet.id (op [n])) = 0 [PROOFSTEP] rcases n with _ | n [GOAL] case mp.zero C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C f : Z ⟶ X.obj (op [Nat.zero]) h : f ≫ HomologicalComplex.Hom.f PInfty Nat.zero = 0 ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.zero])) = 0 [PROOFSTEP] dsimp at h [GOAL] case mp.zero C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C f : Z ⟶ X.obj (op [Nat.zero]) h : f ≫ 𝟙 (X.obj (op [0])) = 0 ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.zero])) = 0 [PROOFSTEP] rw [comp_id] at h [GOAL] case mp.zero C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C f : Z ⟶ X.obj (op [Nat.zero]) h : f = 0 ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.zero])) = 0 [PROOFSTEP] rw [h, zero_comp] [GOAL] case mp.succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [Nat.succ n]) h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0 ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0 [PROOFSTEP] have h' := f ≫= PInfty_f_add_QInfty_f (n + 1) [GOAL] case mp.succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [Nat.succ n]) h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0 h' : f ≫ (HomologicalComplex.Hom.f PInfty (n + 1) + HomologicalComplex.Hom.f QInfty (n + 1)) = f ≫ 𝟙 (HomologicalComplex.X K[X] (n + 1)) ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0 [PROOFSTEP] dsimp at h' [GOAL] case mp.succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [Nat.succ n]) h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0 h' : f ≫ (HomologicalComplex.Hom.f PInfty (n + 1) + HomologicalComplex.Hom.f QInfty (n + 1)) = f ≫ 𝟙 (X.obj (op [n + 1])) ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0 [PROOFSTEP] rw [comp_id, comp_add, h, zero_add] at h' [GOAL] case mp.succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [Nat.succ n]) h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0 h' : f ≫ HomologicalComplex.Hom.f QInfty (n + 1) = f ⊢ f ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0 [PROOFSTEP] rw [← h', assoc, QInfty_f, decomposition_Q, Preadditive.sum_comp, Preadditive.comp_sum, Finset.sum_eq_zero] [GOAL] case mp.succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [Nat.succ n]) h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0 h' : f ≫ HomologicalComplex.Hom.f QInfty (n + 1) = f ⊢ ∀ (x : Fin (n + 1)), x ∈ Finset.filter (fun i => ↑i < n + 1) Finset.univ → f ≫ (HomologicalComplex.Hom.f (P ↑x) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm x)) ≫ SimplicialObject.σ X (↑Fin.revPerm x)) ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0 [PROOFSTEP] intro i _ [GOAL] case mp.succ C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [Nat.succ n]) h : f ≫ HomologicalComplex.Hom.f PInfty (Nat.succ n) = 0 h' : f ≫ HomologicalComplex.Hom.f QInfty (n + 1) = f i : Fin (n + 1) a✝ : i ∈ Finset.filter (fun i => ↑i < n + 1) Finset.univ ⊢ f ≫ (HomologicalComplex.Hom.f (P ↑i) (n + 1) ≫ SimplicialObject.δ X (Fin.succ (↑Fin.revPerm i)) ≫ SimplicialObject.σ X (↑Fin.revPerm i)) ≫ πSummand s (IndexSet.id (op [Nat.succ n])) = 0 [PROOFSTEP] simp only [assoc, σ_comp_πSummand_id_eq_zero, comp_zero] [GOAL] case mpr C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) ⊢ f ≫ πSummand s (IndexSet.id (op [n])) = 0 → f ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] intro h [GOAL] case mpr C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 ⊢ f ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rw [← comp_id f, assoc, s.decomposition_id, Preadditive.sum_comp, Preadditive.comp_sum, Fintype.sum_eq_zero] [GOAL] case mpr.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 ⊢ ∀ (a : IndexSet (op [n])), f ≫ (πSummand s a ≫ ιSummand s a) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] intro A [GOAL] case mpr.h C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 A : IndexSet (op [n]) ⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] by_cases hA : A.EqId [GOAL] case pos C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 A : IndexSet (op [n]) hA : IndexSet.EqId A ⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] dsimp at hA [GOAL] case pos C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 A : IndexSet (op [n]) hA : A = IndexSet.id (op [n]) ⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] subst hA [GOAL] case pos C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 ⊢ f ≫ (πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n]))) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rw [assoc, reassoc_of% h, zero_comp] [GOAL] case neg C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C Z : C n : ℕ f : Z ⟶ X.obj (op [n]) h : f ≫ πSummand s (IndexSet.id (op [n])) = 0 A : IndexSet (op [n]) hA : ¬IndexSet.EqId A ⊢ f ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] simp only [assoc, s.ιSummand_comp_PInfty_eq_zero A hA, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) = πSummand s (IndexSet.id (op [n])) [PROOFSTEP] conv_rhs => rw [← id_comp (s.πSummand _)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ | πSummand s (IndexSet.id (op [n])) [PROOFSTEP] rw [← id_comp (s.πSummand _)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ | πSummand s (IndexSet.id (op [n])) [PROOFSTEP] rw [← id_comp (s.πSummand _)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ | πSummand s (IndexSet.id (op [n])) [PROOFSTEP] rw [← id_comp (s.πSummand _)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) = 𝟙 (X.obj (op [n])) ≫ πSummand s (IndexSet.id (op [n])) [PROOFSTEP] symm [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ 𝟙 (X.obj (op [n])) ≫ πSummand s (IndexSet.id (op [n])) = HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) [PROOFSTEP] rw [← sub_eq_zero, ← sub_comp, ← comp_PInfty_eq_zero_iff, sub_comp, id_comp, PInfty_f_idem, sub_self] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = HomologicalComplex.Hom.f PInfty n [PROOFSTEP] conv_rhs => rw [← id_comp (PInfty.f n)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ | HomologicalComplex.Hom.f PInfty n [PROOFSTEP] rw [← id_comp (PInfty.f n)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ | HomologicalComplex.Hom.f PInfty n [PROOFSTEP] rw [← id_comp (PInfty.f n)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ | HomologicalComplex.Hom.f PInfty n [PROOFSTEP] rw [← id_comp (PInfty.f n)] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = 𝟙 (HomologicalComplex.X K[X] n) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] erw [s.decomposition_id, Preadditive.sum_comp] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ πSummand s (IndexSet.id (op [n])) ≫ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = ∑ j : IndexSet (op [n]), (πSummand s j ≫ ιSummand s j) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] rw [Fintype.sum_eq_single (IndexSet.id (op [n])), assoc] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ ∀ (x : IndexSet (op [n])), x ≠ IndexSet.id (op [n]) → (πSummand s x ≫ ιSummand s x) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rintro A (hA : ¬A.EqId) [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ A : IndexSet (op [n]) hA : ¬IndexSet.EqId A ⊢ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.Hom.f PInfty n = 0 [PROOFSTEP] rw [assoc, s.ιSummand_comp_PInfty_eq_zero A hA, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C j k : ℕ A : IndexSet (op [j]) hA : ¬IndexSet.EqId A ⊢ ιSummand s A ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] rw [A.eqId_iff_mono] at hA [GOAL] C : Type u_1 inst✝² : Category.{u_2, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C j k : ℕ A : IndexSet (op [j]) hA : ¬Mono (IndexSet.e A) ⊢ ιSummand s A ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] rw [← assoc, ← s.comp_PInfty_eq_zero_iff, assoc, ← PInfty.comm j k, s.ιSummand_eq, assoc, degeneracy_comp_PInfty_assoc X j A.e hA, zero_comp, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ hij : ¬ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ d s i j = 0 [PROOFSTEP] simp only [d, K[X].shape i j hij, zero_comp, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k ⊢ d s i j ≫ d s j k = 0 [PROOFSTEP] simp only [d, assoc] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k ⊢ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] have eq : K[X].d i j ≫ 𝟙 (X.obj (op [j])) ≫ K[X].d j k ≫ s.πSummand (IndexSet.id (op [k])) = 0 := by erw [id_comp, HomologicalComplex.d_comp_d_assoc, zero_comp] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k ⊢ HomologicalComplex.d K[X] i j ≫ 𝟙 (X.obj (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] erw [id_comp, HomologicalComplex.d_comp_d_assoc, zero_comp] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ 𝟙 (X.obj (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] rw [s.decomposition_id] at eq [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ (∑ A : IndexSet (op [j]), πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] classical rw [Fintype.sum_eq_add_sum_compl (IndexSet.id (op [j])), add_comp, comp_add, assoc, Preadditive.sum_comp, Preadditive.comp_sum, Finset.sum_eq_zero, add_zero] at eq swap · intro A hA simp only [Finset.mem_compl, Finset.mem_singleton] at hA simp only [assoc, ιSummand_comp_d_comp_πSummand_eq_zero _ _ _ _ hA, comp_zero] rw [eq, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ (∑ A : IndexSet (op [j]), πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] rw [Fintype.sum_eq_add_sum_compl (IndexSet.id (op [j])), add_comp, comp_add, assoc, Preadditive.sum_comp, Preadditive.comp_sum, Finset.sum_eq_zero, add_zero] at eq [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) + ∑ j_1 in {IndexSet.id (op [j])}ᶜ, HomologicalComplex.d K[X] i j ≫ (πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ∀ (x : IndexSet (op [j])), x ∈ {IndexSet.id (op [j])}ᶜ → HomologicalComplex.d K[X] i j ≫ (πSummand s x ≫ ιSummand s x) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] swap [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) + ∑ j_1 in {IndexSet.id (op [j])}ᶜ, HomologicalComplex.d K[X] i j ≫ (πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ∀ (x : IndexSet (op [j])), x ∈ {IndexSet.id (op [j])}ᶜ → HomologicalComplex.d K[X] i j ≫ (πSummand s x ≫ ιSummand s x) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] intro A hA [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) + ∑ j_1 in {IndexSet.id (op [j])}ᶜ, HomologicalComplex.d K[X] i j ≫ (πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 A : IndexSet (op [j]) hA : A ∈ {IndexSet.id (op [j])}ᶜ ⊢ HomologicalComplex.d K[X] i j ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] simp only [Finset.mem_compl, Finset.mem_singleton] at hA [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) + ∑ j_1 in {IndexSet.id (op [j])}ᶜ, HomologicalComplex.d K[X] i j ≫ (πSummand s j_1 ≫ ιSummand s j_1) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 A : IndexSet (op [j]) hA : ¬A = IndexSet.id (op [j]) ⊢ HomologicalComplex.d K[X] i j ≫ (πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] simp only [assoc, ιSummand_comp_d_comp_πSummand_eq_zero _ _ _ _ hA, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{?u.276754, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j k : ℕ x✝¹ : ComplexShape.Rel (ComplexShape.down ℕ) i j x✝ : ComplexShape.Rel (ComplexShape.down ℕ) j k eq : HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 ⊢ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.d K[X] j k ≫ πSummand s (IndexSet.id (op [k])) = 0 [PROOFSTEP] rw [eq, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ (fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) i ≫ HomologicalComplex.d (N₁.obj X).X i j = HomologicalComplex.d ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).X i j ≫ (fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) j [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ (ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.Hom.f PInfty i) ≫ HomologicalComplex.d K[X] i j = (ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j]))) ≫ ιSummand s (IndexSet.id (op [j])) ≫ HomologicalComplex.Hom.f PInfty j [PROOFSTEP] rw [assoc, assoc, assoc, πSummand_comp_ιSummand_comp_PInfty_eq_PInfty, HomologicalComplex.Hom.comm] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C ⊢ (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) = ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p ≫ (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ (N₁.obj X).p [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ HomologicalComplex.Hom.f (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) n = HomologicalComplex.Hom.f (((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p ≫ (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ (N₁.obj X).p) n [PROOFSTEP] dsimp [GOAL] case h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = 𝟙 (N s n) ≫ (ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ HomologicalComplex.Hom.f PInfty n [PROOFSTEP] rw [id_comp, assoc, PInfty_f_idem] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ (fun n => πSummand s (IndexSet.id (op [n]))) i ≫ HomologicalComplex.d ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).X i j = HomologicalComplex.d (N₁.obj X).X i j ≫ (fun n => πSummand s (IndexSet.id (op [n]))) j [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ πSummand s (IndexSet.id (op [i])) ≫ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) = HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) [PROOFSTEP] slice_rhs 1 1 => rw [← id_comp (K[X].d i j)] [GOAL] case a C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j | HomologicalComplex.d K[X] i j case a C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j | πSummand s (IndexSet.id (op [j])) [PROOFSTEP] rw [← id_comp (K[X].d i j)] [GOAL] case a C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j | HomologicalComplex.d K[X] i j case a C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j | πSummand s (IndexSet.id (op [j])) [PROOFSTEP] rw [← id_comp (K[X].d i j)] [GOAL] case a C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j | HomologicalComplex.d K[X] i j case a C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j | πSummand s (IndexSet.id (op [j])) [PROOFSTEP] rw [← id_comp (K[X].d i j)] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ πSummand s (IndexSet.id (op [i])) ≫ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) = (𝟙 (HomologicalComplex.X K[X] i) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) [PROOFSTEP] erw [s.decomposition_id] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ πSummand s (IndexSet.id (op [i])) ≫ ιSummand s (IndexSet.id (op [i])) ≫ HomologicalComplex.d K[X] i j ≫ πSummand s (IndexSet.id (op [j])) = ((∑ A : IndexSet (op [i]), πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) [PROOFSTEP] rw [sum_comp, sum_comp, Finset.sum_eq_single (IndexSet.id (op [i])), assoc, assoc] [GOAL] case h₀ C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ ∀ (b : IndexSet (op [i])), b ∈ Finset.univ → b ≠ IndexSet.id (op [i]) → ((πSummand s b ≫ ιSummand s b) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) = 0 [PROOFSTEP] intro A _ hA [GOAL] case h₀ C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : IndexSet (op [i]) a✝ : A ∈ Finset.univ hA : A ≠ IndexSet.id (op [i]) ⊢ ((πSummand s A ≫ ιSummand s A) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) = 0 [PROOFSTEP] simp only [assoc, s.ιSummand_comp_d_comp_πSummand_eq_zero _ _ _ hA, comp_zero] [GOAL] case h₁ C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ ¬IndexSet.id (op [i]) ∈ Finset.univ → ((πSummand s (IndexSet.id (op [i])) ≫ ιSummand s (IndexSet.id (op [i]))) ≫ HomologicalComplex.d K[X] i j) ≫ πSummand s (IndexSet.id (op [j])) = 0 [PROOFSTEP] simp only [Finset.mem_univ, not_true, IsEmpty.forall_iff] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C ⊢ (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) = (N₁.obj X).p ≫ (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫ ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p [PROOFSTEP] ext n [GOAL] case h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ HomologicalComplex.Hom.f (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) n = HomologicalComplex.Hom.f ((N₁.obj X).p ≫ (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫ ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)).p) n [PROOFSTEP] dsimp [GOAL] case h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ πSummand s (IndexSet.id (op [n])) = HomologicalComplex.Hom.f PInfty n ≫ πSummand s (IndexSet.id (op [n])) ≫ 𝟙 (N s n) [PROOFSTEP] simp only [comp_id, PInfty_comp_πSummand_id] [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C ⊢ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) = 𝟙 ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s)) [PROOFSTEP] ext n [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ HomologicalComplex.Hom.f (Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n])))).f n = HomologicalComplex.Hom.f (𝟙 ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s))).f n [PROOFSTEP] simp only [assoc, PInfty_comp_πSummand_id, Karoubi.comp_f, HomologicalComplex.comp_f, ι_πSummand_eq_id] [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ 𝟙 (N s (SimplexCategory.len (IndexSet.id (op [n])).fst.unop)) = HomologicalComplex.Hom.f (𝟙 ((toKaroubi (ChainComplex C ℕ)).obj (nondegComplex s))).f n [PROOFSTEP] rfl [GOAL] C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C ⊢ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) = 𝟙 (N₁.obj X) [PROOFSTEP] ext n [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.336016, u_1} C inst✝¹ : HasFiniteCoproducts C X : SimplicialObject C s : Splitting X inst✝ : Preadditive C n : ℕ ⊢ HomologicalComplex.Hom.f (Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => πSummand s (IndexSet.id (op [n]))) ≫ Karoubi.Hom.mk (HomologicalComplex.Hom.mk fun n => ιSummand s (IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n)).f n = HomologicalComplex.Hom.f (𝟙 (N₁.obj X)).f n [PROOFSTEP] simp only [πSummand_comp_ιSummand_comp_PInfty_eq_PInfty, Karoubi.comp_f, HomologicalComplex.comp_f, N₁_obj_p, Karoubi.id_eq] [GOAL] C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ Hom.f Φ i ≫ HomologicalComplex.d ((fun S => Splitting.nondegComplex S.s) S₂) i j = HomologicalComplex.d ((fun S => Splitting.nondegComplex S.s) S₁) i j ≫ Hom.f Φ j [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ Hom.f Φ i ≫ Splitting.ιSummand S₂.s (Splitting.IndexSet.id (op [i])) ≫ HomologicalComplex.d K[S₂.X] i j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = (Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫ HomologicalComplex.d K[S₁.X] i j ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j]))) ≫ Hom.f Φ j [PROOFSTEP] erw [← ιSummand_naturality_symm_assoc Φ (Splitting.IndexSet.id (op [i])), ((alternatingFaceMapComplex C).map Φ.F).comm_assoc i j] [GOAL] C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫ HomologicalComplex.d ((alternatingFaceMapComplex C).obj S₁.X) i j ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = (Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫ HomologicalComplex.d K[S₁.X] i j ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j]))) ≫ Hom.f Φ j [PROOFSTEP] simp only [assoc] [GOAL] C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫ HomologicalComplex.d ((alternatingFaceMapComplex C).obj S₁.X) i j ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [i])) ≫ HomologicalComplex.d K[S₁.X] i j ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] congr 2 [GOAL] case e_a.e_a C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] apply S₁.s.hom_ext' [GOAL] case e_a.e_a.h C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ ∀ (A : Splitting.IndexSet (op [j])), Splitting.ιSummand S₁.s A ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] intro A [GOAL] case e_a.e_a.h C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) ⊢ Splitting.ιSummand S₁.s A ≫ HomologicalComplex.Hom.f ((alternatingFaceMapComplex C).map Φ.F) j ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] dsimp [alternatingFaceMapComplex] [GOAL] case e_a.e_a.h C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) ⊢ Splitting.ιSummand S₁.s A ≫ NatTrans.app Φ.F (op [j]) ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] erw [ιSummand_naturality_symm_assoc Φ A] [GOAL] case e_a.e_a.h C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) ⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫ Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] by_cases A.EqId [GOAL] case e_a.e_a.h C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) ⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫ Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] by_cases A.EqId [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) h : Splitting.IndexSet.EqId A ⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫ Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] dsimp at h [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) h : A = Splitting.IndexSet.id (op [j]) ⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫ Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] subst h [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ Hom.f Φ (SimplexCategory.len (Splitting.IndexSet.id (op [j])).fst.unop) ≫ Splitting.ιSummand S₂.s (Splitting.IndexSet.id (op [j])) ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] simp only [Splitting.ι_πSummand_eq_id, comp_id, Splitting.ι_πSummand_eq_id_assoc] [GOAL] case pos C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j ⊢ Hom.f Φ (SimplexCategory.len (Splitting.IndexSet.id (op [j])).fst.unop) = Hom.f Φ j [PROOFSTEP] rfl [GOAL] case neg C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) h : ¬Splitting.IndexSet.EqId A ⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫ Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] have h' : Splitting.IndexSet.id (op [j]) ≠ A := by rw [ne_comm] exact h [GOAL] C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) h : ¬Splitting.IndexSet.EqId A ⊢ Splitting.IndexSet.id (op [j]) ≠ A [PROOFSTEP] rw [ne_comm] [GOAL] C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) h : ¬Splitting.IndexSet.EqId A ⊢ A ≠ Splitting.IndexSet.id (op [j]) [PROOFSTEP] exact h [GOAL] case neg C : Type u_1 inst✝² : Category.{?u.406470, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C S₁ S₂ : Split C Φ : S₁ ⟶ S₂ i j : ℕ x✝ : ComplexShape.Rel (ComplexShape.down ℕ) i j A : Splitting.IndexSet (op [j]) h : ¬Splitting.IndexSet.EqId A h' : Splitting.IndexSet.id (op [j]) ≠ A ⊢ Hom.f Φ (SimplexCategory.len A.fst.unop) ≫ Splitting.ιSummand S₂.s A ≫ Splitting.πSummand S₂.s (Splitting.IndexSet.id (op [j])) = Splitting.ιSummand S₁.s A ≫ Splitting.πSummand S₁.s (Splitting.IndexSet.id (op [j])) ≫ Hom.f Φ j [PROOFSTEP] rw [S₁.s.ι_πSummand_eq_zero_assoc _ _ h', S₂.s.ι_πSummand_eq_zero _ _ h', zero_comp, comp_zero] [GOAL] C : Type u_1 inst✝² : Category.{?u.449707, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X✝ Y✝ : Split C Φ : X✝ ⟶ Y✝ ⊢ (nondegComplexFunctor ⋙ toKaroubi (ChainComplex C ℕ)).map Φ ≫ ((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) Y✝).hom = ((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) X✝).hom ≫ (forget C ⋙ N₁).map Φ [PROOFSTEP] ext n [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.449707, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X✝ Y✝ : Split C Φ : X✝ ⟶ Y✝ n : ℕ ⊢ HomologicalComplex.Hom.f ((nondegComplexFunctor ⋙ toKaroubi (ChainComplex C ℕ)).map Φ ≫ ((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) Y✝).hom).f n = HomologicalComplex.Hom.f (((fun S => Splitting.toKaroubiNondegComplexIsoN₁ S.s) X✝).hom ≫ (forget C ⋙ N₁).map Φ).f n [PROOFSTEP] dsimp [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.449707, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X✝ Y✝ : Split C Φ : X✝ ⟶ Y✝ n : ℕ ⊢ Hom.f Φ n ≫ Splitting.ιSummand Y✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = (Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app Φ.F (op [n]) [PROOFSTEP] simp only [Karoubi.comp_f, toKaroubi_map_f, HomologicalComplex.comp_f, nondegComplexFunctor_map_f, Splitting.toKaroubiNondegComplexIsoN₁_hom_f_f, N₁_map_f, AlternatingFaceMapComplex.map_f, assoc, PInfty_f_idem_assoc] [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.449707, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X✝ Y✝ : Split C Φ : X✝ ⟶ Y✝ n : ℕ ⊢ Hom.f Φ n ≫ Splitting.ιSummand Y✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n = Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app Φ.F (op [n]) [PROOFSTEP] erw [← Split.ιSummand_naturality_symm_assoc Φ (Splitting.IndexSet.id (op [n]))] [GOAL] case h.h C : Type u_1 inst✝² : Category.{?u.449707, u_1} C inst✝¹ : Preadditive C inst✝ : HasFiniteCoproducts C X✝ Y✝ : Split C Φ : X✝ ⟶ Y✝ n : ℕ ⊢ Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫ NatTrans.app Φ.F (op [n]) ≫ HomologicalComplex.Hom.f PInfty n = Splitting.ιSummand X✝.s (Splitting.IndexSet.id (op [n])) ≫ HomologicalComplex.Hom.f PInfty n ≫ NatTrans.app Φ.F (op [n]) [PROOFSTEP] rw [PInfty_f_naturality]
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.SplitSimplicialObject", "llama_tokens": 28454}
{"mathlib_filename": "Mathlib.Util.Time", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.WithWeakNamespace", "llama_tokens": 0}
[GOAL] ⊢ 1 = 1 [PROOFSTEP] sleep_heartbeats 1000 [GOAL] ⊢ 1 = 1 [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Util.SleepHeartbeats", "llama_tokens": 52}
{"mathlib_filename": "Mathlib.Util.IncludeStr", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.MemoFix", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.CompileInductive", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.Export", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.WhatsNew", "llama_tokens": 0}
{"mathlib_filename": "Mathlib.Util.Tactic", "llama_tokens": 0}
[GOAL] x : SimplexCategory i : Fin (len x + 1) ⊢ Monotone fun x => i [PROOFSTEP] tauto [GOAL] f : [0] ⟶ [0] ⊢ f = 𝟙 [0] [PROOFSTEP] ext : 3 [GOAL] case a.h.h f : [0] ⟶ [0] x✝ : Fin (len [0] + 1) ⊢ ↑(Hom.toOrderHom f) x✝ = ↑(Hom.toOrderHom (𝟙 [0])) x✝ [PROOFSTEP] apply @Subsingleton.elim (Fin 1) [GOAL] n : ℕ i j : Fin (n + 2) H : i ≤ j ⊢ δ i ≫ δ (Fin.succ j) = δ j ≫ δ (Fin.castSucc i) [PROOFSTEP] ext k [GOAL] case a.h.h.h n : ℕ i j : Fin (n + 2) H : i ≤ j k : Fin (len [n] + 1) ⊢ ↑(↑(Hom.toOrderHom (δ i ≫ δ (Fin.succ j))) k) = ↑(↑(Hom.toOrderHom (δ j ≫ δ (Fin.castSucc i))) k) [PROOFSTEP] dsimp [δ, Fin.succAbove] [GOAL] case a.h.h.h n : ℕ i j : Fin (n + 2) H : i ≤ j k : Fin (len [n] + 1) ⊢ ↑(if ↑(if ↑k < ↑i then Fin.castSucc k else Fin.succ k) < ↑(Fin.succ j) then Fin.castSucc (if ↑k < ↑i then Fin.castSucc k else Fin.succ k) else Fin.succ (if ↑k < ↑i then Fin.castSucc k else Fin.succ k)) = ↑(if ↑(if ↑k < ↑j then Fin.castSucc k else Fin.succ k) < ↑i then Fin.castSucc (if ↑k < ↑j then Fin.castSucc k else Fin.succ k) else Fin.succ (if ↑k < ↑j then Fin.castSucc k else Fin.succ k)) [PROOFSTEP] rcases i with ⟨i, _⟩ [GOAL] case a.h.h.h.mk n : ℕ j : Fin (n + 2) k : Fin (len [n] + 1) i : ℕ isLt✝ : i < n + 2 H : { val := i, isLt := isLt✝ } ≤ j ⊢ ↑(if ↑(if ↑k < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k) < ↑(Fin.succ j) then Fin.castSucc (if ↑k < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k) else Fin.succ (if ↑k < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k)) = ↑(if ↑(if ↑k < ↑j then Fin.castSucc k else Fin.succ k) < ↑{ val := i, isLt := isLt✝ } then Fin.castSucc (if ↑k < ↑j then Fin.castSucc k else Fin.succ k) else Fin.succ (if ↑k < ↑j then Fin.castSucc k else Fin.succ k)) [PROOFSTEP] rcases j with ⟨j, _⟩ [GOAL] case a.h.h.h.mk.mk n : ℕ k : Fin (len [n] + 1) i : ℕ isLt✝¹ : i < n + 2 j : ℕ isLt✝ : j < n + 2 H : { val := i, isLt := isLt✝¹ } ≤ { val := j, isLt := isLt✝ } ⊢ ↑(if ↑(if ↑k < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc k else Fin.succ k) < ↑(Fin.succ { val := j, isLt := isLt✝ }) then Fin.castSucc (if ↑k < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc k else Fin.succ k) else Fin.succ (if ↑k < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc k else Fin.succ k)) = ↑(if ↑(if ↑k < ↑{ val := j, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k) < ↑{ val := i, isLt := isLt✝¹ } then Fin.castSucc (if ↑k < ↑{ val := j, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k) else Fin.succ (if ↑k < ↑{ val := j, isLt := isLt✝ } then Fin.castSucc k else Fin.succ k)) [PROOFSTEP] rcases k with ⟨k, _⟩ [GOAL] case a.h.h.h.mk.mk.mk n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 ⊢ ↑(if ↑(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } then Fin.castSucc { val := k, isLt := isLt✝ } else Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) then Fin.castSucc (if ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } then Fin.castSucc { val := k, isLt := isLt✝ } else Fin.succ { val := k, isLt := isLt✝ }) else Fin.succ (if ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } then Fin.castSucc { val := k, isLt := isLt✝ } else Fin.succ { val := k, isLt := isLt✝ })) = ↑(if ↑(if ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } then Fin.castSucc { val := k, isLt := isLt✝ } else Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } then Fin.castSucc (if ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } then Fin.castSucc { val := k, isLt := isLt✝ } else Fin.succ { val := k, isLt := isLt✝ }) else Fin.succ (if ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } then Fin.castSucc { val := k, isLt := isLt✝ } else Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] split_ifs [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < i h✝² : k < j + 1 h✝¹ : k < j H : i ≤ j h✝ : i ≤ k ⊢ False [PROOFSTEP] linarith [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < i h✝² : k < j + 1 h✝¹ : k + 1 < i H : i ≤ j h✝ : j ≤ k ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < i h✝² : k < j + 1 H : i ≤ j h✝¹ : j ≤ k h✝ : i ≤ k + 1 ⊢ k = k + 1 + 1 [PROOFSTEP] linarith [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < i h✝² : k < j h✝¹ : k < i H : i ≤ j h✝ : j + 1 ≤ k ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < i H : i ≤ j h✝² : j + 1 ≤ k h✝¹ : j ≤ k h✝ : i ≤ k + 1 ⊢ False [PROOFSTEP] linarith [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < j h✝² : k < i H : i ≤ j h✝¹ : i ≤ k h✝ : k < j ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 H : i ≤ j h✝³ : i ≤ k h✝² : k < j h✝¹ : j ≤ k h✝ : i ≤ k + 1 ⊢ False [PROOFSTEP] linarith [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < j h✝² : k < i H : i ≤ j h✝¹ : i ≤ k h✝ : j ≤ k ⊢ k + 1 + 1 = k [PROOFSTEP] linarith [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.castSucc { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.castSucc { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k < j H : i ≤ j h✝² : i ≤ k h✝¹ : j ≤ k h✝ : i ≤ k ⊢ False [PROOFSTEP] linarith [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.castSucc (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 k : ℕ isLt✝ : k < len [n] + 1 h✝³ : k + 1 < i H : i ≤ j h✝² : i ≤ k h✝¹ h✝ : j ≤ k ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ isLt✝² : i < n + 2 j : ℕ isLt✝¹ : j < n + 2 H : { val := i, isLt := isLt✝² } ≤ { val := j, isLt := isLt✝¹ } k : ℕ isLt✝ : k < len [n] + 1 h✝³ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := i, isLt := isLt✝² } h✝² : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑(Fin.succ { val := j, isLt := isLt✝¹ }) h✝¹ : ¬↑{ val := k, isLt := isLt✝ } < ↑{ val := j, isLt := isLt✝¹ } h✝ : ¬↑(Fin.succ { val := k, isLt := isLt✝ }) < ↑{ val := i, isLt := isLt✝² } ⊢ ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) = ↑(Fin.succ (Fin.succ { val := k, isLt := isLt✝ })) [PROOFSTEP] simp at * [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j hj : j = 0 ⊢ False [PROOFSTEP] simp [hj, Fin.not_lt_zero] at H [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ δ i ≫ δ j = δ (Fin.pred j (_ : j = 0 → False)) ≫ δ (Fin.castSucc i) [PROOFSTEP] rw [← δ_comp_δ] [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ δ i ≫ δ j = δ i ≫ δ (Fin.succ (Fin.pred j (_ : j = 0 → False))) [PROOFSTEP] rw [Fin.succ_pred] [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ i ≤ Fin.pred j (_ : j = 0 → False) [PROOFSTEP] simpa only [Fin.le_iff_val_le_val, ← Nat.lt_succ_iff, Nat.succ_eq_add_one, ← Fin.val_succ, j.succ_pred, Fin.lt_iff_val_lt_val] using H [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ δ (Fin.castLT i (_ : ↑i < n + 2)) ≫ δ (Fin.succ j) = δ j ≫ δ i [PROOFSTEP] rw [δ_comp_δ] [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ δ j ≫ δ (Fin.castSucc (Fin.castLT i (_ : ↑i < n + 2))) = δ j ≫ δ i [PROOFSTEP] rfl [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ Fin.castLT i (_ : ↑i < n + 2) ≤ j [PROOFSTEP] exact H [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : j = Fin.castSucc i ⊢ δ i ≫ δ j = δ i ≫ δ (Fin.succ i) [PROOFSTEP] subst H [GOAL] n : ℕ i : Fin (n + 2) ⊢ δ i ≫ δ (Fin.castSucc i) = δ i ≫ δ (Fin.succ i) [PROOFSTEP] rw [δ_comp_δ_self] [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : i ≤ Fin.castSucc j ⊢ δ (Fin.castSucc i) ≫ σ (Fin.succ j) = σ j ≫ δ i [PROOFSTEP] rcases i with ⟨i, hi⟩ [GOAL] case mk n : ℕ j : Fin (n + 1) i : ℕ hi : i < n + 2 H : { val := i, isLt := hi } ≤ Fin.castSucc j ⊢ δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ j) = σ j ≫ δ { val := i, isLt := hi } [PROOFSTEP] rcases j with ⟨j, hj⟩ [GOAL] case mk.mk n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : { val := i, isLt := hi } ≤ Fin.castSucc { val := j, isLt := hj } ⊢ δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ { val := j, isLt := hj }) = σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi } [PROOFSTEP] ext ⟨k, hk⟩ [GOAL] case mk.mk.a.h.h.mk.h n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : { val := i, isLt := hi } ≤ Fin.castSucc { val := j, isLt := hj } k : ℕ hk : k < len [n + 1] + 1 ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ { val := j, isLt := hj }))) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] simp at H hk [GOAL] case mk.mk.a.h.h.mk.h n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ (Fin.succ { val := j, isLt := hj }))) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] dsimp [σ, δ, Fin.predAbove, Fin.succAbove] [GOAL] case mk.mk.a.h.h.mk.h n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j ⊢ ↑(if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) } then Fin.pred (if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) (_ : (if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) ≠ 0) else Fin.castLT (if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) (_ : ↑(if k < i then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) < n + 1 + 1)) = ↑(if ↑(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }) < i then Fin.castSucc (if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }) else Fin.succ (if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) })) [PROOFSTEP] simp [Fin.lt_iff_val_lt_val, Fin.ite_val, Fin.dite_val] [GOAL] case mk.mk.a.h.h.mk.h n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j ⊢ (if j + 1 < if k < i then k else k + 1 then (if k < i then k else k + 1) - 1 else if k < i then k else k + 1) = if (if j < k then k - 1 else k) < i then if j < k then k - 1 else k else (if j < k then k - 1 else k) + 1 [PROOFSTEP] split_ifs [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k - 1 = k - 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : j + 1 < k h✝ : ¬j < k ⊢ k - 1 = k case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : ¬j + 1 < k h✝ : ¬j < k ⊢ k = k case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : j + 1 < k + 1 h✝ : ¬j < k ⊢ k + 1 - 1 = k + 1 case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 = k - 1 + 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : ¬j + 1 < k + 1 h✝ : ¬j < k ⊢ k + 1 = k + 1 [PROOFSTEP] all_goals try simp <;> linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k - 1 = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k - 1 = k - 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : j + 1 < k h✝ : ¬j < k ⊢ k - 1 = k [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : j + 1 < k h✝ : ¬j < k ⊢ k - 1 = k [PROOFSTEP] simp [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : ¬j + 1 < k h✝ : ¬j < k ⊢ k = k [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : ¬j + 1 < k h✝ : ¬j < k ⊢ k = k [PROOFSTEP] simp [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 [PROOFSTEP] simp [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : j + 1 < k + 1 h✝ : ¬j < k ⊢ k + 1 - 1 = k + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : j + 1 < k + 1 h✝ : ¬j < k ⊢ k + 1 - 1 = k + 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : j + 1 < k + 1 h✝ : ¬j < k ⊢ False [PROOFSTEP] linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : ¬j + 1 < k + 1 h✝ : ¬j < k ⊢ k + 1 = k + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : ¬k < i h✝¹ : ¬j + 1 < k + 1 h✝ : ¬j < k ⊢ k + 1 = k + 1 [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : j + 1 < k h✝ : ¬j < k ⊢ k - 1 = k case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] all_goals cases k <;> simp at * <;> linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝² : k < i h✝¹ : j + 1 < k h✝ : ¬j < k ⊢ k - 1 = k [PROOFSTEP] cases k [GOAL] case neg.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 h✝² : Nat.zero < i h✝¹ : j + 1 < Nat.zero h✝ : ¬j < Nat.zero ⊢ Nat.zero - 1 = Nat.zero [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝² : Nat.succ n✝ < i h✝¹ : j + 1 < Nat.succ n✝ h✝ : ¬j < Nat.succ n✝ ⊢ Nat.succ n✝ - 1 = Nat.succ n✝ [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝² : Nat.succ n✝ < i h✝¹ : j + 1 < Nat.succ n✝ h✝ : Nat.succ n✝ ≤ j ⊢ n✝ = Nat.succ n✝ [PROOFSTEP] linarith [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 [PROOFSTEP] cases k [GOAL] case pos.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 h✝³ : Nat.zero < i h✝² : ¬j + 1 < Nat.zero h✝¹ : j < Nat.zero h✝ : Nat.zero - 1 < i ⊢ Nat.zero = Nat.zero - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : Nat.succ n✝ < i h✝² : ¬j + 1 < Nat.succ n✝ h✝¹ : j < Nat.succ n✝ h✝ : Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ = Nat.succ n✝ - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : Nat.succ n✝ < i h✝² : j < Nat.succ n✝ h✝¹ : Nat.succ n✝ ≤ j + 1 h✝ : n✝ < i ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : k < i h✝² : ¬j + 1 < k h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 [PROOFSTEP] cases k [GOAL] case neg.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 h✝³ : Nat.zero < i h✝² : ¬j + 1 < Nat.zero h✝¹ : j < Nat.zero h✝ : ¬Nat.zero - 1 < i ⊢ Nat.zero = Nat.zero - 1 + 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : Nat.succ n✝ < i h✝² : ¬j + 1 < Nat.succ n✝ h✝¹ : j < Nat.succ n✝ h✝ : ¬Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ = Nat.succ n✝ - 1 + 1 [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 [PROOFSTEP] cases k [GOAL] case pos.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 h✝³ : ¬Nat.zero < i h✝² : j + 1 < Nat.zero + 1 h✝¹ : j < Nat.zero h✝ : Nat.zero - 1 < i ⊢ Nat.zero + 1 - 1 = Nat.zero - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : ¬Nat.succ n✝ < i h✝² : j + 1 < Nat.succ n✝ + 1 h✝¹ : j < Nat.succ n✝ h✝ : Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : j < Nat.succ n✝ h✝² : i ≤ Nat.succ n✝ h✝¹ : j < n✝ + 1 h✝ : n✝ < i ⊢ False [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : j + 1 < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 [PROOFSTEP] cases k [GOAL] case neg.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 h✝³ : ¬Nat.zero < i h✝² : j + 1 < Nat.zero + 1 h✝¹ : j < Nat.zero h✝ : ¬Nat.zero - 1 < i ⊢ Nat.zero + 1 - 1 = Nat.zero - 1 + 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : ¬Nat.succ n✝ < i h✝² : j + 1 < Nat.succ n✝ + 1 h✝¹ : j < Nat.succ n✝ h✝ : ¬Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1 + 1 [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 k : ℕ hk : k < n + 1 + 1 H : i ≤ j h✝³ : ¬k < i h✝² : ¬j + 1 < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] cases k [GOAL] case pos.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 h✝³ : ¬Nat.zero < i h✝² : ¬j + 1 < Nat.zero + 1 h✝¹ : j < Nat.zero h✝ : Nat.zero - 1 < i ⊢ Nat.zero + 1 = Nat.zero - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : ¬Nat.succ n✝ < i h✝² : ¬j + 1 < Nat.succ n✝ + 1 h✝¹ : j < Nat.succ n✝ h✝ : Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ + 1 = Nat.succ n✝ - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : j < Nat.succ n✝ h✝² : i ≤ Nat.succ n✝ h✝¹ : n✝ + 1 ≤ j h✝ : n✝ < i ⊢ Nat.succ n✝ + 1 = n✝ [PROOFSTEP] linarith [GOAL] n : ℕ i : Fin (n + 1) ⊢ δ (Fin.castSucc i) ≫ σ i = 𝟙 [n] [PROOFSTEP] rcases i with ⟨i, hi⟩ [GOAL] case mk n i : ℕ hi : i < n + 1 ⊢ δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := i, isLt := hi } = 𝟙 [n] [PROOFSTEP] ext ⟨j, hj⟩ [GOAL] case mk.a.h.h.mk.h n i : ℕ hi : i < n + 1 j : ℕ hj : j < len [n] + 1 ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := i, isLt := hi })) { val := j, isLt := hj }) = ↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := hj }) [PROOFSTEP] simp at hj [GOAL] case mk.a.h.h.mk.h n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := i, isLt := hi })) { val := j, isLt := hj }) = ↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := hj }) [PROOFSTEP] dsimp [σ, δ, Fin.predAbove, Fin.succAbove] [GOAL] case mk.a.h.h.mk.h n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 ⊢ ↑(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then Fin.pred (if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) (_ : (if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠ 0) else Fin.castLT (if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) (_ : ↑(if j < i then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) < n + 1)) = j [PROOFSTEP] simp [Fin.lt_iff_val_lt_val, Fin.ite_val, Fin.dite_val] [GOAL] case mk.a.h.h.mk.h n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 ⊢ (if i < if j < i then j else j + 1 then (if j < i then j else j + 1) - 1 else if j < i then j else j + 1) = j [PROOFSTEP] split_ifs [GOAL] case pos n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : j < i h✝ : i < j ⊢ j - 1 = j case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : j < i h✝ : ¬i < j ⊢ j = j case pos n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : i < j + 1 ⊢ j + 1 - 1 = j case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : ¬i < j + 1 ⊢ j + 1 = j [PROOFSTEP] any_goals simp [GOAL] case pos n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : j < i h✝ : i < j ⊢ j - 1 = j [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : j < i h✝ : ¬i < j ⊢ j = j [PROOFSTEP] simp [GOAL] case pos n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : i < j + 1 ⊢ j + 1 - 1 = j [PROOFSTEP] simp [GOAL] case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : ¬i < j + 1 ⊢ j + 1 = j [PROOFSTEP] simp [GOAL] case pos n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : j < i h✝ : i < j ⊢ j - 1 = j case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : ¬i < j + 1 ⊢ False [PROOFSTEP] all_goals linarith [GOAL] case pos n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : j < i h✝ : i < j ⊢ j - 1 = j [PROOFSTEP] linarith [GOAL] case neg n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 h✝¹ : ¬j < i h✝ : ¬i < j + 1 ⊢ False [PROOFSTEP] linarith [GOAL] n : ℕ j : Fin (n + 2) i : Fin (n + 1) H : j = Fin.castSucc i ⊢ δ j ≫ σ i = 𝟙 [n] [PROOFSTEP] subst H [GOAL] n : ℕ i : Fin (n + 1) ⊢ δ (Fin.castSucc i) ≫ σ i = 𝟙 [n] [PROOFSTEP] rw [δ_comp_σ_self] [GOAL] n : ℕ i : Fin (n + 1) ⊢ δ (Fin.succ i) ≫ σ i = 𝟙 [n] [PROOFSTEP] ext j [GOAL] case a.h.h.h n : ℕ i : Fin (n + 1) j : Fin (len [n] + 1) ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ i) ≫ σ i)) j) = ↑(↑(Hom.toOrderHom (𝟙 [n])) j) [PROOFSTEP] rcases i with ⟨i, _⟩ [GOAL] case a.h.h.h.mk n : ℕ j : Fin (len [n] + 1) i : ℕ isLt✝ : i < n + 1 ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝ }) ≫ σ { val := i, isLt := isLt✝ })) j) = ↑(↑(Hom.toOrderHom (𝟙 [n])) j) [PROOFSTEP] rcases j with ⟨j, _⟩ [GOAL] case a.h.h.h.mk.mk n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := isLt✝¹ }) ≫ σ { val := i, isLt := isLt✝¹ })) { val := j, isLt := isLt✝ }) = ↑(↑(Hom.toOrderHom (𝟙 [n])) { val := j, isLt := isLt✝ }) [PROOFSTEP] dsimp [δ, σ, Fin.succAbove, Fin.predAbove] [GOAL] case a.h.h.h.mk.mk n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 ⊢ ↑(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } then Fin.pred (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) (_ : (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) ≠ 0) else Fin.castLT (if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) (_ : ↑(if j < i + 1 then { val := j, isLt := (_ : j < Nat.succ (n + 1)) } else { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) }) < n + 1)) = j [PROOFSTEP] split_ifs [GOAL] case pos n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : j < i + 1 h✝ : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j, isLt := (_ : j < Nat.succ (n + 1)) } ⊢ ↑(Fin.pred { val := j, isLt := (_ : j < Nat.succ (n + 1)) } (_ : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } ≠ 0)) = j [PROOFSTEP] simp [GOAL] case neg n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : j < i + 1 h✝ : ¬{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j, isLt := (_ : j < Nat.succ (n + 1)) } ⊢ ↑(Fin.castLT { val := j, isLt := (_ : j < Nat.succ (n + 1)) } (_ : ↑{ val := j, isLt := (_ : j < Nat.succ (n + 1)) } < n + 1)) = j [PROOFSTEP] simp [GOAL] case pos n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : ¬j < i + 1 h✝ : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } ⊢ ↑(Fin.pred { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } (_ : { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } ≠ 0)) = j [PROOFSTEP] simp [GOAL] case neg n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : ¬j < i + 1 h✝ : ¬{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } ⊢ ↑(Fin.castLT { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } (_ : ↑{ val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } < n + 1)) = j [PROOFSTEP] simp [GOAL] case pos n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : j < i + 1 h✝ : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j, isLt := (_ : j < Nat.succ (n + 1)) } ⊢ j - 1 = j [PROOFSTEP] simp at * [GOAL] case neg n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : ¬j < i + 1 h✝ : ¬{ val := i, isLt := (_ : i < Nat.succ (n + 1)) } < { val := j + 1, isLt := (_ : Nat.succ j < Nat.succ (n + 1)) } ⊢ False [PROOFSTEP] simp at * [GOAL] case pos n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : j < i + 1 h✝ : i < j ⊢ j - 1 = j [PROOFSTEP] linarith [GOAL] case neg n i : ℕ isLt✝¹ : i < n + 1 j : ℕ isLt✝ : j < len [n] + 1 h✝¹ : i + 1 ≤ j h✝ : j + 1 ≤ i ⊢ False [PROOFSTEP] linarith [GOAL] n : ℕ j : Fin (n + 2) i : Fin (n + 1) H : j = Fin.succ i ⊢ δ j ≫ σ i = 𝟙 [n] [PROOFSTEP] subst H [GOAL] n : ℕ i : Fin (n + 1) ⊢ δ (Fin.succ i) ≫ σ i = 𝟙 [n] [PROOFSTEP] rw [δ_comp_σ_succ] [GOAL] n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : Fin.castSucc j < i ⊢ δ (Fin.succ i) ≫ σ (Fin.castSucc j) = σ j ≫ δ i [PROOFSTEP] ext ⟨k, hk⟩ [GOAL] case a.h.h.mk.h n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : Fin.castSucc j < i k : ℕ hk : k < len [n + 1] + 1 ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ i) ≫ σ (Fin.castSucc j))) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ j ≫ δ i)) { val := k, isLt := hk }) [PROOFSTEP] rcases i with ⟨i, hi⟩ [GOAL] case a.h.h.mk.h.mk n : ℕ j : Fin (n + 1) k : ℕ hk : k < len [n + 1] + 1 i : ℕ hi : i < n + 2 H : Fin.castSucc j < { val := i, isLt := hi } ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := hi }) ≫ σ (Fin.castSucc j))) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ j ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] rcases j with ⟨j, hj⟩ [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < len [n + 1] + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : Fin.castSucc { val := j, isLt := hj } < { val := i, isLt := hi } ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := hi }) ≫ σ (Fin.castSucc { val := j, isLt := hj }))) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] simp at H hk [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i ⊢ ↑(↑(Hom.toOrderHom (δ (Fin.succ { val := i, isLt := hi }) ≫ σ (Fin.castSucc { val := j, isLt := hj }))) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ { val := j, isLt := hj } ≫ δ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] dsimp [δ, σ, Fin.predAbove, Fin.succAbove] [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i ⊢ ↑(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1 + 1)) } < if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) } then Fin.pred (if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) (_ : (if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) ≠ 0) else Fin.castLT (if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) (_ : ↑(if k < i + 1 then { val := k, isLt := (_ : k < Nat.succ (n + 1 + 1)) } else { val := k + 1, isLt := (_ : Nat.succ k < Nat.succ (n + 1 + 1)) }) < n + 1 + 1)) = ↑(if ↑(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }) < i then Fin.castSucc (if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) }) else Fin.succ (if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1) })) [PROOFSTEP] simp [Fin.lt_iff_val_lt_val, Fin.ite_val, Fin.dite_val] [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i ⊢ (if j < if k < i + 1 then k else k + 1 then (if k < i + 1 then k else k + 1) - 1 else if k < i + 1 then k else k + 1) = if (if j < k then k - 1 else k) < i then if j < k then k - 1 else k else (if j < k then k - 1 else k) + 1 [PROOFSTEP] split_ifs [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k - 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k = k case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k = k + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k + 1 - 1 = k case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k + 1 - 1 = k + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 = k - 1 + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k + 1 = k case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k + 1 = k + 1 [PROOFSTEP] all_goals try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k - 1 = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k - 1 = k - 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ False [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k = k [PROOFSTEP] try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k = k [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k = k + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k = k + 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ False [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 [PROOFSTEP] simp [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k = k - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 + 1 [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k + 1 - 1 = k [PROOFSTEP] try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k + 1 - 1 = k [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k + 1 - 1 = k + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k + 1 - 1 = k + 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ False [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 = k - 1 + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 = k - 1 + 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k = k - 1 [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k + 1 = k [PROOFSTEP] try simp <;> linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ k + 1 = k [PROOFSTEP] simp [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : k < i ⊢ False [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k + 1 = k + 1 [PROOFSTEP] try simp <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : ¬j < k h✝ : ¬k < i ⊢ k + 1 = k + 1 [PROOFSTEP] simp [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] all_goals cases k <;> simp at * <;> linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝² : k < i + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k - 1 = k - 1 + 1 [PROOFSTEP] cases k [GOAL] case neg.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i hk : Nat.zero < n + 1 + 1 h✝² : Nat.zero < i + 1 h✝¹ : j < Nat.zero h✝ : ¬Nat.zero - 1 < i ⊢ Nat.zero - 1 = Nat.zero - 1 + 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝² : Nat.succ n✝ < i + 1 h✝¹ : j < Nat.succ n✝ h✝ : ¬Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ - 1 = Nat.succ n✝ - 1 + 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝² : Nat.succ n✝ < i + 1 h✝¹ : j < Nat.succ n✝ h✝ : i ≤ n✝ ⊢ False [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 - 1 = k - 1 [PROOFSTEP] cases k [GOAL] case pos.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i hk : Nat.zero < n + 1 + 1 h✝³ : ¬Nat.zero < i + 1 h✝² : j < Nat.zero + 1 h✝¹ : j < Nat.zero h✝ : Nat.zero - 1 < i ⊢ Nat.zero + 1 - 1 = Nat.zero - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : ¬Nat.succ n✝ < i + 1 h✝² : j < Nat.succ n✝ + 1 h✝¹ : j < Nat.succ n✝ h✝ : Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : j < Nat.succ n✝ + 1 h✝² : j < Nat.succ n✝ h✝¹ : i + 1 ≤ Nat.succ n✝ h✝ : n✝ < i ⊢ False [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : j < k + 1 h✝¹ : j < k h✝ : ¬k - 1 < i ⊢ k + 1 - 1 = k - 1 + 1 [PROOFSTEP] cases k [GOAL] case neg.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i hk : Nat.zero < n + 1 + 1 h✝³ : ¬Nat.zero < i + 1 h✝² : j < Nat.zero + 1 h✝¹ : j < Nat.zero h✝ : ¬Nat.zero - 1 < i ⊢ Nat.zero + 1 - 1 = Nat.zero - 1 + 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : ¬Nat.succ n✝ < i + 1 h✝² : j < Nat.succ n✝ + 1 h✝¹ : j < Nat.succ n✝ h✝ : ¬Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ + 1 - 1 = Nat.succ n✝ - 1 + 1 [PROOFSTEP] simp at * [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i h✝³ : ¬k < i + 1 h✝² : ¬j < k + 1 h✝¹ : j < k h✝ : k - 1 < i ⊢ k + 1 = k - 1 [PROOFSTEP] cases k [GOAL] case pos.zero n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i hk : Nat.zero < n + 1 + 1 h✝³ : ¬Nat.zero < i + 1 h✝² : ¬j < Nat.zero + 1 h✝¹ : j < Nat.zero h✝ : Nat.zero - 1 < i ⊢ Nat.zero + 1 = Nat.zero - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : ¬Nat.succ n✝ < i + 1 h✝² : ¬j < Nat.succ n✝ + 1 h✝¹ : j < Nat.succ n✝ h✝ : Nat.succ n✝ - 1 < i ⊢ Nat.succ n✝ + 1 = Nat.succ n✝ - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 2 j : ℕ hj : j < n + 1 H : j < i n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 h✝³ : j < Nat.succ n✝ h✝² : i + 1 ≤ Nat.succ n✝ h✝¹ : Nat.succ n✝ + 1 ≤ j h✝ : n✝ < i ⊢ Nat.succ n✝ + 1 = n✝ [PROOFSTEP] linarith [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i hi : i = 0 ⊢ False [PROOFSTEP] simp only [Fin.not_lt_zero, hi] at H [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ δ i ≫ σ j = σ (Fin.castLT j (_ : ↑j < n + 1)) ≫ δ (Fin.pred i (_ : i = 0 → False)) [PROOFSTEP] rw [← δ_comp_σ_of_gt] [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ δ i ≫ σ j = δ (Fin.succ (Fin.pred i (_ : i = 0 → False))) ≫ σ (Fin.castSucc (Fin.castLT j (_ : ↑j < n + 1))) [PROOFSTEP] simp [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ Fin.castSucc (Fin.castLT j (_ : ↑j < n + 1)) < Fin.pred i (_ : i = 0 → False) [PROOFSTEP] rw [Fin.castSucc_castLT, ← Fin.succ_lt_succ_iff, Fin.succ_pred] [GOAL] n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ Fin.succ j < i [PROOFSTEP] exact H [GOAL] n : ℕ i j : Fin (n + 1) H : i ≤ j ⊢ σ (Fin.castSucc i) ≫ σ j = σ (Fin.succ j) ≫ σ i [PROOFSTEP] ext ⟨k, hk⟩ [GOAL] case a.h.h.mk.h n : ℕ i j : Fin (n + 1) H : i ≤ j k : ℕ hk : k < len [n + 1 + 1] + 1 ⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc i) ≫ σ j)) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ (Fin.succ j) ≫ σ i)) { val := k, isLt := hk }) [PROOFSTEP] rcases i with ⟨i, hi⟩ [GOAL] case a.h.h.mk.h.mk n : ℕ j : Fin (n + 1) k : ℕ hk : k < len [n + 1 + 1] + 1 i : ℕ hi : i < n + 1 H : { val := i, isLt := hi } ≤ j ⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc { val := i, isLt := hi }) ≫ σ j)) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ (Fin.succ j) ≫ σ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] rcases j with ⟨j, hj⟩ [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < len [n + 1 + 1] + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : { val := i, isLt := hi } ≤ { val := j, isLt := hj } ⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := j, isLt := hj })) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ (Fin.succ { val := j, isLt := hj }) ≫ σ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] simp at H hk [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j ⊢ ↑(↑(Hom.toOrderHom (σ (Fin.castSucc { val := i, isLt := hi }) ≫ σ { val := j, isLt := hj })) { val := k, isLt := hk }) = ↑(↑(Hom.toOrderHom (σ (Fin.succ { val := j, isLt := hj }) ≫ σ { val := i, isLt := hi })) { val := k, isLt := hk }) [PROOFSTEP] dsimp [σ, Fin.predAbove] [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j ⊢ ↑(if h : { val := j, isLt := (_ : j < Nat.succ (n + 1)) } < if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) } then Fin.pred (if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) (_ : (if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) ≠ 0) else Fin.castLT (if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) (_ : ↑(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) < n + 1)) = ↑(if h : { val := i, isLt := (_ : i < Nat.succ (n + 1)) } < if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) } then Fin.pred (if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) (_ : (if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) ≠ 0) else Fin.castLT (if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) (_ : ↑(if h : { val := j + 1, isLt := (_ : j + 1 < Nat.succ (n + 1 + 1)) } < { val := k, isLt := hk } then Fin.pred { val := k, isLt := hk } (_ : { val := k, isLt := hk } ≠ 0) else { val := k, isLt := (_ : ↑{ val := k, isLt := hk } < n + 1 + 1) }) < n + 1)) [PROOFSTEP] simp [Fin.lt_iff_val_lt_val, Fin.ite_val] [GOAL] case a.h.h.mk.h.mk.mk n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j ⊢ (if j < if i < k then k - 1 else k then (if i < k then k - 1 else k) - 1 else if i < k then k - 1 else k) = if i < if j + 1 < k then k - 1 else k then (if j + 1 < k then k - 1 else k) - 1 else if j + 1 < k then k - 1 else k [PROOFSTEP] split_ifs [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 - 1 = k - 1 - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : j < k - 1 h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 - 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 - 1 = k - 1 case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : ¬j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 = k - 1 case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : j < k h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : j < k h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : ¬i < k h✝¹ : j < k h✝ : ¬j + 1 < k ⊢ k - 1 = k case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : ¬j < k h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k = k - 1 - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : ¬j < k h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k = k - 1 case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : ¬i < k h✝¹ : ¬j < k h✝ : ¬j + 1 < k ⊢ k = k [PROOFSTEP] all_goals try linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 - 1 = k - 1 - 1 [PROOFSTEP] try linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 - 1 = k - 1 - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : j < k - 1 h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 - 1 = k - 1 [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : j < k - 1 h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 - 1 = k - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 - 1 = k - 1 [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 - 1 = k - 1 [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 [PROOFSTEP] try linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 = k - 1 [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 = k - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : ¬j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 = k - 1 [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : ¬j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 = k - 1 [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : j < k h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 [PROOFSTEP] try linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : j < k h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : j < k h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 = k - 1 [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : j < k h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k - 1 = k - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : ¬i < k h✝¹ : j < k h✝ : ¬j + 1 < k ⊢ k - 1 = k [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : ¬i < k h✝¹ : j < k h✝ : ¬j + 1 < k ⊢ k - 1 = k [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : ¬j < k h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k = k - 1 - 1 [PROOFSTEP] try linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : ¬j < k h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k = k - 1 - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : ¬j < k h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k = k - 1 [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : ¬i < k h✝² : ¬j < k h✝¹ : j + 1 < k h✝ : ¬i < k - 1 ⊢ k = k - 1 [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : ¬i < k h✝¹ : ¬j < k h✝ : ¬j + 1 < k ⊢ k = k [PROOFSTEP] try linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : ¬i < k h✝¹ : ¬j < k h✝ : ¬j + 1 < k ⊢ k = k [PROOFSTEP] linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 - 1 = k - 1 case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 [PROOFSTEP] all_goals cases k <;> simp at *; linarith [GOAL] case neg n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝² : i < k h✝¹ : j < k - 1 h✝ : ¬j + 1 < k ⊢ k - 1 - 1 = k - 1 [PROOFSTEP] cases k [GOAL] case neg.zero n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 + 1 h✝² : i < Nat.zero h✝¹ : j < Nat.zero - 1 h✝ : ¬j + 1 < Nat.zero ⊢ Nat.zero - 1 - 1 = Nat.zero - 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 + 1 h✝² : i < Nat.succ n✝ h✝¹ : j < Nat.succ n✝ - 1 h✝ : ¬j + 1 < Nat.succ n✝ ⊢ Nat.succ n✝ - 1 - 1 = Nat.succ n✝ - 1 [PROOFSTEP] simp at * [GOAL] case neg.succ n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 + 1 h✝² : i < Nat.succ n✝ h✝¹ : j < n✝ h✝ : Nat.succ n✝ ≤ j + 1 ⊢ n✝ - 1 = n✝ [PROOFSTEP] linarith [GOAL] case pos n k : ℕ hk : k < n + 1 + 1 + 1 i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j h✝³ : i < k h✝² : ¬j < k - 1 h✝¹ : j + 1 < k h✝ : i < k - 1 ⊢ k - 1 = k - 1 - 1 [PROOFSTEP] cases k [GOAL] case pos.zero n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j hk : Nat.zero < n + 1 + 1 + 1 h✝³ : i < Nat.zero h✝² : ¬j < Nat.zero - 1 h✝¹ : j + 1 < Nat.zero h✝ : i < Nat.zero - 1 ⊢ Nat.zero - 1 = Nat.zero - 1 - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 + 1 h✝³ : i < Nat.succ n✝ h✝² : ¬j < Nat.succ n✝ - 1 h✝¹ : j + 1 < Nat.succ n✝ h✝ : i < Nat.succ n✝ - 1 ⊢ Nat.succ n✝ - 1 = Nat.succ n✝ - 1 - 1 [PROOFSTEP] simp at * [GOAL] case pos.succ n i : ℕ hi : i < n + 1 j : ℕ hj : j < n + 1 H : i ≤ j n✝ : ℕ hk : Nat.succ n✝ < n + 1 + 1 + 1 h✝³ : i < Nat.succ n✝ h✝² : j + 1 < Nat.succ n✝ h✝¹ : n✝ ≤ j h✝ : i < n✝ ⊢ n✝ = n✝ - 1 [PROOFSTEP] linarith [GOAL] X Y : SimplexCategory x✝ : IsIsomorphic X Y I : X ≅ Y ⊢ X = Y [PROOFSTEP] suffices Fintype.card (Fin (X.len + 1)) = Fintype.card (Fin (Y.len + 1)) by ext simpa [GOAL] X Y : SimplexCategory x✝ : IsIsomorphic X Y I : X ≅ Y this : Fintype.card (Fin (len X + 1)) = Fintype.card (Fin (len Y + 1)) ⊢ X = Y [PROOFSTEP] ext [GOAL] case a X Y : SimplexCategory x✝ : IsIsomorphic X Y I : X ≅ Y this : Fintype.card (Fin (len X + 1)) = Fintype.card (Fin (len Y + 1)) ⊢ len X = len Y [PROOFSTEP] simpa [GOAL] X Y : SimplexCategory x✝ : IsIsomorphic X Y I : X ≅ Y ⊢ Fintype.card (Fin (len X + 1)) = Fintype.card (Fin (len Y + 1)) [PROOFSTEP] apply Fintype.card_congr [GOAL] case f X Y : SimplexCategory x✝ : IsIsomorphic X Y I : X ≅ Y ⊢ Fin (len X + 1) ≃ Fin (len Y + 1) [PROOFSTEP] exact Equiv.ulift.symm.trans (((skeletalFunctor.{0} ⋙ forget NonemptyFinLinOrdCat).mapIso I).toEquiv.trans Equiv.ulift) [GOAL] x✝¹ x✝ : SimplexCategory f g : x✝¹ ⟶ x✝ h : skeletalFunctor.map f = skeletalFunctor.map g ⊢ f = g [PROOFSTEP] ext x : 3 [GOAL] case a.h.h x✝¹ x✝ : SimplexCategory f g : x✝¹ ⟶ x✝ h : skeletalFunctor.map f = skeletalFunctor.map g x : Fin (len x✝¹ + 1) ⊢ ↑(Hom.toOrderHom f) x = ↑(Hom.toOrderHom g) x [PROOFSTEP] apply ULift.up_injective.{v} [GOAL] case a.h.h.a x✝¹ x✝ : SimplexCategory f g : x✝¹ ⟶ x✝ h : skeletalFunctor.map f = skeletalFunctor.map g x : Fin (len x✝¹ + 1) ⊢ { down := ↑(Hom.toOrderHom f) x } = { down := ↑(Hom.toOrderHom g) x } [PROOFSTEP] change (skeletalFunctor.{v}.map f) ⟨x⟩ = (skeletalFunctor.map g) ⟨x⟩ [GOAL] case a.h.h.a x✝¹ x✝ : SimplexCategory f g : x✝¹ ⟶ x✝ h : skeletalFunctor.map f = skeletalFunctor.map g x : Fin (len x✝¹ + 1) ⊢ ↑(skeletalFunctor.map f) { down := x } = ↑(skeletalFunctor.map g) { down := x } [PROOFSTEP] rw [h] [GOAL] X : NonemptyFinLinOrdCat ⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X [PROOFSTEP] have aux : Fintype.card X = Fintype.card X - 1 + 1 := (Nat.succ_pred_eq_of_pos <| Fintype.card_pos_iff.mpr ⟨⊥⟩).symm [GOAL] X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 ⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X [PROOFSTEP] let f := monoEquivOfFin X aux [GOAL] X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux ⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X [PROOFSTEP] have hf := (Finset.univ.orderEmbOfFin aux).strictMono [GOAL] X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) ⊢ skeletalFunctor.obj [Fintype.card ↑X - 1] ≅ X [PROOFSTEP] refine' { hom := ⟨fun i => f i.down, _⟩ inv := ⟨fun i => ⟨f.symm i⟩, _⟩ hom_inv_id := _ inv_hom_id := _ } [GOAL] case refine'_1 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) ⊢ Monotone fun i => ↑f i.down [PROOFSTEP] rintro ⟨i⟩ ⟨j⟩ h [GOAL] case refine'_1.up.up X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i j : Fin (len [Fintype.card ↑X - 1] + 1) h : { down := i } ≤ { down := j } ⊢ (fun i => ↑f i.down) { down := i } ≤ (fun i => ↑f i.down) { down := j } [PROOFSTEP] show f i ≤ f j [GOAL] case refine'_1.up.up X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i j : Fin (len [Fintype.card ↑X - 1] + 1) h : { down := i } ≤ { down := j } ⊢ ↑f i ≤ ↑f j [PROOFSTEP] exact hf.monotone h [GOAL] case refine'_2 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) ⊢ Monotone fun i => { down := ↑(OrderIso.symm f) i } [PROOFSTEP] intro i j h [GOAL] case refine'_2 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i j : ↑X h : i ≤ j ⊢ (fun i => { down := ↑(OrderIso.symm f) i }) i ≤ (fun i => { down := ↑(OrderIso.symm f) i }) j [PROOFSTEP] show f.symm i ≤ f.symm j [GOAL] case refine'_2 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i j : ↑X h : i ≤ j ⊢ ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j [PROOFSTEP] rw [← hf.le_iff_le] [GOAL] case refine'_2 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i j : ↑X h : i ≤ j ⊢ ↑(Finset.orderEmbOfFin Finset.univ aux) (↑(OrderIso.symm f) i) ≤ ↑(Finset.orderEmbOfFin Finset.univ aux) (↑(OrderIso.symm f) j) [PROOFSTEP] show f (f.symm i) ≤ f (f.symm j) [GOAL] case refine'_2 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i j : ↑X h : i ≤ j ⊢ ↑f (↑(OrderIso.symm f) i) ≤ ↑f (↑(OrderIso.symm f) j) [PROOFSTEP] simpa only [OrderIso.apply_symm_apply] [GOAL] case refine'_3 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) ⊢ { toFun := fun i => ↑f i.down, monotone' := (_ : ∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄, a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) } ≫ { toFun := fun i => { down := ↑(OrderIso.symm f) i }, monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) } = 𝟙 (skeletalFunctor.obj [Fintype.card ↑X - 1]) [PROOFSTEP] ext1 ⟨i⟩ [GOAL] case refine'_3.w.up X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i : Fin (len [Fintype.card ↑X - 1] + 1) ⊢ ↑({ toFun := fun i => ↑f i.down, monotone' := (_ : ∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄, a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) } ≫ { toFun := fun i => { down := ↑(OrderIso.symm f) i }, monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) }) { down := i } = ↑(𝟙 (skeletalFunctor.obj [Fintype.card ↑X - 1])) { down := i } [PROOFSTEP] exact congr_arg ULift.up (f.symm_apply_apply i) [GOAL] case refine'_4 X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) ⊢ { toFun := fun i => { down := ↑(OrderIso.symm f) i }, monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) } ≫ { toFun := fun i => ↑f i.down, monotone' := (_ : ∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄, a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) } = 𝟙 X [PROOFSTEP] ext1 i [GOAL] case refine'_4.w X : NonemptyFinLinOrdCat aux : Fintype.card ↑X = Fintype.card ↑X - 1 + 1 f : Fin (Fintype.card ↑X - 1 + 1) ≃o ↑X := monoEquivOfFin (↑X) aux hf : StrictMono ↑(Finset.orderEmbOfFin Finset.univ aux) i : (forget NonemptyFinLinOrdCat).obj X ⊢ ↑({ toFun := fun i => { down := ↑(OrderIso.symm f) i }, monotone' := (_ : ∀ ⦃i j : ↑X⦄, i ≤ j → ↑(OrderIso.symm f) i ≤ ↑(OrderIso.symm f) j) } ≫ { toFun := fun i => ↑f i.down, monotone' := (_ : ∀ ⦃a b : ↑(skeletalFunctor.obj [Fintype.card ↑X - 1])⦄, a ≤ b → (fun i => ↑f i.down) a ≤ (fun i => ↑f i.down) b) }) i = ↑(𝟙 X) i [PROOFSTEP] exact f.apply_symm_apply i [GOAL] n : ℕ ⊢ len [0] ≤ n [PROOFSTEP] simp [GOAL] X✝ Y✝ : SimplexCategory a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₁✝ = (CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₂✝ ⊢ a₁✝ = a₂✝ [PROOFSTEP] ext : 2 [GOAL] case a.h X✝ Y✝ : SimplexCategory a₁✝ a₂✝ : X✝ ⟶ Y✝ h : (CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₁✝ = (CategoryTheory.Functor.mk { obj := fun i => Fin (len i + 1), map := fun {X Y} f => ↑(Hom.toOrderHom f) }).map a₂✝ ⊢ ↑(Hom.toOrderHom a₁✝) = ↑(Hom.toOrderHom a₂✝) [PROOFSTEP] exact h [GOAL] n m : SimplexCategory f : n ⟶ m ⊢ Mono f ↔ Function.Injective ↑(Hom.toOrderHom f) [PROOFSTEP] rw [← Functor.mono_map_iff_mono skeletalEquivalence.functor.{0}] [GOAL] n m : SimplexCategory f : n ⟶ m ⊢ Mono (skeletalEquivalence.functor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f) [PROOFSTEP] dsimp only [skeletalEquivalence, Functor.asEquivalence_functor] [GOAL] n m : SimplexCategory f : n ⟶ m ⊢ Mono (skeletalFunctor.map f) ↔ Function.Injective ↑(Hom.toOrderHom f) [PROOFSTEP] rw [NonemptyFinLinOrdCat.mono_iff_injective, skeletalFunctor.coe_map, Function.Injective.of_comp_iff ULift.up_injective, Function.Injective.of_comp_iff' _ ULift.down_bijective] [GOAL] n m : SimplexCategory f : n ⟶ m ⊢ Epi f ↔ Function.Surjective ↑(Hom.toOrderHom f) [PROOFSTEP] rw [← Functor.epi_map_iff_epi skeletalEquivalence.functor.{0}] [GOAL] n m : SimplexCategory f : n ⟶ m ⊢ Epi (skeletalEquivalence.functor.map f) ↔ Function.Surjective ↑(Hom.toOrderHom f) [PROOFSTEP] dsimp only [skeletalEquivalence, Functor.asEquivalence_functor] [GOAL] n m : SimplexCategory f : n ⟶ m ⊢ Epi (skeletalFunctor.map f) ↔ Function.Surjective ↑(Hom.toOrderHom f) [PROOFSTEP] rw [NonemptyFinLinOrdCat.epi_iff_surjective, skeletalFunctor.coe_map, Function.Surjective.of_comp_iff' ULift.up_bijective, Function.Surjective.of_comp_iff _ ULift.down_surjective] [GOAL] x y : SimplexCategory f : x ⟶ y ⊢ Mono f → len x ≤ len y [PROOFSTEP] intro hyp_f_mono [GOAL] x y : SimplexCategory f : x ⟶ y hyp_f_mono : Mono f ⊢ len x ≤ len y [PROOFSTEP] have f_inj : Function.Injective f.toOrderHom.toFun := mono_iff_injective.1 hyp_f_mono [GOAL] x y : SimplexCategory f : x ⟶ y hyp_f_mono : Mono f f_inj : Function.Injective (Hom.toOrderHom f).toFun ⊢ len x ≤ len y [PROOFSTEP] simpa using Fintype.card_le_of_injective f.toOrderHom.toFun f_inj [GOAL] x y : SimplexCategory f : x ⟶ y ⊢ Epi f → len y ≤ len x [PROOFSTEP] intro hyp_f_epi [GOAL] x y : SimplexCategory f : x ⟶ y hyp_f_epi : Epi f ⊢ len y ≤ len x [PROOFSTEP] have f_surj : Function.Surjective f.toOrderHom.toFun := epi_iff_surjective.1 hyp_f_epi [GOAL] x y : SimplexCategory f : x ⟶ y hyp_f_epi : Epi f f_surj : Function.Surjective (Hom.toOrderHom f).toFun ⊢ len y ≤ len x [PROOFSTEP] simpa using Fintype.card_le_of_surjective f.toOrderHom.toFun f_surj [GOAL] n : ℕ i : Fin (n + 2) ⊢ Mono (δ i) [PROOFSTEP] rw [mono_iff_injective] [GOAL] n : ℕ i : Fin (n + 2) ⊢ Function.Injective ↑(Hom.toOrderHom (δ i)) [PROOFSTEP] exact Fin.succAbove_right_injective [GOAL] n : ℕ i : Fin (n + 1) ⊢ Epi (σ i) [PROOFSTEP] rw [epi_iff_surjective] [GOAL] n : ℕ i : Fin (n + 1) ⊢ Function.Surjective ↑(Hom.toOrderHom (σ i)) [PROOFSTEP] intro b [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) ⊢ ∃ a, ↑(Hom.toOrderHom (σ i)) a = b [PROOFSTEP] simp only [σ, mkHom, Hom.toOrderHom_mk, OrderHom.coe_mk] [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) ⊢ ∃ a, Fin.predAbove i a = b [PROOFSTEP] by_cases b ≤ i [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) ⊢ ∃ a, Fin.predAbove i a = b [PROOFSTEP] by_cases b ≤ i [GOAL] case pos n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : b ≤ i ⊢ ∃ a, Fin.predAbove i a = b [PROOFSTEP] use b [GOAL] case h n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : b ≤ i ⊢ Fin.predAbove i ↑↑b = b [PROOFSTEP] rw [Fin.predAbove_below i b (by simpa only [Fin.coe_eq_castSucc] using h)] [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : b ≤ i ⊢ ↑↑b ≤ Fin.castSucc i [PROOFSTEP] simpa only [Fin.coe_eq_castSucc] using h [GOAL] case h n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : b ≤ i ⊢ Fin.castPred ↑↑b = b [PROOFSTEP] simp only [len_mk, Fin.coe_eq_castSucc, Fin.castPred_castSucc] [GOAL] case neg n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : ¬b ≤ i ⊢ ∃ a, Fin.predAbove i a = b [PROOFSTEP] use b.succ [GOAL] case h n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : ¬b ≤ i ⊢ Fin.predAbove i (Fin.succ b) = b [PROOFSTEP] rw [Fin.predAbove_above i b.succ _, Fin.pred_succ] [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : ¬b ≤ i ⊢ Fin.castSucc i < Fin.succ b n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : ¬b ≤ i ⊢ Fin.castSucc i < Fin.succ b [PROOFSTEP] rw [not_le] at h [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : i < b ⊢ Fin.castSucc i < Fin.succ b [PROOFSTEP] rw [Fin.lt_iff_val_lt_val] at h ⊢ [GOAL] n : ℕ i : Fin (n + 1) b : Fin (len [n] + 1) h : ↑i < ↑b ⊢ ↑(Fin.castSucc i) < ↑(Fin.succ b) [PROOFSTEP] simpa only [Fin.val_succ, Fin.coe_castSucc] using Nat.lt.step h [GOAL] A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ ⊢ inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ [PROOFSTEP] by_cases h' : y₁ < y₂ [GOAL] case pos A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ ⊢ inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ [PROOFSTEP] by_contra h'' [GOAL] case pos A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ ⊢ False [PROOFSTEP] apply not_le.mpr h' [GOAL] case pos A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ ⊢ y₂ ≤ y₁ [PROOFSTEP] convert f.toOrderHom.monotone (le_of_not_ge h'') [GOAL] case h.e'_3 A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ ⊢ y₂ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₂) case h.e'_4 A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ ⊢ y₁ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₁) [PROOFSTEP] all_goals exact (congr_hom (Iso.inv_hom_id (asIso ((forget SimplexCategory).map f))) _).symm [GOAL] case h.e'_3 A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ ⊢ y₂ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₂) [PROOFSTEP] exact (congr_hom (Iso.inv_hom_id (asIso ((forget SimplexCategory).map f))) _).symm [GOAL] case h.e'_4 A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : y₁ < y₂ h'' : ¬inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ ⊢ y₁ = ↑(Hom.toOrderHom f) (inv ((forget SimplexCategory).map f) y₁) [PROOFSTEP] exact (congr_hom (Iso.inv_hom_id (asIso ((forget SimplexCategory).map f))) _).symm [GOAL] case neg A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) y₁ y₂ : Fin (len B✝ + 1) h : y₁ ≤ y₂ h' : ¬y₁ < y₂ ⊢ inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂ [PROOFSTEP] rw [eq_of_le_of_not_lt h h'] [GOAL] A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) ⊢ f ≫ Hom.mk { toFun := inv ((forget SimplexCategory).map f), monotone' := (_ : ∀ (y₁ y₂ : Fin (len B✝ + 1)), y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } = 𝟙 A✝ [PROOFSTEP] ext1 [GOAL] case a A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) ⊢ Hom.toOrderHom (f ≫ Hom.mk { toFun := inv ((forget SimplexCategory).map f), monotone' := (_ : ∀ (y₁ y₂ : Fin (len B✝ + 1)), y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) }) = Hom.toOrderHom (𝟙 A✝) [PROOFSTEP] ext1 [GOAL] case a.h A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) ⊢ ↑(Hom.toOrderHom (f ≫ Hom.mk { toFun := inv ((forget SimplexCategory).map f), monotone' := (_ : ∀ (y₁ y₂ : Fin (len B✝ + 1)), y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) })) = ↑(Hom.toOrderHom (𝟙 A✝)) [PROOFSTEP] exact Iso.hom_inv_id (asIso ((forget _).map f)) [GOAL] A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) ⊢ Hom.mk { toFun := inv ((forget SimplexCategory).map f), monotone' := (_ : ∀ (y₁ y₂ : Fin (len B✝ + 1)), y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } ≫ f = 𝟙 B✝ [PROOFSTEP] ext1 [GOAL] case a A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) ⊢ Hom.toOrderHom (Hom.mk { toFun := inv ((forget SimplexCategory).map f), monotone' := (_ : ∀ (y₁ y₂ : Fin (len B✝ + 1)), y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } ≫ f) = Hom.toOrderHom (𝟙 B✝) [PROOFSTEP] ext1 [GOAL] case a.h A✝ B✝ : SimplexCategory f : A✝ ⟶ B✝ hf : IsIso ((forget SimplexCategory).map f) ⊢ ↑(Hom.toOrderHom (Hom.mk { toFun := inv ((forget SimplexCategory).map f), monotone' := (_ : ∀ (y₁ y₂ : Fin (len B✝ + 1)), y₁ ≤ y₂ → inv ((forget SimplexCategory).map f) y₁ ≤ inv ((forget SimplexCategory).map f) y₂) } ≫ f)) = ↑(Hom.toOrderHom (𝟙 B✝)) [PROOFSTEP] exact Iso.inv_hom_id (asIso ((forget _).map f)) [GOAL] x y : SimplexCategory e : x ≅ y i : Fin (len x + 1) ⊢ ↑(Hom.toOrderHom e.inv) (↑(Hom.toOrderHom e.hom) i) = i [PROOFSTEP] simpa only using congr_arg (fun φ => (Hom.toOrderHom φ) i) e.hom_inv_id [GOAL] x y : SimplexCategory e : x ≅ y i : Fin (len y + 1) ⊢ ↑(Hom.toOrderHom e.hom) (↑(Hom.toOrderHom e.inv) i) = i [PROOFSTEP] simpa only using congr_arg (fun φ => (Hom.toOrderHom φ) i) e.inv_hom_id [GOAL] x : SimplexCategory e : x ≅ x ⊢ e = Iso.refl x [PROOFSTEP] have h : (Finset.univ : Finset (Fin (x.len + 1))).card = x.len + 1 := Finset.card_fin (x.len + 1) [GOAL] x : SimplexCategory e : x ≅ x h : Finset.card Finset.univ = len x + 1 ⊢ e = Iso.refl x [PROOFSTEP] have eq₁ := Finset.orderEmbOfFin_unique' h fun i => Finset.mem_univ ((orderIsoOfIso e) i) [GOAL] x : SimplexCategory e : x ≅ x h : Finset.card Finset.univ = len x + 1 eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.orderEmbOfFin Finset.univ h ⊢ e = Iso.refl x [PROOFSTEP] have eq₂ := Finset.orderEmbOfFin_unique' h fun i => Finset.mem_univ ((orderIsoOfIso (Iso.refl x)) i) -- Porting note: the proof was rewritten from this point in #3414 (reenableeta) -- It could be investigated again to see if the original can be restored. [GOAL] x : SimplexCategory e : x ≅ x h : Finset.card Finset.univ = len x + 1 eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.orderEmbOfFin Finset.univ h eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x)) = Finset.orderEmbOfFin Finset.univ h ⊢ e = Iso.refl x [PROOFSTEP] ext x [GOAL] case w.a.h.h.h x✝ : SimplexCategory e : x✝ ≅ x✝ h : Finset.card Finset.univ = len x✝ + 1 eq₁ : RelIso.toRelEmbedding (orderIsoOfIso e) = Finset.orderEmbOfFin Finset.univ h eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x✝)) = Finset.orderEmbOfFin Finset.univ h x : Fin (len x✝ + 1) ⊢ ↑(↑(Hom.toOrderHom e.hom) x) = ↑(↑(Hom.toOrderHom (Iso.refl x✝).hom) x) [PROOFSTEP] replace eq₁ := congr_arg (· x) eq₁ [GOAL] case w.a.h.h.h x✝ : SimplexCategory e : x✝ ≅ x✝ h : Finset.card Finset.univ = len x✝ + 1 eq₂ : RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x✝)) = Finset.orderEmbOfFin Finset.univ h x : Fin (len x✝ + 1) eq₁ : (fun x_1 => ↑x_1 x) (RelIso.toRelEmbedding (orderIsoOfIso e)) = (fun x_1 => ↑x_1 x) (Finset.orderEmbOfFin Finset.univ h) ⊢ ↑(↑(Hom.toOrderHom e.hom) x) = ↑(↑(Hom.toOrderHom (Iso.refl x✝).hom) x) [PROOFSTEP] replace eq₂ := congr_arg (· x) eq₂.symm [GOAL] case w.a.h.h.h x✝ : SimplexCategory e : x✝ ≅ x✝ h : Finset.card Finset.univ = len x✝ + 1 x : Fin (len x✝ + 1) eq₁ : (fun x_1 => ↑x_1 x) (RelIso.toRelEmbedding (orderIsoOfIso e)) = (fun x_1 => ↑x_1 x) (Finset.orderEmbOfFin Finset.univ h) eq₂ : (fun x_1 => ↑x_1 x) (Finset.orderEmbOfFin Finset.univ h) = (fun x_1 => ↑x_1 x) (RelIso.toRelEmbedding (orderIsoOfIso (Iso.refl x✝))) ⊢ ↑(↑(Hom.toOrderHom e.hom) x) = ↑(↑(Hom.toOrderHom (Iso.refl x✝).hom) x) [PROOFSTEP] simp_all [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) ⊢ ∃ θ', θ = σ i ≫ θ' [PROOFSTEP] use δ i.succ ≫ θ [GOAL] case h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) ⊢ θ = σ i ≫ δ (Fin.succ i) ≫ θ [PROOFSTEP] ext1 [GOAL] case h.a n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) ⊢ Hom.toOrderHom θ = Hom.toOrderHom (σ i ≫ δ (Fin.succ i) ≫ θ) [PROOFSTEP] ext1 [GOAL] case h.a.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) ⊢ ↑(Hom.toOrderHom θ) = ↑(Hom.toOrderHom (σ i ≫ δ (Fin.succ i) ≫ θ)) [PROOFSTEP] ext1 x [GOAL] case h.a.h.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (σ i ≫ δ (Fin.succ i) ≫ θ)) x [PROOFSTEP] simp only [Hom.toOrderHom_mk, Function.comp_apply, OrderHom.comp_coe, Hom.comp, smallCategory_comp, σ, mkHom, OrderHom.coe_mk] [GOAL] case h.a.h.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x)) [PROOFSTEP] by_cases h' : x ≤ Fin.castSucc i [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x)) [PROOFSTEP] rw [Fin.predAbove_below i x h'] [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.castPred x)) [PROOFSTEP] have eq := Fin.castSucc_castPred (gt_of_gt_of_ge (Fin.castSucc_lt_last i) h') [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i eq : Fin.castSucc (Fin.castPred x) = x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.castPred x)) [PROOFSTEP] dsimp [δ] [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i eq : Fin.castSucc (Fin.castPred x) = x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (Fin.succAbove (Fin.succ i) (Fin.castPred x)) [PROOFSTEP] erw [Fin.succAbove_below i.succ x.castPred _] [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i eq : Fin.castSucc (Fin.castPred x) = x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (Fin.castSucc (Fin.castPred x)) n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i eq : Fin.castSucc (Fin.castPred x) = x ⊢ Fin.castSucc (Fin.castPred x) < Fin.succ i [PROOFSTEP] swap [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i eq : Fin.castSucc (Fin.castPred x) = x ⊢ Fin.castSucc (Fin.castPred x) < Fin.succ i [PROOFSTEP] rwa [eq, ← Fin.le_castSucc_iff] [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : x ≤ Fin.castSucc i eq : Fin.castSucc (Fin.castPred x) = x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (Fin.castSucc (Fin.castPred x)) [PROOFSTEP] rw [eq] [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : ¬x ≤ Fin.castSucc i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x)) [PROOFSTEP] simp only [not_le] at h' [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : Fin.castSucc i < x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x)) [PROOFSTEP] let y := x.pred <| by rintro (rfl : x = 0); simp at h' [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : Fin.castSucc i < x ⊢ x ≠ 0 [PROOFSTEP] rintro (rfl : x = 0) [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) h' : Fin.castSucc i < 0 ⊢ False [PROOFSTEP] simp at h' [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x)) [PROOFSTEP] have hy : x = y.succ := (Fin.succ_pred x _).symm [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h' : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i x)) [PROOFSTEP] rw [hy] at h' ⊢ [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y ⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) (Fin.predAbove i (Fin.succ y))) [PROOFSTEP] rw [Fin.predAbove_above i y.succ h', Fin.pred_succ] [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y ⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) y) [PROOFSTEP] by_cases h'' : y = i [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : y = i ⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) y) [PROOFSTEP] rw [h''] [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : y = i ⊢ ↑(Hom.toOrderHom θ) (Fin.succ i) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) i) [PROOFSTEP] refine' hi.symm.trans _ [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : y = i ⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) i) [PROOFSTEP] congr 1 [GOAL] case pos.h.e_6.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : y = i ⊢ Fin.castSucc i = ↑(Hom.toOrderHom (δ (Fin.succ i))) i [PROOFSTEP] dsimp [δ] [GOAL] case pos.h.e_6.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : y = i ⊢ Fin.castSucc i = Fin.succAbove (Fin.succ i) i [PROOFSTEP] erw [Fin.succAbove_below i.succ] [GOAL] case pos.h.e_6.h.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : y = i ⊢ Fin.castSucc i < Fin.succ i [PROOFSTEP] exact Fin.lt_succ [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : ¬y = i ⊢ ↑(Hom.toOrderHom θ) (Fin.succ y) = ↑(Hom.toOrderHom θ) (↑(Hom.toOrderHom (δ (Fin.succ i))) y) [PROOFSTEP] dsimp [δ] [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : ¬y = i ⊢ ↑(Hom.toOrderHom θ) (Fin.succ (Fin.pred x (_ : x = 0 → False))) = ↑(Hom.toOrderHom θ) (Fin.succAbove (Fin.succ i) (Fin.pred x (_ : x = 0 → False))) [PROOFSTEP] erw [Fin.succAbove_above i.succ _] [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) h' : Fin.castSucc i < Fin.succ y hy : x = Fin.succ y h'' : ¬y = i ⊢ Fin.succ i ≤ Fin.castSucc (Fin.pred x (_ : x = 0 → False)) [PROOFSTEP] simp only [Fin.lt_iff_val_lt_val, Fin.le_iff_val_le_val, Fin.val_succ, Fin.coe_castSucc, Nat.lt_succ_iff, Fin.ext_iff] at h' h'' ⊢ [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i ⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False)) [PROOFSTEP] cases' Nat.le.dest h' with c hc [GOAL] case neg.intro n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i c : ℕ hc : ↑i + c = ↑(Fin.pred x (_ : x = 0 → False)) ⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False)) [PROOFSTEP] cases c [GOAL] case neg.intro.zero n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i hc : ↑i + Nat.zero = ↑(Fin.pred x (_ : x = 0 → False)) ⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False)) [PROOFSTEP] exfalso [GOAL] case neg.intro.zero.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i hc : ↑i + Nat.zero = ↑(Fin.pred x (_ : x = 0 → False)) ⊢ False [PROOFSTEP] simp only [Nat.zero_eq, add_zero, len_mk, Fin.coe_pred, ge_iff_le] at hc [GOAL] case neg.intro.zero.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i hc : ↑i = ↑x - 1 ⊢ False [PROOFSTEP] rw [hc] at h'' [GOAL] case neg.intro.zero.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑x - 1 hc : ↑i = ↑x - 1 ⊢ False [PROOFSTEP] exact h'' rfl [GOAL] case neg.intro.succ n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i n✝ : ℕ hc : ↑i + Nat.succ n✝ = ↑(Fin.pred x (_ : x = 0 → False)) ⊢ ↑i + 1 ≤ ↑(Fin.pred x (_ : x = 0 → False)) [PROOFSTEP] rw [← hc] [GOAL] case neg.intro.succ n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' i : Fin (n + 1) hi : ↑(Hom.toOrderHom θ) (Fin.castSucc i) = ↑(Hom.toOrderHom θ) (Fin.succ i) x : Fin (len [n + 1] + 1) h'✝ : Fin.castSucc i < x y : Fin (len [n + 1]) := Fin.pred x (_ : x = 0 → False) hy : x = Fin.succ y h' : ↑i ≤ ↑(Fin.pred x (_ : x = 0 → False)) h'' : ¬↑(Fin.pred x (_ : x = 0 → False)) = ↑i n✝ : ℕ hc : ↑i + Nat.succ n✝ = ↑(Fin.pred x (_ : x = 0 → False)) ⊢ ↑i + 1 ≤ ↑i + Nat.succ n✝ [PROOFSTEP] simp only [add_le_add_iff_left, Nat.succ_eq_add_one, le_add_iff_nonneg_left, zero_le] [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ¬Function.Injective ↑(Hom.toOrderHom θ) ⊢ ∃ i θ', θ = σ i ≫ θ' [PROOFSTEP] simp only [Function.Injective, exists_prop, not_forall] at hθ [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 ⊢ ∃ i θ', θ = σ i ≫ θ' [PROOFSTEP] have hθ₂ : ∃ x y : Fin (n + 2), (Hom.toOrderHom θ) x = (Hom.toOrderHom θ) y ∧ x < y := by rcases hθ with ⟨x, y, ⟨h₁, h₂⟩⟩ by_cases h : x < y · exact ⟨x, y, ⟨h₁, h⟩⟩ · refine' ⟨y, x, ⟨h₁.symm, _⟩⟩ cases' lt_or_eq_of_le (not_lt.mp h) with h' h' · exact h' · exfalso exact h₂ h'.symm [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 ⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y [PROOFSTEP] rcases hθ with ⟨x, y, ⟨h₁, h₂⟩⟩ [GOAL] case intro.intro.intro n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y ⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y [PROOFSTEP] by_cases h : x < y [GOAL] case pos n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y h : x < y ⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y [PROOFSTEP] exact ⟨x, y, ⟨h₁, h⟩⟩ [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y h : ¬x < y ⊢ ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y [PROOFSTEP] refine' ⟨y, x, ⟨h₁.symm, _⟩⟩ [GOAL] case neg n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y h : ¬x < y ⊢ y < x [PROOFSTEP] cases' lt_or_eq_of_le (not_lt.mp h) with h' h' [GOAL] case neg.inl n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y h : ¬x < y h' : y < x ⊢ y < x [PROOFSTEP] exact h' [GOAL] case neg.inr n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y h : ¬x < y h' : y = x ⊢ y < x [PROOFSTEP] exfalso [GOAL] case neg.inr.h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' x y : Fin (len [n + 1] + 1) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : ¬x = y h : ¬x < y h' : y = x ⊢ False [PROOFSTEP] exact h₂ h'.symm [GOAL] n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 hθ₂ : ∃ x y, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y ∧ x < y ⊢ ∃ i θ', θ = σ i ≫ θ' [PROOFSTEP] rcases hθ₂ with ⟨x, y, ⟨h₁, h₂⟩⟩ [GOAL] case intro.intro.intro n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : x < y ⊢ ∃ i θ', θ = σ i ≫ θ' [PROOFSTEP] let z := x.castPred [GOAL] case intro.intro.intro n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : x < y z : Fin (n + 1) := Fin.castPred x ⊢ ∃ i θ', θ = σ i ≫ θ' [PROOFSTEP] use z [GOAL] case h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) h₁ : ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) y h₂ : x < y z : Fin (n + 1) := Fin.castPred x ⊢ ∃ θ', θ = σ z ≫ θ' [PROOFSTEP] rw [← show Fin.castSucc z = x from Fin.castSucc_castPred (lt_of_lt_of_le h₂ (Fin.le_last y))] at h₁ h₂ [GOAL] case h n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) z : Fin (n + 1) := Fin.castPred x h₂ : Fin.castSucc z < y h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y ⊢ ∃ θ', θ = σ z ≫ θ' [PROOFSTEP] apply eq_σ_comp_of_not_injective' [GOAL] case h.hi n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) z : Fin (n + 1) := Fin.castPred x h₂ : Fin.castSucc z < y h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y ⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) (Fin.succ z) [PROOFSTEP] rw [Fin.castSucc_lt_iff_succ_le] at h₂ [GOAL] case h.hi n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) z : Fin (n + 1) := Fin.castPred x h₂ : Fin.succ z ≤ y h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y ⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) (Fin.succ z) [PROOFSTEP] apply le_antisymm [GOAL] case h.hi.a n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) z : Fin (n + 1) := Fin.castPred x h₂ : Fin.succ z ≤ y h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y ⊢ ↑(Hom.toOrderHom θ) (Fin.castSucc z) ≤ ↑(Hom.toOrderHom θ) (Fin.succ z) [PROOFSTEP] exact θ.toOrderHom.monotone (le_of_lt (Fin.castSucc_lt_succ z)) [GOAL] case h.hi.a n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) z : Fin (n + 1) := Fin.castPred x h₂ : Fin.succ z ≤ y h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y ⊢ ↑(Hom.toOrderHom θ) (Fin.succ z) ≤ ↑(Hom.toOrderHom θ) (Fin.castSucc z) [PROOFSTEP] rw [h₁] [GOAL] case h.hi.a n : ℕ Δ' : SimplexCategory θ : [n + 1] ⟶ Δ' hθ : ∃ x x_1, ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom θ) x_1 ∧ ¬x = x_1 x y : Fin (n + 2) z : Fin (n + 1) := Fin.castPred x h₂ : Fin.succ z ≤ y h₁ : ↑(Hom.toOrderHom θ) (Fin.castSucc z) = ↑(Hom.toOrderHom θ) y ⊢ ↑(Hom.toOrderHom θ) (Fin.succ z) ≤ ↑(Hom.toOrderHom θ) y [PROOFSTEP] exact θ.toOrderHom.monotone h₂ [GOAL] n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i ⊢ ∃ θ', θ = θ' ≫ δ i [PROOFSTEP] by_cases i < Fin.last (n + 1) [GOAL] n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i ⊢ ∃ θ', θ = θ' ≫ δ i [PROOFSTEP] by_cases i < Fin.last (n + 1) [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) ⊢ ∃ θ', θ = θ' ≫ δ i [PROOFSTEP] use θ ≫ σ (Fin.castPred i) [GOAL] case h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) ⊢ θ = (θ ≫ σ (Fin.castPred i)) ≫ δ i [PROOFSTEP] ext1 [GOAL] case h.a n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) ⊢ Hom.toOrderHom θ = Hom.toOrderHom ((θ ≫ σ (Fin.castPred i)) ≫ δ i) [PROOFSTEP] ext1 [GOAL] case h.a.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) ⊢ ↑(Hom.toOrderHom θ) = ↑(Hom.toOrderHom ((θ ≫ σ (Fin.castPred i)) ≫ δ i)) [PROOFSTEP] ext1 x [GOAL] case h.a.h.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom ((θ ≫ σ (Fin.castPred i)) ≫ δ i)) x [PROOFSTEP] simp only [Hom.toOrderHom_mk, Function.comp_apply, OrderHom.comp_coe, Hom.comp, smallCategory_comp] [GOAL] case h.a.h.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] by_cases h' : θ.toOrderHom x ≤ i [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] simp only [σ, mkHom, Hom.toOrderHom_mk, OrderHom.coe_mk] [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (Fin.predAbove (Fin.castPred i) (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] rw [Fin.predAbove_below (Fin.castPred i) (θ.toOrderHom x) (by simpa [Fin.castSucc_castPred h] using h')] [GOAL] n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x ≤ Fin.castSucc (Fin.castPred i) [PROOFSTEP] simpa [Fin.castSucc_castPred h] using h' [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (Fin.castPred (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] dsimp [δ] [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = Fin.succAbove i (Fin.castPred (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] erw [Fin.succAbove_below i] [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x)) case pos.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x)) < i [PROOFSTEP] swap [GOAL] case pos.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x)) < i [PROOFSTEP] simp only [Fin.lt_iff_val_lt_val, Fin.coe_castSucc] [GOAL] case pos.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Fin.castPred (↑(Hom.toOrderHom θ) x)) < ↑i [PROOFSTEP] exact lt_of_le_of_lt (Fin.coe_castPred_le_self _) (Fin.lt_iff_val_lt_val.mp ((Ne.le_iff_lt (hi x)).mp h')) [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = Fin.castSucc (Fin.castPred (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] rw [Fin.castSucc_castPred] [GOAL] case pos n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x < Fin.last (n + 1) [PROOFSTEP] apply lt_of_le_of_lt h' h [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : ¬↑(Hom.toOrderHom θ) x ≤ i ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] simp only [not_le] at h' [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : i < ↑(Hom.toOrderHom θ) x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (↑(Hom.toOrderHom (σ (Fin.castPred i))) (↑(Hom.toOrderHom θ) x)) [PROOFSTEP] simp only [σ, mkHom, Hom.toOrderHom_mk, OrderHom.coe_mk, Fin.predAbove_above (Fin.castPred i) (θ.toOrderHom x) (by simpa only [Fin.castSucc_castPred h] using h')] [GOAL] n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : i < ↑(Hom.toOrderHom θ) x ⊢ Fin.castSucc (Fin.castPred i) < ↑(Hom.toOrderHom θ) x [PROOFSTEP] simpa only [Fin.castSucc_castPred h] using h' [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : i < ↑(Hom.toOrderHom θ) x ⊢ ↑(Hom.toOrderHom θ) x = ↑(Hom.toOrderHom (δ i)) (Fin.pred (↑(Hom.toOrderHom θ) x) (_ : ↑(Hom.toOrderHom θ) x ≠ 0)) [PROOFSTEP] dsimp [δ] [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : i < ↑(Hom.toOrderHom θ) x ⊢ ↑(Hom.toOrderHom θ) x = Fin.succAbove i (Fin.pred (↑(Hom.toOrderHom θ) x) (_ : ↑(Hom.toOrderHom θ) x ≠ 0)) [PROOFSTEP] erw [Fin.succAbove_above i _, Fin.succ_pred] [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : i < Fin.last (n + 1) x : Fin (len Δ + 1) h' : i < ↑(Hom.toOrderHom θ) x ⊢ i ≤ Fin.castSucc (Fin.pred (↑(Hom.toOrderHom θ) x) (_ : ↑(Hom.toOrderHom θ) x ≠ 0)) [PROOFSTEP] simpa only [Fin.le_iff_val_le_val, Fin.coe_castSucc, Fin.coe_pred] using Nat.le_pred_of_lt (Fin.lt_iff_val_lt_val.mp h') [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] i : Fin (n + 2) hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ i h : ¬i < Fin.last (n + 1) ⊢ ∃ θ', θ = θ' ≫ δ i [PROOFSTEP] obtain rfl := le_antisymm (Fin.le_last i) (not_lt.mp h) [GOAL] case neg n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1) h : ¬Fin.last (n + 1) < Fin.last (n + 1) ⊢ ∃ θ', θ = θ' ≫ δ (Fin.last (n + 1)) [PROOFSTEP] use θ ≫ σ (Fin.last _) [GOAL] case h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1) h : ¬Fin.last (n + 1) < Fin.last (n + 1) ⊢ θ = (θ ≫ σ (Fin.last n)) ≫ δ (Fin.last (n + 1)) [PROOFSTEP] ext x : 4 [GOAL] case h.a.h.h.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1) h : ¬Fin.last (n + 1) < Fin.last (n + 1) x : Fin (len Δ + 1) ⊢ ↑(↑(Hom.toOrderHom θ) x) = ↑(↑(Hom.toOrderHom ((θ ≫ σ (Fin.last n)) ≫ δ (Fin.last (n + 1)))) x) [PROOFSTEP] dsimp [δ, σ] [GOAL] case h.a.h.h.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1) h : ¬Fin.last (n + 1) < Fin.last (n + 1) x : Fin (len Δ + 1) ⊢ ↑(↑(Hom.toOrderHom θ) x) = ↑(Fin.succAbove (Fin.last (n + 1)) (Fin.castPred (↑(Hom.toOrderHom θ) x))) [PROOFSTEP] dsimp only [Fin.castPred] [GOAL] case h.a.h.h.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1) h : ¬Fin.last (n + 1) < Fin.last (n + 1) x : Fin (len Δ + 1) ⊢ ↑(↑(Hom.toOrderHom θ) x) = ↑(Fin.succAbove (Fin.last (n + 1)) (Fin.predAbove (Fin.last n) (↑(Hom.toOrderHom θ) x))) [PROOFSTEP] rw [Fin.predAbove_last, Fin.succAbove_last, Fin.castSucc_castPred] [GOAL] case h.a.h.h.h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hi : ∀ (x : Fin (len Δ + 1)), ↑(Hom.toOrderHom θ) x ≠ Fin.last (n + 1) h : ¬Fin.last (n + 1) < Fin.last (n + 1) x : Fin (len Δ + 1) ⊢ ↑(Hom.toOrderHom θ) x < Fin.last (n + 1) [PROOFSTEP] exact (Ne.le_iff_lt (hi x)).mp (Fin.le_last _) [GOAL] n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hθ : ¬Function.Surjective ↑(Hom.toOrderHom θ) ⊢ ∃ i θ', θ = θ' ≫ δ i [PROOFSTEP] cases' not_forall.mp hθ with i hi [GOAL] case intro n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hθ : ¬Function.Surjective ↑(Hom.toOrderHom θ) i : Fin (len [n + 1] + 1) hi : ¬∃ a, ↑(Hom.toOrderHom θ) a = i ⊢ ∃ i θ', θ = θ' ≫ δ i [PROOFSTEP] use i [GOAL] case h n : ℕ Δ : SimplexCategory θ : Δ ⟶ [n + 1] hθ : ¬Function.Surjective ↑(Hom.toOrderHom θ) i : Fin (len [n + 1] + 1) hi : ¬∃ a, ↑(Hom.toOrderHom θ) a = i ⊢ ∃ θ', θ = θ' ≫ δ i [PROOFSTEP] exact eq_comp_δ_of_not_surjective' θ i (not_exists.mp hi) [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ i = 𝟙 x [PROOFSTEP] suffices IsIso i by apply eq_id_of_isIso [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Mono i this : IsIso i ⊢ i = 𝟙 x [PROOFSTEP] apply eq_id_of_isIso [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ IsIso i [PROOFSTEP] apply isIso_of_bijective [GOAL] case hf x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ Function.Bijective (Hom.toOrderHom i).toFun [PROOFSTEP] dsimp [GOAL] case hf x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ Function.Bijective ↑(Hom.toOrderHom i) [PROOFSTEP] rw [Fintype.bijective_iff_injective_and_card i.toOrderHom, ← mono_iff_injective, eq_self_iff_true, and_true_iff] [GOAL] case hf x : SimplexCategory i : x ⟶ x inst✝ : Mono i ⊢ Mono i [PROOFSTEP] infer_instance [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ i = 𝟙 x [PROOFSTEP] suffices IsIso i by haveI := this apply eq_id_of_isIso [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Epi i this : IsIso i ⊢ i = 𝟙 x [PROOFSTEP] haveI := this [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Epi i this✝ this : IsIso i ⊢ i = 𝟙 x [PROOFSTEP] apply eq_id_of_isIso [GOAL] x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ IsIso i [PROOFSTEP] apply isIso_of_bijective [GOAL] case hf x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ Function.Bijective (Hom.toOrderHom i).toFun [PROOFSTEP] dsimp [GOAL] case hf x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ Function.Bijective ↑(Hom.toOrderHom i) [PROOFSTEP] rw [Fintype.bijective_iff_surjective_and_card i.toOrderHom, ← epi_iff_surjective, eq_self_iff_true, and_true_iff] [GOAL] case hf x : SimplexCategory i : x ⟶ x inst✝ : Epi i ⊢ Epi i [PROOFSTEP] infer_instance [GOAL] n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ ⊢ ∃ i, θ = σ i [PROOFSTEP] rcases eq_σ_comp_of_not_injective θ (by by_contra h simpa using le_of_mono (mono_iff_injective.mpr h)) with ⟨i, θ', h⟩ [GOAL] n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ ⊢ ¬Function.Injective ↑(Hom.toOrderHom θ) [PROOFSTEP] by_contra h [GOAL] n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ h : Function.Injective ↑(Hom.toOrderHom θ) ⊢ False [PROOFSTEP] simpa using le_of_mono (mono_iff_injective.mpr h) [GOAL] case intro.intro n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ i : Fin (n + 1) θ' : [n] ⟶ [n] h : θ = σ i ≫ θ' ⊢ ∃ i, θ = σ i [PROOFSTEP] use i [GOAL] case h n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ i : Fin (n + 1) θ' : [n] ⟶ [n] h : θ = σ i ≫ θ' ⊢ θ = σ i [PROOFSTEP] haveI : Epi (σ i ≫ θ') := by rw [← h] infer_instance [GOAL] n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ i : Fin (n + 1) θ' : [n] ⟶ [n] h : θ = σ i ≫ θ' ⊢ Epi (σ i ≫ θ') [PROOFSTEP] rw [← h] [GOAL] n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ i : Fin (n + 1) θ' : [n] ⟶ [n] h : θ = σ i ≫ θ' ⊢ Epi θ [PROOFSTEP] infer_instance [GOAL] case h n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ i : Fin (n + 1) θ' : [n] ⟶ [n] h : θ = σ i ≫ θ' this : Epi (σ i ≫ θ') ⊢ θ = σ i [PROOFSTEP] haveI := CategoryTheory.epi_of_epi (σ i) θ' [GOAL] case h n : ℕ θ : [n + 1] ⟶ [n] inst✝ : Epi θ i : Fin (n + 1) θ' : [n] ⟶ [n] h : θ = σ i ≫ θ' this✝ : Epi (σ i ≫ θ') this : Epi θ' ⊢ θ = σ i [PROOFSTEP] rw [h, eq_id_of_epi θ', Category.comp_id] [GOAL] n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ ⊢ ∃ i, θ = δ i [PROOFSTEP] rcases eq_comp_δ_of_not_surjective θ (by by_contra h simpa using le_of_epi (epi_iff_surjective.mpr h)) with ⟨i, θ', h⟩ [GOAL] n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ ⊢ ¬Function.Surjective ↑(Hom.toOrderHom θ) [PROOFSTEP] by_contra h [GOAL] n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ h : Function.Surjective ↑(Hom.toOrderHom θ) ⊢ False [PROOFSTEP] simpa using le_of_epi (epi_iff_surjective.mpr h) [GOAL] case intro.intro n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ i : Fin (n + 2) θ' : [n] ⟶ [n] h : θ = θ' ≫ δ i ⊢ ∃ i, θ = δ i [PROOFSTEP] use i [GOAL] case h n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ i : Fin (n + 2) θ' : [n] ⟶ [n] h : θ = θ' ≫ δ i ⊢ θ = δ i [PROOFSTEP] haveI : Mono (θ' ≫ δ i) := by rw [← h] infer_instance [GOAL] n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ i : Fin (n + 2) θ' : [n] ⟶ [n] h : θ = θ' ≫ δ i ⊢ Mono (θ' ≫ δ i) [PROOFSTEP] rw [← h] [GOAL] n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ i : Fin (n + 2) θ' : [n] ⟶ [n] h : θ = θ' ≫ δ i ⊢ Mono θ [PROOFSTEP] infer_instance [GOAL] case h n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ i : Fin (n + 2) θ' : [n] ⟶ [n] h : θ = θ' ≫ δ i this : Mono (θ' ≫ δ i) ⊢ θ = δ i [PROOFSTEP] haveI := CategoryTheory.mono_of_mono θ' (δ i) [GOAL] case h n : ℕ θ : [n] ⟶ [n + 1] inst✝ : Mono θ i : Fin (n + 2) θ' : [n] ⟶ [n] h : θ = θ' ≫ δ i this✝ : Mono (θ' ≫ δ i) this : Mono θ' ⊢ θ = δ i [PROOFSTEP] rw [h, eq_id_of_mono θ', Category.id_comp] [GOAL] Δ' Δ : SimplexCategory i : Δ' ⟶ Δ hi : Mono i hi' : Δ ≠ Δ' ⊢ len Δ' < len Δ [PROOFSTEP] rcases lt_or_eq_of_le (len_le_of_mono hi) with (h | h) [GOAL] case inl Δ' Δ : SimplexCategory i : Δ' ⟶ Δ hi : Mono i hi' : Δ ≠ Δ' h : len Δ' < len Δ ⊢ len Δ' < len Δ [PROOFSTEP] exact h [GOAL] case inr Δ' Δ : SimplexCategory i : Δ' ⟶ Δ hi : Mono i hi' : Δ ≠ Δ' h : len Δ' = len Δ ⊢ len Δ' < len Δ [PROOFSTEP] exfalso [GOAL] case inr.h Δ' Δ : SimplexCategory i : Δ' ⟶ Δ hi : Mono i hi' : Δ ≠ Δ' h : len Δ' = len Δ ⊢ False [PROOFSTEP] exact hi' (by ext; exact h.symm) [GOAL] Δ' Δ : SimplexCategory i : Δ' ⟶ Δ hi : Mono i hi' : Δ ≠ Δ' h : len Δ' = len Δ ⊢ Δ = Δ' [PROOFSTEP] ext [GOAL] case a Δ' Δ : SimplexCategory i : Δ' ⟶ Δ hi : Mono i hi' : Δ ≠ Δ' h : len Δ' = len Δ ⊢ len Δ = len Δ' [PROOFSTEP] exact h.symm [GOAL] Δ Δ' Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e : Δ ⟶ Δ' inst✝¹ : Epi e i : Δ' ⟶ Δ'' inst✝ : Mono i fac : e ≫ i = φ ⊢ image φ = Δ' [PROOFSTEP] haveI := strongEpi_of_epi e [GOAL] Δ Δ' Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e : Δ ⟶ Δ' inst✝¹ : Epi e i : Δ' ⟶ Δ'' inst✝ : Mono i fac : e ≫ i = φ this : StrongEpi e ⊢ image φ = Δ' [PROOFSTEP] let e := image.isoStrongEpiMono e i fac [GOAL] Δ Δ' Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e✝ : Δ ⟶ Δ' inst✝¹ : Epi e✝ i : Δ' ⟶ Δ'' inst✝ : Mono i fac : e✝ ≫ i = φ this : StrongEpi e✝ e : Δ' ≅ image φ := image.isoStrongEpiMono e✝ i fac ⊢ image φ = Δ' [PROOFSTEP] ext [GOAL] case a Δ Δ' Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e✝ : Δ ⟶ Δ' inst✝¹ : Epi e✝ i : Δ' ⟶ Δ'' inst✝ : Mono i fac : e✝ ≫ i = φ this : StrongEpi e✝ e : Δ' ≅ image φ := image.isoStrongEpiMono e✝ i fac ⊢ len (image φ) = len Δ' [PROOFSTEP] exact le_antisymm (len_le_of_epi (inferInstance : Epi e.hom)) (len_le_of_mono (inferInstance : Mono e.hom)) [GOAL] Δ Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e : Δ ⟶ image φ inst✝¹ : Epi e i : image φ ⟶ Δ'' inst✝ : Mono i fac : e ≫ i = φ ⊢ image.ι φ = i [PROOFSTEP] haveI := strongEpi_of_epi e [GOAL] Δ Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e : Δ ⟶ image φ inst✝¹ : Epi e i : image φ ⟶ Δ'' inst✝ : Mono i fac : e ≫ i = φ this : StrongEpi e ⊢ image.ι φ = i [PROOFSTEP] rw [← image.isoStrongEpiMono_hom_comp_ι e i fac, SimplexCategory.eq_id_of_isIso (image.isoStrongEpiMono e i fac).hom, Category.id_comp] [GOAL] Δ Δ'' : SimplexCategory φ : Δ ⟶ Δ'' e : Δ ⟶ image φ inst✝¹ : Epi e i : image φ ⟶ Δ'' inst✝ : Mono i fac : e ≫ i = φ ⊢ factorThruImage φ = e [PROOFSTEP] rw [← cancel_mono i, fac, ← image_ι_eq fac, image.fac]
{"mathlib_filename": "Mathlib.AlgebraicTopology.SimplexCategory", "llama_tokens": 78573}
[GOAL] α : Type u_1 inst✝ : Primcodable α p : α → Prop ⊢ ∀ (a : α), p a ↔ p (id a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → β c₁ : Computable f h₁ : ∀ (a : α), p a ↔ q (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) a : α h : p a ⊢ r ((g ∘ f) a) [PROOFSTEP] erw [← h₂, ← h₁] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → β c₁ : Computable f h₁ : ∀ (a : α), p a ↔ q (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) a : α h : p a ⊢ p a [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → β c₁ : Computable f h₁ : ∀ (a : α), p a ↔ q (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) a : α h : r ((g ∘ f) a) ⊢ p a [PROOFSTEP] rwa [h₁, h₂] [GOAL] α : Type u_1 inst✝ : Primcodable α p : α → Prop ⊢ ∀ (a : α), p a ↔ p (id a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → β c₁ : Computable f i₁ : Injective f h₁ : ∀ (a : α), p a ↔ q (f a) g : β → γ c₂ : Computable g i₂ : Injective g h₂ : ∀ (a : β), q a ↔ r (g a) a : α h : p a ⊢ r ((g ∘ f) a) [PROOFSTEP] erw [← h₂, ← h₁] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → β c₁ : Computable f i₁ : Injective f h₁ : ∀ (a : α), p a ↔ q (f a) g : β → γ c₂ : Computable g i₂ : Injective g h₂ : ∀ (a : β), q a ↔ r (g a) a : α h : p a ⊢ p a [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → β c₁ : Computable f i₁ : Injective f h₁ : ∀ (a : α), p a ↔ q (f a) g : β → γ c₂ : Computable g i₂ : Injective g h₂ : ∀ (a : β), q a ↔ r (g a) a : α h : r ((g ∘ f) a) ⊢ p a [PROOFSTEP] rwa [h₁, h₂] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β e : α ≃ β q : β → Prop h : Computable ↑e.symm ⊢ q ≤₁ (q ∘ ↑e) [PROOFSTEP] convert OneOneReducible.of_equiv _ h [GOAL] case h.e'_5 α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β e : α ≃ β q : β → Prop h : Computable ↑e.symm ⊢ q = (q ∘ ↑e) ∘ ↑e.symm [PROOFSTEP] funext [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β e : α ≃ β q : β → Prop h : Computable ↑e.symm x✝ : β ⊢ q x✝ = ((q ∘ ↑e) ∘ ↑e.symm) x✝ [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ p : α → Prop q : β → Prop h₁ : p ≤₀ q h₂ : ComputablePred q ⊢ ComputablePred p [PROOFSTEP] rcases h₁ with ⟨f, c, hf⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ p : α → Prop q : β → Prop h₂ : ComputablePred q f : α → β c : Computable f hf : ∀ (a : α), p a ↔ q (f a) ⊢ ComputablePred p [PROOFSTEP] rw [show p = fun a => q (f a) from Set.ext hf] [GOAL] case intro.intro α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ p : α → Prop q : β → Prop h₂ : ComputablePred q f : α → β c : Computable f hf : ∀ (a : α), p a ↔ q (f a) ⊢ ComputablePred fun a => q (f a) [PROOFSTEP] rcases computable_iff.1 h₂ with ⟨g, hg, rfl⟩ [GOAL] case intro.intro.intro.intro α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ p : α → Prop f : α → β c : Computable f g : β → Bool hg : Computable g h₂ : ComputablePred fun a => g a = true hf : ∀ (a : α), p a ↔ (fun a => g a = true) (f a) ⊢ ComputablePred fun a => (fun a => g a = true) (f a) [PROOFSTEP] exact ⟨by infer_instance, by simpa using hg.comp c⟩ [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ p : α → Prop f : α → β c : Computable f g : β → Bool hg : Computable g h₂ : ComputablePred fun a => g a = true hf : ∀ (a : α), p a ↔ (fun a => g a = true) (f a) ⊢ DecidablePred fun a => (fun a => g a = true) (f a) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ p : α → Prop f : α → β c : Computable f g : β → Bool hg : Computable g h₂ : ComputablePred fun a => g a = true hf : ∀ (a : α), p a ↔ (fun a => g a = true) (f a) ⊢ Computable fun a => decide ((fun a => (fun a => g a = true) (f a)) a) [PROOFSTEP] simpa using hg.comp c [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → γ c₁ : Computable f h₁ : ∀ (a : α), p a ↔ r (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) x : α ⊕ β ⊢ (p ⊕' q) x ↔ r ((f ⊕' g) x) [PROOFSTEP] cases x <;> [apply h₁; apply h₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → γ c₁ : Computable f h₁ : ∀ (a : α), p a ↔ r (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) x : α ⊕ β ⊢ (p ⊕' q) x ↔ r ((f ⊕' g) x) [PROOFSTEP] cases x [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → γ c₁ : Computable f h₁ : ∀ (a : α), p a ↔ r (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) val✝ : α ⊢ (p ⊕' q) (Sum.inl val✝) ↔ r ((f ⊕' g) (Sum.inl val✝)) [PROOFSTEP] apply h₁ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ p : α → Prop q : β → Prop r : γ → Prop f : α → γ c₁ : Computable f h₁ : ∀ (a : α), p a ↔ r (f a) g : β → γ c₂ : Computable g h₂ : ∀ (a : β), q a ↔ r (g a) val✝ : β ⊢ (p ⊕' q) (Sum.inr val✝) ↔ r ((f ⊕' g) (Sum.inr val✝)) [PROOFSTEP] apply h₂ [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p : Set α ⊢ ∀ (a : α), p a ↔ toNat p (Encodable.encode a) [PROOFSTEP] simp [toNat, setOf] [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p : Set α ⊢ ManyOneEquiv (toNat p) p [PROOFSTEP] simp [ManyOneEquiv] [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p : Set α q : Set β ⊢ ManyOneEquiv (toNat p) (toNat q) ↔ ManyOneEquiv p q [PROOFSTEP] simp [ManyOneEquiv] [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ d₂ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ p : Set ℕ q₁ q₂ : ℕ → Prop hq : ManyOneEquiv q₁ q₂ ⊢ ManyOneEquiv p p [PROOFSTEP] rfl [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ d₂ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ ⊢ ∀ (p q : ℕ → Prop), ManyOneEquiv p q → (fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p = (fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) q [PROOFSTEP] intro p₁ p₂ hp [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ d₂ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ p₁ p₂ : ℕ → Prop hp : ManyOneEquiv p₁ p₂ ⊢ (fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₁ = (fun p => ManyOneDegree.liftOn d₂ (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₂ [PROOFSTEP] induction d₂ using ManyOneDegree.ind_on [GOAL] case h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ p₁ p₂ : ℕ → Prop hp : ManyOneEquiv p₁ p₂ p✝ : Set ℕ ⊢ (fun p => ManyOneDegree.liftOn (of p✝) (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₁ = (fun p => ManyOneDegree.liftOn (of p✝) (f p) (_ : ∀ (q₁ q₂ : ℕ → Prop), ManyOneEquiv q₁ q₂ → f p q₁ = f p q₂)) p₂ [PROOFSTEP] apply h [GOAL] case h.a α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ p₁ p₂ : ℕ → Prop hp : ManyOneEquiv p₁ p₂ p✝ : Set ℕ ⊢ ManyOneEquiv p₁ p₂ case h.a α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ p₁ p₂ : ℕ → Prop hp : ManyOneEquiv p₁ p₂ p✝ : Set ℕ ⊢ ManyOneEquiv (toNat p✝) (toNat p✝) [PROOFSTEP] assumption [GOAL] case h.a α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ φ : Sort ?u.72115 d₁ : ManyOneDegree f : Set ℕ → Set ℕ → φ h : ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → f p₁ q₁ = f p₂ q₂ p₁ p₂ : ℕ → Prop hp : ManyOneEquiv p₁ p₂ p✝ : Set ℕ ⊢ ManyOneEquiv (toNat p✝) (toNat p✝) [PROOFSTEP] rfl [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p : α → Prop q : β → Prop ⊢ of p = of q ↔ ManyOneEquiv p q [PROOFSTEP] rw [of, of, Quotient.eq''] [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p : α → Prop q : β → Prop ⊢ Setoid.r (toNat p) (toNat q) ↔ ManyOneEquiv p q [PROOFSTEP] unfold Setoid.r [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p : α → Prop q : β → Prop ⊢ { r := ManyOneEquiv, iseqv := proof_1 }.1 (toNat p) (toNat q) ↔ ManyOneEquiv p q [PROOFSTEP] simp [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d : ManyOneDegree ⊢ d ≤ d [PROOFSTEP] induction d using ManyOneDegree.ind_on [GOAL] case h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p✝ : Set ℕ ⊢ of p✝ ≤ of p✝ [PROOFSTEP] simp [GOAL] case h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p✝ : Set ℕ ⊢ p✝ ≤₀ p✝ [PROOFSTEP] rfl [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ : ManyOneDegree ⊢ d₁ ≤ d₂ → d₂ ≤ d₁ → d₁ = d₂ [PROOFSTEP] induction d₁ using ManyOneDegree.ind_on [GOAL] case h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₂ : ManyOneDegree p✝ : Set ℕ ⊢ of p✝ ≤ d₂ → d₂ ≤ of p✝ → of p✝ = d₂ [PROOFSTEP] induction d₂ using ManyOneDegree.ind_on [GOAL] case h.h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p✝¹ p✝ : Set ℕ ⊢ of p✝¹ ≤ of p✝ → of p✝ ≤ of p✝¹ → of p✝¹ = of p✝ [PROOFSTEP] intro hp hq [GOAL] case h.h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p✝¹ p✝ : Set ℕ hp : of p✝¹ ≤ of p✝ hq : of p✝ ≤ of p✝¹ ⊢ of p✝¹ = of p✝ [PROOFSTEP] simp_all only [ManyOneEquiv, of_le_of, of_eq_of, true_and_iff] [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ d₃ : ManyOneDegree ⊢ d₁ ≤ d₂ → d₂ ≤ d₃ → d₁ ≤ d₃ [PROOFSTEP] induction d₁ using ManyOneDegree.ind_on [GOAL] case h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₂ d₃ : ManyOneDegree p✝ : Set ℕ ⊢ of p✝ ≤ d₂ → d₂ ≤ d₃ → of p✝ ≤ d₃ [PROOFSTEP] induction d₂ using ManyOneDegree.ind_on [GOAL] case h.h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₃ : ManyOneDegree p✝¹ p✝ : Set ℕ ⊢ of p✝¹ ≤ of p✝ → of p✝ ≤ d₃ → of p✝¹ ≤ d₃ [PROOFSTEP] induction d₃ using ManyOneDegree.ind_on [GOAL] case h.h.h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p✝² p✝¹ p✝ : Set ℕ ⊢ of p✝² ≤ of p✝¹ → of p✝¹ ≤ of p✝ → of p✝² ≤ of p✝ [PROOFSTEP] apply ManyOneReducible.trans [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ : ManyOneDegree ⊢ ∀ (p₁ p₂ q₁ q₂ : ℕ → Prop), ManyOneEquiv p₁ p₂ → ManyOneEquiv q₁ q₂ → (fun a b => of (a ⊕' b)) p₁ q₁ = (fun a b => of (a ⊕' b)) p₂ q₂ [PROOFSTEP] rintro a b c d ⟨hl₁, hr₁⟩ ⟨hl₂, hr₂⟩ [GOAL] case intro.intro α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ : ManyOneDegree a b c d : ℕ → Prop hl₁ : a ≤₀ b hr₁ : b ≤₀ a hl₂ : c ≤₀ d hr₂ : d ≤₀ c ⊢ (fun a b => of (a ⊕' b)) a c = (fun a b => of (a ⊕' b)) b d [PROOFSTEP] rw [of_eq_of] [GOAL] case intro.intro α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ : ManyOneDegree a b c d : ℕ → Prop hl₁ : a ≤₀ b hr₁ : b ≤₀ a hl₂ : c ≤₀ d hr₂ : d ≤₀ c ⊢ ManyOneEquiv (a ⊕' c) (b ⊕' d) [PROOFSTEP] exact ⟨disjoin_manyOneReducible (hl₁.trans OneOneReducible.disjoin_left.to_many_one) (hl₂.trans OneOneReducible.disjoin_right.to_many_one), disjoin_manyOneReducible (hr₁.trans OneOneReducible.disjoin_left.to_many_one) (hr₂.trans OneOneReducible.disjoin_right.to_many_one)⟩ [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ d₃ : ManyOneDegree ⊢ d₁ + d₂ ≤ d₃ ↔ d₁ ≤ d₃ ∧ d₂ ≤ d₃ [PROOFSTEP] induction d₁ using ManyOneDegree.ind_on [GOAL] case h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₂ d₃ : ManyOneDegree p✝ : Set ℕ ⊢ of p✝ + d₂ ≤ d₃ ↔ of p✝ ≤ d₃ ∧ d₂ ≤ d₃ [PROOFSTEP] induction d₂ using ManyOneDegree.ind_on [GOAL] case h.h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₃ : ManyOneDegree p✝¹ p✝ : Set ℕ ⊢ of p✝¹ + of p✝ ≤ d₃ ↔ of p✝¹ ≤ d₃ ∧ of p✝ ≤ d₃ [PROOFSTEP] induction d₃ using ManyOneDegree.ind_on [GOAL] case h.h.h α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ p✝² p✝¹ p✝ : Set ℕ ⊢ of p✝² + of p✝¹ ≤ of p✝ ↔ of p✝² ≤ of p✝ ∧ of p✝¹ ≤ of p✝ [PROOFSTEP] simpa only [← add_of, of_le_of] using disjoin_le [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ : ManyOneDegree ⊢ d₁ + ?m.117648 d₁ d₂ ≤ d₁ + d₂ [PROOFSTEP] rfl [GOAL] α : Type u inst✝⁵ : Primcodable α inst✝⁴ : Inhabited α β : Type v inst✝³ : Primcodable β inst✝² : Inhabited β γ : Type w inst✝¹ : Primcodable γ inst✝ : Inhabited γ d₁ d₂ : ManyOneDegree ⊢ ?m.117829 d₁ d₂ + d₂ ≤ d₁ + d₂ [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Computability.Reduce", "llama_tokens": 9456}
{"mathlib_filename": "Mathlib.Util.AtomM", "llama_tokens": 0}
[GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous reflTransSymmAux [PROOFSTEP] refine' continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x.snd [PROOFSTEP] continuity [GOAL] case refine'_2 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 1 / 2 [PROOFSTEP] continuity [GOAL] case refine'_3 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x.fst * 2 * ↑x.snd [PROOFSTEP] continuity [GOAL] case refine'_4 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x.fst * (2 - 2 * ↑x.snd) [PROOFSTEP] continuity [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I × ↑I), ↑x.snd = 1 / 2 → ↑x.fst * 2 * ↑x.snd = ↑x.fst * (2 - 2 * ↑x.snd) [PROOFSTEP] intro x hx [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I hx : ↑x.snd = 1 / 2 ⊢ ↑x.fst * 2 * ↑x.snd = ↑x.fst * (2 - 2 * ↑x.snd) [PROOFSTEP] rw [hx, mul_assoc] [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I hx : ↑x.snd = 1 / 2 ⊢ ↑x.fst * (2 * (1 / 2)) = ↑x.fst * (2 - 2 * (1 / 2)) [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I ⊢ reflTransSymmAux x ∈ I [PROOFSTEP] dsimp only [reflTransSymmAux] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I ⊢ (if ↑x.snd ≤ 1 / 2 then ↑x.fst * 2 * ↑x.snd else ↑x.fst * (2 - 2 * ↑x.snd)) ∈ I [PROOFSTEP] split_ifs [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ ↑x.fst * 2 * ↑x.snd ∈ I [PROOFSTEP] constructor [GOAL] case pos.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.fst * 2 * ↑x.snd [PROOFSTEP] apply mul_nonneg [GOAL] case pos.left.ha X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.fst * 2 [PROOFSTEP] apply mul_nonneg [GOAL] case pos.left.ha.ha X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.fst [PROOFSTEP] unit_interval [GOAL] case pos.left.ha.hb X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ 2 [PROOFSTEP] norm_num [GOAL] case pos.left.hb X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.snd [PROOFSTEP] unit_interval [GOAL] case pos.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ ↑x.fst * 2 * ↑x.snd ≤ 1 [PROOFSTEP] rw [mul_assoc] [GOAL] case pos.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ ↑x.fst * (2 * ↑x.snd) ≤ 1 [PROOFSTEP] apply mul_le_one [GOAL] case pos.right.ha X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ ↑x.fst ≤ 1 [PROOFSTEP] unit_interval [GOAL] case pos.right.hb' X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ 2 * ↑x.snd [PROOFSTEP] apply mul_nonneg [GOAL] case pos.right.hb'.ha X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ 2 [PROOFSTEP] norm_num [GOAL] case pos.right.hb'.hb X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.snd [PROOFSTEP] unit_interval [GOAL] case pos.right.hb X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ↑x.snd ≤ 1 / 2 ⊢ 2 * ↑x.snd ≤ 1 [PROOFSTEP] linarith [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ ↑x.fst * (2 - 2 * ↑x.snd) ∈ I [PROOFSTEP] constructor [GOAL] case neg.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.fst * (2 - 2 * ↑x.snd) [PROOFSTEP] apply mul_nonneg [GOAL] case neg.left.ha X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ 0 ≤ ↑x.fst [PROOFSTEP] unit_interval [GOAL] case neg.left.hb X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ 0 ≤ 2 - 2 * ↑x.snd [PROOFSTEP] linarith [unitInterval.nonneg x.2, unitInterval.le_one x.2] [GOAL] case neg.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ ↑x.fst * (2 - 2 * ↑x.snd) ≤ 1 [PROOFSTEP] apply mul_le_one [GOAL] case neg.right.ha X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ ↑x.fst ≤ 1 [PROOFSTEP] unit_interval [GOAL] case neg.right.hb' X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ 0 ≤ 2 - 2 * ↑x.snd [PROOFSTEP] linarith [unitInterval.nonneg x.2, unitInterval.le_one x.2] [GOAL] case neg.right.hb X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I × ↑I h✝ : ¬↑x.snd ≤ 1 / 2 ⊢ 2 - 2 * ↑x.snd ≤ 1 [PROOFSTEP] linarith [unitInterval.nonneg x.2, unitInterval.le_one x.2] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ Continuous fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) } [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (0, x) = ↑(Path.refl x₀).toContinuousMap x [PROOFSTEP] simp [reflTransSymmAux] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I ⊢ ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (1, x) = ↑(Path.trans p (Path.symm p)).toContinuousMap x [PROOFSTEP] dsimp only [reflTransSymmAux, Path.coe_toContinuousMap, Path.trans] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I ⊢ ↑p { val := if ↑x ≤ 1 / 2 then ↑1 * 2 * ↑x else ↑1 * (2 - 2 * ↑x), property := (_ : reflTransSymmAux (1, x) ∈ I) } = ↑(ContinuousMap.mk ((fun t => if t ≤ 1 / 2 then extend p (2 * t) else extend (Path.symm p) (2 * t - 1)) ∘ Subtype.val)) x [PROOFSTEP] change _ = ite _ _ _ [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I ⊢ ↑p { val := if ↑x ≤ 1 / 2 then ↑1 * 2 * ↑x else ↑1 * (2 - 2 * ↑x), property := (_ : reflTransSymmAux (1, x) ∈ I) } = if ↑x ≤ 1 / 2 then extend p (2 * ↑x) else extend (Path.symm p) (2 * ↑x - 1) [PROOFSTEP] split_ifs with h [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ↑x ≤ 1 / 2 ⊢ ↑p { val := ↑1 * 2 * ↑x, property := (_ : (fun x => x ∈ I) (↑1 * 2 * ↑x)) } = extend p (2 * ↑x) [PROOFSTEP] rw [Path.extend, Set.IccExtend_of_mem] [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ↑x ≤ 1 / 2 ⊢ ↑p { val := ↑1 * 2 * ↑x, property := (_ : (fun x => x ∈ I) (↑1 * 2 * ↑x)) } = ↑p { val := 2 * ↑x, property := ?pos.hx✝ } [PROOFSTEP] norm_num [GOAL] case pos.hx X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ↑x ≤ 1 / 2 ⊢ 2 * ↑x ∈ Set.Icc 0 1 [PROOFSTEP] rw [unitInterval.mul_pos_mem_iff zero_lt_two] [GOAL] case pos.hx X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ↑x ≤ 1 / 2 ⊢ ↑x ∈ Set.Icc 0 (1 / 2) [PROOFSTEP] exact ⟨unitInterval.nonneg x, h⟩ [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ ↑p { val := ↑1 * (2 - 2 * ↑x), property := (_ : (fun x => x ∈ I) (↑1 * (2 - 2 * ↑x))) } = extend (Path.symm p) (2 * ↑x - 1) [PROOFSTEP] rw [Path.symm, Path.extend, Set.IccExtend_of_mem] [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ ↑p { val := ↑1 * (2 - 2 * ↑x), property := (_ : (fun x => x ∈ I) (↑1 * (2 - 2 * ↑x))) } = ↑{ toContinuousMap := ContinuousMap.mk (↑p ∘ σ), source' := (_ : ContinuousMap.toFun (ContinuousMap.mk (↑p ∘ σ)) 0 = x₁), target' := (_ : ContinuousMap.toFun (ContinuousMap.mk (↑p ∘ σ)) 1 = x₀) } { val := 2 * ↑x - 1, property := ?neg.hx✝ } [PROOFSTEP] simp only [Set.Icc.coe_one, one_mul, coe_mk_mk, Function.comp_apply] [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ ↑p { val := 2 - 2 * ↑x, property := (_ : (fun x => x ∈ I) (2 - 2 * ↑x)) } = ↑p (σ { val := 2 * ↑x - 1, property := ?neg.hx✝ }) [PROOFSTEP] congr 1 [GOAL] case neg.h.e_6.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ { val := 2 - 2 * ↑x, property := (_ : (fun x => x ∈ I) (2 - 2 * ↑x)) } = σ { val := 2 * ↑x - 1, property := ?neg.hx✝ } [PROOFSTEP] ext -- Porting note: norm_num ignores arguments. [GOAL] case neg.h.e_6.h.a X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ ↑{ val := 2 - 2 * ↑x, property := (_ : (fun x => x ∈ I) (2 - 2 * ↑x)) } = ↑(σ { val := 2 * ↑x - 1, property := ?neg.hx✝ }) [PROOFSTEP] simp [sub_sub_eq_add_sub] [GOAL] case neg.h.e_6.h.a X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ 2 = 1 + 1 [PROOFSTEP] norm_num [GOAL] case neg.hx X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ 2 * ↑x - 1 ∈ Set.Icc 0 1 [PROOFSTEP] rw [unitInterval.two_mul_sub_one_mem_iff] [GOAL] case neg.hx X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x : ↑I h : ¬↑x ≤ 1 / 2 ⊢ ↑x ∈ Set.Icc (1 / 2) 1 [PROOFSTEP] exact ⟨(not_le.1 h).le, unitInterval.le_one x⟩ [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x ∈ {0, 1} ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }, map_zero_left := (_ : ∀ (a : ↑I), ↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀), map_one_left := (_ : ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (1, x) = ↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap (t, x)) x = ↑(Path.refl x₀).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }, map_zero_left := (_ : ∀ (a : ↑I), ↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀), map_one_left := (_ : ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (1, x) = ↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap (t, x)) x = ↑(Path.trans p (Path.symm p)).toContinuousMap x [PROOFSTEP] simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at hx [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ∨ x = 1 ⊢ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }, map_zero_left := (_ : ∀ (a : ↑I), ↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀), map_one_left := (_ : ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (1, x) = ↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap (t, x)) x = ↑(Path.refl x₀).toContinuousMap x ∧ ↑(ContinuousMap.mk fun x => ContinuousMap.toFun { toContinuousMap := ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }, map_zero_left := (_ : ∀ (a : ↑I), ↑p { val := reflTransSymmAux (0, a), property := (_ : reflTransSymmAux (0, a) ∈ I) } = x₀), map_one_left := (_ : ∀ (x : ↑I), ContinuousMap.toFun (ContinuousMap.mk fun x => ↑p { val := reflTransSymmAux x, property := (_ : reflTransSymmAux x ∈ I) }) (1, x) = ↑(Path.trans p (Path.symm p)).toContinuousMap x) }.toContinuousMap (t, x)) x = ↑(Path.trans p (Path.symm p)).toContinuousMap x [PROOFSTEP] simp only [ContinuousMap.coe_mk, coe_toContinuousMap, Path.refl_apply] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ∨ x = 1 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] cases hx with | inl hx| inr hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ∨ x = 1 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] cases hx with | inl hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num | inr hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ∨ x = 1 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] cases hx with | inl hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num | inr hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] | inl hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] rw [hx] [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ⊢ ↑p { val := reflTransSymmAux (t, 0), property := (_ : reflTransSymmAux (t, 0) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, 0), property := (_ : reflTransSymmAux (t, 0) ∈ I) } = ↑(Path.trans p (Path.symm p)) 0 [PROOFSTEP] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] [GOAL] case inl X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 0 ⊢ ↑p { val := if 0 ≤ 2 then 0 else ↑t * 2, property := (_ : (fun x => x ∈ I) (if 0 ≤ 2 then 0 else ↑t * 2)) } = x₀ [PROOFSTEP] norm_num [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 1 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] | inr hx => rw [hx] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] norm_num [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 1 ⊢ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, x), property := (_ : reflTransSymmAux (t, x) ∈ I) } = ↑(Path.trans p (Path.symm p)) x [PROOFSTEP] rw [hx] [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 1 ⊢ ↑p { val := reflTransSymmAux (t, 1), property := (_ : reflTransSymmAux (t, 1) ∈ I) } = x₀ ∧ ↑p { val := reflTransSymmAux (t, 1), property := (_ : reflTransSymmAux (t, 1) ∈ I) } = ↑(Path.trans p (Path.symm p)) 1 [PROOFSTEP] simp only [reflTransSymmAux, Set.Icc.coe_zero, Set.Icc.coe_one, one_div, mul_one, inv_nonneg, mul_zero, sub_zero, sub_self, Path.source, Path.target, and_self] [GOAL] case inr X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ t x : ↑I hx : x = 1 ⊢ ↑p { val := if 1 ≤ 2⁻¹ then ↑t * 2 else 0, property := (_ : (fun x => x ∈ I) (if 1 ≤ 2⁻¹ then ↑t * 2 else 0)) } = x₀ [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous transReflReparamAux [PROOFSTEP] refine' continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _ <;> [continuity; continuity; continuity; continuity; skip] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous transReflReparamAux [PROOFSTEP] refine' continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x [PROOFSTEP] continuity [GOAL] case refine'_2 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 1 / 2 [PROOFSTEP] continuity [GOAL] case refine'_3 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 2 * ↑x [PROOFSTEP] continuity [GOAL] case refine'_4 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 1 [PROOFSTEP] continuity [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I), ↑x = 1 / 2 → 2 * ↑x = 1 [PROOFSTEP] skip [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I), ↑x = 1 / 2 → 2 * ↑x = 1 [PROOFSTEP] intro x hx [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I hx : ↑x = 1 / 2 ⊢ 2 * ↑x = 1 [PROOFSTEP] simp [hx] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I ⊢ transReflReparamAux t ∈ I [PROOFSTEP] unfold transReflReparamAux [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I ⊢ (if ↑t ≤ 1 / 2 then 2 * ↑t else 1) ∈ I [PROOFSTEP] split_ifs [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ 2 * ↑t ∈ I [PROOFSTEP] constructor [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 ∈ I [PROOFSTEP] constructor [GOAL] case pos.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ 0 ≤ 2 * ↑t [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case pos.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ↑t ≤ 1 / 2 ⊢ 2 * ↑t ≤ 1 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case neg.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 0 ≤ 1 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case neg.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 ≤ 1 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ transReflReparamAux 0 = 0 [PROOFSTEP] simp [transReflReparamAux] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ 2 < 0 → False [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ transReflReparamAux 1 = 1 [PROOFSTEP] simp [transReflReparamAux] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ 1 ≤ 2⁻¹ → False [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ Continuous fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) } [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ Path.trans p (Path.refl x₁) = Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) (_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) }) (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0) (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1) [PROOFSTEP] ext [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I ⊢ ↑(Path.trans p (Path.refl x₁)) x✝ = ↑(Path.reparam p (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) (_ : Continuous fun x => { val := transReflReparamAux x, property := (_ : transReflReparamAux x ∈ I) }) (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0) (_ : (fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1)) x✝ [PROOFSTEP] unfold transReflReparamAux [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I ⊢ ↑(Path.trans p (Path.refl x₁)) x✝ = ↑(Path.reparam p (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) (_ : Continuous fun x => { val := if ↑x ≤ 1 / 2 then 2 * ↑x else 1, property := (_ : transReflReparamAux x ∈ I) }) (_ : (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 0 = 0) (_ : (fun t => { val := if ↑t ≤ 1 / 2 then 2 * ↑t else 1, property := (_ : transReflReparamAux t ∈ I) }) 1 = 1)) x✝ [PROOFSTEP] simp only [Path.trans_apply, not_le, coe_reparam, Function.comp_apply, one_div, Path.refl_apply] [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I ⊢ (if h : ↑x✝ ≤ 2⁻¹ then ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } else x₁) = ↑p { val := if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1, property := (_ : (fun x => x ∈ I) (if ↑x✝ ≤ 2⁻¹ then 2 * ↑x✝ else 1)) } [PROOFSTEP] split_ifs [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I h✝¹ : ↑x✝ ≤ 2⁻¹ h✝ : ↑x✝ ≤ 2⁻¹ ⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } = ↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) } [PROOFSTEP] rfl [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I h✝¹ : ↑x✝ ≤ 2⁻¹ h✝ : ¬↑x✝ ≤ 2⁻¹ ⊢ ↑p { val := 2 * ↑x✝, property := (_ : 2 * ↑x✝ ∈ I) } = ↑p { val := 2 * ↑x✝, property := (_ : (fun x => x ∈ I) (2 * ↑x✝)) } [PROOFSTEP] rfl [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I h✝¹ : ¬↑x✝ ≤ 2⁻¹ h✝ : ↑x✝ ≤ 2⁻¹ ⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) } [PROOFSTEP] simp [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ x✝ : ↑I h✝¹ : ¬↑x✝ ≤ 2⁻¹ h✝ : ¬↑x✝ ≤ 2⁻¹ ⊢ x₁ = ↑p { val := 1, property := (_ : (fun x => x ∈ I) 1) } [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ Continuous fun t => { val := transReflReparamAux t, property := (_ : transReflReparamAux t ∈ I) } [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ Path.symm (Path.trans (Path.symm p) (Path.refl x₀)) = Path.trans (Path.refl x₀) p [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X p : Path x₀ x₁ ⊢ Path.symm (Path.symm p) = p [PROOFSTEP] simp [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous transAssocReparamAux [PROOFSTEP] refine' continuous_if_le _ _ (Continuous.continuousOn _) (continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _).continuousOn _ <;> [continuity; continuity; continuity; continuity; continuity; continuity; continuity; skip; skip] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous transAssocReparamAux [PROOFSTEP] refine' continuous_if_le _ _ (Continuous.continuousOn _) (continuous_if_le _ _ (Continuous.continuousOn _) (Continuous.continuousOn _) _).continuousOn _ [GOAL] case refine'_1 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x [PROOFSTEP] continuity [GOAL] case refine'_2 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 1 / 4 [PROOFSTEP] continuity [GOAL] case refine'_3 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 2 * ↑x [PROOFSTEP] continuity [GOAL] case refine'_4 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x [PROOFSTEP] continuity [GOAL] case refine'_5 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 1 / 2 [PROOFSTEP] continuity [GOAL] case refine'_6 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => ↑x + 1 / 4 [PROOFSTEP] continuity [GOAL] case refine'_7 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ Continuous fun x => 1 / 2 * (↑x + 1) [PROOFSTEP] continuity [GOAL] case refine'_8 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I), ↑x = 1 / 2 → ↑x + 1 / 4 = 1 / 2 * (↑x + 1) [PROOFSTEP] skip [GOAL] case refine'_9 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I), ↑x = 1 / 4 → 2 * ↑x = if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1) [PROOFSTEP] skip [GOAL] case refine'_8 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I), ↑x = 1 / 2 → ↑x + 1 / 4 = 1 / 2 * (↑x + 1) [PROOFSTEP] intro x hx [GOAL] case refine'_8 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I hx : ↑x = 1 / 2 ⊢ ↑x + 1 / 4 = 1 / 2 * (↑x + 1) [PROOFSTEP] simp [hx] [GOAL] case refine'_8 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I hx : ↑x = 1 / 2 ⊢ 2⁻¹ + 4⁻¹ = 2⁻¹ * (2⁻¹ + 1) [PROOFSTEP] norm_num [GOAL] case refine'_9 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ ∀ (x : ↑I), ↑x = 1 / 4 → 2 * ↑x = if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1) [PROOFSTEP] intro x hx [GOAL] case refine'_9 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I hx : ↑x = 1 / 4 ⊢ 2 * ↑x = if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1) [PROOFSTEP] simp [hx] [GOAL] case refine'_9 X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x : ↑I hx : ↑x = 1 / 4 ⊢ 2 * 4⁻¹ = if 4⁻¹ ≤ 2⁻¹ then 4⁻¹ + 4⁻¹ else 2⁻¹ * (4⁻¹ + 1) [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I ⊢ transAssocReparamAux t ∈ I [PROOFSTEP] unfold transAssocReparamAux [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I ⊢ (if ↑t ≤ 1 / 4 then 2 * ↑t else if ↑t ≤ 1 / 2 then ↑t + 1 / 4 else 1 / 2 * (↑t + 1)) ∈ I [PROOFSTEP] split_ifs [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ↑t ≤ 1 / 4 ⊢ 2 * ↑t ∈ I [PROOFSTEP] constructor [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝¹ : ¬↑t ≤ 1 / 4 h✝ : ↑t ≤ 1 / 2 ⊢ ↑t + 1 / 4 ∈ I [PROOFSTEP] constructor [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝¹ : ¬↑t ≤ 1 / 4 h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 / 2 * (↑t + 1) ∈ I [PROOFSTEP] constructor [GOAL] case pos.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ↑t ≤ 1 / 4 ⊢ 0 ≤ 2 * ↑t [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case pos.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝ : ↑t ≤ 1 / 4 ⊢ 2 * ↑t ≤ 1 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case pos.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝¹ : ¬↑t ≤ 1 / 4 h✝ : ↑t ≤ 1 / 2 ⊢ 0 ≤ ↑t + 1 / 4 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case pos.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝¹ : ¬↑t ≤ 1 / 4 h✝ : ↑t ≤ 1 / 2 ⊢ ↑t + 1 / 4 ≤ 1 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case neg.left X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝¹ : ¬↑t ≤ 1 / 4 h✝ : ¬↑t ≤ 1 / 2 ⊢ 0 ≤ 1 / 2 * (↑t + 1) [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] case neg.right X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X t : ↑I h✝¹ : ¬↑t ≤ 1 / 4 h✝ : ¬↑t ≤ 1 / 2 ⊢ 1 / 2 * (↑t + 1) ≤ 1 [PROOFSTEP] linarith [unitInterval.le_one t, unitInterval.nonneg t] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ transAssocReparamAux 0 = 0 [PROOFSTEP] simp [transAssocReparamAux] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ 4 < 0 → (if 0 ≤ 2 then 4⁻¹ else 2⁻¹) = 0 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ transAssocReparamAux 1 = 1 [PROOFSTEP] simp [transAssocReparamAux] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X ⊢ (if 1 ≤ 4⁻¹ then 2 else if 1 ≤ 2⁻¹ then 1 + 4⁻¹ else 2⁻¹ * (1 + 1)) = 1 [PROOFSTEP] norm_num [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ ⊢ Continuous fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) } [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ ⊢ Path.trans (Path.trans p q) r = Path.reparam (Path.trans p (Path.trans q r)) (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) (_ : Continuous fun x => { val := transAssocReparamAux x, property := (_ : transAssocReparamAux x ∈ I) }) (_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 0 = 0) (_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 1 = 1) [PROOFSTEP] ext x [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I ⊢ ↑(Path.trans (Path.trans p q) r) x = ↑(Path.reparam (Path.trans p (Path.trans q r)) (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) (_ : Continuous fun x => { val := transAssocReparamAux x, property := (_ : transAssocReparamAux x ∈ I) }) (_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 0 = 0) (_ : (fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) }) 1 = 1)) x [PROOFSTEP] simp only [transAssocReparamAux, Path.trans_apply, mul_inv_cancel_left₀, not_le, Function.comp_apply, Ne.def, not_false_iff, bit0_eq_zero, one_ne_zero, mul_ite, Subtype.coe_mk, Path.coe_reparam] -- TODO: why does split_ifs not reduce the ifs?????? [GOAL] case a.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I ⊢ (if h : ↑x ≤ 1 / 2 then if h_1 : 2 * ↑x ≤ 1 / 2 then ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } else ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } else ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) }) = if h : (if ↑x ≤ 1 / 4 then 2 * ↑x else if ↑x ≤ 1 / 2 then ↑x + 1 / 4 else 1 / 2 * (↑x + 1)) ≤ 1 / 2 then ↑p { val := if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1)), property := (_ : (fun x => x ∈ I) (if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1)))) } else if h_1 : (if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1 ≤ 1 / 2 then ↑q { val := 2 * ((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1), property := (_ : 2 * ↑{ val := (if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1, property := (_ : (fun x => x ∈ I) ((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1)) } ∈ I) } else ↑r { val := 2 * ((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1) - 1, property := (_ : 2 * ↑{ val := (if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1, property := (_ : (fun x => x ∈ I) ((if ↑x ≤ 1 / 4 then 2 * (2 * ↑x) else if ↑x ≤ 1 / 2 then 2 * (↑x + 1 / 4) else 2 * (1 / 2 * (↑x + 1))) - 1)) } - 1 ∈ I) } [PROOFSTEP] split_ifs with h₁ h₂ h₃ h₄ h₅ [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ↑x ≤ 1 / 4 ⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } = ↑p { val := 2 * (2 * ↑x), property := (_ : (fun x => x ∈ I) (2 * (2 * ↑x))) } [PROOFSTEP] rfl [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ¬↑x ≤ 1 / 4 h₄ : ↑x + 1 / 4 ≤ 1 / 2 ⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } = ↑p { val := 2 * (↑x + 1 / 4), property := (_ : (fun x => x ∈ I) (2 * (↑x + 1 / 4))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ¬↑x ≤ 1 / 4 h₄ : ↑x + 1 / 4 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ¬↑x ≤ 1 / 4 h₄ : ¬↑x + 1 / 4 ≤ 1 / 2 h₅ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } = ↑q { val := 2 * (2 * (↑x + 1 / 4) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ¬↑x ≤ 1 / 4 h₄ : ¬↑x + 1 / 4 ≤ 1 / 2 h₅ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ¬↑x ≤ 1 / 4 h₄ : ¬↑x + 1 / 4 ≤ 1 / 2 h₅ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ ↑p { val := 2 * (2 * ↑x), property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } ∈ I) } = ↑r { val := 2 * (2 * (↑x + 1 / 4) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1) - 1)) } [PROOFSTEP] exfalso [GOAL] case neg.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : 2 * ↑x ≤ 1 / 2 h₃ : ¬↑x ≤ 1 / 4 h₄ : ¬↑x + 1 / 4 ≤ 1 / 2 h₅ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝¹ : ↑x ≤ 1 / 4 h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } = ↑q { val := 2 * (2 * (2 * ↑x) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝¹ : ↑x ≤ 1 / 4 h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝¹ : ↑x ≤ 1 / 4 h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } = ↑r { val := 2 * (2 * (2 * ↑x) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1) - 1)) } [PROOFSTEP] exfalso [GOAL] case neg.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝¹ : ↑x ≤ 1 / 4 h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝¹ : ¬↑x ≤ 1 / 4 h✝ : ↑x + 1 / 4 ≤ 1 / 2 ⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } = ↑p { val := 2 * (↑x + 1 / 4), property := (_ : (fun x => x ∈ I) (2 * (↑x + 1 / 4))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝¹ : ¬↑x ≤ 1 / 4 h✝ : ↑x + 1 / 4 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2 h✝ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } = ↑q { val := 2 * (2 * (↑x + 1 / 4) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1))) } [PROOFSTEP] have h : 2 * (2 * (x : ℝ)) - 1 = 2 * (2 * (↑x + 1 / 4) - 1) := by linarith [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2 h✝ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ 2 * (2 * ↑x) - 1 = 2 * (2 * (↑x + 1 / 4) - 1) [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2 h✝ : 2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 h : 2 * (2 * ↑x) - 1 = 2 * (2 * (↑x + 1 / 4) - 1) ⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } = ↑q { val := 2 * (2 * (↑x + 1 / 4) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1))) } [PROOFSTEP] simp [h₂, h₁, h, dif_neg (show ¬False from id), dif_pos True.intro, if_false, if_true] [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2 h✝ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ ↑q { val := 2 * (2 * ↑x) - 1, property := (_ : 2 * ↑{ val := 2 * ↑x, property := (_ : 2 * ↑x ∈ I) } - 1 ∈ I) } = ↑r { val := 2 * (2 * (↑x + 1 / 4) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (↑x + 1 / 4) - 1) - 1)) } [PROOFSTEP] exfalso [GOAL] case neg.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ↑x ≤ 1 / 2 h₂ : ¬2 * ↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬↑x + 1 / 4 ≤ 1 / 2 h✝ : ¬2 * (↑x + 1 / 4) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝¹ : ↑x ≤ 1 / 4 h✝ : 2 * ↑x ≤ 1 / 2 ⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } = ↑p { val := 2 * (2 * ↑x), property := (_ : (fun x => x ∈ I) (2 * (2 * ↑x))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝¹ : ↑x ≤ 1 / 4 h✝ : 2 * ↑x ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ↑x ≤ 1 / 4 h✝¹ : ¬2 * ↑x ≤ 1 / 2 h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } = ↑q { val := 2 * (2 * (2 * ↑x) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ↑x ≤ 1 / 4 h✝¹ : ¬2 * ↑x ≤ 1 / 2 h✝ : 2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ↑x ≤ 1 / 4 h✝¹ : ¬2 * ↑x ≤ 1 / 2 h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } = ↑r { val := 2 * (2 * (2 * ↑x) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (2 * ↑x) - 1) - 1)) } [PROOFSTEP] exfalso [GOAL] case neg.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ↑x ≤ 1 / 4 h✝¹ : ¬2 * ↑x ≤ 1 / 2 h✝ : ¬2 * (2 * ↑x) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝¹ : ¬↑x ≤ 1 / 4 h✝ : 1 / 2 * (↑x + 1) ≤ 1 / 2 ⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } = ↑p { val := 2 * (1 / 2 * (↑x + 1)), property := (_ : (fun x => x ∈ I) (2 * (1 / 2 * (↑x + 1)))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝¹ : ¬↑x ≤ 1 / 4 h✝ : 1 / 2 * (↑x + 1) ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case pos X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2 h✝ : 2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2 ⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } = ↑q { val := 2 * (2 * (1 / 2 * (↑x + 1)) - 1), property := (_ : (fun x => x ∈ I) (2 * (2 * (1 / 2 * (↑x + 1)) - 1))) } [PROOFSTEP] exfalso [GOAL] case pos.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2 h✝ : 2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2 ⊢ False [PROOFSTEP] linarith [GOAL] case neg X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2 h✝ : ¬2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2 ⊢ ↑r { val := 2 * ↑x - 1, property := (_ : 2 * ↑x - 1 ∈ I) } = ↑r { val := 2 * (2 * (1 / 2 * (↑x + 1)) - 1) - 1, property := (_ : (fun x => x ∈ I) (2 * (2 * (1 / 2 * (↑x + 1)) - 1) - 1)) } [PROOFSTEP] congr [GOAL] case neg.h.e_6.h.e_val.e_a.e_a X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ x : ↑I h₁ : ¬↑x ≤ 1 / 2 h✝² : ¬↑x ≤ 1 / 4 h✝¹ : ¬1 / 2 * (↑x + 1) ≤ 1 / 2 h✝ : ¬2 * (1 / 2 * (↑x + 1)) - 1 ≤ 1 / 2 ⊢ ↑x = 2 * (1 / 2 * (↑x + 1)) - 1 [PROOFSTEP] ring [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀✝ x₁✝ x₀ x₁ x₂ x₃ : X p : Path x₀ x₁ q : Path x₁ x₂ r : Path x₂ x₃ ⊢ Continuous fun t => { val := transAssocReparamAux t, property := (_ : transAssocReparamAux t ∈ I) } [PROOFSTEP] continuity [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x y : FundamentalGroupoid X p : x ⟶ y ⊢ ∀ (a b : Path x y), a ≈ b → (fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) a = (fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) b [PROOFSTEP] rintro a b ⟨h⟩ [GOAL] case intro X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x y : FundamentalGroupoid X p : x ⟶ y a b : Path x y h : Path.Homotopy a b ⊢ (fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) a = (fun l => Quotient.mk (Path.Homotopic.setoid y x) (Path.symm l)) b [PROOFSTEP] simp only [GOAL] case intro X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x y : FundamentalGroupoid X p : x ⟶ y a b : Path x y h : Path.Homotopy a b ⊢ Quotient.mk (Path.Homotopic.setoid y x) (Path.symm a) = Quotient.mk (Path.Homotopic.setoid y x) (Path.symm b) [PROOFSTEP] rw [Quotient.eq] [GOAL] case intro X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X x y : FundamentalGroupoid X p : x ⟶ y a b : Path x y h : Path.Homotopy a b ⊢ Path.symm a ≈ Path.symm b [PROOFSTEP] exact ⟨h.symm₂⟩ [GOAL] X✝¹ : Type u Y✝¹ : Type v inst✝¹ : TopologicalSpace X✝¹ inst✝ : TopologicalSpace Y✝¹ x₀ x₁ : X✝¹ X✝ Y✝ : TopCat f : X✝ ⟶ Y✝ X Y : ↑((fun X => Bundled.mk (FundamentalGroupoid ↑X)) X✝) p : X ⟶ Y ⊢ ↑f X ⟶ ↑f Y [PROOFSTEP] exact Path.Homotopic.Quotient.mapFn p f [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ : TopCat f : X✝ ⟶ Y✝ x y z : ↑((fun X => Bundled.mk (FundamentalGroupoid ↑X)) X✝) p : x ⟶ y q : y ⟶ z ⊢ { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map (p ≫ q) = { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map p ≫ { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map q [PROOFSTEP] refine' Quotient.inductionOn₂ p q fun a b => _ [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ : TopCat f : X✝ ⟶ Y✝ x y z : ↑((fun X => Bundled.mk (FundamentalGroupoid ↑X)) X✝) p : x ⟶ y q : y ⟶ z a : Path x y b : Path y z ⊢ { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map (Quotient.mk (Path.Homotopic.setoid x y) a ≫ Quotient.mk (Path.Homotopic.setoid y z) b) = { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map (Quotient.mk (Path.Homotopic.setoid x y) a) ≫ { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }.map (Quotient.mk (Path.Homotopic.setoid y z) b) [PROOFSTEP] simp only [comp_eq, ← Path.Homotopic.map_lift, ← Path.Homotopic.comp_lift, Path.map_trans] [GOAL] X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat ⊢ { obj := fun X => Bundled.mk (FundamentalGroupoid ↑X), map := fun {X Y} f => CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map (𝟙 X) = 𝟙 ({ obj := fun X => Bundled.mk (FundamentalGroupoid ↑X), map := fun {X Y} f => CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.obj X) [PROOFSTEP] simp only [GOAL] X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat ⊢ CategoryTheory.Functor.mk { obj := ↑(𝟙 X), map := fun {X_1 Y} p => Path.Homotopic.Quotient.mapFn p (𝟙 X) } = 𝟙 (Bundled.mk (FundamentalGroupoid ↑X)) [PROOFSTEP] change _ = (⟨_, _, _⟩ : FundamentalGroupoid X ⥤ FundamentalGroupoid X) [GOAL] X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat ⊢ CategoryTheory.Functor.mk { obj := ↑(𝟙 X), map := fun {X_1 Y} p => Path.Homotopic.Quotient.mapFn p (𝟙 X) } = CategoryTheory.Functor.mk { obj := fun X => X, map := fun {X_1 Y} f => f } [PROOFSTEP] congr [GOAL] case e_toPrefunctor.e_map X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat ⊢ (fun {X_1 Y} p => Path.Homotopic.Quotient.mapFn p (𝟙 X)) = fun {X_1 Y} f => f [PROOFSTEP] ext x y p [GOAL] case e_toPrefunctor.e_map.h.h.h X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat x y : FundamentalGroupoid ↑X p : x ⟶ y ⊢ Path.Homotopic.Quotient.mapFn p (𝟙 X) = p [PROOFSTEP] refine' Quotient.inductionOn p fun q => _ [GOAL] case e_toPrefunctor.e_map.h.h.h X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat x y : FundamentalGroupoid ↑X p : x ⟶ y q : Path x y ⊢ Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) (𝟙 X) = Quotient.mk (Path.Homotopic.setoid x y) q [PROOFSTEP] rw [← Path.Homotopic.map_lift] [GOAL] case e_toPrefunctor.e_map.h.h.h X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat x y : FundamentalGroupoid ↑X p : x ⟶ y q : Path x y ⊢ Quotient.mk (Path.Homotopic.setoid (↑(𝟙 X) x) (↑(𝟙 X) y)) (Path.map q (_ : Continuous ↑(𝟙 X))) = Quotient.mk (Path.Homotopic.setoid x y) q [PROOFSTEP] conv_rhs => rw [← q.map_id] [GOAL] X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat x y : FundamentalGroupoid ↑X p : x ⟶ y q : Path x y | Quotient.mk (Path.Homotopic.setoid x y) q [PROOFSTEP] rw [← q.map_id] [GOAL] X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat x y : FundamentalGroupoid ↑X p : x ⟶ y q : Path x y | Quotient.mk (Path.Homotopic.setoid x y) q [PROOFSTEP] rw [← q.map_id] [GOAL] X✝ : Type u Y : Type v inst✝¹ : TopologicalSpace X✝ inst✝ : TopologicalSpace Y x₀ x₁ : X✝ X : TopCat x y : FundamentalGroupoid ↑X p : x ⟶ y q : Path x y | Quotient.mk (Path.Homotopic.setoid x y) q [PROOFSTEP] rw [← q.map_id] [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ Z✝ : TopCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ { obj := fun X => Bundled.mk (FundamentalGroupoid ↑X), map := fun {X Y} f => CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map (f ≫ g) = { obj := fun X => Bundled.mk (FundamentalGroupoid ↑X), map := fun {X Y} f => CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map f ≫ { obj := fun X => Bundled.mk (FundamentalGroupoid ↑X), map := fun {X Y} f => CategoryTheory.Functor.mk { obj := ↑f, map := fun {X_1 Y_1} p => Path.Homotopic.Quotient.mapFn p f } }.map g [PROOFSTEP] simp only [GOAL] X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ Z✝ : TopCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ CategoryTheory.Functor.mk { obj := ↑(f ≫ g), map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p (f ≫ g) } = CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f } ≫ CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g } [PROOFSTEP] congr [GOAL] case e_toPrefunctor.e_map X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ Z✝ : TopCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ ⊢ (fun {X Y} p => Path.Homotopic.Quotient.mapFn p (f ≫ g)) = fun {X Y} f_1 => (CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }).map ((CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }).map f_1) [PROOFSTEP] ext x y p [GOAL] case e_toPrefunctor.e_map.h.h.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ Z✝ : TopCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ x y : FundamentalGroupoid ↑X✝ p : x ⟶ y ⊢ Path.Homotopic.Quotient.mapFn p (f ≫ g) = (CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }).map ((CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }).map p) [PROOFSTEP] refine' Quotient.inductionOn p fun q => _ [GOAL] case e_toPrefunctor.e_map.h.h.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ Z✝ : TopCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ x y : FundamentalGroupoid ↑X✝ p : x ⟶ y q : Path x y ⊢ Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) (f ≫ g) = (CategoryTheory.Functor.mk { obj := ↑g, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p g }).map ((CategoryTheory.Functor.mk { obj := ↑f, map := fun {X Y} p => Path.Homotopic.Quotient.mapFn p f }).map (Quotient.mk (Path.Homotopic.setoid x y) q)) [PROOFSTEP] simp only [Quotient.map_mk, Path.map_map, Quotient.eq'] [GOAL] case e_toPrefunctor.e_map.h.h.h X : Type u Y : Type v inst✝¹ : TopologicalSpace X inst✝ : TopologicalSpace Y x₀ x₁ : X X✝ Y✝ Z✝ : TopCat f : X✝ ⟶ Y✝ g : Y✝ ⟶ Z✝ x y : FundamentalGroupoid ↑X✝ p : x ⟶ y q : Path x y ⊢ Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) (f ≫ g) = Path.Homotopic.Quotient.mapFn (Path.Homotopic.Quotient.mapFn (Quotient.mk (Path.Homotopic.setoid x y) q) f) g [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.AlgebraicTopology.FundamentalGroupoid.Basic", "llama_tokens": 31694}
[GOAL] α : Type u σ σ' : Type v M : NFA α σ s : σ S : Set σ a : α ⊢ s ∈ stepSet M S a ↔ ∃ t, t ∈ S ∧ s ∈ step M t a [PROOFSTEP] simp [stepSet] [GOAL] α : Type u σ σ' : Type v M : NFA α σ a : α ⊢ stepSet M ∅ a = ∅ [PROOFSTEP] simp [stepSet] [GOAL] α : Type u σ σ' : Type v M : NFA α σ S : Set σ x : List α a : α ⊢ evalFrom M S (x ++ [a]) = stepSet M (evalFrom M S x) a [PROOFSTEP] simp only [evalFrom, List.foldl_append, List.foldl_cons, List.foldl_nil] [GOAL] α : Type u σ σ' : Type v M : NFA α σ x : List α ⊢ x ∈ accepts M ↔ ∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x [PROOFSTEP] rfl [GOAL] α : Type u σ σ' : Type v M : NFA α σ ⊢ DFA.accepts (toDFA M) = accepts M [PROOFSTEP] ext x [GOAL] case h α : Type u σ σ' : Type v M : NFA α σ x : List α ⊢ x ∈ DFA.accepts (toDFA M) ↔ x ∈ accepts M [PROOFSTEP] rw [mem_accepts, DFA.mem_accepts] [GOAL] case h α : Type u σ σ' : Type v M : NFA α σ x : List α ⊢ DFA.evalFrom (toDFA M) (toDFA M).start x ∈ (toDFA M).accept ↔ ∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x [PROOFSTEP] constructor [GOAL] case h.mp α : Type u σ σ' : Type v M : NFA α σ x : List α ⊢ DFA.evalFrom (toDFA M) (toDFA M).start x ∈ (toDFA M).accept → ∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x [PROOFSTEP] exact fun ⟨w, h2, h3⟩ => ⟨w, h3, h2⟩ [GOAL] case h.mpr α : Type u σ σ' : Type v M : NFA α σ x : List α ⊢ (∃ S, S ∈ M.accept ∧ S ∈ evalFrom M M.start x) → DFA.evalFrom (toDFA M) (toDFA M).start x ∈ (toDFA M).accept [PROOFSTEP] exact fun ⟨w, h2, h3⟩ => ⟨w, h3, h2⟩ [GOAL] α : Type u σ σ' : Type v M : NFA α σ inst✝ : Fintype σ x : List α hx : x ∈ accepts M hlen : Fintype.card (Set σ) ≤ List.length x ⊢ ∃ a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ accepts M [PROOFSTEP] rw [← toDFA_correct] at hx ⊢ [GOAL] α : Type u σ σ' : Type v M : NFA α σ inst✝ : Fintype σ x : List α hx : x ∈ DFA.accepts (toDFA M) hlen : Fintype.card (Set σ) ≤ List.length x ⊢ ∃ a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card (Set σ) ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ DFA.accepts (toDFA M) [PROOFSTEP] exact M.toDFA.pumping_lemma hx hlen [GOAL] α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ start : σ s : List α ⊢ NFA.evalFrom (toNFA M) {start} s = {evalFrom M start s} [PROOFSTEP] change List.foldl M.toNFA.stepSet { start } s = {List.foldl M.step start s} [GOAL] α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ start : σ s : List α ⊢ List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s} [PROOFSTEP] induction' s with a s ih generalizing start [GOAL] case nil α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ start✝ start : σ ⊢ List.foldl (NFA.stepSet (toNFA M)) {start} [] = {List.foldl M.step start []} [PROOFSTEP] tauto [GOAL] case cons α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ start✝ : σ a : α s : List α ih : ∀ (start : σ), List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s} start : σ ⊢ List.foldl (NFA.stepSet (toNFA M)) {start} (a :: s) = {List.foldl M.step start (a :: s)} [PROOFSTEP] rw [List.foldl, List.foldl, show M.toNFA.stepSet { start } a = {M.step start a} by simp [NFA.stepSet]] [GOAL] α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ start✝ : σ a : α s : List α ih : ∀ (start : σ), List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s} start : σ ⊢ NFA.stepSet (toNFA M) {start} a = {step M start a} [PROOFSTEP] simp [NFA.stepSet] [GOAL] case cons α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ start✝ : σ a : α s : List α ih : ∀ (start : σ), List.foldl (NFA.stepSet (toNFA M)) {start} s = {List.foldl M.step start s} start : σ ⊢ List.foldl (NFA.stepSet (toNFA M)) {step M start a} s = {List.foldl M.step (step M start a) s} [PROOFSTEP] tauto [GOAL] α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ ⊢ NFA.accepts (toNFA M) = accepts M [PROOFSTEP] ext x [GOAL] case h α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ x : List α ⊢ x ∈ NFA.accepts (toNFA M) ↔ x ∈ accepts M [PROOFSTEP] rw [NFA.mem_accepts, toNFA_start, toNFA_evalFrom_match] [GOAL] case h α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ x : List α ⊢ (∃ S, S ∈ (toNFA M).accept ∧ S ∈ {evalFrom M M.start x}) ↔ x ∈ accepts M [PROOFSTEP] constructor [GOAL] case h.mp α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ x : List α ⊢ (∃ S, S ∈ (toNFA M).accept ∧ S ∈ {evalFrom M M.start x}) → x ∈ accepts M [PROOFSTEP] rintro ⟨S, hS₁, hS₂⟩ [GOAL] case h.mp.intro.intro α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ x : List α S : σ hS₁ : S ∈ (toNFA M).accept hS₂ : S ∈ {evalFrom M M.start x} ⊢ x ∈ accepts M [PROOFSTEP] rwa [Set.mem_singleton_iff.mp hS₂] at hS₁ [GOAL] case h.mpr α : Type u σ σ' : Type v M✝ : NFA α σ M : DFA α σ x : List α ⊢ x ∈ accepts M → ∃ S, S ∈ (toNFA M).accept ∧ S ∈ {evalFrom M M.start x} [PROOFSTEP] exact fun h => ⟨M.eval x, h, rfl⟩
{"mathlib_filename": "Mathlib.Computability.NFA", "llama_tokens": 2508}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x✝ x : List α ⊢ x ∈ 1 ↔ x = [] [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α x✝ : List α h : x✝ ∈ [] ⊢ x✝ ∈ l [PROOFSTEP] contradiction [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ 1 * l = l [PROOFSTEP] simp [mul_def, one_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ l * 1 = l [PROOFSTEP] simp [mul_def, one_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x : List α n : ℕ ⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1 [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x : List α ⊢ NatCast.natCast (Nat.zero + 1) = NatCast.natCast Nat.zero + 1 [PROOFSTEP] simp [Nat.cast, add_def, zero_def] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x : List α n✝ : ℕ ⊢ NatCast.natCast (Nat.succ n✝ + 1) = NatCast.natCast (Nat.succ n✝) + 1 [PROOFSTEP] simp [Nat.cast, add_def, zero_def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ ↑(map id) l = l [PROOFSTEP] simp [map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α g : β → γ f : α → β l : Language α ⊢ ↑(map g) (↑(map f) l) = ↑(map (g ∘ f)) l [PROOFSTEP] simp [map, image_image] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ l∗ = {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []} [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ x ∈ l∗ ↔ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []} [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ x ∈ l∗ → x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []} [PROOFSTEP] rintro ⟨S, rfl, h⟩ [GOAL] case h.mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α S : List (List α) h : ∀ (y : List α), y ∈ S → y ∈ l ⊢ join S ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []} [PROOFSTEP] refine' ⟨S.filter fun l ↦ ¬List.isEmpty l, by simp, fun y hy ↦ _⟩ -- Porting note: The previous code was: -- rw [mem_filter, empty_iff_eq_nil] at hy [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α S : List (List α) h : ∀ (y : List α), y ∈ S → y ∈ l ⊢ join S = join (filter (fun l => decide ¬isEmpty l = true) S) [PROOFSTEP] simp [GOAL] case h.mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α S : List (List α) h : ∀ (y : List α), y ∈ S → y ∈ l y : List α hy : y ∈ filter (fun l => decide ¬isEmpty l = true) S ⊢ y ∈ l ∧ y ≠ [] [PROOFSTEP] rw [mem_filter, decide_not, Bool.decide_coe, Bool.not_eq_true', ← Bool.bool_iff_false, isEmpty_iff_eq_nil] at hy [GOAL] case h.mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α S : List (List α) h : ∀ (y : List α), y ∈ S → y ∈ l y : List α hy : y ∈ S ∧ ¬y = [] ⊢ y ∈ l ∧ y ≠ [] [PROOFSTEP] exact ⟨h y hy.1, hy.2⟩ [GOAL] case h.mpr α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ []} → x ∈ l∗ [PROOFSTEP] rintro ⟨S, hx, h⟩ [GOAL] case h.mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α S : List (List α) hx : x = join S h : ∀ (y : List α), y ∈ S → y ∈ l ∧ y ≠ [] ⊢ x ∈ l∗ [PROOFSTEP] exact ⟨S, hx, fun y hy ↦ (h y hy).1⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x : List α l₁ l₂ m₁ m₂ : Language α ⊢ l₁ ≤ m₁ → l₂ ≤ m₂ → l₁ * l₂ ≤ m₁ * m₂ [PROOFSTEP] intro h₁ h₂ x hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x✝ : List α l₁ l₂ m₁ m₂ : Language α h₁ : l₁ ≤ m₁ h₂ : l₂ ≤ m₂ x : List α hx : x ∈ l₁ * l₂ ⊢ x ∈ m₁ * m₂ [PROOFSTEP] simp only [mul_def, exists_and_left, mem_image2, image_prod] at hx ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l m : Language α a b x✝ : List α l₁ l₂ m₁ m₂ : Language α h₁ : l₁ ≤ m₁ h₂ : l₂ ≤ m₂ x : List α hx : ∃ a, a ∈ l₁ ∧ ∃ x_1, x_1 ∈ l₂ ∧ a ++ x_1 = x ⊢ ∃ a, a ∈ m₁ ∧ ∃ x_1, x_1 ∈ m₂ ∧ a ++ x_1 = x [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α n : ℕ ⊢ x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] induction' n with n ihn generalizing x [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ x : List α ⊢ x ∈ l ^ Nat.zero ↔ ∃ S, x = join S ∧ length S = Nat.zero ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] simp only [mem_one, pow_zero, length_eq_zero] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ x : List α ⊢ x = [] ↔ ∃ S, x = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] constructor [GOAL] case zero.mp α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ x : List α ⊢ x = [] → ∃ S, x = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] rintro rfl [GOAL] case zero.mp α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ ∃ S, [] = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] exact ⟨[], rfl, rfl, fun _ h ↦ by contradiction⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x x✝ : List α h : x✝ ∈ [] ⊢ x✝ ∈ l [PROOFSTEP] contradiction [GOAL] case zero.mpr α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ x : List α ⊢ (∃ S, x = join S ∧ S = [] ∧ ∀ (y : List α), y ∈ S → y ∈ l) → x = [] [PROOFSTEP] rintro ⟨_, rfl, rfl, _⟩ [GOAL] case zero.mpr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α right✝ : ∀ (y : List α), y ∈ [] → y ∈ l ⊢ join [] = [] [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ : List α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l x : List α ⊢ x ∈ l ^ Nat.succ n ↔ ∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] simp only [pow_succ, mem_mul, ihn] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ : List α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l x : List α ⊢ (∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = x) ↔ ∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] constructor [GOAL] case succ.mp α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ : List α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l x : List α ⊢ (∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = x) → ∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] rintro ⟨a, b, ha, ⟨S, rfl, rfl, hS⟩, rfl⟩ [GOAL] case succ.mp.intro.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a✝ b x✝ : List α l : Language α x a : List α ha : a ∈ l S : List (List α) hS : ∀ (y : List α), y ∈ S → y ∈ l ihn : ∀ {x : List α}, x ∈ l ^ length S ↔ ∃ S_1, x = join S_1 ∧ length S_1 = length S ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l ⊢ ∃ S_1, a ++ join S = join S_1 ∧ length S_1 = Nat.succ (length S) ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l [PROOFSTEP] exact ⟨a :: S, rfl, rfl, forall_mem_cons.2 ⟨ha, hS⟩⟩ [GOAL] case succ.mpr α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝¹ : List α l : Language α x✝ : List α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l x : List α ⊢ (∃ S, x = join S ∧ length S = Nat.succ n ∧ ∀ (y : List α), y ∈ S → y ∈ l) → ∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = x [PROOFSTEP] rintro ⟨_ | ⟨a, S⟩, rfl, hn, hS⟩ [GOAL] case succ.mpr.intro.nil.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l hn : length [] = Nat.succ n hS : ∀ (y : List α), y ∈ [] → y ∈ l ⊢ ∃ a b, a ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a ++ b = join [] [PROOFSTEP] cases hn [GOAL] case succ.mpr.intro.cons.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a✝ b x✝ : List α l : Language α x : List α n : ℕ ihn : ∀ {x : List α}, x ∈ l ^ n ↔ ∃ S, x = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l a : List α S : List (List α) hn : length (a :: S) = Nat.succ n hS : ∀ (y : List α), y ∈ a :: S → y ∈ l ⊢ ∃ a_1 b, a_1 ∈ l ∧ (∃ S, b = join S ∧ length S = n ∧ ∀ (y : List α), y ∈ S → y ∈ l) ∧ a_1 ++ b = join (a :: S) [PROOFSTEP] cases hn [GOAL] case succ.mpr.intro.cons.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a✝ b x✝ : List α l : Language α x a : List α S : List (List α) hS : ∀ (y : List α), y ∈ a :: S → y ∈ l ihn : ∀ {x : List α}, x ∈ l ^ Nat.add (length S) 0 ↔ ∃ S_1, x = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l ⊢ ∃ a_1 b, a_1 ∈ l ∧ (∃ S_1, b = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l) ∧ a_1 ++ b = join (a :: S) [PROOFSTEP] rw [forall_mem_cons] at hS [GOAL] case succ.mpr.intro.cons.intro.intro.refl α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a✝ b x✝ : List α l : Language α x a : List α S : List (List α) hS : a ∈ l ∧ ∀ (x : List α), x ∈ S → x ∈ l ihn : ∀ {x : List α}, x ∈ l ^ Nat.add (length S) 0 ↔ ∃ S_1, x = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l ⊢ ∃ a_1 b, a_1 ∈ l ∧ (∃ S_1, b = join S_1 ∧ length S_1 = Nat.add (length S) 0 ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l) ∧ a_1 ++ b = join (a :: S) [PROOFSTEP] exact ⟨a, _, hS.1, ⟨S, rfl, rfl, hS.2⟩, rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ l∗ = ⨆ (i : ℕ), l ^ i [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ x ∈ l∗ ↔ x ∈ ⨆ (i : ℕ), l ^ i [PROOFSTEP] simp only [mem_kstar, mem_iSup, mem_pow] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ (∃ L, x = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l) ↔ ∃ i S, x = join S ∧ length S = i ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ (∃ L, x = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l) → ∃ i S, x = join S ∧ length S = i ∧ ∀ (y : List α), y ∈ S → y ∈ l [PROOFSTEP] rintro ⟨S, rfl, hS⟩ [GOAL] case h.mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α S : List (List α) hS : ∀ (y : List α), y ∈ S → y ∈ l ⊢ ∃ i S_1, join S = join S_1 ∧ length S_1 = i ∧ ∀ (y : List α), y ∈ S_1 → y ∈ l [PROOFSTEP] exact ⟨_, S, rfl, rfl, hS⟩ [GOAL] case h.mpr α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x✝ : List α l : Language α x : List α ⊢ (∃ i S, x = join S ∧ length S = i ∧ ∀ (y : List α), y ∈ S → y ∈ l) → ∃ L, x = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l [PROOFSTEP] rintro ⟨_, S, rfl, rfl, hS⟩ [GOAL] case h.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α S : List (List α) hS : ∀ (y : List α), y ∈ S → y ∈ l ⊢ ∃ L, join S = join L ∧ ∀ (y : List α), y ∈ L → y ∈ l [PROOFSTEP] exact ⟨S, rfl, hS⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α f : α → β l : Language α ⊢ ↑(map f) l∗ = (↑(map f) l)∗ [PROOFSTEP] rw [kstar_eq_iSup_pow, kstar_eq_iSup_pow] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α f : α → β l : Language α ⊢ ↑(map f) (⨆ (i : ℕ), l ^ i) = ⨆ (i : ℕ), ↑(map f) l ^ i [PROOFSTEP] simp_rw [← map_pow] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α f : α → β l : Language α ⊢ ↑(map f) (⨆ (i : ℕ), l ^ i) = ⨆ (i : ℕ), ↑(map f) (l ^ i) [PROOFSTEP] exact image_iUnion [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ l∗ * l = l * l∗ [PROOFSTEP] simp only [kstar_eq_iSup_pow, mul_iSup, iSup_mul, ← pow_succ, ← pow_succ'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ 1 + l * l∗ = l∗ [PROOFSTEP] simp only [kstar_eq_iSup_pow, mul_iSup, ← pow_succ, ← pow_zero l] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ l ^ 0 + ⨆ (i : ℕ), l ^ (i + 1) = ⨆ (i : ℕ), l ^ i [PROOFSTEP] exact sup_iSup_nat_succ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a b x : List α l : Language α ⊢ 1 + l∗ * l = l∗ [PROOFSTEP] rw [mul_self_kstar_comm, one_add_self_mul_kstar_eq_kstar] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m : Language α a✝ b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra a : Language α l : List α hl : l ∈ 1 ⊢ ∀ (y : List α), y ∈ [] → y ∈ a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : m * l ≤ m ⊢ m * l∗ ≤ m [PROOFSTEP] rw [kstar_eq_iSup_pow, mul_iSup] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : m * l ≤ m ⊢ ⨆ (i : ℕ), m * l ^ i ≤ m [PROOFSTEP] refine' iSup_le (fun n ↦ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : m * l ≤ m n : ℕ ⊢ m * l ^ n ≤ m [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : m * l ≤ m ⊢ m * l ^ Nat.zero ≤ m [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : m * l ≤ m n : ℕ ih : m * l ^ n ≤ m ⊢ m * l ^ Nat.succ n ≤ m [PROOFSTEP] rw [pow_succ, ← mul_assoc m l (l ^ n)] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : m * l ≤ m n : ℕ ih : m * l ^ n ≤ m ⊢ m * l * l ^ n ≤ m [PROOFSTEP] exact le_trans (le_mul_congr h le_rfl) ih [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : l * m ≤ m ⊢ l∗ * m ≤ m [PROOFSTEP] rw [kstar_eq_iSup_pow, iSup_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : l * m ≤ m ⊢ ⨆ (i : ℕ), l ^ i * m ≤ m [PROOFSTEP] refine' iSup_le (fun n ↦ _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : l * m ≤ m n : ℕ ⊢ l ^ n * m ≤ m [PROOFSTEP] induction' n with n ih [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : l * m ≤ m ⊢ l ^ Nat.zero * m ≤ m [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : l * m ≤ m n : ℕ ih : l ^ n * m ≤ m ⊢ l ^ Nat.succ n * m ≤ m [PROOFSTEP] rw [pow_succ', mul_assoc (l ^ n) l m] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 l✝ m✝ : Language α a b x : List α src✝¹ : Semiring (Language α) := instSemiring src✝ : CompleteAtomicBooleanAlgebra (Set (List α)) := Set.completeAtomicBooleanAlgebra l m : Language α h : l * m ≤ m n : ℕ ih : l ^ n * m ≤ m ⊢ l ^ n * (l * m) ≤ m [PROOFSTEP] exact le_trans (le_mul_congr le_rfl h) ih
{"mathlib_filename": "Mathlib.Computability.Language", "llama_tokens": 9142}
[GOAL] C : Type u inst✝¹ : Category.{v, u} C f : Arrow C inst✝ : ∀ (n : ℕ), HasWidePullback f.right (fun x => f.left) fun x => f.hom X✝ Y✝ : SimplexCategoryᵒᵖ g : X✝ ⟶ Y✝ ⊢ ∀ (j : Fin (SimplexCategory.len Y✝.unop + 1)), (fun i => WidePullback.π (fun x => f.hom) (↑(SimplexCategory.Hom.toOrderHom g.unop) i)) j ≫ f.hom = WidePullback.base fun x => f.hom [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝³ : Category.{v, u} C f✝ : Arrow C inst✝² : ∀ (n : ℕ), HasWidePullback f✝.right (fun x => f✝.left) fun x => f✝.hom f g : Arrow C inst✝¹ : ∀ (n : ℕ), HasWidePullback f.right (fun x => f.left) fun x => f.hom inst✝ : ∀ (n : ℕ), HasWidePullback g.right (fun x => g.left) fun x => g.hom F : f ⟶ g n : SimplexCategoryᵒᵖ j : Fin (SimplexCategory.len n.unop + 1) ⊢ (fun i => WidePullback.π (fun x => f.hom) i ≫ F.left) j ≫ g.hom = (WidePullback.base fun x => f.hom) ≫ F.right [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : X ⟶ Arrow.augmentedCechNerve F ⊢ (𝟭 C).map (NatTrans.app G.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) ≫ F.hom = (Augmented.toArrow.obj X).hom ≫ (𝟭 C).map G.right [PROOFSTEP] have := G.w [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : X ⟶ Arrow.augmentedCechNerve F this : (𝟭 (SimplicialObject C)).map G.left ≫ (Arrow.augmentedCechNerve F).hom = X.hom ≫ (const C).map G.right ⊢ (𝟭 C).map (NatTrans.app G.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) ≫ F.hom = (Augmented.toArrow.obj X).hom ≫ (𝟭 C).map G.right [PROOFSTEP] apply_fun fun e => e.app (Opposite.op <| SimplexCategory.mk 0) at this [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : X ⟶ Arrow.augmentedCechNerve F this : NatTrans.app ((𝟭 (SimplicialObject C)).map G.left ≫ (Arrow.augmentedCechNerve F).hom) (Opposite.op (SimplexCategory.mk 0)) = NatTrans.app (X.hom ≫ (const C).map G.right) (Opposite.op (SimplexCategory.mk 0)) ⊢ (𝟭 C).map (NatTrans.app G.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) ≫ F.hom = (Augmented.toArrow.obj X).hom ≫ (𝟭 C).map G.right [PROOFSTEP] simpa using this [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x : SimplexCategoryᵒᵖ i : Fin (SimplexCategory.len x.unop + 1) ⊢ (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom = NatTrans.app X.hom x ≫ G.right [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x : SimplexCategoryᵒᵖ i : Fin (SimplexCategory.len x.unop + 1) ⊢ (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right [PROOFSTEP] erw [Category.assoc, Arrow.w, Augmented.toArrow_obj_hom, NatTrans.naturality_assoc, Functor.const_obj_map, Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F ⊢ ∀ ⦃X_1 Y : SimplexCategoryᵒᵖ⦄ (f : X_1 ⟶ Y), X.left.map f ≫ (fun x => WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom = NatTrans.app X.hom x ≫ G.right)) Y = (fun x => WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom = NatTrans.app X.hom x ≫ G.right)) X_1 ≫ (Arrow.augmentedCechNerve F).left.map f [PROOFSTEP] intro x y f [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y ⊢ X.left.map f ≫ (fun x => WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom = NatTrans.app X.hom x ≫ G.right)) y = (fun x => WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) i ≫ F.hom = NatTrans.app X.hom x ≫ G.right)) x ≫ (Arrow.augmentedCechNerve F).left.map f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y ⊢ X.left.map f ≫ WidePullback.lift (NatTrans.app X.hom y ≫ G.right) (fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len y.unop + 1)), (X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right) = WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫ WidePullback.lift (WidePullback.base fun x => F.hom) (fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len y.unop + 1)), WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom = WidePullback.base fun x => F.hom) [PROOFSTEP] ext [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y j✝ : Fin (SimplexCategory.len y.unop + 1) ⊢ (X.left.map f ≫ WidePullback.lift (NatTrans.app X.hom y ≫ G.right) (fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len y.unop + 1)), (X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫ WidePullback.π (fun x => F.hom) j✝ = (WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫ WidePullback.lift (WidePullback.base fun x => F.hom) (fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len y.unop + 1)), WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom = WidePullback.base fun x => F.hom)) ≫ WidePullback.π (fun x => F.hom) j✝ [PROOFSTEP] dsimp [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y j✝ : Fin (SimplexCategory.len y.unop + 1) ⊢ (X.left.map f ≫ WidePullback.lift (NatTrans.app X.hom y ≫ G.right) (fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len y.unop + 1)), (X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫ WidePullback.π (fun x => F.hom) j✝ = (WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫ WidePullback.lift (WidePullback.base fun x => F.hom) (fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len y.unop + 1)), WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom = WidePullback.base fun x => F.hom)) ≫ WidePullback.π (fun x => F.hom) j✝ [PROOFSTEP] simp only [WidePullback.lift_π, Category.assoc, ← X.left.map_comp_assoc] [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y j✝ : Fin (SimplexCategory.len y.unop + 1) ⊢ X.left.map (f ≫ (SimplexCategory.const y.unop j✝).op) ≫ G.left = X.left.map (SimplexCategory.const x.unop (↑(SimplexCategory.Hom.toOrderHom f.unop) j✝)).op ≫ G.left [PROOFSTEP] rfl [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y ⊢ ((X.left.map f ≫ WidePullback.lift (NatTrans.app X.hom y ≫ G.right) (fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len y.unop + 1)), (X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫ WidePullback.base fun x => F.hom) = (WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫ WidePullback.lift (WidePullback.base fun x => F.hom) (fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len y.unop + 1)), WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom = WidePullback.base fun x => F.hom)) ≫ WidePullback.base fun x => F.hom [PROOFSTEP] dsimp [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C G : Augmented.toArrow.obj X ⟶ F x y : SimplexCategoryᵒᵖ f : x ⟶ y ⊢ ((X.left.map f ≫ WidePullback.lift (NatTrans.app X.hom y ≫ G.right) (fun i => X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len y.unop + 1)), (X.left.map (SimplexCategory.const y.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom y ≫ G.right)) ≫ WidePullback.base fun x => F.hom) = (WidePullback.lift (NatTrans.app X.hom x ≫ G.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (X.left.map (SimplexCategory.const x.unop i).op ≫ G.left) ≫ F.hom = NatTrans.app X.hom x ≫ G.right) ≫ WidePullback.lift (WidePullback.base fun x => F.hom) (fun i => WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len y.unop + 1)), WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ F.hom = WidePullback.base fun x => F.hom)) ≫ WidePullback.base fun x => F.hom [PROOFSTEP] simp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C ⊢ Function.LeftInverse (equivalenceRightToLeft X F) (equivalenceLeftToRight X F) [PROOFSTEP] intro A [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ equivalenceRightToLeft X F (equivalenceLeftToRight X F A) = A [PROOFSTEP] ext [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ (equivalenceRightToLeft X F (equivalenceLeftToRight X F A)).left = A.left [PROOFSTEP] dsimp [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ WidePullback.lift (NatTrans.app X.hom (Opposite.op (SimplexCategory.mk 0)) ≫ A.right) (fun i => X.left.map (SimplexCategory.const (SimplexCategory.mk 0) i).op ≫ A.left) (_ : ∀ (i : Fin (SimplexCategory.len (Opposite.op (SimplexCategory.mk 0)).unop + 1)), (fun i => X.left.map (SimplexCategory.const (Opposite.op (SimplexCategory.mk 0)).unop i).op ≫ A.left) i ≫ F.hom = NatTrans.app X.hom (Opposite.op (SimplexCategory.mk 0)) ≫ A.right) ≫ WidePullback.π (fun x => F.hom) 0 = A.left [PROOFSTEP] erw [WidePullback.lift_π] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ X.left.map (SimplexCategory.const (SimplexCategory.mk 0) 0).op ≫ A.left = A.left [PROOFSTEP] nth_rw 2 [← Category.id_comp A.left] [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ X.left.map (SimplexCategory.const (SimplexCategory.mk 0) 0).op ≫ A.left = 𝟙 (Augmented.toArrow.obj X).left ≫ A.left [PROOFSTEP] congr 1 [GOAL] case h₁.e_a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ X.left.map (SimplexCategory.const (SimplexCategory.mk 0) 0).op = 𝟙 (Augmented.toArrow.obj X).left [PROOFSTEP] convert X.left.map_id _ [GOAL] case h.e'_2.h.h.e'_8 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ (SimplexCategory.const (SimplexCategory.mk 0) 0).op = 𝟙 (Opposite.op (SimplexCategory.mk 0)) [PROOFSTEP] rw [← op_id] [GOAL] case h.e'_2.h.h.e'_8 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ (SimplexCategory.const (SimplexCategory.mk 0) 0).op = (𝟙 (SimplexCategory.mk 0)).op [PROOFSTEP] congr 1 [GOAL] case h.e'_2.h.h.e'_8.e_f C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ SimplexCategory.const (SimplexCategory.mk 0) 0 = 𝟙 (SimplexCategory.mk 0) [PROOFSTEP] ext ⟨a, ha⟩ [GOAL] case h.e'_2.h.h.e'_8.e_f.a.h.h.mk.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F a : ℕ ha : a < SimplexCategory.len (SimplexCategory.mk 0) + 1 ⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) = ↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha }) [PROOFSTEP] change a < 1 at ha [GOAL] case h.e'_2.h.h.e'_8.e_f.a.h.h.mk.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F a : ℕ ha : a < 1 ⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) = ↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha }) [PROOFSTEP] change 0 = a [GOAL] case h.e'_2.h.h.e'_8.e_f.a.h.h.mk.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F a : ℕ ha : a < 1 ⊢ 0 = a [PROOFSTEP] linarith [GOAL] case h₂ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : Augmented.toArrow.obj X ⟶ F ⊢ (equivalenceRightToLeft X F (equivalenceLeftToRight X F A)).right = A.right [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C ⊢ Function.RightInverse (equivalenceRightToLeft X F) (equivalenceLeftToRight X F) [PROOFSTEP] intro A [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F ⊢ equivalenceLeftToRight X F (equivalenceRightToLeft X F A) = A [PROOFSTEP] ext x : 2 [GOAL] case h₁.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F x : SimplexCategoryᵒᵖ ⊢ NatTrans.app (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).left x = NatTrans.app A.left x [PROOFSTEP] refine' WidePullback.hom_ext _ _ _ (fun j => _) _ [GOAL] case h₁.h.refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F x : SimplexCategoryᵒᵖ j : Fin (SimplexCategory.len x.unop + 1) ⊢ NatTrans.app (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).left x ≫ WidePullback.π (fun x => F.hom) j = NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) j [PROOFSTEP] dsimp [GOAL] case h₁.h.refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F x : SimplexCategoryᵒᵖ j : Fin (SimplexCategory.len x.unop + 1) ⊢ WidePullback.lift (NatTrans.app X.hom x ≫ A.right) (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ NatTrans.app A.left (Opposite.op (SimplexCategory.mk 0)) ≫ WidePullback.π (fun x => F.hom) 0) (_ : ∀ (i : Fin (SimplexCategory.len x.unop + 1)), (fun i => X.left.map (SimplexCategory.const x.unop i).op ≫ (equivalenceRightToLeft X F A).left) i ≫ F.hom = NatTrans.app X.hom x ≫ (equivalenceRightToLeft X F A).right) ≫ WidePullback.π (fun x => F.hom) j = NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) j [PROOFSTEP] simp [GOAL] case h₁.h.refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F x : SimplexCategoryᵒᵖ j : Fin (SimplexCategory.len x.unop + 1) ⊢ NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const x.unop j)) 0) = NatTrans.app A.left x ≫ WidePullback.π (fun x => F.hom) j [PROOFSTEP] rfl [GOAL] case h₁.h.refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F x : SimplexCategoryᵒᵖ ⊢ (NatTrans.app (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).left x ≫ WidePullback.base fun x => F.hom) = NatTrans.app A.left x ≫ WidePullback.base fun x => F.hom [PROOFSTEP] simpa using congr_app A.w.symm x [GOAL] case h₂ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom X : Augmented C F : Arrow C A : X ⟶ Arrow.augmentedCechNerve F ⊢ (equivalenceLeftToRight X F (equivalenceRightToLeft X F A)).right = A.right [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom ⊢ ∀ {X' X : Augmented C} {Y : Arrow C} (f : X' ⟶ X) (g : X ⟶ augmentedCechNerve.obj Y), ↑(cechNerveEquiv X' Y).symm (f ≫ g) = Augmented.toArrow.map f ≫ ↑(cechNerveEquiv X Y).symm g [PROOFSTEP] dsimp [cechNerveEquiv] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom ⊢ ∀ {X' X : Augmented C} {Y : Arrow C} (f : X' ⟶ X) (g : X ⟶ augmentedCechNerve.obj Y), equivalenceRightToLeft X' Y (f ≫ g) = Augmented.toArrow.map f ≫ equivalenceRightToLeft X Y g [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom ⊢ ∀ {X : Augmented C} {Y Y' : Arrow C} (f : Augmented.toArrow.obj X ⟶ Y) (g : Y ⟶ Y'), ↑(cechNerveEquiv X Y') (f ≫ g) = ↑(cechNerveEquiv X Y) f ≫ augmentedCechNerve.map g [PROOFSTEP] dsimp [cechNerveEquiv] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePullback f.right (fun x => f.left) fun x => f.hom ⊢ ∀ {X : Augmented C} {Y Y' : Arrow C} (f : Augmented.toArrow.obj X ⟶ Y) (g : Y ⟶ Y'), equivalenceLeftToRight X Y' (f ≫ g) = equivalenceLeftToRight X Y f ≫ augmentedCechNerve.map g [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝¹ : Category.{v, u} C f : Arrow C inst✝ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom x y : SimplexCategory g : x ⟶ y ⊢ (fun n => widePushout f.left (fun x => f.right) fun x => f.hom) x ⟶ (fun n => widePushout f.left (fun x => f.right) fun x => f.hom) y [PROOFSTEP] refine' WidePushout.desc (WidePushout.head _) (fun i => (@WidePushout.ι _ _ _ _ _ (fun _ => f.hom) ?_ (g.toOrderHom i))) (fun j => _) [GOAL] C : Type u inst✝¹ : Category.{v, u} C f : Arrow C inst✝ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom x y : SimplexCategory g : x ⟶ y j : Fin (SimplexCategory.len x + 1) ⊢ f.hom ≫ (fun i => WidePushout.ι (fun x => f.hom) (↑(SimplexCategory.Hom.toOrderHom g) i)) j = WidePushout.head fun x => f.hom [PROOFSTEP] erw [← WidePushout.arrow_ι] [GOAL] C : Type u inst✝³ : Category.{v, u} C f✝ : Arrow C inst✝² : ∀ (n : ℕ), HasWidePushout f✝.left (fun x => f✝.right) fun x => f✝.hom f g : Arrow C inst✝¹ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom inst✝ : ∀ (n : ℕ), HasWidePushout g.left (fun x => g.right) fun x => g.hom F : f ⟶ g n : SimplexCategory i : Fin (SimplexCategory.len n + 1) ⊢ g.right ⟶ (cechConerve g).obj n [PROOFSTEP] apply WidePushout.ι _ i [GOAL] C : Type u inst✝³ : Category.{v, u} C f✝ : Arrow C inst✝² : ∀ (n : ℕ), HasWidePushout f✝.left (fun x => f✝.right) fun x => f✝.hom f g : Arrow C inst✝¹ : ∀ (n : ℕ), HasWidePushout f.left (fun x => f.right) fun x => f.hom inst✝ : ∀ (n : ℕ), HasWidePushout g.left (fun x => g.right) fun x => g.hom F : f ⟶ g n : SimplexCategory i : Fin (SimplexCategory.len n + 1) ⊢ f.hom ≫ (fun i => F.right ≫ WidePushout.ι (fun x => g.hom) i) i = F.left ≫ WidePushout.head fun x => g.hom [PROOFSTEP] rw [← Arrow.w_assoc F, ← WidePushout.arrow_ι] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : Arrow.augmentedCechConerve F ⟶ X ⊢ (𝟭 C).map G.left ≫ (Augmented.toArrow.obj X).hom = F.hom ≫ (𝟭 C).map (WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app G.right (SimplexCategory.mk 0)) [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : Arrow.augmentedCechConerve F ⟶ X ⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) = F.hom ≫ WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app G.right (SimplexCategory.mk 0) [PROOFSTEP] rw [@WidePushout.arrow_ι_assoc _ _ _ _ _ (fun (_ : Fin 1) => F.hom) (by dsimp; infer_instance)] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : Arrow.augmentedCechConerve F ⟶ X ⊢ HasWidePushout ((𝟭 C).obj F.left) (fun x => (𝟭 C).obj F.right) fun x => F.hom [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : Arrow.augmentedCechConerve F ⟶ X ⊢ HasWidePushout F.left (fun x => F.right) fun x => F.hom [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : Arrow.augmentedCechConerve F ⟶ X ⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) = (WidePushout.head fun x => F.hom) ≫ NatTrans.app G.right (SimplexCategory.mk 0) [PROOFSTEP] exact congr_app G.w (SimplexCategory.mk 0) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x : SimplexCategory ⊢ ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x [PROOFSTEP] rintro j [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) ⊢ F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x [PROOFSTEP] rw [← Arrow.w_assoc G] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) ⊢ G.left ≫ (Augmented.toArrow.obj X).hom ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x [PROOFSTEP] have t := X.hom.naturality (x.const j) [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) t : ((const C).obj X.left).map (SimplexCategory.const x j) ≫ NatTrans.app X.hom x = NatTrans.app X.hom (SimplexCategory.mk 0) ≫ ((𝟭 (CosimplicialObject C)).obj X.right).map (SimplexCategory.const x j) ⊢ G.left ≫ (Augmented.toArrow.obj X).hom ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x [PROOFSTEP] dsimp at t ⊢ [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) t : 𝟙 X.left ≫ NatTrans.app X.hom x = NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j) ⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x [PROOFSTEP] simp only [Category.id_comp] at t [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) t : NatTrans.app X.hom x = NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j) ⊢ G.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0) ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x [PROOFSTEP] rw [← t] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X ⊢ ∀ ⦃X_1 Y : SimplexCategory⦄ (f : X_1 ⟶ Y), (Arrow.augmentedCechConerve F).right.map f ≫ (fun x => WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x)) Y = (fun x => WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x)) X_1 ≫ X.right.map f [PROOFSTEP] intro x y f [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y ⊢ (Arrow.augmentedCechConerve F).right.map f ≫ (fun x => WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x)) y = (fun x => WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) j = G.left ≫ NatTrans.app X.hom x)) x ≫ X.right.map f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y ⊢ WidePushout.desc (WidePushout.head fun x => F.hom) (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j = WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i)) (_ : ∀ (j : Fin (SimplexCategory.len y + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) = WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫ X.right.map f [PROOFSTEP] ext [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y j✝ : Fin (SimplexCategory.len x + 1) ⊢ WidePushout.ι (fun x => F.hom) j✝ ≫ WidePushout.desc (WidePushout.head fun x => F.hom) (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j = WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i)) (_ : ∀ (j : Fin (SimplexCategory.len y + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) = WidePushout.ι (fun x => F.hom) j✝ ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫ X.right.map f [PROOFSTEP] dsimp [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y j✝ : Fin (SimplexCategory.len x + 1) ⊢ WidePushout.ι (fun x => F.hom) j✝ ≫ WidePushout.desc (WidePushout.head fun x => F.hom) (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j = WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i)) (_ : ∀ (j : Fin (SimplexCategory.len y + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) = WidePushout.ι (fun x => F.hom) j✝ ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫ X.right.map f [PROOFSTEP] simp only [WidePushout.ι_desc_assoc, WidePushout.ι_desc] [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y j✝ : Fin (SimplexCategory.len x + 1) ⊢ G.right ≫ X.right.map (SimplexCategory.const y (↑(SimplexCategory.Hom.toOrderHom f) j✝)) = (G.right ≫ X.right.map (SimplexCategory.const x j✝)) ≫ X.right.map f [PROOFSTEP] rw [Category.assoc, ← X.right.map_comp] [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y j✝ : Fin (SimplexCategory.len x + 1) ⊢ G.right ≫ X.right.map (SimplexCategory.const y (↑(SimplexCategory.Hom.toOrderHom f) j✝)) = G.right ≫ X.right.map (SimplexCategory.const x j✝ ≫ f) [PROOFSTEP] rfl [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y ⊢ (WidePushout.head fun x => F.hom) ≫ WidePushout.desc (WidePushout.head fun x => F.hom) (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j = WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i)) (_ : ∀ (j : Fin (SimplexCategory.len y + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) = (WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫ X.right.map f [PROOFSTEP] dsimp [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y ⊢ (WidePushout.head fun x => F.hom) ≫ WidePushout.desc (WidePushout.head fun x => F.hom) (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom f) i)) j = WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom y) (fun i => G.right ≫ X.right.map (SimplexCategory.const y i)) (_ : ∀ (j : Fin (SimplexCategory.len y + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const y j) = G.left ≫ NatTrans.app X.hom y) = (WidePushout.head fun x => F.hom) ≫ WidePushout.desc (G.left ≫ NatTrans.app X.hom x) (fun i => G.right ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ G.right ≫ X.right.map (SimplexCategory.const x j) = G.left ≫ NatTrans.app X.hom x) ≫ X.right.map f [PROOFSTEP] simp only [Functor.const_obj_map, ← NatTrans.naturality, WidePushout.head_desc_assoc, WidePushout.head_desc, Category.assoc] [GOAL] case a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C G : F ⟶ Augmented.toArrow.obj X x y : SimplexCategory f : x ⟶ y ⊢ G.left ≫ NatTrans.app X.hom y = G.left ≫ 𝟙 X.left ≫ NatTrans.app X.hom y [PROOFSTEP] erw [Category.id_comp] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C ⊢ Function.LeftInverse (equivalenceRightToLeft F X) (equivalenceLeftToRight F X) [PROOFSTEP] intro A [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X ⊢ equivalenceRightToLeft F X (equivalenceLeftToRight F X A) = A [PROOFSTEP] ext x : 2 [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X ⊢ (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).left = A.left [PROOFSTEP] rfl [GOAL] case h₂.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory ⊢ NatTrans.app (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).right x = NatTrans.app A.right x [PROOFSTEP] refine' WidePushout.hom_ext _ _ _ (fun j => _) _ [GOAL] case h₂.h.refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) ⊢ WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).right x = WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app A.right x [PROOFSTEP] dsimp [GOAL] case h₂.h.refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) ⊢ WidePushout.ι (fun x => F.hom) j ≫ WidePushout.desc (A.left ≫ NatTrans.app X.hom x) (fun i => (WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app A.right (SimplexCategory.mk 0)) ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => (equivalenceLeftToRight F X A).right ≫ X.right.map (SimplexCategory.const x i)) j = (equivalenceLeftToRight F X A).left ≫ NatTrans.app X.hom x) = WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app A.right x [PROOFSTEP] simp only [Category.assoc, ← NatTrans.naturality A.right, Arrow.augmentedCechConerve_right, SimplexCategory.len_mk, Arrow.cechConerve_map, colimit.ι_desc, WidePushoutShape.mkCocone_ι_app, colimit.ι_desc_assoc] [GOAL] case h₂.h.refine'_1 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory j : Fin (SimplexCategory.len x + 1) ⊢ WidePushout.ι (fun x => F.hom) (↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const x j)) 0) ≫ NatTrans.app A.right x = WidePushout.ι (fun x => F.hom) j ≫ NatTrans.app A.right x [PROOFSTEP] rfl [GOAL] case h₂.h.refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory ⊢ (WidePushout.head fun x => F.hom) ≫ NatTrans.app (equivalenceRightToLeft F X (equivalenceLeftToRight F X A)).right x = (WidePushout.head fun x => F.hom) ≫ NatTrans.app A.right x [PROOFSTEP] dsimp [GOAL] case h₂.h.refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory ⊢ (WidePushout.head fun x => F.hom) ≫ WidePushout.desc (A.left ≫ NatTrans.app X.hom x) (fun i => (WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app A.right (SimplexCategory.mk 0)) ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => (equivalenceLeftToRight F X A).right ≫ X.right.map (SimplexCategory.const x i)) j = (equivalenceLeftToRight F X A).left ≫ NatTrans.app X.hom x) = (WidePushout.head fun x => F.hom) ≫ NatTrans.app A.right x [PROOFSTEP] rw [colimit.ι_desc] [GOAL] case h₂.h.refine'_2 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : Arrow.augmentedCechConerve F ⟶ X x : SimplexCategory ⊢ NatTrans.app (WidePushoutShape.mkCocone (A.left ≫ NatTrans.app X.hom x) (fun i => (WidePushout.ι (fun x => F.hom) 0 ≫ NatTrans.app A.right (SimplexCategory.mk 0)) ≫ X.right.map (SimplexCategory.const x i)) (_ : ∀ (j : Fin (SimplexCategory.len x + 1)), F.hom ≫ (fun i => (equivalenceLeftToRight F X A).right ≫ X.right.map (SimplexCategory.const x i)) j = (equivalenceLeftToRight F X A).left ≫ NatTrans.app X.hom x)).ι none = (WidePushout.head fun x => F.hom) ≫ NatTrans.app A.right x [PROOFSTEP] exact congr_app A.w x [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C ⊢ Function.RightInverse (equivalenceRightToLeft F X) (equivalenceLeftToRight F X) [PROOFSTEP] intro A [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ equivalenceLeftToRight F X (equivalenceRightToLeft F X A) = A [PROOFSTEP] ext [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ (equivalenceLeftToRight F X (equivalenceRightToLeft F X A)).left = A.left [PROOFSTEP] rfl [GOAL] case h₂ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ (equivalenceLeftToRight F X (equivalenceRightToLeft F X A)).right = A.right [PROOFSTEP] dsimp [GOAL] case h₂ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ WidePushout.ι (fun x => F.hom) 0 ≫ WidePushout.desc (A.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0)) (fun i => A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) i)) (_ : ∀ (j : Fin (SimplexCategory.len (SimplexCategory.mk 0) + 1)), F.hom ≫ (fun i => A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) i)) j = A.left ≫ NatTrans.app X.hom (SimplexCategory.mk 0)) = A.right [PROOFSTEP] erw [WidePushout.ι_desc] [GOAL] case h₂ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) 0) = A.right [PROOFSTEP] nth_rw 2 [← Category.comp_id A.right] [GOAL] case h₂ C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ A.right ≫ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) 0) = A.right ≫ 𝟙 (Augmented.toArrow.obj X).right [PROOFSTEP] congr 1 [GOAL] case h₂.e_a C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ X.right.map (SimplexCategory.const (SimplexCategory.mk 0) 0) = 𝟙 (Augmented.toArrow.obj X).right [PROOFSTEP] convert X.right.map_id _ [GOAL] case h.e'_2.h.h.e'_8 C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X ⊢ SimplexCategory.const (SimplexCategory.mk 0) 0 = 𝟙 (SimplexCategory.mk 0) [PROOFSTEP] ext ⟨a, ha⟩ [GOAL] case h.e'_2.h.h.e'_8.a.h.h.mk.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X a : ℕ ha : a < SimplexCategory.len (SimplexCategory.mk 0) + 1 ⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) = ↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha }) [PROOFSTEP] change a < 1 at ha [GOAL] case h.e'_2.h.h.e'_8.a.h.h.mk.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X a : ℕ ha : a < 1 ⊢ ↑(↑(SimplexCategory.Hom.toOrderHom (SimplexCategory.const (SimplexCategory.mk 0) 0)) { val := a, isLt := ha }) = ↑(↑(SimplexCategory.Hom.toOrderHom (𝟙 (SimplexCategory.mk 0))) { val := a, isLt := ha }) [PROOFSTEP] change 0 = a [GOAL] case h.e'_2.h.h.e'_8.a.h.h.mk.h C : Type u inst✝¹ : Category.{v, u} C inst✝ : ∀ (n : ℕ) (f : Arrow C), HasWidePushout f.left (fun x => f.right) fun x => f.hom F : Arrow C X : Augmented C A : F ⟶ Augmented.toArrow.obj X a : ℕ ha : a < 1 ⊢ 0 = a [PROOFSTEP] linarith [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasTerminal C ι : Type w X Y : C ⊢ Unique (Y ⟶ (wideCospan ι X).obj none) [PROOFSTEP] dsimp [wideCospan] [GOAL] C : Type u inst✝¹ : Category.{v, u} C inst✝ : HasTerminal C ι : Type w X Y : C ⊢ Unique (Y ⟶ ⊤_ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C i j : WidePullbackShape ι f : i ⟶ j ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map f ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) j = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) i ≫ (wideCospan ι X).map f [PROOFSTEP] cases f [GOAL] case id C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C i : WidePullbackShape ι ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id i) ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) i = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) i ≫ (wideCospan ι X).map (WidePullbackShape.Hom.id i) [PROOFSTEP] cases i [GOAL] case id.none C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id none) ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) none = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) none ≫ (wideCospan ι X).map (WidePullbackShape.Hom.id none) case id.some C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C val✝ : ι ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id (some val✝)) ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) (some val✝) = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) (some val✝) ≫ (wideCospan ι X).map (WidePullbackShape.Hom.id (some val✝)) [PROOFSTEP] all_goals dsimp; simp [GOAL] case id.none C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id none) ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) none = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) none ≫ (wideCospan ι X).map (WidePullbackShape.Hom.id none) [PROOFSTEP] dsimp [GOAL] case id.none C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C ⊢ 𝟙 (∏ fun x => X) ≫ terminal.from (∏ fun x => X) = terminal.from (∏ fun x => X) ≫ (wideCospan ι X).map (𝟙 none) [PROOFSTEP] simp [GOAL] case id.some C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C val✝ : ι ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.id (some val✝)) ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) (some val✝) = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) (some val✝) ≫ (wideCospan ι X).map (WidePullbackShape.Hom.id (some val✝)) [PROOFSTEP] dsimp [GOAL] case id.some C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C val✝ : ι ⊢ 𝟙 (∏ fun x => X) ≫ limit.π (Discrete.functor fun x => X) { as := val✝ } = limit.π (Discrete.functor fun x => X) { as := val✝ } ≫ (wideCospan ι X).map (𝟙 (some val✝)) [PROOFSTEP] simp [GOAL] case term C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C j✝ : ι ⊢ ((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).map (WidePullbackShape.Hom.term j✝) ≫ (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) none = (fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i }) (some j✝) ≫ (wideCospan ι X).map (WidePullbackShape.Hom.term j✝) [PROOFSTEP] dsimp [GOAL] case term C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C j✝ : ι ⊢ 𝟙 (∏ fun x => X) ≫ terminal.from (∏ fun x => X) = limit.π (Discrete.functor fun x => X) { as := j✝ } ≫ (wideCospan ι X).map (WidePullbackShape.Hom.term j✝) [PROOFSTEP] simp only [terminal.comp_from] [GOAL] case term C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C j✝ : ι ⊢ terminal.from (∏ fun x => X) = limit.π (Discrete.functor fun x => X) { as := j✝ } ≫ (wideCospan ι X).map (WidePullbackShape.Hom.term j✝) [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C s : Cone (wideCospan ι X) f : s.pt ⟶ { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt h : ∀ (j : WidePullbackShape ι), f ≫ NatTrans.app { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.π j = NatTrans.app s.π j ⊢ f = (fun s => Pi.lift fun j => NatTrans.app s.π (some j)) s [PROOFSTEP] dsimp [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C s : Cone (wideCospan ι X) f : s.pt ⟶ { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt h : ∀ (j : WidePullbackShape ι), f ≫ NatTrans.app { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.π j = NatTrans.app s.π j ⊢ f = Pi.lift fun j => NatTrans.app s.π (some j) [PROOFSTEP] ext j [GOAL] case h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C s : Cone (wideCospan ι X) f : s.pt ⟶ { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt h : ∀ (j : WidePullbackShape ι), f ≫ NatTrans.app { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.π j = NatTrans.app s.π j j : ι ⊢ f ≫ Pi.π (fun x => X) j = (Pi.lift fun j => NatTrans.app s.π (some j)) ≫ Pi.π (fun x => X) j [PROOFSTEP] dsimp only [Limits.Pi.lift] [GOAL] case h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C s : Cone (wideCospan ι X) f : s.pt ⟶ { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt h : ∀ (j : WidePullbackShape ι), f ≫ NatTrans.app { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.π j = NatTrans.app s.π j j : ι ⊢ f ≫ Pi.π (fun x => X) j = limit.lift (Discrete.functor fun b => X) (Fan.mk s.pt fun j => NatTrans.app s.π (some j)) ≫ Pi.π (fun x => X) j [PROOFSTEP] rw [limit.lift_π] [GOAL] case h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C s : Cone (wideCospan ι X) f : s.pt ⟶ { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt h : ∀ (j : WidePullbackShape ι), f ≫ NatTrans.app { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.π j = NatTrans.app s.π j j : ι ⊢ f ≫ Pi.π (fun x => X) j = NatTrans.app (Fan.mk s.pt fun j => NatTrans.app s.π (some j)).π { as := j } [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C s : Cone (wideCospan ι X) f : s.pt ⟶ { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.pt h : ∀ (j : WidePullbackShape ι), f ≫ NatTrans.app { pt := ∏ fun x => X, π := NatTrans.mk fun X_1 => Option.casesOn X_1 (terminal.from (((Functor.const (WidePullbackShape ι)).obj (∏ fun x => X)).obj none)) fun i => limit.π (Discrete.functor fun x => X) { as := i } }.π j = NatTrans.app s.π j j : ι ⊢ f ≫ Pi.π (fun x => X) j = NatTrans.app s.π (some j) [PROOFSTEP] rw [← h (some j)] [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C ⊢ HasWidePullback (Arrow.mk (terminal.from X)).right (fun x => (Arrow.mk (terminal.from X)).left) fun x => (Arrow.mk (terminal.from X)).hom [PROOFSTEP] cases nonempty_fintype ι [GOAL] case intro C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C val✝ : Fintype ι ⊢ HasWidePullback (Arrow.mk (terminal.from X)).right (fun x => (Arrow.mk (terminal.from X)).left) fun x => (Arrow.mk (terminal.from X)).hom [PROOFSTEP] exact ⟨⟨wideCospan.limitCone ι X⟩⟩ [GOAL] C : Type u inst✝³ : Category.{v, u} C inst✝² : HasTerminal C ι : Type w inst✝¹ : HasFiniteProducts C inst✝ : Finite ι X : C j : ι ⊢ (limitIsoPi ι X).hom ≫ Pi.π (fun x => X) j = WidePullback.π (fun x => terminal.from X) j [PROOFSTEP] rw [← wideCospan.limitIsoPi_inv_comp_pi, Iso.hom_inv_id_assoc] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasTerminal C ι : Type w inst✝ : HasFiniteProducts C X : C m n : SimplexCategoryᵒᵖ f : m ⟶ n ⊢ (Arrow.cechNerve (Arrow.mk (terminal.from X))).map f ≫ ((fun m => wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left) n).hom = ((fun m => wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left) m).hom ≫ (cechNerveTerminalFrom X).map f [PROOFSTEP] dsimp only [cechNerveTerminalFrom, Arrow.cechNerve] [GOAL] C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasTerminal C ι : Type w inst✝ : HasFiniteProducts C X : C m n : SimplexCategoryᵒᵖ f : m ⟶ n ⊢ WidePullback.lift (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) (fun i => WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len n.unop + 1)), WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ (Arrow.mk (terminal.from X)).hom = WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) ≫ (wideCospan.limitIsoPi (Fin (SimplexCategory.len n.unop + 1)) (Arrow.mk (terminal.from X)).left).hom = (wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫ Pi.lift fun i => Pi.π (fun x => X) (↑(SimplexCategory.Hom.toOrderHom f.unop) i) [PROOFSTEP] ext ⟨j⟩ [GOAL] case h.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasTerminal C ι : Type w inst✝ : HasFiniteProducts C X : C m n : SimplexCategoryᵒᵖ f : m ⟶ n j : ℕ isLt✝ : j < SimplexCategory.len n.unop + 1 ⊢ (WidePullback.lift (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) (fun i => WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len n.unop + 1)), WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ (Arrow.mk (terminal.from X)).hom = WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) ≫ (wideCospan.limitIsoPi (Fin (SimplexCategory.len n.unop + 1)) (Arrow.mk (terminal.from X)).left).hom) ≫ Pi.π (fun x => X) { val := j, isLt := isLt✝ } = ((wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫ Pi.lift fun i => Pi.π (fun x => X) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) ≫ Pi.π (fun x => X) { val := j, isLt := isLt✝ } [PROOFSTEP] simp only [Category.assoc, limit.lift_π, Fan.mk_π_app] [GOAL] case h.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasTerminal C ι : Type w inst✝ : HasFiniteProducts C X : C m n : SimplexCategoryᵒᵖ f : m ⟶ n j : ℕ isLt✝ : j < SimplexCategory.len n.unop + 1 ⊢ WidePullback.lift (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) (fun i => WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len n.unop + 1)), WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ (Arrow.mk (terminal.from X)).hom = WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) ≫ (wideCospan.limitIsoPi (Fin (SimplexCategory.len n.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫ Pi.π (fun x => X) { val := j, isLt := isLt✝ } = (wideCospan.limitIsoPi (Fin (SimplexCategory.len m.unop + 1)) (Arrow.mk (terminal.from X)).left).hom ≫ Pi.π (fun x => X) (↑(SimplexCategory.Hom.toOrderHom f.unop) { val := j, isLt := isLt✝ }) [PROOFSTEP] erw [wideCospan.limitIsoPi_hom_comp_pi, wideCospan.limitIsoPi_hom_comp_pi, limit.lift_π] [GOAL] case h.mk C : Type u inst✝² : Category.{v, u} C inst✝¹ : HasTerminal C ι : Type w inst✝ : HasFiniteProducts C X : C m n : SimplexCategoryᵒᵖ f : m ⟶ n j : ℕ isLt✝ : j < SimplexCategory.len n.unop + 1 ⊢ NatTrans.app (WidePullbackShape.mkCone (WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom) (fun i => WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) i)) (_ : ∀ (j : Fin (SimplexCategory.len n.unop + 1)), WidePullback.π (fun x => (Arrow.mk (terminal.from X)).hom) (↑(SimplexCategory.Hom.toOrderHom f.unop) j) ≫ (Arrow.mk (terminal.from X)).hom = WidePullback.base fun x => (Arrow.mk (terminal.from X)).hom)).π (some { val := j, isLt := isLt✝ }) = WidePullback.π (fun x => terminal.from X) (↑(SimplexCategory.Hom.toOrderHom f.unop) { val := j, isLt := isLt✝ }) [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.AlgebraicTopology.CechNerve", "llama_tokens": 30265}
[GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S ⊢ 0 < normBound abv bS [PROOFSTEP] obtain ⟨i, j, k, hijk⟩ : ∃ i j k, Algebra.leftMulMatrix bS (bS i) j k ≠ 0 := by by_contra' h obtain ⟨i⟩ := bS.index_nonempty apply bS.ne_zero i apply (injective_iff_map_eq_zero (Algebra.leftMulMatrix bS)).mp (Algebra.leftMulMatrix_injective bS) ext j k simp [h, DMatrix.zero_apply] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S ⊢ ∃ i j k, ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0 [PROOFSTEP] by_contra' h [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0 ⊢ False [PROOFSTEP] obtain ⟨i⟩ := bS.index_nonempty [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0 i : ι ⊢ False [PROOFSTEP] apply bS.ne_zero i [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0 i : ι ⊢ ↑bS i = 0 [PROOFSTEP] apply (injective_iff_map_eq_zero (Algebra.leftMulMatrix bS)).mp (Algebra.leftMulMatrix_injective bS) [GOAL] case intro.a R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0 i : ι ⊢ ↑(Algebra.leftMulMatrix bS) (↑bS i) = 0 [PROOFSTEP] ext j k [GOAL] case intro.a.a.h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S h : ∀ (i j k : ι), ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = 0 i j k : ι ⊢ ↑(Algebra.leftMulMatrix bS) (↑bS i) j k = OfNat.ofNat 0 j k [PROOFSTEP] simp [h, DMatrix.zero_apply] [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S i j k : ι hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0 ⊢ 0 < normBound abv bS [PROOFSTEP] simp only [normBound, Algebra.smul_def, eq_natCast] [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S i j k : ι hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0 ⊢ 0 < ↑(Nat.factorial (Fintype.card ι)) * (↑(Fintype.card ι) * Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ)) ^ Fintype.card ι [PROOFSTEP] refine' mul_pos (Int.coe_nat_pos.mpr (Nat.factorial_pos _)) _ [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S i j k : ι hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0 ⊢ 0 < (↑(Fintype.card ι) * Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ)) ^ Fintype.card ι [PROOFSTEP] refine' pow_pos (mul_pos (Int.coe_nat_pos.mpr (Fintype.card_pos_iff.mpr ⟨i⟩)) _) _ [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S i j k : ι hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0 ⊢ 0 < Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) [PROOFSTEP] refine' lt_of_lt_of_le (abv.pos hijk) (Finset.le_max' _ _ _) [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S i j k : ι hijk : ↑(Algebra.leftMulMatrix bS) (↑bS i) j k ≠ 0 ⊢ ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS i) j k) ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ [PROOFSTEP] exact Finset.mem_image.mpr ⟨⟨i, j, k⟩, Finset.mem_univ _, rfl⟩ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ↑abv (↑(Algebra.norm R) a) ≤ normBound abv bS * y ^ Fintype.card ι [PROOFSTEP] conv_lhs => rw [← bS.sum_repr a] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y | ↑abv (↑(Algebra.norm R) a) [PROOFSTEP] rw [← bS.sum_repr a] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y | ↑abv (↑(Algebra.norm R) a) [PROOFSTEP] rw [← bS.sum_repr a] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y | ↑abv (↑(Algebra.norm R) a) [PROOFSTEP] rw [← bS.sum_repr a] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ↑abv (↑(Algebra.norm R) (∑ i : ι, ↑(↑bS.repr a) i • ↑bS i)) ≤ normBound abv bS * y ^ Fintype.card ι [PROOFSTEP] rw [Algebra.norm_apply, ← LinearMap.det_toMatrix bS] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ↑abv (↑(Algebra.norm R) (∑ i : ι, ↑(↑bS.repr a) i • ↑bS i)) ≤ normBound abv bS * y ^ Fintype.card ι [PROOFSTEP] simp only [Algebra.norm_apply, AlgHom.map_sum, AlgHom.map_smul, LinearEquiv.map_sum, LinearEquiv.map_smul, Algebra.toMatrix_lmul_eq, normBound, smul_mul_assoc, ← mul_pow] --Porting note: rest of proof was -- convert Matrix.det_sum_smul_le Finset.univ _ hy using 3 -- · rw [Finset.card_univ, smul_mul_assoc, mul_comm] -- · intro i j k -- apply Finset.le_max' -- exact finset.mem_image.mpr ⟨⟨i, j, k⟩, Finset.mem_univ _, rfl⟩ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ↑abv (↑LinearMap.det (∑ x : ι, ↑(↑bS.repr a) x • ↑(Algebra.lmul R S) (↑bS x))) ≤ Nat.factorial (Fintype.card ι) • (Fintype.card ι • (Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) * y)) ^ Fintype.card ι [PROOFSTEP] rw [← LinearMap.det_toMatrix bS] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ↑abv (Matrix.det (↑(LinearMap.toMatrix bS bS) (∑ x : ι, ↑(↑bS.repr a) x • ↑(Algebra.lmul R S) (↑bS x)))) ≤ Nat.factorial (Fintype.card ι) • (Fintype.card ι • (Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) * y)) ^ Fintype.card ι [PROOFSTEP] convert Matrix.det_sum_smul_le (n := ι) Finset.univ _ hy using 3 [GOAL] case h.e'_3.h.e'_6.h.e'_6 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ↑(LinearMap.toMatrix bS bS) (∑ x : ι, ↑(↑bS.repr a) x • ↑(Algebra.lmul R S) (↑bS x)) = ∑ k : ι, ↑(↑bS.repr a) k • ?convert_1 k [PROOFSTEP] simp [GOAL] case h.e'_3.h.e'_6.h.e'_6 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ∑ x : ι, ↑(↑bS.repr a) x • ↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS x)) = ∑ x : ι, ↑(↑bS.repr a) x • ?convert_1 x [PROOFSTEP] rfl [GOAL] case h.e'_4.h.e'_6.h.e'_5 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ Fintype.card ι • (Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) * y) = Finset.card Finset.univ • y * ?convert_2 [PROOFSTEP] rw [Finset.card_univ, smul_mul_assoc, mul_comm] [GOAL] case convert_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y ⊢ ∀ (k i j : ι), ↑abv (↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS k)) i j) ≤ Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) [PROOFSTEP] intro i j k [GOAL] case convert_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y i j k : ι ⊢ ↑abv (↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS i)) j k) ≤ Finset.max' (Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) (_ : ∃ x, x ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ) [PROOFSTEP] apply Finset.le_max' [GOAL] case convert_3.H2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S a : S y : ℤ hy : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y i j k : ι ⊢ ↑abv (↑(LinearMap.toMatrix bS bS) (↑(LinearMap.mul R S) (↑bS i)) j k) ∈ Finset.image (fun ijk => ↑abv (↑(Algebra.leftMulMatrix bS) (↑bS ijk.fst) ijk.snd.fst ijk.snd.snd)) Finset.univ [PROOFSTEP] exact Finset.mem_image.mpr ⟨⟨i, j, k⟩, Finset.mem_univ _, rfl⟩ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] obtain ⟨i⟩ := bS.index_nonempty [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] have him : (Finset.univ.image fun k => abv (bS.repr a k)).Nonempty := ⟨_, Finset.mem_image.mpr ⟨i, Finset.mem_univ _, rfl⟩⟩ [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] set y' : ℤ := Finset.max' _ him with y'_def [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] have hy' : ∀ k, abv (bS.repr a k) ≤ y' := by intro k exact @Finset.le_max' ℤ _ _ _ (Finset.mem_image.mpr ⟨k, Finset.mem_univ _, rfl⟩) [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him ⊢ ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' [PROOFSTEP] intro k [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him k : ι ⊢ ↑abv (↑(↑bS.repr a) k) ≤ y' [PROOFSTEP] exact @Finset.le_max' ℤ _ _ _ (Finset.mem_image.mpr ⟨k, Finset.mem_univ _, rfl⟩) [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] have : (y' : T) < y := by rw [y'_def, ← Finset.max'_image (show Monotone (_ : ℤ → T) from fun x y h => Int.cast_le.mpr h)] apply (Finset.max'_lt_iff _ (him.image _)).mpr simp only [Finset.mem_image, exists_prop] rintro _ ⟨x, ⟨k, -, rfl⟩, rfl⟩ exact hy k [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' ⊢ ↑y' < y [PROOFSTEP] rw [y'_def, ← Finset.max'_image (show Monotone (_ : ℤ → T) from fun x y h => Int.cast_le.mpr h)] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' ⊢ Finset.max' (Finset.image (fun x => ↑x) (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)) ?h < y case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' ⊢ Finset.Nonempty (Finset.image (fun x => ↑x) (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ)) [PROOFSTEP] apply (Finset.max'_lt_iff _ (him.image _)).mpr [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' ⊢ ∀ (y_1 : T), y_1 ∈ Finset.image (fun x => ↑x) (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) → y_1 < y [PROOFSTEP] simp only [Finset.mem_image, exists_prop] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' ⊢ ∀ (y_1 : T), (∃ a_1, (∃ a_2, a_2 ∈ Finset.univ ∧ ↑abv (↑(↑bS.repr a) a_2) = a_1) ∧ ↑a_1 = y_1) → y_1 < y [PROOFSTEP] rintro _ ⟨x, ⟨k, -, rfl⟩, rfl⟩ [GOAL] case intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' k : ι ⊢ ↑(↑abv (↑(↑bS.repr a) k)) < y [PROOFSTEP] exact hy k [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] have y'_nonneg : 0 ≤ y' := le_trans (abv.nonneg _) (hy' i) [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y y'_nonneg : 0 ≤ y' ⊢ ↑(↑abv (↑(Algebra.norm R) a)) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] apply (Int.cast_le.mpr (norm_le abv bS a hy')).trans_lt [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y y'_nonneg : 0 ≤ y' ⊢ ↑(normBound abv bS * y' ^ Fintype.card ι) < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] simp only [Int.cast_mul, Int.cast_pow] [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y y'_nonneg : 0 ≤ y' ⊢ ↑(normBound abv bS) * ↑(Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him) ^ Fintype.card ι < ↑(normBound abv bS) * y ^ Fintype.card ι [PROOFSTEP] apply mul_lt_mul' le_rfl [GOAL] case intro.hbd R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y y'_nonneg : 0 ≤ y' ⊢ ↑(Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him) ^ Fintype.card ι < y ^ Fintype.card ι [PROOFSTEP] exact pow_lt_pow_of_lt_left this (Int.cast_nonneg.mpr y'_nonneg) (Fintype.card_pos_iff.mpr ⟨i⟩) [GOAL] case intro.hb R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y y'_nonneg : 0 ≤ y' ⊢ 0 ≤ ↑(Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him) ^ Fintype.card ι [PROOFSTEP] exact pow_nonneg (Int.cast_nonneg.mpr y'_nonneg) _ [GOAL] case intro.hc R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁵ : EuclideanDomain R inst✝¹⁴ : CommRing S inst✝¹³ : IsDomain S inst✝¹² : Field K inst✝¹¹ : Field L inst✝¹⁰ : Algebra R K inst✝⁹ : IsFractionRing R K inst✝⁸ : Algebra K L inst✝⁷ : FiniteDimensional K L inst✝⁶ : IsSeparable K L algRL : Algebra R L inst✝⁵ : IsScalarTower R K L inst✝⁴ : Algebra R S inst✝³ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝² : DecidableEq ι inst✝¹ : Fintype ι bS : Basis ι R S T : Type u_6 inst✝ : LinearOrderedRing T a : S y : T hy : ∀ (k : ι), ↑(↑abv (↑(↑bS.repr a) k)) < y i : ι him : Finset.Nonempty (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) y' : ℤ := Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him y'_def : y' = Finset.max' (Finset.image (fun k => ↑abv (↑(↑bS.repr a) k)) Finset.univ) him hy' : ∀ (k : ι), ↑abv (↑(↑bS.repr a) k) ≤ y' this : ↑y' < y y'_nonneg : 0 ≤ y' ⊢ 0 < ↑(normBound abv bS) [PROOFSTEP] exact Int.cast_pos.mpr (normBound_pos abv bS) [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } ⊢ ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 [PROOFSTEP] classical obtain ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩, min⟩ := @Int.exists_least_of_bdd (fun a => ∃ b ∈ (I : Ideal S), b ≠ (0 : S) ∧ abv (Algebra.norm R b) = a) _ (by use 0 rintro _ ⟨b, _, _, rfl⟩ apply abv.nonneg) (by obtain ⟨b, b_mem, b_ne_zero⟩ := (I : Ideal S).ne_bot_iff.mp (nonZeroDivisors.coe_ne_zero I) exact ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩⟩) · refine' ⟨b, b_mem, b_ne_zero, _⟩ intro c hc lt contrapose! lt with c_ne_zero exact min _ ⟨c, hc, c_ne_zero, rfl⟩ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } ⊢ ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 [PROOFSTEP] obtain ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩, min⟩ := @Int.exists_least_of_bdd (fun a => ∃ b ∈ (I : Ideal S), b ≠ (0 : S) ∧ abv (Algebra.norm R b) = a) _ (by use 0 rintro _ ⟨b, _, _, rfl⟩ apply abv.nonneg) (by obtain ⟨b, b_mem, b_ne_zero⟩ := (I : Ideal S).ne_bot_iff.mp (nonZeroDivisors.coe_ne_zero I) exact ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩⟩) [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } ⊢ ∃ b, ∀ (z : ℤ), (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z → b ≤ z [PROOFSTEP] use 0 [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } ⊢ ∀ (z : ℤ), (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z → 0 ≤ z [PROOFSTEP] rintro _ ⟨b, _, _, rfl⟩ [GOAL] case h.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } b : S left✝¹ : b ∈ ↑I left✝ : b ≠ 0 ⊢ 0 ≤ ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] apply abv.nonneg [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } ⊢ ∃ z, (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z [PROOFSTEP] obtain ⟨b, b_mem, b_ne_zero⟩ := (I : Ideal S).ne_bot_iff.mp (nonZeroDivisors.coe_ne_zero I) [GOAL] case intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 ⊢ ∃ z, (fun a => ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = a) z [PROOFSTEP] exact ⟨_, ⟨b, b_mem, b_ne_zero, rfl⟩⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z ⊢ ∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 [PROOFSTEP] refine' ⟨b, b_mem, b_ne_zero, _⟩ [GOAL] case intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z ⊢ ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 [PROOFSTEP] intro c hc lt [GOAL] case intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z c : S hc : c ∈ ↑I lt : ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) ⊢ c = 0 [PROOFSTEP] contrapose! lt with c_ne_zero [GOAL] case intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁴ : EuclideanDomain R inst✝¹³ : CommRing S inst✝¹² : IsDomain S inst✝¹¹ : Field K inst✝¹⁰ : Field L inst✝⁹ : Algebra R K inst✝⁸ : IsFractionRing R K inst✝⁷ : Algebra K L inst✝⁶ : FiniteDimensional K L inst✝⁵ : IsSeparable K L algRL : Algebra R L inst✝⁴ : IsScalarTower R K L inst✝³ : Algebra R S inst✝² : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝¹ : DecidableEq ι inst✝ : Fintype ι bS : Basis ι R S I : { x // x ∈ (Ideal S)⁰ } b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 min : ∀ (z : ℤ), (∃ b, b ∈ ↑I ∧ b ≠ 0 ∧ ↑abv (↑(Algebra.norm R) b) = z) → ↑abv (↑(Algebra.norm R) b) ≤ z c : S hc : c ∈ ↑I c_ne_zero : c ≠ 0 ⊢ ↑abv (↑(Algebra.norm R) b) ≤ ↑abv (↑(Algebra.norm R) c) [PROOFSTEP] exact min _ ⟨c, hc, c_ne_zero, rfl⟩ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R x : R ⊢ x ∈ finsetApprox bS adm ↔ ∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x [PROOFSTEP] simp only [finsetApprox, Finset.mem_erase, Finset.mem_image] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R x : R ⊢ (x ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = x) ↔ ∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x [PROOFSTEP] constructor [GOAL] case mp R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R x : R ⊢ (x ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = x) → ∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x [PROOFSTEP] rintro ⟨hx, ⟨i, j⟩, _, rfl⟩ [GOAL] case mp.intro.intro.mk.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R i j : Fin (Nat.succ (cardM bS adm)) left✝ : (i, j) ∈ Finset.univ hx : ↑(distinctElems bS adm) (i, j).fst - ↑(distinctElems bS adm) (i, j).snd ≠ 0 ⊢ ∃ i_1 j_1, i_1 ≠ j_1 ∧ ↑(distinctElems bS adm) i_1 - ↑(distinctElems bS adm) j_1 = ↑(distinctElems bS adm) (i, j).fst - ↑(distinctElems bS adm) (i, j).snd [PROOFSTEP] refine' ⟨i, j, _, rfl⟩ [GOAL] case mp.intro.intro.mk.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R i j : Fin (Nat.succ (cardM bS adm)) left✝ : (i, j) ∈ Finset.univ hx : ↑(distinctElems bS adm) (i, j).fst - ↑(distinctElems bS adm) (i, j).snd ≠ 0 ⊢ i ≠ j [PROOFSTEP] rintro rfl [GOAL] case mp.intro.intro.mk.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R i : Fin (Nat.succ (cardM bS adm)) left✝ : (i, i) ∈ Finset.univ hx : ↑(distinctElems bS adm) (i, i).fst - ↑(distinctElems bS adm) (i, i).snd ≠ 0 ⊢ False [PROOFSTEP] simp at hx [GOAL] case mpr R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R x : R ⊢ (∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = x) → x ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = x [PROOFSTEP] rintro ⟨i, j, hij, rfl⟩ [GOAL] case mpr.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R i j : Fin (Nat.succ (cardM bS adm)) hij : i ≠ j ⊢ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j ≠ 0 ∧ ∃ a, a ∈ Finset.univ ∧ ↑(distinctElems bS adm) a.fst - ↑(distinctElems bS adm) a.snd = ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j [PROOFSTEP] refine' ⟨_, ⟨i, j⟩, Finset.mem_univ _, rfl⟩ [GOAL] case mpr.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R i j : Fin (Nat.succ (cardM bS adm)) hij : i ≠ j ⊢ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j ≠ 0 [PROOFSTEP] rw [Ne.def, sub_eq_zero] [GOAL] case mpr.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R i j : Fin (Nat.succ (cardM bS adm)) hij : i ≠ j ⊢ ¬↑(distinctElems bS adm) i = ↑(distinctElems bS adm) j [PROOFSTEP] exact fun h => hij ((distinctElems bS adm).injective h) [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have dim_pos := Fintype.card_pos_iff.mpr bS.index_nonempty [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] set ε : ℝ := normBound abv bS ^ (-1 / Fintype.card ι : ℝ) with ε_eq [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have hε : 0 < ε := Real.rpow_pos_of_pos (Int.cast_pos.mpr (normBound_pos abv bS)) _ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have ε_le : (normBound abv bS : ℝ) * (abv b • ε) ^ Fintype.card ι ≤ abv b ^ Fintype.card ι := by have := normBound_pos abv bS have := abv.nonneg b rw [ε_eq, Algebra.smul_def, eq_intCast, mul_rpow, ← rpow_mul, div_mul_cancel, rpow_neg_one, mul_left_comm, mul_inv_cancel, mul_one, rpow_nat_cast] <;> try norm_cast; linarith · exact Iff.mpr Int.cast_nonneg this · linarith [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) [PROOFSTEP] have := normBound_pos abv bS [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this : 0 < normBound abv bS ⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) [PROOFSTEP] have := abv.nonneg b [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) [PROOFSTEP] rw [ε_eq, Algebra.smul_def, eq_intCast, mul_rpow, ← rpow_mul, div_mul_cancel, rpow_neg_one, mul_left_comm, mul_inv_cancel, mul_one, rpow_nat_cast] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ↑(normBound abv bS) ≠ 0 [PROOFSTEP] try norm_cast; linarith [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ↑(normBound abv bS) ≠ 0 [PROOFSTEP] norm_cast [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ¬normBound abv bS = 0 [PROOFSTEP] linarith [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ↑(Fintype.card ι) ≠ 0 [PROOFSTEP] try norm_cast; linarith [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ↑(Fintype.card ι) ≠ 0 [PROOFSTEP] norm_cast [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ ¬Fintype.card ι = 0 [PROOFSTEP] linarith [GOAL] case hx R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(normBound abv bS) [PROOFSTEP] try norm_cast; linarith [GOAL] case hx R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(normBound abv bS) [PROOFSTEP] norm_cast [GOAL] case hx R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ normBound abv bS [PROOFSTEP] linarith [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(↑abv b) [PROOFSTEP] try norm_cast; linarith [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(↑abv b) [PROOFSTEP] norm_cast [GOAL] [PROOFSTEP] linarith [GOAL] case h₁ R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) [PROOFSTEP] try norm_cast; linarith [GOAL] case h₁ R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) [PROOFSTEP] norm_cast [GOAL] case h₁ R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(normBound abv bS) ^ ↑(Rat.divInt (Int.negSucc 0) ↑(Fintype.card ι)) [PROOFSTEP] linarith [GOAL] case h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(↑abv b) [PROOFSTEP] exact Iff.mpr Int.cast_nonneg this [GOAL] case h₁ R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε this✝ : 0 < normBound abv bS this : 0 ≤ ↑abv b ⊢ 0 ≤ ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) [PROOFSTEP] linarith [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] set μ : Fin (cardM bS adm).succ ↪ R := distinctElems bS adm with hμ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] let s : ι →₀ R := bS.repr a [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have s_eq : ∀ i, s i = bS.repr a i := fun i => rfl [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] let qs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i / b [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] let rs : Fin (cardM bS adm).succ → ι → R := fun j i => μ j * s i % b [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have r_eq : ∀ j i, rs j i = μ j * s i % b := fun i j => rfl [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have μ_eq : ∀ i j, μ j * s i = b * qs j i + rs j i := by intro i j rw [r_eq, EuclideanDomain.div_add_mod] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b ⊢ ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i [PROOFSTEP] intro i j [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b i : ι j : Fin (Nat.succ (cardM bS adm)) ⊢ ↑μ j * ↑s i = b * qs j i + rs j i [PROOFSTEP] rw [r_eq, EuclideanDomain.div_add_mod] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have μ_mul_a_eq : ∀ j, μ j • a = b • ∑ i, qs j i • bS i + ∑ i, rs j i • bS i := by intro j rw [← bS.sum_repr a] simp only [Finset.smul_sum, ← Finset.sum_add_distrib] refine' Finset.sum_congr rfl fun i _ => _ -- Porting note `← hμ, ← r_eq` and the final `← μ_eq` were not needed. rw [← hμ, ← r_eq, ← s_eq, ← mul_smul, μ_eq, add_smul, mul_smul, ← μ_eq] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i ⊢ ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i [PROOFSTEP] intro j [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i j : Fin (Nat.succ (cardM bS adm)) ⊢ ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i [PROOFSTEP] rw [← bS.sum_repr a] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i j : Fin (Nat.succ (cardM bS adm)) ⊢ ↑μ j • ∑ i : ι, ↑(↑bS.repr a) i • ↑bS i = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i [PROOFSTEP] simp only [Finset.smul_sum, ← Finset.sum_add_distrib] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i j : Fin (Nat.succ (cardM bS adm)) ⊢ ∑ x : ι, ↑(distinctElems bS adm) j • ↑(↑bS.repr a) x • ↑bS x = ∑ x : ι, (b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x + (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x) [PROOFSTEP] refine' Finset.sum_congr rfl fun i _ => _ -- Porting note `← hμ, ← r_eq` and the final `← μ_eq` were not needed. [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i j : Fin (Nat.succ (cardM bS adm)) i : ι x✝ : i ∈ Finset.univ ⊢ ↑(distinctElems bS adm) j • ↑(↑bS.repr a) i • ↑bS i = b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) i / b) • ↑bS i + (↑(distinctElems bS adm) j * ↑(↑bS.repr a) i % b) • ↑bS i [PROOFSTEP] rw [← hμ, ← r_eq, ← s_eq, ← mul_smul, μ_eq, add_smul, mul_smul, ← μ_eq] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] obtain ⟨j, k, j_ne_k, hjk⟩ := adm.exists_approx hε hb fun j i => μ j * s i [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have hjk' : ∀ i, (abv (rs k i - rs j i) : ℝ) < abv b • ε := by simpa only [r_eq] using hjk [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε ⊢ ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε [PROOFSTEP] simpa only [r_eq] using hjk [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] let q := ∑ i, (qs k i - qs j i) • bS i [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] set r := μ k - μ j with r_eq [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] refine' ⟨q, r, (mem_finsetApprox bS adm).mpr _, _⟩ [GOAL] case intro.intro.intro.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j ⊢ ∃ i j, i ≠ j ∧ ↑(distinctElems bS adm) i - ↑(distinctElems bS adm) j = r [PROOFSTEP] exact ⟨k, j, j_ne_k.symm, rfl⟩ [GOAL] case intro.intro.intro.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j ⊢ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] have : r • a - b • q = ∑ x : ι, (rs k x • bS x - rs j x • bS x) := by simp only [r_eq, sub_smul, μ_mul_a_eq, Finset.smul_sum, ← Finset.sum_add_distrib, ← Finset.sum_sub_distrib, smul_sub] refine' Finset.sum_congr rfl fun x _ => _ ring [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j ⊢ r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) [PROOFSTEP] simp only [r_eq, sub_smul, μ_mul_a_eq, Finset.smul_sum, ← Finset.sum_add_distrib, ← Finset.sum_sub_distrib, smul_sub] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j ⊢ ∑ x : ι, (b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x + (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x - (b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x + (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x) - (b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x - b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x)) = ∑ x : ι, ((↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x - (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x) [PROOFSTEP] refine' Finset.sum_congr rfl fun x _ => _ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j x : ι x✝ : x ∈ Finset.univ ⊢ b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x + (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x - (b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x + (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x) - (b • (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x / b) • ↑bS x - b • (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x / b) • ↑bS x) = (↑(distinctElems bS adm) k * ↑(↑bS.repr a) x % b) • ↑bS x - (↑(distinctElems bS adm) j * ↑(↑bS.repr a) x % b) • ↑bS x [PROOFSTEP] ring [GOAL] case intro.intro.intro.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) ⊢ ↑abv (↑(Algebra.norm R) (r • a - b • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b)) [PROOFSTEP] rw [this, Algebra.norm_algebraMap_of_basis bS, abv.map_pow] [GOAL] case intro.intro.intro.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) ⊢ ↑abv (↑(Algebra.norm R) (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) < ↑abv b ^ Fintype.card ι [PROOFSTEP] refine' Int.cast_lt.mp ((norm_lt abv bS _ fun i => lt_of_le_of_lt _ (hjk' i)).trans_le _) [GOAL] case intro.intro.intro.refine'_2.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) i : ι ⊢ ↑(↑abv (↑(↑bS.repr (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) i)) ≤ ↑(↑abv (rs k i - rs j i)) [PROOFSTEP] apply le_of_eq [GOAL] case intro.intro.intro.refine'_2.refine'_1.a R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) i : ι ⊢ ↑(↑abv (↑(↑bS.repr (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) i)) = ↑(↑abv (rs k i - rs j i)) [PROOFSTEP] congr [GOAL] case intro.intro.intro.refine'_2.refine'_1.a.e_a.h.e_6.h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) i : ι ⊢ ↑(↑bS.repr (∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x))) i = rs k i - rs j i [PROOFSTEP] simp_rw [LinearEquiv.map_sum, LinearEquiv.map_sub, LinearEquiv.map_smul, Finset.sum_apply', Finsupp.sub_apply, Finsupp.smul_apply, Finset.sum_sub_distrib, Basis.repr_self_apply, smul_eq_mul, mul_boole, Finset.sum_ite_eq', Finset.mem_univ, if_true] [GOAL] case intro.intro.intro.refine'_2.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R a : S b : R hb : b ≠ 0 dim_pos : 0 < Fintype.card ι ε : ℝ := ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) ε_eq : ε = ↑(normBound abv bS) ^ (-1 / ↑(Fintype.card ι)) hε : 0 < ε ε_le : ↑(normBound abv bS) * (↑abv b • ε) ^ ↑(Fintype.card ι) ≤ ↑(↑abv b) ^ ↑(Fintype.card ι) μ : Fin (Nat.succ (cardM bS adm)) ↪ R := distinctElems bS adm hμ : μ = distinctElems bS adm s : ι →₀ R := ↑bS.repr a s_eq : ∀ (i : ι), ↑s i = ↑(↑bS.repr a) i qs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i / b rs : Fin (Nat.succ (cardM bS adm)) → ι → R := fun j i => ↑μ j * ↑s i % b r_eq✝ : ∀ (j : Fin (Nat.succ (cardM bS adm))) (i : ι), rs j i = ↑μ j * ↑s i % b μ_eq : ∀ (i : ι) (j : Fin (Nat.succ (cardM bS adm))), ↑μ j * ↑s i = b * qs j i + rs j i μ_mul_a_eq : ∀ (j : Fin (Nat.succ (cardM bS adm))), ↑μ j • a = b • ∑ i : ι, qs j i • ↑bS i + ∑ i : ι, rs j i • ↑bS i j k : Fin (Nat.succ (AbsoluteValue.IsAdmissible.card adm ε ^ Fintype.card ι)) j_ne_k : j ≠ k hjk : ∀ (k_1 : ι), ↑(↑abv (↑μ k * ↑s k_1 % b - ↑μ j * ↑s k_1 % b)) < ↑abv b • ε hjk' : ∀ (i : ι), ↑(↑abv (rs k i - rs j i)) < ↑abv b • ε q : S := ∑ i : ι, (qs k i - qs j i) • ↑bS i r : R := ↑μ k - ↑μ j r_eq : r = ↑μ k - ↑μ j this : r • a - b • q = ∑ x : ι, (rs k x • ↑bS x - rs j x • ↑bS x) ⊢ ↑(normBound abv bS) * (↑abv b • ε) ^ Fintype.card ι ≤ ↑(↑abv b ^ Fintype.card ι) [PROOFSTEP] exact_mod_cast ε_le [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] have inj : Function.Injective (algebraMap R L) := by rw [IsScalarTower.algebraMap_eq R S L] exact (IsIntegralClosure.algebraMap_injective S R L).comp bS.algebraMap_injective [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 ⊢ Function.Injective ↑(algebraMap R L) [PROOFSTEP] rw [IsScalarTower.algebraMap_eq R S L] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 ⊢ Function.Injective ↑(RingHom.comp (algebraMap S L) (algebraMap R S)) [PROOFSTEP] exact (IsIntegralClosure.algebraMap_injective S R L).comp bS.algebraMap_injective [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 inj : Function.Injective ↑(algebraMap R L) ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] obtain ⟨a', b', hb', h⟩ := IsIntegralClosure.exists_smul_eq_mul h inj a hb [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h✝ : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 inj : Function.Injective ↑(algebraMap R L) a' : S b' : R hb' : b' ≠ 0 h : b' • a = b * a' ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] obtain ⟨q, r, hr, hqr⟩ := exists_mem_finsetApprox bS adm a' hb' [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h✝ : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 inj : Function.Injective ↑(algebraMap R L) a' : S b' : R hb' : b' ≠ 0 h : b' • a = b * a' q : S r : R hr : r ∈ finsetApprox bS adm hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) ⊢ ∃ q r, r ∈ finsetApprox bS adm ∧ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] refine' ⟨q, r, hr, _⟩ [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h✝ : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 inj : Function.Injective ↑(algebraMap R L) a' : S b' : R hb' : b' ≠ 0 h : b' • a = b * a' q : S r : R hr : r ∈ finsetApprox bS adm hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) ⊢ ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] refine' lt_of_mul_lt_mul_left _ (show 0 ≤ abv (Algebra.norm R (algebraMap R S b')) from abv.nonneg _) [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h✝ : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 inj : Function.Injective ↑(algebraMap R L) a' : S b' : R hb' : b' ≠ 0 h : b' • a = b * a' q : S r : R hr : r ∈ finsetApprox bS adm hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) ⊢ ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) * ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) * ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] refine' lt_of_le_of_lt (le_of_eq _) (mul_lt_mul hqr le_rfl (abv.pos ((Algebra.norm_ne_zero_iff_of_basis bS).mpr hb)) (abv.nonneg _)) [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R h✝ : Algebra.IsAlgebraic R L a b : S hb : b ≠ 0 inj : Function.Injective ↑(algebraMap R L) a' : S b' : R hb' : b' ≠ 0 h : b' • a = b * a' q : S r : R hr : r ∈ finsetApprox bS adm hqr : ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) < ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) ⊢ ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) b')) * ↑abv (↑(Algebra.norm R) (r • a - q * b)) = ↑abv (↑(Algebra.norm R) (r • a' - b' • q)) * ↑abv (↑(Algebra.norm R) b) [PROOFSTEP] rw [← abv.map_mul, ← MonoidHom.map_mul, ← abv.map_mul, ← MonoidHom.map_mul, ← Algebra.smul_def, smul_sub b', sub_mul, smul_comm, h, mul_comm b a', Algebra.smul_mul_assoc r a' b, Algebra.smul_mul_assoc b' q b] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R ⊢ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ≠ 0 [PROOFSTEP] refine' mt ((injective_iff_map_eq_zero _).mp bS.algebraMap_injective _) _ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R ⊢ ¬∏ m in finsetApprox bS adm, m = 0 [PROOFSTEP] simp only [Finset.prod_eq_zero_iff, not_exists] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R ⊢ ∀ (x : R), ¬(x ∈ finsetApprox bS adm ∧ x = 0) [PROOFSTEP] rintro x ⟨hx, rfl⟩ [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R hx : 0 ∈ finsetApprox bS adm ⊢ False [PROOFSTEP] exact finsetApprox.zero_not_mem bS adm hx [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } ⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑J [PROOFSTEP] set M := ∏ m in finsetApprox bS adm, m [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m ⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J [PROOFSTEP] have hM : algebraMap R S M ≠ 0 := prod_finsetApprox_ne_zero bS adm [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 ⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J [PROOFSTEP] obtain ⟨b, b_mem, b_ne_zero, b_min⟩ := exists_min abv I [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 ⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J [PROOFSTEP] suffices Ideal.span { b } ∣ Ideal.span {algebraMap _ _ M} * I.1 by obtain ⟨J, hJ⟩ := this refine' ⟨⟨J, _⟩, _, _⟩ · rw [mem_nonZeroDivisors_iff_ne_zero] rintro rfl rw [Ideal.zero_eq_bot, Ideal.mul_bot] at hJ exact hM (Ideal.span_singleton_eq_bot.mp (I.2 _ hJ)) · rw [ClassGroup.mk0_eq_mk0_iff] exact ⟨algebraMap _ _ M, b, hM, b_ne_zero, hJ⟩ rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← Ideal.span_le, ← Ideal.dvd_iff_le] refine' (mul_dvd_mul_iff_left _).mp _ swap; · exact mt Ideal.span_singleton_eq_bot.mp b_ne_zero rw [Subtype.coe_mk, Ideal.dvd_iff_le, ← hJ, mul_comm] apply Ideal.mul_mono le_rfl rw [Ideal.span_le, Set.singleton_subset_iff] exact b_mem [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 this : Ideal.span {b} ∣ Ideal.span {↑(algebraMap R S) M} * ↑I ⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J [PROOFSTEP] obtain ⟨J, hJ⟩ := this [GOAL] case intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ∃ J, ↑mk0 I = ↑mk0 J ∧ ↑(algebraMap R S) M ∈ ↑J [PROOFSTEP] refine' ⟨⟨J, _⟩, _, _⟩ [GOAL] case intro.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ J ∈ (Ideal S)⁰ [PROOFSTEP] rw [mem_nonZeroDivisors_iff_ne_zero] [GOAL] case intro.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ J ≠ 0 [PROOFSTEP] rintro rfl [GOAL] case intro.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * 0 ⊢ False [PROOFSTEP] rw [Ideal.zero_eq_bot, Ideal.mul_bot] at hJ [GOAL] case intro.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = ⊥ ⊢ False [PROOFSTEP] exact hM (Ideal.span_singleton_eq_bot.mp (I.2 _ hJ)) [GOAL] case intro.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ↑mk0 I = ↑mk0 { val := J, property := (_ : J ∈ (Ideal S)⁰) } [PROOFSTEP] rw [ClassGroup.mk0_eq_mk0_iff] [GOAL] case intro.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ∃ x y _hx _hy, Ideal.span {x} * ↑I = Ideal.span {y} * ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } [PROOFSTEP] exact ⟨algebraMap _ _ M, b, hM, b_ne_zero, hJ⟩ [GOAL] case intro.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ↑(algebraMap R S) M ∈ ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } [PROOFSTEP] rw [← SetLike.mem_coe, ← Set.singleton_subset_iff, ← Ideal.span_le, ← Ideal.dvd_iff_le] [GOAL] case intro.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } ∣ Ideal.span {↑(algebraMap R S) M} [PROOFSTEP] refine' (mul_dvd_mul_iff_left _).mp _ [GOAL] case intro.refine'_3.refine'_1 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ Ideal ((fun x => S) M) case intro.refine'_3.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ?intro.refine'_3.refine'_1 ≠ 0 case intro.refine'_3.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ?intro.refine'_3.refine'_1 * ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } ∣ ?intro.refine'_3.refine'_1 * Ideal.span {↑(algebraMap R S) M} [PROOFSTEP] swap [GOAL] case intro.refine'_3.refine'_2 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ ?intro.refine'_3.refine'_1 ≠ 0 [PROOFSTEP] exact mt Ideal.span_singleton_eq_bot.mp b_ne_zero [GOAL] case intro.refine'_3.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ Ideal.span {b} * ↑{ val := J, property := (_ : J ∈ (Ideal S)⁰) } ∣ Ideal.span {b} * Ideal.span {↑(algebraMap R S) M} [PROOFSTEP] rw [Subtype.coe_mk, Ideal.dvd_iff_le, ← hJ, mul_comm] [GOAL] case intro.refine'_3.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ Ideal.span {↑(algebraMap R S) M} * Ideal.span {b} ≤ Ideal.span {↑(algebraMap R S) M} * ↑I [PROOFSTEP] apply Ideal.mul_mono le_rfl [GOAL] case intro.refine'_3.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ Ideal.span {b} ≤ ↑I [PROOFSTEP] rw [Ideal.span_le, Set.singleton_subset_iff] [GOAL] case intro.refine'_3.refine'_3 R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 J : Ideal S hJ : Ideal.span {↑(algebraMap R S) M} * ↑I = Ideal.span {b} * J ⊢ b ∈ ↑↑I [PROOFSTEP] exact b_mem [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 ⊢ Ideal.span {b} ∣ Ideal.span {↑(algebraMap R S) M} * ↑I [PROOFSTEP] rw [Ideal.dvd_iff_le, Ideal.mul_le] [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 ⊢ ∀ (r : (fun x => S) M), r ∈ Ideal.span {↑(algebraMap R S) M} → ∀ (s : (fun x => S) M), s ∈ ↑I → r * s ∈ Ideal.span {b} [PROOFSTEP] intro r' hr' a ha [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : r' ∈ Ideal.span {↑(algebraMap R S) M} a : S ha : a ∈ ↑I ⊢ r' * a ∈ Ideal.span {b} [PROOFSTEP] rw [Ideal.mem_span_singleton] at hr' ⊢ [GOAL] case intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : ↑(algebraMap R S) M ∣ r' a : S ha : a ∈ ↑I ⊢ b ∣ r' * a [PROOFSTEP] obtain ⟨q, r, r_mem, lt⟩ := exists_mem_finset_approx' L bS adm h a b_ne_zero [GOAL] case intro.intro.intro.intro.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : ↑(algebraMap R S) M ∣ r' a : S ha : a ∈ ↑I q : S r : R r_mem : r ∈ finsetApprox bS adm lt : ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) ⊢ b ∣ r' * a [PROOFSTEP] apply @dvd_of_mul_left_dvd _ _ q [GOAL] case intro.intro.intro.intro.intro.intro.h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : ↑(algebraMap R S) M ∣ r' a : S ha : a ∈ ↑I q : S r : R r_mem : r ∈ finsetApprox bS adm lt : ↑abv (↑(Algebra.norm R) (r • a - q * b)) < ↑abv (↑(Algebra.norm R) b) ⊢ q * b ∣ r' * a [PROOFSTEP] simp only [Algebra.smul_def] at lt [GOAL] case intro.intro.intro.intro.intro.intro.h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : ↑(algebraMap R S) M ∣ r' a : S ha : a ∈ ↑I q : S r : R r_mem : r ∈ finsetApprox bS adm lt : ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) r * a - q * b)) < ↑abv (↑(Algebra.norm R) b) ⊢ q * b ∣ r' * a [PROOFSTEP] rw [← sub_eq_zero.mp (b_min _ (I.1.sub_mem (I.1.mul_mem_left _ ha) (I.1.mul_mem_left _ b_mem)) lt)] [GOAL] case intro.intro.intro.intro.intro.intro.h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : ↑(algebraMap R S) M ∣ r' a : S ha : a ∈ ↑I q : S r : R r_mem : r ∈ finsetApprox bS adm lt : ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) r * a - q * b)) < ↑abv (↑(Algebra.norm R) b) ⊢ ↑(algebraMap R S) r * a ∣ r' * a [PROOFSTEP] refine' mul_dvd_mul_right (dvd_trans (RingHom.map_dvd _ _) hr') _ [GOAL] case intro.intro.intro.intro.intro.intro.h R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : { x // x ∈ (Ideal S)⁰ } M : R := ∏ m in finsetApprox bS adm, m hM : ↑(algebraMap R S) M ≠ 0 b : S b_mem : b ∈ ↑I b_ne_zero : b ≠ 0 b_min : ∀ (c : S), c ∈ ↑I → ↑abv (↑(Algebra.norm R) c) < ↑abv (↑(Algebra.norm R) b) → c = 0 r' : S hr' : ↑(algebraMap R S) M ∣ r' a : S ha : a ∈ ↑I q : S r : R r_mem : r ∈ finsetApprox bS adm lt : ↑abv (↑(Algebra.norm R) (↑(algebraMap R S) r * a - q * b)) < ↑abv (↑(Algebra.norm R) b) ⊢ r ∣ M [PROOFSTEP] exact Multiset.dvd_prod (Multiset.mem_map.mpr ⟨_, r_mem, rfl⟩) [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L ⊢ Function.Surjective (mkMMem bS adm) [PROOFSTEP] intro I' [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I' : ClassGroup S ⊢ ∃ a, mkMMem bS adm a = I' [PROOFSTEP] obtain ⟨⟨I, hI⟩, rfl⟩ := ClassGroup.mk0_surjective I' [GOAL] case intro.mk R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : Ideal S hI : I ∈ (Ideal S)⁰ ⊢ ∃ a, mkMMem bS adm a = ↑mk0 { val := I, property := hI } [PROOFSTEP] obtain ⟨J, mk0_eq_mk0, J_dvd⟩ := exists_mk0_eq_mk0 L bS adm h ⟨I, hI⟩ [GOAL] case intro.mk.intro.intro R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : Ideal S hI : I ∈ (Ideal S)⁰ J : { x // x ∈ (Ideal S)⁰ } mk0_eq_mk0 : ↑mk0 { val := I, property := hI } = ↑mk0 J J_dvd : ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑J ⊢ ∃ a, mkMMem bS adm a = ↑mk0 { val := I, property := hI } [PROOFSTEP] exact ⟨⟨J, J_dvd⟩, mk0_eq_mk0.symm⟩ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L ⊢ Ideal.span {↑(algebraMap R S) (∏ m in finsetApprox bS adm, m)} ≠ 0 [PROOFSTEP] rw [Ne.def, Ideal.zero_eq_bot, Ideal.span_singleton_eq_bot] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L ⊢ ¬↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) = 0 [PROOFSTEP] exact prod_finsetApprox_ne_zero bS adm [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : Ideal S ⊢ Ideal.span {↑(algebraMap R S) (∏ m in finsetApprox bS adm, m)} ≤ I ↔ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑(Equiv.refl (Ideal S)) I [PROOFSTEP] rw [Equiv.refl_apply, Ideal.span_le, Set.singleton_subset_iff] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁷ : EuclideanDomain R inst✝¹⁶ : CommRing S inst✝¹⁵ : IsDomain S inst✝¹⁴ : Field K inst✝¹³ : Field L inst✝¹² : Algebra R K inst✝¹¹ : IsFractionRing R K inst✝¹⁰ : Algebra K L inst✝⁹ : FiniteDimensional K L inst✝⁸ : IsSeparable K L algRL : Algebra R L inst✝⁷ : IsScalarTower R K L inst✝⁶ : Algebra R S inst✝⁵ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝⁴ : DecidableEq ι inst✝³ : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝² : Infinite R inst✝¹ : DecidableEq R inst✝ : IsDedekindDomain S h : Algebra.IsAlgebraic R L I : Ideal S ⊢ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ ↑I ↔ ↑(algebraMap R S) (∏ m in finsetApprox bS adm, m) ∈ I [PROOFSTEP] rfl [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R ⊢ Fintype (ClassGroup S) [PROOFSTEP] letI := Classical.decEq L [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this : DecidableEq L := Classical.decEq L ⊢ Fintype (ClassGroup S) [PROOFSTEP] letI := IsIntegralClosure.isFractionRing_of_finite_extension R K L S [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝ : DecidableEq L := Classical.decEq L this : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S ⊢ Fintype (ClassGroup S) [PROOFSTEP] letI := IsIntegralClosure.isDedekindDomain R K L S [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝¹ : DecidableEq L := Classical.decEq L this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S ⊢ Fintype (ClassGroup S) [PROOFSTEP] choose s b hb_int using FiniteDimensional.exists_is_basis_integral R K L [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝¹ : DecidableEq L := Classical.decEq L this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x) ⊢ Fintype (ClassGroup S) [PROOFSTEP] have : LinearIndependent R ((Algebra.traceForm K L).dualBasis (traceForm_nondegenerate K L) b) := by refine' (Basis.linearIndependent _).restrict_scalars _ simp only [Algebra.smul_def, mul_one] apply IsFractionRing.injective [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝¹ : DecidableEq L := Classical.decEq L this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x) ⊢ LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b) [PROOFSTEP] refine' (Basis.linearIndependent _).restrict_scalars _ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝¹ : DecidableEq L := Classical.decEq L this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x) ⊢ Function.Injective fun r => r • 1 [PROOFSTEP] simp only [Algebra.smul_def, mul_one] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝¹ : DecidableEq L := Classical.decEq L this✝ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x) ⊢ Function.Injective fun r => ↑(algebraMap R K) r [PROOFSTEP] apply IsFractionRing.injective [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b) ⊢ Fintype (ClassGroup S) [PROOFSTEP] obtain ⟨n, b⟩ := Submodule.basisOfPidOfLESpan this (IsIntegralClosure.range_le_span_dualBasis S b hb_int) [GOAL] case mk R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b✝ : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝) n : ℕ b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) } ⊢ Fintype (ClassGroup S) [PROOFSTEP] let f : (S ⧸ LinearMap.ker (LinearMap.restrictScalars R (Algebra.linearMap S L))) ≃ₗ[R] S := by rw [LinearMap.ker_eq_bot.mpr] · exact Submodule.quotEquivOfEqBot _ rfl · exact IsIntegralClosure.algebraMap_injective _ R _ [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b✝ : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝) n : ℕ b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) } ⊢ (S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S [PROOFSTEP] rw [LinearMap.ker_eq_bot.mpr] [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b✝ : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝) n : ℕ b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) } ⊢ (S ⧸ ⊥) ≃ₗ[R] S [PROOFSTEP] exact Submodule.quotEquivOfEqBot _ rfl [GOAL] R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b✝ : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝) n : ℕ b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) } ⊢ Function.Injective ↑(↑R (Algebra.linearMap S L)) [PROOFSTEP] exact IsIntegralClosure.algebraMap_injective _ R _ [GOAL] case mk R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b✝ : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝) n : ℕ b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) } f : (S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S := Eq.mpr (_ : ((S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S) = ((S ⧸ ⊥) ≃ₗ[R] S)) (Submodule.quotEquivOfEqBot ⊥ (_ : ⊥ = ⊥)) ⊢ Fintype (ClassGroup S) [PROOFSTEP] let bS := b.map ((LinearMap.quotKerEquivRange _).symm ≪≫ₗ f) [GOAL] case mk R : Type u_1 S : Type u_2 K : Type u_3 L : Type u_4 inst✝¹⁶ : EuclideanDomain R inst✝¹⁵ : CommRing S inst✝¹⁴ : IsDomain S inst✝¹³ : Field K inst✝¹² : Field L inst✝¹¹ : Algebra R K inst✝¹⁰ : IsFractionRing R K inst✝⁹ : Algebra K L inst✝⁸ : FiniteDimensional K L inst✝⁷ : IsSeparable K L algRL : Algebra R L inst✝⁶ : IsScalarTower R K L inst✝⁵ : Algebra R S inst✝⁴ : Algebra S L ist : IsScalarTower R S L iic : IsIntegralClosure S R L abv : AbsoluteValue R ℤ ι : Type u_5 inst✝³ : DecidableEq ι inst✝² : Fintype ι bS✝ : Basis ι R S adm : AbsoluteValue.IsAdmissible abv inst✝¹ : Infinite R inst✝ : DecidableEq R this✝² : DecidableEq L := Classical.decEq L this✝¹ : IsFractionRing S L := IsIntegralClosure.isFractionRing_of_finite_extension R K L S this✝ : IsDedekindDomain S := IsIntegralClosure.isDedekindDomain R K L S s : Finset L b✝ : Basis { x // x ∈ s } K L hb_int : ∀ (x : { x // x ∈ s }), IsIntegral R (↑b✝ x) this : LinearIndependent R ↑(BilinForm.dualBasis (Algebra.traceForm K L) (_ : BilinForm.Nondegenerate (Algebra.traceForm K L)) b✝) n : ℕ b : Basis (Fin n) R { x // x ∈ LinearMap.range (↑R (Algebra.linearMap S L)) } f : (S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S := Eq.mpr (_ : ((S ⧸ LinearMap.ker (↑R (Algebra.linearMap S L))) ≃ₗ[R] S) = ((S ⧸ ⊥) ≃ₗ[R] S)) (Submodule.quotEquivOfEqBot ⊥ (_ : ⊥ = ⊥)) bS : Basis (Fin n) R S := Basis.map b (LinearEquiv.trans (LinearEquiv.symm (LinearMap.quotKerEquivRange (↑R (Algebra.linearMap S L)))) f) ⊢ Fintype (ClassGroup S) [PROOFSTEP] exact fintypeOfAdmissibleOfAlgebraic L bS adm (fun x => (IsFractionRing.isAlgebraic_iff R K L).mpr (Algebra.isAlgebraic_of_finite K _ x))
{"mathlib_filename": "Mathlib.NumberTheory.ClassNumber.Finite", "llama_tokens": 109339}
{"mathlib_filename": "Mathlib.Util.AddRelatedDecl", "llama_tokens": 0}
[GOAL] α : Type u σ : Type v M : DFA α σ s : σ x : List α a : α ⊢ evalFrom M s (x ++ [a]) = step M (evalFrom M s x) a [PROOFSTEP] simp only [evalFrom, List.foldl_append, List.foldl_cons, List.foldl_nil] [GOAL] α : Type u σ : Type v M : DFA α σ x : List α ⊢ x ∈ accepts M ↔ evalFrom M M.start x ∈ M.accept [PROOFSTEP] rfl [GOAL] α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t ⊢ ∃ q a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t [PROOFSTEP] obtain ⟨n, m, hneq, heq⟩ := Fintype.exists_ne_map_eq_of_card_lt (fun n : Fin (Fintype.card σ + 1) => M.evalFrom s (x.take n)) (by norm_num) [GOAL] α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t ⊢ Fintype.card σ < Fintype.card (Fin (Fintype.card σ + 1)) [PROOFSTEP] norm_num [GOAL] case intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) ⊢ ∃ q a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t [PROOFSTEP] wlog hle : (n : ℕ) ≤ m [GOAL] case intro.intro.intro.inr α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) this : ∀ {α : Type u} {σ : Type v} (M : DFA α σ) [inst : Fintype σ] {x : List α} {s t : σ}, Fintype.card σ ≤ List.length x → evalFrom M s x = t → ∀ (n m : Fin (Fintype.card σ + 1)), n ≠ m → evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) → ↑n ≤ ↑m → ∃ q a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t hle : ¬↑n ≤ ↑m ⊢ ∃ q a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t [PROOFSTEP] exact this _ hlen hx _ _ hneq.symm heq.symm (le_of_not_le hle) [GOAL] α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m ⊢ ∃ q a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t [PROOFSTEP] have hm : (m : ℕ) ≤ Fintype.card σ := Fin.is_le m [GOAL] α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ ∃ q a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ evalFrom M s a = q ∧ evalFrom M q b = q ∧ evalFrom M q c = t [PROOFSTEP] refine' ⟨M.evalFrom s ((x.take m).take n), (x.take m).take n, (x.take m).drop n, x.drop m, _, _, _, by rfl, _⟩ [GOAL] α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ evalFrom M s (List.take (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x)) [PROOFSTEP] rfl [GOAL] case refine'_1 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ x = List.take (↑n) (List.take (↑m) x) ++ List.drop (↑n) (List.take (↑m) x) ++ List.drop (↑m) x [PROOFSTEP] rw [List.take_append_drop, List.take_append_drop] [GOAL] case refine'_2 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ List.length (List.take (↑n) (List.take (↑m) x)) + List.length (List.drop (↑n) (List.take (↑m) x)) ≤ Fintype.card σ [PROOFSTEP] simp only [List.length_drop, List.length_take] [GOAL] case refine'_2 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ min (↑n) (min (↑m) (List.length x)) + (min (↑m) (List.length x) - ↑n) ≤ Fintype.card σ [PROOFSTEP] rw [min_eq_left (hm.trans hlen), min_eq_left hle, add_tsub_cancel_of_le hle] [GOAL] case refine'_2 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ ↑m ≤ Fintype.card σ [PROOFSTEP] exact hm [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ List.drop (↑n) (List.take (↑m) x) ≠ [] [PROOFSTEP] intro h [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] ⊢ False [PROOFSTEP] have hlen' := congr_arg List.length h [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : List.length (List.drop (↑n) (List.take (↑m) x)) = List.length [] ⊢ False [PROOFSTEP] simp only [List.length_drop, List.length, List.length_take] at hlen' [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : min (↑m) (List.length x) - ↑n = 0 ⊢ False [PROOFSTEP] rw [min_eq_left, tsub_eq_zero_iff_le] at hlen' [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : ↑m ≤ ↑n ⊢ False [PROOFSTEP] apply hneq [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : ↑m ≤ ↑n ⊢ n = m [PROOFSTEP] apply le_antisymm [GOAL] case refine'_3.a α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : ↑m ≤ ↑n ⊢ n ≤ m case refine'_3.a α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : ↑m ≤ ↑n ⊢ m ≤ n [PROOFSTEP] assumption' [GOAL] case refine'_3 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ h : List.drop (↑n) (List.take (↑m) x) = [] hlen' : min (↑m) (List.length x) - ↑n = 0 ⊢ ↑m ≤ List.length x [PROOFSTEP] exact hm.trans hlen [GOAL] case refine'_4 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x)) ∧ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑m) x) = t [PROOFSTEP] have hq : M.evalFrom (M.evalFrom s ((x.take m).take n)) ((x.take m).drop n) = M.evalFrom s ((x.take m).take n) := by rw [List.take_take, min_eq_left hle, ← evalFrom_of_append, heq, ← min_eq_left hle, ← List.take_take, min_eq_left hle, List.take_append_drop] [GOAL] α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ ⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x)) [PROOFSTEP] rw [List.take_take, min_eq_left hle, ← evalFrom_of_append, heq, ← min_eq_left hle, ← List.take_take, min_eq_left hle, List.take_append_drop] [GOAL] case refine'_4 α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ hq : evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x)) ⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x)) ∧ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑m) x) = t [PROOFSTEP] use hq [GOAL] case right α✝ : Type u σ✝ : Type v M✝ : DFA α✝ σ✝ α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α s t : σ hlen : Fintype.card σ ≤ List.length x hx : evalFrom M s x = t n m : Fin (Fintype.card σ + 1) hneq : n ≠ m heq : evalFrom M s (List.take (↑n) x) = evalFrom M s (List.take (↑m) x) hle : ↑n ≤ ↑m hm : ↑m ≤ Fintype.card σ hq : evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑n) (List.take (↑m) x)) = evalFrom M s (List.take (↑n) (List.take (↑m) x)) ⊢ evalFrom M (evalFrom M s (List.take (↑n) (List.take (↑m) x))) (List.drop (↑m) x) = t [PROOFSTEP] rwa [← hq, ← evalFrom_of_append, ← evalFrom_of_append, ← List.append_assoc, List.take_append_drop, List.take_append_drop] [GOAL] α : Type u σ : Type v M : DFA α σ x y : List α s : σ hx : evalFrom M s x = s hy : y ∈ {x}∗ ⊢ evalFrom M s y = s [PROOFSTEP] rw [Language.mem_kstar] at hy [GOAL] α : Type u σ : Type v M : DFA α σ x y : List α s : σ hx : evalFrom M s x = s hy : ∃ L, y = List.join L ∧ ∀ (y : List α), y ∈ L → y ∈ {x} ⊢ evalFrom M s y = s [PROOFSTEP] rcases hy with ⟨S, rfl, hS⟩ [GOAL] case intro.intro α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S : List (List α) hS : ∀ (y : List α), y ∈ S → y ∈ {x} ⊢ evalFrom M s (List.join S) = s [PROOFSTEP] induction' S with a S ih [GOAL] case intro.intro.nil α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S : List (List α) hS✝ : ∀ (y : List α), y ∈ S → y ∈ {x} hS : ∀ (y : List α), y ∈ [] → y ∈ {x} ⊢ evalFrom M s (List.join []) = s [PROOFSTEP] rfl [GOAL] case intro.intro.cons α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S✝ : List (List α) hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x} a : List α S : List (List α) ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x} ⊢ evalFrom M s (List.join (a :: S)) = s [PROOFSTEP] have ha := hS a (List.mem_cons_self _ _) [GOAL] case intro.intro.cons α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S✝ : List (List α) hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x} a : List α S : List (List α) ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x} ha : a ∈ {x} ⊢ evalFrom M s (List.join (a :: S)) = s [PROOFSTEP] rw [Set.mem_singleton_iff] at ha [GOAL] case intro.intro.cons α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S✝ : List (List α) hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x} a : List α S : List (List α) ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x} ha : a = x ⊢ evalFrom M s (List.join (a :: S)) = s [PROOFSTEP] rw [List.join, evalFrom_of_append, ha, hx] [GOAL] case intro.intro.cons α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S✝ : List (List α) hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x} a : List α S : List (List α) ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x} ha : a = x ⊢ evalFrom M s (List.join S) = s [PROOFSTEP] apply ih [GOAL] case intro.intro.cons α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S✝ : List (List α) hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x} a : List α S : List (List α) ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x} ha : a = x ⊢ ∀ (y : List α), y ∈ S → y ∈ {x} [PROOFSTEP] intro z hz [GOAL] case intro.intro.cons α : Type u σ : Type v M : DFA α σ x : List α s : σ hx : evalFrom M s x = s S✝ : List (List α) hS✝ : ∀ (y : List α), y ∈ S✝ → y ∈ {x} a : List α S : List (List α) ih : (∀ (y : List α), y ∈ S → y ∈ {x}) → evalFrom M s (List.join S) = s hS : ∀ (y : List α), y ∈ a :: S → y ∈ {x} ha : a = x z : List α hz : z ∈ S ⊢ z ∈ {x} [PROOFSTEP] exact hS z (List.mem_cons_of_mem a hz) [GOAL] α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx : x ∈ accepts M hlen : Fintype.card σ ≤ List.length x ⊢ ∃ a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ accepts M [PROOFSTEP] obtain ⟨_, a, b, c, hx, hlen, hnil, rfl, hb, hc⟩ := M.evalFrom_split hlen rfl [GOAL] case intro.intro.intro.intro.intro.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x ⊢ ∃ a b c, x = a ++ b ++ c ∧ List.length a + List.length b ≤ Fintype.card σ ∧ b ≠ [] ∧ {a} * {b}∗ * {c} ≤ accepts M [PROOFSTEP] use a, b, c, hx, hlen, hnil [GOAL] case right α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x ⊢ {a} * {b}∗ * {c} ≤ accepts M [PROOFSTEP] intro y hy [GOAL] case right α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x y : List α hy : y ∈ {a} * {b}∗ * {c} ⊢ y ∈ accepts M [PROOFSTEP] rw [Language.mem_mul] at hy [GOAL] case right α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x y : List α hy : ∃ a_1 b_1, a_1 ∈ {a} * {b}∗ ∧ b_1 ∈ {c} ∧ a_1 ++ b_1 = y ⊢ y ∈ accepts M [PROOFSTEP] rcases hy with ⟨ab, c', hab, hc', rfl⟩ [GOAL] case right.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x ab c' : List α hab : ab ∈ {a} * {b}∗ hc' : c' ∈ {c} ⊢ ab ++ c' ∈ accepts M [PROOFSTEP] rw [Language.mem_mul] at hab [GOAL] case right.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x ab c' : List α hab : ∃ a_1 b_1, a_1 ∈ {a} ∧ b_1 ∈ {b}∗ ∧ a_1 ++ b_1 = ab hc' : c' ∈ {c} ⊢ ab ++ c' ∈ accepts M [PROOFSTEP] rcases hab with ⟨a', b', ha', hb', rfl⟩ [GOAL] case right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x c' : List α hc' : c' ∈ {c} a' b' : List α ha' : a' ∈ {a} hb' : b' ∈ {b}∗ ⊢ a' ++ b' ++ c' ∈ accepts M [PROOFSTEP] rw [Set.mem_singleton_iff] at ha' hc' [GOAL] case right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x a b c : List α hx : x = a ++ b ++ c hlen : List.length a + List.length b ≤ Fintype.card σ hnil : b ≠ [] hb : evalFrom M (evalFrom M ?m.8103 a) b = evalFrom M ?m.8103 a hc : evalFrom M (evalFrom M ?m.8103 a) c = evalFrom M ?m.8103 x c' : List α hc' : c' = c a' b' : List α ha' : a' = a hb' : b' ∈ {b}∗ ⊢ a' ++ b' ++ c' ∈ accepts M [PROOFSTEP] substs ha' hc' [GOAL] case right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x b : List α hnil : b ≠ [] c' a' b' : List α hb' : b' ∈ {b}∗ hlen : List.length a' + List.length b ≤ Fintype.card σ hb : evalFrom M (evalFrom M ?m.8103 a') b = evalFrom M ?m.8103 a' hx : x = a' ++ b ++ c' hc : evalFrom M (evalFrom M ?m.8103 a') c' = evalFrom M ?m.8103 x ⊢ a' ++ b' ++ c' ∈ accepts M [PROOFSTEP] have h := M.evalFrom_of_pow hb hb' [GOAL] case right.intro.intro.intro.intro.intro.intro.intro.intro α : Type u σ : Type v M : DFA α σ inst✝ : Fintype σ x : List α hx✝ : x ∈ accepts M hlen✝ : Fintype.card σ ≤ List.length x b : List α hnil : b ≠ [] c' a' b' : List α hb' : b' ∈ {b}∗ hlen : List.length a' + List.length b ≤ Fintype.card σ hb : evalFrom M (evalFrom M ?m.8103 a') b = evalFrom M ?m.8103 a' hx : x = a' ++ b ++ c' hc : evalFrom M (evalFrom M ?m.8103 a') c' = evalFrom M ?m.8103 x h : evalFrom M (evalFrom M ?m.8103 a') b' = evalFrom M ?m.8103 a' ⊢ a' ++ b' ++ c' ∈ accepts M [PROOFSTEP] rwa [mem_accepts, evalFrom_of_append, evalFrom_of_append, h, hc]
{"mathlib_filename": "Mathlib.Computability.DFA", "llama_tokens": 11463}
[GOAL] α : Type u e : Encoding α ⊢ Function.Injective e.encode [PROOFSTEP] refine' fun _ _ h => Option.some_injective _ _ [GOAL] α : Type u e : Encoding α x✝¹ x✝ : α h : encode e x✝¹ = encode e x✝ ⊢ some x✝¹ = some x✝ [PROOFSTEP] rw [← e.decode_encode, ← e.decode_encode, h] [GOAL] ⊢ Multiset.Nodup {blank, bit true, bit false, bra, ket, comma} [PROOFSTEP] decide [GOAL] ⊢ ∀ (x : Γ'), x ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] intro [GOAL] x✝ : Γ' ⊢ x✝ ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] cases_type* Γ' Bool [GOAL] case blank ⊢ blank ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] decide [GOAL] case bit.false ⊢ bit false ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] decide [GOAL] case bit.true ⊢ bit true ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] decide [GOAL] case bra ⊢ bra ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] decide [GOAL] case ket ⊢ ket ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] decide [GOAL] case comma ⊢ comma ∈ { val := {blank, bit true, bit false, bra, ket, comma}, nodup := (_ : Multiset.Nodup {blank, bit true, bit false, bra, ket, comma}) } [PROOFSTEP] decide [GOAL] ⊢ ∀ (n : PosNum), decodePosNum (encodePosNum n) = n [PROOFSTEP] intro n [GOAL] n : PosNum ⊢ decodePosNum (encodePosNum n) = n [PROOFSTEP] induction' n with m hm m hm [GOAL] case one ⊢ decodePosNum (encodePosNum PosNum.one) = PosNum.one [PROOFSTEP] unfold encodePosNum decodePosNum [GOAL] case bit1 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ decodePosNum (encodePosNum (PosNum.bit1 m)) = PosNum.bit1 m [PROOFSTEP] unfold encodePosNum decodePosNum [GOAL] case bit0 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ decodePosNum (encodePosNum (PosNum.bit0 m)) = PosNum.bit0 m [PROOFSTEP] unfold encodePosNum decodePosNum [GOAL] case one ⊢ (if [] = [] then PosNum.one else PosNum.bit1 (decodePosNum [])) = PosNum.one [PROOFSTEP] rfl [GOAL] case bit1 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ (if encodePosNum m = [] then PosNum.one else PosNum.bit1 (decodePosNum (encodePosNum m))) = PosNum.bit1 m [PROOFSTEP] rw [hm] [GOAL] case bit1 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ (if encodePosNum m = [] then PosNum.one else PosNum.bit1 m) = PosNum.bit1 m [PROOFSTEP] exact if_neg (encodePosNum_nonempty m) [GOAL] case bit0 m : PosNum hm : decodePosNum (encodePosNum m) = m ⊢ PosNum.bit0 (decodePosNum (encodePosNum m)) = PosNum.bit0 m [PROOFSTEP] exact congr_arg PosNum.bit0 hm [GOAL] ⊢ ∀ (n : Num), decodeNum (encodeNum n) = n [PROOFSTEP] intro n [GOAL] n : Num ⊢ decodeNum (encodeNum n) = n [PROOFSTEP] cases' n with n [GOAL] case zero ⊢ decodeNum (encodeNum Num.zero) = Num.zero [PROOFSTEP] unfold encodeNum decodeNum [GOAL] case pos n : PosNum ⊢ decodeNum (encodeNum (Num.pos n)) = Num.pos n [PROOFSTEP] unfold encodeNum decodeNum [GOAL] case zero ⊢ (if (match Num.zero with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else ↑(decodePosNum (match Num.zero with | Num.zero => [] | Num.pos n => encodePosNum n))) = Num.zero [PROOFSTEP] rfl [GOAL] case pos n : PosNum ⊢ (if (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else ↑(decodePosNum (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n))) = Num.pos n [PROOFSTEP] rw [decode_encodePosNum n] [GOAL] case pos n : PosNum ⊢ (if (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else ↑n) = Num.pos n [PROOFSTEP] rw [PosNum.cast_to_num] [GOAL] case pos n : PosNum ⊢ (if (match Num.pos n with | Num.zero => [] | Num.pos n => encodePosNum n) = [] then Num.zero else Num.pos n) = Num.pos n [PROOFSTEP] exact if_neg (encodePosNum_nonempty n) [GOAL] ⊢ ∀ (n : ℕ), decodeNat (encodeNat n) = n [PROOFSTEP] intro n [GOAL] n : ℕ ⊢ decodeNat (encodeNat n) = n [PROOFSTEP] conv_rhs => rw [← Num.to_of_nat n] [GOAL] n : ℕ | n [PROOFSTEP] rw [← Num.to_of_nat n] [GOAL] n : ℕ | n [PROOFSTEP] rw [← Num.to_of_nat n] [GOAL] n : ℕ | n [PROOFSTEP] rw [← Num.to_of_nat n] [GOAL] n : ℕ ⊢ decodeNat (encodeNat n) = ↑↑n [PROOFSTEP] exact congr_arg ((↑) : Num → ℕ) (decode_encodeNum n) [GOAL] x : ℕ ⊢ decodeNat (List.map sectionΓ'Bool ((fun x => List.map inclusionBoolΓ' (encodeNat x)) x)) = x [PROOFSTEP] rw [List.map_map, leftInverse_section_inclusion.id, List.map_id, decode_encodeNat] [GOAL] α : Type u e : Encoding α inst✝ : Encodable e.Γ ⊢ #α ≤ ℵ₀ [PROOFSTEP] refine' Cardinal.lift_le.1 (e.card_le_card_list.trans _) [GOAL] α : Type u e : Encoding α inst✝ : Encodable e.Γ ⊢ lift #(List e.Γ) ≤ lift ℵ₀ [PROOFSTEP] simp only [Cardinal.lift_aleph0, Cardinal.lift_le_aleph0] [GOAL] α : Type u e : Encoding α inst✝ : Encodable e.Γ ⊢ #(List e.Γ) ≤ ℵ₀ [PROOFSTEP] cases' isEmpty_or_nonempty e.Γ with h h [GOAL] case inl α : Type u e : Encoding α inst✝ : Encodable e.Γ h : IsEmpty e.Γ ⊢ #(List e.Γ) ≤ ℵ₀ [PROOFSTEP] simp only [Cardinal.mk_le_aleph0] [GOAL] case inr α : Type u e : Encoding α inst✝ : Encodable e.Γ h : Nonempty e.Γ ⊢ #(List e.Γ) ≤ ℵ₀ [PROOFSTEP] rw [Cardinal.mk_list_eq_aleph0]
{"mathlib_filename": "Mathlib.Computability.Encoding", "llama_tokens": 2592}
[GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' χ : MulChar R R' ψ : AddChar R R' a : Rˣ ⊢ ↑χ ↑a * gaussSum χ (mulShift ψ ↑a) = gaussSum χ ψ [PROOFSTEP] simp only [gaussSum, mulShift_apply, Finset.mul_sum] [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' χ : MulChar R R' ψ : AddChar R R' a : Rˣ ⊢ ∑ x : R, ↑χ ↑a * (↑χ x * ↑ψ (↑a * x)) = ∑ x : R, ↑χ x * ↑ψ x [PROOFSTEP] simp_rw [← mul_assoc, ← map_mul] [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' χ : MulChar R R' ψ : AddChar R R' a : Rˣ ⊢ ∑ x : R, ↑χ (↑a * x) * ↑ψ (↑a * x) = ∑ x : R, ↑χ x * ↑ψ x [PROOFSTEP] exact Fintype.sum_bijective _ a.mulLeft_bijective _ _ fun x => rfl [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' b : R ⊢ ∑ a : R, ↑χ (a * b⁻¹) * ↑ψ (a - b) = ∑ c : R, ↑χ c * ↑ψ (b * (c - 1)) [PROOFSTEP] cases' eq_or_ne b 0 with hb hb [GOAL] case inl R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' b : R hb : b = 0 ⊢ ∑ a : R, ↑χ (a * b⁻¹) * ↑ψ (a - b) = ∑ c : R, ↑χ c * ↑ψ (b * (c - 1)) [PROOFSTEP] simp only [hb, inv_zero, mul_zero, MulChar.map_zero, zero_mul, Finset.sum_const_zero, map_zero_one, mul_one] [GOAL] case inl R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' b : R hb : b = 0 ⊢ 0 = ∑ x : R, ↑χ x [PROOFSTEP] exact (hχ.sum_eq_zero).symm [GOAL] case inr R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' b : R hb : b ≠ 0 ⊢ ∑ a : R, ↑χ (a * b⁻¹) * ↑ψ (a - b) = ∑ c : R, ↑χ c * ↑ψ (b * (c - 1)) [PROOFSTEP] refine' (Fintype.sum_bijective _ (mulLeft_bijective₀ b hb) _ _ fun x => _).symm [GOAL] case inr R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' b : R hb : b ≠ 0 x : R ⊢ ↑χ x * ↑ψ (b * (x - 1)) = ↑χ ((fun x x_1 => x * x_1) b x * b⁻¹) * ↑ψ ((fun x x_1 => x * x_1) b x - b) [PROOFSTEP] rw [mul_assoc, mul_comm x, ← mul_assoc, mul_inv_cancel hb, one_mul, mul_sub, mul_one] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ gaussSum χ ψ * gaussSum χ⁻¹ ψ⁻¹ = ↑(Fintype.card R) [PROOFSTEP] simp only [gaussSum, AddChar.inv_apply, Finset.sum_mul, Finset.mul_sum, MulChar.inv_apply'] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R) [PROOFSTEP] conv => lhs; congr; next => skip ext; congr; next => skip ext rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] -- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R) [PROOFSTEP] lhs; congr; next => skip ext; congr; next => skip ext rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] -- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R) [PROOFSTEP] lhs; congr; next => skip ext; congr; next => skip ext rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] -- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) = ↑(Fintype.card R) [PROOFSTEP] lhs [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) [PROOFSTEP] congr [GOAL] case s R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | Finset.univ case f R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | fun x => ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) [PROOFSTEP] next => skip [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | Finset.univ [PROOFSTEP] skip [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | Finset.univ [PROOFSTEP] skip [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | Finset.univ [PROOFSTEP] skip [GOAL] case f R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ | fun x => ∑ x_1 : R, ↑χ x_1 * ↑ψ x_1 * (↑χ x⁻¹ * ↑ψ (-x)) [PROOFSTEP] ext [GOAL] case f.h R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | ∑ x : R, ↑χ x * ↑ψ x * (↑χ x✝⁻¹ * ↑ψ (-x✝)) [PROOFSTEP] congr [GOAL] case f.h.s R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | Finset.univ case f.h.f R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | fun x => ↑χ x * ↑ψ x * (↑χ x✝⁻¹ * ↑ψ (-x✝)) [PROOFSTEP] next => skip [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | Finset.univ [PROOFSTEP] skip [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | Finset.univ [PROOFSTEP] skip [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | Finset.univ [PROOFSTEP] skip [GOAL] case f.h.f R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝ : R | fun x => ↑χ x * ↑ψ x * (↑χ x✝⁻¹ * ↑ψ (-x✝)) [PROOFSTEP] ext [GOAL] case f.h.f.h R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ x✝¹ x✝ : R | ↑χ x✝ * ↑ψ x✝ * (↑χ x✝¹⁻¹ * ↑ψ (-x✝¹)) [PROOFSTEP] rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] -- conv in _ * _ * (_ * _) => rw [mul_mul_mul_comm, ← map_mul, ← map_add_mul, ← sub_eq_add_neg] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ ∑ x : R, ∑ x_1 : R, ↑χ (x_1 * x⁻¹) * ↑ψ (x_1 - x) = ↑(Fintype.card R) [PROOFSTEP] simp_rw [gaussSum_mul_aux hχ ψ] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ ∑ x : R, ∑ x_1 : R, ↑χ x_1 * ↑ψ (x * (x_1 - 1)) = ↑(Fintype.card R) [PROOFSTEP] rw [Finset.sum_comm] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ ∑ y : R, ∑ x : R, ↑χ y * ↑ψ (x * (y - 1)) = ↑(Fintype.card R) [PROOFSTEP] classical -- to get `[DecidableEq R]` for `sum_mulShift` simp_rw [← Finset.mul_sum, sum_mulShift _ hψ, sub_eq_zero, apply_ite, Nat.cast_zero, mul_zero] rw [Finset.sum_ite_eq' Finset.univ (1 : R)] simp only [Finset.mem_univ, map_one, one_mul, if_true] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ ∑ y : R, ∑ x : R, ↑χ y * ↑ψ (x * (y - 1)) = ↑(Fintype.card R) [PROOFSTEP] simp_rw [← Finset.mul_sum, sum_mulShift _ hψ, sub_eq_zero, apply_ite, Nat.cast_zero, mul_zero] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ (∑ x : R, if x = 1 then ↑χ x * ↑(Fintype.card R) else 0) = ↑(Fintype.card R) [PROOFSTEP] rw [Finset.sum_ite_eq' Finset.univ (1 : R)] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : MulChar.IsNontrivial χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ (if 1 ∈ Finset.univ then ↑χ 1 * ↑(Fintype.card R) else 0) = ↑(Fintype.card R) [PROOFSTEP] simp only [Finset.mem_univ, map_one, one_mul, if_true] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) [PROOFSTEP] rw [pow_two, ← gaussSum_mul_gaussSum_eq_card hχ₁ hψ, hχ₂.inv, mul_rotate'] [GOAL] R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ gaussSum χ ψ * gaussSum χ ψ = gaussSum χ ψ * (gaussSum χ ψ⁻¹ * ↑χ (-1)) [PROOFSTEP] congr [GOAL] case e_a R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ gaussSum χ ψ = gaussSum χ ψ⁻¹ * ↑χ (-1) [PROOFSTEP] rw [mul_comm, ← gaussSum_mulShift _ _ (-1 : Rˣ), inv_mulShift] [GOAL] case e_a R : Type u inst✝³ : Field R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ ψ : AddChar R R' hψ : IsPrimitive ψ ⊢ ↑χ ↑(-1) * gaussSum χ (mulShift ψ ↑(-1)) = ↑χ (-1) * gaussSum χ (mulShift ψ (-1)) [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p χ : MulChar R R' ψ : AddChar R R' ⊢ gaussSum χ ψ ^ p = gaussSum (χ ^ p) (ψ ^ p) [PROOFSTEP] rw [← frobenius_def, gaussSum, gaussSum, map_sum] [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p χ : MulChar R R' ψ : AddChar R R' ⊢ ∑ x : R, ↑(frobenius R' p) (↑χ x * ↑ψ x) = ∑ a : R, ↑(χ ^ p) a * ↑(ψ ^ p) a [PROOFSTEP] simp_rw [pow_apply' χ fp.1.pos, map_mul, frobenius_def] [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p χ : MulChar R R' ψ : AddChar R R' ⊢ ∑ x : R, ↑χ x ^ p * ↑ψ x ^ p = ∑ x : R, ↑χ x ^ p * ↑(ψ ^ p) x [PROOFSTEP] rfl [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' ⊢ gaussSum χ ψ ^ p = ↑χ ↑p * gaussSum χ ψ [PROOFSTEP] rw [gaussSum_frob, pow_mulShift, hχ.pow_char p, ← gaussSum_mulShift χ ψ hp.unit, ← mul_assoc, hp.unit_spec, ← pow_two, ← pow_apply' _ (by norm_num : 0 < 2), hχ.sq_eq_one, ← hp.unit_spec, one_apply_coe, one_mul] [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' ⊢ 0 < 2 [PROOFSTEP] norm_num [GOAL] R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p n : ℕ hp : IsUnit ↑p χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' ⊢ gaussSum χ ψ ^ p ^ n = ↑χ (↑p ^ n) * gaussSum χ ψ [PROOFSTEP] induction' n with n ih [GOAL] case zero R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' ⊢ gaussSum χ ψ ^ p ^ Nat.zero = ↑χ (↑p ^ Nat.zero) * gaussSum χ ψ [PROOFSTEP] rw [pow_zero, pow_one, pow_zero, MulChar.map_one, one_mul] [GOAL] case succ R : Type u inst✝² : CommRing R inst✝¹ : Fintype R R' : Type v inst✝ : CommRing R' p : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' n : ℕ ih : gaussSum χ ψ ^ p ^ n = ↑χ (↑p ^ n) * gaussSum χ ψ ⊢ gaussSum χ ψ ^ p ^ Nat.succ n = ↑χ (↑p ^ Nat.succ n) * gaussSum χ ψ [PROOFSTEP] rw [pow_succ, mul_comm p, pow_mul, ih, mul_pow, hχ.gaussSum_frob _ hp, ← mul_assoc, pow_succ, mul_comm (p : R), map_mul, ← pow_apply' χ fp.1.pos ((p : R) ^ n), hχ.pow_char p] [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) ⊢ (↑χ (-1) * ↑(Fintype.card R)) ^ (p ^ n / 2) = ↑χ (↑p ^ n) [PROOFSTEP] have : gaussSum χ ψ ≠ 0 := by intro hf; rw [hf, zero_pow (by norm_num : 0 < 2), eq_comm, mul_eq_zero] at hg exact not_isUnit_prime_of_dvd_card p ((CharP.cast_eq_zero_iff R' p _).mp <| hg.resolve_left (isUnit_one.neg.map χ).ne_zero) hp [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) ⊢ gaussSum χ ψ ≠ 0 [PROOFSTEP] intro hf [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) hf : gaussSum χ ψ = 0 ⊢ False [PROOFSTEP] rw [hf, zero_pow (by norm_num : 0 < 2), eq_comm, mul_eq_zero] at hg [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : 0 ^ 2 = ↑χ (-1) * ↑(Fintype.card R) hf : gaussSum χ ψ = 0 ⊢ 0 < 2 [PROOFSTEP] norm_num [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : ↑χ (-1) = 0 ∨ ↑(Fintype.card R) = 0 hf : gaussSum χ ψ = 0 ⊢ False [PROOFSTEP] exact not_isUnit_prime_of_dvd_card p ((CharP.cast_eq_zero_iff R' p _).mp <| hg.resolve_left (isUnit_one.neg.map χ).ne_zero) hp [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) this : gaussSum χ ψ ≠ 0 ⊢ (↑χ (-1) * ↑(Fintype.card R)) ^ (p ^ n / 2) = ↑χ (↑p ^ n) [PROOFSTEP] rw [← hg] [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) this : gaussSum χ ψ ≠ 0 ⊢ (gaussSum χ ψ ^ 2) ^ (p ^ n / 2) = ↑χ (↑p ^ n) [PROOFSTEP] apply mul_right_cancel₀ this [GOAL] R : Type u inst✝³ : CommRing R inst✝² : Fintype R R' : Type v inst✝¹ : CommRing R' inst✝ : IsDomain R' χ : MulChar R R' hχ : IsQuadratic χ ψ : AddChar R R' p n : ℕ fp : Fact (Nat.Prime p) hch : CharP R' p hp : IsUnit ↑p hp' : p ≠ 2 hg : gaussSum χ ψ ^ 2 = ↑χ (-1) * ↑(Fintype.card R) this : gaussSum χ ψ ≠ 0 ⊢ (gaussSum χ ψ ^ 2) ^ (p ^ n / 2) * gaussSum χ ψ = ↑χ (↑p ^ n) * gaussSum χ ψ [PROOFSTEP] rw [← hχ.gaussSum_frob_iter p n hp ψ, ← pow_mul, mul_comm, ← pow_succ, Nat.two_mul_div_two_add_one_of_odd (fp.1.eq_two_or_odd'.resolve_left hp').pow] [GOAL] R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 ⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F') [PROOFSTEP] obtain ⟨n, hp, hc⟩ := FiniteField.card F (ringChar F) [GOAL] case intro.intro R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n ⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F') [PROOFSTEP] obtain ⟨n', hp', hc'⟩ := FiniteField.card F' (ringChar F') [GOAL] case intro.intro.intro.intro R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F') [PROOFSTEP] let ψ := primitiveCharFiniteField F F' hch₁ [GOAL] case intro.intro.intro.intro R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ ⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F') [PROOFSTEP] set FF' := CyclotomicField ψ.n F' with FF'_def [GOAL] case intro.intro.intro.intro R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' ⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F') [PROOFSTEP] have hchar := Algebra.ringChar_eq F' FF' [GOAL] case intro.intro.intro.intro R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' ⊢ (↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2) = ↑χ ↑(Fintype.card F') [PROOFSTEP] apply (algebraMap F' FF').injective [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' ⊢ ↑(algebraMap F' FF') ((↑χ (-1) * ↑(Fintype.card F)) ^ (Fintype.card F' / 2)) = ↑(algebraMap F' FF') (↑χ ↑(Fintype.card F')) [PROOFSTEP] rw [map_pow, map_mul, map_natCast, hc', hchar, Nat.cast_pow] [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' ⊢ (↑(algebraMap F' FF') (↑χ (-1)) * ↑(Fintype.card F)) ^ (ringChar FF' ^ ↑n' / 2) = ↑(algebraMap F' FF') (↑χ (↑(ringChar FF') ^ ↑n')) [PROOFSTEP] simp only [← MulChar.ringHomComp_apply] [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' ⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')) ^ ↑n') [PROOFSTEP] haveI := Fact.mk hp' [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' this : Fact (Nat.Prime (ringChar F')) ⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')) ^ ↑n') [PROOFSTEP] haveI := Fact.mk (hchar.subst hp') [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' this✝ : Fact (Nat.Prime (ringChar F')) this : Fact (Nat.Prime (ringChar FF')) ⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁)) F')) ^ ↑n') [PROOFSTEP] rw [Ne, ← Nat.prime_dvd_prime_iff_eq hp' hp, ← isUnit_iff_not_dvd_char, hchar] at hch₁ [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁✝ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁✝ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' hch₁ : IsUnit ↑(ringChar FF') FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' this✝ : Fact (Nat.Prime (ringChar F')) this : Fact (Nat.Prime (ringChar FF')) ⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n') [PROOFSTEP] have := Char.card_pow_char_pow (hχ₂.comp (algebraMap F' FF')) ψ.char (ringChar FF') n' hch₁ (hchar ▸ hch₂) (gaussSum_sq (hχ₁.comp <| RingHom.injective _) (hχ₂.comp _) ψ.prim) [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁✝ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁✝ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' hch₁ : IsUnit ↑(ringChar FF') FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' this✝¹ : Fact (Nat.Prime (ringChar F')) this✝ : Fact (Nat.Prime (ringChar FF')) this : (↑(ringHomComp χ (algebraMap F' FF')) (-1) * ↑(Fintype.card F)) ^ (ringChar FF' ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' FF')) (↑(ringChar FF') ^ ↑n') ⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n') [PROOFSTEP] simp_rw [FF'_def] at this [GOAL] case intro.intro.intro.intro.a R : Type u inst✝⁷ : CommRing R inst✝⁶ : Fintype R R' : Type v inst✝⁵ : CommRing R' inst✝⁴ : IsDomain R' F : Type u_1 inst✝³ : Field F inst✝² : Fintype F F' : Type u_2 inst✝¹ : Field F' inst✝ : Fintype F' χ : MulChar F F' hχ₁ : MulChar.IsNontrivial χ hχ₂ : IsQuadratic χ hch₁✝ : ringChar F' ≠ ringChar F hch₂ : ringChar F' ≠ 2 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n n' : ℕ+ hp' : Nat.Prime (ringChar F') hc' : Fintype.card F' = ringChar F' ^ ↑n' ψ : PrimitiveAddChar F F' := primitiveCharFiniteField F F' hch₁✝ FF' : Type u_2 := CyclotomicField (PrimitiveAddChar.n ψ) F' hch₁ : IsUnit ↑(ringChar FF') FF'_def : FF' = CyclotomicField (PrimitiveAddChar.n ψ) F' hchar : ringChar F' = ringChar FF' this✝¹ : Fact (Nat.Prime (ringChar F')) this✝ : Fact (Nat.Prime (ringChar FF')) this : (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n') ⊢ (↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (-1) * ↑(Fintype.card F)) ^ (ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F') ^ ↑n' / 2) = ↑(ringHomComp χ (algebraMap F' (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F'))) (↑(ringChar (CyclotomicField (PrimitiveAddChar.n (primitiveCharFiniteField F F' hch₁✝)) F')) ^ ↑n') [PROOFSTEP] exact this [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hp2 : ∀ n : ℕ, (2 ^ n : F) ≠ 0 := fun n => pow_ne_zero n (Ring.two_ne_zero hF) [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] obtain ⟨n, hp, hc⟩ := FiniteField.card F (ringChar F) -- we work in `FF`, the eighth cyclotomic field extension of `F` -- Porting note: was -- let FF := (Polynomial.cyclotomic 8 F).SplittingField -- but we want to unify with `CyclotomicField` below. [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] let FF := CyclotomicField 8 F [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] haveI : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) := Polynomial.IsSplittingField.splittingField _ [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] haveI : FiniteDimensional F FF := Polynomial.IsSplittingField.finiteDimensional FF (Polynomial.cyclotomic 8 F) [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this : FiniteDimensional F FF ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] haveI : Fintype FF := FiniteDimensional.fintypeOfFintype F FF [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝¹ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝ : FiniteDimensional F FF this : Fintype FF ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hchar := Algebra.ringChar_eq F FF [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝¹ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝ : FiniteDimensional F FF this : Fintype FF hchar : ringChar F = ringChar FF ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have FFp := hchar.subst hp [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝¹ : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝ : FiniteDimensional F FF this : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] haveI := Fact.mk FFp [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hFF := ne_of_eq_of_ne hchar.symm hF [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hu : IsUnit (ringChar FF : ZMod 8) := by rw [isUnit_iff_not_dvd_char, ringChar_zmod_n] rw [Ne, ← Nat.prime_dvd_prime_iff_eq FFp Nat.prime_two] at hFF change ¬_ ∣ 2 ^ 3 exact mt FFp.dvd_of_dvd_pow hFF [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 ⊢ IsUnit ↑(ringChar FF) [PROOFSTEP] rw [isUnit_iff_not_dvd_char, ringChar_zmod_n] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 ⊢ ¬ringChar FF ∣ 8 [PROOFSTEP] rw [Ne, ← Nat.prime_dvd_prime_iff_eq FFp Nat.prime_two] at hFF [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ¬ringChar FF ∣ 2 ⊢ ¬ringChar FF ∣ 8 [PROOFSTEP] change ¬_ ∣ 2 ^ 3 [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ¬ringChar FF ∣ 2 ⊢ ¬ringChar FF ∣ 2 ^ 3 [PROOFSTEP] exact mt FFp.dvd_of_dvd_pow hFF [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] let ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (by convert hp2 3 using 1; norm_cast) -- Porting note: unifying this is very slow, so only do it once. [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ⊢ ↑↑8 ≠ 0 [PROOFSTEP] convert hp2 3 using 1 [GOAL] case h.e'_2 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ⊢ ↑↑8 = 2 ^ 3 [PROOFSTEP] norm_cast [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] let ψ₈char : AddChar (ZMod 8) FF := ψ₈.char [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] let τ : FF := ψ₈char 1 [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have τ_spec : τ ^ 4 = -1 := by refine (sq_eq_one_iff.1 ?_).resolve_left ?_ · rw [← pow_mul, ← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim] decide · rw [← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim] decide -- we consider `χ₈` as a multiplicative character `ℤ/8ℤ → FF` [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 ⊢ τ ^ 4 = -1 [PROOFSTEP] refine (sq_eq_one_iff.1 ?_).resolve_left ?_ [GOAL] case refine_1 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 ⊢ (τ ^ 4) ^ 2 = 1 [PROOFSTEP] rw [← pow_mul, ← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim] [GOAL] case refine_1 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 ⊢ (4 * 2) • 1 = 0 [PROOFSTEP] decide [GOAL] case refine_2 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 ⊢ ¬τ ^ 4 = 1 [PROOFSTEP] rw [← map_nsmul_pow ψ₈char, AddChar.IsPrimitive.zmod_char_eq_one_iff 8 ψ₈.prim] [GOAL] case refine_2 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 ⊢ ¬4 • 1 = 0 [PROOFSTEP] decide -- we consider `χ₈` as a multiplicative character `ℤ/8ℤ → FF` [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] let χ := χ₈.ringHomComp (Int.castRingHom FF) [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hχ : χ (-1) = 1 := Int.cast_one [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hq : IsQuadratic χ := isQuadratic_χ₈.comp _ -- we now show that the Gauss sum of `χ` and `ψ₈` has the relevant property [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have hg : gaussSum χ ψ₈char ^ 2 = χ (-1) * Fintype.card (ZMod 8) := by have _ := congr_arg (· ^ 2) (Fin.sum_univ_eight fun x => (χ₈ x : FF) * τ ^ x.1) have h₁ : (fun i : Fin 8 => ↑(χ₈ i) * τ ^ i.val) = (fun a : ZMod 8 => χ a * ↑(ψ₈char a)) := by -- Porting note: original proof -- ext; congr; apply pow_oneext (x : Fin 8); rw [← map_nsmul_pow ψ₈char]; congr 2; rw [Nat.smul_one_eq_coe, Fin.cast_val_eq_self x] have h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) := by ring have h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = ↑8 := by rw [τ_spec]; norm_num have h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = ↑8 := by rw [← h₃, ← h₂] have h₅ : (↑(χ₈ 0) * τ ^ 0 + ↑(χ₈ 1) * τ ^ 1 + ↑(χ₈ 2) * τ ^ 2 + ↑(χ₈ 3) * τ ^ 3 + ↑(χ₈ 4) * τ ^ 4 + ↑(χ₈ 5) * τ ^ 5 + ↑(χ₈ 6) * τ ^ 6 + ↑(χ₈ 7) * τ ^ 7) ^ 2 = 8 := by -- Porting note: original proof -- simp [← h₄, χ₈_apply, Matrix.cons_val_zero, algebraMap.coe_zero, zero_mul, -- Matrix.cons_val_one, Matrix.head_cons, algebraMap.coe_one, Matrix.cons_vec_bit0_eq_alt0, -- Matrix.cons_vecAppend, Matrix.cons_vecAlt0, Matrix.cons_vec_bit1_eq_alt1, -- Matrix.cons_vecAlt1, Int.cast_neg] simp_rw [χ₈_apply] rw [← h₄] dsimp only congr · rw [Matrix.cons_val_zero]; simp · simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] left rw [← Int.cast_zero (R := FF)] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons] rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] left rw [← Int.cast_zero (R := FF)] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons] rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] left rw [← Int.cast_zero (R := FF)] exact congr_arg Int.cast rfl rw [gaussSum, hχ, one_mul, ZMod.card, Nat.cast_ofNat, ← h₅] simp_rw [← h₁] rw [Fin.sum_univ_eight] rfl -- this allows us to apply `card_pow_char_pow` to our situation [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] have _ := congr_arg (· ^ 2) (Fin.sum_univ_eight fun x => (χ₈ x : FF) * τ ^ x.1) [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] have h₁ : (fun i : Fin 8 => ↑(χ₈ i) * τ ^ i.val) = (fun a : ZMod 8 => χ a * ↑(ψ₈char a)) := by -- Porting note: original proof -- ext; congr; apply pow_oneext (x : Fin 8); rw [← map_nsmul_pow ψ₈char]; congr 2; rw [Nat.smul_one_eq_coe, Fin.cast_val_eq_self x] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) ⊢ (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a [PROOFSTEP] ext (x : Fin 8) [GOAL] case h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) x : Fin 8 ⊢ ↑(↑χ₈ x) * τ ^ ↑x = ↑χ x * ↑ψ₈char x [PROOFSTEP] rw [← map_nsmul_pow ψ₈char] [GOAL] case h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) x : Fin 8 ⊢ ↑(↑χ₈ x) * ↑ψ₈char (↑x • 1) = ↑χ x * ↑ψ₈char x [PROOFSTEP] congr 2 [GOAL] case h.e_a.e_x F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) x : Fin 8 ⊢ ↑x • 1 = x [PROOFSTEP] rw [Nat.smul_one_eq_coe, Fin.cast_val_eq_self x] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] have h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) := by ring [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a ⊢ (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) [PROOFSTEP] ring [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] have h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = ↑8 := by rw [τ_spec]; norm_num [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) ⊢ 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 [PROOFSTEP] rw [τ_spec] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) ⊢ 8 + (-1 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * -1 + τ ^ 2 - 8) = 8 [PROOFSTEP] norm_num [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] have h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = ↑8 := by rw [← h₃, ← h₂] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 ⊢ (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 [PROOFSTEP] rw [← h₃, ← h₂] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] have h₅ : (↑(χ₈ 0) * τ ^ 0 + ↑(χ₈ 1) * τ ^ 1 + ↑(χ₈ 2) * τ ^ 2 + ↑(χ₈ 3) * τ ^ 3 + ↑(χ₈ 4) * τ ^ 4 + ↑(χ₈ 5) * τ ^ 5 + ↑(χ₈ 6) * τ ^ 6 + ↑(χ₈ 7) * τ ^ 7) ^ 2 = 8 := by -- Porting note: original proof -- simp [← h₄, χ₈_apply, Matrix.cons_val_zero, algebraMap.coe_zero, zero_mul, -- Matrix.cons_val_one, Matrix.head_cons, algebraMap.coe_one, Matrix.cons_vec_bit0_eq_alt0, -- Matrix.cons_vecAppend, Matrix.cons_vecAlt0, Matrix.cons_vec_bit1_eq_alt1, -- Matrix.cons_vecAlt1, Int.cast_neg] simp_rw [χ₈_apply] rw [← h₄] dsimp only congr · rw [Matrix.cons_val_zero]; simp · simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] left rw [← Int.cast_zero (R := FF)] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons] rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] left rw [← Int.cast_zero (R := FF)] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons] rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]] exact congr_arg Int.cast rfl · simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] left rw [← Int.cast_zero (R := FF)] exact congr_arg Int.cast rfl [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 + ↑(↑χ₈ 6) * τ ^ 6 + ↑(↑χ₈ 7) * τ ^ 7) ^ 2 = 8 [PROOFSTEP] simp_rw [χ₈_apply] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ (↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^ 2 = 8 [PROOFSTEP] rw [← h₄] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ (↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^ 2 = (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 [PROOFSTEP] dsimp only [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ (↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 + ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^ 2 = (0 + 1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + 0 + -1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 + 0 + -1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 + 0 + 1 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^ 2 [PROOFSTEP] congr [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 = 0 [PROOFSTEP] rw [Matrix.cons_val_zero] [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑0 * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 = 0 [PROOFSTEP] simp [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 = 0 [PROOFSTEP] simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 2) = 0 ∨ ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ¬↑↑8 = 0))) 1 = 0 [PROOFSTEP] left [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a.h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 2) = 0 [PROOFSTEP] rw [← Int.cast_zero (R := FF)] [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a.h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 2) = ↑0 [PROOFSTEP] exact congr_arg Int.cast rfl [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 3) = -1 [PROOFSTEP] simp only [Matrix.vecCons] [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 3) = -1 [PROOFSTEP] rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ -1 = ↑(-1) [PROOFSTEP] simp only [Int.cast_neg, Int.cast_one] [GOAL] case e_a.e_a.e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 3) = ↑(-1) [PROOFSTEP] exact congr_arg Int.cast rfl [GOAL] case e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 = 0 [PROOFSTEP] simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] [GOAL] case e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 4) = 0 ∨ ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ¬↑↑8 = 0))) 1 = 0 [PROOFSTEP] left [GOAL] case e_a.e_a.e_a.e_a.e_a.h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 4) = 0 [PROOFSTEP] rw [← Int.cast_zero (R := FF)] [GOAL] case e_a.e_a.e_a.e_a.e_a.h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 4) = ↑0 [PROOFSTEP] exact congr_arg Int.cast rfl [GOAL] case e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 5) = -1 [PROOFSTEP] simp only [Matrix.vecCons] [GOAL] case e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 5) = -1 [PROOFSTEP] rw [show (-1 : FF) = ↑(-1 : ℤ) by simp only [Int.cast_neg, Int.cast_one]] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ -1 = ↑(-1) [PROOFSTEP] simp only [Int.cast_neg, Int.cast_one] [GOAL] case e_a.e_a.e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 5) = ↑(-1) [PROOFSTEP] exact congr_arg Int.cast rfl [GOAL] case e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Matrix.vecCons 0 ![1, 0, -1, 0, -1, 0, 1] 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 = 0 [PROOFSTEP] simp only [Matrix.vecCons, ne_eq, Nat.cast_ofNat, id_eq, eq_mpr_eq_cast, mul_eq_zero, zero_lt_two, pow_eq_zero_iff] [GOAL] case e_a.e_a.e_a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 6) = 0 ∨ ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ¬↑↑8 = 0))) 1 = 0 [PROOFSTEP] left [GOAL] case e_a.e_a.e_a.h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 6) = 0 [PROOFSTEP] rw [← Int.cast_zero (R := FF)] [GOAL] case e_a.e_a.e_a.h F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 ⊢ ↑(Fin.cons 0 (Fin.cons 1 (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons (-1) (Fin.cons 0 (Fin.cons 1 ![]))))))) 6) = ↑0 [PROOFSTEP] exact congr_arg Int.cast rfl [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 h₅ : (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 + ↑(↑χ₈ 6) * τ ^ 6 + ↑(↑χ₈ 7) * τ ^ 7) ^ 2 = 8 ⊢ gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) [PROOFSTEP] rw [gaussSum, hχ, one_mul, ZMod.card, Nat.cast_ofNat, ← h₅] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 h₅ : (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 + ↑(↑χ₈ 6) * τ ^ 6 + ↑(↑χ₈ 7) * τ ^ 7) ^ 2 = 8 ⊢ (∑ a : ZMod 8, ↑χ a * ↑ψ₈char a) ^ 2 = (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 + ↑(↑χ₈ 6) * τ ^ 6 + ↑(↑χ₈ 7) * τ ^ 7) ^ 2 [PROOFSTEP] simp_rw [← h₁] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 h₅ : (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 + ↑(↑χ₈ 6) * τ ^ 6 + ↑(↑χ₈ 7) * τ ^ 7) ^ 2 = 8 ⊢ (∑ i : ZMod 8, ↑(↑χ₈ i) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑i) ^ 2 = (↑(↑χ₈ 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 + ↑(↑χ₈ 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + ↑(↑χ₈ 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 + ↑(↑χ₈ 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 + ↑(↑χ₈ 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 + ↑(↑χ₈ 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 + ↑(↑χ₈ 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 + ↑(↑χ₈ 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^ 2 [PROOFSTEP] rw [Fin.sum_univ_eight] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ x✝ : (fun x => x ^ 2) (∑ i : Fin 8, ↑(↑χ₈ i) * τ ^ ↑i) = (fun x => x ^ 2) (↑(↑χ₈ 0) * τ ^ ↑0 + ↑(↑χ₈ 1) * τ ^ ↑1 + ↑(↑χ₈ 2) * τ ^ ↑2 + ↑(↑χ₈ 3) * τ ^ ↑3 + ↑(↑χ₈ 4) * τ ^ ↑4 + ↑(↑χ₈ 5) * τ ^ ↑5 + ↑(↑χ₈ 6) * τ ^ ↑6 + ↑(↑χ₈ 7) * τ ^ ↑7) h₁ : (fun i => ↑(↑χ₈ i) * τ ^ ↑i) = fun a => ↑χ a * ↑ψ₈char a h₂ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) h₃ : 8 + (τ ^ 4 + 1) * (τ ^ 10 - 2 * τ ^ 8 - 2 * τ ^ 6 + 6 * τ ^ 4 + τ ^ 2 - 8) = 8 h₄ : (0 + 1 * τ ^ 1 + 0 + -1 * τ ^ 3 + 0 + -1 * τ ^ 5 + 0 + 1 * τ ^ 7) ^ 2 = 8 h₅ : (↑(↑χ₈ 0) * τ ^ 0 + ↑(↑χ₈ 1) * τ ^ 1 + ↑(↑χ₈ 2) * τ ^ 2 + ↑(↑χ₈ 3) * τ ^ 3 + ↑(↑χ₈ 4) * τ ^ 4 + ↑(↑χ₈ 5) * τ ^ 5 + ↑(↑χ₈ 6) * τ ^ 6 + ↑(↑χ₈ 7) * τ ^ 7) ^ 2 = 8 ⊢ (↑(↑χ₈ 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑0 + ↑(↑χ₈ 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑1 + ↑(↑χ₈ 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑2 + ↑(↑χ₈ 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑3 + ↑(↑χ₈ 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑4 + ↑(↑χ₈ 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑5 + ↑(↑χ₈ 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑6 + ↑(↑χ₈ 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ ↑7) ^ 2 = (↑(↑χ₈ 0) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 0 + ↑(↑χ₈ 1) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 1 + ↑(↑χ₈ 2) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 2 + ↑(↑χ₈ 3) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 3 + ↑(↑χ₈ 4) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 4 + ↑(↑χ₈ 5) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 5 + ↑(↑χ₈ 6) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 6 + ↑(↑χ₈ 7) * ↑(PrimitiveAddChar.char (primitiveZModChar 8 F (_ : ↑↑8 ≠ 0))) 1 ^ 7) ^ 2 [PROOFSTEP] rfl -- this allows us to apply `card_pow_char_pow` to our situation [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] have h := Char.card_pow_char_pow (R := ZMod 8) hq ψ₈char (ringChar FF) n hu hFF hg [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : (↑χ (-1) * ↑(Fintype.card (ZMod 8))) ^ (ringChar FF ^ ↑n / 2) = ↑χ (↑(ringChar FF) ^ ↑n) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] rw [ZMod.card, ← hchar, hχ, one_mul, ← hc, ← Nat.cast_pow (ringChar F), ← hc] at h [GOAL] case intro.intro F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F) ⊢ 2 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] convert_to (8 : F) ^ (Fintype.card F / 2) = _ [GOAL] case h.e'_2 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F) ⊢ 2 ^ (Fintype.card F / 2) = 8 ^ (Fintype.card F / 2) [PROOFSTEP] rw [(by norm_num : (8 : F) = 2 ^ 2 * 2), mul_pow, (FiniteField.isSquare_iff hF <| hp2 2).mp ⟨2, pow_two 2⟩, one_mul] [GOAL] F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F) ⊢ 8 = 2 ^ 2 * 2 [PROOFSTEP] norm_num [GOAL] case intro.intro.convert_2 F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F) ⊢ 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] apply (algebraMap F FF).injective [GOAL] case intro.intro.convert_2.a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F) ⊢ ↑(algebraMap F FF) (8 ^ (Fintype.card F / 2)) = ↑(algebraMap F FF) ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] simp only [map_pow, map_ofNat, map_intCast] [GOAL] case intro.intro.convert_2.a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : ↑8 ^ (Fintype.card F / 2) = ↑χ ↑(Fintype.card F) ⊢ 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] simp only [Nat.cast_ofNat, ringHomComp_apply, eq_intCast] at h [GOAL] case intro.intro.convert_2.a F : Type u_1 inst✝¹ : Fintype F inst✝ : Field F hF : ringChar F ≠ 2 hp2 : ∀ (n : ℕ), 2 ^ n ≠ 0 n : ℕ+ hp : Nat.Prime (ringChar F) hc : Fintype.card F = ringChar F ^ ↑n FF : Type u_1 := CyclotomicField 8 F this✝² : Polynomial.IsSplittingField F FF (Polynomial.cyclotomic 8 F) this✝¹ : FiniteDimensional F FF this✝ : Fintype FF hchar : ringChar F = ringChar FF FFp : Nat.Prime (ringChar FF) this : Fact (Nat.Prime (ringChar FF)) hFF : ringChar FF ≠ 2 hu : IsUnit ↑(ringChar FF) ψ₈ : PrimitiveAddChar (ZMod 8) F := primitiveZModChar 8 F (_ : ↑↑8 ≠ 0) ψ₈char : AddChar (ZMod 8) FF := PrimitiveAddChar.char ψ₈ τ : FF := ↑ψ₈char 1 τ_spec : τ ^ 4 = -1 χ : MulChar (ZMod 8) FF := ringHomComp χ₈ (Int.castRingHom FF) hχ : ↑χ (-1) = 1 hq : IsQuadratic χ hg : gaussSum χ ψ₈char ^ 2 = ↑χ (-1) * ↑(Fintype.card (ZMod 8)) h : 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) ⊢ 8 ^ (Fintype.card F / 2) = ↑(↑χ₈ ↑(Fintype.card F)) [PROOFSTEP] exact h
{"mathlib_filename": "Mathlib.NumberTheory.LegendreSymbol.GaussSum", "llama_tokens": 73854}
[GOAL] tm : FinTM2 s : List (FinTM2.Γ tm tm.k₀) k : tm.K h : k = tm.k₀ ⊢ List (FinTM2.Γ tm k) [PROOFSTEP] rw [h] [GOAL] tm : FinTM2 s : List (FinTM2.Γ tm tm.k₀) k : tm.K h : k = tm.k₀ ⊢ List (FinTM2.Γ tm tm.k₀) [PROOFSTEP] exact s [GOAL] tm : FinTM2 s : List (FinTM2.Γ tm tm.k₁) k : tm.K h : k = tm.k₁ ⊢ List (FinTM2.Γ tm k) [PROOFSTEP] rw [h] [GOAL] tm : FinTM2 s : List (FinTM2.Γ tm tm.k₁) k : tm.K h : k = tm.k₁ ⊢ List (FinTM2.Γ tm tm.k₁) [PROOFSTEP] exact s [GOAL] σ : Type u_1 f : σ → Option σ a b : σ c : Option σ h₁ : EvalsTo f a (some b) h₂ : EvalsTo f b c ⊢ (flip bind f)^[h₂.steps + h₁.steps] (some a) = c [PROOFSTEP] rw [Function.iterate_add_apply, h₁.evals_in_steps, h₂.evals_in_steps] [GOAL] α : Type ea : FinEncoding α x✝ : α ⊢ { steps := 1, evals_in_steps := (_ : (flip bind (FinTM2.step { tm := idComputer ea, inputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₀ = FinTM2.Γ (idComputer ea) (idComputer ea).k₀), outputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₁ = FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm))^[1] (some (initList { tm := idComputer ea, inputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₀ = FinTM2.Γ (idComputer ea) (idComputer ea).k₀), outputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₁ = FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm (List.map { tm := idComputer ea, inputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₀ = FinTM2.Γ (idComputer ea) (idComputer ea).k₀), outputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₁ = FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.inputAlphabet.invFun (Encoding.encode ea.toEncoding x✝)))) = (flip bind (FinTM2.step { tm := idComputer ea, inputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₀ = FinTM2.Γ (idComputer ea) (idComputer ea).k₀), outputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₁ = FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm))^[1] (some (initList { tm := idComputer ea, inputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₀ = FinTM2.Γ (idComputer ea) (idComputer ea).k₀), outputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₁ = FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.tm (List.map { tm := idComputer ea, inputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₀ = FinTM2.Γ (idComputer ea) (idComputer ea).k₀), outputAlphabet := Equiv.cast (_ : FinTM2.Γ (idComputer ea) (idComputer ea).k₁ = FinTM2.Γ (idComputer ea) (idComputer ea).k₁) }.inputAlphabet.invFun (Encoding.encode ea.toEncoding x✝))))) }.steps ≤ Polynomial.eval (List.length (Encoding.encode ea.toEncoding x✝)) 1 [PROOFSTEP] simp only [Polynomial.eval_one]
{"mathlib_filename": "Mathlib.Computability.TMComputable", "llama_tokens": 1532}
{"mathlib_filename": "Mathlib.Util.PiNotation", "llama_tokens": 0}
[GOAL] α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x : List α s✝ : σ a : α s : σ hs : s ∈ εClosure M ∅ ⊢ False [PROOFSTEP] induction hs [GOAL] case base α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x : List α s✝¹ : σ a : α s s✝ : σ a✝ : s✝ ∈ ∅ ⊢ False [PROOFSTEP] assumption [GOAL] case step α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x : List α s✝¹ : σ a : α s s✝ t✝ : σ a✝¹ : t✝ ∈ step M s✝ none a✝ : εClosure M ∅ s✝ a_ih✝ : False ⊢ False [PROOFSTEP] assumption [GOAL] α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x : List α s : σ a : α ⊢ s ∈ stepSet M S a ↔ ∃ t, t ∈ S ∧ s ∈ εClosure M (step M t (some a)) [PROOFSTEP] simp_rw [stepSet, mem_iUnion₂, exists_prop] [GOAL] α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x : List α s : σ a✝ a : α ⊢ stepSet M ∅ a = ∅ [PROOFSTEP] simp_rw [stepSet, mem_empty_iff_false, iUnion_false, iUnion_empty] [GOAL] α : Type u σ σ' : Type v M : εNFA α σ S✝ : Set σ x✝ : List α s : σ a✝ : α S : Set σ x : List α a : α ⊢ evalFrom M S (x ++ [a]) = stepSet M (evalFrom M S x) a [PROOFSTEP] rw [evalFrom, List.foldl_append, List.foldl_cons, List.foldl_nil] [GOAL] α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x✝ : List α s : σ a : α x : List α ⊢ evalFrom M ∅ x = ∅ [PROOFSTEP] induction' x using List.reverseRecOn with x a ih [GOAL] case H0 α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x : List α s : σ a : α ⊢ evalFrom M ∅ [] = ∅ [PROOFSTEP] rw [evalFrom_nil, εClosure_empty] [GOAL] case H1 α : Type u σ σ' : Type v M : εNFA α σ S : Set σ x✝ : List α s : σ a✝ : α x : List α a : α ih : evalFrom M ∅ x = ∅ ⊢ evalFrom M ∅ (x ++ [a]) = ∅ [PROOFSTEP] rw [evalFrom_append_singleton, ih, stepSet_empty] [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s : σ a : α M : NFA α σ S : Set σ ⊢ εNFA.εClosure (toεNFA M) S = S [PROOFSTEP] ext a [GOAL] case h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s : σ a✝ : α M : NFA α σ S : Set σ a : σ ⊢ a ∈ εNFA.εClosure (toεNFA M) S ↔ a ∈ S [PROOFSTEP] refine' ⟨_, εNFA.εClosure.base _⟩ [GOAL] case h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s : σ a✝ : α M : NFA α σ S : Set σ a : σ ⊢ a ∈ εNFA.εClosure (toεNFA M) S → a ∈ S [PROOFSTEP] rintro (⟨_, h⟩ | ⟨_, _, h, _⟩) [GOAL] case h.base α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s : σ a✝ : α M : NFA α σ S : Set σ a : σ h : a ∈ S ⊢ a ∈ S [PROOFSTEP] exact h [GOAL] case h.step α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s : σ a✝¹ : α M : NFA α σ S : Set σ a s✝ : σ a✝ : εNFA.εClosure (toεNFA M) S s✝ h : a ∈ εNFA.step (toεNFA M) s✝ none ⊢ a ∈ S [PROOFSTEP] cases h [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S : Set σ x : List α s : σ a : α M : NFA α σ start : Set σ ⊢ εNFA.evalFrom (toεNFA M) start = evalFrom M start [PROOFSTEP] rw [evalFrom, εNFA.evalFrom, toεNFA_εClosure] [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S : Set σ x : List α s : σ a : α M : NFA α σ start : Set σ ⊢ List.foldl (εNFA.stepSet (toεNFA M)) start = List.foldl (stepSet M) start [PROOFSTEP] suffices εNFA.stepSet (toεNFA M) = stepSet M by rw [this] [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S : Set σ x : List α s : σ a : α M : NFA α σ start : Set σ this : εNFA.stepSet (toεNFA M) = stepSet M ⊢ List.foldl (εNFA.stepSet (toεNFA M)) start = List.foldl (stepSet M) start [PROOFSTEP] rw [this] [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S : Set σ x : List α s : σ a : α M : NFA α σ start : Set σ ⊢ εNFA.stepSet (toεNFA M) = stepSet M [PROOFSTEP] ext S s [GOAL] case h.h.h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s✝ : σ a : α M : NFA α σ start S : Set σ s : α x✝ : σ ⊢ x✝ ∈ εNFA.stepSet (toεNFA M) S s ↔ x✝ ∈ stepSet M S s [PROOFSTEP] simp only [stepSet, εNFA.stepSet, exists_prop, Set.mem_iUnion] [GOAL] case h.h.h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s✝ : σ a : α M : NFA α σ start S : Set σ s : α x✝ : σ ⊢ (∃ i, i ∈ S ∧ x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) i (some s))) ↔ ∃ i, i ∈ S ∧ x✝ ∈ step M i s [PROOFSTEP] apply exists_congr [GOAL] case h.h.h.h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s✝ : σ a : α M : NFA α σ start S : Set σ s : α x✝ : σ ⊢ ∀ (a : σ), a ∈ S ∧ x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) a (some s)) ↔ a ∈ S ∧ x✝ ∈ step M a s [PROOFSTEP] simp only [and_congr_right_iff] [GOAL] case h.h.h.h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s✝ : σ a : α M : NFA α σ start S : Set σ s : α x✝ : σ ⊢ ∀ (a : σ), a ∈ S → (x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) a (some s)) ↔ x✝ ∈ step M a s) [PROOFSTEP] intro _ _ [GOAL] case h.h.h.h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s✝ : σ a : α M : NFA α σ start S : Set σ s : α x✝ a✝¹ : σ a✝ : a✝¹ ∈ S ⊢ x✝ ∈ εNFA.εClosure (toεNFA M) (εNFA.step (toεNFA M) a✝¹ (some s)) ↔ x✝ ∈ step M a✝¹ s [PROOFSTEP] rw [M.toεNFA_εClosure] [GOAL] case h.h.h.h α : Type u σ σ' : Type v M✝ : εNFA α σ S✝ : Set σ x : List α s✝ : σ a : α M : NFA α σ start S : Set σ s : α x✝ a✝¹ : σ a✝ : a✝¹ ∈ S ⊢ x✝ ∈ εNFA.step (toεNFA M) a✝¹ (some s) ↔ x✝ ∈ step M a✝¹ s [PROOFSTEP] rfl [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S : Set σ x : List α s : σ a : α M : NFA α σ ⊢ εNFA.accepts (toεNFA M) = accepts M [PROOFSTEP] rw [εNFA.accepts, εNFA.eval, toεNFA_evalFrom_match] [GOAL] α : Type u σ σ' : Type v M✝ : εNFA α σ S : Set σ x : List α s : σ a : α M : NFA α σ ⊢ {x | ∃ S, S ∈ (toεNFA M).accept ∧ S ∈ evalFrom M (toεNFA M).start x} = accepts M [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Computability.EpsilonNFA", "llama_tokens": 3320}
[GOAL] n : ℕ ⊢ ack 0 n = n + 1 [PROOFSTEP] rw [ack] [GOAL] m : ℕ ⊢ ack (m + 1) 0 = ack m 1 [PROOFSTEP] rw [ack] [GOAL] m n : ℕ ⊢ ack (m + 1) (n + 1) = ack m (ack (m + 1) n) [PROOFSTEP] rw [ack] [GOAL] n : ℕ ⊢ ack 1 n = n + 2 [PROOFSTEP] induction' n with n IH [GOAL] case zero ⊢ ack 1 zero = zero + 2 [PROOFSTEP] rfl [GOAL] case succ n : ℕ IH : ack 1 n = n + 2 ⊢ ack 1 (succ n) = succ n + 2 [PROOFSTEP] simp [IH] [GOAL] n : ℕ ⊢ ack 2 n = 2 * n + 3 [PROOFSTEP] induction' n with n IH [GOAL] case zero ⊢ ack 2 zero = 2 * zero + 3 [PROOFSTEP] rfl [GOAL] case succ n : ℕ IH : ack 2 n = 2 * n + 3 ⊢ ack 2 (succ n) = 2 * succ n + 3 [PROOFSTEP] simpa [mul_succ] [GOAL] n : ℕ ⊢ ack 3 n = 2 ^ (n + 3) - 3 [PROOFSTEP] induction' n with n IH [GOAL] case zero ⊢ ack 3 zero = 2 ^ (zero + 3) - 3 [PROOFSTEP] rfl [GOAL] case succ n : ℕ IH : ack 3 n = 2 ^ (n + 3) - 3 ⊢ ack 3 (succ n) = 2 ^ (succ n + 3) - 3 [PROOFSTEP] rw [ack_succ_succ, IH, ack_two, Nat.succ_add, Nat.pow_succ 2 (n + 3), mul_comm _ 2, Nat.mul_sub_left_distrib, ← Nat.sub_add_comm, two_mul 3, Nat.add_sub_add_right] [GOAL] case succ n : ℕ IH : ack 3 n = 2 ^ (n + 3) - 3 ⊢ 2 * 3 ≤ 2 * 2 ^ (n + 3) [PROOFSTEP] have H : 2 * 3 ≤ 2 * 2 ^ 3 := by norm_num [GOAL] n : ℕ IH : ack 3 n = 2 ^ (n + 3) - 3 ⊢ 2 * 3 ≤ 2 * 2 ^ 3 [PROOFSTEP] norm_num [GOAL] case succ n : ℕ IH : ack 3 n = 2 ^ (n + 3) - 3 H : 2 * 3 ≤ 2 * 2 ^ 3 ⊢ 2 * 3 ≤ 2 * 2 ^ (n + 3) [PROOFSTEP] apply H.trans [GOAL] case succ n : ℕ IH : ack 3 n = 2 ^ (n + 3) - 3 H : 2 * 3 ≤ 2 * 2 ^ 3 ⊢ 2 * 2 ^ 3 ≤ 2 * 2 ^ (n + 3) [PROOFSTEP] simp [pow_le_pow] [GOAL] n : ℕ ⊢ 0 < ack 0 n [PROOFSTEP] simp [GOAL] m : ℕ ⊢ 0 < ack (m + 1) 0 [PROOFSTEP] rw [ack_succ_zero] [GOAL] m : ℕ ⊢ 0 < ack m 1 [PROOFSTEP] apply ack_pos [GOAL] m n : ℕ ⊢ 0 < ack (m + 1) (n + 1) [PROOFSTEP] rw [ack_succ_succ] [GOAL] m n : ℕ ⊢ 0 < ack m (ack (m + 1) n) [PROOFSTEP] apply ack_pos [GOAL] n : ℕ ⊢ 1 < ack (0 + 1) n [PROOFSTEP] simp [GOAL] m : ℕ ⊢ 1 < ack (m + 1 + 1) 0 [PROOFSTEP] rw [ack_succ_zero] [GOAL] m : ℕ ⊢ 1 < ack (m + 1) 1 [PROOFSTEP] apply one_lt_ack_succ_left [GOAL] m n : ℕ ⊢ 1 < ack (m + 1 + 1) (n + 1) [PROOFSTEP] rw [ack_succ_succ] [GOAL] m n : ℕ ⊢ 1 < ack (m + 1) (ack (m + 1 + 1) n) [PROOFSTEP] apply one_lt_ack_succ_left [GOAL] n : ℕ ⊢ 1 < ack 0 (n + 1) [PROOFSTEP] simp [GOAL] m n : ℕ ⊢ 1 < ack (m + 1) (n + 1) [PROOFSTEP] rw [ack_succ_succ] [GOAL] m n : ℕ ⊢ 1 < ack m (ack (m + 1) n) [PROOFSTEP] cases' exists_eq_succ_of_ne_zero (ack_pos (m + 1) n).ne' with h h [GOAL] case intro m n h✝ : ℕ h : ack (m + 1) n = succ h✝ ⊢ 1 < ack m (ack (m + 1) n) [PROOFSTEP] rw [h] [GOAL] case intro m n h✝ : ℕ h : ack (m + 1) n = succ h✝ ⊢ 1 < ack m (succ h✝) [PROOFSTEP] apply one_lt_ack_succ_right [GOAL] n₁ n₂ : ℕ h : n₁ < n₂ ⊢ ack 0 n₁ < ack 0 n₂ [PROOFSTEP] simpa using h [GOAL] m n : ℕ _h : 0 < n + 1 ⊢ ack (m + 1) 0 < ack (m + 1) (n + 1) [PROOFSTEP] rw [ack_succ_zero, ack_succ_succ] [GOAL] m n : ℕ _h : 0 < n + 1 ⊢ ack m 1 < ack m (ack (m + 1) n) [PROOFSTEP] exact ack_strictMono_right _ (one_lt_ack_succ_left m n) [GOAL] m n₁ n₂ : ℕ h : n₁ + 1 < n₂ + 1 ⊢ ack (m + 1) (n₁ + 1) < ack (m + 1) (n₂ + 1) [PROOFSTEP] rw [ack_succ_succ, ack_succ_succ] [GOAL] m n₁ n₂ : ℕ h : n₁ + 1 < n₂ + 1 ⊢ ack m (ack (m + 1) n₁) < ack m (ack (m + 1) n₂) [PROOFSTEP] apply ack_strictMono_right _ (ack_strictMono_right _ _) [GOAL] m n₁ n₂ : ℕ h : n₁ + 1 < n₂ + 1 ⊢ n₁ < n₂ [PROOFSTEP] rwa [add_lt_add_iff_right] at h [GOAL] n : ℕ ⊢ 0 + n < ack 0 n [PROOFSTEP] simp [GOAL] m : ℕ ⊢ m + 1 + 0 < ack (m + 1) 0 [PROOFSTEP] simpa using add_lt_ack m 1 [GOAL] m n : ℕ ⊢ m + 1 + n + 1 ≤ m + (m + n + 2) [PROOFSTEP] linarith [GOAL] m n : ℕ ⊢ m + n + 2 = succ (m + 1 + n) [PROOFSTEP] rw [succ_eq_add_one] [GOAL] m n : ℕ ⊢ m + n + 2 = m + 1 + n + 1 [PROOFSTEP] ring_nf [GOAL] m : ℕ _h : 0 < m + 1 ⊢ ack 0 0 < ack (m + 1) 0 [PROOFSTEP] simpa using one_lt_ack_succ_right m 0 [GOAL] m n : ℕ h : 0 < m + 1 ⊢ ack 0 (n + 1) < ack (m + 1) (n + 1) [PROOFSTEP] rw [ack_zero, ack_succ_succ] [GOAL] m n : ℕ h : 0 < m + 1 ⊢ n + 1 + 1 < ack m (ack (m + 1) n) [PROOFSTEP] apply lt_of_le_of_lt (le_trans _ <| add_le_add_left (add_add_one_le_ack _ _) m) (add_lt_ack _ _) [GOAL] m n : ℕ h : 0 < m + 1 ⊢ n + 1 + 1 ≤ m + (m + 1 + n + 1) [PROOFSTEP] linarith [GOAL] m₁ m₂ : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack (m₁ + 1) 0 < ack (m₂ + 1) 0 [PROOFSTEP] simpa using ack_strict_mono_left' 1 ((add_lt_add_iff_right 1).1 h) [GOAL] m₁ m₂ n : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack (m₁ + 1) (n + 1) < ack (m₂ + 1) (n + 1) [PROOFSTEP] rw [ack_succ_succ, ack_succ_succ] [GOAL] m₁ m₂ n : ℕ h : m₁ + 1 < m₂ + 1 ⊢ ack m₁ (ack (m₁ + 1) n) < ack m₂ (ack (m₂ + 1) n) [PROOFSTEP] exact (ack_strict_mono_left' _ <| (add_lt_add_iff_right 1).1 h).trans (ack_strictMono_right _ <| ack_strict_mono_left' n h) [GOAL] m n : ℕ ⊢ ack m (n + 1) ≤ ack (m + 1) n [PROOFSTEP] cases' n with n n [GOAL] case zero m : ℕ ⊢ ack m (zero + 1) ≤ ack (m + 1) zero [PROOFSTEP] simp [GOAL] case succ m n : ℕ ⊢ ack m (succ n + 1) ≤ ack (m + 1) (succ n) [PROOFSTEP] rw [ack_succ_succ, succ_eq_add_one] [GOAL] case succ m n : ℕ ⊢ ack m (n + 1 + 1) ≤ ack m (ack (m + 1) n) [PROOFSTEP] apply ack_mono_right m (le_trans _ <| add_add_one_le_ack _ n) [GOAL] m n : ℕ ⊢ n + 1 + 1 ≤ m + 1 + n + 1 [PROOFSTEP] linarith [GOAL] n : ℕ ⊢ n ^ 2 ≤ 2 ^ (n + 1) - 3 [PROOFSTEP] induction' n with k hk [GOAL] case zero ⊢ zero ^ 2 ≤ 2 ^ (zero + 1) - 3 [PROOFSTEP] norm_num [GOAL] case succ k : ℕ hk : k ^ 2 ≤ 2 ^ (k + 1) - 3 ⊢ succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 [PROOFSTEP] cases' k with k k [GOAL] case succ.zero hk : zero ^ 2 ≤ 2 ^ (zero + 1) - 3 ⊢ succ zero ^ 2 ≤ 2 ^ (succ zero + 1) - 3 [PROOFSTEP] norm_num [GOAL] case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ succ (succ k) ^ 2 ≤ 2 ^ (succ (succ k) + 1) - 3 [PROOFSTEP] rw [succ_eq_add_one, add_sq, Nat.pow_succ 2, mul_comm _ 2, two_mul (2 ^ _), add_tsub_assoc_of_le, add_comm (2 ^ _), add_assoc] [GOAL] case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ (k + 1) ^ 2 + (2 * (k + 1) * 1 + 1 ^ 2) ≤ 2 ^ (k + 2) - 3 + 2 ^ (k + 2) [PROOFSTEP] apply Nat.add_le_add hk [GOAL] case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 2 * (k + 1) * 1 + 1 ^ 2 ≤ 2 ^ (k + 2) [PROOFSTEP] norm_num [GOAL] case succ.succ k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 2 * (k + 1) + 1 ≤ 2 ^ (k + 2) [PROOFSTEP] apply succ_le_of_lt [GOAL] case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 2 * (k + 1) < 2 ^ (k + 2) [PROOFSTEP] rw [Nat.pow_succ, mul_comm _ 2, mul_lt_mul_left (zero_lt_two' ℕ)] [GOAL] case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ k + 1 < 2 ^ (k + 1) [PROOFSTEP] apply lt_two_pow [GOAL] case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 3 ≤ 2 ^ (k + 2) [PROOFSTEP] rw [Nat.pow_succ, Nat.pow_succ] [GOAL] case succ.succ.h k : ℕ hk : succ k ^ 2 ≤ 2 ^ (succ k + 1) - 3 ⊢ 3 ≤ 2 ^ k * 2 * 2 [PROOFSTEP] linarith [one_le_pow k 2 zero_lt_two] [GOAL] n : ℕ ⊢ (ack 0 n + 1) ^ 2 ≤ ack (0 + 3) n [PROOFSTEP] simpa using sq_le_two_pow_add_one_minus_three (n + 2) [GOAL] m : ℕ ⊢ (ack (m + 1) 0 + 1) ^ 2 ≤ ack (m + 1 + 3) 0 [PROOFSTEP] rw [ack_succ_zero, ack_succ_zero] [GOAL] m : ℕ ⊢ (ack m 1 + 1) ^ 2 ≤ ack (m + 3) 1 [PROOFSTEP] apply ack_add_one_sq_lt_ack_add_three [GOAL] m n : ℕ ⊢ (ack (m + 1) (n + 1) + 1) ^ 2 ≤ ack (m + 1 + 3) (n + 1) [PROOFSTEP] rw [ack_succ_succ, ack_succ_succ] [GOAL] m n : ℕ ⊢ (ack m (ack (m + 1) n) + 1) ^ 2 ≤ ack (m + 3) (ack (m + 3 + 1) n) [PROOFSTEP] apply (ack_add_one_sq_lt_ack_add_three _ _).trans (ack_mono_right _ <| ack_mono_left _ _) [GOAL] m n : ℕ ⊢ m + 1 ≤ m + 3 + 1 [PROOFSTEP] linarith [GOAL] m n : ℕ ⊢ m ≤ m + 2 [PROOFSTEP] linarith [GOAL] f : ℕ → ℕ hf : Nat.Primrec f ⊢ ∃ m, ∀ (n : ℕ), f n < ack m n [PROOFSTEP] induction' hf with f g hf hg IHf IHg f g hf hg IHf IHg f g hf hg IHf IHg [GOAL] case zero f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), (fun x => 0) n < ack m n [PROOFSTEP] exact ⟨0, ack_pos 0⟩ -- Successor function: [GOAL] case succ f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), succ n < ack m n [PROOFSTEP] refine' ⟨1, fun n => _⟩ [GOAL] case succ f : ℕ → ℕ n : ℕ ⊢ succ n < ack 1 n [PROOFSTEP] rw [succ_eq_one_add] [GOAL] case succ f : ℕ → ℕ n : ℕ ⊢ 1 + n < ack 1 n [PROOFSTEP] apply add_lt_ack [GOAL] case left f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), (fun n => (unpair n).fst) n < ack m n [PROOFSTEP] refine' ⟨0, fun n => _⟩ [GOAL] case left f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).fst) n < ack 0 n [PROOFSTEP] rw [ack_zero, lt_succ_iff] [GOAL] case left f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).fst) n ≤ n [PROOFSTEP] exact unpair_left_le n [GOAL] case right f : ℕ → ℕ ⊢ ∃ m, ∀ (n : ℕ), (fun n => (unpair n).snd) n < ack m n [PROOFSTEP] refine' ⟨0, fun n => _⟩ [GOAL] case right f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).snd) n < ack 0 n [PROOFSTEP] rw [ack_zero, lt_succ_iff] [GOAL] case right f : ℕ → ℕ n : ℕ ⊢ (fun n => (unpair n).snd) n ≤ n [PROOFSTEP] exact unpair_right_le n [GOAL] case pair f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n case comp f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n case prec f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n [PROOFSTEP] all_goals cases' IHf with a ha; cases' IHg with b hb [GOAL] case pair f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n [PROOFSTEP] cases' IHf with a ha [GOAL] case pair.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHg : ∃ m, ∀ (n : ℕ), g n < ack m n a : ℕ ha : ∀ (n : ℕ), f n < ack a n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n [PROOFSTEP] cases' IHg with b hb [GOAL] case comp f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n [PROOFSTEP] cases' IHf with a ha [GOAL] case comp.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHg : ∃ m, ∀ (n : ℕ), g n < ack m n a : ℕ ha : ∀ (n : ℕ), f n < ack a n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n [PROOFSTEP] cases' IHg with b hb [GOAL] case prec f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHf : ∃ m, ∀ (n : ℕ), f n < ack m n IHg : ∃ m, ∀ (n : ℕ), g n < ack m n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n [PROOFSTEP] cases' IHf with a ha [GOAL] case prec.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g IHg : ∃ m, ∀ (n : ℕ), g n < ack m n a : ℕ ha : ∀ (n : ℕ), f n < ack a n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n [PROOFSTEP] cases' IHg with b hb [GOAL] case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), (fun n => pair (f n) (g n)) n < ack m n [PROOFSTEP] refine' ⟨max a b + 3, fun n => (pair_lt_max_add_one_sq _ _).trans_le <| (pow_le_pow_of_le_left (add_le_add_right _ _) 2).trans <| ack_add_one_sq_lt_ack_add_three _ _⟩ [GOAL] case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n n : ℕ ⊢ max (f n) (g n) ≤ ack (max a b) n [PROOFSTEP] rw [max_ack_left] [GOAL] case pair.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n n : ℕ ⊢ max (f n) (g n) ≤ max (ack a n) (ack b n) [PROOFSTEP] exact max_le_max (ha n).le (hb n).le [GOAL] case comp.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), (fun n => f (g n)) n < ack m n [PROOFSTEP] exact ⟨max a b + 2, fun n => (ha _).trans <| (ack_strictMono_right a <| hb n).trans <| ack_ack_lt_ack_max_add_two a b n⟩ -- Primitive recursion operator: [GOAL] case prec.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n [PROOFSTEP] have : ∀ {m n}, rec (f m) (fun y IH => g <| pair m <| pair y IH) n < ack (max a b + 9) (m + n) := by intro m n induction' n with n IH · apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) linarith · -- We get rid of the first `pair`. simp only [ge_iff_le] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. cases' lt_or_le _ m with h₁ h₁ · rw [max_eq_left h₁.le] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) rw [max_eq_right h₁] -- We get rid of the second `pair`. apply (ack_pair_lt _ _ _).le.trans cases' lt_or_le _ n with h₂ h₂ · rw [max_eq_left h₂.le, add_assoc] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. apply (ack_strictMono_right _ IH).le.trans rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple. [GOAL] f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n ⊢ ∀ {m n : ℕ}, rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) [PROOFSTEP] intro m n [GOAL] f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ ⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) [PROOFSTEP] induction' n with n IH [GOAL] case zero f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m : ℕ ⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) zero < ack (max a b + 9) (m + zero) [PROOFSTEP] apply (ha m).trans (ack_strictMono_left m <| (le_max_left a b).trans_lt _) [GOAL] f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m : ℕ ⊢ max a b < max a b + 9 [PROOFSTEP] linarith [GOAL] case succ f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ rec (f m) (fun y IH => g (pair m (pair y IH))) (succ n) < ack (max a b + 9) (m + succ n) [PROOFSTEP] simp only [ge_iff_le] [GOAL] case succ f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ g (pair m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) < ack (max a b + 9) (m + succ n) [PROOFSTEP] apply (hb _).trans ((ack_pair_lt _ _ _).trans_le _) -- If m is the maximum, we get a very weak inequality. [GOAL] f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] cases' lt_or_le _ m with h₁ h₁ [GOAL] case inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : ?m.127608 < m ⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] rw [max_eq_left h₁.le] [GOAL] case inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) < m ⊢ ack (b + 4) m ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) (self_le_add_right m _) [GOAL] f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) < m ⊢ 4 ≤ 9 [PROOFSTEP] norm_num [GOAL] case inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ⊢ ack (b + 4) (max m (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n))) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] rw [max_eq_right h₁] -- We get rid of the second `pair`. [GOAL] case inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ⊢ ack (b + 4) (pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] apply (ack_pair_lt _ _ _).le.trans [GOAL] case inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] cases' lt_or_le _ n with h₂ h₂ [GOAL] case inr.inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : ?m.127977 < n ⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] rw [max_eq_left h₂.le, add_assoc] [GOAL] case inr.inl f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : rec (f m) (fun y IH => g (pair m (pair y IH))) n < n ⊢ ack (b + (4 + 4)) n ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] exact ack_le_ack (Nat.add_le_add (le_max_right a b) <| by norm_num) ((le_succ n).trans <| self_le_add_left _ _) [GOAL] f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : rec (f m) (fun y IH => g (pair m (pair y IH))) n < n ⊢ 4 + 4 ≤ 9 [PROOFSTEP] norm_num [GOAL] case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + 4 + 4) (max n (rec (f m) (fun y IH => g (pair m (pair y IH))) n)) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] rw [max_eq_right h₂] -- We now use the inductive hypothesis, and some simple algebraic manipulation. [GOAL] case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + 4 + 4) (rec (f m) (fun y IH => g (pair m (pair y IH))) n) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] apply (ack_strictMono_right _ IH).le.trans [GOAL] case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + 4 + 4) (ack (max a b + 9) (m + n)) ≤ ack (max a b + 9) (m + succ n) [PROOFSTEP] rw [add_succ m, add_succ _ 8, succ_eq_add_one, succ_eq_add_one, ack_succ_succ (_ + 8), add_assoc] [GOAL] case inr.inr f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n m n : ℕ IH : rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) h₁ : m ≤ pair n (rec (f m) (fun y IH => g (pair m (pair y IH))) n) h₂ : n ≤ rec (f m) (fun y IH => g (pair m (pair y IH))) n ⊢ ack (b + (4 + 4)) (ack (max a b + 8 + 1) (m + n)) ≤ ack (max a b + 8) (ack (max a b + 8 + 1) (m + n)) [PROOFSTEP] exact ack_mono_left _ (Nat.add_le_add (le_max_right a b) le_rfl) -- The proof is now simple. [GOAL] case prec.intro.intro f✝ f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g a : ℕ ha : ∀ (n : ℕ), f n < ack a n b : ℕ hb : ∀ (n : ℕ), g n < ack b n this : ∀ {m n : ℕ}, rec (f m) (fun y IH => g (pair m (pair y IH))) n < ack (max a b + 9) (m + n) ⊢ ∃ m, ∀ (n : ℕ), unpaired (fun z n => rec (f z) (fun y IH => g (pair z (pair y IH))) n) n < ack m n [PROOFSTEP] exact ⟨max a b + 9, fun n => this.trans_le <| ack_mono_right _ <| unpair_add_le n⟩ [GOAL] h : Nat.Primrec fun n => ack n n ⊢ False [PROOFSTEP] cases' exists_lt_ack_of_nat_primrec h with m hm [GOAL] case intro h : Nat.Primrec fun n => ack n n m : ℕ hm : ∀ (n : ℕ), ack n n < ack m n ⊢ False [PROOFSTEP] exact (hm m).false [GOAL] ⊢ ¬Primrec fun n => ack n n [PROOFSTEP] rw [Primrec.nat_iff] [GOAL] ⊢ ¬Nat.Primrec fun n => ack n n [PROOFSTEP] exact not_nat_primrec_ack_self
{"mathlib_filename": "Mathlib.Computability.Ackermann", "llama_tokens": 12949}
[GOAL] Ω : Type u_1 inst✝ : MeasurableSpace Ω ⊢ condCount ∅ = 0 [PROOFSTEP] simp [condCount] [GOAL] Ω : Type u_1 inst✝ : MeasurableSpace Ω s : Set Ω ⊢ ↑↑(condCount s) ∅ = 0 [PROOFSTEP] simp [GOAL] Ω : Type u_1 inst✝ : MeasurableSpace Ω s t : Set Ω h : ↑↑(condCount s) t ≠ 0 ⊢ Set.Finite s [PROOFSTEP] by_contra hs' [GOAL] Ω : Type u_1 inst✝ : MeasurableSpace Ω s t : Set Ω h : ↑↑(condCount s) t ≠ 0 hs' : ¬Set.Finite s ⊢ False [PROOFSTEP] simp [condCount, cond, Measure.count_apply_infinite hs'] at h [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : Fintype Ω s : Set Ω ⊢ ↑↑(condCount Set.univ) s = ↑↑Measure.count s / ↑(Fintype.card Ω) [PROOFSTEP] rw [condCount, cond_apply _ MeasurableSet.univ, ← ENNReal.div_eq_inv_mul, Set.univ_inter] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : Fintype Ω s : Set Ω ⊢ ↑↑Measure.count s / ↑↑Measure.count Set.univ = ↑↑Measure.count s / ↑(Fintype.card Ω) [PROOFSTEP] congr [GOAL] case e_a Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : Fintype Ω s : Set Ω ⊢ ↑↑Measure.count Set.univ = ↑(Fintype.card Ω) [PROOFSTEP] rw [← Finset.coe_univ, Measure.count_apply, Finset.univ.tsum_subtype' fun _ => (1 : ENNReal)] [GOAL] case e_a Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : Fintype Ω s : Set Ω ⊢ (Finset.sum Finset.univ fun x => 1) = ↑(Fintype.card Ω) [PROOFSTEP] simp [Finset.card_univ] [GOAL] case e_a Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : Fintype Ω s : Set Ω ⊢ MeasurableSet ↑Finset.univ [PROOFSTEP] exact (@Finset.coe_univ Ω _).symm ▸ MeasurableSet.univ [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑(condCount s) Set.univ = 1 [PROOFSTEP] rw [condCount, cond_apply _ hs.measurableSet, Set.inter_univ, ENNReal.inv_mul_cancel] [GOAL] case h0 Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑Measure.count s ≠ 0 [PROOFSTEP] exact fun h => hs'.ne_empty <| Measure.empty_of_count_eq_zero h [GOAL] case ht Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑Measure.count s ≠ ⊤ [PROOFSTEP] exact (Measure.count_apply_lt_top.2 hs).ne [GOAL] Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : MeasurableSingletonClass Ω ω : Ω t : Set Ω inst✝ : Decidable (ω ∈ t) ⊢ ↑↑(condCount {ω}) t = if ω ∈ t then 1 else 0 [PROOFSTEP] rw [condCount, cond_apply _ (measurableSet_singleton ω), Measure.count_singleton, inv_one, one_mul] [GOAL] Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : MeasurableSingletonClass Ω ω : Ω t : Set Ω inst✝ : Decidable (ω ∈ t) ⊢ ↑↑Measure.count ({ω} ∩ t) = if ω ∈ t then 1 else 0 [PROOFSTEP] split_ifs [GOAL] case pos Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : MeasurableSingletonClass Ω ω : Ω t : Set Ω inst✝ : Decidable (ω ∈ t) h✝ : ω ∈ t ⊢ ↑↑Measure.count ({ω} ∩ t) = 1 [PROOFSTEP] rw [(by simpa : ({ ω } : Set Ω) ∩ t = { ω }), Measure.count_singleton] [GOAL] Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : MeasurableSingletonClass Ω ω : Ω t : Set Ω inst✝ : Decidable (ω ∈ t) h✝ : ω ∈ t ⊢ {ω} ∩ t = {ω} [PROOFSTEP] simpa [GOAL] case neg Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : MeasurableSingletonClass Ω ω : Ω t : Set Ω inst✝ : Decidable (ω ∈ t) h✝ : ¬ω ∈ t ⊢ ↑↑Measure.count ({ω} ∩ t) = 0 [PROOFSTEP] rw [(by simpa : ({ ω } : Set Ω) ∩ t = ∅), Measure.count_empty] [GOAL] Ω : Type u_1 inst✝² : MeasurableSpace Ω inst✝¹ : MeasurableSingletonClass Ω ω : Ω t : Set Ω inst✝ : Decidable (ω ∈ t) h✝ : ¬ω ∈ t ⊢ {ω} ∩ t = ∅ [PROOFSTEP] simpa [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount s) (s ∩ t) = ↑↑(condCount s) t [PROOFSTEP] rw [condCount, cond_inter_self _ hs.measurableSet] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑(condCount s) s = 1 [PROOFSTEP] rw [condCount, cond_apply _ hs.measurableSet, Set.inter_self, ENNReal.inv_mul_cancel] [GOAL] case h0 Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑Measure.count s ≠ 0 [PROOFSTEP] exact fun h => hs'.ne_empty <| Measure.empty_of_count_eq_zero h [GOAL] case ht Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑Measure.count s ≠ ⊤ [PROOFSTEP] exact (Measure.count_apply_lt_top.2 hs).ne [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ht : s ⊆ t ⊢ ↑↑(condCount s) t = 1 [PROOFSTEP] haveI := condCount_isProbabilityMeasure hs hs' [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ht : s ⊆ t this : IsProbabilityMeasure (condCount s) ⊢ ↑↑(condCount s) t = 1 [PROOFSTEP] refine' eq_of_le_of_not_lt prob_le_one _ [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ht : s ⊆ t this : IsProbabilityMeasure (condCount s) ⊢ ¬↑↑(condCount s) t < 1 [PROOFSTEP] rw [not_lt, ← condCount_self hs hs'] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ht : s ⊆ t this : IsProbabilityMeasure (condCount s) ⊢ ↑↑(condCount s) s ≤ ↑↑(condCount s) t [PROOFSTEP] exact measure_mono ht [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω h : ↑↑(condCount s) t = 1 ⊢ s ⊆ t [PROOFSTEP] have hsf := finite_of_condCount_ne_zero (by rw [h]; exact one_ne_zero) [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω h : ↑↑(condCount s) t = 1 ⊢ ↑↑(condCount ?m.9273) ?m.9274 ≠ 0 [PROOFSTEP] rw [h] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω h : ↑↑(condCount s) t = 1 ⊢ 1 ≠ 0 [PROOFSTEP] exact one_ne_zero [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω h : ↑↑(condCount s) t = 1 hsf : Set.Finite s ⊢ s ⊆ t [PROOFSTEP] rw [condCount, cond_apply _ hsf.measurableSet, mul_comm] at h [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω h : ↑↑Measure.count (s ∩ t) * (↑↑Measure.count s)⁻¹ = 1 hsf : Set.Finite s ⊢ s ⊆ t [PROOFSTEP] replace h := ENNReal.eq_inv_of_mul_eq_one_left h [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hsf : Set.Finite s h : ↑↑Measure.count (s ∩ t) = (↑↑Measure.count s)⁻¹⁻¹ ⊢ s ⊆ t [PROOFSTEP] rw [inv_inv, Measure.count_apply_finite _ hsf, Measure.count_apply_finite _ (hsf.inter_of_left _), Nat.cast_inj] at h [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hsf : Set.Finite s h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf) ⊢ s ⊆ t [PROOFSTEP] suffices s ∩ t = s by exact this ▸ fun x hx => hx.2 [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hsf : Set.Finite s h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf) this : s ∩ t = s ⊢ s ⊆ t [PROOFSTEP] exact this ▸ fun x hx => hx.2 [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hsf : Set.Finite s h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf) ⊢ s ∩ t = s [PROOFSTEP] rw [← @Set.Finite.toFinset_inj _ _ _ (hsf.inter_of_left _) hsf] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hsf : Set.Finite s h : Finset.card (Set.Finite.toFinset (_ : Set.Finite (s ∩ t))) = Finset.card (Set.Finite.toFinset hsf) ⊢ Set.Finite.toFinset (_ : Set.Finite (s ∩ t)) = Set.Finite.toFinset hsf [PROOFSTEP] exact Finset.eq_of_subset_of_card_le (Set.Finite.toFinset_mono <| s.inter_subset_left t) h.ge [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount s) t = 0 ↔ s ∩ t = ∅ [PROOFSTEP] simp [condCount, cond_apply _ hs.measurableSet, Measure.count_apply_eq_top, Set.not_infinite.2 hs, Measure.count_apply_finite _ (hs.inter_of_left _)] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ t)) u * ↑↑(condCount s) t [PROOFSTEP] by_cases hst : s ∩ t = ∅ [GOAL] case pos Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hst : s ∩ t = ∅ ⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ t)) u * ↑↑(condCount s) t [PROOFSTEP] rw [hst, condCount_empty_meas, Measure.coe_zero, Pi.zero_apply, zero_mul, condCount_eq_zero_iff hs, ← Set.inter_assoc, hst, Set.empty_inter] [GOAL] case neg Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hst : ¬s ∩ t = ∅ ⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ t)) u * ↑↑(condCount s) t [PROOFSTEP] rw [condCount, condCount, cond_apply _ hs.measurableSet, cond_apply _ hs.measurableSet, cond_apply _ (hs.inter_of_left _).measurableSet, mul_comm _ (Measure.count (s ∩ t)), ← mul_assoc, mul_comm _ (Measure.count (s ∩ t)), ← mul_assoc, ENNReal.mul_inv_cancel, one_mul, mul_comm, Set.inter_assoc] [GOAL] case neg.h0 Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hst : ¬s ∩ t = ∅ ⊢ ↑↑Measure.count (s ∩ t) ≠ 0 [PROOFSTEP] rwa [← Measure.count_eq_zero_iff] at hst [GOAL] case neg.ht Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s hst : ¬s ∩ t = ∅ ⊢ ↑↑Measure.count (s ∩ t) ≠ ⊤ [PROOFSTEP] exact (Measure.count_apply_lt_top.2 <| hs.inter_of_left _).ne [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount s) (t ∩ u) = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u [PROOFSTEP] rw [← Set.inter_comm] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount s) (u ∩ t) = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u [PROOFSTEP] exact condCount_inter hs [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s htu : Disjoint t u ⊢ ↑↑(condCount s) (t ∪ u) = ↑↑(condCount s) t + ↑↑(condCount s) u [PROOFSTEP] rw [condCount, cond_apply _ hs.measurableSet, cond_apply _ hs.measurableSet, cond_apply _ hs.measurableSet, Set.inter_union_distrib_left, measure_union, mul_add] [GOAL] case hd Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s htu : Disjoint t u ⊢ Disjoint (s ∩ t) (s ∩ u) case h Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s htu : Disjoint t u ⊢ MeasurableSet (s ∩ u) [PROOFSTEP] exacts [htu.mono inf_le_right inf_le_right, (hs.inter_of_left _).measurableSet] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t✝ u t : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ⊢ ↑↑(condCount s) t + ↑↑(condCount s) tᶜ = 1 [PROOFSTEP] rw [← condCount_union hs disjoint_compl_right, Set.union_compl_self, (condCount_isProbabilityMeasure hs hs').measure_univ] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t ⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ t)) s + ↑↑(condCount t) u * ↑↑(condCount (s ∪ t)) t = ↑↑(condCount (s ∪ t)) u [PROOFSTEP] rcases s.eq_empty_or_nonempty with (rfl | hs') [GOAL] case inl Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω t u : Set Ω ht : Set.Finite t hs : Set.Finite ∅ hst : Disjoint ∅ t ⊢ ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ t)) ∅ + ↑↑(condCount t) u * ↑↑(condCount (∅ ∪ t)) t = ↑↑(condCount (∅ ∪ t)) u [PROOFSTEP] rcases t.eq_empty_or_nonempty with (rfl | ht') [GOAL] case inr Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ t)) s + ↑↑(condCount t) u * ↑↑(condCount (s ∪ t)) t = ↑↑(condCount (s ∪ t)) u [PROOFSTEP] rcases t.eq_empty_or_nonempty with (rfl | ht') [GOAL] case inl.inl Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω u : Set Ω hs ht : Set.Finite ∅ hst : Disjoint ∅ ∅ ⊢ ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ ∅)) ∅ + ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ ∅)) ∅ = ↑↑(condCount (∅ ∪ ∅)) u [PROOFSTEP] simp [GOAL] case inl.inr Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω t u : Set Ω ht : Set.Finite t hs : Set.Finite ∅ hst : Disjoint ∅ t ht' : Set.Nonempty t ⊢ ↑↑(condCount ∅) u * ↑↑(condCount (∅ ∪ t)) ∅ + ↑↑(condCount t) u * ↑↑(condCount (∅ ∪ t)) t = ↑↑(condCount (∅ ∪ t)) u [PROOFSTEP] simp [condCount_self ht ht'] [GOAL] case inr.inl Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s u : Set Ω hs : Set.Finite s hs' : Set.Nonempty s ht : Set.Finite ∅ hst : Disjoint s ∅ ⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ ∅)) s + ↑↑(condCount ∅) u * ↑↑(condCount (s ∪ ∅)) ∅ = ↑↑(condCount (s ∪ ∅)) u [PROOFSTEP] simp [condCount_self hs hs'] [GOAL] case inr.inr Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ ↑↑(condCount s) u * ↑↑(condCount (s ∪ t)) s + ↑↑(condCount t) u * ↑↑(condCount (s ∪ t)) t = ↑↑(condCount (s ∪ t)) u [PROOFSTEP] rw [condCount, condCount, condCount, cond_apply _ hs.measurableSet, cond_apply _ ht.measurableSet, cond_apply _ (hs.union ht).measurableSet, cond_apply _ (hs.union ht).measurableSet, cond_apply _ (hs.union ht).measurableSet] [GOAL] case inr.inr Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) + (↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t)) = (↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ u) [PROOFSTEP] conv_lhs => rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹, mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s), mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t | (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) + (↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t)) [PROOFSTEP] rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹, mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s), mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t | (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) + (↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t)) [PROOFSTEP] rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹, mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s), mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t | (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ s)) + (↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * ((↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ t)) [PROOFSTEP] rw [Set.union_inter_cancel_left, Set.union_inter_cancel_right, mul_comm (Measure.count (s ∪ t))⁻¹, mul_comm (Measure.count (s ∪ t))⁻¹, ← mul_assoc, ← mul_assoc, mul_comm _ (Measure.count s), mul_comm _ (Measure.count t), ← mul_assoc, ← mul_assoc] [GOAL] case inr.inr Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ ↑↑Measure.count s * (↑↑Measure.count s)⁻¹ * ↑↑Measure.count (s ∩ u) * (↑↑Measure.count (s ∪ t))⁻¹ + ↑↑Measure.count t * (↑↑Measure.count t)⁻¹ * ↑↑Measure.count (t ∩ u) * (↑↑Measure.count (s ∪ t))⁻¹ = (↑↑Measure.count (s ∪ t))⁻¹ * ↑↑Measure.count ((s ∪ t) ∩ u) [PROOFSTEP] rw [ENNReal.mul_inv_cancel, ENNReal.mul_inv_cancel, one_mul, one_mul, ← add_mul, ← measure_union, Set.union_inter_distrib_right, mul_comm] [GOAL] case inr.inr.hd Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ Disjoint (s ∩ u) (t ∩ u) case inr.inr.h Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ MeasurableSet (t ∩ u) case inr.inr.h0 Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ ↑↑Measure.count t ≠ 0 case inr.inr.ht Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ ↑↑Measure.count t ≠ ⊤ case inr.inr.h0 Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ ↑↑Measure.count s ≠ 0 case inr.inr.ht Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t u : Set Ω hs : Set.Finite s ht : Set.Finite t hst : Disjoint s t hs' : Set.Nonempty s ht' : Set.Nonempty t ⊢ ↑↑Measure.count s ≠ ⊤ [PROOFSTEP] exacts [hst.mono inf_le_left inf_le_left, (ht.inter_of_left _).measurableSet, Measure.count_ne_zero ht', (Measure.count_apply_lt_top.2 ht).ne, Measure.count_ne_zero hs', (Measure.count_apply_lt_top.2 hs).ne] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t✝ u✝ u t : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount s) uᶜ = ↑↑(condCount s) t [PROOFSTEP] have : condCount s t = (condCount (s ∩ u) t * condCount (s ∩ u ∪ s ∩ uᶜ) (s ∩ u) + condCount (s ∩ uᶜ) t * condCount (s ∩ u ∪ s ∩ uᶜ) (s ∩ uᶜ)) := by rw [condCount_disjoint_union (hs.inter_of_left _) (hs.inter_of_left _) (disjoint_compl_right.mono inf_le_right inf_le_right), Set.inter_union_compl] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t✝ u✝ u t : Set Ω hs : Set.Finite s ⊢ ↑↑(condCount s) t = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ) [PROOFSTEP] rw [condCount_disjoint_union (hs.inter_of_left _) (hs.inter_of_left _) (disjoint_compl_right.mono inf_le_right inf_le_right), Set.inter_union_compl] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t✝ u✝ u t : Set Ω hs : Set.Finite s this : ↑↑(condCount s) t = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ) ⊢ ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount s) uᶜ = ↑↑(condCount s) t [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 inst✝¹ : MeasurableSpace Ω inst✝ : MeasurableSingletonClass Ω s t✝ u✝ u t : Set Ω hs : Set.Finite s this : ↑↑(condCount s) t = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ) ⊢ ↑↑(condCount (s ∩ u)) t * ↑↑(condCount s) u + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount s) uᶜ = ↑↑(condCount (s ∩ u)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ u) + ↑↑(condCount (s ∩ uᶜ)) t * ↑↑(condCount (s ∩ u ∪ s ∩ uᶜ)) (s ∩ uᶜ) [PROOFSTEP] simp [condCount_inter_self hs]
{"mathlib_filename": "Mathlib.Probability.CondCount", "llama_tokens": 10504}
[GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 2) hj₁ : j ≠ 0 hj₂ : n + 2 ≤ ↑j + q ⊢ φ ≫ δ X j = 0 [PROOFSTEP] obtain ⟨i, rfl⟩ := Fin.eq_succ_of_ne_zero hj₁ [GOAL] case intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ i : Fin (n + 1) hj₁ : Fin.succ i ≠ 0 hj₂ : n + 2 ≤ ↑(Fin.succ i) + q ⊢ φ ≫ δ X (Fin.succ i) = 0 [PROOFSTEP] apply v i [GOAL] case intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ i : Fin (n + 1) hj₁ : Fin.succ i ≠ 0 hj₂ : n + 2 ≤ ↑(Fin.succ i) + q ⊢ n + 1 ≤ ↑i + q [PROOFSTEP] simp only [Fin.val_succ] at hj₂ [GOAL] case intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ i : Fin (n + 1) hj₁ : Fin.succ i ≠ 0 hj₂ : n + 2 ≤ ↑i + 1 + q ⊢ n + 1 ≤ ↑i + q [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish (q + 1) φ j : Fin (n + 1) hj : n + 1 ≤ ↑j + q ⊢ n + 1 ≤ ↑j + (q + 1) [PROOFSTEP] simpa only [← add_assoc] using le_add_right hj [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y Z : C q n : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ f : Z ⟶ Y j : Fin (n + 1) hj : n + 1 ≤ ↑j + q ⊢ (f ≫ φ) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] rw [assoc, v j hj, comp_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] have hnaq_shift : ∀ d : ℕ, n + d = a + d + q := by intro d rw [add_assoc, add_comm d, ← add_assoc, hnaq] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q ⊢ ∀ (d : ℕ), n + d = a + d + q [PROOFSTEP] intro d [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q d : ℕ ⊢ n + d = a + d + q [PROOFSTEP] rw [add_assoc, add_comm d, ← add_assoc, hnaq] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2) (n + 1) rfl) (c_mk (n + 1) n rfl), hσ'_eq hnaq (c_mk (n + 1) n rfl), hσ'_eq (hnaq_shift 1) (c_mk (n + 2) (n + 1) rfl)] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ φ ≫ (HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 1) n ≫ ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) }) ≫ eqToHom (_ : X.obj (Opposite.op [n + 1]) = X.obj (Opposite.op [n + 1])) + (((-1) ^ (a + 1) • σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ eqToHom (_ : X.obj (Opposite.op [n + 1 + 1]) = X.obj (Opposite.op [n + 2]))) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1)) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] simp only [AlternatingFaceMapComplex.obj_d_eq, eqToHom_refl, comp_id, comp_sum, sum_comp, comp_add] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun j => φ ≫ ((-1) ^ ↑j • δ X j) ≫ ((-1) ^ a • σ X { val := a, isLt := (_ : a < Nat.succ n) })) + Finset.sum Finset.univ fun j => φ ≫ ((-1) ^ (a + 1) • σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ ((-1) ^ ↑j • δ X j)) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] simp only [comp_zsmul, zsmul_comp, ← assoc, ← mul_zsmul] -- cleaning up the first sum [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑x) • (φ ≫ δ X x) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X x) = -(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [← Fin.sum_congr' _ (hnaq_shift 2).symm, Fin.sum_trunc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X x) = -(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } case hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∀ (j : Fin q), ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] swap [GOAL] case hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∀ (j : Fin q), ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) j))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case hf.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] suffices φ ≫ X.δ (⟨a + 2 + k, by linarith⟩ : Fin (n + 2)) = 0 by simp only [this, Fin.natAdd_mk, Fin.castIso_mk, zero_comp, smul_zero] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ a + 2 + k < n + 2 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q this : φ ≫ δ X { val := a + 2 + k, isLt := (_ : a + 2 + k < n + 2) } = 0 ⊢ ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.natAdd (a + 2) { val := k, isLt := hk }))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] simp only [this, Fin.natAdd_mk, Fin.castIso_mk, zero_comp, smul_zero] [GOAL] case hf.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ φ ≫ δ X { val := a + 2 + k, isLt := (_ : a + 2 + k < n + 2) } = 0 [PROOFSTEP] convert v ⟨a + k + 1, by linarith⟩ (by rw [Fin.val_mk]; linarith) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ a + k + 1 < n + 1 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ n + 1 ≤ ↑{ val := a + k + 1, isLt := (_ : a + k + 1 < n + 1) } + q [PROOFSTEP] rw [Fin.val_mk] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ n + 1 ≤ a + k + 1 + q [PROOFSTEP] linarith [GOAL] case h.e'_2.h.e'_7.h.e'_5.h.e'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ a + 2 + k = ↑(Fin.succ { val := a + k + 1, isLt := (_ : a + k + 1 < n + 1) }) [PROOFSTEP] dsimp [GOAL] case h.e'_2.h.e'_7.h.e'_5.h.e'_2 C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ a + 2 + k = a + k + 1 + 1 [PROOFSTEP] linarith -- cleaning up the second sum [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑x * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X x) = -(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [← Fin.sum_congr' _ (hnaq_shift 3).symm, @Fin.sum_trunc _ _ (a + 3)] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun i => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i)) * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i))) = -(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } case hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∀ (j : Fin q), ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) = 0 [PROOFSTEP] swap [GOAL] case hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∀ (j : Fin q), ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) j)) = 0 [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case hf.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) = 0 [PROOFSTEP] rw [assoc, X.δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero] [GOAL] case hf.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ Fin.succ { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } < ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) [PROOFSTEP] simp only [Fin.lt_iff_val_lt_val] [GOAL] case hf.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ ↑(Fin.succ { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) < ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) [PROOFSTEP] dsimp [Fin.natAdd, Fin.castIso] [GOAL] case hf.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ a + 1 + 1 < a + 3 + k [PROOFSTEP] linarith [GOAL] case hf.mk.hj₁ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ Fin.pred (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) (_ : ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) = 0 → False) ≠ 0 [PROOFSTEP] intro h [GOAL] case hf.mk.hj₁ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q h : Fin.pred (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) (_ : ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) = 0 → False) = 0 ⊢ False [PROOFSTEP] rw [Fin.pred_eq_iff_eq_succ, Fin.ext_iff] at h [GOAL] case hf.mk.hj₁ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q h : ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) = ↑(Fin.succ 0) ⊢ False [PROOFSTEP] dsimp [Fin.castIso] at h [GOAL] case hf.mk.hj₁ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q h : a + 3 + k = 1 ⊢ False [PROOFSTEP] linarith [GOAL] case hf.mk.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ n + 2 ≤ ↑(Fin.pred (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk })) (_ : ↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.natAdd (a + 3) { val := k, isLt := hk }) = 0 → False)) + q [PROOFSTEP] dsimp [Fin.castIso, Fin.pred] [GOAL] case hf.mk.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ n + 2 ≤ a + 3 + k - 1 + q [PROOFSTEP] rw [Nat.add_right_comm, Nat.add_sub_assoc (by norm_num : 1 ≤ 3)] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ 1 ≤ 3 [PROOFSTEP] norm_num [GOAL] case hf.mk.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q k : ℕ hk : k < q ⊢ n + 2 ≤ a + k + (3 - 1) + q [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) • (φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) i))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun i => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i)) * (-1) ^ (a + 1)) • (φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) }) ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) i))) = -(φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) }) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] simp only [assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ((Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x))) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] conv_lhs => congr ·rw [Fin.sum_univ_castSucc] ·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | (Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] congr ·rw [Fin.sum_univ_castSucc] ·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | (Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] congr ·rw [Fin.sum_univ_castSucc] ·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | (Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] congr [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] ·rw [Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) x)) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] ·rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q | Finset.sum Finset.univ fun x => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) x)) [PROOFSTEP] rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ (Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.castSucc i)))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.castSucc i))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + ((-1) ^ a * (-1) ^ ↑(↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.last (a + 1))))) • φ ≫ δ X (↑(Fin.castIso (_ : a + 2 + q = n + 2)) (Fin.castLE (_ : a + 2 ≤ a + 2 + q) (Fin.last (a + 1)))) ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } + ((Finset.sum Finset.univ fun i => ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.castSucc i)))) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.castSucc i))))) + ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.last (a + 1))))) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.castSucc (Fin.last (a + 1))))) + ((-1) ^ ↑(↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.last (a + 2)))) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X (↑(Fin.castIso (_ : a + 3 + q = n + 3)) (Fin.castLE (_ : a + 3 ≤ a + 3 + q) (Fin.last (a + 2))))) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] dsimp [Fin.castIso, Fin.castLE, Fin.castLT] /- the purpose of the following `simplif` is to create three subgoals in order to finish the proof -/ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ (Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑i) • φ ≫ δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc i) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + ((-1) ^ a * (-1) ^ (a + 1)) • φ ≫ δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.last (a + 1)) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } + ((Finset.sum Finset.univ fun i => ((-1) ^ ↑i * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc i)) < a + 3 + q) } < n + 3) }) + ((-1) ^ (a + 1) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.castSucc (Fin.last (a + 1))) < a + 3 + q) } < n + 3) } + ((-1) ^ (a + 2) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := a + 2, isLt := (_ : ↑{ val := a + 2, isLt := (_ : ↑(Fin.last (a + 2)) < a + 3 + q) } < n + 3) }) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] have simplif : ∀ a b c d e f : Y ⟶ X _[n + 1], b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f := by intro a b c d e f h1 h2 h3 rw [add_assoc c d e, h2, add_zero, add_comm a, add_assoc, add_comm a, h3, add_zero, h1] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q ⊢ ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f [PROOFSTEP] intro a b c d e f h1 h2 h3 [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a✝ q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a✝ + q hnaq_shift : ∀ (d : ℕ), n + d = a✝ + d + q a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1]) h1 : b = f h2 : d + e = 0 h3 : c + a = 0 ⊢ a + b + (c + d + e) = f [PROOFSTEP] rw [add_assoc c d e, h2, add_zero, add_comm a, add_assoc, add_comm a, h3, add_zero, h1] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ (Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑i) • φ ≫ δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc i) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) + ((-1) ^ a * (-1) ^ (a + 1)) • φ ≫ δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.last (a + 1)) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } + ((Finset.sum Finset.univ fun i => ((-1) ^ ↑i * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc i)) < a + 3 + q) } < n + 3) }) + ((-1) ^ (a + 1) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.castSucc (Fin.last (a + 1))) < a + 3 + q) } < n + 3) } + ((-1) ^ (a + 2) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := a + 2, isLt := (_ : ↑{ val := a + 2, isLt := (_ : ↑(Fin.last (a + 2)) < a + 3 + q) } < n + 3) }) = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] apply simplif [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ ((-1) ^ a * (-1) ^ (a + 1)) • φ ≫ δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.last (a + 1)) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = -φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] rw [← pow_add, Odd.neg_one_pow, neg_smul, one_zsmul] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ Odd (a + (a + 1)) [PROOFSTEP] exact ⟨a, by linarith⟩ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ a + (a + 1) = 2 * a + 1 [PROOFSTEP] linarith [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ ((-1) ^ (a + 1) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := a + 1, isLt := (_ : ↑{ val := a + 1, isLt := (_ : ↑(Fin.castSucc (Fin.last (a + 1))) < a + 3 + q) } < n + 3) } + ((-1) ^ (a + 2) * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := a + 2, isLt := (_ : ↑{ val := a + 2, isLt := (_ : ↑(Fin.last (a + 2)) < a + 3 + q) } < n + 3) } = 0 [PROOFSTEP] rw [X.δ_comp_σ_self' (Fin.castSucc_mk _ _ _).symm, X.δ_comp_σ_succ' (Fin.succ_mk _ _ _).symm] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ ((-1) ^ (a + 1) * (-1) ^ (a + 1)) • φ ≫ 𝟙 (X.obj (Opposite.op [n + 1])) + ((-1) ^ (a + 2) * (-1) ^ (a + 1)) • φ ≫ 𝟙 (X.obj (Opposite.op [n + 1])) = 0 [PROOFSTEP] simp only [comp_id, pow_add _ (a + 1) 1, pow_one, mul_neg, mul_one, neg_mul, neg_smul, add_right_neg] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ ((Finset.sum Finset.univ fun i => ((-1) ^ ↑i * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc i)) < a + 3 + q) } < n + 3) }) + Finset.sum Finset.univ fun i => ((-1) ^ a * (-1) ^ ↑i) • φ ≫ δ X { val := ↑i, isLt := (_ : ↑{ val := ↑i, isLt := (_ : ↑(Fin.castSucc i) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) = 0 [PROOFSTEP] rw [← Finset.sum_add_distrib] [GOAL] case a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ (Finset.sum Finset.univ fun x => ((-1) ^ ↑x * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := ↑x, isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc x)) < a + 3 + q) } < n + 3) } + ((-1) ^ a * (-1) ^ ↑x) • φ ≫ δ X { val := ↑x, isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc x) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) }) = 0 [PROOFSTEP] apply Finset.sum_eq_zero [GOAL] case a.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f ⊢ ∀ (x : Fin (a + 1)), x ∈ Finset.univ → ((-1) ^ ↑x * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := ↑x, isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc x)) < a + 3 + q) } < n + 3) } + ((-1) ^ a * (-1) ^ ↑x) • φ ≫ δ X { val := ↑x, isLt := (_ : ↑{ val := ↑x, isLt := (_ : ↑(Fin.castSucc x) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] rintro ⟨i, hi⟩ _ [GOAL] case a.h.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ ((-1) ^ ↑{ val := i, isLt := hi } * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc { val := i, isLt := hi })) < a + 3 + q) } < n + 3) } + ((-1) ^ a * (-1) ^ ↑{ val := i, isLt := hi }) • φ ≫ δ X { val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] simp only [GOAL] case a.h.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ ((-1) ^ i * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := i, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc { val := i, isLt := hi })) < a + 3 + q) } < n + 3) } + ((-1) ^ a * (-1) ^ i) • φ ≫ δ X { val := i, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] have hia : (⟨i, by linarith⟩ : Fin (n + 2)) ≤ Fin.castSucc (⟨a, by linarith⟩ : Fin (n + 1)) := by rw [Fin.le_iff_val_le_val] dsimp linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ i < n + 2 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ a < n + 1 [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) } [PROOFSTEP] rw [Fin.le_iff_val_le_val] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ ↑{ val := i, isLt := (_ : i < n + 2) } ≤ ↑(Fin.castSucc { val := a, isLt := (_ : a < n + 1) }) [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ ⊢ i ≤ a [PROOFSTEP] linarith [GOAL] case a.h.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ hia : { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) } ⊢ ((-1) ^ i * (-1) ^ (a + 1)) • φ ≫ σ X { val := a + 1, isLt := (_ : a + 1 < Nat.succ (n + 1)) } ≫ δ X { val := i, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc (Fin.castSucc { val := i, isLt := hi })) < a + 3 + q) } < n + 3) } + ((-1) ^ a * (-1) ^ i) • φ ≫ δ X { val := i, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } = 0 [PROOFSTEP] erw [δ_comp_σ_of_le X hia, add_eq_zero_iff_eq_neg, ← neg_zsmul] [GOAL] case a.h.mk C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ hia : { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) } ⊢ ((-1) ^ i * (-1) ^ (a + 1)) • φ ≫ δ X { val := i, isLt := (_ : i < n + 2) } ≫ σ X { val := a, isLt := (_ : a < n + 1) } = -((-1) ^ a * (-1) ^ i) • φ ≫ δ X { val := i, isLt := (_ : ↑{ val := ↑{ val := i, isLt := hi }, isLt := (_ : ↑(Fin.castSucc { val := i, isLt := hi }) < a + 2 + q) } < n + 2) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } [PROOFSTEP] congr 2 [GOAL] case a.h.mk.e_a C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n a q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hnaq : n = a + q hnaq_shift : ∀ (d : ℕ), n + d = a + d + q simplif : ∀ (a b c d e f : Y ⟶ X.obj (Opposite.op [n + 1])), b = f → d + e = 0 → c + a = 0 → a + b + (c + d + e) = f i : ℕ hi : i < a + 1 a✝ : { val := i, isLt := hi } ∈ Finset.univ hia : { val := i, isLt := (_ : i < n + 2) } ≤ Fin.castSucc { val := a, isLt := (_ : a < n + 1) } ⊢ (-1) ^ i * (-1) ^ (a + 1) = -((-1) ^ a * (-1) ^ i) [PROOFSTEP] ring [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q ⊢ φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1) = 0 [PROOFSTEP] simp only [Hσ, Homotopy.nullHomotopicMap'_f (c_mk (n + 2) (n + 1) rfl) (c_mk (n + 1) n rfl)] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q ⊢ φ ≫ (HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 1) n ≫ hσ' q n (n + 1) (_ : ComplexShape.Rel c (n + 1) n) + hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1)) = 0 [PROOFSTEP] rw [hσ'_eq_zero hqn (c_mk (n + 1) n rfl), comp_zero, zero_add] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q ⊢ φ ≫ hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1) = 0 [PROOFSTEP] by_cases hqn' : n + 1 < q [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : n + 1 < q ⊢ φ ≫ hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1) = 0 [PROOFSTEP] rw [hσ'_eq_zero hqn' (c_mk (n + 2) (n + 1) rfl), zero_comp, comp_zero] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ φ ≫ hσ' q (n + 1) (n + 2) (_ : ComplexShape.Rel c (n + 2) (n + 1)) ≫ HomologicalComplex.d (AlternatingFaceMapComplex.obj X) (n + 2) (n + 1) = 0 [PROOFSTEP] simp only [hσ'_eq (show n + 1 = 0 + q by linarith) (c_mk (n + 2) (n + 1) rfl), pow_zero, Fin.mk_zero, one_zsmul, eqToHom_refl, comp_id, comp_sum, AlternatingFaceMapComplex.obj_d_eq] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ n + 1 = 0 + q [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ (Finset.sum Finset.univ fun j => φ ≫ σ X 0 ≫ ((-1) ^ ↑j • δ X j)) = 0 [PROOFSTEP] rw [← Fin.sum_congr' _ (show 2 + (n + 1) = n + 1 + 2 by linarith), Fin.sum_trunc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ 2 + (n + 1) = n + 1 + 2 [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ (Finset.sum Finset.univ fun i => φ ≫ σ X 0 ≫ ((-1) ^ ↑(↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.castLE (_ : 2 ≤ 2 + (n + 1)) i)) • δ X (↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.castLE (_ : 2 ≤ 2 + (n + 1)) i)))) = 0 [PROOFSTEP] simp only [Fin.sum_univ_castSucc, Fin.sum_univ_zero, zero_add, Fin.last, Fin.castLE_mk, Fin.castIso_mk, Fin.castSucc_mk] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ φ ≫ σ X 0 ≫ ((-1) ^ 0 • δ X { val := 0, isLt := (_ : 0 < n + 1 + 2) }) + φ ≫ σ X 0 ≫ ((-1) ^ 1 • δ X { val := 1, isLt := (_ : 1 < n + 1 + 2) }) = 0 [PROOFSTEP] simp only [Fin.mk_zero, Fin.val_zero, pow_zero, one_zsmul, Fin.mk_one, Fin.val_one, pow_one, neg_smul, comp_neg] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ φ ≫ σ X 0 ≫ δ X 0 + -φ ≫ σ X 0 ≫ δ X 1 = 0 [PROOFSTEP] erw [δ_comp_σ_self, δ_comp_σ_succ, add_right_neg] [GOAL] case neg.hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q ⊢ ∀ (j : Fin (n + 1)), φ ≫ σ X 0 ≫ ((-1) ^ ↑(↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j)) • δ X (↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j))) = 0 [PROOFSTEP] intro j [GOAL] case neg.hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ φ ≫ σ X 0 ≫ ((-1) ^ ↑(↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j)) • δ X (↑(Fin.castIso (_ : 2 + (n + 1) = n + 1 + 2)) (Fin.natAdd 2 j))) = 0 [PROOFSTEP] dsimp [Fin.castIso, Fin.castLE, Fin.castLT] [GOAL] case neg.hf C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ φ ≫ σ X 0 ≫ ((-1) ^ (2 + ↑j) • δ X { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) }) = 0 [PROOFSTEP] rw [comp_zsmul, comp_zsmul, δ_comp_σ_of_gt', v.comp_δ_eq_zero_assoc, zero_comp, zsmul_zero] [GOAL] case neg.hf.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ Fin.succ 0 < { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } [PROOFSTEP] simp only [Fin.lt_iff_val_lt_val] [GOAL] case neg.hf.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ ↑(Fin.succ 0) < 2 + ↑j [PROOFSTEP] dsimp [Fin.succ] [GOAL] case neg.hf.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ 0 + 1 < 2 + ↑j [PROOFSTEP] linarith [GOAL] case neg.hf.hj₁ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ Fin.pred { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } (_ : { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } = 0 → False) ≠ 0 [PROOFSTEP] intro h [GOAL] case neg.hf.hj₁ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) h : Fin.pred { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } (_ : { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } = 0 → False) = 0 ⊢ False [PROOFSTEP] simp only [Fin.pred, Fin.subNat, Fin.ext_iff, Nat.succ_add_sub_one, Fin.val_zero, add_eq_zero, false_and] at h [GOAL] case neg.hf.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ n + 2 ≤ ↑(Fin.pred { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } (_ : { val := 2 + ↑j, isLt := (_ : ↑(Fin.natAdd 2 j) < n + 1 + 2) } = 0 → False)) + q [PROOFSTEP] simp only [Fin.pred, Fin.subNat, Nat.pred_eq_sub_one, Nat.succ_add_sub_one] [GOAL] case neg.hf.hj₂ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ hqn : n < q hqn' : ¬n + 1 < q j : Fin (n + 1) ⊢ n + 2 ≤ 1 + ↑j + q [PROOFSTEP] linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ ⊢ HigherFacesVanish (q + 1) (φ ≫ HomologicalComplex.Hom.f (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q) (n + 1)) [PROOFSTEP] intro j hj₁ [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) ⊢ (φ ≫ HomologicalComplex.Hom.f (𝟙 (AlternatingFaceMapComplex.obj X) + Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] dsimp [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) ⊢ (φ ≫ (𝟙 (X.obj (Opposite.op [n + 1])) + HomologicalComplex.Hom.f (Hσ q) (n + 1))) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] simp only [comp_add, add_comp, comp_id] -- when n < q, the result follows immediately from the assumption [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) ⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] by_cases hqn : n < q [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) hqn : n < q ⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] rw [v.comp_Hσ_eq_zero hqn, zero_comp, add_zero, v j (by linarith)] -- we now assume that n≥q, and write n=a+q [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) hqn : n < q ⊢ n + 1 ≤ ↑j + q [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) hqn : ¬n < q ⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] cases' Nat.le.dest (not_lt.mp hqn) with a ha [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) hqn : ¬n < q a : ℕ ha : q + a = n ⊢ φ ≫ δ X (Fin.succ j) + (φ ≫ HomologicalComplex.Hom.f (Hσ q) (n + 1)) ≫ δ X (Fin.succ j) = 0 [PROOFSTEP] rw [v.comp_Hσ_eq (show n = a + q by linarith), neg_comp, add_neg_eq_zero, assoc, assoc] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) hqn : ¬n < q a : ℕ ha : q + a = n ⊢ n = a + q [PROOFSTEP] linarith [GOAL] case neg.intro C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C n q : ℕ φ : Y ⟶ X.obj (Opposite.op [n + 1]) v : HigherFacesVanish q φ j : Fin (n + 1) hj₁ : n + 1 ≤ ↑j + (q + 1) hqn : ¬n < q a : ℕ ha : q + a = n ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (n + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ n) } ≫ δ X (Fin.succ j) [PROOFSTEP] cases' n with m hm [GOAL] case neg.intro.zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.zero + 1]) v : HigherFacesVanish q φ j : Fin (Nat.zero + 1) hj₁ : Nat.zero + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.zero < q ha : q + a = Nat.zero ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.zero + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ Nat.zero) } ≫ δ X (Fin.succ j) [PROOFSTEP] simp only [Nat.eq_zero_of_add_eq_zero_left ha, Fin.eq_zero j, Fin.mk_zero, Fin.mk_one, δ_comp_σ_succ, comp_id] [GOAL] case neg.intro.zero C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.zero + 1]) v : HigherFacesVanish q φ j : Fin (Nat.zero + 1) hj₁ : Nat.zero + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.zero < q ha : q + a = Nat.zero ⊢ φ ≫ δ X (Fin.succ 0) = φ ≫ δ X { val := 0 + 1, isLt := (_ : 0 + 1 < Nat.zero + 2) } [PROOFSTEP] rfl -- in the other case, we need to write n as m+1 -- then, we first consider the particular case j = a [GOAL] case neg.intro.succ C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j) [PROOFSTEP] by_cases hj₂ : a = (j : ℕ) [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : a = ↑j ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j) [PROOFSTEP] simp only [hj₂, Fin.eta, δ_comp_σ_succ, comp_id] [GOAL] case pos C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : a = ↑j ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := ↑j + 1, isLt := (_ : ↑j + 1 < Nat.succ m + 2) } [PROOFSTEP] rfl -- now, we assume j ≠ a (i.e. a < j) [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j) [PROOFSTEP] have haj : a < j := (Ne.le_iff_lt hj₂).mp (by linarith) [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j ⊢ a ≤ ↑j [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j) [PROOFSTEP] have hj₃ := j.is_lt [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j) [PROOFSTEP] have ham : a ≤ m := by by_contra h rw [not_le, ← Nat.succ_le_iff] at h linarith [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ⊢ a ≤ m [PROOFSTEP] by_contra h [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 h : ¬a ≤ m ⊢ False [PROOFSTEP] rw [not_le, ← Nat.succ_le_iff] at h [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 h : Nat.succ m ≤ a ⊢ False [PROOFSTEP] linarith [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ σ X { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } ≫ δ X (Fin.succ j) [PROOFSTEP] rw [X.δ_comp_σ_of_gt', j.pred_succ] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ δ X j ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < Fin.succ j case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < Fin.succ j [PROOFSTEP] swap [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < Fin.succ j [PROOFSTEP] rw [Fin.lt_iff_val_lt_val] [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ ↑(Fin.succ { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) }) < ↑(Fin.succ j) [PROOFSTEP] simpa only [Fin.val_mk, Fin.val_succ, add_lt_add_iff_right] using haj [GOAL] case neg C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ δ X j ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) [PROOFSTEP] obtain _ | ham'' := ham.lt_or_eq [GOAL] case neg.inl C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ δ X j ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) [PROOFSTEP] rw [← X.δ_comp_δ''_assoc] [GOAL] case neg.inl C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X (Fin.succ j) ≫ δ X (Fin.castLT { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } (_ : ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } < m + 2)) ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) case neg.inl.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≤ Fin.castSucc j [PROOFSTEP] swap [GOAL] case neg.inl.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≤ Fin.castSucc j [PROOFSTEP] rw [Fin.le_iff_val_le_val] [GOAL] case neg.inl.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≤ ↑(Fin.castSucc j) [PROOFSTEP] dsimp [GOAL] case neg.inl.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ a + 1 ≤ ↑j [PROOFSTEP] linarith [GOAL] case neg.inl C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X (Fin.succ j) ≫ δ X (Fin.castLT { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } (_ : ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } < m + 2)) ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) [PROOFSTEP] simp only [← assoc, v j (by linarith), zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m h✝ : a < m ⊢ Nat.succ m + 1 ≤ ↑j + q [PROOFSTEP] linarith [GOAL] case neg.inr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } ≫ δ X j ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) [PROOFSTEP] rw [X.δ_comp_δ_self'_assoc] [GOAL] case neg.inr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X (Fin.succ j) ≫ δ X j ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) case neg.inr.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } = Fin.castSucc j [PROOFSTEP] swap [GOAL] case neg.inr.H C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ { val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } = Fin.castSucc j [PROOFSTEP] ext [GOAL] case neg.inr.H.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ ↑{ val := a + 1, isLt := (_ : Nat.succ a < Nat.succ (Nat.succ m + 1)) } = ↑(Fin.castSucc j) [PROOFSTEP] dsimp [GOAL] case neg.inr.H.h C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ a + 1 = ↑j [PROOFSTEP] linarith [GOAL] case neg.inr C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ φ ≫ δ X (Fin.succ j) = φ ≫ δ X (Fin.succ j) ≫ δ X j ≫ σ X (Fin.castLT { val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } (_ : ↑{ val := a, isLt := (_ : a < Nat.succ (Nat.succ m)) } < m + 1)) [PROOFSTEP] simp only [← assoc, v j (by linarith), zero_comp] [GOAL] C : Type u_1 inst✝¹ : Category.{u_2, u_1} C inst✝ : Preadditive C X : SimplicialObject C Y : C q a m : ℕ φ : Y ⟶ X.obj (Opposite.op [Nat.succ m + 1]) v : HigherFacesVanish q φ j : Fin (Nat.succ m + 1) hj₁ : Nat.succ m + 1 ≤ ↑j + (q + 1) hqn : ¬Nat.succ m < q ha : q + a = Nat.succ m hj₂ : ¬a = ↑j haj : a < ↑j hj₃ : ↑j < Nat.succ m + 1 ham : a ≤ m ham'' : a = m ⊢ Nat.succ m + 1 ≤ ↑j + q [PROOFSTEP] linarith
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.Faces", "llama_tokens": 44724}
[GOAL] f g : ℕ →. ℕ hf : Partrec f hg : Partrec g ⊢ ∃ h, Partrec h ∧ ∀ (a : ℕ), (∀ (x : ℕ), x ∈ h a → x ∈ f a ∨ x ∈ g a) ∧ ((h a).Dom ↔ (f a).Dom ∨ (g a).Dom) [PROOFSTEP] obtain ⟨cf, rfl⟩ := Code.exists_code.1 hf [GOAL] case intro g : ℕ →. ℕ hg : Partrec g cf : Code hf : Partrec (Code.eval cf) ⊢ ∃ h, Partrec h ∧ ∀ (a : ℕ), (∀ (x : ℕ), x ∈ h a → x ∈ Code.eval cf a ∨ x ∈ g a) ∧ ((h a).Dom ↔ (Code.eval cf a).Dom ∨ (g a).Dom) [PROOFSTEP] obtain ⟨cg, rfl⟩ := Code.exists_code.1 hg [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) ⊢ ∃ h, Partrec h ∧ ∀ (a : ℕ), (∀ (x : ℕ), x ∈ h a → x ∈ Code.eval cf a ∨ x ∈ Code.eval cg a) ∧ ((h a).Dom ↔ (Code.eval cf a).Dom ∨ (Code.eval cg a).Dom) [PROOFSTEP] have : Nat.Partrec fun n => Nat.rfindOpt fun k => cf.evaln k n <|> cg.evaln k n := Partrec.nat_iff.1 (Partrec.rfindOpt <| Primrec.option_orElse.to_comp.comp (Code.evaln_prim.to_comp.comp <| (snd.pair (const cf)).pair fst) (Code.evaln_prim.to_comp.comp <| (snd.pair (const cg)).pair fst)) [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n ⊢ ∃ h, Partrec h ∧ ∀ (a : ℕ), (∀ (x : ℕ), x ∈ h a → x ∈ Code.eval cf a ∨ x ∈ Code.eval cg a) ∧ ((h a).Dom ↔ (Code.eval cf a).Dom ∨ (Code.eval cg a).Dom) [PROOFSTEP] refine' ⟨_, this, fun n => _⟩ [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ ⊢ (∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n) ∧ ((rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom ↔ (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom) [PROOFSTEP] suffices [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ?m.104784 ⊢ (∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n) ∧ ((rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom ↔ (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom) case this cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ ⊢ ?m.104784 [PROOFSTEP] refine' ⟨this, ⟨fun h => (this _ ⟨h, rfl⟩).imp Exists.fst Exists.fst, _⟩⟩ [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n ⊢ (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom → (rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom [PROOFSTEP] intro h [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n h : (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom ⊢ (rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n).Dom [PROOFSTEP] rw [Nat.rfindOpt_dom] [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n h : (Code.eval cf n).Dom ∨ (Code.eval cg n).Dom ⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n [PROOFSTEP] simp only [dom_iff_mem, Code.evaln_complete, Option.mem_def] at h [GOAL] case intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n h : (∃ y k, Code.evaln k cf n = Option.some y) ∨ ∃ y k, Code.evaln k cg n = Option.some y ⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n [PROOFSTEP] obtain ⟨x, k, e⟩ | ⟨x, k, e⟩ := h [GOAL] case intro.intro.inl.intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cf n = Option.some x ⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n [PROOFSTEP] refine' ⟨k, x, _⟩ [GOAL] case intro.intro.inl.intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cf n = Option.some x ⊢ x ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n [PROOFSTEP] simp only [e, Option.some_orElse, Option.mem_def] [GOAL] case intro.intro.inr.intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cg n = Option.some x ⊢ ∃ n_1 a, a ∈ HOrElse.hOrElse (Code.evaln n_1 cf n) fun x => Code.evaln n_1 cg n [PROOFSTEP] refine' ⟨k, _⟩ [GOAL] case intro.intro.inr.intro.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cg n = Option.some x ⊢ ∃ a, a ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n [PROOFSTEP] cases' cf.evaln k n with y [GOAL] case intro.intro.inr.intro.intro.none cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cg n = Option.some x ⊢ ∃ a, a ∈ HOrElse.hOrElse Option.none fun x => Code.evaln k cg n [PROOFSTEP] exact ⟨x, by simp only [e, Option.mem_def, Option.none_orElse]⟩ [GOAL] cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cg n = Option.some x ⊢ x ∈ HOrElse.hOrElse Option.none fun x => Code.evaln k cg n [PROOFSTEP] simp only [e, Option.mem_def, Option.none_orElse] [GOAL] case intro.intro.inr.intro.intro.some cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cg n = Option.some x y : ℕ ⊢ ∃ a, a ∈ HOrElse.hOrElse (Option.some y) fun x => Code.evaln k cg n [PROOFSTEP] exact ⟨y, by simp only [Option.some_orElse, Option.mem_def]⟩ [GOAL] cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this✝ : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ this : ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n x k : ℕ e : Code.evaln k cg n = Option.some x y : ℕ ⊢ y ∈ HOrElse.hOrElse (Option.some y) fun x => Code.evaln k cg n [PROOFSTEP] simp only [Option.some_orElse, Option.mem_def] [GOAL] case this cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n : ℕ ⊢ ∀ (x : ℕ), (x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] intro x h [GOAL] case this cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n ⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] obtain ⟨k, e⟩ := Nat.rfindOpt_spec h [GOAL] case this.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ e : x ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n ⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] revert e [GOAL] case this.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ ⊢ (x ∈ HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] simp only [Option.mem_def] [GOAL] case this.intro cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ ⊢ (HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n) = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] cases' e' : cf.evaln k n with y [GOAL] case this.intro.none cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ e' : Code.evaln k cf n = Option.none ⊢ (HOrElse.hOrElse Option.none fun x => Code.evaln k cg n) = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] simp [GOAL] case this.intro.some cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k y : ℕ e' : Code.evaln k cf n = Option.some y ⊢ (HOrElse.hOrElse (Option.some y) fun x => Code.evaln k cg n) = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] simp [GOAL] case this.intro.none cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ e' : Code.evaln k cf n = Option.none ⊢ Code.evaln k cg n = Option.some x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] intro e [GOAL] case this.intro.some cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k y : ℕ e' : Code.evaln k cf n = Option.some y ⊢ y = x → x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] intro e [GOAL] case this.intro.none cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ e' : Code.evaln k cf n = Option.none e : Code.evaln k cg n = Option.some x ⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] exact Or.inr (Code.evaln_sound e) [GOAL] case this.intro.some cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k y : ℕ e' : Code.evaln k cf n = Option.some y e : y = x ⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] subst y [GOAL] case this.intro.some cf : Code hf : Partrec (Code.eval cf) cg : Code hg : Partrec (Code.eval cg) this : Partrec fun n => rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n n x : ℕ h : x ∈ rfindOpt fun k => HOrElse.hOrElse (Code.evaln k cf n) fun x => Code.evaln k cg n k : ℕ e' : Code.evaln k cf n = Option.some x ⊢ x ∈ Code.eval cf n ∨ x ∈ Code.eval cg n [PROOFSTEP] exact Or.inl (Code.evaln_sound e') [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g ⊢ ∃ k, Partrec k ∧ ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) [PROOFSTEP] let ⟨k, hk, H⟩ := Nat.Partrec.merge' (bind_decode₂_iff.1 hf) (bind_decode₂_iff.1 hg) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) ⊢ ∃ k, Partrec k ∧ ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) [PROOFSTEP] let k' (a : α) := (k (encode a)).bind fun n => (decode (α := σ) n : Part σ) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) ⊢ ∃ k, Partrec k ∧ ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) [PROOFSTEP] refine' ⟨k', ((nat_iff.2 hk).comp Computable.encode).bind (Computable.decode.ofOption.comp snd).to₂, fun a => _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α ⊢ (∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a) ∧ ((k' a).Dom ↔ (f a).Dom ∨ (g a).Dom) [PROOFSTEP] suffices [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ?m.108653 ⊢ (∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a) ∧ ((k' a).Dom ↔ (f a).Dom ∨ (g a).Dom) case this α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α ⊢ ?m.108653 [PROOFSTEP] refine' ⟨this, ⟨fun h => (this _ ⟨h, rfl⟩).imp Exists.fst Exists.fst, _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a ⊢ (f a).Dom ∨ (g a).Dom → (k' a).Dom [PROOFSTEP] intro h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom ⊢ (k' a).Dom [PROOFSTEP] rw [bind_dom] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom ⊢ ∃ h, (↑(decode (Part.get (k (encode a)) h))).Dom [PROOFSTEP] have hk : (k (encode a)).Dom := (H _).2.2 (by simpa only [encodek₂, bind_some, coe_some] using h) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom ⊢ (Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (g a)).Dom [PROOFSTEP] simpa only [encodek₂, bind_some, coe_some] using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk✝ : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom hk : (k (encode a)).Dom ⊢ ∃ h, (↑(decode (Part.get (k (encode a)) h))).Dom [PROOFSTEP] exists hk [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk✝ : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom hk : (k (encode a)).Dom ⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom [PROOFSTEP] simp only [exists_prop, mem_map_iff, mem_coe, mem_bind_iff, Option.mem_def] at H [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk✝ : Nat.Partrec k k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom hk : (k (encode a)).Dom H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ f a_2 ∧ encode a = x) ∨ ∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ g a_2 ∧ encode a = x) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) ⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom [PROOFSTEP] obtain ⟨a', _, y, _, e⟩ | ⟨a', _, y, _, e⟩ := (H _).1 _ ⟨hk, rfl⟩ [GOAL] case inl.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk✝ : Nat.Partrec k k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom hk : (k (encode a)).Dom H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ f a_2 ∧ encode a = x) ∨ ∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ g a_2 ∧ encode a = x) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) a' : α left✝¹ : decode₂ α (encode a) = Option.some a' y : σ left✝ : y ∈ f a' e : encode y = Part.get (k (encode a)) hk ⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom [PROOFSTEP] simp only [e.symm, encodek, coe_some, some_dom] [GOAL] case inr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk✝ : Nat.Partrec k k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α this : ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a h : (f a).Dom ∨ (g a).Dom hk : (k (encode a)).Dom H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ f a_2 ∧ encode a = x) ∨ ∃ a_2, decode₂ α a = Option.some a_2 ∧ ∃ a, a ∈ g a_2 ∧ encode a = x) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) a' : α left✝¹ : decode₂ α (encode a) = Option.some a' y : σ left✝ : y ∈ g a' e : encode y = Part.get (k (encode a)) hk ⊢ (↑(decode (Part.get (k (encode a)) hk))).Dom [PROOFSTEP] simp only [e.symm, encodek, coe_some, some_dom] [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α ⊢ ∀ (x : σ), x ∈ k' a → x ∈ f a ∨ x ∈ g a [PROOFSTEP] intro x h' [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x : σ h' : x ∈ k' a ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] simp only [exists_prop, mem_coe, mem_bind_iff, Option.mem_def] at h' [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x : σ h' : ∃ a_1, a_1 ∈ k (encode a) ∧ decode a_1 = Option.some x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] obtain ⟨n, hn, hx⟩ := h' [GOAL] case this.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x : σ n : ℕ hn : n ∈ k (encode a) hx : decode n = Option.some x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] have := (H _).1 _ hn [GOAL] case this.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x : σ n : ℕ hn : n ∈ k (encode a) hx : decode n = Option.some x this : (n ∈ Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (f a)) ∨ n ∈ Part.bind ↑(decode₂ α (encode a)) fun a => Part.map encode (g a) ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] simp [mem_decode₂, encode_injective.eq_iff] at this [GOAL] case this.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x : σ n : ℕ hn : n ∈ k (encode a) hx : decode n = Option.some x this : (∃ a_1, a_1 ∈ f a ∧ encode a_1 = n) ∨ ∃ a_1, a_1 ∈ g a ∧ encode a_1 = n ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] obtain ⟨a', ha, rfl⟩ | ⟨a', ha, rfl⟩ := this [GOAL] case this.intro.intro.inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x a' : σ ha : a' ∈ f a hn : encode a' ∈ k (encode a) hx : decode (encode a') = Option.some x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] simp only [encodek, Option.some_inj] at hx [GOAL] case this.intro.intro.inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x a' : σ ha : a' ∈ g a hn : encode a' ∈ k (encode a) hx : decode (encode a') = Option.some x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] simp only [encodek, Option.some_inj] at hx [GOAL] case this.intro.intro.inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x a' : σ ha : a' ∈ f a hn : encode a' ∈ k (encode a) hx : a' = x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] rw [hx] at ha [GOAL] case this.intro.intro.inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x a' : σ ha : a' ∈ g a hn : encode a' ∈ k (encode a) hx : a' = x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] rw [hx] at ha [GOAL] case this.intro.intro.inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x a' : σ ha : x ∈ f a hn : encode a' ∈ k (encode a) hx : a' = x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] exact Or.inl ha [GOAL] case this.intro.intro.inr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g k : ℕ →. ℕ hk : Nat.Partrec k H : ∀ (a : ℕ), (∀ (x : ℕ), x ∈ k a → (x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)) ∨ x ∈ Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)) ∧ ((k a).Dom ↔ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (f a)).Dom ∨ (Part.bind ↑(decode₂ α a) fun a => Part.map encode (g a)).Dom) k' : α → Part σ := fun a => Part.bind (k (encode a)) fun n => ↑(decode n) a : α x a' : σ ha : x ∈ g a hn : encode a' ∈ k (encode a) hx : a' = x ⊢ x ∈ f a ∨ x ∈ g a [PROOFSTEP] exact Or.inr ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ h : x ∈ f a ∨ x ∈ g a ⊢ x ∈ k a [PROOFSTEP] have : (k a).Dom := (K _).2.2 (h.imp Exists.fst Exists.fst) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ h : x ∈ f a ∨ x ∈ g a this : (k a).Dom ⊢ x ∈ k a [PROOFSTEP] refine' ⟨this, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ h : x ∈ f a ∨ x ∈ g a this : (k a).Dom ⊢ Part.get (k a) this = x [PROOFSTEP] cases' h with h h [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ this : (k a).Dom h : x ∈ f a ⊢ Part.get (k a) this = x [PROOFSTEP] cases' (K _).1 _ ⟨this, rfl⟩ with h' h' [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ this : (k a).Dom h : x ∈ g a ⊢ Part.get (k a) this = x [PROOFSTEP] cases' (K _).1 _ ⟨this, rfl⟩ with h' h' [GOAL] case inl.inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ this : (k a).Dom h : x ∈ f a h' : Part.get (k a) this ∈ f a ⊢ Part.get (k a) this = x [PROOFSTEP] exact mem_unique h' h [GOAL] case inl.inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ this : (k a).Dom h : x ∈ f a h' : Part.get (k a) this ∈ g a ⊢ Part.get (k a) this = x [PROOFSTEP] exact (H _ _ h _ h').symm [GOAL] case inr.inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ this : (k a).Dom h : x ∈ g a h' : Part.get (k a) this ∈ f a ⊢ Part.get (k a) this = x [PROOFSTEP] exact H _ _ h' _ h [GOAL] case inr.inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f g : α →. σ hf : Partrec f hg : Partrec g H : ∀ (a : α) (x : σ), x ∈ f a → ∀ (y : σ), y ∈ g a → x = y k : α →. σ hk : Partrec k K : ∀ (a : α), (∀ (x : σ), x ∈ k a → x ∈ f a ∨ x ∈ g a) ∧ ((k a).Dom ↔ (f a).Dom ∨ (g a).Dom) a : α x : σ this : (k a).Dom h : x ∈ g a h' : Part.get (k a) this ∈ g a ⊢ Part.get (k a) this = x [PROOFSTEP] exact mem_unique h' h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ c : α → Bool f g : α →. σ hc : Computable c hf : Partrec f hg : Partrec g cf : Code ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a) cg : Code eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode (g a) a : α ⊢ (Part.bind (eval (bif c a then cf else cg) (encode a)) fun b => ↑(decode (a, b).snd)) = bif c a then f a else g a [PROOFSTEP] cases c a [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ c : α → Bool f g : α →. σ hc : Computable c hf : Partrec f hg : Partrec g cf : Code ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a) cg : Code eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode (g a) a : α ⊢ (Part.bind (eval (bif false then cf else cg) (encode a)) fun b => ↑(decode (a, b).snd)) = bif false then f a else g a [PROOFSTEP] simp [ef, eg, encodek] [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ c : α → Bool f g : α →. σ hc : Computable c hf : Partrec f hg : Partrec g cf : Code ef : eval cf = fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a) cg : Code eg : eval cg = fun n => Part.bind ↑(decode n) fun a => Part.map encode (g a) a : α ⊢ (Part.bind (eval (bif true then cf else cg) (encode a)) fun b => ↑(decode (a, b).snd)) = bif true then f a else g a [PROOFSTEP] simp [ef, eg, encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ →. σ hf : Computable f hg : Partrec₂ g hh : Partrec₂ h a : α ⊢ (bif Sum.casesOn (f a) (fun b => true) fun b => false then Sum.casesOn (f a) (fun b => Part.map Option.some (g (a, b).fst (a, b).snd)) fun c => Part.some Option.none else Sum.casesOn (f a) (fun b => Part.some Option.none) fun b => Part.map Option.some (h (a, b).fst (a, b).snd)) = Part.map Option.some (Sum.casesOn (f a) (g a) (h a)) [PROOFSTEP] cases f a [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ →. σ hf : Computable f hg : Partrec₂ g hh : Partrec₂ h a : α val✝ : β ⊢ (bif Sum.casesOn (Sum.inl val✝) (fun b => true) fun b => false then Sum.casesOn (Sum.inl val✝) (fun b => Part.map Option.some (g (a, b).fst (a, b).snd)) fun c => Part.some Option.none else Sum.casesOn (Sum.inl val✝) (fun b => Part.some Option.none) fun b => Part.map Option.some (h (a, b).fst (a, b).snd)) = Part.map Option.some (Sum.casesOn (Sum.inl val✝) (g a) (h a)) [PROOFSTEP] simp only [Bool.cond_true, Bool.cond_false] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ →. σ hf : Computable f hg : Partrec₂ g hh : Partrec₂ h a : α val✝ : γ ⊢ (bif Sum.casesOn (Sum.inr val✝) (fun b => true) fun b => false then Sum.casesOn (Sum.inr val✝) (fun b => Part.map Option.some (g (a, b).fst (a, b).snd)) fun c => Part.some Option.none else Sum.casesOn (Sum.inr val✝) (fun b => Part.some Option.none) fun b => Part.map Option.some (h (a, b).fst (a, b).snd)) = Part.map Option.some (Sum.casesOn (Sum.inr val✝) (g a) (h a)) [PROOFSTEP] simp only [Bool.cond_true, Bool.cond_false] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β f : α →. β h : Partrec f n : α x✝ : Unit ⊢ x✝ ∈ Part.map (fun b => ()) (f n) ↔ x✝ ∈ Part.assert ((fun a => (f a).Dom) n) fun x => Part.some () [PROOFSTEP] simp [Part.dom_iff_mem] [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ p : α → Prop ⊢ (∃ f, Computable f ∧ p = fun a => f a = true) → ComputablePred p [PROOFSTEP] rintro ⟨f, h, rfl⟩ [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool h : Computable f ⊢ ComputablePred fun a => f a = true [PROOFSTEP] exact ⟨by infer_instance, by simpa using h⟩ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool h : Computable f ⊢ DecidablePred fun a => f a = true [PROOFSTEP] infer_instance [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool h : Computable f ⊢ Computable fun a => decide ((fun a => f a = true) a) [PROOFSTEP] simpa using h [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ p : α → Prop hp : ComputablePred p ⊢ ComputablePred fun a => ¬p a [PROOFSTEP] obtain ⟨f, hf, rfl⟩ := computable_iff.1 hp [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true ⊢ ComputablePred fun a => ¬(fun a => f a = true) a [PROOFSTEP] exact ⟨by infer_instance, (cond hf (const false) (const true)).of_eq fun n => by simp cases f n <;> rfl⟩ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true ⊢ DecidablePred fun a => ¬(fun a => f a = true) a [PROOFSTEP] infer_instance [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (bif f n then false else true) = decide ((fun a => ¬(fun a => f a = true) a) n) [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (bif f n then false else true) = decide (f n = false) [PROOFSTEP] cases f n [GOAL] case false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (bif false then false else true) = decide (false = false) [PROOFSTEP] rfl [GOAL] case true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (bif true then false else true) = decide (true = false) [PROOFSTEP] rfl [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ p : α → Prop hp : ComputablePred p ⊢ RePred p [PROOFSTEP] obtain ⟨f, hf, rfl⟩ := computable_iff.1 hp [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true ⊢ RePred fun a => f a = true [PROOFSTEP] unfold RePred [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true ⊢ Partrec fun a => Part.assert ((fun a => f a = true) a) fun x => Part.some () [PROOFSTEP] dsimp only [] [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true ⊢ Partrec fun a => Part.assert (f a = true) fun x => Part.some () [PROOFSTEP] refine' (Partrec.cond hf (Decidable.Partrec.const' (Part.some ())) Partrec.none).of_eq fun n => Part.ext fun a => _ [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α a : Unit ⊢ (a ∈ bif f n then Part.some () else Part.none) ↔ a ∈ Part.assert (f n = true) fun x => Part.some () [PROOFSTEP] cases a [GOAL] case intro.intro.unit α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (PUnit.unit ∈ bif f n then Part.some () else Part.none) ↔ PUnit.unit ∈ Part.assert (f n = true) fun x => Part.some () [PROOFSTEP] cases f n [GOAL] case intro.intro.unit.false α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (PUnit.unit ∈ bif false then Part.some () else Part.none) ↔ PUnit.unit ∈ Part.assert (false = true) fun x => Part.some () [PROOFSTEP] simp [GOAL] case intro.intro.unit.true α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → Bool hf : Computable f hp : ComputablePred fun a => f a = true n : α ⊢ (PUnit.unit ∈ bif true then Part.some () else Part.none) ↔ PUnit.unit ∈ Part.assert (true = true) fun x => Part.some () [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) h : ComputablePred fun c => eval c ∈ C f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C ⊢ g ∈ C [PROOFSTEP] cases' h with _ h [GOAL] case intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) ⊢ g ∈ C [PROOFSTEP] skip [GOAL] case intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) ⊢ g ∈ C [PROOFSTEP] obtain ⟨c, e⟩ := fixed_point₂ (Partrec.cond (h.comp fst) ((Partrec.nat_iff.2 hg).comp snd).to₂ ((Partrec.nat_iff.2 hf).comp snd).to₂).to₂ [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code e : eval c = fun b => bif decide ((fun c => eval c ∈ C) (c, b).fst) then (fun a b => g (a, b).snd) (c, b).fst (c, b).snd else (fun a b => f (a, b).snd) (c, b).fst (c, b).snd ⊢ g ∈ C [PROOFSTEP] simp at e [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code e : eval c = fun b => if eval c ∈ C then g b else f b ⊢ g ∈ C [PROOFSTEP] by_cases H : eval c ∈ C [GOAL] case pos α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code e : eval c = fun b => if eval c ∈ C then g b else f b H : eval c ∈ C ⊢ g ∈ C [PROOFSTEP] simp only [H, if_true] at e [GOAL] case pos α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code H : eval c ∈ C e : eval c = fun b => g b ⊢ g ∈ C [PROOFSTEP] change (fun b => g b) ∈ C [GOAL] case pos α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code H : eval c ∈ C e : eval c = fun b => g b ⊢ (fun b => g b) ∈ C [PROOFSTEP] rwa [← e] [GOAL] case neg α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code e : eval c = fun b => if eval c ∈ C then g b else f b H : ¬eval c ∈ C ⊢ g ∈ C [PROOFSTEP] simp only [H, if_false] at e [GOAL] case neg α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code H : ¬eval c ∈ C e : eval c = fun b => f b ⊢ g ∈ C [PROOFSTEP] rw [e] at H [GOAL] case neg α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set (ℕ →. ℕ) f g : ℕ →. ℕ hf : Nat.Partrec f hg : Nat.Partrec g fC : f ∈ C w✝ : DecidablePred fun c => eval c ∈ C h : Computable fun a => decide ((fun c => eval c ∈ C) a) c : Code H : ¬(fun b => f b) ∈ C e : eval c = fun b => f b ⊢ g ∈ C [PROOFSTEP] contradiction [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set Code H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C) ⊢ (ComputablePred fun c => c ∈ C) ↔ C = ∅ ∨ C = Set.univ [PROOFSTEP] classical exact have hC : ∀ f, f ∈ C ↔ eval f ∈ eval '' C := fun f => ⟨Set.mem_image_of_mem _, fun ⟨g, hg, e⟩ => (H _ _ e).1 hg⟩ ⟨fun h => or_iff_not_imp_left.2 fun C0 => Set.eq_univ_of_forall fun cg => let ⟨cf, fC⟩ := Set.nonempty_iff_ne_empty.2 C0 (hC _).2 <| rice (eval '' C) (h.of_eq hC) (Partrec.nat_iff.1 <| eval_part.comp (const cf) Computable.id) (Partrec.nat_iff.1 <| eval_part.comp (const cg) Computable.id) ((hC _).1 fC), fun h => by {obtain rfl | rfl := h <;> simp [ComputablePred, Set.mem_empty_iff_false] <;> exact ⟨by infer_instance, Computable.const _⟩ }⟩ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set Code H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C) ⊢ (ComputablePred fun c => c ∈ C) ↔ C = ∅ ∨ C = Set.univ [PROOFSTEP] exact have hC : ∀ f, f ∈ C ↔ eval f ∈ eval '' C := fun f => ⟨Set.mem_image_of_mem _, fun ⟨g, hg, e⟩ => (H _ _ e).1 hg⟩ ⟨fun h => or_iff_not_imp_left.2 fun C0 => Set.eq_univ_of_forall fun cg => let ⟨cf, fC⟩ := Set.nonempty_iff_ne_empty.2 C0 (hC _).2 <| rice (eval '' C) (h.of_eq hC) (Partrec.nat_iff.1 <| eval_part.comp (const cf) Computable.id) (Partrec.nat_iff.1 <| eval_part.comp (const cg) Computable.id) ((hC _).1 fC), fun h => by {obtain rfl | rfl := h <;> simp [ComputablePred, Set.mem_empty_iff_false] <;> exact ⟨by infer_instance, Computable.const _⟩ }⟩ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set Code H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C) hC : ∀ (f : Code), f ∈ C ↔ eval f ∈ eval '' C h : C = ∅ ∨ C = Set.univ ⊢ ComputablePred fun c => c ∈ C [PROOFSTEP] {obtain rfl | rfl := h <;> simp [ComputablePred, Set.mem_empty_iff_false] <;> exact ⟨by infer_instance, Computable.const _⟩ } [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ C : Set Code H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ C ↔ cg ∈ C) hC : ∀ (f : Code), f ∈ C ↔ eval f ∈ eval '' C h : C = ∅ ∨ C = Set.univ ⊢ ComputablePred fun c => c ∈ C [PROOFSTEP] obtain rfl | rfl := h [GOAL] case inl α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ ∅ ↔ cg ∈ ∅) hC : ∀ (f : Code), f ∈ ∅ ↔ eval f ∈ eval '' ∅ ⊢ ComputablePred fun c => c ∈ ∅ [PROOFSTEP] simp [ComputablePred, Set.mem_empty_iff_false] [GOAL] case inr α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ Set.univ ↔ cg ∈ Set.univ) hC : ∀ (f : Code), f ∈ Set.univ ↔ eval f ∈ eval '' Set.univ ⊢ ComputablePred fun c => c ∈ Set.univ [PROOFSTEP] simp [ComputablePred, Set.mem_empty_iff_false] [GOAL] case inl α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ ∅ ↔ cg ∈ ∅) hC : ∀ (f : Code), f ∈ ∅ ↔ eval f ∈ eval '' ∅ ⊢ ∃ x, Computable fun a => false [PROOFSTEP] exact ⟨by infer_instance, Computable.const _⟩ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ ∅ ↔ cg ∈ ∅) hC : ∀ (f : Code), f ∈ ∅ ↔ eval f ∈ eval '' ∅ ⊢ DecidablePred fun c => c ∈ ∅ [PROOFSTEP] infer_instance [GOAL] case inr α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ Set.univ ↔ cg ∈ Set.univ) hC : ∀ (f : Code), f ∈ Set.univ ↔ eval f ∈ eval '' Set.univ ⊢ ∃ x, Computable fun a => true [PROOFSTEP] exact ⟨by infer_instance, Computable.const _⟩ [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ H : ∀ (cf cg : Code), eval cf = eval cg → (cf ∈ Set.univ ↔ cg ∈ Set.univ) hC : ∀ (f : Code), f ∈ Set.univ ↔ eval f ∈ eval '' Set.univ ⊢ DecidablePred fun c => c ∈ Set.univ [PROOFSTEP] infer_instance [GOAL] α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a ⊢ Computable fun a => decide (p a) [PROOFSTEP] obtain ⟨k, pk, hk⟩ := Partrec.merge (h₁.map (Computable.const true).to₂) (h₂.map (Computable.const false).to₂) (by intro a x hx y hy simp at hx hy cases hy.1 hx.1) [GOAL] α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a ⊢ ∀ (a : α) (x : Bool), x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) → ∀ (y : Bool), y ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) → x = y [PROOFSTEP] intro a x hx y hy [GOAL] α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a a : α x : Bool hx : x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) y : Bool hy : y ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) ⊢ x = y [PROOFSTEP] simp at hx hy [GOAL] α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a a : α x y : Bool hx : p a ∧ true = x hy : ¬p a ∧ false = y ⊢ x = y [PROOFSTEP] cases hy.1 hx.1 [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a k : α →. Bool pk : Partrec k hk : ∀ (a : α) (x : Bool), x ∈ k a ↔ x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨ x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) ⊢ Computable fun a => decide (p a) [PROOFSTEP] refine' Partrec.of_eq pk fun n => Part.eq_some_iff.2 _ [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a k : α →. Bool pk : Partrec k hk : ∀ (a : α) (x : Bool), x ∈ k a ↔ x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨ x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) n : α ⊢ (fun a => decide (p a)) n ∈ k n [PROOFSTEP] rw [hk] [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a k : α →. Bool pk : Partrec k hk : ∀ (a : α) (x : Bool), x ∈ k a ↔ x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨ x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) n : α ⊢ (fun a => decide (p a)) n ∈ Part.map (fun b => true) (Part.assert (p n) fun x => Part.some ()) ∨ (fun a => decide (p a)) n ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) n) fun x => Part.some ()) [PROOFSTEP] simp [GOAL] case intro.intro α : Type u_1 σ : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p x✝ : RePred p ∧ RePred fun a => ¬p a h₁ : RePred p h₂ : RePred fun a => ¬p a k : α →. Bool pk : Partrec k hk : ∀ (a : α) (x : Bool), x ∈ k a ↔ x ∈ Part.map (fun b => true) (Part.assert (p a) fun x => Part.some ()) ∨ x ∈ Part.map (fun b => false) (Part.assert ((fun a => ¬p a) a) fun x => Part.some ()) n : α ⊢ p n ∨ ¬p n [PROOFSTEP] apply Decidable.em [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ p : α → Prop ⊢ ComputablePred p ↔ RePred p ∧ RePred fun a => ¬p a [PROOFSTEP] classical exact computable_iff_re_compl_re [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ p : α → Prop ⊢ ComputablePred p ↔ RePred p ∧ RePred fun a => ¬p a [PROOFSTEP] exact computable_iff_re_compl_re [GOAL] n : ℕ f : Vector ℕ n →. ℕ pf : Partrec' f ⊢ _root_.Partrec f [PROOFSTEP] induction pf [GOAL] case prim n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ a✝ : Primrec' f✝ ⊢ _root_.Partrec ↑f✝ case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Partrec' f✝ a✝ : ∀ (i : Fin n✝), Partrec' (g✝ i) a_ih✝¹ : _root_.Partrec f✝ a_ih✝ : ∀ (i : Fin n✝), _root_.Partrec (g✝ i) ⊢ _root_.Partrec fun v => (mOfFn fun i => g✝ i v) >>= f✝ case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Partrec' ↑f✝ a_ih✝ : _root_.Partrec ↑f✝ ⊢ _root_.Partrec fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0)) [PROOFSTEP] case prim n f hf => exact hf.to_prim.to_comp [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f ⊢ _root_.Partrec ↑f [PROOFSTEP] case prim n f hf => exact hf.to_prim.to_comp [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f ⊢ _root_.Partrec ↑f [PROOFSTEP] exact hf.to_prim.to_comp [GOAL] case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Partrec' f✝ a✝ : ∀ (i : Fin n✝), Partrec' (g✝ i) a_ih✝¹ : _root_.Partrec f✝ a_ih✝ : ∀ (i : Fin n✝), _root_.Partrec (g✝ i) ⊢ _root_.Partrec fun v => (mOfFn fun i => g✝ i v) >>= f✝ case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Partrec' ↑f✝ a_ih✝ : _root_.Partrec ↑f✝ ⊢ _root_.Partrec fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0)) [PROOFSTEP] case comp m n f g _ _ hf hg => exact (Partrec.vector_mOfFn fun i => hg i).bind (hf.comp snd) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ a✝¹ : Partrec' f a✝ : ∀ (i : Fin n), Partrec' (g i) hf : _root_.Partrec f hg : ∀ (i : Fin n), _root_.Partrec (g i) ⊢ _root_.Partrec fun v => (mOfFn fun i => g i v) >>= f [PROOFSTEP] case comp m n f g _ _ hf hg => exact (Partrec.vector_mOfFn fun i => hg i).bind (hf.comp snd) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ a✝¹ : Partrec' f a✝ : ∀ (i : Fin n), Partrec' (g i) hf : _root_.Partrec f hg : ∀ (i : Fin n), _root_.Partrec (g i) ⊢ _root_.Partrec fun v => (mOfFn fun i => g i v) >>= f [PROOFSTEP] exact (Partrec.vector_mOfFn fun i => hg i).bind (hf.comp snd) [GOAL] case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Partrec' ↑f✝ a_ih✝ : _root_.Partrec ↑f✝ ⊢ _root_.Partrec fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0)) [PROOFSTEP] case rfind n f _ hf => have := hf.comp (vector_cons.comp snd fst) have := ((Primrec.eq.comp _root_.Primrec.id (_root_.Primrec.const 0)).to_comp.comp this).to₂.partrec₂ exact _root_.Partrec.rfind this [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Partrec' ↑f hf : _root_.Partrec ↑f ⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0)) [PROOFSTEP] case rfind n f _ hf => have := hf.comp (vector_cons.comp snd fst) have := ((Primrec.eq.comp _root_.Primrec.id (_root_.Primrec.const 0)).to_comp.comp this).to₂.partrec₂ exact _root_.Partrec.rfind this [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Partrec' ↑f hf : _root_.Partrec ↑f ⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0)) [PROOFSTEP] have := hf.comp (vector_cons.comp snd fst) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Partrec' ↑f hf : _root_.Partrec ↑f this : _root_.Partrec fun a => ↑f (a.snd ::ᵥ a.fst) ⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0)) [PROOFSTEP] have := ((Primrec.eq.comp _root_.Primrec.id (_root_.Primrec.const 0)).to_comp.comp this).to₂.partrec₂ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Partrec' ↑f hf : _root_.Partrec ↑f this✝ : _root_.Partrec fun a => ↑f (a.snd ::ᵥ a.fst) this : Partrec₂ fun a => ↑fun b => decide ((fun a => id a = 0) (f ((a, b).snd ::ᵥ (a, b).fst))) ⊢ _root_.Partrec fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0)) [PROOFSTEP] exact _root_.Partrec.rfind this [GOAL] n : ℕ f : Vector ℕ n →. ℕ hf : Partrec' f v : Vector ℕ (succ n) ⊢ (mOfFn fun i => (↑fun v => Vector.get v (Fin.succ i)) v) >>= f = f (Vector.tail v) [PROOFSTEP] simp [GOAL] n : ℕ f : Vector ℕ n →. ℕ hf : Partrec' f v : Vector ℕ (succ n) ⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (Vector.tail v) [PROOFSTEP] rw [← ofFn_get v.tail] [GOAL] n : ℕ f : Vector ℕ n →. ℕ hf : Partrec' f v : Vector ℕ (succ n) ⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (ofFn (Vector.get (Vector.tail v))) [PROOFSTEP] congr [GOAL] case e_a.e_a n : ℕ f : Vector ℕ n →. ℕ hf : Partrec' f v : Vector ℕ (succ n) ⊢ (fun i => Vector.get v (Fin.succ i)) = Vector.get (Vector.tail v) [PROOFSTEP] funext i [GOAL] case e_a.e_a.h n : ℕ f : Vector ℕ n →. ℕ hf : Partrec' f v : Vector ℕ (succ n) i : Fin n ⊢ Vector.get v (Fin.succ i) = Vector.get (Vector.tail v) i [PROOFSTEP] simp [GOAL] n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) →. ℕ hf : Partrec' f hg : Partrec' g i : Fin (n + 1) ⊢ Partrec' ((fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i) i) [PROOFSTEP] refine' Fin.cases _ (fun i => _) i [GOAL] case refine'_1 n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) →. ℕ hf : Partrec' f hg : Partrec' g i : Fin (n + 1) ⊢ Partrec' ((fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i) 0) [PROOFSTEP] simp [*] [GOAL] case refine'_2 n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) →. ℕ hf : Partrec' f hg : Partrec' g i✝ : Fin (n + 1) i : Fin n ⊢ Partrec' ((fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i) (Fin.succ i)) [PROOFSTEP] simp [*] [GOAL] case refine'_2 n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) →. ℕ hf : Partrec' f hg : Partrec' g i✝ : Fin (n + 1) i : Fin n ⊢ Partrec' fun v => Part.some (Vector.get v i) [PROOFSTEP] exact prim (Nat.Primrec'.get _) [GOAL] n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) →. ℕ hf : Partrec' f hg : Partrec' g v : Vector ℕ n ⊢ (mOfFn fun i => Fin.cases f (fun i v => ↑(some (Vector.get v i))) i v) >>= g = Part.bind (f v) fun a => g (a ::ᵥ v) [PROOFSTEP] simp [mOfFn, Part.bind_assoc, pure] [GOAL] n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) → ℕ hf : Partrec' f hg : Partrec' ↑g ⊢ Partrec' fun v => Part.map (fun a => g (a ::ᵥ v)) (f v) [PROOFSTEP] simp [(Part.bind_some_eq_map _ _).symm] [GOAL] n : ℕ f : Vector ℕ n →. ℕ g : Vector ℕ (n + 1) → ℕ hf : Partrec' f hg : Partrec' ↑g ⊢ Partrec' fun v => Part.bind (f v) (Part.some ∘ fun a => g (a ::ᵥ v)) [PROOFSTEP] exact hf.bind hg [GOAL] n m : ℕ f : Vector ℕ n → ℕ g : Vector ℕ n → Vector ℕ m hf : Partrec' ↑f hg : Vec g i : Fin (succ m) ⊢ Partrec' fun v => ↑(some (Vector.get ((fun v => f v ::ᵥ g v) v) 0)) [PROOFSTEP] simpa using hf [GOAL] n m : ℕ f : Vector ℕ n → ℕ g : Vector ℕ n → Vector ℕ m hf : Partrec' ↑f hg : Vec g i✝ : Fin (succ m) i : Fin m ⊢ Partrec' fun v => ↑(some (Vector.get ((fun v => f v ::ᵥ g v) v) (Fin.succ i))) [PROOFSTEP] simp only [hg i, get_cons_succ] [GOAL] n m : ℕ f : Vector ℕ m →. ℕ g : Vector ℕ n → Vector ℕ m hf : Partrec' f hg : Vec g v : Vector ℕ n ⊢ (mOfFn fun i => ↑(some (Vector.get (g v) i))) >>= f = f (g v) [PROOFSTEP] simp [GOAL] n : ℕ f : ℕ →. ℕ g : Vector ℕ n → ℕ hf : Partrec' fun v => f (Vector.head v) hg : Partrec' ↑g ⊢ Partrec' fun v => f (g v) [PROOFSTEP] simpa using hf.comp' (Partrec'.cons hg Partrec'.nil) [GOAL] n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b : ℕ ⊢ (b ∈ Part.bind (Nat.rfind fun n_1 => Part.some (decide (1 - f (n_1 ::ᵥ v) = 0))) fun a => ↑pred (f (a ::ᵥ v))) ↔ b ∈ Nat.rfindOpt fun a => ofNat (Option ℕ) (f (a ::ᵥ v)) [PROOFSTEP] simp only [Nat.rfindOpt, exists_prop, tsub_eq_zero_iff_le, PFun.coe_val, Part.mem_bind_iff, Part.mem_some_iff, Option.mem_def, Part.mem_coe] [GOAL] n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b : ℕ ⊢ (∃ a, (a ∈ Nat.rfind fun n_1 => Part.some (decide (1 ≤ f (n_1 ::ᵥ v)))) ∧ b = pred (f (a ::ᵥ v))) ↔ ∃ a, (a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))) ∧ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b [PROOFSTEP] refine' exists_congr fun a => (and_congr (iff_of_eq _) Iff.rfl).trans (and_congr_right fun h => _) [GOAL] case refine'_1 n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ ⊢ (a ∈ Nat.rfind fun n_1 => Part.some (decide (1 ≤ f (n_1 ::ᵥ v)))) = (a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v)))))) [PROOFSTEP] congr [GOAL] case refine'_1.e_a.e_p n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ ⊢ (fun n_1 => Part.some (decide (1 ≤ f (n_1 ::ᵥ v)))) = fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) [PROOFSTEP] funext n [GOAL] case refine'_1.e_a.e_p.h n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n✝ b a n : ℕ ⊢ Part.some (decide (1 ≤ f (n ::ᵥ v))) = ↑(some (Option.isSome (ofNat (Option ℕ) (f (n ::ᵥ v))))) [PROOFSTEP] cases f (n ::ᵥ v) [GOAL] case refine'_1.e_a.e_p.h.zero n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n✝ b a n : ℕ ⊢ Part.some (decide (1 ≤ zero)) = ↑(some (Option.isSome (ofNat (Option ℕ) zero))) [PROOFSTEP] simp [Nat.succ_le_succ] [GOAL] case refine'_1.e_a.e_p.h.succ n✝¹ : ℕ f : Vector ℕ (n✝¹ + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n✝¹ b a n n✝ : ℕ ⊢ Part.some (decide (1 ≤ succ n✝)) = ↑(some (Option.isSome (ofNat (Option ℕ) (succ n✝)))) [PROOFSTEP] simp [Nat.succ_le_succ] [GOAL] case refine'_1.e_a.e_p.h.succ n✝¹ : ℕ f : Vector ℕ (n✝¹ + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n✝¹ b a n n✝ : ℕ ⊢ true = Option.isSome (ofNat (Option ℕ) (succ n✝)) [PROOFSTEP] rfl [GOAL] case refine'_2 n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) ⊢ b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b [PROOFSTEP] have := Nat.rfind_spec h [GOAL] case refine'_2 n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) this : true ∈ ↑(some (Option.isSome (ofNat (Option ℕ) (f (a ::ᵥ v))))) ⊢ b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b [PROOFSTEP] simp only [Part.coe_some, Part.mem_some_iff] at this [GOAL] case refine'_2 n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) this : true = Option.isSome (ofNat (Option ℕ) (f (a ::ᵥ v))) ⊢ b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b [PROOFSTEP] revert this [GOAL] case refine'_2 n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) ⊢ true = Option.isSome (ofNat (Option ℕ) (f (a ::ᵥ v))) → (b = pred (f (a ::ᵥ v)) ↔ ofNat (Option ℕ) (f (a ::ᵥ v)) = some b) [PROOFSTEP] cases' f (a ::ᵥ v) with c [GOAL] case refine'_2.zero n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) ⊢ true = Option.isSome (ofNat (Option ℕ) zero) → (b = pred zero ↔ ofNat (Option ℕ) zero = some b) [PROOFSTEP] intro this [GOAL] case refine'_2.succ n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) c : ℕ ⊢ true = Option.isSome (ofNat (Option ℕ) (succ c)) → (b = pred (succ c) ↔ ofNat (Option ℕ) (succ c) = some b) [PROOFSTEP] intro this [GOAL] case refine'_2.zero n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) this : true = Option.isSome (ofNat (Option ℕ) zero) ⊢ b = pred zero ↔ ofNat (Option ℕ) zero = some b [PROOFSTEP] cases this [GOAL] case refine'_2.succ n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) c : ℕ this : true = Option.isSome (ofNat (Option ℕ) (succ c)) ⊢ b = pred (succ c) ↔ ofNat (Option ℕ) (succ c) = some b [PROOFSTEP] rw [← Option.some_inj, eq_comm] [GOAL] case refine'_2.succ n : ℕ f : Vector ℕ (n + 1) → ℕ hf : Partrec' ↑f v : Vector ℕ n b a : ℕ h : a ∈ Nat.rfind fun n_1 => ↑(some (Option.isSome (ofNat (Option ℕ) (f (n_1 ::ᵥ v))))) c : ℕ this : true = Option.isSome (ofNat (Option ℕ) (succ c)) ⊢ some (pred (succ c)) = some b ↔ ofNat (Option ℕ) (succ c) = some b [PROOFSTEP] rfl [GOAL] f : ℕ →. ℕ hf : Partrec f ⊢ Partrec' fun v => f (Vector.head v) [PROOFSTEP] obtain ⟨c, rfl⟩ := exists_code.1 hf [GOAL] case intro c : Code hf : Partrec (eval c) ⊢ Partrec' fun v => eval c (Vector.head v) [PROOFSTEP] simpa [eval_eq_rfindOpt] using rfindOpt <| of_prim <| Primrec.encode_iff.2 <| evaln_prim.comp <| (Primrec.vector_head.pair (_root_.Primrec.const c)).pair <| Primrec.vector_head.comp Primrec.vector_tail [GOAL] this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v) n : ℕ f : Vector ℕ n →. ℕ hf : _root_.Partrec f ⊢ Partrec' f [PROOFSTEP] let g := fun n₁ => (Part.ofOption (decode (α := Vector ℕ n) n₁)).bind (fun a => Part.map encode (f a)) [GOAL] this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v) n : ℕ f : Vector ℕ n →. ℕ hf : _root_.Partrec f g : ℕ → Part ℕ := fun n₁ => Part.bind ↑(decode n₁) fun a => Part.map encode (f a) ⊢ Partrec' f [PROOFSTEP] exact (comp₁ g (this g hf) (prim Nat.Primrec'.encode)).of_eq fun i => by dsimp only; simp [encodek, Part.map_id'] [GOAL] this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v) n : ℕ f : Vector ℕ n →. ℕ hf : _root_.Partrec f g : ℕ → Part ℕ := fun n₁ => Part.bind ↑(decode n₁) fun a => Part.map encode (f a) i : Vector ℕ n ⊢ g (encode i) = f i [PROOFSTEP] dsimp only [GOAL] this : ∀ (f : ℕ →. ℕ), Partrec f → Partrec' fun v => f (Vector.head v) n : ℕ f : Vector ℕ n →. ℕ hf : _root_.Partrec f g : ℕ → Part ℕ := fun n₁ => Part.bind ↑(decode n₁) fun a => Part.map encode (f a) i : Vector ℕ n ⊢ (Part.bind ↑(decode (encode i)) fun a => Part.map encode (f a)) = f i [PROOFSTEP] simp [encodek, Part.map_id'] [GOAL] f : ℕ →. ℕ h : _root_.Partrec fun v => f (Vector.head v) v : ℕ ⊢ f (Vector.head (ofFn fun i => id v)) = f v [PROOFSTEP] simp only [id.def, head_ofFn] [GOAL] f : ℕ → ℕ →. ℕ h : _root_.Partrec fun v => f (Vector.head v) (Vector.head (Vector.tail v)) v : ℕ × ℕ ⊢ f (Vector.head (v.fst ::ᵥ v.snd ::ᵥ nil)) (Vector.head (Vector.tail (v.fst ::ᵥ v.snd ::ᵥ nil))) = f v.fst v.snd [PROOFSTEP] simp only [head_cons, tail_cons] [GOAL] m n : ℕ f : Vector ℕ m → Vector ℕ n h : Vec f ⊢ Computable f [PROOFSTEP] simpa only [ofFn_get] using vector_ofFn fun i => to_part (h i)
{"mathlib_filename": "Mathlib.Computability.Halting", "llama_tokens": 38070}
[GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hcs : ↑↑μ s ≠ 0 ⊢ ↑↑(μ[|s]) Set.univ = 1 [PROOFSTEP] rw [cond, Measure.smul_apply, Measure.restrict_apply MeasurableSet.univ, Set.univ_inter] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hcs : ↑↑μ s ≠ 0 ⊢ (↑↑μ s)⁻¹ • ↑↑μ s = 1 [PROOFSTEP] exact ENNReal.inv_mul_cancel hcs (measure_ne_top _ s) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω ⊢ μ[|∅] = 0 [PROOFSTEP] simp [cond] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsProbabilityMeasure μ ⊢ μ[|Set.univ] = μ [PROOFSTEP] simp [cond, measure_univ, Measure.restrict_univ] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t✝ : Set Ω hms : MeasurableSet s t : Set Ω ⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t) [PROOFSTEP] rw [cond, Measure.smul_apply, Measure.restrict_apply' hms, Set.inter_comm, smul_eq_mul] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t✝ : Set Ω hms : MeasurableSet s t : Set Ω ⊢ ↑↑(μ[|s]) (s ∩ t) = ↑↑(μ[|s]) t [PROOFSTEP] rw [cond_apply _ hms, ← Set.inter_assoc, Set.inter_self, ← cond_apply _ hms] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hcst : ↑↑(μ[|s]) t ≠ 0 ⊢ 0 < ↑↑μ (s ∩ t) [PROOFSTEP] refine' pos_iff_ne_zero.mpr (right_ne_zero_of_mul _) [GOAL] case refine'_1 Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hcst : ↑↑(μ[|s]) t ≠ 0 ⊢ ℝ≥0∞ [PROOFSTEP] exact (μ s)⁻¹ [GOAL] case refine'_2 Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hcst : ↑↑(μ[|s]) t ≠ 0 ⊢ (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t) ≠ 0 [PROOFSTEP] convert hcst [GOAL] case h.e'_2 Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hcst : ↑↑(μ[|s]) t ≠ 0 ⊢ (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t) = ↑↑(μ[|s]) t [PROOFSTEP] simp [hms, Set.inter_comm, cond] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ 0 < ↑↑(μ[|s]) t [PROOFSTEP] rw [cond_apply _ hms] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ 0 < (↑↑μ s)⁻¹ * ↑↑μ (s ∩ t) [PROOFSTEP] refine' ENNReal.mul_pos _ hci [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ (↑↑μ s)⁻¹ ≠ 0 [PROOFSTEP] exact ENNReal.inv_ne_zero.mpr (measure_ne_top _ _) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hmt : MeasurableSet t hcs : ↑↑μ s ≠ ⊤ hci : ↑↑μ (s ∩ t) ≠ 0 ⊢ μ[|s][|t] = μ[|s ∩ t] [PROOFSTEP] have hcs' : μ s ≠ 0 := (μ.toOuterMeasure.pos_of_subset_ne_zero (Set.inter_subset_left _ _) hci).ne' [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hmt : MeasurableSet t hcs : ↑↑μ s ≠ ⊤ hci : ↑↑μ (s ∩ t) ≠ 0 hcs' : ↑↑μ s ≠ 0 ⊢ μ[|s][|t] = μ[|s ∩ t] [PROOFSTEP] ext u [GOAL] case h Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω hms : MeasurableSet s hmt : MeasurableSet t hcs : ↑↑μ s ≠ ⊤ hci : ↑↑μ (s ∩ t) ≠ 0 hcs' : ↑↑μ s ≠ 0 u : Set Ω a✝ : MeasurableSet u ⊢ ↑↑(μ[|s][|t]) u = ↑↑(μ[|s ∩ t]) u [PROOFSTEP] simp [*, hms.inter hmt, cond_apply, ← mul_assoc, ← Set.inter_assoc, ENNReal.mul_inv, mul_comm, ← mul_assoc, ENNReal.mul_inv_cancel] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t✝ : Set Ω hms : MeasurableSet s hcs : ↑↑μ s ≠ 0 hcs' : ↑↑μ s ≠ ⊤ t : Set Ω ⊢ ↑↑(μ[|s]) t * ↑↑μ s = ↑↑μ (s ∩ t) [PROOFSTEP] rw [cond_apply μ hms t, mul_comm, ← mul_assoc, ENNReal.mul_inv_cancel hcs hcs', one_mul] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hcs : ↑↑μ s ≠ 0 hcs' : ↑↑μ sᶜ ≠ 0 ⊢ ↑↑(μ[|s]) t * ↑↑μ s + ↑↑(μ[|sᶜ]) t * ↑↑μ sᶜ = ↑↑μ t [PROOFSTEP] rw [cond_mul_eq_inter μ hms hcs, cond_mul_eq_inter μ hms.compl hcs', Set.inter_comm _ t, Set.inter_comm _ t] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hcs : ↑↑μ s ≠ 0 hcs' : ↑↑μ sᶜ ≠ 0 ⊢ ↑↑μ (t ∩ s) + ↑↑μ (t ∩ sᶜ) = ↑↑μ t [PROOFSTEP] exact measure_inter_add_diff t hms [GOAL] Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hmt : MeasurableSet t ⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑(μ[|t]) s * ↑↑μ t [PROOFSTEP] by_cases ht : μ t = 0 [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hmt : MeasurableSet t ht : ↑↑μ t = 0 ⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑(μ[|t]) s * ↑↑μ t [PROOFSTEP] simp [cond, ht, Measure.restrict_apply hmt, Or.inr (measure_inter_null_of_null_left s ht)] [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω μ : Measure Ω s t : Set Ω inst✝ : IsFiniteMeasure μ hms : MeasurableSet s hmt : MeasurableSet t ht : ¬↑↑μ t = 0 ⊢ ↑↑(μ[|s]) t = (↑↑μ s)⁻¹ * ↑↑(μ[|t]) s * ↑↑μ t [PROOFSTEP] rw [mul_assoc, cond_mul_eq_inter μ hmt ht s, Set.inter_comm, cond_apply _ hms]
{"mathlib_filename": "Mathlib.Probability.ConditionalProbability", "llama_tokens": 2840}
[GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom ⊢ ∀ (a : ℕ), Acc (Nat.lbp p) a [PROOFSTEP] let ⟨n, pn⟩ := H [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom ⊢ ∀ (a : ℕ), Acc (Nat.lbp p) a [PROOFSTEP] suffices ∀ m k, n ≤ k + m → Acc (lbp p) k by exact fun a => this _ _ (Nat.le_add_left _ _) [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom this : ∀ (m k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k ⊢ ∀ (a : ℕ), Acc (Nat.lbp p) a [PROOFSTEP] exact fun a => this _ _ (Nat.le_add_left _ _) [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom ⊢ ∀ (m k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k [PROOFSTEP] intro m k kn [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m k : ℕ kn : n ≤ k + m ⊢ Acc (Nat.lbp p) k [PROOFSTEP] induction' m with m IH generalizing k [GOAL] case zero p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m k✝ : ℕ kn✝ : n ≤ k✝ + m k : ℕ kn : n ≤ k + zero ⊢ Acc (Nat.lbp p) k [PROOFSTEP] refine' ⟨_, fun y r => _⟩ [GOAL] case succ p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m✝ k✝ : ℕ kn✝ : n ≤ k✝ + m✝ m : ℕ IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k k : ℕ kn : n ≤ k + succ m ⊢ Acc (Nat.lbp p) k [PROOFSTEP] refine' ⟨_, fun y r => _⟩ [GOAL] case zero p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m k✝ : ℕ kn✝ : n ≤ k✝ + m k : ℕ kn : n ≤ k + zero y : ℕ r : Nat.lbp p y k ⊢ Acc (Nat.lbp p) y [PROOFSTEP] rcases r with ⟨rfl, a⟩ [GOAL] case succ p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m✝ k✝ : ℕ kn✝ : n ≤ k✝ + m✝ m : ℕ IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k k : ℕ kn : n ≤ k + succ m y : ℕ r : Nat.lbp p y k ⊢ Acc (Nat.lbp p) y [PROOFSTEP] rcases r with ⟨rfl, a⟩ [GOAL] case zero.intro p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m k✝ : ℕ kn✝ : n ≤ k✝ + m k : ℕ kn : n ≤ k + zero a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1 ⊢ Acc (Nat.lbp p) (k + 1) [PROOFSTEP] injection mem_unique pn.1 (a _ kn) [GOAL] case succ.intro p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m✝ k✝ : ℕ kn✝ : n ≤ k✝ + m✝ m : ℕ IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k k : ℕ kn : n ≤ k + succ m a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1 ⊢ Acc (Nat.lbp p) (k + 1) [PROOFSTEP] exact IH _ (by rw [Nat.add_right_comm]; exact kn) [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m✝ k✝ : ℕ kn✝ : n ≤ k✝ + m✝ m : ℕ IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k k : ℕ kn : n ≤ k + succ m a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1 ⊢ n ≤ k + 1 + m [PROOFSTEP] rw [Nat.add_right_comm] [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom n : ℕ pn : true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m✝ k✝ : ℕ kn✝ : n ≤ k✝ + m✝ m : ℕ IH : ∀ (k : ℕ), n ≤ k + m → Acc (Nat.lbp p) k k : ℕ kn : n ≤ k + succ m a : ∀ (k_1 : ℕ), k_1 ≤ k → false ∈ p k_1 ⊢ n ≤ k + m + 1 [PROOFSTEP] exact kn [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom ⊢ (x : ℕ) → ((y : ℕ) → Nat.lbp p y x → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m }) → (∀ (n : ℕ), n < x → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } [PROOFSTEP] intro m IH al [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n ⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } [PROOFSTEP] have pm : (p m).Dom := by rcases H with ⟨n, h₁, h₂⟩ rcases lt_trichotomy m n with (h₃ | h₃ | h₃) · exact h₂ _ h₃ · rw [h₃] exact h₁.fst · injection mem_unique h₁ (al _ h₃) [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n ⊢ (p m).Dom [PROOFSTEP] rcases H with ⟨n, h₁, h₂⟩ [GOAL] case intro.intro p : ℕ →. Bool m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n n : ℕ h₁ : true ∈ p n h₂ : ∀ (k : ℕ), k < n → (p k).Dom ⊢ (p m).Dom [PROOFSTEP] rcases lt_trichotomy m n with (h₃ | h₃ | h₃) [GOAL] case intro.intro.inl p : ℕ →. Bool m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n n : ℕ h₁ : true ∈ p n h₂ : ∀ (k : ℕ), k < n → (p k).Dom h₃ : m < n ⊢ (p m).Dom [PROOFSTEP] exact h₂ _ h₃ [GOAL] case intro.intro.inr.inl p : ℕ →. Bool m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n n : ℕ h₁ : true ∈ p n h₂ : ∀ (k : ℕ), k < n → (p k).Dom h₃ : m = n ⊢ (p m).Dom [PROOFSTEP] rw [h₃] [GOAL] case intro.intro.inr.inl p : ℕ →. Bool m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n n : ℕ h₁ : true ∈ p n h₂ : ∀ (k : ℕ), k < n → (p k).Dom h₃ : m = n ⊢ (p n).Dom [PROOFSTEP] exact h₁.fst [GOAL] case intro.intro.inr.inr p : ℕ →. Bool m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n n : ℕ h₁ : true ∈ p n h₂ : ∀ (k : ℕ), k < n → (p k).Dom h₃ : n < m ⊢ (p m).Dom [PROOFSTEP] injection mem_unique h₁ (al _ h₃) [GOAL] p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom ⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } [PROOFSTEP] cases e : (p m).get pm [GOAL] case false p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = false ⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } [PROOFSTEP] suffices ∀ᵉ k ≤ m, false ∈ p k from IH _ ⟨rfl, this⟩ fun n h => this _ (le_of_lt_succ h) [GOAL] case false p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = false ⊢ ∀ (k : ℕ), k ≤ m → false ∈ p k [PROOFSTEP] intro n h [GOAL] case false p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = false n : ℕ h : n ≤ m ⊢ false ∈ p n [PROOFSTEP] cases' h.lt_or_eq_dec with h h [GOAL] case false.inl p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = false n : ℕ h✝ : n ≤ m h : n < m ⊢ false ∈ p n [PROOFSTEP] exact al _ h [GOAL] case false.inr p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = false n : ℕ h✝ : n ≤ m h : n = m ⊢ false ∈ p n [PROOFSTEP] rw [h] [GOAL] case false.inr p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = false n : ℕ h✝ : n ≤ m h : n = m ⊢ false ∈ p m [PROOFSTEP] exact ⟨_, e⟩ [GOAL] case true p : ℕ →. Bool H : ∃ n, true ∈ p n ∧ ∀ (k : ℕ), k < n → (p k).Dom m : ℕ IH : (y : ℕ) → Nat.lbp p y m → (∀ (n : ℕ), n < y → false ∈ p n) → { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } al : ∀ (n : ℕ), n < m → false ∈ p n pm : (p m).Dom e : Part.get (p m) pm = true ⊢ { n // true ∈ p n ∧ ∀ (m : ℕ), m < n → false ∈ p m } [PROOFSTEP] exact ⟨m, ⟨_, e⟩, al⟩ [GOAL] p : ℕ →. Bool n : ℕ x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m h₁ : true ∈ p n h₂ : ∀ {m : ℕ}, m < n → false ∈ p m ⊢ n ∈ rfind p [PROOFSTEP] let ⟨m, hm⟩ := dom_iff_mem.1 <| (@rfind_dom p).2 ⟨_, h₁, fun {m} mn => (h₂ mn).fst⟩ [GOAL] p : ℕ →. Bool n : ℕ x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m h₁ : true ∈ p n h₂ : ∀ {m : ℕ}, m < n → false ∈ p m m : ℕ hm : m ∈ rfind p ⊢ n ∈ rfind p [PROOFSTEP] rcases lt_trichotomy m n with (h | h | h) [GOAL] case inl p : ℕ →. Bool n : ℕ x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m h₁ : true ∈ p n h₂ : ∀ {m : ℕ}, m < n → false ∈ p m m : ℕ hm : m ∈ rfind p h : m < n ⊢ n ∈ rfind p [PROOFSTEP] injection mem_unique (h₂ h) (rfind_spec hm) [GOAL] case inr.inl p : ℕ →. Bool n : ℕ x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m h₁ : true ∈ p n h₂ : ∀ {m : ℕ}, m < n → false ∈ p m m : ℕ hm : m ∈ rfind p h : m = n ⊢ n ∈ rfind p [PROOFSTEP] rwa [← h] [GOAL] case inr.inr p : ℕ →. Bool n : ℕ x✝ : true ∈ p n ∧ ∀ {m : ℕ}, m < n → false ∈ p m h₁ : true ∈ p n h₂ : ∀ {m : ℕ}, m < n → false ∈ p m m : ℕ hm : m ∈ rfind p h : n < m ⊢ n ∈ rfind p [PROOFSTEP] injection mem_unique h₁ (rfind_min hm h) [GOAL] p : ℕ → Bool m : ℕ pm : p m = true this : true ∈ ↑p m n : ℕ hn : n ∈ rfind ↑p h : m < n ⊢ False [PROOFSTEP] injection mem_unique this (rfind_min hn h) [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n ⊢ (rfindOpt f).Dom [PROOFSTEP] have h' : ∃ n, (f n).isSome := h.imp fun n => Option.isSome_iff_exists.2 [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true ⊢ (rfindOpt f).Dom [PROOFSTEP] have s := Nat.find_spec h' [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true ⊢ (rfindOpt f).Dom [PROOFSTEP] have fd : (rfind fun n => (f n).isSome).Dom := ⟨Nat.find h', by simpa using s.symm, fun _ _ => trivial⟩ [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true ⊢ true ∈ (fun n => ↑(Option.some (Option.isSome (f n)))) (Nat.find h') [PROOFSTEP] simpa using s.symm [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom ⊢ (rfindOpt f).Dom [PROOFSTEP] refine' ⟨fd, _⟩ [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom ⊢ ((fun b => (fun n => ↑(f n)) (Part.get (rfind fun n => ↑(Option.some (Option.isSome (f n)))) b)) fd).Dom [PROOFSTEP] have := rfind_spec (get_mem fd) [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom this : true ∈ ↑(Option.some (Option.isSome (f (Part.get (rfind fun n => ↑(Option.some (Option.isSome (f n)))) fd)))) ⊢ ((fun b => (fun n => ↑(f n)) (Part.get (rfind fun n => ↑(Option.some (Option.isSome (f n)))) b)) fd).Dom [PROOFSTEP] simp at this ⊢ [GOAL] α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom this : true = Option.isSome (f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) ⊢ Option.isSome (f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) = true [PROOFSTEP] cases' Option.isSome_iff_exists.1 this.symm with a e [GOAL] case intro α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom this : true = Option.isSome (f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) a : α e : f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)) = Option.some a ⊢ Option.isSome (f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) = true [PROOFSTEP] rw [e] [GOAL] case intro α : Type u_1 f : ℕ → Option α h : ∃ n a, a ∈ f n h' : ∃ n, Option.isSome (f n) = true s : Option.isSome (f (Nat.find h')) = true fd : (rfind fun n => ↑(Option.some (Option.isSome (f n)))).Dom this : true = Option.isSome (f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom))) a : α e : f (Part.get (rfind fun n => Part.some (Option.isSome (f n))) (_ : (rfind fun n => Part.some (Option.isSome (f n))).Dom)) = Option.some a ⊢ Option.isSome (Option.some a) = true [PROOFSTEP] trivial [GOAL] α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n ⊢ a ∈ rfindOpt f [PROOFSTEP] have h' := rfindOpt_dom.2 ⟨_, _, h⟩ [GOAL] α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n h' : (rfindOpt f).Dom ⊢ a ∈ rfindOpt f [PROOFSTEP] cases' rfindOpt_spec ⟨h', rfl⟩ with k hk [GOAL] case intro α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n h' : (rfindOpt f).Dom k : ℕ hk : Part.get (rfindOpt f) h' ∈ f k ⊢ a ∈ rfindOpt f [PROOFSTEP] have := (H (le_max_left _ _) h).symm.trans (H (le_max_right _ _) hk) [GOAL] case intro α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n h' : (rfindOpt f).Dom k : ℕ hk : Part.get (rfindOpt f) h' ∈ f k this : Option.some a = Option.some (Part.get (rfindOpt f) h') ⊢ a ∈ rfindOpt f [PROOFSTEP] simp at this [GOAL] case intro α : Type u_1 f : ℕ → Option α H : ∀ {a : α} {m n : ℕ}, m ≤ n → a ∈ f m → a ∈ f n a : α x✝ : ∃ n, a ∈ f n n : ℕ h : a ∈ f n h' : (rfindOpt f).Dom k : ℕ hk : Part.get (rfindOpt f) h' ∈ f k this : a = Part.get (rfindOpt f) h' ⊢ a ∈ rfindOpt f [PROOFSTEP] simp [this, get_mem] [GOAL] f : ℕ → ℕ hf : Nat.Primrec f ⊢ Partrec ↑f [PROOFSTEP] induction hf with | zero => exact zero | succ => exact succ | left => exact left | right => exact right | pair _ _ pf pg => refine' (pf.pair pg).of_eq_tot fun n => _ simp [Seq.seq] | comp _ _ pf pg => refine' (pf.comp pg).of_eq_tot fun n => _ simp | prec _ _ pf pg => refine' (pf.prec pg).of_eq_tot fun n => _ simp only [unpaired, PFun.coe_val, bind_eq_bind] induction n.unpair.2 with | zero => simp | succ m IH => simp only [mem_bind_iff, mem_some_iff] exact ⟨_, IH, rfl⟩ [GOAL] f : ℕ → ℕ hf : Nat.Primrec f ⊢ Partrec ↑f [PROOFSTEP] induction hf with | zero => exact zero | succ => exact succ | left => exact left | right => exact right | pair _ _ pf pg => refine' (pf.pair pg).of_eq_tot fun n => _ simp [Seq.seq] | comp _ _ pf pg => refine' (pf.comp pg).of_eq_tot fun n => _ simp | prec _ _ pf pg => refine' (pf.prec pg).of_eq_tot fun n => _ simp only [unpaired, PFun.coe_val, bind_eq_bind] induction n.unpair.2 with | zero => simp | succ m IH => simp only [mem_bind_iff, mem_some_iff] exact ⟨_, IH, rfl⟩ [GOAL] case zero f : ℕ → ℕ ⊢ Partrec ↑fun x => 0 [PROOFSTEP] | zero => exact zero [GOAL] case zero f : ℕ → ℕ ⊢ Partrec ↑fun x => 0 [PROOFSTEP] exact zero [GOAL] case succ f : ℕ → ℕ ⊢ Partrec ↑Nat.succ [PROOFSTEP] | succ => exact succ [GOAL] case succ f : ℕ → ℕ ⊢ Partrec ↑Nat.succ [PROOFSTEP] exact succ [GOAL] case left f : ℕ → ℕ ⊢ Partrec ↑fun n => (unpair n).fst [PROOFSTEP] | left => exact left [GOAL] case left f : ℕ → ℕ ⊢ Partrec ↑fun n => (unpair n).fst [PROOFSTEP] exact left [GOAL] case right f : ℕ → ℕ ⊢ Partrec ↑fun n => (unpair n).snd [PROOFSTEP] | right => exact right [GOAL] case right f : ℕ → ℕ ⊢ Partrec ↑fun n => (unpair n).snd [PROOFSTEP] exact right [GOAL] case pair f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ ⊢ Partrec ↑fun n => Nat.pair (f✝ n) (g✝ n) [PROOFSTEP] | pair _ _ pf pg => refine' (pf.pair pg).of_eq_tot fun n => _ simp [Seq.seq] [GOAL] case pair f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ ⊢ Partrec ↑fun n => Nat.pair (f✝ n) (g✝ n) [PROOFSTEP] refine' (pf.pair pg).of_eq_tot fun n => _ [GOAL] case pair f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n : ℕ ⊢ Nat.pair (f✝ n) (g✝ n) ∈ Seq.seq (Nat.pair <$> ↑f✝ n) fun x => ↑g✝ n [PROOFSTEP] simp [Seq.seq] [GOAL] case comp f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ ⊢ Partrec ↑fun n => f✝ (g✝ n) [PROOFSTEP] | comp _ _ pf pg => refine' (pf.comp pg).of_eq_tot fun n => _ simp [GOAL] case comp f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ ⊢ Partrec ↑fun n => f✝ (g✝ n) [PROOFSTEP] refine' (pf.comp pg).of_eq_tot fun n => _ [GOAL] case comp f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n : ℕ ⊢ f✝ (g✝ n) ∈ ↑g✝ n >>= ↑f✝ [PROOFSTEP] simp [GOAL] case prec f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ ⊢ Partrec ↑(unpaired fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (Nat.pair z (Nat.pair y IH))) n) [PROOFSTEP] | prec _ _ pf pg => refine' (pf.prec pg).of_eq_tot fun n => _ simp only [unpaired, PFun.coe_val, bind_eq_bind] induction n.unpair.2 with | zero => simp | succ m IH => simp only [mem_bind_iff, mem_some_iff] exact ⟨_, IH, rfl⟩ [GOAL] case prec f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ ⊢ Partrec ↑(unpaired fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (Nat.pair z (Nat.pair y IH))) n) [PROOFSTEP] refine' (pf.prec pg).of_eq_tot fun n => _ [GOAL] case prec f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n : ℕ ⊢ unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (Nat.pair z (Nat.pair y IH))) n) n ∈ unpaired (fun a n => Nat.rec (↑f✝ a) (fun y IH => do let i ← IH ↑g✝ (Nat.pair a (Nat.pair y i))) n) n [PROOFSTEP] simp only [unpaired, PFun.coe_val, bind_eq_bind] [GOAL] case prec f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n : ℕ ⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) (unpair n).snd ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) (unpair n).snd [PROOFSTEP] induction n.unpair.2 with | zero => simp | succ m IH => simp only [mem_bind_iff, mem_some_iff] exact ⟨_, IH, rfl⟩ [GOAL] case prec f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n x✝ : ℕ ⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) x✝ ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) x✝ [PROOFSTEP] induction n.unpair.2 with | zero => simp | succ m IH => simp only [mem_bind_iff, mem_some_iff] exact ⟨_, IH, rfl⟩ [GOAL] case prec.zero f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n : ℕ ⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) Nat.zero ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) Nat.zero [PROOFSTEP] | zero => simp [GOAL] case prec.zero f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n : ℕ ⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) Nat.zero ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) Nat.zero [PROOFSTEP] simp [GOAL] case prec.succ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n m : ℕ IH : Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m ⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) (Nat.succ m) ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) (Nat.succ m) [PROOFSTEP] | succ m IH => simp only [mem_bind_iff, mem_some_iff] exact ⟨_, IH, rfl⟩ [GOAL] case prec.succ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n m : ℕ IH : Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m ⊢ Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) (Nat.succ m) ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) (Nat.succ m) [PROOFSTEP] simp only [mem_bind_iff, mem_some_iff] [GOAL] case prec.succ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ pf : Partrec ↑f✝ pg : Partrec ↑g✝ n m : ℕ IH : Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m ⊢ ∃ a, a ∈ Nat.rec (Part.some (f✝ (unpair n).fst)) (fun y IH => Part.bind IH fun i => Part.some (g✝ (Nat.pair (unpair n).fst (Nat.pair y i)))) m ∧ g✝ (Nat.pair (unpair n).fst (Nat.pair m (Nat.rec (f✝ (unpair n).fst) (fun y IH => g✝ (Nat.pair (unpair n).fst (Nat.pair y IH))) m))) = g✝ (Nat.pair (unpair n).fst (Nat.pair m a)) [PROOFSTEP] exact ⟨_, IH, rfl⟩ [GOAL] n a : ℕ x✝ : a ∈ Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> (↑fun x => 1) (Nat.pair n n_1) h : (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> (↑fun x => 1) (Nat.pair n n_1)).Dom h✝ : Part.get (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> (↑fun x => 1) (Nat.pair n n_1)) h = a ⊢ False [PROOFSTEP] simp at h [GOAL] f g h : ℕ →. ℕ hf : Partrec f hg : Partrec g hh : Partrec h a s : ℕ ⊢ (s ∈ (Seq.seq (Nat.pair <$> Part.some a) fun x => f a) >>= unpaired fun a n => Nat.rec (g a) (fun y IH => do let i ← IH h (Nat.pair a (Nat.pair y i))) n) ↔ s ∈ Part.bind (f a) fun n => Nat.rec (g a) (fun y IH => do let i ← IH h (Nat.pair a (Nat.pair y i))) n [PROOFSTEP] simp [Seq.seq] [GOAL] this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 n : ℕ ⊢ (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> ↑(unpaired fun n m => if n = Nat.succ m then 0 else 1) (Nat.pair n n_1)) = ↑(Nat.ppred n) [PROOFSTEP] cases n [GOAL] case zero this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 ⊢ (Nat.rfind fun n => (fun m => decide (m = 0)) <$> ↑(unpaired fun n m => if n = Nat.succ m then 0 else 1) (Nat.pair Nat.zero n)) = ↑(Nat.ppred Nat.zero) [PROOFSTEP] simp [GOAL] case succ this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 n✝ : ℕ ⊢ (Nat.rfind fun n => (fun m => decide (m = 0)) <$> ↑(unpaired fun n m => if n = Nat.succ m then 0 else 1) (Nat.pair (Nat.succ n✝) n)) = ↑(Nat.ppred (Nat.succ n✝)) [PROOFSTEP] simp [GOAL] case zero this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 ⊢ (Nat.rfind fun n => Part.some false) = Part.none [PROOFSTEP] exact eq_none_iff.2 fun a ⟨⟨m, h, _⟩, _⟩ => by simp [show 0 ≠ m.succ by intro h; injection h] at h [GOAL] this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 a : ℕ x✝ : a ∈ Nat.rfind fun n => Part.some false m : ℕ h : true ∈ (fun n => Part.some false) m right✝ : ∀ (k : ℕ), k < m → ((fun n => Part.some false) k).Dom h✝ : Part.get (Nat.rfind fun n => Part.some false) (_ : ∃ n, true ∈ (fun n => Part.some false) n ∧ ∀ (k : ℕ), k < n → ((fun n => Part.some false) k).Dom) = a ⊢ False [PROOFSTEP] simp [show 0 ≠ m.succ by intro h; injection h] at h [GOAL] this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 a : ℕ x✝ : a ∈ Nat.rfind fun n => Part.some false m : ℕ h : true ∈ (fun n => Part.some false) m right✝ : ∀ (k : ℕ), k < m → ((fun n => Part.some false) k).Dom h✝ : Part.get (Nat.rfind fun n => Part.some false) (_ : ∃ n, true ∈ (fun n => Part.some false) n ∧ ∀ (k : ℕ), k < n → ((fun n => Part.some false) k).Dom) = a ⊢ 0 ≠ Nat.succ m [PROOFSTEP] intro h [GOAL] this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 a : ℕ x✝ : a ∈ Nat.rfind fun n => Part.some false m : ℕ h✝¹ : true ∈ (fun n => Part.some false) m right✝ : ∀ (k : ℕ), k < m → ((fun n => Part.some false) k).Dom h✝ : Part.get (Nat.rfind fun n => Part.some false) (_ : ∃ n, true ∈ (fun n => Part.some false) n ∧ ∀ (k : ℕ), k < n → ((fun n => Part.some false) k).Dom) = a h : 0 = Nat.succ m ⊢ False [PROOFSTEP] injection h [GOAL] case succ this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 n✝ : ℕ ⊢ (Nat.rfind fun n => Part.some (decide (¬n✝ = n → False))) = Part.some n✝ [PROOFSTEP] refine' eq_some_iff.2 _ [GOAL] case succ this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 n✝ : ℕ ⊢ n✝ ∈ Nat.rfind fun n => Part.some (decide (¬n✝ = n → False)) [PROOFSTEP] simp [GOAL] case succ this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 n✝ : ℕ ⊢ ∀ {m : ℕ}, m < n✝ → ¬(¬n✝ = m → False) [PROOFSTEP] intro m h [GOAL] case succ this : Primrec₂ fun n m => if n = Nat.succ m then 0 else 1 n✝ m : ℕ h : m < n✝ ⊢ ¬(¬n✝ = m → False) [PROOFSTEP] simp [ne_of_gt h] [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → σ hf : Primrec f n : ℕ ⊢ (do let n ← (↑fun n => encode (Option.map f (decode n))) n ↑(Nat.ppred n)) = Part.bind ↑(decode n) fun a => map encode (↑f a) [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → σ hf : Primrec f n : ℕ ⊢ ↑(Nat.ppred (encode (Option.map f (decode n)))) = Part.bind ↑(decode n) fun a => Part.some (encode (f a)) [PROOFSTEP] cases decode (α := α) n [GOAL] case none α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → σ hf : Primrec f n : ℕ ⊢ ↑(Nat.ppred (encode (Option.map f Option.none))) = Part.bind ↑Option.none fun a => Part.some (encode (f a)) [PROOFSTEP] simp [GOAL] case some α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ f : α → σ hf : Primrec f n : ℕ val✝ : α ⊢ ↑(Nat.ppred (encode (Option.map f (Option.some val✝)))) = Part.bind ↑(Option.some val✝) fun a => Part.some (encode (f a)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β hf : Computable f n : ℕ ⊢ (do let n ← Part.bind ↑(decode n) fun a => map encode (↑f a) ↑(Nat.ppred n)) = Part.bind ↑(decode n) fun a => map encode ((fun a => ↑(f a)) a) [PROOFSTEP] cases' decode (α := α) n with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β hf : Computable f n : ℕ ⊢ (do let n ← Part.bind ↑Option.none fun a => map encode (↑f a) ↑(Nat.ppred n)) = Part.bind ↑Option.none fun a => map encode ((fun a => ↑(f a)) a) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β hf : Computable f n : ℕ a : α ⊢ (do let n ← Part.bind ↑(Option.some a) fun a => map encode (↑f a) ↑(Nat.ppred n)) = Part.bind ↑(Option.some a) fun a => map encode ((fun a => ↑(f a)) a) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β hf : Computable f n : ℕ a : α ⊢ ↑(Nat.ppred (encode (f a))) = map encode ↑(f a) [PROOFSTEP] cases' f a with b [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β hf : Computable f n : ℕ a : α ⊢ ↑(Nat.ppred (encode Option.none)) = map encode ↑Option.none [PROOFSTEP] simp [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β hf : Computable f n : ℕ a : α b : β ⊢ ↑(Nat.ppred (encode (Option.some b))) = map encode ↑(Option.some b) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β g : α → γ hf : Computable f hg : Computable g n : ℕ ⊢ (Seq.seq (Nat.pair <$> Part.bind ↑(decode n) fun a => map encode (↑f a)) fun x => Part.bind ↑(decode n) fun a => map encode (↑g a)) = Part.bind ↑(decode n) fun a => map encode ((↑fun a => (f a, g a)) a) [PROOFSTEP] cases decode (α := α) n [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β g : α → γ hf : Computable f hg : Computable g n : ℕ ⊢ (Seq.seq (Nat.pair <$> Part.bind ↑Option.none fun a => map encode (↑f a)) fun x => Part.bind ↑Option.none fun a => map encode (↑g a)) = Part.bind ↑Option.none fun a => map encode ((↑fun a => (f a, g a)) a) [PROOFSTEP] simp [Seq.seq] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β g : α → γ hf : Computable f hg : Computable g n : ℕ val✝ : α ⊢ (Seq.seq (Nat.pair <$> Part.bind ↑(Option.some val✝) fun a => map encode (↑f a)) fun x => Part.bind ↑(Option.some val✝) fun a => map encode (↑g a)) = Part.bind ↑(Option.some val✝) fun a => map encode ((↑fun a => (f a, g a)) a) [PROOFSTEP] simp [Seq.seq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Part.none = Part.bind ↑(decode n) fun a => map encode ((fun x => Part.none) a) [PROOFSTEP] cases decode (α := α) n [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Part.none = Part.bind ↑Option.none fun a => map encode ((fun x => Part.none) a) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ val✝ : α ⊢ Part.none = Part.bind ↑(Option.some val✝) fun a => map encode ((fun x => Part.none) a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. β g : α → β →. σ hf : Partrec f hg : Partrec₂ g n : ℕ ⊢ (do let n ← Seq.seq (Nat.pair <$> Part.some n) fun x => Part.bind ↑(decode n) fun a => map encode (f a) Part.bind ↑(decode n) fun a => map encode ((fun p => g p.fst p.snd) a)) = Part.bind ↑(decode n) fun a => map encode ((fun a => Part.bind (f a) (g a)) a) [PROOFSTEP] simp [Seq.seq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. β g : α → β →. σ hf : Partrec f hg : Partrec₂ g n : ℕ ⊢ (Part.bind (Part.bind ↑(decode n) fun y => map (Nat.pair n) (map encode (f y))) fun n => Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a => map encode (g a.fst a.snd)) = Part.bind ↑(decode n) fun a => Part.bind (f a) fun y => map encode (g a y) [PROOFSTEP] cases' e : decode (α := α) n with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. β g : α → β →. σ hf : Partrec f hg : Partrec₂ g n : ℕ e : decode n = Option.none ⊢ (Part.bind (Part.bind ↑Option.none fun y => map (Nat.pair n) (map encode (f y))) fun n => Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a => map encode (g a.fst a.snd)) = Part.bind ↑Option.none fun a => Part.bind (f a) fun y => map encode (g a y) [PROOFSTEP] simp [e, encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. β g : α → β →. σ hf : Partrec f hg : Partrec₂ g n : ℕ a : α e : decode n = Option.some a ⊢ (Part.bind (Part.bind ↑(Option.some a) fun y => map (Nat.pair n) (map encode (f y))) fun n => Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a => map encode (g a.fst a.snd)) = Part.bind ↑(Option.some a) fun a => Part.bind (f a) fun y => map encode (g a y) [PROOFSTEP] simp [e, encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. β g : α → β → σ hf : Partrec f hg : Computable₂ g ⊢ Partrec fun a => Part.map (g a) (f a) [PROOFSTEP] simpa [bind_some_eq_map] using @Partrec.bind _ _ _ _ _ _ _ (fun a => Part.some ∘ (g a)) hf hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ ⊢ (Part.bind (Part.bind ↑(decode n) fun a => Part.map encode (↑f a)) fun n_1 => Nat.rec (Part.bind ↑(decode n) fun a => Part.map encode (g a)) (fun y IH => do let i ← IH Part.bind ↑(decode (Nat.pair n (Nat.pair y i))) fun a => Part.map encode ((fun p => h p.fst p.snd) a)) n_1) = Part.bind ↑(decode n) fun a => Part.map encode ((fun a => Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) a) [PROOFSTEP] cases' e : decode (α := α) n with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ e : decode n = Option.none ⊢ (Part.bind (Part.bind ↑Option.none fun a => Part.map encode (↑f a)) fun n_1 => Nat.rec (Part.bind ↑Option.none fun a => Part.map encode (g a)) (fun y IH => do let i ← IH Part.bind ↑(decode (Nat.pair n (Nat.pair y i))) fun a => Part.map encode ((fun p => h p.fst p.snd) a)) n_1) = Part.bind ↑Option.none fun a => Part.map encode ((fun a => Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) a) [PROOFSTEP] simp [e] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a ⊢ (Part.bind (Part.bind ↑(Option.some a) fun a => Part.map encode (↑f a)) fun n_1 => Nat.rec (Part.bind ↑(Option.some a) fun a => Part.map encode (g a)) (fun y IH => do let i ← IH Part.bind ↑(decode (Nat.pair n (Nat.pair y i))) fun a => Part.map encode ((fun p => h p.fst p.snd) a)) n_1) = Part.bind ↑(Option.some a) fun a => Part.map encode ((fun a => Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) a) [PROOFSTEP] simp [e] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a ⊢ Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) (f a) = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (f a)) [PROOFSTEP] induction' f a with m IH [GOAL] case some.zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a ⊢ Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) Nat.zero = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) Nat.zero) [PROOFSTEP] simp [GOAL] case some.succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a m : ℕ IH : Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) m = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) ⊢ Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) (Nat.succ m) = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) (Nat.succ m)) [PROOFSTEP] simp [GOAL] case some.succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a m : ℕ IH : Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) m = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) ⊢ (Part.bind (Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) m) fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode i)) fun a => Part.map encode (h a.fst a.snd)) = Part.bind (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) fun y => Part.map encode (h a (m, y)) [PROOFSTEP] rw [IH, Part.bind_map] [GOAL] case some.succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a m : ℕ IH : Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) m = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) ⊢ (Part.bind (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) fun y => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode (encode y))) fun a => Part.map encode (h a.fst a.snd)) = Part.bind (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) fun y => Part.map encode (h a (m, y)) [PROOFSTEP] congr [GOAL] case some.succ.e_g α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a m : ℕ IH : Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) m = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) ⊢ (fun y => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode (encode y))) fun a => Part.map encode (h a.fst a.snd)) = fun y => Part.map encode (h a (m, y)) [PROOFSTEP] funext s [GOAL] case some.succ.e_g.h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α →. σ h : α → ℕ × σ →. σ hf : Computable f hg : Partrec g hh : Partrec₂ h n : ℕ a : α e : decode n = Option.some a m : ℕ IH : Nat.rec (Part.map encode (g a)) (fun y IH => Part.bind IH fun i => Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk y) (decode i)) fun a => Part.map encode (h a.fst a.snd)) m = Part.map encode (Nat.rec (g a) (fun y IH => Part.bind IH fun i => h a (y, i)) m) s : σ ⊢ (Part.bind ↑(Option.map (Prod.mk a ∘ Prod.mk m) (decode (encode s))) fun a => Part.map encode (h a.fst a.snd)) = Part.map encode (h a (m, s)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : β →. σ g : α → β hf : Partrec f hg : Computable g n : ℕ ⊢ (do let n ← Part.bind ↑(decode n) fun a => Part.map encode (↑g a) Part.bind ↑(decode n) fun a => Part.map encode (f a)) = Part.bind ↑(decode n) fun a => Part.map encode ((fun a => f (g a)) a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : β →. σ g : α → β hf : Partrec f hg : Computable g n : ℕ ⊢ (Part.bind (Part.bind ↑(decode n) fun a => Part.some (encode (g a))) fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a)) = Part.bind ↑(decode n) fun a => Part.map encode (f (g a)) [PROOFSTEP] cases' e : decode (α := α) n with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : β →. σ g : α → β hf : Partrec f hg : Computable g n : ℕ e : decode n = Option.none ⊢ (Part.bind (Part.bind ↑Option.none fun a => Part.some (encode (g a))) fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a)) = Part.bind ↑Option.none fun a => Part.map encode (f (g a)) [PROOFSTEP] simp [e, encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : β →. σ g : α → β hf : Partrec f hg : Computable g n : ℕ a : α e : decode n = Option.some a ⊢ (Part.bind (Part.bind ↑(Option.some a) fun a => Part.some (encode (g a))) fun n => Part.bind ↑(decode n) fun a => Part.map encode (f a)) = Part.bind ↑(Option.some a) fun a => Part.map encode (f (g a)) [PROOFSTEP] simp [e, encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : ℕ →. ℕ ⊢ Partrec f ↔ Nat.Partrec f [PROOFSTEP] simp [Partrec, map_id'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : ℕ → ℕ →. α h : Partrec (Nat.unpaired f) ⊢ Partrec₂ f [PROOFSTEP] simpa using Partrec.comp (g := fun p : ℕ × ℕ => (p.1, p.2)) h Primrec₂.pair.to_comp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n : ℕ ⊢ (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> Part.bind ↑(decode (Nat.pair n n_1)) fun a => Part.map encode ((fun a => Part.map (fun b => bif (a, b).snd then 0 else 1) (p a.fst a.snd)) a)) = Part.bind ↑(decode n) fun a => Part.map encode ((fun a => Nat.rfind (p a)) a) [PROOFSTEP] cases' e : decode (α := α) n with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n : ℕ e : decode n = Option.none ⊢ (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> Part.bind ↑(decode (Nat.pair n n_1)) fun a => Part.map encode ((fun a => Part.map (fun b => bif (a, b).snd then 0 else 1) (p a.fst a.snd)) a)) = Part.bind ↑Option.none fun a => Part.map encode ((fun a => Nat.rfind (p a)) a) [PROOFSTEP] simp [e, Nat.rfind_zero_none, map_id'] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n : ℕ a : α e : decode n = Option.some a ⊢ (Nat.rfind fun n_1 => (fun m => decide (m = 0)) <$> Part.bind ↑(decode (Nat.pair n n_1)) fun a => Part.map encode ((fun a => Part.map (fun b => bif (a, b).snd then 0 else 1) (p a.fst a.snd)) a)) = Part.bind ↑(Option.some a) fun a => Part.map encode ((fun a => Nat.rfind (p a)) a) [PROOFSTEP] simp [e, Nat.rfind_zero_none, map_id'] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n : ℕ a : α e : decode n = Option.some a ⊢ (Nat.rfind fun n => Part.map (fun m => decide (m = 0)) (Part.map (fun b => bif b then 0 else 1) (p a n))) = Nat.rfind (p a) [PROOFSTEP] congr [GOAL] case some.e_p α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n : ℕ a : α e : decode n = Option.some a ⊢ (fun n => Part.map (fun m => decide (m = 0)) (Part.map (fun b => bif b then 0 else 1) (p a n))) = p a [PROOFSTEP] funext n [GOAL] case some.e_p.h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n✝ : ℕ a : α e : decode n✝ = Option.some a n : ℕ ⊢ Part.map (fun m => decide (m = 0)) (Part.map (fun b => bif b then 0 else 1) (p a n)) = p a n [PROOFSTEP] simp [Part.map_map, (· ∘ ·)] [GOAL] case some.e_p.h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n✝ : ℕ a : α e : decode n✝ = Option.some a n : ℕ ⊢ Part.map (fun x => decide ((bif x then 0 else 1) = 0)) (p a n) = p a n [PROOFSTEP] refine map_id' (fun b => ?_) _ [GOAL] case some.e_p.h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n✝ : ℕ a : α e : decode n✝ = Option.some a n : ℕ b : Bool ⊢ decide ((bif b then 0 else 1) = 0) = b [PROOFSTEP] cases b [GOAL] case some.e_p.h.false α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n✝ : ℕ a : α e : decode n✝ = Option.some a n : ℕ ⊢ decide ((bif false then 0 else 1) = 0) = false [PROOFSTEP] rfl [GOAL] case some.e_p.h.true α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ p : α → ℕ →. Bool hp : Partrec₂ p n✝ : ℕ a : α e : decode n✝ = Option.some a n : ℕ ⊢ decide ((bif true then 0 else 1) = 0) = true [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α ⊢ Nat.rec (↑g a) (fun y IH => Part.bind IH fun i => h (a, y, i).fst (Nat.pred (f (a, y, i).fst))) (f a) = Nat.casesOn (f a) (Part.some (g a)) (h a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α ⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a (Nat.pred (f a))) (f a) = Nat.rec (Part.some (g a)) (fun n n_ih => h a n) (f a) [PROOFSTEP] cases' f a with n [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α ⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a (Nat.pred Nat.zero)) Nat.zero = Nat.rec (Part.some (g a)) (fun n n_ih => h a n) Nat.zero [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ ⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a (Nat.pred (Nat.succ n))) (Nat.succ n) = Nat.rec (Part.some (g a)) (fun n n_ih => h a n) (Nat.succ n) [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ ⊢ (Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n) = h a n [PROOFSTEP] refine' ext fun b => ⟨fun H => _, fun H => _⟩ [GOAL] case succ.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n ⊢ b ∈ h a n [PROOFSTEP] rcases mem_bind_iff.1 H with ⟨c, _, h₂⟩ [GOAL] case succ.refine'_1.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n c : σ left✝ : c ∈ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n h₂ : b ∈ h a n ⊢ b ∈ h a n [PROOFSTEP] exact h₂ [GOAL] case succ.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ h a n ⊢ b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n [PROOFSTEP] have : ∀ m, (Nat.rec (motive := fun _ => Part σ) (Part.some (g a)) (fun y IH => IH.bind fun _ => h a n) m).Dom := by intro m induction m <;> simp [*, H.fst] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ h a n ⊢ ∀ (m : ℕ), (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) m).Dom [PROOFSTEP] intro m [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ h a n m : ℕ ⊢ (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) m).Dom [PROOFSTEP] induction m [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ h a n ⊢ (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) Nat.zero).Dom [PROOFSTEP] simp [*, H.fst] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ h a n n✝ : ℕ n_ih✝ : (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) n✝).Dom ⊢ (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) (Nat.succ n✝)).Dom [PROOFSTEP] simp [*, H.fst] [GOAL] case succ.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ →. σ hf : Computable f hg : Computable g hh : Partrec₂ h a : α n : ℕ b : σ H : b ∈ h a n this : ∀ (m : ℕ), (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun x => h a n) m).Dom ⊢ b ∈ Part.bind (Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => h a n) n) fun i => h a n [PROOFSTEP] exact ⟨⟨this n, H.fst⟩, H.snd⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ h : Nat.Partrec fun n => Part.bind ↑(decode₂ α n) fun a => Part.map encode (f a) ⊢ Partrec fun a => Part.map encode (f a) [PROOFSTEP] simpa [encodek₂] using (nat_iff.2 h).comp (@Computable.encode α _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin (n + 1) → α →. σ hf : ∀ (i : Fin (n + 1)), Partrec (f i) ⊢ Partrec fun a => Vector.mOfFn fun i => f i a [PROOFSTEP] simp [Vector.mOfFn] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin (n + 1) → α →. σ hf : ∀ (i : Fin (n + 1)), Partrec (f i) ⊢ Partrec fun a => Part.bind (f 0 a) fun a_1 => Part.bind (Vector.mOfFn fun i => f (Fin.succ i) a) fun v => Part.some (a_1 ::ᵥ v) [PROOFSTEP] exact (hf 0).bind (Partrec.bind ((vector_mOfFn fun i => hf i.succ).comp fst) (Primrec.vector_cons.to_comp.comp (snd.comp fst) snd)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ ⊢ (Part.bind ↑(decode n) fun a => map encode ((fun a => Part.bind (do let n ← (↑fun n => encode (decode n)) a.snd ↑(Nat.ppred n)) ↑fun b => (fun a n => Option.bind (decode n) (f a)) (a, b).fst.fst (a, b).fst.snd) a)) = Part.bind ↑(decode n) fun a => map encode ((↑fun p => f p.fst p.snd) a) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ ⊢ (Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.some (a, (Nat.unpair n).snd)) fun a => Part.bind ↑(Nat.ppred (encode (decode a.snd))) fun y => Part.some (encode (Option.bind (decode a.snd) (f a.fst)))) = Part.bind ↑(Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a => Part.some (encode (f a.fst a.snd)) [PROOFSTEP] cases decode (α := α) n.unpair.1 [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ ⊢ (Part.bind ↑(Option.bind Option.none fun a => Option.some (a, (Nat.unpair n).snd)) fun a => Part.bind ↑(Nat.ppred (encode (decode a.snd))) fun y => Part.some (encode (Option.bind (decode a.snd) (f a.fst)))) = Part.bind ↑(Option.bind Option.none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a => Part.some (encode (f a.fst a.snd)) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ val✝ : α ⊢ (Part.bind ↑(Option.bind (Option.some val✝) fun a => Option.some (a, (Nat.unpair n).snd)) fun a => Part.bind ↑(Nat.ppred (encode (decode a.snd))) fun y => Part.some (encode (Option.bind (decode a.snd) (f a.fst)))) = Part.bind ↑(Option.bind (Option.some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) fun a => Part.some (encode (f a.fst a.snd)) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ val✝ : α ⊢ (Part.bind ↑(Nat.ppred (encode (decode (Nat.unpair n).snd))) fun y => Part.some (encode (Option.bind (decode (Nat.unpair n).snd) (f val✝)))) = Part.bind ↑(Option.map (Prod.mk val✝) (decode (Nat.unpair n).snd)) fun a => Part.some (encode (f a.fst a.snd)) [PROOFSTEP] cases decode (α := β) n.unpair.2 [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ val✝ : α ⊢ (Part.bind ↑(Nat.ppred (encode Option.none)) fun y => Part.some (encode (Option.bind Option.none (f val✝)))) = Part.bind ↑(Option.map (Prod.mk val✝) Option.none) fun a => Part.some (encode (f a.fst a.snd)) [PROOFSTEP] simp [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ fun a n => Option.bind (decode n) (f a) n : ℕ val✝¹ : α val✝ : β ⊢ (Part.bind ↑(Nat.ppred (encode (Option.some val✝))) fun y => Part.some (encode (Option.bind (Option.some val✝) (f val✝¹)))) = Part.bind ↑(Option.map (Prod.mk val✝¹) (Option.some val✝)) fun a => Part.some (encode (f a.fst a.snd)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ f ⊢ Computable₂ fun a n => Option.bind (decode n) (f a) [PROOFSTEP] have : Partrec fun a : α × ℕ => (encode (decode (α := β) a.2)).casesOn (some Option.none) fun n => Part.map (f a.1) (decode (α := β) n) := Partrec.nat_casesOn_right (h := fun (a : α × ℕ) (n : ℕ) ↦ map (fun b ↦ f a.1 b) (Part.ofOption (decode n))) (Primrec.encdec.to_comp.comp snd) (const Option.none) ((ofOption (Computable.decode.comp snd)).map (hf.comp (fst.comp <| fst.comp fst) snd).to₂) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ f this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n) ⊢ Computable₂ fun a n => Option.bind (decode n) (f a) [PROOFSTEP] refine' this.of_eq fun a => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ f this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n) a : α × ℕ ⊢ (Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n)) = (↑fun p => (fun a n => Option.bind (decode n) (f a)) p.fst p.snd) a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ f this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n) a : α × ℕ ⊢ Nat.rec (Part.some Option.none) (fun n n_ih => map (f a.fst) ↑(decode n)) (encode (decode a.snd)) = Part.some (Option.bind (decode a.snd) (f a.fst)) [PROOFSTEP] cases decode (α := β) a.2 [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ f this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n) a : α × ℕ ⊢ Nat.rec (Part.some Option.none) (fun n n_ih => map (f a.fst) ↑(decode n)) (encode Option.none) = Part.some (Option.bind Option.none (f a.fst)) [PROOFSTEP] simp [encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → Option σ hf : Computable₂ f this : Partrec fun a => Nat.casesOn (encode (decode a.snd)) (Part.some Option.none) fun n => map (f a.fst) ↑(decode n) a : α × ℕ val✝ : β ⊢ Nat.rec (Part.some Option.none) (fun n n_ih => map (f a.fst) ↑(decode n)) (encode (Option.some val✝)) = Part.some (Option.bind (Option.some val✝) (f a.fst)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → σ ⊢ (Computable₂ fun a n => Option.map (f a) (decode n)) ↔ Computable₂ f [PROOFSTEP] convert (bind_decode_iff (f := fun a => Option.some ∘ f a)).trans option_some_iff [GOAL] case h.e'_1.h.e'_7.h.h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β → σ x✝¹ : α x✝ : ℕ ⊢ Option.map (f x✝¹) (decode x✝) = Option.bind (decode x✝) (Option.some ∘ f x✝¹) [PROOFSTEP] apply Option.map_eq_bind [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ × σ → σ hf : Computable f hg : Computable g hh : Computable₂ h a : α ⊢ Nat.rec (↑g a) (fun y IH => Part.bind IH fun i => ↑(h a) (y, i)) (f a) = (↑fun a => Nat.rec (g a) (fun y IH => h a (y, IH)) (f a)) a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ × σ → σ hf : Computable f hg : Computable g hh : Computable₂ h a : α ⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) (f a) = Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) (f a)) [PROOFSTEP] induction f a [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ × σ → σ hf : Computable f hg : Computable g hh : Computable₂ h a : α ⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) Nat.zero = Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) Nat.zero) [PROOFSTEP] simp [*] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ g : α → σ h : α → ℕ × σ → σ hf : Computable f hg : Computable g hh : Computable₂ h a : α n✝ : ℕ n_ih✝ : Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) n✝ = Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) n✝) ⊢ Nat.rec (Part.some (g a)) (fun y IH => Part.bind IH fun i => Part.some (h a (y, i))) (Nat.succ n✝) = Part.some (Nat.rec (g a) (fun y IH => h a (y, IH)) (Nat.succ n✝)) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ c : α → Bool f g : α → σ hc : Computable c hf : Computable f hg : Computable g a : α ⊢ (Nat.casesOn (encode (c a)) (g a) fun b => f (a, b).fst) = bif c a then f a else g a [PROOFSTEP] cases c a [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ c : α → Bool f g : α → σ hc : Computable c hf : Computable f hg : Computable g a : α ⊢ (Nat.casesOn (encode false) (g a) fun b => f (a, b).fst) = bif false then f a else g a [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ c : α → Bool f g : α → σ hc : Computable c hf : Computable f hg : Computable g a : α ⊢ (Nat.casesOn (encode true) (g a) fun b => f (a, b).fst) = bif true then f a else g a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β → σ ho : Computable o hf : Computable f hg : Computable₂ g a : α ⊢ (Nat.casesOn (encode (o a)) (Option.some (f a)) fun n => Option.map (g a) (decode n)) = Option.some (Option.casesOn (o a) (f a) (g a)) [PROOFSTEP] cases o a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β → σ ho : Computable o hf : Computable f hg : Computable₂ g a : α ⊢ (Nat.casesOn (encode Option.none) (Option.some (f a)) fun n => Option.map (g a) (decode n)) = Option.some (Option.casesOn Option.none (f a) (g a)) [PROOFSTEP] simp [encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β → σ ho : Computable o hf : Computable f hg : Computable₂ g a : α val✝ : β ⊢ (Nat.casesOn (encode (Option.some val✝)) (Option.some (f a)) fun n => Option.map (g a) (decode n)) = Option.some (Option.casesOn (Option.some val✝) (f a) (g a)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β → Option σ hf : Computable f hg : Computable₂ g a : α ⊢ Option.casesOn (f a) Option.none (g a) = Option.bind (f a) (g a) [PROOFSTEP] cases f a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β → Option σ hf : Computable f hg : Computable₂ g a : α ⊢ Option.casesOn Option.none Option.none (g a) = Option.bind Option.none (g a) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β → Option σ hf : Computable f hg : Computable₂ g a : α val✝ : β ⊢ Option.casesOn (Option.some val✝) Option.none (g a) = Option.bind (Option.some val✝) (g a) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β → σ hf : Computable f hg : Computable₂ g ⊢ Computable fun a => Option.map (g a) (f a) [PROOFSTEP] convert option_bind hf (option_some.comp₂ hg) [GOAL] case h.e'_5.h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β → σ hf : Computable f hg : Computable₂ g x✝ : α ⊢ Option.map (g x✝) (f x✝) = Option.bind (f x✝) fun b => Option.some (g x✝ b) [PROOFSTEP] apply Option.map_eq_bind [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β hf : Computable f hg : Computable g a : α ⊢ (Option.casesOn (f a) (g a) fun b => b) = Option.getD (f a) (g a) [PROOFSTEP] cases f a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β hf : Computable f hg : Computable g a : α ⊢ (Option.casesOn Option.none (g a) fun b => b) = Option.getD Option.none (g a) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β g : α → β hf : Computable f hg : Computable g a : α val✝ : β ⊢ (Option.casesOn (Option.some val✝) (g a) fun b => b) = Option.getD (Option.some val✝) (g a) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ → σ hf : Computable f hg : Computable₂ g hh : Computable₂ h a : α ⊢ (bif Nat.bodd (encode (f a)) then Option.map (h a) (decode (Nat.div2 (encode (f a)))) else Option.map (g a) (decode (Nat.div2 (encode (f a))))) = Option.some (Sum.casesOn (f a) (g a) (h a)) [PROOFSTEP] cases' f a with b c [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ → σ hf : Computable f hg : Computable₂ g hh : Computable₂ h a : α b : β ⊢ (bif Nat.bodd (encode (Sum.inl b)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inl b)))) else Option.map (g a) (decode (Nat.div2 (encode (Sum.inl b))))) = Option.some (Sum.casesOn (Sum.inl b) (g a) (h a)) [PROOFSTEP] simp [Nat.div2_val] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ → σ hf : Computable f hg : Computable₂ g hh : Computable₂ h a : α c : γ ⊢ (bif Nat.bodd (encode (Sum.inr c)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inr c)))) else Option.map (g a) (decode (Nat.div2 (encode (Sum.inr c))))) = Option.some (Sum.casesOn (Sum.inr c) (g a) (h a)) [PROOFSTEP] simp [Nat.div2_val] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Computable₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n) a : α × ℕ ⊢ Nat.rec (Option.some []) (fun y IH => Option.bind (a, y, IH).snd.snd fun b => Option.map (fun b_1 => (((a, y, IH), b), b_1).fst.snd ++ [(((a, y, IH), b), b_1).snd]) (g ((a, y, IH), b).fst.fst.fst ((a, y, IH), b).snd)) a.snd = Option.some ((fun a n => List.map (f a) (List.range n)) a.fst a.snd) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Computable₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n) a : α × ℕ ⊢ Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b)) a.snd = Option.some (List.map (f a.fst) (List.range a.snd)) [PROOFSTEP] induction' a.2 with n IH [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Computable₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n) a : α × ℕ ⊢ Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b)) Nat.zero = Option.some (List.map (f a.fst) (List.range Nat.zero)) [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Computable₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n) a : α × ℕ n : ℕ IH : Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b)) n = Option.some (List.map (f a.fst) (List.range n)) ⊢ Nat.rec (Option.some []) (fun y IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a.fst b)) (Nat.succ n) = Option.some (List.map (f a.fst) (List.range (Nat.succ n))) [PROOFSTEP] simp [IH, H, List.range_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Computable₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = Option.some (f a n) this : Computable₂ fun a n => List.map (f a) (List.range n) a : α × ℕ ⊢ (fun a b => List.get? (List.map (f (a, b).fst) (List.range (Nat.succ (a, b).snd))) (a, b).snd) a.fst a.snd = Option.some (f a.fst a.snd) [PROOFSTEP] simp [List.get?_range (Nat.lt_succ_self a.2)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin (n + 1) → α → σ hf : ∀ (i : Fin (n + 1)), Computable (f i) ⊢ Computable fun a => List.ofFn fun i => f i a [PROOFSTEP] simp [List.ofFn_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin (n + 1) → α → σ hf : ∀ (i : Fin (n + 1)), Computable (f i) ⊢ Computable fun a => f 0 a :: List.ofFn fun i => f (Fin.succ i) a [PROOFSTEP] exact list_cons.comp (hf 0) (list_ofFn fun i => hf i.succ) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin n → α → σ hf : ∀ (i : Fin n), Computable (f i) a : α ⊢ (Vector.mOfFn fun i => ↑(f i) a) = (↑fun a => Vector.ofFn fun i => f i a) a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ h : Partrec fun a => Part.map Option.some (f a) n : ℕ ⊢ (do let n ← Part.bind ↑(decode n) fun a => Part.map encode ((fun a => Part.map Option.some (f a)) a) ↑(Nat.ppred n)) = Part.bind ↑(decode n) fun a => Part.map encode (f a) [PROOFSTEP] simp [Part.bind_assoc, ← Function.comp_apply (f := Part.some) (g := encode), bind_some_eq_map, -Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β →. σ ho : Computable o hf : Computable f hg : Partrec₂ g this : Partrec fun a => Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a) a : α ⊢ (Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)) = Option.casesOn (o a) (Part.some (f a)) (g a) [PROOFSTEP] cases' o a with b [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β →. σ ho : Computable o hf : Computable f hg : Partrec₂ g this : Partrec fun a => Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a) a : α ⊢ (Nat.casesOn (encode Option.none) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)) = Option.casesOn Option.none (Part.some (f a)) (g a) [PROOFSTEP] simp [encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β →. σ ho : Computable o hf : Computable f hg : Partrec₂ g this : Partrec fun a => Nat.casesOn (encode (o a)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a) a : α b : β ⊢ (Nat.casesOn (encode (Option.some b)) (Part.some (f a)) fun n => Part.bind (↑(decode n)) (g a)) = Option.casesOn (Option.some b) (Part.some (f a)) (g a) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ →. σ hf : Computable f hg : Computable₂ g hh : Partrec₂ h this : Partrec fun a => Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some) (Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c => Part.map Option.some (h a c) a : α ⊢ (Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some) (Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c => Part.map Option.some (h a c)) = Part.map Option.some (Sum.casesOn (f a) (fun b => Part.some (g a b)) (h a)) [PROOFSTEP] cases f a [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ →. σ hf : Computable f hg : Computable₂ g hh : Partrec₂ h this : Partrec fun a => Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some) (Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c => Part.map Option.some (h a c) a : α val✝ : β ⊢ (Option.casesOn (Sum.casesOn (Sum.inl val✝) (fun x => Option.none) Option.some) (Part.some (Sum.casesOn (Sum.inl val✝) (fun b => Option.some (g a b)) fun x => Option.none)) fun c => Part.map Option.some (h a c)) = Part.map Option.some (Sum.casesOn (Sum.inl val✝) (fun b => Part.some (g a b)) (h a)) [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ →. σ hf : Computable f hg : Computable₂ g hh : Partrec₂ h this : Partrec fun a => Option.casesOn (Sum.casesOn (f a) (fun x => Option.none) Option.some) (Part.some (Sum.casesOn (f a) (fun b => Option.some (g a b)) fun x => Option.none)) fun c => Part.map Option.some (h a c) a : α val✝ : γ ⊢ (Option.casesOn (Sum.casesOn (Sum.inr val✝) (fun x => Option.none) Option.some) (Part.some (Sum.casesOn (Sum.inr val✝) (fun b => Option.some (g a b)) fun x => Option.none)) fun c => Part.map Option.some (h a c)) = Part.map Option.some (Sum.casesOn (Sum.inr val✝) (fun b => Part.some (g a b)) (h a)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ → σ hf : Computable f hg : Partrec₂ g hh : Computable₂ h a : α ⊢ Sum.casesOn (Sum.casesOn (f a) (fun b => Sum.inr (a, b).snd) fun b => Sum.inl (a, b).snd) (fun b => Part.some (h a b)) (g a) = Sum.casesOn (f a) (g a) fun c => Part.some (h a c) [PROOFSTEP] cases f a [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ → σ hf : Computable f hg : Partrec₂ g hh : Computable₂ h a : α val✝ : β ⊢ Sum.casesOn (Sum.casesOn (Sum.inl val✝) (fun b => Sum.inr (a, b).snd) fun b => Sum.inl (a, b).snd) (fun b => Part.some (h a b)) (g a) = Sum.casesOn (Sum.inl val✝) (g a) fun c => Part.some (h a c) [PROOFSTEP] simp [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β →. σ h : α → γ → σ hf : Computable f hg : Partrec₂ g hh : Computable₂ h a : α val✝ : γ ⊢ Sum.casesOn (Sum.casesOn (Sum.inr val✝) (fun b => Sum.inr (a, b).snd) fun b => Sum.inl (a, b).snd) (fun b => Part.some (h a b)) (g a) = Sum.casesOn (Sum.inr val✝) (g a) fun c => Part.some (h a c) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ ⊢ let F := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n; (∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n) ↔ b ∈ PFun.fix f a [PROOFSTEP] intro F [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n ⊢ (∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n) ↔ b ∈ PFun.fix f a [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n ⊢ b ∈ PFun.fix f a [PROOFSTEP] rcases h with ⟨n, ⟨_x, h₁⟩, h₂⟩ [GOAL] case refine'_1.intro.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m ⊢ b ∈ PFun.fix f a [PROOFSTEP] have : ∀ (m a') (_ : Sum.inr a' ∈ F a m) (_ : b ∈ PFun.fix f a'), b ∈ PFun.fix f a := by intro m a' am ba induction' m with m IH generalizing a' <;> simp at am · rwa [← am] rcases am with ⟨a₂, am₂, fa₂⟩ exact IH _ am₂ (PFun.mem_fix_iff.2 (Or.inr ⟨_, fa₂, ba⟩)) [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m ⊢ ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a [PROOFSTEP] intro m a' am ba [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m m : ℕ a' : α am : Sum.inr a' ∈ F a m ba : b ∈ PFun.fix f a' ⊢ b ∈ PFun.fix f a [PROOFSTEP] induction' m with m IH generalizing a' [GOAL] case zero α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m m : ℕ a'✝ : α am✝ : Sum.inr a'✝ ∈ F a m ba✝ : b ∈ PFun.fix f a'✝ a' : α am : Sum.inr a' ∈ F a Nat.zero ba : b ∈ PFun.fix f a' ⊢ b ∈ PFun.fix f a [PROOFSTEP] simp at am [GOAL] case succ α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m m✝ : ℕ a'✝ : α am✝ : Sum.inr a'✝ ∈ F a m✝ ba✝ : b ∈ PFun.fix f a'✝ m : ℕ IH : ∀ (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a a' : α am : Sum.inr a' ∈ F a (Nat.succ m) ba : b ∈ PFun.fix f a' ⊢ b ∈ PFun.fix f a [PROOFSTEP] simp at am [GOAL] case zero α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m m : ℕ a'✝ : α am✝ : Sum.inr a'✝ ∈ F a m ba✝ : b ∈ PFun.fix f a'✝ a' : α ba : b ∈ PFun.fix f a' am : a' = a ⊢ b ∈ PFun.fix f a [PROOFSTEP] rwa [← am] [GOAL] case succ α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m m✝ : ℕ a'✝ : α am✝ : Sum.inr a'✝ ∈ F a m✝ ba✝ : b ∈ PFun.fix f a'✝ m : ℕ IH : ∀ (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a a' : α ba : b ∈ PFun.fix f a' am : ∃ b, Sum.inr b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) m ∧ Sum.inr a' ∈ f b ⊢ b ∈ PFun.fix f a [PROOFSTEP] rcases am with ⟨a₂, am₂, fa₂⟩ [GOAL] case succ.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m m✝ : ℕ a'✝ : α am : Sum.inr a'✝ ∈ F a m✝ ba✝ : b ∈ PFun.fix f a'✝ m : ℕ IH : ∀ (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a a' : α ba : b ∈ PFun.fix f a' a₂ : α am₂ : Sum.inr a₂ ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) m fa₂ : Sum.inr a' ∈ f a₂ ⊢ b ∈ PFun.fix f a [PROOFSTEP] exact IH _ am₂ (PFun.mem_fix_iff.2 (Or.inr ⟨_, fa₂, ba⟩)) [GOAL] case refine'_1.intro.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n n : ℕ h₂ : Sum.inl b ∈ F a n _x : ∃ b', Sum.inl b' ∈ F a n h₁ : ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a ⊢ b ∈ PFun.fix f a [PROOFSTEP] cases n [GOAL] case refine'_1.intro.intro.intro.zero α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a h₂ : Sum.inl b ∈ F a Nat.zero _x : ∃ b', Sum.inl b' ∈ F a Nat.zero h₁ : ∀ {m : ℕ}, m < Nat.zero → ∃ b, Sum.inr b ∈ F a m ⊢ b ∈ PFun.fix f a [PROOFSTEP] simp at h₂ [GOAL] case refine'_1.intro.intro.intro.succ α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a n✝ : ℕ h₂ : Sum.inl b ∈ F a (Nat.succ n✝) _x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝) h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m ⊢ b ∈ PFun.fix f a [PROOFSTEP] simp at h₂ [GOAL] case refine'_1.intro.intro.intro.succ α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a n✝ : ℕ _x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝) h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m h₂ : Sum.inl b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ ∨ ∃ b_1, Sum.inr b_1 ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ ∧ Sum.inl b ∈ f b_1 ⊢ b ∈ PFun.fix f a [PROOFSTEP] rcases h₂ with (h₂ | ⟨a', am', fa'⟩) [GOAL] case refine'_1.intro.intro.intro.succ.inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a n✝ : ℕ _x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝) h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m h₂ : Sum.inl b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ ⊢ b ∈ PFun.fix f a [PROOFSTEP] cases' h₁ (Nat.lt_succ_self _) with a' h [GOAL] case refine'_1.intro.intro.intro.succ.inl.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a n✝ : ℕ _x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝) h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m h₂ : Sum.inl b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ a' : α h : Sum.inr a' ∈ F a n✝ ⊢ b ∈ PFun.fix f a [PROOFSTEP] injection mem_unique h h₂ [GOAL] case refine'_1.intro.intro.intro.succ.inr.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n this : ∀ (m : ℕ) (a' : α), Sum.inr a' ∈ F a m → b ∈ PFun.fix f a' → b ∈ PFun.fix f a n✝ : ℕ _x : ∃ b', Sum.inl b' ∈ F a (Nat.succ n✝) h₁ : ∀ {m : ℕ}, m < Nat.succ n✝ → ∃ b, Sum.inr b ∈ F a m a' : α am' : Sum.inr a' ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) n✝ fa' : Sum.inl b ∈ f a' ⊢ b ∈ PFun.fix f a [PROOFSTEP] exact this _ _ am' (PFun.mem_fix_iff.2 (Or.inl fa')) [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a ⊢ ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n [PROOFSTEP] suffices ∀ (a') (_ : b ∈ PFun.fix f a') (k) (_ : Sum.inr a' ∈ F a k), ∃ n, Sum.inl b ∈ F a n ∧ ∀ m < n, ∀ (_ : k ≤ m), ∃ a₂, Sum.inr a₂ ∈ F a m by rcases this _ h 0 (by simp) with ⟨n, hn₁, hn₂⟩ exact ⟨_, ⟨⟨_, hn₁⟩, fun {m} mn => hn₂ m mn (Nat.zero_le _)⟩, hn₁⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a this : ∀ (a' : α), b ∈ PFun.fix f a' → ∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m ⊢ ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n [PROOFSTEP] rcases this _ h 0 (by simp) with ⟨n, hn₁, hn₂⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a this : ∀ (a' : α), b ∈ PFun.fix f a' → ∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m ⊢ Sum.inr a ∈ F a 0 [PROOFSTEP] simp [GOAL] case intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a this : ∀ (a' : α), b ∈ PFun.fix f a' → ∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m n : ℕ hn₁ : Sum.inl b ∈ F a n hn₂ : ∀ (m : ℕ), m < n → 0 ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m ⊢ ∃ n, ((∃ b', Sum.inl b' ∈ F a n) ∧ ∀ {m : ℕ}, m < n → ∃ b, Sum.inr b ∈ F a m) ∧ Sum.inl b ∈ F a n [PROOFSTEP] exact ⟨_, ⟨⟨_, hn₁⟩, fun {m} mn => hn₂ m mn (Nat.zero_le _)⟩, hn₁⟩ [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a ⊢ ∀ (a' : α), b ∈ PFun.fix f a' → ∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] intro a₁ h₁ [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ ⊢ ∀ (k : ℕ), Sum.inr a₁ ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] apply @PFun.fixInduction _ _ _ _ _ _ h₁ [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ ⊢ ∀ (a' : α), b ∈ PFun.fix f a' → (∀ (a'' : α), Sum.inr a'' ∈ f a' → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m) → ∀ (k : ℕ), Sum.inr a' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] intro a₂ h₂ IH k hk [GOAL] case refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k ⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] rcases PFun.mem_fix_iff.1 h₂ with (h₂ | ⟨a₃, am₃, _⟩) [GOAL] case refine'_2.inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂✝ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k h₂ : Sum.inl b ∈ f a₂ ⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] refine' ⟨k.succ, _, fun m mk km => ⟨a₂, _⟩⟩ [GOAL] case refine'_2.inl.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂✝ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k h₂ : Sum.inl b ∈ f a₂ ⊢ Sum.inl b ∈ F a (Nat.succ k) [PROOFSTEP] simp [GOAL] case refine'_2.inl.refine'_1 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂✝ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k h₂ : Sum.inl b ∈ f a₂ ⊢ Sum.inl b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) k ∨ ∃ b_1, Sum.inr b_1 ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) k ∧ Sum.inl b ∈ f b_1 [PROOFSTEP] exact Or.inr ⟨_, hk, h₂⟩ [GOAL] case refine'_2.inl.refine'_2 α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂✝ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k h₂ : Sum.inl b ∈ f a₂ m : ℕ mk : m < Nat.succ k km : k ≤ m ⊢ Sum.inr a₂ ∈ F a m [PROOFSTEP] rwa [le_antisymm (Nat.le_of_lt_succ mk) km] [GOAL] case refine'_2.inr.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ ⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] rcases IH _ am₃ k.succ (by simp; exact ⟨_, hk, am₃⟩) with ⟨n, hn₁, hn₂⟩ [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ ⊢ Sum.inr a₃ ∈ F a (Nat.succ k) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ ⊢ ∃ b, Sum.inr b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) k ∧ Sum.inr a₃ ∈ f b [PROOFSTEP] exact ⟨_, hk, am₃⟩ [GOAL] case refine'_2.inr.intro.intro.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ n : ℕ hn₁ : Sum.inl b ∈ F a n hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m ⊢ ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] refine' ⟨n, hn₁, fun m mn km => _⟩ [GOAL] case refine'_2.inr.intro.intro.intro.intro α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ n : ℕ hn₁ : Sum.inl b ∈ F a n hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m m : ℕ mn : m < n km : k ≤ m ⊢ ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] cases' km.lt_or_eq_dec with km km [GOAL] case refine'_2.inr.intro.intro.intro.intro.inl α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ n : ℕ hn₁ : Sum.inl b ∈ F a n hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m m : ℕ mn : m < n km✝ : k ≤ m km : k < m ⊢ ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] exact hn₂ _ mn km [GOAL] case refine'_2.inr.intro.intro.intro.intro.inr α✝ : Type u_1 β : Type u_2 γ : Type u_3 σ✝ : Type u_4 inst✝³ : Primcodable α✝ inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ✝ α : Type u_5 σ : Type u_6 f : α →. σ ⊕ α a : α b : σ F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n h : b ∈ PFun.fix f a a₁ : α h₁ : b ∈ PFun.fix f a₁ a₂ : α h₂ : b ∈ PFun.fix f a₂ IH : ∀ (a'' : α), Sum.inr a'' ∈ f a₂ → ∀ (k : ℕ), Sum.inr a'' ∈ F a k → ∃ n, Sum.inl b ∈ F a n ∧ ∀ (m : ℕ), m < n → k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m k : ℕ hk : Sum.inr a₂ ∈ F a k a₃ : α am₃ : Sum.inr a₃ ∈ f a₂ right✝ : b ∈ PFun.fix f a₃ n : ℕ hn₁ : Sum.inl b ∈ F a n hn₂ : ∀ (m : ℕ), m < n → Nat.succ k ≤ m → ∃ a₂, Sum.inr a₂ ∈ F a m m : ℕ mn : m < n km✝ : k ≤ m km : k = m ⊢ ∃ a₂, Sum.inr a₂ ∈ F a m [PROOFSTEP] exact km ▸ ⟨_, hk⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f ⊢ Partrec (PFun.fix f) [PROOFSTEP] let F : α → ℕ →. Sum σ α := fun a n => n.rec (some (Sum.inr a)) fun _ IH => IH.bind fun s => Sum.casesOn s (fun _ => Part.some s) f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n ⊢ Partrec (PFun.fix f) [PROOFSTEP] have hF : Partrec₂ F := Partrec.nat_rec snd (sum_inr.comp fst).partrec (sum_casesOn_right (snd.comp snd) (snd.comp <| snd.comp fst).to₂ (hf.comp snd).to₂).to₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n hF : Partrec₂ F ⊢ Partrec (PFun.fix f) [PROOFSTEP] let p a n := @Part.map _ Bool (fun s => Sum.casesOn s (fun _ => true) fun _ => false) (F a n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n hF : Partrec₂ F p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n) ⊢ Partrec (PFun.fix f) [PROOFSTEP] have hp : Partrec₂ p := hF.map ((sum_casesOn Computable.id (const true).to₂ (const false).to₂).comp snd).to₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n hF : Partrec₂ F p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n) hp : Partrec₂ p ⊢ Partrec (PFun.fix f) [PROOFSTEP] exact (hp.rfind.bind (hF.bind (sum_casesOn_right snd snd.to₂ none.to₂).to₂).to₂).of_eq fun a => ext fun b => by simp; apply fix_aux f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n hF : Partrec₂ F p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n) hp : Partrec₂ p a : α b : σ ⊢ (b ∈ Part.bind (Nat.rfind (p a)) fun b => Part.bind (F (a, b).fst (a, b).snd) fun b_1 => Sum.casesOn ((a, b), b_1).snd (fun b_2 => Part.some (((a, b), b_1), b_2).snd) fun b => Part.none) ↔ b ∈ PFun.fix f a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α →. σ ⊕ α hf : Partrec f F : α → ℕ →. σ ⊕ α := fun a n => Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.casesOn s (fun x => Part.some s) f) n hF : Partrec₂ F p : α → ℕ → Part Bool := fun a n => Part.map (fun s => Sum.casesOn s (fun x => true) fun x => false) (F a n) hp : Partrec₂ p a : α b : σ ⊢ (∃ a_1, ((∃ a_2, Sum.inl a_2 ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) a_1) ∧ ∀ {m : ℕ}, m < a_1 → ∃ b, Sum.inr b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) m) ∧ Sum.inl b ∈ Nat.rec (Part.some (Sum.inr a)) (fun x IH => Part.bind IH fun s => Sum.rec (fun val => Part.some s) (fun val => f val) s) a_1) ↔ b ∈ PFun.fix f a [PROOFSTEP] apply fix_aux f
{"mathlib_filename": "Mathlib.Computability.Partrec", "llama_tokens": 59602}
[GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p✝ : ℕ μ✝ : Measure Ω X : Ω → ℝ p : ℕ μ : Measure Ω ⊢ ℝ [PROOFSTEP] have m := fun (x : Ω) => μ[X] -- Porting note: Lean deems `μ[(X - fun x => μ[X]) ^ p]` ambiguous [GOAL] Ω : Type u_1 ι : Type u_2 m✝ : MeasurableSpace Ω X✝ : Ω → ℝ p✝ : ℕ μ✝ : Measure Ω X : Ω → ℝ p : ℕ μ : Measure Ω m : Ω → ℝ ⊢ ℝ [PROOFSTEP] exact μ[(X - m) ^ p] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω hp : p ≠ 0 ⊢ moment 0 p μ = 0 [PROOFSTEP] simp only [moment, hp, zero_pow', Ne.def, not_false_iff, Pi.zero_apply, integral_const, smul_eq_mul, mul_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω hp : p ≠ 0 ⊢ centralMoment 0 p μ = 0 [PROOFSTEP] simp only [centralMoment, hp, Pi.zero_apply, integral_const, smul_eq_mul, mul_zero, zero_sub, Pi.pow_apply, Pi.neg_apply, neg_zero, zero_pow', Ne.def, not_false_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ h_int : Integrable X ⊢ centralMoment X 1 μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ [PROOFSTEP] simp only [centralMoment, Pi.sub_apply, pow_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ h_int : Integrable X ⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ [PROOFSTEP] rw [integral_sub h_int (integrable_const _)] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ h_int : Integrable X ⊢ ∫ (a : Ω), X a ∂μ - ∫ (a : Ω), ∫ (x : Ω), X x ∂μ ∂μ = (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ [PROOFSTEP] simp only [sub_mul, integral_const, smul_eq_mul, one_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ ⊢ centralMoment X 1 μ = 0 [PROOFSTEP] by_cases h_int : Integrable X μ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : Integrable X ⊢ centralMoment X 1 μ = 0 [PROOFSTEP] rw [centralMoment_one' h_int] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : Integrable X ⊢ (1 - ENNReal.toReal (↑↑μ Set.univ)) * ∫ (x : Ω), X x ∂μ = 0 [PROOFSTEP] simp only [measure_univ, ENNReal.one_toReal, sub_self, zero_mul] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X ⊢ centralMoment X 1 μ = 0 [PROOFSTEP] simp only [centralMoment, Pi.sub_apply, pow_one] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X ⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = 0 [PROOFSTEP] have : ¬Integrable (fun x => X x - integral μ X) μ := by refine' fun h_sub => h_int _ have h_add : X = (fun x => X x - integral μ X) + fun _ => integral μ X := by ext1 x; simp rw [h_add] exact h_sub.add (integrable_const _) [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X ⊢ ¬Integrable fun x => X x - integral μ X [PROOFSTEP] refine' fun h_sub => h_int _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X ⊢ Integrable X [PROOFSTEP] have h_add : X = (fun x => X x - integral μ X) + fun _ => integral μ X := by ext1 x; simp [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X ⊢ X = (fun x => X x - integral μ X) + fun x => integral μ X [PROOFSTEP] ext1 x [GOAL] case h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X x : Ω ⊢ X x = ((fun x => X x - integral μ X) + fun x => integral μ X) x [PROOFSTEP] simp [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X h_add : X = (fun x => X x - integral μ X) + fun x => integral μ X ⊢ Integrable X [PROOFSTEP] rw [h_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X h_sub : Integrable fun x => X x - integral μ X h_add : X = (fun x => X x - integral μ X) + fun x => integral μ X ⊢ Integrable ((fun x => X x - integral μ X) + fun x => integral μ X) [PROOFSTEP] exact h_sub.add (integrable_const _) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsProbabilityMeasure μ h_int : ¬Integrable X this : ¬Integrable fun x => X x - integral μ X ⊢ ∫ (x : Ω), X x - ∫ (x : Ω), X x ∂μ ∂μ = 0 [PROOFSTEP] rw [integral_undef this] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ centralMoment X 2 μ = variance X μ [PROOFSTEP] rw [hX.variance_eq] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ centralMoment X 2 μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf 0 μ t = ENNReal.toReal (↑↑μ Set.univ) [PROOFSTEP] simp only [mgf, Pi.zero_apply, mul_zero, exp_zero, integral_const, smul_eq_mul, mul_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf 0 μ t = log (ENNReal.toReal (↑↑μ Set.univ)) [PROOFSTEP] simp only [cgf, mgf_zero_fun] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf X 0 t = 0 [PROOFSTEP] simp only [mgf, integral_zero_measure] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf X 0 t = 0 [PROOFSTEP] simp only [cgf, log_zero, mgf_zero_measure] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t c : ℝ ⊢ mgf (fun x => c) μ t = ENNReal.toReal (↑↑μ Set.univ) * exp (t * c) [PROOFSTEP] simp only [mgf, integral_const, smul_eq_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t c : ℝ inst✝ : IsProbabilityMeasure μ ⊢ mgf (fun x => c) μ t = exp (t * c) [PROOFSTEP] simp only [mgf_const', measure_univ, ENNReal.one_toReal, one_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ cgf (fun x => c) μ t = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c [PROOFSTEP] simp only [cgf, mgf_const'] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ log (ENNReal.toReal (↑↑μ Set.univ) * exp (t * c)) = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c [PROOFSTEP] rw [log_mul _ (exp_pos _).ne'] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ log (ENNReal.toReal (↑↑μ Set.univ)) + log (exp (t * c)) = log (ENNReal.toReal (↑↑μ Set.univ)) + t * c [PROOFSTEP] rw [log_exp _] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ ENNReal.toReal (↑↑μ Set.univ) ≠ 0 [PROOFSTEP] rw [Ne.def, ENNReal.toReal_eq_zero_iff, Measure.measure_univ_eq_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ hμ : μ ≠ 0 c : ℝ ⊢ ¬(μ = 0 ∨ ↑↑μ Set.univ = ⊤) [PROOFSTEP] simp only [hμ, measure_ne_top μ Set.univ, or_self_iff, not_false_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ c : ℝ ⊢ cgf (fun x => c) μ t = t * c [PROOFSTEP] simp only [cgf, mgf_const, log_exp] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf X μ 0 = ENNReal.toReal (↑↑μ Set.univ) [PROOFSTEP] simp only [mgf, zero_mul, exp_zero, integral_const, smul_eq_mul, mul_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ ⊢ mgf X μ 0 = 1 [PROOFSTEP] simp only [mgf_zero', measure_univ, ENNReal.one_toReal] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf X μ 0 = log (ENNReal.toReal (↑↑μ Set.univ)) [PROOFSTEP] simp only [cgf, mgf_zero'] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ ⊢ cgf X μ 0 = 0 [PROOFSTEP] simp only [cgf_zero', measure_univ, ENNReal.one_toReal, log_one] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hX : ¬Integrable fun ω => exp (t * X ω) ⊢ mgf X μ t = 0 [PROOFSTEP] simp only [mgf, integral_undef hX] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hX : ¬Integrable fun ω => exp (t * X ω) ⊢ cgf X μ t = 0 [PROOFSTEP] simp only [cgf, mgf_undef hX, log_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ 0 ≤ mgf X μ t [PROOFSTEP] refine' integral_nonneg _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ 0 ≤ fun x => (fun ω => exp (t * X ω)) x [PROOFSTEP] intro ω [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ω : Ω ⊢ OfNat.ofNat 0 ω ≤ (fun x => (fun ω => exp (t * X ω)) x) ω [PROOFSTEP] simp only [Pi.zero_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ω : Ω ⊢ 0 ≤ exp (t * X ω) [PROOFSTEP] exact (exp_pos _).le [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) ⊢ 0 < mgf X μ t [PROOFSTEP] simp_rw [mgf] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) ⊢ 0 < ∫ (x : Ω), exp (t * X x) ∂μ [PROOFSTEP] have : ∫ x : Ω, exp (t * X x) ∂μ = ∫ x : Ω in Set.univ, exp (t * X x) ∂μ := by simp only [Measure.restrict_univ] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) ⊢ ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ [PROOFSTEP] simp only [Measure.restrict_univ] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ 0 < ∫ (x : Ω), exp (t * X x) ∂μ [PROOFSTEP] rw [this, set_integral_pos_iff_support_of_nonneg_ae _ _] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ 0 < ↑↑μ ((Function.support fun x => exp (t * X x)) ∩ Set.univ) [PROOFSTEP] have h_eq_univ : (Function.support fun x : Ω => exp (t * X x)) = Set.univ := by ext1 x simp only [Function.mem_support, Set.mem_univ, iff_true_iff] exact (exp_pos _).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ (Function.support fun x => exp (t * X x)) = Set.univ [PROOFSTEP] ext1 x [GOAL] case h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ (x ∈ Function.support fun x => exp (t * X x)) ↔ x ∈ Set.univ [PROOFSTEP] simp only [Function.mem_support, Set.mem_univ, iff_true_iff] [GOAL] case h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ exp (t * X x) ≠ 0 [PROOFSTEP] exact (exp_pos _).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ ⊢ 0 < ↑↑μ ((Function.support fun x => exp (t * X x)) ∩ Set.univ) [PROOFSTEP] rw [h_eq_univ, Set.inter_univ _] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ ⊢ 0 < ↑↑μ Set.univ [PROOFSTEP] refine' Ne.bot_lt _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ h_eq_univ : (Function.support fun x => exp (t * X x)) = Set.univ ⊢ ↑↑μ Set.univ ≠ ⊥ [PROOFSTEP] simp only [hμ, ENNReal.bot_eq_zero, Ne.def, Measure.measure_univ_eq_zero, not_false_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ 0 ≤ᵐ[Measure.restrict μ Set.univ] fun x => exp (t * X x) [PROOFSTEP] refine' eventually_of_forall fun x => _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ OfNat.ofNat 0 x ≤ (fun x => exp (t * X x)) x [PROOFSTEP] rw [Pi.zero_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ x : Ω ⊢ 0 ≤ (fun x => exp (t * X x)) x [PROOFSTEP] exact (exp_pos _).le [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ hμ : μ ≠ 0 h_int_X : Integrable fun ω => exp (t * X ω) this : ∫ (x : Ω), exp (t * X x) ∂μ = ∫ (x : Ω) in Set.univ, exp (t * X x) ∂μ ⊢ IntegrableOn (fun x => exp (t * X x)) Set.univ [PROOFSTEP] rwa [integrableOn_univ] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ mgf (-X) μ t = mgf X μ (-t) [PROOFSTEP] simp_rw [mgf, Pi.neg_apply, mul_neg, neg_mul] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ ⊢ cgf (-X) μ t = cgf X μ (-t) [PROOFSTEP] simp_rw [cgf, mgf_neg] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t✝ : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y s t : ℝ ⊢ IndepFun (fun ω => exp (s * X ω)) fun ω => exp (t * Y ω) [PROOFSTEP] have h_meas : ∀ t, Measurable fun x => exp (t * x) := fun t => (measurable_id'.const_mul t).exp [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t✝ : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y s t : ℝ h_meas : ∀ (t : ℝ), Measurable fun x => exp (t * x) ⊢ IndepFun (fun ω => exp (s * X ω)) fun ω => exp (t * Y ω) [PROOFSTEP] change IndepFun ((fun x => exp (s * x)) ∘ X) ((fun x => exp (t * x)) ∘ Y) μ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t✝ : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y s t : ℝ h_meas : ∀ (t : ℝ), Measurable fun x => exp (t * x) ⊢ IndepFun ((fun x => exp (s * x)) ∘ X) ((fun x => exp (t * x)) ∘ Y) [PROOFSTEP] exact IndepFun.comp h_indep (h_meas s) (h_meas t) [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ hY : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] simp_rw [mgf, Pi.add_apply, mul_add, exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ hY : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ ∫ (x : Ω), exp (t * X x) * exp (t * Y x) ∂μ = (∫ (x : Ω), exp (t * X x) ∂μ) * ∫ (x : Ω), exp (t * Y x) ∂μ [PROOFSTEP] exact (h_indep.exp_mul t t).integral_mul hX hY [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] have A : Continuous fun x : ℝ => exp (t * x) := by continuity [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ ⊢ Continuous fun x => exp (t * x) [PROOFSTEP] continuity [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => exp (t * x) ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] have h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ := A.aestronglyMeasurable.comp_aemeasurable hX.aemeasurable [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => exp (t * x) h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] have h'Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ := A.aestronglyMeasurable.comp_aemeasurable hY.aemeasurable [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ A : Continuous fun x => exp (t * x) h'X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ h'Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ mgf (X + Y) μ t = mgf X μ t * mgf Y μ t [PROOFSTEP] exact h_indep.mgf_add h'X h'Y [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) ⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t [PROOFSTEP] by_cases hμ : μ = 0 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) hμ : μ = 0 ⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t [PROOFSTEP] simp [hμ] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) hμ : ¬μ = 0 ⊢ cgf (X + Y) μ t = cgf X μ t + cgf Y μ t [PROOFSTEP] simp only [cgf, h_indep.mgf_add h_int_X.aestronglyMeasurable h_int_Y.aestronglyMeasurable] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) hμ : ¬μ = 0 ⊢ log (mgf X μ t * mgf Y μ t) = log (mgf X μ t) + log (mgf Y μ t) [PROOFSTEP] exact log_mul (mgf_pos' hμ h_int_X).ne' (mgf_pos' hμ h_int_Y).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_int_X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ h_int_Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * (X + Y) ω)) μ [PROOFSTEP] simp_rw [Pi.add_apply, mul_add, exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_int_X : AEStronglyMeasurable (fun ω => exp (t * X ω)) μ h_int_Y : AEStronglyMeasurable (fun ω => exp (t * Y ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * X ω) * exp (t * Y ω)) μ [PROOFSTEP] exact AEStronglyMeasurable.mul h_int_X h_int_Y [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ [PROOFSTEP] classical induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int · simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] exact aestronglyMeasurable_const · have : ∀ i : ι, i ∈ s → AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) specialize h_rec this rw [sum_insert hi_notin_s] apply aestronglyMeasurable_exp_mul_add (h_int i (mem_insert_self _ _)) h_rec [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ [PROOFSTEP] induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_int : ∀ (i : ι), i ∈ ∅ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum ∅ (fun i => X i) ω)) μ [PROOFSTEP] simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_int : ∀ (i : ι), i ∈ ∅ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => 1) μ [PROOFSTEP] exact aestronglyMeasurable_const [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ) → AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ [PROOFSTEP] have : ∀ i : ι, i ∈ s → AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ) → AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ [PROOFSTEP] specialize h_rec this [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_rec : AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω)) μ [PROOFSTEP] rw [sum_insert hi_notin_s] [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X : ι → Ω → ℝ s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → AEStronglyMeasurable (fun ω => exp (t * X i_1 ω)) μ this : ∀ (i : ι), i ∈ s → AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ h_rec : AEStronglyMeasurable (fun ω => exp (t * Finset.sum s (fun i => X i) ω)) μ ⊢ AEStronglyMeasurable (fun ω => exp (t * (X i + ∑ x in s, X x) ω)) μ [PROOFSTEP] apply aestronglyMeasurable_exp_mul_add (h_int i (mem_insert_self _ _)) h_rec [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) ⊢ Integrable fun ω => exp (t * (X + Y) ω) [PROOFSTEP] simp_rw [Pi.add_apply, mul_add, exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ X Y : Ω → ℝ h_indep : IndepFun X Y h_int_X : Integrable fun ω => exp (t * X ω) h_int_Y : Integrable fun ω => exp (t * Y ω) ⊢ Integrable fun ω => exp (t * X ω) * exp (t * Y ω) [PROOFSTEP] exact (h_indep.exp_mul t t).integrable_mul h_int_X h_int_Y [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) [PROOFSTEP] classical induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int · simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] exact integrable_const _ · have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) specialize h_rec this rw [sum_insert hi_notin_s] refine' IndepFun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec exact (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) [PROOFSTEP] induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_int : ∀ (i : ι), i ∈ ∅ → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum ∅ (fun i => X i) ω) [PROOFSTEP] simp only [Pi.zero_apply, sum_apply, sum_empty, mul_zero, exp_zero] [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int✝ : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_int : ∀ (i : ι), i ∈ ∅ → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => 1 [PROOFSTEP] exact integrable_const _ [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)) → Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) ⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω) [PROOFSTEP] have : ∀ i : ι, i ∈ s → Integrable (fun ω : Ω => exp (t * X i ω)) μ := fun i hi => h_int i (mem_insert_of_mem hi) [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : (∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω)) → Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω) [PROOFSTEP] specialize h_rec this [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) ⊢ Integrable fun ω => exp (t * Finset.sum (insert i s) (fun i => X i) ω) [PROOFSTEP] rw [sum_insert hi_notin_s] [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) ⊢ Integrable fun ω => exp (t * (X i + ∑ x in s, X x) ω) [PROOFSTEP] refine' IndepFun.integrable_exp_mul_add _ (h_int i (mem_insert_self _ _)) h_rec [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s✝ : Finset ι h_int✝ : ∀ (i : ι), i ∈ s✝ → Integrable fun ω => exp (t * X i ω) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_int : ∀ (i_1 : ι), i_1 ∈ insert i s → Integrable fun ω => exp (t * X i_1 ω) this : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) h_rec : Integrable fun ω => exp (t * Finset.sum s (fun i => X i) ω) ⊢ IndepFun (X i) (∑ x in s, X x) [PROOFSTEP] exact (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι ⊢ mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t [PROOFSTEP] classical induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int · simp only [sum_empty, mgf_zero_fun, measure_univ, ENNReal.one_toReal, prod_empty] · have h_int' : ∀ i : ι, AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i => ((h_meas i).const_mul t).exp.aestronglyMeasurable rw [sum_insert hi_notin_s, IndepFun.mgf_add (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int' i) (aestronglyMeasurable_exp_mul_sum fun i _ => h_int' i), h_rec, prod_insert hi_notin_s] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι ⊢ mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t [PROOFSTEP] induction' s using Finset.induction_on with i s hi_notin_s h_rec h_int [GOAL] case empty Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) ⊢ mgf (∑ i in ∅, X i) μ t = ∏ i in ∅, mgf (X i) μ t [PROOFSTEP] simp only [sum_empty, mgf_zero_fun, measure_univ, ENNReal.one_toReal, prod_empty] [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t ⊢ mgf (∑ i in insert i s, X i) μ t = ∏ i in insert i s, mgf (X i) μ t [PROOFSTEP] have h_int' : ∀ i : ι, AEStronglyMeasurable (fun ω : Ω => exp (t * X i ω)) μ := fun i => ((h_meas i).const_mul t).exp.aestronglyMeasurable [GOAL] case insert Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) i : ι s : Finset ι hi_notin_s : ¬i ∈ s h_rec : mgf (∑ i in s, X i) μ t = ∏ i in s, mgf (X i) μ t h_int' : ∀ (i : ι), AEStronglyMeasurable (fun ω => exp (t * X i ω)) μ ⊢ mgf (∑ i in insert i s, X i) μ t = ∏ i in insert i s, mgf (X i) μ t [PROOFSTEP] rw [sum_insert hi_notin_s, IndepFun.mgf_add (h_indep.indepFun_finset_sum_of_not_mem h_meas hi_notin_s).symm (h_int' i) (aestronglyMeasurable_exp_mul_sum fun i _ => h_int' i), h_rec, prod_insert hi_notin_s] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ cgf (∑ i in s, X i) μ t = ∑ i in s, cgf (X i) μ t [PROOFSTEP] simp_rw [cgf] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ log (mgf (∑ i in s, X i) μ t) = ∑ x in s, log (mgf (X x) μ t) [PROOFSTEP] rw [← log_prod _ _ fun j hj => ?_] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) ⊢ log (mgf (∑ i in s, X i) μ t) = log (∏ i in s, mgf (X i) μ t) [PROOFSTEP] rw [h_indep.mgf_sum h_meas] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X✝ : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsProbabilityMeasure μ X : ι → Ω → ℝ h_indep : iIndepFun (fun i => inferInstance) X h_meas : ∀ (i : ι), Measurable (X i) s : Finset ι h_int : ∀ (i : ι), i ∈ s → Integrable fun ω => exp (t * X i ω) j : ι hj : j ∈ s ⊢ mgf (X j) μ t ≠ 0 [PROOFSTEP] exact (mgf_pos (h_int j hj)).ne' [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] cases' ht.eq_or_lt with ht_zero_eq ht_pos [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] rw [ht_zero_eq.symm] [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-0 * ε) * mgf X μ 0 [PROOFSTEP] simp only [neg_zero, zero_mul, exp_zero, mgf_zero', one_mul] [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ ENNReal.toReal (↑↑μ Set.univ) [PROOFSTEP] rw [ENNReal.toReal_le_toReal (measure_ne_top μ _) (measure_ne_top μ _)] [GOAL] case inl Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_zero_eq : 0 = t ⊢ ↑↑μ {ω | ε ≤ X ω} ≤ ↑↑μ Set.univ [PROOFSTEP] exact measure_mono (Set.subset_univ _) [GOAL] case inr Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] calc (μ {ω | ε ≤ X ω}).toReal = (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal := by congr with ω simp only [Set.mem_setOf_eq, exp_le_exp, gt_iff_lt] exact ⟨fun h => mul_le_mul_of_nonneg_left h ht_pos.le, fun h => le_of_mul_le_mul_left h ht_pos⟩ _ ≤ (exp (t * ε))⁻¹ * μ[fun ω => exp (t * X ω)] := by have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] := mul_meas_ge_le_integral_of_nonneg (fun x => (exp_pos _).le) h_int _ rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)] _ = exp (-t * ε) * mgf X μ t := by rw [neg_mul, exp_neg]; rfl [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) = ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) [PROOFSTEP] congr with ω [GOAL] case e_a.e_a.h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ω : Ω ⊢ ω ∈ {ω | ε ≤ X ω} ↔ ω ∈ {ω | exp (t * ε) ≤ exp (t * X ω)} [PROOFSTEP] simp only [Set.mem_setOf_eq, exp_le_exp, gt_iff_lt] [GOAL] case e_a.e_a.h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ω : Ω ⊢ ε ≤ X ω ↔ t * ε ≤ t * X ω [PROOFSTEP] exact ⟨fun h => mul_le_mul_of_nonneg_left h ht_pos.le, fun h => le_of_mul_le_mul_left h ht_pos⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ [PROOFSTEP] have : exp (t * ε) * (μ {ω | exp (t * ε) ≤ exp (t * X ω)}).toReal ≤ μ[fun ω => exp (t * X ω)] := mul_meas_ge_le_integral_of_nonneg (fun x => (exp_pos _).le) h_int _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t this : exp (t * ε) * ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ ⊢ ENNReal.toReal (↑↑μ {ω | exp (t * ε) ≤ exp (t * X ω)}) ≤ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ [PROOFSTEP] rwa [mul_comm (exp (t * ε))⁻¹, ← div_eq_mul_inv, le_div_iff' (exp_pos _)] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ = exp (-t * ε) * mgf X μ t [PROOFSTEP] rw [neg_mul, exp_neg] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ht_pos : 0 < t ⊢ (exp (t * ε))⁻¹ * ∫ (x : Ω), (fun ω => exp (t * X ω)) x ∂μ = (exp (t * ε))⁻¹ * mgf X μ t [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (-t * ε) * mgf X μ t [PROOFSTEP] rw [← neg_neg t, ← mgf_neg, neg_neg, ← neg_mul_neg (-t)] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (- -t * -ε) * mgf (-X) μ (-t) [PROOFSTEP] refine' Eq.trans_le _ (measure_ge_le_exp_mul_mgf (-ε) (neg_nonneg.mpr ht) _) [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) = ENNReal.toReal (↑↑μ {ω | -ε ≤ (-X) ω}) [PROOFSTEP] congr with ω [GOAL] case refine'_1.e_a.e_a.h Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ω : Ω ⊢ ω ∈ {ω | X ω ≤ ε} ↔ ω ∈ {ω | -ε ≤ (-X) ω} [PROOFSTEP] simp only [Pi.neg_apply, neg_le_neg_iff] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ Integrable fun ω => exp (-t * (-X) ω) [PROOFSTEP] simp_rw [Pi.neg_apply, neg_mul_neg] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ Integrable fun ω => exp (t * X ω) [PROOFSTEP] exact h_int [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | ε ≤ X ω}) ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] refine' (measure_ge_le_exp_mul_mgf ε ht h_int).trans _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] rw [exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : 0 ≤ t h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε) * exp (cgf X μ t) [PROOFSTEP] exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ ENNReal.toReal (↑↑μ {ω | X ω ≤ ε}) ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] refine' (measure_le_le_exp_mul_mgf ε ht h_int).trans _ [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε + cgf X μ t) [PROOFSTEP] rw [exp_add] [GOAL] Ω : Type u_1 ι : Type u_2 m : MeasurableSpace Ω X : Ω → ℝ p : ℕ μ : Measure Ω t : ℝ inst✝ : IsFiniteMeasure μ ε : ℝ ht : t ≤ 0 h_int : Integrable fun ω => exp (t * X ω) ⊢ exp (-t * ε) * mgf (fun ω => X ω) μ t ≤ exp (-t * ε) * exp (cgf X μ t) [PROOFSTEP] exact mul_le_mul le_rfl (le_exp_log _) mgf_nonneg (exp_pos _).le
{"mathlib_filename": "Mathlib.Probability.Moments", "llama_tokens": 24496}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = false [PROOFSTEP] induction x [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α ⊢ rmatch 0 [] = false [PROOFSTEP] simp [rmatch, matchEpsilon, *] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b head✝ : α tail✝ : List α tail_ih✝ : rmatch 0 tail✝ = false ⊢ rmatch 0 (head✝ :: tail✝) = false [PROOFSTEP] simp [rmatch, matchEpsilon, *] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x = [] [PROOFSTEP] induction x [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α ⊢ rmatch 1 [] = true ↔ [] = [] [PROOFSTEP] simp [rmatch, matchEpsilon, *] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b head✝ : α tail✝ : List α tail_ih✝ : rmatch 1 tail✝ = true ↔ tail✝ = [] ⊢ rmatch 1 (head✝ :: tail✝) = true ↔ head✝ :: tail✝ = [] [PROOFSTEP] simp [rmatch, matchEpsilon, *] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a : α x : List α ⊢ rmatch (char a) x = true ↔ x = [a] [PROOFSTEP] cases' x with _ x [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a : α ⊢ rmatch (char a) [] = true ↔ [] = [a] [PROOFSTEP] exact of_decide_eq_true rfl [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ : α x : List α ⊢ rmatch (char a) (head✝ :: x) = true ↔ head✝ :: x = [a] [PROOFSTEP] cases' x with head tail [GOAL] case cons.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ : α ⊢ rmatch (char a) [head✝] = true ↔ [head✝] = [a] [PROOFSTEP] rw [rmatch, deriv] [GOAL] case cons.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ : α ⊢ rmatch (if a = head✝ then 1 else 0) [] = true ↔ [head✝] = [a] [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ : α h✝ : a = head✝ ⊢ rmatch 1 [] = true ↔ [head✝] = [a] [PROOFSTEP] tauto [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ : α h✝ : ¬a = head✝ ⊢ rmatch 0 [] = true ↔ [head✝] = [a] [PROOFSTEP] simp [List.singleton_inj] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ : α h✝ : ¬a = head✝ ⊢ ¬head✝ = a [PROOFSTEP] tauto [GOAL] case cons.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ head : α tail : List α ⊢ rmatch (char a) (head✝ :: head :: tail) = true ↔ head✝ :: head :: tail = [a] [PROOFSTEP] rw [rmatch, rmatch, deriv] [GOAL] case cons.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ head : α tail : List α ⊢ rmatch (deriv (if a = head✝ then 1 else 0) head) tail = true ↔ head✝ :: head :: tail = [a] [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ head : α tail : List α h : a = head✝ ⊢ rmatch (deriv 1 head) tail = true ↔ head✝ :: head :: tail = [a] [PROOFSTEP] simp only [deriv_one, zero_rmatch, cons.injEq, and_false] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b a head✝ head : α tail : List α h : ¬a = head✝ ⊢ rmatch (deriv 0 head) tail = true ↔ head✝ :: head :: tail = [a] [PROOFSTEP] simp only [deriv_zero, zero_rmatch, cons.injEq, and_false] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α x : List α ⊢ rmatch (P + Q) x = true ↔ rmatch P x = true ∨ rmatch Q x = true [PROOFSTEP] induction' x with _ _ ih generalizing P Q [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α ⊢ rmatch (P + Q) [] = true ↔ rmatch P [] = true ∨ rmatch Q [] = true [PROOFSTEP] simp only [rmatch, matchEpsilon, Bool.or_coe_iff] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (P + Q) (head✝ :: tail✝) = true ↔ rmatch P (head✝ :: tail✝) = true ∨ rmatch Q (head✝ :: tail✝) = true [PROOFSTEP] repeat' rw [rmatch] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (P + Q) (head✝ :: tail✝) = true ↔ rmatch P (head✝ :: tail✝) = true ∨ rmatch Q (head✝ :: tail✝) = true [PROOFSTEP] rw [rmatch] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch P (head✝ :: tail✝) = true ∨ rmatch Q (head✝ :: tail✝) = true [PROOFSTEP] rw [rmatch] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch Q (head✝ :: tail✝) = true [PROOFSTEP] rw [rmatch] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch (deriv Q head✝) tail✝ = true [PROOFSTEP] rw [rmatch] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (deriv (P + Q) head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch (deriv Q head✝) tail✝ = true [PROOFSTEP] rw [deriv_add] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ : RegularExpression α head✝ : α tail✝ : List α ih : ∀ (P Q : RegularExpression α), rmatch (P + Q) tail✝ = true ↔ rmatch P tail✝ = true ∨ rmatch Q tail✝ = true P Q : RegularExpression α ⊢ rmatch (deriv P head✝ + deriv Q head✝) tail✝ = true ↔ rmatch (deriv P head✝) tail✝ = true ∨ rmatch (deriv Q head✝) tail✝ = true [PROOFSTEP] exact ih _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α x : List α ⊢ rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] induction' x with a x ih generalizing P Q [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α ⊢ rmatch (P * Q) [] = true ↔ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rw [rmatch] [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α ⊢ matchEpsilon (P * Q) = true ↔ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] simp only [matchEpsilon] [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α ⊢ (matchEpsilon P && matchEpsilon Q) = true ↔ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] constructor [GOAL] case nil.mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α ⊢ (matchEpsilon P && matchEpsilon Q) = true → ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] intro h [GOAL] case nil.mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h : (matchEpsilon P && matchEpsilon Q) = true ⊢ ∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] refine' ⟨[], [], rfl, _⟩ [GOAL] case nil.mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h : (matchEpsilon P && matchEpsilon Q) = true ⊢ rmatch P [] = true ∧ rmatch Q [] = true [PROOFSTEP] rw [rmatch, rmatch] [GOAL] case nil.mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h : (matchEpsilon P && matchEpsilon Q) = true ⊢ matchEpsilon P = true ∧ matchEpsilon Q = true [PROOFSTEP] rwa [Bool.and_coe_iff] at h [GOAL] case nil.mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α ⊢ (∃ t u, [] = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) → (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] rintro ⟨t, u, h₁, h₂⟩ [GOAL] case nil.mpr.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α t u : List α h₁ : [] = t ++ u h₂ : rmatch P t = true ∧ rmatch Q u = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] cases' List.append_eq_nil.1 h₁.symm with ht hu [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α t u : List α h₁ : [] = t ++ u h₂ : rmatch P t = true ∧ rmatch Q u = true ht : t = [] hu : u = [] ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] subst ht [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α u : List α hu : u = [] h₁ : [] = [] ++ u h₂ : rmatch P [] = true ∧ rmatch Q u = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] subst hu [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h₁ : [] = [] ++ [] h₂ : rmatch P [] = true ∧ rmatch Q [] = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] repeat' rw [rmatch] at h₂ [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h₁ : [] = [] ++ [] h₂ : rmatch P [] = true ∧ rmatch Q [] = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] rw [rmatch] at h₂ [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h₁ : [] = [] ++ [] h₂ : matchEpsilon P = true ∧ rmatch Q [] = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] rw [rmatch] at h₂ [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h₁ : [] = [] ++ [] h₂ : matchEpsilon P = true ∧ matchEpsilon Q = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] rw [rmatch] at h₂ [GOAL] case nil.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P✝ Q✝ P Q : RegularExpression α h₁ : [] = [] ++ [] h₂ : matchEpsilon P = true ∧ matchEpsilon Q = true ⊢ (matchEpsilon P && matchEpsilon Q) = true [PROOFSTEP] simp [h₂] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α ⊢ rmatch (P * Q) (a :: x) = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rw [rmatch] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α ⊢ rmatch (deriv (P * Q) a) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] simp [deriv] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α ⊢ rmatch (if matchEpsilon P = true then deriv P a * Q + deriv Q a else deriv P a * Q) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] split_ifs with hepsilon [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true ⊢ rmatch (deriv P a * Q + deriv Q a) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rw [add_rmatch_iff, ih] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] constructor [GOAL] case pos.mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true → ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rintro (⟨t, u, _⟩ | h) [GOAL] case pos.mp.inl.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true t u : List α h✝ : x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true ⊢ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] exact ⟨a :: t, u, by tauto⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true t u : List α h✝ : x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true ⊢ a :: x = a :: t ++ u ∧ rmatch P (a :: t) = true ∧ rmatch Q u = true [PROOFSTEP] tauto [GOAL] case pos.mp.inr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true h : rmatch (deriv Q a) x = true ⊢ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] exact ⟨[], a :: x, rfl, hepsilon, h⟩ [GOAL] case pos.mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true ⊢ (∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) → (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true [PROOFSTEP] rintro ⟨t, u, h, hP, hQ⟩ [GOAL] case pos.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true t u : List α h : a :: x = t ++ u hP : rmatch P t = true hQ : rmatch Q u = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true [PROOFSTEP] cases' t with b t [GOAL] case pos.mpr.intro.intro.intro.intro.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true h : a :: x = [] ++ u hP : rmatch P [] = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true [PROOFSTEP] right [GOAL] case pos.mpr.intro.intro.intro.intro.nil.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true h : a :: x = [] ++ u hP : rmatch P [] = true ⊢ rmatch (deriv Q a) x = true [PROOFSTEP] rw [List.nil_append] at h [GOAL] case pos.mpr.intro.intro.intro.intro.nil.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true h : a :: x = u hP : rmatch P [] = true ⊢ rmatch (deriv Q a) x = true [PROOFSTEP] rw [← h] at hQ [GOAL] case pos.mpr.intro.intro.intro.intro.nil.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q (a :: x) = true h : a :: x = u hP : rmatch P [] = true ⊢ rmatch (deriv Q a) x = true [PROOFSTEP] exact hQ [GOAL] case pos.mpr.intro.intro.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a :: x = b :: t ++ u hP : rmatch P (b :: t) = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ∨ rmatch (deriv Q a) x = true [PROOFSTEP] left [GOAL] case pos.mpr.intro.intro.intro.intro.cons.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a :: x = b :: t ++ u hP : rmatch P (b :: t) = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] rw [List.cons_append, List.cons_eq_cons] at h [GOAL] case pos.mpr.intro.intro.intro.intro.cons.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch P (b :: t) = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] refine' ⟨t, u, h.2, _, hQ⟩ [GOAL] case pos.mpr.intro.intro.intro.intro.cons.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch P (b :: t) = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] rw [rmatch] at hP [GOAL] case pos.mpr.intro.intro.intro.intro.cons.h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch (deriv P b) t = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] convert hP [GOAL] case h.e'_2.h.e'_3.h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch (deriv P b) t = true ⊢ a = b [PROOFSTEP] exact h.1 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true ⊢ rmatch (deriv P a * Q) x = true ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rw [ih] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) ↔ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] constructor [GOAL] case neg.mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true) → ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rintro ⟨t, u, h, hP, hQ⟩ [GOAL] case neg.mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true ⊢ (∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) → ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] rintro ⟨t, u, h, hP, hQ⟩ [GOAL] case neg.mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true t u : List α h : x = t ++ u hP : rmatch (deriv P a) t = true hQ : rmatch Q u = true ⊢ ∃ t u, a :: x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] exact ⟨a :: t, u, by tauto⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true t u : List α h : x = t ++ u hP : rmatch (deriv P a) t = true hQ : rmatch Q u = true ⊢ a :: x = a :: t ++ u ∧ rmatch P (a :: t) = true ∧ rmatch Q u = true [PROOFSTEP] tauto [GOAL] case neg.mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true t u : List α h : a :: x = t ++ u hP : rmatch P t = true hQ : rmatch Q u = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] cases' t with b t [GOAL] case neg.mpr.intro.intro.intro.intro.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true u : List α hQ : rmatch Q u = true h : a :: x = [] ++ u hP : rmatch P [] = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] contradiction [GOAL] case neg.mpr.intro.intro.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a :: x = b :: t ++ u hP : rmatch P (b :: t) = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] rw [List.cons_append, List.cons_eq_cons] at h [GOAL] case neg.mpr.intro.intro.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch P (b :: t) = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch Q u = true [PROOFSTEP] refine' ⟨t, u, h.2, _, hQ⟩ [GOAL] case neg.mpr.intro.intro.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch P (b :: t) = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] rw [rmatch] at hP [GOAL] case neg.mpr.intro.intro.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch (deriv P b) t = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] convert hP [GOAL] case h.e'_2.h.e'_3.h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P✝ Q✝ : RegularExpression α a : α x : List α ih : ∀ (P Q : RegularExpression α), rmatch (P * Q) x = true ↔ ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true P Q : RegularExpression α hepsilon : ¬matchEpsilon P = true u : List α hQ : rmatch Q u = true b : α t : List α h : a = b ∧ x = t ++ u hP : rmatch (deriv P b) t = true ⊢ a = b [PROOFSTEP] exact h.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α ⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] have A : ∀ m n : ℕ, n < m + n + 1 := by intro m n convert add_lt_add_of_le_of_lt (add_le_add (zero_le m) (le_refl n)) zero_lt_one simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α ⊢ ∀ (m n : ℕ), n < m + n + 1 [PROOFSTEP] intro m n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α m n : ℕ ⊢ n < m + n + 1 [PROOFSTEP] convert add_lt_add_of_le_of_lt (add_le_add (zero_le m) (le_refl n)) zero_lt_one [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α m n : ℕ ⊢ n = 0 + n + 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α A : ∀ (m n : ℕ), n < m + n + 1 ⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] have IH := fun t (_h : List.length t < List.length x) => star_rmatch_iff P t [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length x → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] clear star_rmatch_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length x → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ rmatch (star P) x = true ↔ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length x → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ rmatch (star P) x = true → ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] cases' x with a x [GOAL] case mp.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length [] → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ rmatch (star P) [] = true → ∃ S, [] = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] intro _h [GOAL] case mp.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length [] → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) _h : rmatch (star P) [] = true ⊢ ∃ S, [] = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] use[] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length [] → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) _h : rmatch (star P) [] = true ⊢ [] = join [] ∧ ∀ (t : List α), t ∈ [] → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] dsimp [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length [] → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) _h : rmatch (star P) [] = true ⊢ [] = [] ∧ ∀ (t : List α), t ∈ [] → ¬t = [] ∧ rmatch P t = true [PROOFSTEP] tauto [GOAL] case mp.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ rmatch (star P) (a :: x) = true → ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] rw [rmatch, deriv, mul_rmatch_iff] [GOAL] case mp.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ (∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true) → ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] rintro ⟨t, u, hs, ht, hu⟩ [GOAL] case mp.cons.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hu : rmatch (star P) u = true ⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] have hwf : u.length < (List.cons a x).length := by rw [hs, List.length_cons, List.length_append] apply A [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hu : rmatch (star P) u = true ⊢ length u < length (a :: x) [PROOFSTEP] rw [hs, List.length_cons, List.length_append] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hu : rmatch (star P) u = true ⊢ length u < Nat.succ (length t + length u) [PROOFSTEP] apply A [GOAL] case mp.cons.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hu : rmatch (star P) u = true hwf : length u < length (a :: x) ⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] rw [IH _ hwf] at hu [GOAL] case mp.cons.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hu : ∃ S, u = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true hwf : length u < length (a :: x) ⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] rcases hu with ⟨S', hsum, helem⟩ [GOAL] case mp.cons.intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ ∃ S, a :: x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] use(a :: t) :: S' [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ a :: x = join ((a :: t) :: S') ∧ ∀ (t_1 : List α), t_1 ∈ (a :: t) :: S' → t_1 ≠ [] ∧ rmatch P t_1 = true [PROOFSTEP] constructor [GOAL] case h.left α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ a :: x = join ((a :: t) :: S') [PROOFSTEP] simp [hs, hsum] [GOAL] case h.right α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ ∀ (t_1 : List α), t_1 ∈ (a :: t) :: S' → t_1 ≠ [] ∧ rmatch P t_1 = true [PROOFSTEP] intro t' ht' [GOAL] case h.right α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true t' : List α ht' : t' ∈ (a :: t) :: S' ⊢ t' ≠ [] ∧ rmatch P t' = true [PROOFSTEP] cases ht' [GOAL] case h.right.head α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ a :: t ≠ [] ∧ rmatch P (a :: t) = true case h.right.tail α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝¹ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true t' : List α a✝ : Mem t' S' ⊢ t' ≠ [] ∧ rmatch P t' = true [PROOFSTEP] case head ht' => simp only [ne_eq, not_false_iff, true_and, rmatch] exact ht [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α ht' b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ a :: t ≠ [] ∧ rmatch P (a :: t) = true [PROOFSTEP] case head ht' => simp only [ne_eq, not_false_iff, true_and, rmatch] exact ht [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α ht' b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ a :: t ≠ [] ∧ rmatch P (a :: t) = true [PROOFSTEP] simp only [ne_eq, not_false_iff, true_and, rmatch] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α ht' b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] exact ht [GOAL] case h.right.tail α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝¹ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true t' : List α a✝ : Mem t' S' ⊢ t' ≠ [] ∧ rmatch P t' = true [PROOFSTEP] case tail ht' => exact helem t' ht' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true t' : List α ht' : Mem t' S' ⊢ t' ≠ [] ∧ rmatch P t' = true [PROOFSTEP] case tail ht' => exact helem t' ht' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t u : List α hs : x = t ++ u ht : rmatch (deriv P a) t = true hwf : length u < length (a :: x) S' : List (List α) hsum : u = join S' helem : ∀ (t : List α), t ∈ S' → t ≠ [] ∧ rmatch P t = true t' : List α ht' : Mem t' S' ⊢ t' ≠ [] ∧ rmatch P t' = true [PROOFSTEP] exact helem t' ht' [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length x → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) ⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) → rmatch (star P) x = true [PROOFSTEP] rintro ⟨S, hsum, helem⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α A : ∀ (m n : ℕ), n < m + n + 1 IH : ∀ (t : List α), length t < length x → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) S : List (List α) hsum : x = join S helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true ⊢ rmatch (star P) x = true [PROOFSTEP] cases' x with a x [GOAL] case mpr.intro.intro.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 S : List (List α) helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true IH : ∀ (t : List α), length t < length [] → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) hsum : [] = join S ⊢ rmatch (star P) [] = true [PROOFSTEP] rfl [GOAL] case mpr.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 S : List (List α) helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) hsum : a :: x = join S ⊢ rmatch (star P) (a :: x) = true [PROOFSTEP] rw [rmatch, deriv, mul_rmatch_iff] [GOAL] case mpr.intro.intro.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 S : List (List α) helem : ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) hsum : a :: x = join S ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] cases' S with t' U [GOAL] case mpr.intro.intro.cons.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) helem : ∀ (t : List α), t ∈ [] → t ≠ [] ∧ rmatch P t = true hsum : a :: x = join [] ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] exact ⟨[], [], by tauto⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) helem : ∀ (t : List α), t ∈ [] → t ≠ [] ∧ rmatch P t = true hsum : a :: x = join [] ⊢ x = [] ++ [] ∧ rmatch (deriv P a) [] = true ∧ rmatch (star P) [] = true [PROOFSTEP] tauto [GOAL] case mpr.intro.intro.cons.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) t' : List α U : List (List α) helem : ∀ (t : List α), t ∈ t' :: U → t ≠ [] ∧ rmatch P t = true hsum : a :: x = join (t' :: U) ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] cases' t' with b t [GOAL] case mpr.intro.intro.cons.cons.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) helem : ∀ (t : List α), t ∈ [] :: U → t ≠ [] ∧ rmatch P t = true hsum : a :: x = join ([] :: U) ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] simp only [forall_eq_or_imp, List.mem_cons] at helem [GOAL] case mpr.intro.intro.cons.cons.nil α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) hsum : a :: x = join ([] :: U) helem : ([] ≠ [] ∧ rmatch P [] = true) ∧ ∀ (a : List α), a ∈ U → a ≠ [] ∧ rmatch P a = true ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] simp only [eq_self_iff_true, not_true, Ne.def, false_and_iff] at helem [GOAL] case mpr.intro.intro.cons.cons.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a :: x = join ((b :: t) :: U) ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] simp only [List.join, List.cons_append, List.cons_eq_cons] at hsum [GOAL] case mpr.intro.intro.cons.cons.cons α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ ∃ t u, x = t ++ u ∧ rmatch (deriv P a) t = true ∧ rmatch (star P) u = true [PROOFSTEP] refine' ⟨t, U.join, hsum.2, _, _⟩ [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ rmatch (deriv P a) t = true [PROOFSTEP] specialize helem (b :: t) (by simp) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ b :: t ∈ (b :: t) :: U [PROOFSTEP] simp [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α hsum : a = b ∧ x = t ++ join U helem : b :: t ≠ [] ∧ rmatch P (b :: t) = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] rw [rmatch] at helem [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α hsum : a = b ∧ x = t ++ join U helem : b :: t ≠ [] ∧ rmatch (deriv P b) t = true ⊢ rmatch (deriv P a) t = true [PROOFSTEP] convert helem.2 [GOAL] case h.e'_2.h.e'_3.h.e'_4 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α hsum : a = b ∧ x = t ++ join U helem : b :: t ≠ [] ∧ rmatch (deriv P b) t = true ⊢ a = b [PROOFSTEP] exact hsum.1 [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ rmatch (star P) (join U) = true [PROOFSTEP] have hwf : U.join.length < (List.cons a x).length := by rw [hsum.1, hsum.2] simp only [List.length_append, List.length_join, List.length] apply A [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ length (join U) < length (a :: x) [PROOFSTEP] rw [hsum.1, hsum.2] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ length (join U) < length (b :: (t ++ join U)) [PROOFSTEP] simp only [List.length_append, List.length_join, List.length] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U ⊢ sum (map length U) < length t + sum (map length U) + 1 [PROOFSTEP] apply A [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U hwf : length (join U) < length (a :: x) ⊢ rmatch (star P) (join U) = true [PROOFSTEP] rw [IH _ hwf] [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t : List α helem : ∀ (t_1 : List α), t_1 ∈ (b :: t) :: U → t_1 ≠ [] ∧ rmatch P t_1 = true hsum : a = b ∧ x = t ++ join U hwf : length (join U) < length (a :: x) ⊢ ∃ S, join U = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true [PROOFSTEP] refine' ⟨U, rfl, fun t h => helem t _⟩ [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t✝ : List α helem : ∀ (t : List α), t ∈ (b :: t✝) :: U → t ≠ [] ∧ rmatch P t = true hsum : a = b ∧ x = t✝ ++ join U hwf : length (join U) < length (a :: x) t : List α h : t ∈ U ⊢ t ∈ (b :: t✝) :: U [PROOFSTEP] right [GOAL] case mpr.intro.intro.cons.cons.cons.refine'_2.a α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b✝ : α P : RegularExpression α A : ∀ (m n : ℕ), n < m + n + 1 a : α x : List α IH : ∀ (t : List α), length t < length (a :: x) → (rmatch (star P) t = true ↔ ∃ S, t = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch P t = true) U : List (List α) b : α t✝ : List α helem : ∀ (t : List α), t ∈ (b :: t✝) :: U → t ≠ [] ∧ rmatch P t = true hsum : a = b ∧ x = t✝ ++ join U hwf : length (join U) < length (a :: x) t : List α h : t ∈ U ⊢ Mem t U [PROOFSTEP] assumption [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α ⊢ ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P : RegularExpression α x : List α ⊢ rmatch P x = true ↔ x ∈ matches' P [PROOFSTEP] induction P generalizing x [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch zero x = true ↔ x ∈ matches' zero case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] all_goals try rw [zero_def] try rw [one_def] try rw [plus_def] try rw [comp_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch zero x = true ↔ x ∈ matches' zero [PROOFSTEP] try rw [zero_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch zero x = true ↔ x ∈ matches' zero [PROOFSTEP] rw [zero_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] try rw [one_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] rw [one_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] try rw [plus_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] rw [plus_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] try rw [comp_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] rw [comp_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon [PROOFSTEP] try rw [zero_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon [PROOFSTEP] rw [zero_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon [PROOFSTEP] try rw [one_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch epsilon x = true ↔ x ∈ matches' epsilon [PROOFSTEP] rw [one_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 [PROOFSTEP] try rw [plus_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 [PROOFSTEP] rw [plus_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 [PROOFSTEP] try rw [comp_def] [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 [PROOFSTEP] rw [comp_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] try rw [zero_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] rw [zero_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] try rw [one_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] rw [one_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] try rw [plus_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] rw [plus_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] try rw [comp_def] [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] rw [comp_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) [PROOFSTEP] try rw [zero_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) [PROOFSTEP] rw [zero_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) [PROOFSTEP] try rw [one_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) [PROOFSTEP] rw [one_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) [PROOFSTEP] try rw [plus_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (plus a✝¹ a✝) x = true ↔ x ∈ matches' (plus a✝¹ a✝) [PROOFSTEP] rw [plus_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) [PROOFSTEP] try rw [comp_def] [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) [PROOFSTEP] rw [comp_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] try rw [zero_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] rw [zero_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] try rw [one_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] rw [one_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] try rw [plus_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] rw [plus_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] try rw [comp_def] [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (comp a✝¹ a✝) x = true ↔ x ∈ matches' (comp a✝¹ a✝) [PROOFSTEP] rw [comp_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] try rw [zero_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] rw [zero_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] try rw [one_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] rw [one_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] try rw [plus_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] rw [plus_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] try rw [comp_def] [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] rw [comp_def] [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝) case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case zero => rw [zero_rmatch] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] case zero => rw [zero_rmatch] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 0 x = true ↔ x ∈ matches' 0 [PROOFSTEP] rw [zero_rmatch] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ false = true ↔ x ∈ matches' 0 [PROOFSTEP] tauto [GOAL] case epsilon α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝) case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case epsilon => rw [one_rmatch_iff] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 [PROOFSTEP] case epsilon => rw [one_rmatch_iff] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ rmatch 1 x = true ↔ x ∈ matches' 1 [PROOFSTEP] rw [one_rmatch_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α x : List α ⊢ x = [] ↔ x ∈ matches' 1 [PROOFSTEP] rfl [GOAL] case char α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝) case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case char => rw [char_rmatch_iff] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] case char => rw [char_rmatch_iff] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ rmatch (char a✝) x = true ↔ x ∈ matches' (char a✝) [PROOFSTEP] rw [char_rmatch_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b a✝ : α x : List α ⊢ x = [a✝] ↔ x ∈ matches' (char a✝) [PROOFSTEP] rfl [GOAL] case plus α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝) case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case plus _ _ ih₁ ih₂ => rw [add_rmatch_iff, ih₁, ih₂] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α ih₁ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ ih₂ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) [PROOFSTEP] case plus _ _ ih₁ ih₂ => rw [add_rmatch_iff, ih₁, ih₂] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α ih₁ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ ih₂ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ + a✝) x = true ↔ x ∈ matches' (a✝¹ + a✝) [PROOFSTEP] rw [add_rmatch_iff, ih₁, ih₂] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α ih₁ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ ih₂ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ x ∈ matches' a✝¹ ∨ x ∈ matches' a✝ ↔ x ∈ matches' (a✝¹ + a✝) [PROOFSTEP] rfl [GOAL] case comp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝¹ a✝ : RegularExpression α a_ih✝¹ : ∀ (x : List α), rmatch a✝¹ x = true ↔ x ∈ matches' a✝¹ a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (a✝¹ * a✝) x = true ↔ x ∈ matches' (a✝¹ * a✝) case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case comp P Q ih₁ ih₂ => simp only [mul_rmatch_iff, comp_def, Language.mul_def, exists_and_left, Set.mem_image2, Set.image_prod] constructor · rintro ⟨x, y, hsum, hmatch₁, hmatch₂⟩ rw [ih₁] at hmatch₁ rw [ih₂] at hmatch₂ exact ⟨x, y, hmatch₁, hmatch₂, hsum.symm⟩ · rintro ⟨x, y, hmatch₁, hmatch₂, hsum⟩ rw [← ih₁] at hmatch₁ rw [← ih₂] at hmatch₂ exact ⟨x, y, hsum.symm, hmatch₁, hmatch₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x : List α ⊢ rmatch (P * Q) x = true ↔ x ∈ matches' (P * Q) [PROOFSTEP] case comp P Q ih₁ ih₂ => simp only [mul_rmatch_iff, comp_def, Language.mul_def, exists_and_left, Set.mem_image2, Set.image_prod] constructor · rintro ⟨x, y, hsum, hmatch₁, hmatch₂⟩ rw [ih₁] at hmatch₁ rw [ih₂] at hmatch₂ exact ⟨x, y, hmatch₁, hmatch₂, hsum.symm⟩ · rintro ⟨x, y, hmatch₁, hmatch₂, hsum⟩ rw [← ih₁] at hmatch₁ rw [← ih₂] at hmatch₂ exact ⟨x, y, hsum.symm, hmatch₁, hmatch₂⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x : List α ⊢ rmatch (P * Q) x = true ↔ x ∈ matches' (P * Q) [PROOFSTEP] simp only [mul_rmatch_iff, comp_def, Language.mul_def, exists_and_left, Set.mem_image2, Set.image_prod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x : List α ⊢ (∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) ↔ x ∈ matches' (P * Q) [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x : List α ⊢ (∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true) → x ∈ matches' (P * Q) [PROOFSTEP] rintro ⟨x, y, hsum, hmatch₁, hmatch₂⟩ [GOAL] case mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x✝ x y : List α hsum : x✝ = x ++ y hmatch₁ : rmatch P x = true hmatch₂ : rmatch Q y = true ⊢ x✝ ∈ matches' (P * Q) [PROOFSTEP] rw [ih₁] at hmatch₁ [GOAL] case mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x✝ x y : List α hsum : x✝ = x ++ y hmatch₁ : x ∈ matches' P hmatch₂ : rmatch Q y = true ⊢ x✝ ∈ matches' (P * Q) [PROOFSTEP] rw [ih₂] at hmatch₂ [GOAL] case mp.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x✝ x y : List α hsum : x✝ = x ++ y hmatch₁ : x ∈ matches' P hmatch₂ : y ∈ matches' Q ⊢ x✝ ∈ matches' (P * Q) [PROOFSTEP] exact ⟨x, y, hmatch₁, hmatch₂, hsum.symm⟩ [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x : List α ⊢ x ∈ matches' (P * Q) → ∃ t u, x = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rintro ⟨x, y, hmatch₁, hmatch₂, hsum⟩ [GOAL] case mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x✝ x y : List α hmatch₁ : x ∈ matches' P hmatch₂ : y ∈ matches' Q hsum : (fun x x_1 => x ++ x_1) x y = x✝ ⊢ ∃ t u, x✝ = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rw [← ih₁] at hmatch₁ [GOAL] case mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x✝ x y : List α hmatch₁ : rmatch P x = true hmatch₂ : y ∈ matches' Q hsum : (fun x x_1 => x ++ x_1) x y = x✝ ⊢ ∃ t u, x✝ = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] rw [← ih₂] at hmatch₂ [GOAL] case mpr.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α P Q : RegularExpression α ih₁ : ∀ (x : List α), rmatch P x = true ↔ x ∈ matches' P ih₂ : ∀ (x : List α), rmatch Q x = true ↔ x ∈ matches' Q x✝ x y : List α hmatch₁ : rmatch P x = true hmatch₂ : rmatch Q y = true hsum : (fun x x_1 => x ++ x_1) x y = x✝ ⊢ ∃ t u, x✝ = t ++ u ∧ rmatch P t = true ∧ rmatch Q u = true [PROOFSTEP] exact ⟨x, y, hsum.symm, hmatch₁, hmatch₂⟩ [GOAL] case star α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α a_ih✝ : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case star _ ih => rw [star_rmatch_iff] simp only [ne_eq, matches', Language.kstar_def_nonempty, mem_setOf_eq] constructor all_goals rintro ⟨S, hx, hS⟩ refine' ⟨S, hx, _⟩ intro y specialize hS y · rw [← ih y] tauto · rw [ih y] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] case star _ ih => rw [star_rmatch_iff] simp only [ne_eq, matches', Language.kstar_def_nonempty, mem_setOf_eq] constructor all_goals rintro ⟨S, hx, hS⟩ refine' ⟨S, hx, _⟩ intro y specialize hS y · rw [← ih y] tauto · rw [ih y] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ rmatch (star a✝) x = true ↔ x ∈ matches' (star a✝) [PROOFSTEP] rw [star_rmatch_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → t ≠ [] ∧ rmatch a✝ t = true) ↔ x ∈ matches' (star a✝) [PROOFSTEP] simp only [ne_eq, matches', Language.kstar_def_nonempty, mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true) ↔ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} [PROOFSTEP] constructor [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true) → x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} case mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} → ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true [PROOFSTEP] all_goals rintro ⟨S, hx, hS⟩ refine' ⟨S, hx, _⟩ intro y specialize hS y [GOAL] case mp α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ (∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true) → x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} [PROOFSTEP] rintro ⟨S, hx, hS⟩ [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S hS : ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true ⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} [PROOFSTEP] refine' ⟨S, hx, _⟩ [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S hS : ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true ⊢ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] [PROOFSTEP] intro y [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S hS : ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true y : List α ⊢ y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] [PROOFSTEP] specialize hS y [GOAL] case mpr α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α ⊢ x ∈ {x | ∃ S, x = join S ∧ ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = []} → ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true [PROOFSTEP] rintro ⟨S, hx, hS⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S hS : ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] ⊢ ∃ S, x = join S ∧ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true [PROOFSTEP] refine' ⟨S, hx, _⟩ [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S hS : ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] ⊢ ∀ (t : List α), t ∈ S → ¬t = [] ∧ rmatch a✝ t = true [PROOFSTEP] intro y [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S hS : ∀ (y : List α), y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] y : List α ⊢ y ∈ S → ¬y = [] ∧ rmatch a✝ y = true [PROOFSTEP] specialize hS y [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S y : List α hS : y ∈ S → ¬y = [] ∧ rmatch a✝ y = true ⊢ y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] [PROOFSTEP] rw [← ih y] [GOAL] case mp.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S y : List α hS : y ∈ S → ¬y = [] ∧ rmatch a✝ y = true ⊢ y ∈ S → rmatch a✝ y = true ∧ ¬y = [] [PROOFSTEP] tauto [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S y : List α hS : y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] ⊢ y ∈ S → ¬y = [] ∧ rmatch a✝ y = true [PROOFSTEP] rw [ih y] [GOAL] case mpr.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α a✝ : RegularExpression α ih : ∀ (x : List α), rmatch a✝ x = true ↔ x ∈ matches' a✝ x : List α S : List (List α) hx : x = join S y : List α hS : y ∈ S → y ∈ matches' a✝ ∧ ¬y = [] ⊢ y ∈ S → ¬y = [] ∧ y ∈ matches' a✝ [PROOFSTEP] tauto [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β P : RegularExpression α ⊢ map f (P ^ 0) = map f P ^ 0 [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β P : RegularExpression α ⊢ 1 = map f P ^ 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α R S : RegularExpression α ⊢ map id (R + S) = R + S [PROOFSTEP] simp_rw [map, map_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α R S : RegularExpression α ⊢ map id (R * S) = R * S [PROOFSTEP] simp_rw [map, map_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α R : RegularExpression α ⊢ map id (star R) = star R [PROOFSTEP] simp_rw [map, map_id] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α g : β → γ f : α → β R S : RegularExpression α ⊢ map g (map f (R + S)) = map (g ∘ f) (R + S) [PROOFSTEP] simp only [map, Function.comp_apply, map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α g : β → γ f : α → β R S : RegularExpression α ⊢ map g (map f (R * S)) = map (g ∘ f) (R * S) [PROOFSTEP] simp only [map, Function.comp_apply, map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α g : β → γ f : α → β R : RegularExpression α ⊢ map g (map f (star R)) = map (g ∘ f) (star R) [PROOFSTEP] simp only [map, Function.comp_apply, map_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α f : α → β a : α ⊢ matches' (map f (char a)) = ↑(Language.map f) (matches' (char a)) [PROOFSTEP] rw [eq_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a✝ b : α f : α → β a : α ⊢ ↑(Language.map f) (matches' (char a)) = matches' (map f (char a)) [PROOFSTEP] exact image_singleton [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R S : RegularExpression α ⊢ matches' (map f (R + S)) = ↑(Language.map f) (matches' (R + S)) [PROOFSTEP] simp only [matches'_map, map, matches'_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R S : RegularExpression α ⊢ ↑(Language.map f) (matches' R) + ↑(Language.map f) (matches' S) = ↑(Language.map f) (matches' R + matches' S) [PROOFSTEP] rw [map_add] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R S : RegularExpression α ⊢ matches' (map f (R * S)) = ↑(Language.map f) (matches' (R * S)) [PROOFSTEP] simp only [matches'_map, map, matches'_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R S : RegularExpression α ⊢ ↑(Language.map f) (matches' R) * ↑(Language.map f) (matches' S) = ↑(Language.map f) (matches' R * matches' S) [PROOFSTEP] rw [map_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R : RegularExpression α ⊢ matches' (map f (star R)) = ↑(Language.map f) (matches' (star R)) [PROOFSTEP] simp_rw [map, matches', matches'_map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R : RegularExpression α ⊢ (↑(Language.map f) (matches' R))∗ = ↑(Language.map f) (matches' R)∗ [PROOFSTEP] rw [Language.kstar_eq_iSup_pow, Language.kstar_eq_iSup_pow] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R : RegularExpression α ⊢ ⨆ (i : ℕ), ↑(Language.map f) (matches' R) ^ i = ↑(Language.map f) (⨆ (i : ℕ), matches' R ^ i) [PROOFSTEP] simp_rw [← map_pow] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 dec : DecidableEq α a b : α f : α → β R : RegularExpression α ⊢ ⨆ (i : ℕ), ↑(Language.map f) (matches' R ^ i) = ↑(Language.map f) (⨆ (i : ℕ), matches' R ^ i) [PROOFSTEP] exact image_iUnion.symm
{"mathlib_filename": "Mathlib.Computability.RegularExpressions", "llama_tokens": 46594}
{"mathlib_filename": "Mathlib.Probability.Notation", "llama_tokens": 0}
[GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : Preorder ι u✝ v : ι → Ω → β f : Filtration ι m inst✝¹ : MetrizableSpace β mβ : MeasurableSpace β inst✝ : BorelSpace β u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) ⊢ Adapted (natural u hum) u [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : Preorder ι u✝ v : ι → Ω → β f : Filtration ι m inst✝¹ : MetrizableSpace β mβ : MeasurableSpace β inst✝ : BorelSpace β u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) i : ι ⊢ StronglyMeasurable (u i) [PROOFSTEP] refine' StronglyMeasurable.mono _ (le_iSup₂_of_le i (le_refl i) le_rfl) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : Preorder ι u✝ v : ι → Ω → β f : Filtration ι m inst✝¹ : MetrizableSpace β mβ : MeasurableSpace β inst✝ : BorelSpace β u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) i : ι ⊢ StronglyMeasurable (u i) [PROOFSTEP] rw [stronglyMeasurable_iff_measurable_separable] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : Preorder ι u✝ v : ι → Ω → β f : Filtration ι m inst✝¹ : MetrizableSpace β mβ : MeasurableSpace β inst✝ : BorelSpace β u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) i : ι ⊢ Measurable (u i) ∧ IsSeparable (Set.range (u i)) [PROOFSTEP] exact ⟨measurable_iff_comap_le.2 le_rfl, (hum i).isSeparable_range⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : TopologicalSpace β inst✝¹ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝ : MeasurableSpace ι h : ProgMeasurable f u ⊢ Adapted f u [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : TopologicalSpace β inst✝¹ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝ : MeasurableSpace ι h : ProgMeasurable f u i : ι ⊢ StronglyMeasurable (u i) [PROOFSTEP] have : u i = (fun p : Set.Iic i × Ω => u p.1 p.2) ∘ fun x => (⟨i, Set.mem_Iic.mpr le_rfl⟩, x) := rfl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : TopologicalSpace β inst✝¹ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝ : MeasurableSpace ι h : ProgMeasurable f u i : ι this : u i = (fun p => u (↑p.fst) p.snd) ∘ fun x => ({ val := i, property := (_ : i ∈ Set.Iic i) }, x) ⊢ StronglyMeasurable (u i) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : TopologicalSpace β inst✝¹ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝ : MeasurableSpace ι h : ProgMeasurable f u i : ι this : u i = (fun p => u (↑p.fst) p.snd) ∘ fun x => ({ val := i, property := (_ : i ∈ Set.Iic i) }, x) ⊢ StronglyMeasurable ((fun p => u (↑p.fst) p.snd) ∘ fun x => ({ val := i, property := (_ : i ∈ Set.Iic i) }, x)) [PROOFSTEP] exact (h i).comp_measurable measurable_prod_mk_left [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝³ : MeasurableSpace ι t : ι → Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : BorelSpace ι inst✝ : MetrizableSpace ι h : ProgMeasurable f u ht : ProgMeasurable f t ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i ⊢ ProgMeasurable f fun i ω => u (t i ω) ω [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝³ : MeasurableSpace ι t : ι → Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : BorelSpace ι inst✝ : MetrizableSpace ι h : ProgMeasurable f u ht : ProgMeasurable f t ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i i : ι ⊢ StronglyMeasurable fun p => (fun i ω => u (t i ω) ω) (↑p.fst) p.snd [PROOFSTEP] have : (fun p : ↥(Set.Iic i) × Ω => u (t (p.fst : ι) p.snd) p.snd) = (fun p : ↥(Set.Iic i) × Ω => u (p.fst : ι) p.snd) ∘ fun p : ↥(Set.Iic i) × Ω => (⟨t (p.fst : ι) p.snd, Set.mem_Iic.mpr ((ht_le _ _).trans p.fst.prop)⟩, p.snd) := rfl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝³ : MeasurableSpace ι t : ι → Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : BorelSpace ι inst✝ : MetrizableSpace ι h : ProgMeasurable f u ht : ProgMeasurable f t ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i i : ι this : (fun p => u (t (↑p.fst) p.snd) p.snd) = (fun p => u (↑p.fst) p.snd) ∘ fun p => ({ val := t (↑p.fst) p.snd, property := (_ : t (↑p.fst) p.snd ∈ Set.Iic i) }, p.snd) ⊢ StronglyMeasurable fun p => (fun i ω => u (t i ω) ω) (↑p.fst) p.snd [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝³ : MeasurableSpace ι t : ι → Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : BorelSpace ι inst✝ : MetrizableSpace ι h : ProgMeasurable f u ht : ProgMeasurable f t ht_le : ∀ (i : ι) (ω : Ω), t i ω ≤ i i : ι this : (fun p => u (t (↑p.fst) p.snd) p.snd) = (fun p => u (↑p.fst) p.snd) ∘ fun p => ({ val := t (↑p.fst) p.snd, property := (_ : t (↑p.fst) p.snd ∈ Set.Iic i) }, p.snd) ⊢ StronglyMeasurable ((fun p => u (↑p.fst) p.snd) ∘ fun p => ({ val := t (↑p.fst) p.snd, property := (_ : t (↑p.fst) p.snd ∈ Set.Iic i) }, p.snd)) [PROOFSTEP] exact (h i).comp_measurable ((ht i).measurable.subtype_mk.prod_mk measurable_snd) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁴ : TopologicalSpace β inst✝³ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝² : MeasurableSpace ι γ : Type u_4 inst✝¹ : CommMonoid β inst✝ : ContinuousMul β U : γ → ι → Ω → β s : Finset γ h : ∀ (c : γ), c ∈ s → ProgMeasurable f (U c) ⊢ ProgMeasurable f fun i a => ∏ c in s, U c i a [PROOFSTEP] convert ProgMeasurable.finset_prod' h using 1 [GOAL] case h.e'_9 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁴ : TopologicalSpace β inst✝³ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝² : MeasurableSpace ι γ : Type u_4 inst✝¹ : CommMonoid β inst✝ : ContinuousMul β U : γ → ι → Ω → β s : Finset γ h : ∀ (c : γ), c ∈ s → ProgMeasurable f (U c) ⊢ (fun i a => ∏ c in s, U c i a) = ∏ c in s, U c [PROOFSTEP] ext (i a) [GOAL] case h.e'_9.h.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁴ : TopologicalSpace β inst✝³ : Preorder ι u v : ι → Ω → β f : Filtration ι m inst✝² : MeasurableSpace ι γ : Type u_4 inst✝¹ : CommMonoid β inst✝ : ContinuousMul β U : γ → ι → Ω → β s : Finset γ h : ∀ (c : γ), c ∈ s → ProgMeasurable f (U c) i : ι a : Ω ⊢ ∏ c in s, U c i a = Finset.prod s (fun c => U c) i a [PROOFSTEP] simp only [Finset.prod_apply] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) h_tendsto : Tendsto U fltr (𝓝 u) ⊢ ProgMeasurable f u [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) h_tendsto : Tendsto U fltr (𝓝 u) i : ι ⊢ StronglyMeasurable fun p => u (↑p.fst) p.snd [PROOFSTEP] apply @stronglyMeasurable_of_tendsto (Set.Iic i × Ω) β γ (MeasurableSpace.prod _ (f i)) _ _ fltr _ _ _ _ fun l => h l i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) h_tendsto : Tendsto U fltr (𝓝 u) i : ι ⊢ Tendsto (fun l p => U l (↑p.fst) p.snd) fltr (𝓝 fun p => u (↑p.fst) p.snd) [PROOFSTEP] rw [tendsto_pi_nhds] at h_tendsto ⊢ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) h_tendsto : ∀ (x : ι), Tendsto (fun i => U i x) fltr (𝓝 (u x)) i : ι ⊢ ∀ (x : ↑(Set.Iic i) × Ω), Tendsto (fun i_1 => U i_1 (↑x.fst) x.snd) fltr (𝓝 (u (↑x.fst) x.snd)) [PROOFSTEP] intro x [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) h_tendsto : ∀ (x : ι), Tendsto (fun i => U i x) fltr (𝓝 (u x)) i : ι x : ↑(Set.Iic i) × Ω ⊢ Tendsto (fun i_1 => U i_1 (↑x.fst) x.snd) fltr (𝓝 (u (↑x.fst) x.snd)) [PROOFSTEP] specialize h_tendsto x.fst [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) i : ι x : ↑(Set.Iic i) × Ω h_tendsto : Tendsto (fun i_1 => U i_1 ↑x.fst) fltr (𝓝 (u ↑x.fst)) ⊢ Tendsto (fun i_1 => U i_1 (↑x.fst) x.snd) fltr (𝓝 (u (↑x.fst) x.snd)) [PROOFSTEP] rw [tendsto_nhds] at h_tendsto ⊢ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : Preorder ι u v : ι → Ω → β f : Filtration ι m γ : Type u_4 inst✝³ : MeasurableSpace ι inst✝² : PseudoMetrizableSpace β fltr : Filter γ inst✝¹ : NeBot fltr inst✝ : IsCountablyGenerated fltr U : γ → ι → Ω → β h : ∀ (l : γ), ProgMeasurable f (U l) i : ι x : ↑(Set.Iic i) × Ω h_tendsto : ∀ (s : Set (Ω → β)), IsOpen s → u ↑x.fst ∈ s → (fun i_1 => U i_1 ↑x.fst) ⁻¹' s ∈ fltr ⊢ ∀ (s : Set β), IsOpen s → u (↑x.fst) x.snd ∈ s → (fun i_1 => U i_1 (↑x.fst) x.snd) ⁻¹' s ∈ fltr [PROOFSTEP] exact fun s hs h_mem => h_tendsto {g | g x.snd ∈ s} (hs.preimage (continuous_apply x.snd)) h_mem
{"mathlib_filename": "Mathlib.Probability.Process.Adapted", "llama_tokens": 5596}
[GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ ⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ [PROOFSTEP] by_cases hfint : Integrable f μ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Integrable f ⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ case neg Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : ¬Integrable f ⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ [PROOFSTEP] swap [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : ¬Integrable f ⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ [PROOFSTEP] rw [condexp_undef hfint, integral_undef hfint] [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : ¬Integrable f ⊢ 0 =ᵐ[μ] fun x => 0 [PROOFSTEP] rfl [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Integrable f ⊢ μ[f|m₂] =ᵐ[μ] fun x => ∫ (x : Ω), f x ∂μ [PROOFSTEP] refine' (ae_eq_condexp_of_forall_set_integral_eq hle₂ hfint (fun s _ hs => integrableOn_const.2 (Or.inr hs)) (fun s hms hs => _) stronglyMeasurable_const.aeStronglyMeasurable').symm [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Integrable f s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ ∫ (x : Ω) in s, ∫ (x : Ω), f x ∂μ ∂μ = ∫ (x : Ω) in s, f x ∂μ [PROOFSTEP] rw [set_integral_const] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Integrable f s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ [PROOFSTEP] rw [← memℒp_one_iff_integrable] at hfint [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ [PROOFSTEP] refine' Memℒp.induction_stronglyMeasurable hle₁ ENNReal.one_ne_top _ _ _ _ hfint _ [GOAL] case pos.refine'_1 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ AEStronglyMeasurable' m₁ f μ [PROOFSTEP] exact ⟨f, hf, EventuallyEq.rfl⟩ [GOAL] case pos.refine'_2 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ ∀ (c : E) ⦃s_1 : Set Ω⦄, MeasurableSet s_1 → ↑↑μ s_1 < ⊤ → ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), Set.indicator s_1 (fun x => c) x ∂μ = ∫ (x : Ω) in s, Set.indicator s_1 (fun x => c) x ∂μ [PROOFSTEP] intro c t hmt _ [GOAL] case pos.refine'_2 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ c : E t : Set Ω hmt : MeasurableSet t a✝ : ↑↑μ t < ⊤ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), Set.indicator t (fun x => c) x ∂μ = ∫ (x : Ω) in s, Set.indicator t (fun x => c) x ∂μ [PROOFSTEP] rw [Indep_iff] at hindp [GOAL] case pos.refine'_2 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ c : E t : Set Ω hmt : MeasurableSet t a✝ : ↑↑μ t < ⊤ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), Set.indicator t (fun x => c) x ∂μ = ∫ (x : Ω) in s, Set.indicator t (fun x => c) x ∂μ [PROOFSTEP] rw [integral_indicator (hle₁ _ hmt), set_integral_const, smul_smul, ← ENNReal.toReal_mul, mul_comm, ← hindp _ _ hmt hms, set_integral_indicator (hle₁ _ hmt), set_integral_const, Set.inter_comm] [GOAL] case pos.refine'_3 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ ∀ ⦃f g : Ω → E⦄, Disjoint (Function.support f) (Function.support g) → Memℒp f 1 → Memℒp g 1 → StronglyMeasurable f → StronglyMeasurable g → ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ → ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), g x ∂μ = ∫ (x : Ω) in s, g x ∂μ → ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), (f + g) x ∂μ = ∫ (x : Ω) in s, (f + g) x ∂μ [PROOFSTEP] intro u v _ huint hvint hu hv hu_eq hv_eq [GOAL] case pos.refine'_3 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ u v : Ω → E a✝ : Disjoint (Function.support u) (Function.support v) huint : Memℒp u 1 hvint : Memℒp v 1 hu : StronglyMeasurable u hv : StronglyMeasurable v hu_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ hv_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), v x ∂μ = ∫ (x : Ω) in s, v x ∂μ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), (u + v) x ∂μ = ∫ (x : Ω) in s, (u + v) x ∂μ [PROOFSTEP] rw [memℒp_one_iff_integrable] at huint hvint [GOAL] case pos.refine'_3 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ u v : Ω → E a✝ : Disjoint (Function.support u) (Function.support v) huint : Integrable u hvint : Integrable v hu : StronglyMeasurable u hv : StronglyMeasurable v hu_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ hv_eq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), v x ∂μ = ∫ (x : Ω) in s, v x ∂μ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), (u + v) x ∂μ = ∫ (x : Ω) in s, (u + v) x ∂μ [PROOFSTEP] rw [integral_add' huint hvint, smul_add, hu_eq, hv_eq, integral_add' huint.integrableOn hvint.integrableOn] [GOAL] case pos.refine'_4 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ IsClosed {f | ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), ↑↑↑f x ∂μ = ∫ (x : Ω) in s, ↑↑↑f x ∂μ} [PROOFSTEP] have heq₁ : (fun f : lpMeas E ℝ m₁ 1 μ => ∫ x, (f : Ω → E) x ∂μ) = (fun f : Lp E 1 μ => ∫ x, f x ∂μ) ∘ Submodule.subtypeL _ := by refine' funext fun f => integral_congr_ae _ simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype]; norm_cast [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) [PROOFSTEP] refine' funext fun f => integral_congr_ae _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f✝ hindp : Indep m₁ m₂ hfint : Memℒp f✝ 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ f : { x // x ∈ lpMeas E ℝ m₁ 1 μ } ⊢ (fun x => ↑↑↑f x) =ᵐ[μ] fun x => ↑↑(↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f) x [PROOFSTEP] simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype] [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f✝ hindp : Indep m₁ m₂ hfint : Memℒp f✝ 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ f : { x // x ∈ lpMeas E ℝ m₁ 1 μ } ⊢ (fun x => ↑↑↑f x) =ᵐ[μ] fun x => ↑↑↑f x [PROOFSTEP] norm_cast [GOAL] case pos.refine'_4 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ IsClosed {f | ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), ↑↑↑f x ∂μ = ∫ (x : Ω) in s, ↑↑↑f x ∂μ} [PROOFSTEP] have heq₂ : (fun f : lpMeas E ℝ m₁ 1 μ => ∫ x in s, (f : Ω → E) x ∂μ) = (fun f : Lp E 1 μ => ∫ x in s, f x ∂μ) ∘ Submodule.subtypeL _ := by refine' funext fun f => integral_congr_ae (ae_restrict_of_ae _) simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype] exact eventually_of_forall fun _ => (by trivial) [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) [PROOFSTEP] refine' funext fun f => integral_congr_ae (ae_restrict_of_ae _) [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f✝ hindp : Indep m₁ m₂ hfint : Memℒp f✝ 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f : { x // x ∈ lpMeas E ℝ m₁ 1 μ } ⊢ ∀ᵐ (x : Ω) ∂μ, (fun x => ↑↑↑f x) x = (fun x => ↑↑(↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f) x) x [PROOFSTEP] simp_rw [Submodule.coe_subtypeL', Submodule.coeSubtype] [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f✝ hindp : Indep m₁ m₂ hfint : Memℒp f✝ 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f : { x // x ∈ lpMeas E ℝ m₁ 1 μ } ⊢ ∀ᵐ (x : Ω) ∂μ, True [PROOFSTEP] exact eventually_of_forall fun _ => (by trivial) [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f✝ hindp : Indep m₁ m₂ hfint : Memℒp f✝ 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) f : { x // x ∈ lpMeas E ℝ m₁ 1 μ } x✝ : Ω ⊢ True [PROOFSTEP] trivial [GOAL] case pos.refine'_4 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) heq₂ : (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ IsClosed {f | ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), ↑↑↑f x ∂μ = ∫ (x : Ω) in s, ↑↑↑f x ∂μ} [PROOFSTEP] refine' isClosed_eq (Continuous.const_smul _ _) _ [GOAL] case pos.refine'_4.refine'_1 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) heq₂ : (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ Continuous fun f => ∫ (x : Ω), ↑↑↑f x ∂μ [PROOFSTEP] rw [heq₁] [GOAL] case pos.refine'_4.refine'_1 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) heq₂ : (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ Continuous ((fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))) [PROOFSTEP] exact continuous_integral.comp (ContinuousLinearMap.continuous _) [GOAL] case pos.refine'_4.refine'_2 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) heq₂ : (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ Continuous fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ [PROOFSTEP] rw [heq₂] [GOAL] case pos.refine'_4.refine'_2 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ heq₁ : (fun f => ∫ (x : Ω), ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω), ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) heq₂ : (fun f => ∫ (x : Ω) in s, ↑↑↑f x ∂μ) = (fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ)) ⊢ Continuous ((fun f => ∫ (x : Ω) in s, ↑↑f x ∂μ) ∘ ↑(Submodule.subtypeL (lpMeas E ℝ m₁ 1 μ))) [PROOFSTEP] exact (continuous_set_integral _).comp (ContinuousLinearMap.continuous _) [GOAL] case pos.refine'_5 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ ⊢ ∀ ⦃f g : Ω → E⦄, f =ᵐ[μ] g → Memℒp f 1 → ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), f x ∂μ = ∫ (x : Ω) in s, f x ∂μ → ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), g x ∂μ = ∫ (x : Ω) in s, g x ∂μ [PROOFSTEP] intro u v huv _ hueq [GOAL] case pos.refine'_5 Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ u v : Ω → E huv : u =ᵐ[μ] v a✝ : Memℒp u 1 hueq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ ⊢ ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), v x ∂μ = ∫ (x : Ω) in s, v x ∂μ [PROOFSTEP] rwa [← integral_congr_ae huv, ← (set_integral_congr_ae (hle₂ _ hms) _ : ∫ x in s, u x ∂μ = ∫ x in s, v x ∂μ)] [GOAL] Ω : Type u_1 E : Type u_2 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E m₁ m₂ m : MeasurableSpace Ω μ : Measure Ω f : Ω → E hle₁ : m₁ ≤ m hle₂ : m₂ ≤ m inst✝ : SigmaFinite (Measure.trim μ hle₂) hf : StronglyMeasurable f hindp : Indep m₁ m₂ hfint : Memℒp f 1 s : Set Ω hms : MeasurableSet s hs : ↑↑μ s < ⊤ u v : Ω → E huv : u =ᵐ[μ] v a✝ : Memℒp u 1 hueq : ENNReal.toReal (↑↑μ s) • ∫ (x : Ω), u x ∂μ = ∫ (x : Ω) in s, u x ∂μ ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ s → u x = v x [PROOFSTEP] filter_upwards [huv] with x hx _ using hx
{"mathlib_filename": "Mathlib.Probability.ConditionalExpectation", "llama_tokens": 10870}
[GOAL] μ : Measure ℝ inst✝ : IsProbabilityMeasure μ x : ℝ ⊢ ENNReal.ofReal (↑(cdf μ) x) = ↑↑μ (Iic x) [PROOFSTEP] have h := lintegral_condCdf ((Measure.dirac Unit.unit).prod μ) x [GOAL] μ : Measure ℝ inst✝ : IsProbabilityMeasure μ x : ℝ h : ∫⁻ (a : Unit), ENNReal.ofReal (↑(condCdf (Measure.prod (Measure.dirac ()) μ) a) x) ∂Measure.fst (Measure.prod (Measure.dirac ()) μ) = ↑↑(Measure.prod (Measure.dirac ()) μ) (univ ×ˢ Iic x) ⊢ ENNReal.ofReal (↑(cdf μ) x) = ↑↑μ (Iic x) [PROOFSTEP] simpa only [MeasureTheory.Measure.fst_prod, Measure.prod_prod, measure_univ, one_mul, lintegral_dirac] using h [GOAL] μ : Measure ℝ inst✝ : IsProbabilityMeasure μ x : ℝ ⊢ ↑(cdf μ) x = ENNReal.toReal (↑↑μ (Iic x)) [PROOFSTEP] rw [← ofReal_cdf μ x, ENNReal.toReal_ofReal (cdf_nonneg μ x)] [GOAL] μ : Measure ℝ ⊢ IsProbabilityMeasure (StieltjesFunction.measure (cdf μ)) [PROOFSTEP] constructor [GOAL] case measure_univ μ : Measure ℝ ⊢ ↑↑(StieltjesFunction.measure (cdf μ)) univ = 1 [PROOFSTEP] simp only [StieltjesFunction.measure_univ _ (tendsto_cdf_atBot μ) (tendsto_cdf_atTop μ), sub_zero, ENNReal.ofReal_one] [GOAL] μ : Measure ℝ inst✝ : IsProbabilityMeasure μ ⊢ StieltjesFunction.measure (cdf μ) = μ [PROOFSTEP] refine Measure.ext_of_Iic (cdf μ).measure μ (fun a ↦ ?_) [GOAL] μ : Measure ℝ inst✝ : IsProbabilityMeasure μ a : ℝ ⊢ ↑↑(StieltjesFunction.measure (cdf μ)) (Iic a) = ↑↑μ (Iic a) [PROOFSTEP] rw [StieltjesFunction.measure_Iic _ (tendsto_cdf_atBot μ), sub_zero, ofReal_cdf] [GOAL] f : StieltjesFunction hf0 : Tendsto (↑f) atBot (𝓝 0) hf1 : Tendsto (↑f) atTop (𝓝 1) ⊢ cdf (StieltjesFunction.measure f) = f [PROOFSTEP] refine (cdf f.measure).eq_of_measure_of_tendsto_atBot f ?_ (tendsto_cdf_atBot _) hf0 [GOAL] f : StieltjesFunction hf0 : Tendsto (↑f) atBot (𝓝 0) hf1 : Tendsto (↑f) atTop (𝓝 1) ⊢ StieltjesFunction.measure (cdf (StieltjesFunction.measure f)) = StieltjesFunction.measure f [PROOFSTEP] have h_prob : IsProbabilityMeasure f.measure := ⟨by rw [f.measure_univ hf0 hf1, sub_zero, ENNReal.ofReal_one]⟩ [GOAL] f : StieltjesFunction hf0 : Tendsto (↑f) atBot (𝓝 0) hf1 : Tendsto (↑f) atTop (𝓝 1) ⊢ ↑↑(StieltjesFunction.measure f) univ = 1 [PROOFSTEP] rw [f.measure_univ hf0 hf1, sub_zero, ENNReal.ofReal_one] [GOAL] f : StieltjesFunction hf0 : Tendsto (↑f) atBot (𝓝 0) hf1 : Tendsto (↑f) atTop (𝓝 1) h_prob : IsProbabilityMeasure (StieltjesFunction.measure f) ⊢ StieltjesFunction.measure (cdf (StieltjesFunction.measure f)) = StieltjesFunction.measure f [PROOFSTEP] exact measure_cdf f.measure [GOAL] μ ν : Measure ℝ inst✝¹ : IsProbabilityMeasure μ inst✝ : IsProbabilityMeasure ν h : cdf μ = cdf ν ⊢ μ = ν [PROOFSTEP] rw [← measure_cdf μ, ← measure_cdf ν, h] [GOAL] μ ν : Measure ℝ inst✝¹ : IsProbabilityMeasure μ inst✝ : IsProbabilityMeasure ν h : μ = ν ⊢ cdf μ = cdf ν [PROOFSTEP] rw [h]
{"mathlib_filename": "Mathlib.Probability.Cdf", "llama_tokens": 1371}
[GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hf : ∀ (i : ι), StronglyMeasurable (f i) hfi : iIndepFun (fun x => mβ) f hij : i < j ⊢ Indep (MeasurableSpace.comap (f j) mβ) (↑(Filtration.natural f hf) i) [PROOFSTEP] suffices Indep (⨆ k ∈ ({ j } : Set ι), MeasurableSpace.comap (f k) mβ) (⨆ k ∈ {k | k ≤ i}, MeasurableSpace.comap (f k) mβ) μ by rwa [iSup_singleton] at this [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hf : ∀ (i : ι), StronglyMeasurable (f i) hfi : iIndepFun (fun x => mβ) f hij : i < j this : Indep (⨆ (k : ι) (_ : k ∈ {j}), MeasurableSpace.comap (f k) mβ) (⨆ (k : ι) (_ : k ∈ {k | k ≤ i}), MeasurableSpace.comap (f k) mβ) ⊢ Indep (MeasurableSpace.comap (f j) mβ) (↑(Filtration.natural f hf) i) [PROOFSTEP] rwa [iSup_singleton] at this [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hf : ∀ (i : ι), StronglyMeasurable (f i) hfi : iIndepFun (fun x => mβ) f hij : i < j ⊢ Indep (⨆ (k : ι) (_ : k ∈ {j}), MeasurableSpace.comap (f k) mβ) (⨆ (k : ι) (_ : k ∈ {k | k ≤ i}), MeasurableSpace.comap (f k) mβ) [PROOFSTEP] exact indep_iSup_of_disjoint (fun k => (hf k).measurable.comap_le) hfi (by simpa) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hf : ∀ (i : ι), StronglyMeasurable (f i) hfi : iIndepFun (fun x => mβ) f hij : i < j ⊢ Disjoint {j} {k | k ≤ i} [PROOFSTEP] simpa [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s hij : i < j ⊢ μ[Set.indicator (s j) fun x => 1|↑(filtrationOfSet hsm) i] =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j)) [PROOFSTEP] rw [Filtration.filtrationOfSet_eq_natural (β := ℝ) hsm] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s hij : i < j ⊢ μ[Set.indicator (s j) fun x => 1|↑(Filtration.natural (fun i => Set.indicator (s i) fun x => 1) (_ : ∀ (i : ι), StronglyMeasurable (Set.indicator (s i) 1))) i] =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j)) [PROOFSTEP] refine' (iIndepFun.condexp_natural_ae_eq_of_lt _ hs.iIndepFun_indicator hij).trans _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s hij : i < j ⊢ (fun x => ∫ (x : Ω), Set.indicator (s j) (fun _ω => 1) x ∂μ) =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j)) [PROOFSTEP] simp only [integral_indicator_const _ (hsm _), Algebra.id.smul_eq_mul, mul_one] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s : ι → Set Ω hsm : ∀ (n : ι), MeasurableSet (s n) hs : iIndepSet s hij : i < j ⊢ (fun x => ENNReal.toReal (↑↑μ (s j))) =ᵐ[μ] fun x => ENNReal.toReal (↑↑μ (s j)) [PROOFSTEP] rfl [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ ⊢ ↑↑μ (limsup s atTop) = 1 [PROOFSTEP] rw [measure_congr (eventuallyEq_set.2 (ae_mem_limsup_atTop_iff μ <| measurableSet_filtrationOfSet' hsm) : (limsup s atTop : Set Ω) =ᵐ[μ] {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[(s (k + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm k]) ω) atTop atTop})] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ ⊢ ↑↑μ {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} = 1 [PROOFSTEP] suffices {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[(s (k + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm k]) ω) atTop atTop} =ᵐ[μ] Set.univ by rw [measure_congr this, measure_univ] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} =ᵐ[μ] Set.univ ⊢ ↑↑μ {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} = 1 [PROOFSTEP] rw [measure_congr this, measure_univ] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ ⊢ {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} =ᵐ[μ] Set.univ [PROOFSTEP] have : ∀ᵐ ω ∂μ, ∀ n, (μ[(s (n + 1)).indicator (1 : Ω → ℝ)|filtrationOfSet hsm n]) ω = _ := ae_all_iff.2 fun n => hs.condexp_indicator_filtrationOfSet_ae_eq hsm n.lt_succ_self [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ⊢ {ω | Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop} =ᵐ[μ] Set.univ [PROOFSTEP] filter_upwards [this] with ω hω [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) ⊢ setOf (fun ω => Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop) ω = Set.univ ω [PROOFSTEP] refine' eq_true (_ : Tendsto _ _ _) [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) ⊢ Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑(filtrationOfSet hsm) k]) ω) atTop atTop [PROOFSTEP] simp_rw [hω] [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) ⊢ Tendsto (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) atTop atTop [PROOFSTEP] have htends : Tendsto (fun n => ∑ k in Finset.range n, μ (s (k + 1))) atTop (𝓝 ∞) := by rw [← ENNReal.tsum_add_one_eq_top hs' (measure_ne_top _ _)] exact ENNReal.tendsto_nat_tsum _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) ⊢ Tendsto (fun n => ∑ k in Finset.range n, ↑↑μ (s (k + 1))) atTop (𝓝 ⊤) [PROOFSTEP] rw [← ENNReal.tsum_add_one_eq_top hs' (measure_ne_top _ _)] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) ⊢ Tendsto (fun n => ∑ k in Finset.range n, ↑↑μ (s (k + 1))) atTop (𝓝 (∑' (n : ℕ), ↑↑μ (s (n + 1)))) [PROOFSTEP] exact ENNReal.tendsto_nat_tsum _ [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : Tendsto (fun n => ∑ k in Finset.range n, ↑↑μ (s (k + 1))) atTop (𝓝 ⊤) ⊢ Tendsto (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) atTop atTop [PROOFSTEP] rw [ENNReal.tendsto_nhds_top_iff_nnreal] at htends [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) ⊢ Tendsto (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) atTop atTop [PROOFSTEP] refine' tendsto_atTop_atTop_of_monotone' _ _ [GOAL] case h.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) ⊢ Monotone fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))) [PROOFSTEP] refine' monotone_nat_of_le_succ fun n => _ [GOAL] case h.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) n : ℕ ⊢ ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))) ≤ ∑ x in Finset.range (n + 1), ENNReal.toReal (↑↑μ (s (x + 1))) [PROOFSTEP] rw [← sub_nonneg, Finset.sum_range_succ_sub_sum] [GOAL] case h.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) n : ℕ ⊢ 0 ≤ ENNReal.toReal (↑↑μ (s (n + 1))) [PROOFSTEP] exact ENNReal.toReal_nonneg [GOAL] case h.refine'_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) ⊢ ¬BddAbove (Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) [PROOFSTEP] rintro ⟨B, hB⟩ [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ hB : B ∈ upperBounds (Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) ⊢ False [PROOFSTEP] refine' not_eventually.2 (frequently_of_forall fun n => _) (htends B.toNNReal) [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ hB : B ∈ upperBounds (Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) n : ℕ ⊢ ¬↑(Real.toNNReal B) < ∑ k in Finset.range n, ↑↑μ (s (k + 1)) [PROOFSTEP] rw [mem_upperBounds] at hB [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B n : ℕ ⊢ ¬↑(Real.toNNReal B) < ∑ k in Finset.range n, ↑↑μ (s (k + 1)) [PROOFSTEP] specialize hB (∑ k : ℕ in Finset.range n, μ (s (k + 1))).toReal _ [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B n : ℕ ⊢ ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1))) [PROOFSTEP] refine' ⟨n, _⟩ [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B n : ℕ ⊢ (fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) n = ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) [PROOFSTEP] rw [ENNReal.toReal_sum] [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ hB : ∀ (x : ℝ), (x ∈ Set.range fun n => ∑ x in Finset.range n, ENNReal.toReal (↑↑μ (s (x + 1)))) → x ≤ B n : ℕ ⊢ ∀ (a : ℕ), a ∈ Finset.range n → ↑↑μ (s (a + 1)) ≠ ⊤ [PROOFSTEP] exact fun _ _ => measure_ne_top _ _ [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ n : ℕ hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B ⊢ ¬↑(Real.toNNReal B) < ∑ k in Finset.range n, ↑↑μ (s (k + 1)) [PROOFSTEP] rw [not_lt, ← ENNReal.toReal_le_toReal (ENNReal.sum_lt_top _).ne ENNReal.coe_ne_top] [GOAL] case h.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ n : ℕ hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B ⊢ ENNReal.toReal (∑ a in Finset.range n, ↑↑μ (s (a + 1))) ≤ ENNReal.toReal ↑(Real.toNNReal B) [PROOFSTEP] exact hB.trans (by simp) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ n : ℕ hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B ⊢ B ≤ ENNReal.toReal ↑(Real.toNNReal B) [PROOFSTEP] simp [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ ι : Type u_2 β : Type u_3 inst✝² : LinearOrder ι mβ : MeasurableSpace β inst✝¹ : NormedAddCommGroup β inst✝ : BorelSpace β f : ι → Ω → β i j : ι s✝ : ι → Set Ω s : ℕ → Set Ω hsm : ∀ (n : ℕ), MeasurableSet (s n) hs : iIndepSet s hs' : ∑' (n : ℕ), ↑↑μ (s n) = ⊤ this : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = (fun x => ENNReal.toReal (↑↑μ (s (n + 1)))) ω ω : Ω hω : ∀ (n : ℕ), (μ[Set.indicator (s (n + 1)) 1|↑(filtrationOfSet hsm) n]) ω = ENNReal.toReal (↑↑μ (s (n + 1))) htends : ∀ (x : NNReal), ∀ᶠ (a : ℕ) in atTop, ↑x < ∑ k in Finset.range a, ↑↑μ (s (k + 1)) B : ℝ n : ℕ hB : ENNReal.toReal (∑ k in Finset.range n, ↑↑μ (s (k + 1))) ≤ B ⊢ ∀ (a : ℕ), a ∈ Finset.range n → ↑↑μ (s (a + 1)) ≠ ⊤ [PROOFSTEP] exact fun _ _ => measure_ne_top _ _
{"mathlib_filename": "Mathlib.Probability.BorelCantelli", "llama_tokens": 14358}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ u : γ → δ h : IdentDistrib f g hu : AEMeasurable u ⊢ AEMeasurable (u ∘ g) [PROOFSTEP] rw [h.map_eq] at hu [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ u : γ → δ h : IdentDistrib f g hu : AEMeasurable u ⊢ AEMeasurable (u ∘ g) [PROOFSTEP] exact hu.comp_aemeasurable h.aemeasurable_snd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ u : γ → δ h : IdentDistrib f g hu : AEMeasurable u ⊢ Measure.map (u ∘ f) μ = Measure.map (u ∘ g) ν [PROOFSTEP] rw [← AEMeasurable.map_map_of_aemeasurable hu h.aemeasurable_fst, ← AEMeasurable.map_map_of_aemeasurable _ h.aemeasurable_snd, h.map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ u : γ → δ h : IdentDistrib f g hu : AEMeasurable u ⊢ AEMeasurable u [PROOFSTEP] rwa [← h.map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ h : IdentDistrib f g s : Set γ hs : MeasurableSet s ⊢ ↑↑μ (f ⁻¹' s) = ↑↑ν (g ⁻¹' s) [PROOFSTEP] rw [← Measure.map_apply_of_aemeasurable h.aemeasurable_fst hs, ← Measure.map_apply_of_aemeasurable h.aemeasurable_snd hs, h.map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ h : IdentDistrib f g p : γ → Prop pmeas : MeasurableSet {x | p x} hp : ∀ᵐ (x : α) ∂μ, p (f x) ⊢ ∀ᵐ (x : β) ∂ν, p (g x) [PROOFSTEP] apply (ae_map_iff h.aemeasurable_snd pmeas).1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ h : IdentDistrib f g p : γ → Prop pmeas : MeasurableSet {x | p x} hp : ∀ᵐ (x : α) ∂μ, p (f x) ⊢ ∀ᵐ (y : γ) ∂Measure.map g ν, p y [PROOFSTEP] rw [← h.map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ h : IdentDistrib f g p : γ → Prop pmeas : MeasurableSet {x | p x} hp : ∀ᵐ (x : α) ∂μ, p (f x) ⊢ ∀ᵐ (y : γ) ∂Measure.map f μ, p y [PROOFSTEP] exact (ae_map_iff h.aemeasurable_fst pmeas).2 hp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : TopologicalSpace γ inst✝¹ : MetrizableSpace γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable g ν [PROOFSTEP] refine' aestronglyMeasurable_iff_aemeasurable_separable.2 ⟨h.aemeasurable_snd, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : TopologicalSpace γ inst✝¹ : MetrizableSpace γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ ⊢ ∃ t, IsSeparable t ∧ ∀ᵐ (x : β) ∂ν, g x ∈ t [PROOFSTEP] rcases(aestronglyMeasurable_iff_aemeasurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : TopologicalSpace γ inst✝¹ : MetrizableSpace γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ ∃ t, IsSeparable t ∧ ∀ᵐ (x : β) ∂ν, g x ∈ t [PROOFSTEP] refine' ⟨closure t, t_sep.closure, _⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : TopologicalSpace γ inst✝¹ : MetrizableSpace γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ ∀ᵐ (x : β) ∂ν, g x ∈ closure t [PROOFSTEP] apply h.ae_mem_snd isClosed_closure.measurableSet [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : TopologicalSpace γ inst✝¹ : MetrizableSpace γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ ∀ᵐ (x : α) ∂μ, f x ∈ closure t [PROOFSTEP] filter_upwards [ht] with x hx using subset_closure hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁷ : MeasurableSpace α inst✝⁶ : MeasurableSpace β inst✝⁵ : MeasurableSpace γ inst✝⁴ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝³ : ConditionallyCompleteLinearOrder γ inst✝² : TopologicalSpace γ inst✝¹ : OpensMeasurableSpace γ inst✝ : OrderClosedTopology γ h : IdentDistrib f g ⊢ essSup f μ = essSup g ν [PROOFSTEP] have I : ∀ a, μ {x : α | a < f x} = ν {x : β | a < g x} := fun a => h.measure_mem_eq measurableSet_Ioi [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁷ : MeasurableSpace α inst✝⁶ : MeasurableSpace β inst✝⁵ : MeasurableSpace γ inst✝⁴ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝³ : ConditionallyCompleteLinearOrder γ inst✝² : TopologicalSpace γ inst✝¹ : OpensMeasurableSpace γ inst✝ : OrderClosedTopology γ h : IdentDistrib f g I : ∀ (a : γ), ↑↑μ {x | a < f x} = ↑↑ν {x | a < g x} ⊢ essSup f μ = essSup g ν [PROOFSTEP] simp_rw [essSup_eq_sInf, I] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ≥0∞ g : β → ℝ≥0∞ h : IdentDistrib f g ⊢ ∫⁻ (x : α), f x ∂μ = ∫⁻ (x : β), g x ∂ν [PROOFSTEP] change ∫⁻ x, id (f x) ∂μ = ∫⁻ x, id (g x) ∂ν [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ≥0∞ g : β → ℝ≥0∞ h : IdentDistrib f g ⊢ ∫⁻ (x : α), id (f x) ∂μ = ∫⁻ (x : β), id (g x) ∂ν [PROOFSTEP] rw [← lintegral_map' aemeasurable_id h.aemeasurable_fst, ← lintegral_map' aemeasurable_id h.aemeasurable_snd, h.map_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g ⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν [PROOFSTEP] by_cases hf : AEStronglyMeasurable f μ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ ⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν [PROOFSTEP] have A : AEStronglyMeasurable id (Measure.map f μ) := by rw [aestronglyMeasurable_iff_aemeasurable_separable] rcases(aestronglyMeasurable_iff_aemeasurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩ refine' ⟨aemeasurable_id, ⟨closure t, t_sep.closure, _⟩⟩ rw [ae_map_iff h.aemeasurable_fst] · filter_upwards [ht] with x hx using subset_closure hx · exact isClosed_closure.measurableSet [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable id (Measure.map f μ) [PROOFSTEP] rw [aestronglyMeasurable_iff_aemeasurable_separable] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ ⊢ AEMeasurable id ∧ ∃ t, IsSeparable t ∧ ∀ᵐ (x : γ) ∂Measure.map f μ, id x ∈ t [PROOFSTEP] rcases(aestronglyMeasurable_iff_aemeasurable_separable.1 hf).2 with ⟨t, t_sep, ht⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ AEMeasurable id ∧ ∃ t, IsSeparable t ∧ ∀ᵐ (x : γ) ∂Measure.map f μ, id x ∈ t [PROOFSTEP] refine' ⟨aemeasurable_id, ⟨closure t, t_sep.closure, _⟩⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ ∀ᵐ (x : γ) ∂Measure.map f μ, id x ∈ closure t [PROOFSTEP] rw [ae_map_iff h.aemeasurable_fst] [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ ∀ᵐ (x : α) ∂μ, id (f x) ∈ closure t [PROOFSTEP] filter_upwards [ht] with x hx using subset_closure hx [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ t : Set γ t_sep : IsSeparable t ht : ∀ᵐ (x : α) ∂μ, f x ∈ t ⊢ MeasurableSet {x | id x ∈ closure t} [PROOFSTEP] exact isClosed_closure.measurableSet [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ A : AEStronglyMeasurable id (Measure.map f μ) ⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν [PROOFSTEP] change ∫ x, id (f x) ∂μ = ∫ x, id (g x) ∂ν [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ A : AEStronglyMeasurable id (Measure.map f μ) ⊢ ∫ (x : α), id (f x) ∂μ = ∫ (x : β), id (g x) ∂ν [PROOFSTEP] rw [← integral_map h.aemeasurable_fst A] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ A : AEStronglyMeasurable id (Measure.map f μ) ⊢ ∫ (y : γ), id y ∂Measure.map f μ = ∫ (x : β), id (g x) ∂ν [PROOFSTEP] rw [h.map_eq] at A [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : AEStronglyMeasurable f μ A : AEStronglyMeasurable id (Measure.map g ν) ⊢ ∫ (y : γ), id y ∂Measure.map f μ = ∫ (x : β), id (g x) ∂ν [PROOFSTEP] rw [← integral_map h.aemeasurable_snd A, h.map_eq] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : ¬AEStronglyMeasurable f μ ⊢ ∫ (x : α), f x ∂μ = ∫ (x : β), g x ∂ν [PROOFSTEP] rw [integral_non_aestronglyMeasurable hf] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : ¬AEStronglyMeasurable f μ ⊢ 0 = ∫ (x : β), g x ∂ν [PROOFSTEP] rw [h.aestronglyMeasurable_iff] at hf [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁶ : MeasurableSpace α inst✝⁵ : MeasurableSpace β inst✝⁴ : MeasurableSpace γ inst✝³ : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝² : NormedAddCommGroup γ inst✝¹ : NormedSpace ℝ γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : ¬AEStronglyMeasurable g ν ⊢ 0 = ∫ (x : β), g x ∂ν [PROOFSTEP] rw [integral_non_aestronglyMeasurable hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ ⊢ snorm f p μ = snorm g p ν [PROOFSTEP] by_cases h0 : p = 0 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : p = 0 ⊢ snorm f p μ = snorm g p ν [PROOFSTEP] simp [h0] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 ⊢ snorm f p μ = snorm g p ν [PROOFSTEP] by_cases h_top : p = ∞ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : p = ⊤ ⊢ snorm f p μ = snorm g p ν [PROOFSTEP] simp only [h_top, snorm, snormEssSup, ENNReal.top_ne_zero, eq_self_iff_true, if_true, if_false] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : p = ⊤ ⊢ essSup (fun x => ↑‖f x‖₊) μ = essSup (fun x => ↑‖g x‖₊) ν [PROOFSTEP] apply essSup_eq [GOAL] case pos.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : p = ⊤ ⊢ IdentDistrib (fun x => ↑‖f x‖₊) fun x => ↑‖g x‖₊ [PROOFSTEP] exact h.comp (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : ¬p = ⊤ ⊢ snorm f p μ = snorm g p ν [PROOFSTEP] simp only [snorm_eq_snorm' h0 h_top, snorm', one_div] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : ¬p = ⊤ ⊢ (∫⁻ (a : α), ↑‖f a‖₊ ^ ENNReal.toReal p ∂μ) ^ (ENNReal.toReal p)⁻¹ = (∫⁻ (a : β), ↑‖g a‖₊ ^ ENNReal.toReal p ∂ν) ^ (ENNReal.toReal p)⁻¹ [PROOFSTEP] congr 1 [GOAL] case neg.e_a α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : ¬p = ⊤ ⊢ ∫⁻ (a : α), ↑‖f a‖₊ ^ ENNReal.toReal p ∂μ = ∫⁻ (a : β), ↑‖g a‖₊ ^ ENNReal.toReal p ∂ν [PROOFSTEP] apply lintegral_eq [GOAL] case neg.e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : OpensMeasurableSpace γ h : IdentDistrib f g p : ℝ≥0∞ h0 : ¬p = 0 h_top : ¬p = ⊤ ⊢ IdentDistrib (fun x => ↑‖f x‖₊ ^ ENNReal.toReal p) fun x => ↑‖g x‖₊ ^ ENNReal.toReal p [PROOFSTEP] exact h.comp (Measurable.pow_const (measurable_coe_nnreal_ennreal.comp measurable_nnnorm) p.toReal) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : BorelSpace γ p : ℝ≥0∞ h : IdentDistrib f g hf : Memℒp f p ⊢ Memℒp g p [PROOFSTEP] refine' ⟨h.aestronglyMeasurable_snd hf.aestronglyMeasurable, _⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : BorelSpace γ p : ℝ≥0∞ h : IdentDistrib f g hf : Memℒp f p ⊢ snorm g p ν < ⊤ [PROOFSTEP] rw [← h.snorm_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : BorelSpace γ p : ℝ≥0∞ h : IdentDistrib f g hf : Memℒp f p ⊢ snorm f p μ < ⊤ [PROOFSTEP] exact hf.2 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : Integrable f ⊢ Integrable g [PROOFSTEP] rw [← memℒp_one_iff_integrable] at hf ⊢ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁵ : MeasurableSpace α inst✝⁴ : MeasurableSpace β inst✝³ : MeasurableSpace γ inst✝² : MeasurableSpace δ μ : Measure α ν : Measure β f : α → γ g : β → γ inst✝¹ : NormedAddCommGroup γ inst✝ : BorelSpace γ h : IdentDistrib f g hf : Memℒp f 1 ⊢ Memℒp g 1 [PROOFSTEP] exact h.memℒp_snd hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ g : β → ℝ h : IdentDistrib f g ⊢ evariance f μ = evariance g ν [PROOFSTEP] convert (h.sub_const (∫ x, f x ∂μ)).nnnorm.coe_nnreal_ennreal.sq.lintegral_eq [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ g : β → ℝ h : IdentDistrib f g ⊢ evariance g ν = ∫⁻ (x : β), ↑‖g x - ∫ (x : α), f x ∂μ‖₊ ^ 2 ∂ν [PROOFSTEP] rw [h.integral_eq] [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ g : β → ℝ h : IdentDistrib f g ⊢ evariance g ν = ∫⁻ (x : β), ↑‖g x - ∫ (x : β), g x ∂ν‖₊ ^ 2 ∂ν [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ g : β → ℝ h : IdentDistrib f g ⊢ variance f μ = variance g ν [PROOFSTEP] rw [variance, h.evariance_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝³ : MeasurableSpace α inst✝² : MeasurableSpace β inst✝¹ : MeasurableSpace γ inst✝ : MeasurableSpace δ μ : Measure α ν : Measure β f✝ : α → γ g✝ : β → γ f : α → ℝ g : β → ℝ h : IdentDistrib f g ⊢ ENNReal.toReal (evariance g ν) = variance g ν [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ⊢ UniformIntegrable f p μ [PROOFSTEP] refine' uniformIntegrable_of' hp hp' hfmeas fun ε hε => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε ⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε [PROOFSTEP] by_cases hι : Nonempty ι [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι ⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : ¬Nonempty ι ⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : ¬Nonempty ι ⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε [PROOFSTEP] exact ⟨0, fun i => False.elim (hι <| Nonempty.intro i)⟩ [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι ⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε [PROOFSTEP] obtain ⟨C, hC₁, hC₂⟩ := hℒp.snorm_indicator_norm_ge_pos_le μ (hfmeas _) hε [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε ⊢ ∃ C, ∀ (i : ι), snorm (Set.indicator {x | C ≤ ‖f i x‖₊} (f i)) p μ ≤ ENNReal.ofReal ε [PROOFSTEP] refine' ⟨⟨C, hC₁.le⟩, fun i => le_trans (le_of_eq _) hC₂⟩ [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι ⊢ snorm (Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i)) p μ = snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ [PROOFSTEP] have : {x : α | (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ‖f i x‖₊}.indicator (f i) = (fun x : E => if (⟨C, hC₁.le⟩ : ℝ≥0) ≤ ‖x‖₊ then x else 0) ∘ f i := by ext x simp only [Set.indicator, Set.mem_setOf_eq]; norm_cast [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι ⊢ Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι x : α ⊢ Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) x = ((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i) x [PROOFSTEP] simp only [Set.indicator, Set.mem_setOf_eq] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι x : α ⊢ (if { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊ then f i x else 0) = ((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i) x [PROOFSTEP] norm_cast [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ snorm (Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i)) p μ = snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ [PROOFSTEP] simp_rw [coe_nnnorm, this] [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ snorm ((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i) p μ = snorm (Set.indicator {x | C ≤ ‖f j x‖} (f j)) p μ [PROOFSTEP] rw [← snorm_map_measure _ (hf i).aemeasurable_fst, (hf i).map_eq, snorm_map_measure _ (hf j).aemeasurable_fst] [GOAL] case pos.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ snorm ((fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f j) p μ = snorm (Set.indicator {x | C ≤ ‖f j x‖} (f j)) p μ [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f j) μ) α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f i) μ) [PROOFSTEP] all_goals exact_mod_cast aestronglyMeasurable_id.indicator (measurableSet_le measurable_const measurable_nnnorm) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f j) μ) [PROOFSTEP] exact_mod_cast aestronglyMeasurable_id.indicator (measurableSet_le measurable_const measurable_nnnorm) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hfmeas : ∀ (i : ι), StronglyMeasurable (f i) hf : ∀ (i : ι), IdentDistrib (f i) (f j) ε : ℝ hε : 0 < ε hι : Nonempty ι C : ℝ hC₁ : 0 < C hC₂ : snorm (Set.indicator {x | C ≤ ↑‖f j x‖₊} (f j)) p μ ≤ ENNReal.ofReal ε i : ι this : Set.indicator {x | { val := C, property := (_ : 0 ≤ C) } ≤ ‖f i x‖₊} (f i) = (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) ∘ f i ⊢ AEStronglyMeasurable (fun x => if { val := C, property := (_ : 0 ≤ C) } ≤ ‖x‖₊ then x else 0) (Measure.map (f i) μ) [PROOFSTEP] exact_mod_cast aestronglyMeasurable_id.indicator (measurableSet_le measurable_const measurable_nnnorm) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hf : ∀ (i : ι), IdentDistrib (f i) (f j) ⊢ UniformIntegrable f p μ [PROOFSTEP] have hfmeas : ∀ i, AEStronglyMeasurable (f i) μ := fun i => (hf i).aestronglyMeasurable_iff.2 hℒp.1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hf : ∀ (i : ι), IdentDistrib (f i) (f j) hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ ⊢ UniformIntegrable f p μ [PROOFSTEP] set g : ι → α → E := fun i => (hfmeas i).choose [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hf : ∀ (i : ι), IdentDistrib (f i) (f j) hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ) ⊢ UniformIntegrable f p μ [PROOFSTEP] have hgmeas : ∀ i, StronglyMeasurable (g i) := fun i => (Exists.choose_spec <| hfmeas i).1 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hf : ∀ (i : ι), IdentDistrib (f i) (f j) hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ) hgmeas : ∀ (i : ι), StronglyMeasurable (g i) ⊢ UniformIntegrable f p μ [PROOFSTEP] have hgeq : ∀ i, g i =ᵐ[μ] f i := fun i => (Exists.choose_spec <| hfmeas i).2.symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hf : ∀ (i : ι), IdentDistrib (f i) (f j) hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ) hgmeas : ∀ (i : ι), StronglyMeasurable (g i) hgeq : ∀ (i : ι), g i =ᵐ[μ] f i ⊢ UniformIntegrable f p μ [PROOFSTEP] have hgℒp : Memℒp (g j) p μ := hℒp.ae_eq (hgeq j).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 inst✝⁸ : MeasurableSpace α inst✝⁷ : MeasurableSpace β inst✝⁶ : MeasurableSpace γ inst✝⁵ : MeasurableSpace δ E : Type u_5 inst✝⁴ : MeasurableSpace E inst✝³ : NormedAddCommGroup E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E μ : Measure α inst✝ : IsFiniteMeasure μ ι : Type u_6 f : ι → α → E j : ι p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ hℒp : Memℒp (f j) p hf : ∀ (i : ι), IdentDistrib (f i) (f j) hfmeas : ∀ (i : ι), AEStronglyMeasurable (f i) μ g : ι → α → E := fun i => Exists.choose (_ : AEStronglyMeasurable (f i) μ) hgmeas : ∀ (i : ι), StronglyMeasurable (g i) hgeq : ∀ (i : ι), g i =ᵐ[μ] f i hgℒp : Memℒp (g j) p ⊢ UniformIntegrable f p μ [PROOFSTEP] exact UniformIntegrable.ae_eq (Memℒp.uniformIntegrable_of_identDistrib_aux hp hp' hgℒp hgmeas fun i => (IdentDistrib.of_ae_eq (hgmeas i).aemeasurable (hgeq i)).trans ((hf i).trans <| IdentDistrib.of_ae_eq (hfmeas j).aemeasurable (hgeq j).symm)) hgeq
{"mathlib_filename": "Mathlib.Probability.IdentDistrib", "llama_tokens": 22697}
[GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f g : Filtration ι m h : ↑f = ↑g ⊢ f = g [PROOFSTEP] cases f [GOAL] case mk Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι g : Filtration ι m seq✝ : ι → MeasurableSpace Ω mono'✝ : Monotone seq✝ le'✝ : ∀ (i : ι), seq✝ i ≤ m h : ↑{ seq := seq✝, mono' := mono'✝, le' := le'✝ } = ↑g ⊢ { seq := seq✝, mono' := mono'✝, le' := le'✝ } = g [PROOFSTEP] cases g [GOAL] case mk.mk Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι seq✝¹ : ι → MeasurableSpace Ω mono'✝¹ : Monotone seq✝¹ le'✝¹ : ∀ (i : ι), seq✝¹ i ≤ m seq✝ : ι → MeasurableSpace Ω mono'✝ : Monotone seq✝ le'✝ : ∀ (i : ι), seq✝ i ≤ m h : ↑{ seq := seq✝¹, mono' := mono'✝¹, le' := le'✝¹ } = ↑{ seq := seq✝, mono' := mono'✝, le' := le'✝ } ⊢ { seq := seq✝¹, mono' := mono'✝¹, le' := le'✝¹ } = { seq := seq✝, mono' := mono'✝, le' := le'✝ } [PROOFSTEP] congr [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j ⊢ (fun i => sSup ((fun f => ↑f i) '' s)) i ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] refine' sSup_le fun m' hm' => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j m' : MeasurableSpace Ω hm' : m' ∈ (fun f => ↑f i) '' s ⊢ m' ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] rw [Set.mem_image] at hm' [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j m' : MeasurableSpace Ω hm' : ∃ x, x ∈ s ∧ ↑x i = m' ⊢ m' ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] obtain ⟨f, hf_mem, hfm'⟩ := hm' [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j m' : MeasurableSpace Ω f : Filtration ι m hf_mem : f ∈ s hfm' : ↑f i = m' ⊢ m' ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] rw [← hfm'] [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j m' : MeasurableSpace Ω f : Filtration ι m hf_mem : f ∈ s hfm' : ↑f i = m' ⊢ ↑f i ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] refine' (f.mono hij).trans _ [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j m' : MeasurableSpace Ω f : Filtration ι m hf_mem : f ∈ s hfm' : ↑f i = m' ⊢ ↑f j ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] have hfj_mem : f j ∈ (fun g : Filtration ι m => g j) '' s := ⟨f, hf_mem, rfl⟩ [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j m' : MeasurableSpace Ω f : Filtration ι m hf_mem : f ∈ s hfm' : ↑f i = m' hfj_mem : ↑f j ∈ (fun g => ↑g j) '' s ⊢ ↑f j ≤ (fun i => sSup ((fun f => ↑f i) '' s)) j [PROOFSTEP] exact le_sSup hfj_mem [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι ⊢ (fun i => sSup ((fun f => ↑f i) '' s)) i ≤ m [PROOFSTEP] refine' sSup_le fun m' hm' => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι m' : MeasurableSpace Ω hm' : m' ∈ (fun f => ↑f i) '' s ⊢ m' ≤ m [PROOFSTEP] rw [Set.mem_image] at hm' [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι m' : MeasurableSpace Ω hm' : ∃ x, x ∈ s ∧ ↑x i = m' ⊢ m' ≤ m [PROOFSTEP] obtain ⟨f, _, hfm'⟩ := hm' [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι m' : MeasurableSpace Ω f : Filtration ι m left✝ : f ∈ s hfm' : ↑f i = m' ⊢ m' ≤ m [PROOFSTEP] rw [← hfm'] [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι m' : MeasurableSpace Ω f : Filtration ι m left✝ : f ∈ s hfm' : ↑f i = m' ⊢ ↑f i ≤ m [PROOFSTEP] exact f.le i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j [PROOFSTEP] by_cases h_nonempty : Set.Nonempty s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : ¬Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j [PROOFSTEP] swap [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : ¬Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j [PROOFSTEP] simp only [h_nonempty, Set.nonempty_image_iff, if_false, le_refl] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) j [PROOFSTEP] simp only [h_nonempty, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : Set.Nonempty s ⊢ ∀ (a : Filtration ι m), a ∈ s → sInf ((fun f => ↑f i) '' s) ≤ ↑a j [PROOFSTEP] refine' fun f hf_mem => le_trans _ (f.mono hij) [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : Set.Nonempty s f : Filtration ι m hf_mem : f ∈ s ⊢ sInf ((fun f => ↑f i) '' s) ≤ ↑f i [PROOFSTEP] have hfi_mem : f i ∈ (fun g : Filtration ι m => g i) '' s := ⟨f, hf_mem, rfl⟩ [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i j : ι hij : i ≤ j h_nonempty : Set.Nonempty s f : Filtration ι m hf_mem : f ∈ s hfi_mem : ↑f i ∈ (fun g => ↑g i) '' s ⊢ sInf ((fun f => ↑f i) '' s) ≤ ↑f i [PROOFSTEP] exact sInf_le hfi_mem [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m [PROOFSTEP] by_cases h_nonempty : Set.Nonempty s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι h_nonempty : Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι h_nonempty : ¬Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m [PROOFSTEP] swap [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι h_nonempty : ¬Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m [PROOFSTEP] simp only [h_nonempty, if_false, le_refl] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι h_nonempty : Set.Nonempty s ⊢ (fun i => if Set.Nonempty s then sInf ((fun f => ↑f i) '' s) else m) i ≤ m [PROOFSTEP] simp only [h_nonempty, if_true] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι h_nonempty : Set.Nonempty s ⊢ sInf ((fun f => ↑f i) '' s) ≤ m [PROOFSTEP] obtain ⟨f, hf_mem⟩ := h_nonempty [GOAL] case pos.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) i : ι f : Filtration ι m hf_mem : f ∈ s ⊢ sInf ((fun f => ↑f i) '' s) ≤ m [PROOFSTEP] exact le_trans (sInf_le ⟨f, hf_mem, rfl⟩) (f.le i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → b ≤ f i : ι m' : MeasurableSpace Ω hm' : m' ∈ (fun f => ↑f i) '' s ⊢ m' ≤ ↑f i [PROOFSTEP] obtain ⟨g, hg_mem, hfm'⟩ := hm' [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → b ≤ f i : ι m' : MeasurableSpace Ω g : Filtration ι m hg_mem : g ∈ s hfm' : (fun f => ↑f i) g = m' ⊢ m' ≤ ↑f i [PROOFSTEP] rw [← hfm'] [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → b ≤ f i : ι m' : MeasurableSpace Ω g : Filtration ι m hg_mem : g ∈ s hfm' : (fun f => ↑f i) g = m' ⊢ (fun f => ↑f i) g ≤ ↑f i [PROOFSTEP] exact h_forall g hg_mem i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m hf_mem : f ∈ s i : ι ⊢ ↑(sInf s) i ≤ ↑f i [PROOFSTEP] have hs : s.Nonempty := ⟨f, hf_mem⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m hf_mem : f ∈ s i : ι hs : Set.Nonempty s ⊢ ↑(sInf s) i ≤ ↑f i [PROOFSTEP] simp only [sInf_def, hs, if_true] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m hf_mem : f ∈ s i : ι hs : Set.Nonempty s ⊢ sInf ((fun f => ↑f i) '' s) ≤ ↑f i [PROOFSTEP] exact sInf_le ⟨f, hf_mem, rfl⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι ⊢ ↑f i ≤ ↑(sInf s) i [PROOFSTEP] by_cases hs : s.Nonempty [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι hs : Set.Nonempty s ⊢ ↑f i ≤ ↑(sInf s) i case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι hs : ¬Set.Nonempty s ⊢ ↑f i ≤ ↑(sInf s) i [PROOFSTEP] swap [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι hs : ¬Set.Nonempty s ⊢ ↑f i ≤ ↑(sInf s) i [PROOFSTEP] simp only [sInf_def, hs, if_false] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι hs : ¬Set.Nonempty s ⊢ ↑f i ≤ m [PROOFSTEP] exact f.le i [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι hs : Set.Nonempty s ⊢ ↑f i ≤ ↑(sInf s) i [PROOFSTEP] simp only [sInf_def, hs, if_true, le_sInf_iff, Set.mem_image, forall_exists_index, and_imp, forall_apply_eq_imp_iff₂] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι s : Set (Filtration ι m) f : Filtration ι m h_forall : ∀ (b : Filtration ι m), b ∈ s → f ≤ b i : ι hs : Set.Nonempty s ⊢ ∀ (a : Filtration ι m), a ∈ s → ↑f i ≤ ↑a i [PROOFSTEP] exact fun g hg_mem => h_forall g hg_mem i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι μ : Measure Ω f : Filtration ι m inst✝ : IsFiniteMeasure μ n : ι ⊢ SigmaFinite (Measure.trim μ (_ : ↑f n ≤ m)) [PROOFSTEP] infer_instance [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : MetrizableSpace β mβ : MeasurableSpace β inst✝¹ : BorelSpace β inst✝ : Preorder ι u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) i : ι ⊢ (fun i => ⨆ (j : ι) (_ : j ≤ i), MeasurableSpace.comap (u j) mβ) i ≤ m [PROOFSTEP] refine' iSup₂_le _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : MetrizableSpace β mβ : MeasurableSpace β inst✝¹ : BorelSpace β inst✝ : Preorder ι u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) i : ι ⊢ ∀ (i_1 : ι), i_1 ≤ i → MeasurableSpace.comap (u i_1) mβ ≤ m [PROOFSTEP] rintro j _ s ⟨t, ht, rfl⟩ [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : TopologicalSpace β inst✝² : MetrizableSpace β mβ : MeasurableSpace β inst✝¹ : BorelSpace β inst✝ : Preorder ι u : ι → Ω → β hum : ∀ (i : ι), StronglyMeasurable (u i) i j : ι j✝ : j ≤ i t : Set β ht : MeasurableSet t ⊢ MeasurableSet (u j ⁻¹' t) [PROOFSTEP] exact (hum j).measurable ht [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) ⊢ filtrationOfSet hsm = natural (fun i => Set.indicator (s i) fun x => 1) (_ : ∀ (i : ι), StronglyMeasurable (Set.indicator (s i) 1)) [PROOFSTEP] simp [natural, filtrationOfSet, measurableSpace_iSup_eq] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) ⊢ (fun i => MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t}) = fun i => MeasurableSpace.generateFrom {s_1 | ∃ n, MeasurableSet s_1} [PROOFSTEP] ext1 i [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι ⊢ MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t} = MeasurableSpace.generateFrom {s_1 | ∃ n, MeasurableSet s_1} [PROOFSTEP] refine' le_antisymm (generateFrom_le _) (generateFrom_le _) [GOAL] case h.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι ⊢ ∀ (t : Set Ω), t ∈ {t | ∃ j, j ≤ i ∧ s j = t} → MeasurableSet t [PROOFSTEP] rintro _ ⟨j, hij, rfl⟩ [GOAL] case h.refine'_1.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i j : ι hij : j ≤ i ⊢ MeasurableSet (s j) [PROOFSTEP] refine' measurableSet_generateFrom ⟨j, measurableSet_generateFrom ⟨hij, _⟩⟩ [GOAL] case h.refine'_1.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i j : ι hij : j ≤ i ⊢ MeasurableSet (s j) [PROOFSTEP] rw [comap_eq_generateFrom] [GOAL] case h.refine'_1.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i j : ι hij : j ≤ i ⊢ MeasurableSet (s j) [PROOFSTEP] refine' measurableSet_generateFrom ⟨{1}, measurableSet_singleton 1, _⟩ [GOAL] case h.refine'_1.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i j : ι hij : j ≤ i ⊢ (Set.indicator (s j) fun x => 1) ⁻¹' {1} = s j [PROOFSTEP] ext x [GOAL] case h.refine'_1.intro.intro.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i j : ι hij : j ≤ i x : Ω ⊢ x ∈ (Set.indicator (s j) fun x => 1) ⁻¹' {1} ↔ x ∈ s j [PROOFSTEP] simp [Set.indicator_const_preimage_eq_union] [GOAL] case h.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι ⊢ ∀ (t : Set Ω), t ∈ {s_1 | ∃ n, MeasurableSet s_1} → MeasurableSet t [PROOFSTEP] rintro t ⟨n, ht⟩ [GOAL] case h.refine'_2.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t : Set Ω n : ι ht : MeasurableSet t ⊢ MeasurableSet t [PROOFSTEP] suffices MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet[MeasurableSpace.comap ((s n).indicator (fun _ => 1 : Ω → β)) mβ] t} ≤ MeasurableSpace.generateFrom {t | ∃ (j : ι), j ≤ i ∧ s j = t} by exact this _ ht [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t : Set Ω n : ι ht : MeasurableSet t this : MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet t} ≤ MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t} ⊢ MeasurableSet t [PROOFSTEP] exact this _ ht [GOAL] case h.refine'_2.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t : Set Ω n : ι ht : MeasurableSet t ⊢ MeasurableSpace.generateFrom {t | n ≤ i ∧ MeasurableSet t} ≤ MeasurableSpace.generateFrom {t | ∃ j, j ≤ i ∧ s j = t} [PROOFSTEP] refine' generateFrom_le _ [GOAL] case h.refine'_2.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t : Set Ω n : ι ht : MeasurableSet t ⊢ ∀ (t : Set Ω), t ∈ {t | n ≤ i ∧ MeasurableSet t} → MeasurableSet t [PROOFSTEP] rintro t ⟨hn, u, _, hu'⟩ [GOAL] case h.refine'_2.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t ⊢ MeasurableSet t [PROOFSTEP] obtain heq | heq | heq | heq := Set.indicator_const_preimage (s n) u (1 : β) [GOAL] case h.refine'_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u ∈ {∅} ⊢ MeasurableSet t [PROOFSTEP] pick_goal 4 [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u ∈ {∅} ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet t [PROOFSTEP] rw [Set.mem_singleton_iff] at heq [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅ ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet t case h.refine'_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet t [PROOFSTEP] all_goals rw [heq] at hu' ; rw [← hu'] [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅ ⊢ MeasurableSet t [PROOFSTEP] rw [heq] at hu' [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ∅ = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅ ⊢ MeasurableSet t [PROOFSTEP] rw [← hu'] [GOAL] case h.refine'_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet t [PROOFSTEP] rw [heq] at hu' [GOAL] case h.refine'_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : Set.univ = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet t [PROOFSTEP] rw [← hu'] [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet t [PROOFSTEP] rw [heq] at hu' [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : s n = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet t [PROOFSTEP] rw [← hu'] [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (Set.indicator (s n) fun x => 1) ⁻¹' u = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet t [PROOFSTEP] rw [heq] at hu' [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (s n)ᶜ = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet t [PROOFSTEP] rw [← hu'] [GOAL] case h.refine'_2.intro.intro.intro.intro.inr.inr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : ∅ = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = ∅ ⊢ MeasurableSet ∅ case h.refine'_2.intro.intro.intro.intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : Set.univ = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = Set.univ ⊢ MeasurableSet Set.univ case h.refine'_2.intro.intro.intro.intro.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : s n = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = s n ⊢ MeasurableSet (s n) case h.refine'_2.intro.intro.intro.intro.inr.inr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι inst✝¹ : MulZeroOneClass β inst✝ : Nontrivial β s : ι → Set Ω hsm : ∀ (i : ι), MeasurableSet (s i) i : ι t✝ : Set Ω n : ι ht : MeasurableSet t✝ t : Set Ω hn : n ≤ i u : Set β left✝ : MeasurableSet u hu' : (s n)ᶜ = t heq : (Set.indicator (s n) fun x => 1) ⁻¹' u = (s n)ᶜ ⊢ MeasurableSet (s n)ᶜ [PROOFSTEP] exacts [measurableSet_empty _, MeasurableSet.univ, measurableSet_generateFrom ⟨n, hn, rfl⟩, MeasurableSet.compl (measurableSet_generateFrom ⟨n, hn, rfl⟩)] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι E : Type u_4 inst✝¹ : Zero E inst✝ : TopologicalSpace E ℱ : Filtration ι m f : ι → Ω → E μ : Measure Ω ⊢ StronglyMeasurable (limitProcess f ℱ μ) [PROOFSTEP] rw [limitProcess] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι E : Type u_4 inst✝¹ : Zero E inst✝ : TopologicalSpace E ℱ : Filtration ι m f : ι → Ω → E μ : Measure Ω ⊢ StronglyMeasurable (if h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) then Classical.choose h else 0) [PROOFSTEP] split_ifs with h [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι E : Type u_4 inst✝¹ : Zero E inst✝ : TopologicalSpace E ℱ : Filtration ι m f : ι → Ω → E μ : Measure Ω h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ StronglyMeasurable (Classical.choose h) case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : TopologicalSpace β inst✝⁴ : MetrizableSpace β mβ : MeasurableSpace β inst✝³ : BorelSpace β inst✝² : Preorder ι E : Type u_4 inst✝¹ : Zero E inst✝ : TopologicalSpace E ℱ : Filtration ι m f : ι → Ω → E μ : Measure Ω h : ¬∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ StronglyMeasurable 0 [PROOFSTEP] exacts [(Classical.choose_spec h).1, stronglyMeasurable_zero] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : TopologicalSpace β inst✝⁵ : MetrizableSpace β mβ : MeasurableSpace β inst✝⁴ : BorelSpace β inst✝³ : Preorder ι E : Type u_4 inst✝² : Zero E inst✝¹ : TopologicalSpace E ℱ✝ : Filtration ι m f✝ : ι → Ω → E μ : Measure Ω R : ℝ≥0 p : ℝ≥0∞ F : Type u_5 inst✝ : NormedAddCommGroup F ℱ : Filtration ℕ m f : ℕ → Ω → F hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R ⊢ Memℒp (limitProcess f ℱ μ) p [PROOFSTEP] rw [limitProcess] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : TopologicalSpace β inst✝⁵ : MetrizableSpace β mβ : MeasurableSpace β inst✝⁴ : BorelSpace β inst✝³ : Preorder ι E : Type u_4 inst✝² : Zero E inst✝¹ : TopologicalSpace E ℱ✝ : Filtration ι m f✝ : ι → Ω → E μ : Measure Ω R : ℝ≥0 p : ℝ≥0∞ F : Type u_5 inst✝ : NormedAddCommGroup F ℱ : Filtration ℕ m f : ℕ → Ω → F hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R ⊢ Memℒp (if h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) then Classical.choose h else 0) p [PROOFSTEP] split_ifs with h [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : TopologicalSpace β inst✝⁵ : MetrizableSpace β mβ : MeasurableSpace β inst✝⁴ : BorelSpace β inst✝³ : Preorder ι E : Type u_4 inst✝² : Zero E inst✝¹ : TopologicalSpace E ℱ✝ : Filtration ι m f✝ : ι → Ω → E μ : Measure Ω R : ℝ≥0 p : ℝ≥0∞ F : Type u_5 inst✝ : NormedAddCommGroup F ℱ : Filtration ℕ m f : ℕ → Ω → F hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ Memℒp (Classical.choose h) p [PROOFSTEP] refine' ⟨StronglyMeasurable.aestronglyMeasurable ((Classical.choose_spec h).1.mono (sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _)), lt_of_le_of_lt (Lp.snorm_lim_le_liminf_snorm hfm _ (Classical.choose_spec h).2) (lt_of_le_of_lt _ (ENNReal.coe_lt_top : ↑R < ∞))⟩ [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : TopologicalSpace β inst✝⁵ : MetrizableSpace β mβ : MeasurableSpace β inst✝⁴ : BorelSpace β inst✝³ : Preorder ι E : Type u_4 inst✝² : Zero E inst✝¹ : TopologicalSpace E ℱ✝ : Filtration ι m f✝ : ι → Ω → E μ : Measure Ω R : ℝ≥0 p : ℝ≥0∞ F : Type u_5 inst✝ : NormedAddCommGroup F ℱ : Filtration ℕ m f : ℕ → Ω → F hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ liminf (fun n => snorm (f n) p μ) atTop ≤ ↑R [PROOFSTEP] simp_rw [liminf_eq, eventually_atTop] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : TopologicalSpace β inst✝⁵ : MetrizableSpace β mβ : MeasurableSpace β inst✝⁴ : BorelSpace β inst✝³ : Preorder ι E : Type u_4 inst✝² : Zero E inst✝¹ : TopologicalSpace E ℱ✝ : Filtration ι m f✝ : ι → Ω → E μ : Measure Ω R : ℝ≥0 p : ℝ≥0∞ F : Type u_5 inst✝ : NormedAddCommGroup F ℱ : Filtration ℕ m f : ℕ → Ω → F hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R h : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ sSup {a | ∃ a_1, ∀ (b : ℕ), b ≥ a_1 → a ≤ snorm (f b) p μ} ≤ ↑R [PROOFSTEP] exact sSup_le fun b ⟨a, ha⟩ => (ha a le_rfl).trans (hbdd _) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : TopologicalSpace β inst✝⁵ : MetrizableSpace β mβ : MeasurableSpace β inst✝⁴ : BorelSpace β inst✝³ : Preorder ι E : Type u_4 inst✝² : Zero E inst✝¹ : TopologicalSpace E ℱ✝ : Filtration ι m f✝ : ι → Ω → E μ : Measure Ω R : ℝ≥0 p : ℝ≥0∞ F : Type u_5 inst✝ : NormedAddCommGroup F ℱ : Filtration ℕ m f : ℕ → Ω → F hfm : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ hbdd : ∀ (n : ℕ), snorm (f n) p μ ≤ ↑R h : ¬∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ Memℒp 0 p [PROOFSTEP] exact zero_memℒp
{"mathlib_filename": "Mathlib.Probability.Process.Filtration", "llama_tokens": 20816}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ μ ν : Measure α κ : { x // x ∈ kernel α β } ⊢ Measure.bind (μ + ν) ↑κ = Measure.bind μ ↑κ + Measure.bind ν ↑κ [PROOFSTEP] ext1 s hs [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ μ ν : Measure α κ : { x // x ∈ kernel α β } s : Set β hs : MeasurableSet s ⊢ ↑↑(Measure.bind (μ + ν) ↑κ) s = ↑↑(Measure.bind μ ↑κ + Measure.bind ν ↑κ) s [PROOFSTEP] rw [Measure.bind_apply hs (kernel.measurable _), lintegral_add_measure, Measure.coe_add, Pi.add_apply, Measure.bind_apply hs (kernel.measurable _), Measure.bind_apply hs (kernel.measurable _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } μ : Measure α r : ℝ≥0∞ ⊢ Measure.bind (r • μ) ↑κ = r • Measure.bind μ ↑κ [PROOFSTEP] ext1 s hs [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } μ : Measure α r : ℝ≥0∞ s : Set β hs : MeasurableSet s ⊢ ↑↑(Measure.bind (r • μ) ↑κ) s = ↑↑(r • Measure.bind μ ↑κ) s [PROOFSTEP] rw [Measure.bind_apply hs (kernel.measurable _), lintegral_smul_measure, Measure.coe_smul, Pi.smul_apply, Measure.bind_apply hs (kernel.measurable _), smul_eq_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } μ : Measure α ⊢ const α (Measure.bind μ ↑κ) = κ ∘ₖ const α μ [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } μ : Measure α a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(const α (Measure.bind μ ↑κ)) a) s = ↑↑(↑(κ ∘ₖ const α μ) a) s [PROOFSTEP] simp_rw [comp_apply' _ _ _ hs, const_apply, Measure.bind_apply hs (kernel.measurable _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } μ : Measure α a : α ⊢ ↑(κ ∘ₖ const α μ) a = Measure.bind μ ↑κ [PROOFSTEP] rw [← const_apply (μ.bind κ) a, const_bind_eq_comp_const κ μ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ η : { x // x ∈ kernel α α } μ : Measure α hκ : Invariant κ μ ⊢ κ ∘ₖ const α μ = const α μ [PROOFSTEP] rw [← const_bind_eq_comp_const κ μ, hκ.def] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ η : { x // x ∈ kernel α α } μ : Measure α inst✝ : IsSFiniteKernel κ hκ : Invariant κ μ hη : Invariant η μ ⊢ Invariant (κ ∘ₖ η) μ [PROOFSTEP] cases' isEmpty_or_nonempty α with _ hα [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ η : { x // x ∈ kernel α α } μ : Measure α inst✝ : IsSFiniteKernel κ hκ : Invariant κ μ hη : Invariant η μ h✝ : IsEmpty α ⊢ Invariant (κ ∘ₖ η) μ [PROOFSTEP] exact Subsingleton.elim _ _ [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ η : { x // x ∈ kernel α α } μ : Measure α inst✝ : IsSFiniteKernel κ hκ : Invariant κ μ hη : Invariant η μ hα : Nonempty α ⊢ Invariant (κ ∘ₖ η) μ [PROOFSTEP] simp_rw [Invariant, ← comp_const_apply_eq_bind (κ ∘ₖ η) μ hα.some, comp_assoc, hη.comp_const, hκ.comp_const, const_apply]
{"mathlib_filename": "Mathlib.Probability.Kernel.Invariance", "llama_tokens": 1772}
[GOAL] n : ℕ ⊢ Nat.pair (unpair n).fst (unpair n).snd = id n [PROOFSTEP] simp [GOAL] f : ℕ → ℕ m : ℕ hf : Nat.Primrec f n : ℕ ⊢ unpaired (fun z n => Nat.rec m (fun y IH => f (unpair (Nat.pair z (Nat.pair y IH))).snd) n) (Nat.pair 0 (id n)) = Nat.rec m (fun y IH => f (Nat.pair y IH)) n [PROOFSTEP] simp [GOAL] f : ℕ → ℕ m : ℕ hf : Nat.Primrec f ⊢ ∀ (n : ℕ), Nat.rec m (fun y IH => f (unpair (Nat.pair y IH)).fst) n = Nat.casesOn n m f [PROOFSTEP] simp [GOAL] f g : ℕ → ℕ hf : Nat.Primrec f hg : Nat.Primrec g n : ℕ ⊢ unpaired (fun z n => Nat.rec (f z) (fun y IH => g (Nat.pair (unpair (Nat.pair z (Nat.pair y IH))).fst (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).fst)) n) n = unpaired (fun z n => Nat.casesOn n (f z) fun y => g (Nat.pair z y)) n [PROOFSTEP] simp [GOAL] n : ℕ ⊢ Nat.pair (unpair n).snd (unpair n).fst = unpaired (swap Nat.pair) n [PROOFSTEP] simp [GOAL] f : ℕ → ℕ → ℕ hf : Nat.Primrec (unpaired f) n : ℕ ⊢ unpaired f (unpaired (swap Nat.pair) n) = unpaired (swap f) n [PROOFSTEP] simp [GOAL] n : ℕ ⊢ Nat.casesOn n 0 id = Nat.pred n [PROOFSTEP] cases n [GOAL] case zero ⊢ Nat.casesOn Nat.zero 0 id = Nat.pred Nat.zero [PROOFSTEP] simp [*] [GOAL] case succ n✝ : ℕ ⊢ Nat.casesOn (succ n✝) 0 id = Nat.pred (succ n✝) [PROOFSTEP] simp [*] [GOAL] p : ℕ ⊢ unpaired (fun z n => Nat.rec (id z) (fun y IH => succ (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd) n) p = unpaired (fun x x_1 => x + x_1) p [PROOFSTEP] simp [GOAL] p : ℕ ⊢ Nat.rec (unpair p).fst (fun y IH => succ IH) (unpair p).snd = (unpair p).fst + (unpair p).snd [PROOFSTEP] induction p.unpair.2 [GOAL] case zero p : ℕ ⊢ Nat.rec (unpair p).fst (fun y IH => succ IH) Nat.zero = (unpair p).fst + Nat.zero [PROOFSTEP] simp [*, add_succ] [GOAL] case succ p n✝ : ℕ n_ih✝ : Nat.rec (unpair p).fst (fun y IH => succ IH) n✝ = (unpair p).fst + n✝ ⊢ Nat.rec (unpair p).fst (fun y IH => succ IH) (succ n✝) = (unpair p).fst + succ n✝ [PROOFSTEP] simp [*, add_succ] [GOAL] p : ℕ ⊢ unpaired (fun z n => Nat.rec (id z) (fun y IH => Nat.pred (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd) n) p = unpaired (fun x x_1 => x - x_1) p [PROOFSTEP] simp [GOAL] p : ℕ ⊢ Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) (unpair p).snd = (unpair p).fst - (unpair p).snd [PROOFSTEP] induction p.unpair.2 [GOAL] case zero p : ℕ ⊢ Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) Nat.zero = (unpair p).fst - Nat.zero [PROOFSTEP] simp [*, sub_succ] [GOAL] case succ p n✝ : ℕ n_ih✝ : Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) n✝ = (unpair p).fst - n✝ ⊢ Nat.rec (unpair p).fst (fun y IH => Nat.pred IH) (succ n✝) = (unpair p).fst - succ n✝ [PROOFSTEP] simp [*, sub_succ] [GOAL] p : ℕ ⊢ unpaired (fun z n => Nat.rec 0 (fun y IH => unpaired (fun x x_1 => x + x_1) (Nat.pair (unpair (Nat.pair z (Nat.pair y IH))).fst (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd)) n) p = unpaired (fun x x_1 => x * x_1) p [PROOFSTEP] simp [GOAL] p : ℕ ⊢ Nat.rec 0 (fun y IH => (unpair p).fst + IH) (unpair p).snd = (unpair p).fst * (unpair p).snd [PROOFSTEP] induction p.unpair.2 [GOAL] case zero p : ℕ ⊢ Nat.rec 0 (fun y IH => (unpair p).fst + IH) Nat.zero = (unpair p).fst * Nat.zero [PROOFSTEP] simp [*, mul_succ, add_comm _ (unpair p).fst] [GOAL] case succ p n✝ : ℕ n_ih✝ : Nat.rec 0 (fun y IH => (unpair p).fst + IH) n✝ = (unpair p).fst * n✝ ⊢ Nat.rec 0 (fun y IH => (unpair p).fst + IH) (succ n✝) = (unpair p).fst * succ n✝ [PROOFSTEP] simp [*, mul_succ, add_comm _ (unpair p).fst] [GOAL] p : ℕ ⊢ unpaired (fun z n => Nat.rec 1 (fun y IH => unpaired (fun x x_1 => x * x_1) (Nat.pair (unpair (unpair (Nat.pair z (Nat.pair y IH))).snd).snd (unpair (Nat.pair z (Nat.pair y IH))).fst)) n) p = unpaired (fun x x_1 => x ^ x_1) p [PROOFSTEP] simp [GOAL] p : ℕ ⊢ Nat.rec 1 (fun y IH => IH * (unpair p).fst) (unpair p).snd = (unpair p).fst ^ (unpair p).snd [PROOFSTEP] induction p.unpair.2 [GOAL] case zero p : ℕ ⊢ Nat.rec 1 (fun y IH => IH * (unpair p).fst) Nat.zero = (unpair p).fst ^ Nat.zero [PROOFSTEP] simp [*, pow_succ] [GOAL] case succ p n✝ : ℕ n_ih✝ : Nat.rec 1 (fun y IH => IH * (unpair p).fst) n✝ = (unpair p).fst ^ n✝ ⊢ Nat.rec 1 (fun y IH => IH * (unpair p).fst) (succ n✝) = (unpair p).fst ^ succ n✝ [PROOFSTEP] simp [*, pow_succ] [GOAL] α : Type ?u.12281 inst✝ : Denumerable α ⊢ ∀ (n : ℕ), Nat.succ n = encode (decode n) [PROOFSTEP] simp [GOAL] α : Type ?u.13346 β : Type ?u.13353 inst✝ : Primcodable α e : β ≃ α src✝ : Encodable β := Encodable.ofEquiv α e n : ℕ ⊢ encode (decode n) = encode (decode n) [PROOFSTEP] rw [decode_ofEquiv] [GOAL] α : Type ?u.13346 β : Type ?u.13353 inst✝ : Primcodable α e : β ≃ α src✝ : Encodable β := Encodable.ofEquiv α e n : ℕ ⊢ encode (decode n) = encode (Option.map (↑e.symm) (decode n)) [PROOFSTEP] cases (@decode α _ n) [GOAL] case none α : Type ?u.13346 β : Type ?u.13353 inst✝ : Primcodable α e : β ≃ α src✝ : Encodable β := Encodable.ofEquiv α e n : ℕ ⊢ encode none = encode (Option.map (↑e.symm) none) [PROOFSTEP] simp [encode_ofEquiv] [GOAL] case some α : Type ?u.13346 β : Type ?u.13353 inst✝ : Primcodable α e : β ≃ α src✝ : Encodable β := Encodable.ofEquiv α e n : ℕ val✝ : α ⊢ encode (some val✝) = encode (Option.map (↑e.symm) (some val✝)) [PROOFSTEP] simp [encode_ofEquiv] [GOAL] n : ℕ ⊢ (Nat.casesOn n 1 fun x => 0) = encode (decode n) [PROOFSTEP] cases n [GOAL] case zero ⊢ (Nat.casesOn Nat.zero 1 fun x => 0) = encode (decode Nat.zero) [PROOFSTEP] simp [GOAL] case succ n✝ : ℕ ⊢ (Nat.casesOn (Nat.succ n✝) 1 fun x => 0) = encode (decode (Nat.succ n✝)) [PROOFSTEP] simp [GOAL] α : Type u_1 h : Primcodable α n : ℕ ⊢ (Nat.casesOn n 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode n) [PROOFSTEP] cases n with | zero => rfl | succ n => rw [decode_option_succ] cases H : @decode α _ n <;> simp [H] [GOAL] α : Type u_1 h : Primcodable α n : ℕ ⊢ (Nat.casesOn n 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode n) [PROOFSTEP] cases n with | zero => rfl | succ n => rw [decode_option_succ] cases H : @decode α _ n <;> simp [H] [GOAL] case zero α : Type u_1 h : Primcodable α ⊢ (Nat.casesOn Nat.zero 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode Nat.zero) [PROOFSTEP] | zero => rfl [GOAL] case zero α : Type u_1 h : Primcodable α ⊢ (Nat.casesOn Nat.zero 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode Nat.zero) [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 h : Primcodable α n : ℕ ⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode (Nat.succ n)) [PROOFSTEP] | succ n => rw [decode_option_succ] cases H : @decode α _ n <;> simp [H] [GOAL] case succ α : Type u_1 h : Primcodable α n : ℕ ⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (decode (Nat.succ n)) [PROOFSTEP] rw [decode_option_succ] [GOAL] case succ α : Type u_1 h : Primcodable α n : ℕ ⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some (decode n)) [PROOFSTEP] cases H : @decode α _ n [GOAL] case succ.none α : Type u_1 h : Primcodable α n : ℕ H : decode n = none ⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some none) [PROOFSTEP] simp [H] [GOAL] case succ.some α : Type u_1 h : Primcodable α n : ℕ val✝ : α H : decode n = some val✝ ⊢ (Nat.casesOn (Nat.succ n) 1 fun n => Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some (some val✝)) [PROOFSTEP] simp [H] [GOAL] n✝ n : ℕ ⊢ (Nat.casesOn (n + 2) 1 fun x => Nat.casesOn x 2 fun x => 0) = encode (decode (n + 2)) [PROOFSTEP] rw [decode_ge_two] [GOAL] n✝ n : ℕ ⊢ (Nat.casesOn (n + 2) 1 fun x => Nat.casesOn x 2 fun x => 0) = encode none [PROOFSTEP] simp [GOAL] case h n✝ n : ℕ ⊢ 2 ≤ n + 2 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ n : ℕ ⊢ encode (decode n) = encode (Option.map encode (decode n)) [PROOFSTEP] cases @decode α _ n [GOAL] case none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ n : ℕ ⊢ encode none = encode (Option.map encode none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ n : ℕ val✝ : α ⊢ encode (some val✝) = encode (Option.map encode (some val✝)) [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β✝ : Type u_2 σ : Type u_3 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable β✝ inst✝² : Primcodable σ α : Type u_4 β : Type u_5 inst✝¹ : Denumerable α inst✝ : Primcodable β f : α → β h : Primrec f n : ℕ ⊢ Nat.pred (encode (Option.map f (decode n))) = encode (f (ofNat α n)) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 β✝ : Type u_2 σ : Type u_3 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable β✝ inst✝² : Primcodable σ α : Type u_4 β : Type u_5 inst✝¹ : Denumerable α inst✝ : Primcodable β f : α → β h : Nat.Primrec fun n => encode (f (ofNat α n)) n : ℕ ⊢ Nat.succ (encode (f (ofNat α n))) = encode (Option.map f (decode n)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ n : ℕ ⊢ (Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some (decode n)) [PROOFSTEP] cases @decode α _ n [GOAL] case none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ n : ℕ ⊢ (Nat.casesOn (encode none) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some none) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ n : ℕ val✝ : α ⊢ (Nat.casesOn (encode (some val✝)) 0 fun n => Nat.succ (Nat.succ n)) = encode (Option.map some (some val✝)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ x : σ n : ℕ ⊢ (Nat.casesOn (encode (decode n)) 0 fun x_1 => Nat.succ (encode x)) = encode (Option.map (fun x_1 => x) (decode n)) [PROOFSTEP] cases @decode α _ n [GOAL] case none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ x : σ n : ℕ ⊢ (Nat.casesOn (encode none) 0 fun x_1 => Nat.succ (encode x)) = encode (Option.map (fun x_1 => x) none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ x : σ n : ℕ val✝ : α ⊢ (Nat.casesOn (encode (some val✝)) 0 fun x_1 => Nat.succ (encode x)) = encode (Option.map (fun x_1 => x) (some val✝)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ ⊢ ∀ (n : ℕ), encode (decode n) = encode (Option.map id (decode n)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : β → σ g : α → β hf : Primrec f hg : Primrec g n : ℕ ⊢ (Nat.casesOn (encode (decode n)) 0 fun n => encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) = encode (Option.map (fun a => f (g a)) (decode n)) [PROOFSTEP] cases @decode α _ n [GOAL] case none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : β → σ g : α → β hf : Primrec f hg : Primrec g n : ℕ ⊢ (Nat.casesOn (encode none) 0 fun n => encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) = encode (Option.map (fun a => f (g a)) none) [PROOFSTEP] simp [encodek] [GOAL] case some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : β → σ g : α → β hf : Primrec f hg : Primrec g n : ℕ val✝ : α ⊢ (Nat.casesOn (encode (some val✝)) 0 fun n => encode (Option.map f (decode (Nat.pred (encode (Option.map g (decode n))))))) = encode (Option.map (fun a => f (g a)) (some val✝)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → σ h : Primrec fun a => encode (f a) n : ℕ ⊢ encode (Option.map (fun a => encode (f a)) (decode n)) = encode (Option.map f (decode n)) [PROOFSTEP] cases @decode α _ n [GOAL] case none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → σ h : Primrec fun a => encode (f a) n : ℕ ⊢ encode (Option.map (fun a => encode (f a)) none) = encode (Option.map f none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → σ h : Primrec fun a => encode (f a) n : ℕ val✝ : α ⊢ encode (Option.map (fun a => encode (f a)) (some val✝)) = encode (Option.map f (some val✝)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β✝ : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β✝ inst✝ : Primcodable σ β : Type u_4 e : β ≃ α this : Primcodable β := Primcodable.ofEquiv α e ⊢ Primrec fun a => encode (↑e (↑e.symm a)) [PROOFSTEP] simp [Primrec.encode] [GOAL] α : Type u_1 β✝ : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β✝ inst✝ : Primcodable σ β : Type u_4 e : β ≃ α f : σ → β this : Primcodable β := Primcodable.ofEquiv α e h : Primrec fun a => ↑e (f a) a : σ ⊢ ↑e.symm (↑e (f a)) = f a [PROOFSTEP] simp [GOAL] α : Type u_1 β✝ : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β✝ inst✝ : Primcodable σ β : Type u_4 e : β ≃ α f : σ → α this : Primcodable β := Primcodable.ofEquiv α e h : Primrec fun a => ↑e.symm (f a) a : σ ⊢ ↑e (↑e.symm (f a)) = f a [PROOFSTEP] simp [GOAL] α : Type ?u.29317 β : Type ?u.29320 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.succ (Nat.pair z y)) (Nat.pair (Nat.unpair (Nat.pair z y)).snd (encode (decode (Nat.unpair (Nat.pair z y)).fst)))) (Nat.pair (Nat.unpair n).snd (encode (decode (Nat.unpair n).fst))) = encode (decode n) [PROOFSTEP] simp [Nat.unpaired] [GOAL] α : Type ?u.29317 β : Type ?u.29320 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ (Nat.pair n_1 n)) (encode (decode (Nat.unpair n).snd))) (encode (decode (Nat.unpair n).fst)) = encode (Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) [PROOFSTEP] cases @decode α _ n.unpair.1 [GOAL] case none α : Type ?u.29317 β : Type ?u.29320 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ (Nat.pair n_1 n)) (encode (decode (Nat.unpair n).snd))) (encode none) = encode (Option.bind none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) [PROOFSTEP] simp [GOAL] case some α : Type ?u.29317 β : Type ?u.29320 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ (Nat.pair n_1 n)) (encode (decode (Nat.unpair n).snd))) (encode (some val✝)) = encode (Option.bind (some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd)) [PROOFSTEP] cases @decode β _ n.unpair.2 [GOAL] case some.none α : Type ?u.29317 β : Type ?u.29320 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n n_ih => Nat.rec 0 (fun n_1 n_ih => Nat.succ (Nat.pair n n_1)) (encode none)) (encode (some val✝)) = encode (Option.bind (some val✝) fun a => Option.map (Prod.mk a) none) [PROOFSTEP] simp [GOAL] case some.some α : Type ?u.29317 β : Type ?u.29320 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝¹ : α val✝ : β ⊢ Nat.rec 0 (fun n n_ih => Nat.rec 0 (fun n_1 n_ih => Nat.succ (Nat.pair n n_1)) (encode (some val✝))) (encode (some val✝¹)) = encode (Option.bind (some val✝¹) fun a => Option.map (Prod.mk a) (some val✝)) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.succ (Nat.unpair (Nat.pair z y)).fst) (Nat.pair (Nat.unpair (Nat.pair z y)).snd (encode (decode (Nat.unpair (Nat.pair z y)).fst)))) (Nat.pair (Nat.unpair n).snd (encode (decode (Nat.unpair n).fst))) = encode (Option.map Prod.fst (decode n)) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n_1) (encode (decode (Nat.unpair n).snd))) (encode (decode (Nat.unpair n).fst)) = encode (Option.map Prod.fst (Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))) [PROOFSTEP] cases @decode α _ n.unpair.1 [GOAL] case none α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n_1) (encode (decode (Nat.unpair n).snd))) (encode none) = encode (Option.map Prod.fst (Option.bind none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))) [PROOFSTEP] simp [GOAL] case some α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n_1) (encode (decode (Nat.unpair n).snd))) (encode (some val✝)) = encode (Option.map Prod.fst (Option.bind (some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))) [PROOFSTEP] simp [GOAL] case some α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n n_ih => Nat.succ (encode val✝)) (encode (decode (Nat.unpair n).snd)) = encode (Option.map (Function.const β val✝) (decode (Nat.unpair n).snd)) [PROOFSTEP] cases @decode β _ n.unpair.2 [GOAL] case some.none α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n n_ih => Nat.succ (encode val✝)) (encode none) = encode (Option.map (Function.const β val✝) none) [PROOFSTEP] simp [GOAL] case some.some α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝¹ : α val✝ : β ⊢ Nat.rec 0 (fun n n_ih => Nat.succ (encode val✝¹)) (encode (some val✝)) = encode (Option.map (Function.const β val✝¹) (some val✝)) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.succ (Nat.unpair (Nat.pair z y)).snd) (Nat.pair (Nat.unpair (Nat.pair z y)).snd (encode (decode (Nat.unpair (Nat.pair z y)).fst)))) (Nat.pair (Nat.unpair n).snd (encode (decode (Nat.unpair n).fst))) = encode (Option.map Prod.snd (decode n)) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd))) (encode (decode (Nat.unpair n).fst)) = encode (Option.map Prod.snd (Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))) [PROOFSTEP] cases @decode α _ n.unpair.1 [GOAL] case none α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd))) (encode none) = encode (Option.map Prod.snd (Option.bind none fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))) [PROOFSTEP] simp [GOAL] case some α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd))) (encode (some val✝)) = encode (Option.map Prod.snd (Option.bind (some val✝) fun a => Option.map (Prod.mk a) (decode (Nat.unpair n).snd))) [PROOFSTEP] simp [GOAL] case some α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (decode (Nat.unpair n).snd)) = encode (decode (Nat.unpair n).snd) [PROOFSTEP] cases @decode β _ n.unpair.2 [GOAL] case some.none α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ Nat.rec 0 (fun n n_ih => Nat.succ n) (encode none) = encode none [PROOFSTEP] simp [GOAL] case some.some α✝ : Type u_1 σ : Type u_2 inst✝³ : Primcodable α✝ inst✝² : Primcodable σ α : Type u_3 β : Type u_4 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝¹ : α val✝ : β ⊢ Nat.rec 0 (fun n n_ih => Nat.succ n) (encode (some val✝)) = encode (some val✝) [PROOFSTEP] simp [GOAL] α✝ : Type u_1 σ : Type u_2 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable σ α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ f : α → β g : α → γ hf : Primrec f hg : Primrec g n : ℕ ⊢ (Nat.casesOn (encode (decode n)) 0 fun n => Nat.succ (Nat.pair (Nat.pred (encode (Option.map f (decode n)))) (Nat.pred (encode (Option.map g (decode n)))))) = encode (Option.map (fun a => (f a, g a)) (decode n)) [PROOFSTEP] cases @decode α _ n [GOAL] case none α✝ : Type u_1 σ : Type u_2 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable σ α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ f : α → β g : α → γ hf : Primrec f hg : Primrec g n : ℕ ⊢ (Nat.casesOn (encode none) 0 fun n => Nat.succ (Nat.pair (Nat.pred (encode (Option.map f (decode n)))) (Nat.pred (encode (Option.map g (decode n)))))) = encode (Option.map (fun a => (f a, g a)) none) [PROOFSTEP] simp [encodek] [GOAL] case some α✝ : Type u_1 σ : Type u_2 inst✝⁴ : Primcodable α✝ inst✝³ : Primcodable σ α : Type u_3 β : Type u_4 γ : Type u_5 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable γ f : α → β g : α → γ hf : Primrec f hg : Primrec g n : ℕ val✝ : α ⊢ (Nat.casesOn (encode (some val✝)) 0 fun n => Nat.succ (Nat.pair (Nat.pred (encode (Option.map f (decode n)))) (Nat.pred (encode (Option.map g (decode n)))))) = encode (Option.map (fun a => (f a, g a)) (some val✝)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ n : ℕ ⊢ ((Nat.unpair n).fst, (Nat.unpair n).snd) = Nat.unpair n [PROOFSTEP] simp [GOAL] α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ a : α l : List α n : ℕ ⊢ (Nat.casesOn n (Nat.succ (encode a)) fun n => encode (List.get? l (ofNat ℕ n))) = encode (List.get? (a :: l) (ofNat ℕ n)) [PROOFSTEP] cases n [GOAL] case zero α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ a : α l : List α ⊢ (Nat.casesOn Nat.zero (Nat.succ (encode a)) fun n => encode (List.get? l (ofNat ℕ n))) = encode (List.get? (a :: l) (ofNat ℕ Nat.zero)) [PROOFSTEP] simp [GOAL] case succ α : Type u_1 σ : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable σ a : α l : List α n✝ : ℕ ⊢ (Nat.casesOn (Nat.succ n✝) (Nat.succ (encode a)) fun n => encode (List.get? l (ofNat ℕ n))) = encode (List.get? (a :: l) (ofNat ℕ (Nat.succ n✝))) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f g : α → β → σ hg : Primrec₂ f H : ∀ (a : α) (b : β), f a b = g a b ⊢ f = g [PROOFSTEP] funext a b [GOAL] case h.h α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f g : α → β → σ hg : Primrec₂ f H : ∀ (a : α) (b : β), f a b = g a b a : α b : β ⊢ f a b = g a b [PROOFSTEP] apply H [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ ⊢ Primrec₂ Nat.pair [PROOFSTEP] simp [Primrec₂, Primrec] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ ⊢ Nat.Primrec fun n => Nat.succ n [PROOFSTEP] constructor [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : ℕ → ℕ → α h : Primrec (Nat.unpaired f) ⊢ Primrec₂ f [PROOFSTEP] simpa using h.comp natPair [GOAL] α✝ : Type u_1 β✝ : Type u_2 σ✝ : Type u_3 inst✝⁵ : Primcodable α✝ inst✝⁴ : Primcodable β✝ inst✝³ : Primcodable σ✝ α : Type u_4 β : Type u_5 σ : Type u_6 inst✝² : Denumerable α inst✝¹ : Denumerable β inst✝ : Primcodable σ f : α → β → σ ⊢ (Primrec fun n => f (ofNat (α × β) n).fst (ofNat (α × β) n).snd) ↔ Primrec (Nat.unpaired fun m n => f (ofNat α m) (ofNat β n)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ ⊢ Primrec (Function.uncurry f) ↔ Primrec₂ f [PROOFSTEP] rw [show Function.uncurry f = fun p : α × β => f p.1 p.2 from funext fun ⟨a, b⟩ => rfl] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ ⊢ (Primrec fun p => f p.fst p.snd) ↔ Primrec₂ f [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α × β → σ ⊢ Primrec₂ (Function.curry f) ↔ Primrec f [PROOFSTEP] rw [← uncurry, Function.uncurry_curry] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ ⊢ Primrec₂ f ↔ Nat.Primrec (Nat.unpaired fun m n => encode (Option.bind (decode m) fun a => Option.map (f a) (decode n))) [PROOFSTEP] have : ∀ (a : Option α) (b : Option β), Option.map (fun p : α × β => f p.1 p.2) (Option.bind a fun a : α => Option.map (Prod.mk a) b) = Option.bind a fun a => Option.map (f a) b := fun a b => by cases a <;> cases b <;> rfl [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ a : Option α b : Option β ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind a fun a => Option.map (Prod.mk a) b) = Option.bind a fun a => Option.map (f a) b [PROOFSTEP] cases a [GOAL] case none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ b : Option β ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind none fun a => Option.map (Prod.mk a) b) = Option.bind none fun a => Option.map (f a) b [PROOFSTEP] cases b [GOAL] case some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ b : Option β val✝ : α ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind (some val✝) fun a => Option.map (Prod.mk a) b) = Option.bind (some val✝) fun a => Option.map (f a) b [PROOFSTEP] cases b [GOAL] case none.none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind none fun a => Option.map (Prod.mk a) none) = Option.bind none fun a => Option.map (f a) none [PROOFSTEP] rfl [GOAL] case none.some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ val✝ : β ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind none fun a => Option.map (Prod.mk a) (some val✝)) = Option.bind none fun a => Option.map (f a) (some val✝) [PROOFSTEP] rfl [GOAL] case some.none α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ val✝ : α ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind (some val✝) fun a => Option.map (Prod.mk a) none) = Option.bind (some val✝) fun a => Option.map (f a) none [PROOFSTEP] rfl [GOAL] case some.some α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ val✝¹ : α val✝ : β ⊢ Option.map (fun p => f p.fst p.snd) (Option.bind (some val✝¹) fun a => Option.map (Prod.mk a) (some val✝)) = Option.bind (some val✝¹) fun a => Option.map (f a) (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ f : α → β → σ this : ∀ (a : Option α) (b : Option β), Option.map (fun p => f p.fst p.snd) (Option.bind a fun a => Option.map (Prod.mk a) b) = Option.bind a fun a => Option.map (f a) b ⊢ Primrec₂ f ↔ Nat.Primrec (Nat.unpaired fun m n => encode (Option.bind (decode m) fun a => Option.map (f a) (decode n))) [PROOFSTEP] simp [Primrec₂, Primrec, this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ ⊢ Nat.unpaired (fun z n => Nat.casesOn n 0 fun y => Nat.unpaired (fun z n => Nat.rec (encode (Option.map f (decode z))) (fun y IH => encode (Option.map (fun p => g p.fst p.snd) (decode (Nat.pair (Nat.unpair (Nat.pair z (Nat.pair y IH))).fst (Nat.pair (Nat.unpair (Nat.unpair (Nat.pair z (Nat.pair y IH))).snd).fst (Nat.pred (Nat.unpair (Nat.unpair (Nat.pair z (Nat.pair y IH))).snd).snd)))))) n) (Nat.pair (Nat.unpair (Nat.pair z y)).snd (Nat.unpair (Nat.unpair (Nat.pair z y)).fst).snd)) (Nat.pair (id n) (encode (decode (Nat.unpair n).fst))) = Nat.unpaired (fun m n => encode (Option.bind (decode m) fun a => Option.map (fun n => Nat.rec (f a) (fun n IH => g a (n, IH)) n) (decode n))) n [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec (encode (Option.map f (decode n_1))) (fun y IH => encode (Option.map (fun p => g p.fst p.snd) (Option.bind (decode n_1) fun a => Option.map (Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))) (Nat.unpair n).snd) (encode (decode (Nat.unpair n).fst)) = encode (Option.bind (decode (Nat.unpair n).fst) fun a => some (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd)) [PROOFSTEP] cases' @decode α _ n.unpair.1 with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec (encode (Option.map f (decode n_1))) (fun y IH => encode (Option.map (fun p => g p.fst p.snd) (Option.bind (decode n_1) fun a => Option.map (Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))) (Nat.unpair n).snd) (encode none) = encode (Option.bind none fun a => some (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd)) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ a : α ⊢ Nat.rec 0 (fun n_1 n_ih => Nat.rec (encode (Option.map f (decode n_1))) (fun y IH => encode (Option.map (fun p => g p.fst p.snd) (Option.bind (decode n_1) fun a => Option.map (Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH))))) (Nat.unpair n).snd) (encode (some a)) = encode (Option.bind (some a) fun a => some (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd)) [PROOFSTEP] simp [encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ a : α ⊢ Nat.rec (Nat.succ (encode (f a))) (fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) (Nat.unpair n).snd = Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.unpair n).snd)) [PROOFSTEP] induction' n.unpair.2 with m [GOAL] case some.zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ a : α ⊢ Nat.rec (Nat.succ (encode (f a))) (fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) Nat.zero = Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) Nat.zero)) [PROOFSTEP] simp [encodek] [GOAL] case some.succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ a : α m : ℕ n_ih✝ : Nat.rec (Nat.succ (encode (f a))) (fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) m = Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) m)) ⊢ Nat.rec (Nat.succ (encode (f a))) (fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) (Nat.succ m) = Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) (Nat.succ m))) [PROOFSTEP] simp [encodek] [GOAL] case some.succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β g : α → ℕ × β → β hf : Primrec f hg : Primrec₂ g n : ℕ a : α m : ℕ n_ih✝ : Nat.rec (Nat.succ (encode (f a))) (fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) m = Nat.succ (encode (Nat.rec (f a) (fun n IH => g a (n, IH)) m)) ⊢ encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk m) (decode (Nat.pred (Nat.rec (Nat.succ (encode (f a))) (fun y IH => encode (Option.map ((fun p => g p.fst p.snd) ∘ Prod.mk a ∘ Prod.mk y) (decode (Nat.pred IH)))) m)))) = Nat.succ (encode (g a (m, Nat.rec (f a) (fun n IH => g a (n, IH)) m))) [PROOFSTEP] simp [*, encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → ℕ g : α → β h : α → β → β hf : Primrec f hg : Primrec g hh : Primrec₂ h a : α ⊢ Nat.rec (g a) (fun n IH => h a (n, IH).snd) (f a) = (h a)^[f a] (g a) [PROOFSTEP] induction f a [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → ℕ g : α → β h : α → β → β hf : Primrec f hg : Primrec g hh : Primrec₂ h a : α ⊢ Nat.rec (g a) (fun n IH => h a (n, IH).snd) Nat.zero = (h a)^[Nat.zero] (g a) [PROOFSTEP] simp [*, -Function.iterate_succ, Function.iterate_succ'] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → ℕ g : α → β h : α → β → β hf : Primrec f hg : Primrec g hh : Primrec₂ h a : α n✝ : ℕ n_ih✝ : Nat.rec (g a) (fun n IH => h a (n, IH).snd) n✝ = (h a)^[n✝] (g a) ⊢ Nat.rec (g a) (fun n IH => h a (n, IH).snd) (Nat.succ n✝) = (h a)^[Nat.succ n✝] (g a) [PROOFSTEP] simp [*, -Function.iterate_succ, Function.iterate_succ'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β → σ ho : Primrec o hf : Primrec f hg : Primrec₂ g a : α ⊢ (Nat.casesOn (encode (o a)) (encode (f a)) fun b => Nat.pred (encode (Option.bind (decode (encode (a, b).fst)) fun a => Option.map (g a) (decode b)))) = encode (Option.casesOn (o a) (f a) (g a)) [PROOFSTEP] cases' o a with b [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β → σ ho : Primrec o hf : Primrec f hg : Primrec₂ g a : α ⊢ (Nat.casesOn (encode none) (encode (f a)) fun b => Nat.pred (encode (Option.bind (decode (encode (a, b).fst)) fun a => Option.map (g a) (decode b)))) = encode (Option.casesOn none (f a) (g a)) [PROOFSTEP] simp [encodek] [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ o : α → Option β f : α → σ g : α → β → σ ho : Primrec o hf : Primrec f hg : Primrec₂ g a : α b : β ⊢ (Nat.casesOn (encode (some b)) (encode (f a)) fun b => Nat.pred (encode (Option.bind (decode (encode (a, b).fst)) fun a => Option.map (g a) (decode b)))) = encode (Option.casesOn (some b) (f a) (g a)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → Option β g : α → β → Option σ hf : Primrec f hg : Primrec₂ g a : α ⊢ Option.casesOn (f a) none (g a) = Option.bind (f a) (g a) [PROOFSTEP] cases f a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → Option β g : α → β → Option σ hf : Primrec f hg : Primrec₂ g a : α ⊢ Option.casesOn none none (g a) = Option.bind none (g a) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → Option β g : α → β → Option σ hf : Primrec f hg : Primrec₂ g a : α val✝ : β ⊢ Option.casesOn (some val✝) none (g a) = Option.bind (some val✝) (g a) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → Option β g : α → β → σ hf : Primrec f hg : Primrec₂ g x : α ⊢ (Option.bind (f x) fun b => some (g x b)) = Option.map (g x) (f x) [PROOFSTEP] cases f x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → Option β g : α → β → σ hf : Primrec f hg : Primrec₂ g x : α ⊢ (Option.bind none fun b => some (g x b)) = Option.map (g x) none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → Option β g : α → β → σ hf : Primrec f hg : Primrec₂ g x : α val✝ : β ⊢ (Option.bind (some val✝) fun b => some (g x b)) = Option.map (g x) (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : Inhabited α o : Option α ⊢ (Option.casesOn (id o) default fun b => b) = Option.iget o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : Inhabited α ⊢ (Option.casesOn (id none) default fun b => b) = Option.iget none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : Inhabited α val✝ : α ⊢ (Option.casesOn (id (some val✝)) default fun b => b) = Option.iget (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ o : Option α ⊢ (Option.casesOn (id o) false fun b => true) = Option.isSome o [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ ⊢ (Option.casesOn (id none) false fun b => true) = Option.isSome none [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ val✝ : α ⊢ (Option.casesOn (id (some val✝)) false fun b => true) = Option.isSome (some val✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × α o : Option α a : α ⊢ (Option.casesOn ((fun a x => a) (o, a).fst (o, a).snd) ((fun x b => b) (o, a).fst (o, a).snd) fun b => b) = Option.getD (o, a).fst (o, a).snd [PROOFSTEP] cases o [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × α a : α ⊢ (Option.casesOn ((fun a x => a) (none, a).fst (none, a).snd) ((fun x b => b) (none, a).fst (none, a).snd) fun b => b) = Option.getD (none, a).fst (none, a).snd [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × α a val✝ : α ⊢ (Option.casesOn ((fun a x => a) (some val✝, a).fst (some val✝, a).snd) ((fun x b => b) (some val✝, a).fst (some val✝, a).snd) fun b => b) = Option.getD (some val✝, a).fst (some val✝, a).snd [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β → Option σ h : Primrec₂ fun a n => Option.bind (decode n) (f a) ⊢ Primrec₂ f [PROOFSTEP] simpa [encodek] using h.comp fst ((@Primrec.encode β _).comp snd) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β → σ ⊢ (Primrec₂ fun a n => Option.map (f a) (decode n)) ↔ Primrec₂ f [PROOFSTEP] simp only [Option.map_eq_bind] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → β → σ ⊢ (Primrec₂ fun a n => Option.bind (decode n) (some ∘ f a)) ↔ Primrec₂ f [PROOFSTEP] exact bind_decode_iff.trans Primrec₂.option_some_iff [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ c : α → Bool f g : α → σ hc : Primrec c hf : Primrec f hg : Primrec g a : α ⊢ (Nat.casesOn (encode (c a)) (g a) fun b => f (a, b).fst) = bif c a then f a else g a [PROOFSTEP] cases c a [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ c : α → Bool f g : α → σ hc : Primrec c hf : Primrec f hg : Primrec g a : α ⊢ (Nat.casesOn (encode false) (g a) fun b => f (a, b).fst) = bif false then f a else g a [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ c : α → Bool f g : α → σ hc : Primrec c hf : Primrec f hg : Primrec g a : α ⊢ (Nat.casesOn (encode true) (g a) fun b => f (a, b).fst) = bif true then f a else g a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ c : α → Prop inst✝ : DecidablePred c f g : α → σ hc : PrimrecPred c hf : Primrec f hg : Primrec g ⊢ Primrec fun a => if c a then f a else g a [PROOFSTEP] simpa using cond hc hf hg [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ p : ℕ × ℕ ⊢ (Nat.casesOn ((fun x x_1 => x - x_1) p.fst p.snd) true fun b => false) = (fun a b => decide ((fun x x_1 => x ≤ x_1) a b)) p.fst p.snd [PROOFSTEP] dsimp [swap] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ p : ℕ × ℕ ⊢ Nat.rec true (fun n n_ih => false) (p.fst - p.snd) = decide (p.fst ≤ p.snd) [PROOFSTEP] cases' e : p.1 - p.2 with n [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ p : ℕ × ℕ e : p.fst - p.snd = Nat.zero ⊢ Nat.rec true (fun n n_ih => false) Nat.zero = decide (p.fst ≤ p.snd) [PROOFSTEP] simp [tsub_eq_zero_iff_le.1 e] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ p : ℕ × ℕ n : ℕ e : p.fst - p.snd = Nat.succ n ⊢ Nat.rec true (fun n n_ih => false) (Nat.succ n) = decide (p.fst ≤ p.snd) [PROOFSTEP] simp [not_le.2 (Nat.lt_of_sub_eq_succ e)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : Bool → α b : Bool ⊢ (bif id b then f true else f false) = f b [PROOFSTEP] cases b [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : Bool → α ⊢ (bif id false then f true else f false) = f false [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : Bool → α ⊢ (bif id true then f true else f false) = f true [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : Bool → Bool → α x✝ : Bool × Bool a b : Bool ⊢ (bif (a, b).fst then f true (a, b).snd else f false (a, b).snd) = f (a, b).fst (a, b).snd [PROOFSTEP] cases a [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : Bool → Bool → α x✝ : Bool × Bool b : Bool ⊢ (bif (false, b).fst then f true (false, b).snd else f false (false, b).snd) = f (false, b).fst (false, b).snd [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : Bool → Bool → α x✝ : Bool × Bool b : Bool ⊢ (bif (true, b).fst then f true (true, b).snd else f false (true, b).snd) = f (true, b).fst (true, b).snd [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p n : α ⊢ (!decide (p n)) = decide ((fun a => ¬p a) n) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁶ : Primcodable α inst✝⁵ : Primcodable β inst✝⁴ : Primcodable γ inst✝³ : Primcodable δ inst✝² : Primcodable σ p q : α → Prop inst✝¹ : DecidablePred p inst✝ : DecidablePred q hp : PrimrecPred p hq : PrimrecPred q n : α ⊢ (decide (p n) && decide (q n)) = decide ((fun a => p a ∧ q a) n) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁶ : Primcodable α inst✝⁵ : Primcodable β inst✝⁴ : Primcodable γ inst✝³ : Primcodable δ inst✝² : Primcodable σ p q : α → Prop inst✝¹ : DecidablePred p inst✝ : DecidablePred q hp : PrimrecPred p hq : PrimrecPred q n : α ⊢ (decide (p n) || decide (q n)) = decide ((fun a => p a ∨ q a) n) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : DecidableEq α a : ℕ × ℕ ⊢ (fun x x_1 => x ≤ x_1) a.fst a.snd ∧ (fun x x_1 => x ≤ x_1) a.snd a.fst ↔ (fun a b => a = b) a.fst a.snd [PROOFSTEP] simp [le_antisymm_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ p : ℕ × ℕ ⊢ ¬p.snd ≤ p.fst ↔ (fun x x_1 => x < x_1) p.fst p.snd [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α o₁ o₂ : Option α ⊢ (Option.casesOn (o₁, o₂).fst (o₁, o₂).snd fun b => ((o₁, o₂), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (o₁, o₂).fst (o₁, o₂).snd [PROOFSTEP] cases o₁ [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α o₂ : Option α ⊢ (Option.casesOn (none, o₂).fst (none, o₂).snd fun b => ((none, o₂), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (none, o₂).fst (none, o₂).snd [PROOFSTEP] cases o₂ [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α o₂ : Option α val✝ : α ⊢ (Option.casesOn (some val✝, o₂).fst (some val✝, o₂).snd fun b => ((some val✝, o₂), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (some val✝, o₂).fst (some val✝, o₂).snd [PROOFSTEP] cases o₂ [GOAL] case none.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α ⊢ (Option.casesOn (none, none).fst (none, none).snd fun b => ((none, none), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (none, none).fst (none, none).snd [PROOFSTEP] rfl [GOAL] case none.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α val✝ : α ⊢ (Option.casesOn (none, some val✝).fst (none, some val✝).snd fun b => ((none, some val✝), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (none, some val✝).fst (none, some val✝).snd [PROOFSTEP] rfl [GOAL] case some.none α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α val✝ : α ⊢ (Option.casesOn (some val✝, none).fst (some val✝, none).snd fun b => ((some val✝, none), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (some val✝, none).fst (some val✝, none).snd [PROOFSTEP] rfl [GOAL] case some.some α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ x✝ : Option α × Option α val✝¹ val✝ : α ⊢ (Option.casesOn (some val✝¹, some val✝).fst (some val✝¹, some val✝).snd fun b => ((some val✝¹, some val✝), b).fst.fst) = (fun x x_1 => HOrElse.hOrElse x fun x => x_1) (some val✝¹, some val✝).fst (some val✝¹, some val✝).snd [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ ⊢ Primrec₂ fun p a => encode a [PROOFSTEP] exact encode_iff.mpr snd [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ ⊢ Primrec₂ fun p a => p.fst [PROOFSTEP] exact fst.comp fst [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ p : α → β → Bool hp : Primrec₂ p a : β l : List β n : α ⊢ (bif p (id n) a then 0 else Nat.succ (List.findIdx (p n) l)) = List.findIdx (p n) (a :: l) [PROOFSTEP] simp [List.findIdx_cons] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : Fintype α f : α → σ l : List α left✝ : List.Nodup l m : ∀ (x : α), x ∈ l ⊢ Primrec fun a => some (f a) [PROOFSTEP] haveI := decidableEqOfEncodable α [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : Fintype α f : α → σ l : List α left✝ : List.Nodup l m : ∀ (x : α), x ∈ l this : DecidableEq α ⊢ Primrec fun a => some (f a) [PROOFSTEP] refine ((list_get?₁ (l.map f)).comp (list_indexOf₁ l)).of_eq fun a => ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ inst✝ : Fintype α f : α → σ l : List α left✝ : List.Nodup l m : ∀ (x : α), x ∈ l this : DecidableEq α a : α ⊢ List.get? (List.map f l) (List.indexOf a l) = some (f a) [PROOFSTEP] rw [List.get?_map, List.indexOf_get? (m a), Option.map_some'] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ f : α → ℕ p : α → ℕ → Prop inst✝ : (x : α) → (n : ℕ) → Decidable (p x n) hf : Primrec f hp : PrimrecRel p x : α ⊢ Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) (f x) = Nat.findGreatest (p x) (f x) [PROOFSTEP] induction f x [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ f : α → ℕ p : α → ℕ → Prop inst✝ : (x : α) → (n : ℕ) → Decidable (p x n) hf : Primrec f hp : PrimrecRel p x : α ⊢ Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) Nat.zero = Nat.findGreatest (p x) Nat.zero [PROOFSTEP] simp [Nat.findGreatest, *] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁵ : Primcodable α inst✝⁴ : Primcodable β inst✝³ : Primcodable γ inst✝² : Primcodable δ inst✝¹ : Primcodable σ f : α → ℕ p : α → ℕ → Prop inst✝ : (x : α) → (n : ℕ) → Decidable (p x n) hf : Primrec f hp : PrimrecRel p x : α n✝ : ℕ n_ih✝ : Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) n✝ = Nat.findGreatest (p x) n✝ ⊢ Nat.rec 0 (fun n IH => if p x ((n, IH).fst + 1) then (n, IH).fst + 1 else (n, IH).snd) (Nat.succ n✝) = Nat.findGreatest (p x) (Nat.succ n✝) [PROOFSTEP] simp [Nat.findGreatest, *] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → ℕ h₁ : PrimrecBounded f h₂ : PrimrecRel fun a b => f a = b ⊢ Primrec f [PROOFSTEP] rcases h₁ with ⟨g, pg, hg : ∀ x, f x ≤ g x⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → ℕ h₂ : PrimrecRel fun a b => f a = b g : α → ℕ pg : Primrec g hg : ∀ (x : α), f x ≤ g x ⊢ Primrec f [PROOFSTEP] refine (nat_findGreatest pg h₂).of_eq fun n => ?_ [GOAL] case intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ f : α → ℕ h₂ : PrimrecRel fun a b => f a = b g : α → ℕ pg : Primrec g hg : ∀ (x : α), f x ≤ g x n : α ⊢ Nat.findGreatest (fun b => f n = b) (g n) = f n [PROOFSTEP] exact (Nat.findGreatest_spec (P := fun b => f n = b) (hg n) rfl).symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ ⊢ Primrec₂ fun x x_1 => x / x_1 [PROOFSTEP] refine of_graph ⟨_, fst, fun p => Nat.div_le_self _ _⟩ ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ ⊢ PrimrecRel fun a b => (fun x x_1 => x / x_1) a.fst a.snd = b [PROOFSTEP] have : PrimrecRel fun (a : ℕ × ℕ) (b : ℕ) => (a.2 = 0 ∧ b = 0) ∨ (0 < a.2 ∧ b * a.2 ≤ a.1 ∧ a.1 < (b + 1) * a.2) := PrimrecPred.or (.and (const 0 |> Primrec.eq.comp (fst |> snd.comp)) (const 0 |> Primrec.eq.comp snd)) (.and (nat_lt.comp (const 0) (fst |> snd.comp)) <| .and (nat_le.comp (nat_mul.comp snd (fst |> snd.comp)) (fst |> fst.comp)) (nat_lt.comp (fst.comp fst) (nat_mul.comp (Primrec.succ.comp snd) (snd.comp fst)))) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd ⊢ PrimrecRel fun a b => (fun x x_1 => x / x_1) a.fst a.snd = b [PROOFSTEP] refine this.of_eq ?_ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd ⊢ ∀ (a : ℕ × ℕ) (b : ℕ), a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd ↔ (fun x x_1 => x / x_1) a.fst a.snd = b [PROOFSTEP] rintro ⟨a, k⟩ q [GOAL] case mk α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd a k q : ℕ ⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔ (fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q [PROOFSTEP] if H : k = 0 then simp [H, eq_comm] else have : q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k := by rw [le_antisymm_iff, ← (@Nat.lt_succ _ q), Nat.le_div_iff_mul_le' (Nat.pos_of_ne_zero H), Nat.div_lt_iff_lt_mul' (Nat.pos_of_ne_zero H)] simpa [H, zero_lt_iff, eq_comm (b := q)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd a k q : ℕ H : k = 0 ⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔ (fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q [PROOFSTEP] simp [H, eq_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd a k q : ℕ H : ¬k = 0 ⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔ (fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q [PROOFSTEP] have : q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k := by rw [le_antisymm_iff, ← (@Nat.lt_succ _ q), Nat.le_div_iff_mul_le' (Nat.pos_of_ne_zero H), Nat.div_lt_iff_lt_mul' (Nat.pos_of_ne_zero H)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd a k q : ℕ H : ¬k = 0 ⊢ q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k [PROOFSTEP] rw [le_antisymm_iff, ← (@Nat.lt_succ _ q), Nat.le_div_iff_mul_le' (Nat.pos_of_ne_zero H), Nat.div_lt_iff_lt_mul' (Nat.pos_of_ne_zero H)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ this✝ : PrimrecRel fun a b => a.snd = 0 ∧ b = 0 ∨ 0 < a.snd ∧ b * a.snd ≤ a.fst ∧ a.fst < (b + 1) * a.snd a k q : ℕ H : ¬k = 0 this : q * k ≤ a ∧ a < (q + 1) * k ↔ q = a / k ⊢ (a, k).snd = 0 ∧ q = 0 ∨ 0 < (a, k).snd ∧ q * (a, k).snd ≤ (a, k).fst ∧ (a, k).fst < (q + 1) * (a, k).snd ↔ (fun x x_1 => x / x_1) (a, k).fst (a, k).snd = q [PROOFSTEP] simpa [H, zero_lt_iff, eq_comm (b := q)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ m n : ℕ ⊢ (m, n).fst - (m, n).snd * (fun x x_1 => x / x_1) (m, n).fst (m, n).snd = m % n [PROOFSTEP] apply Nat.sub_eq_of_eq_add [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ m n : ℕ ⊢ (m, n).fst = m % n + (m, n).snd * (fun x x_1 => x / x_1) (m, n).fst (m, n).snd [PROOFSTEP] simp [add_comm (m % n), Nat.div_add_mod] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ n : ℕ ⊢ (id n % 2 == 1) = Nat.bodd n [PROOFSTEP] cases H : n.bodd [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ n : ℕ H : Nat.bodd n = false ⊢ (id n % 2 == 1) = false [PROOFSTEP] simp [Nat.mod_two_of_bodd, H] [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 δ : Type u_4 σ : Type u_5 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable δ inst✝ : Primcodable σ n : ℕ H : Nat.bodd n = true ⊢ (id n % 2 == 1) = true [PROOFSTEP] simp [Nat.mod_two_of_bodd, H] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → β × List β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this✝ : Primcodable (List β) := prim H this : Primrec fun a => Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a))) a : α ⊢ Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a))) = some (List.casesOn (f a) (g a) fun b l => h a (b, l)) [PROOFSTEP] cases' f a with b l [GOAL] case nil α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → β × List β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this✝ : Primcodable (List β) := prim H this : Primrec fun a => Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a))) a : α ⊢ Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode [])) = some (List.casesOn [] (g a) fun b l => h a (b, l)) [PROOFSTEP] simp [encodek] [GOAL] case cons α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → β × List β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this✝ : Primcodable (List β) := prim H this : Primrec fun a => Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (f a))) a : α b : β l : List β ⊢ Option.map (fun o => Option.casesOn o (g a) (h a)) (decode (encode (b :: l))) = some (List.casesOn (b :: l) (g a) fun b l => h a (b, l)) [PROOFSTEP] simp [encodek] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] letI := prim H [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] let G (a : α) (IH : σ × List β) : σ × List β := List.casesOn IH.2 IH fun b l => (h a (IH.1, b), l) [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] have hG : Primrec₂ G := list_casesOn' H (snd.comp snd) snd <| to₂ <| pair (hh.comp (fst.comp fst) <| pair ((fst.comp snd).comp fst) (fst.comp snd)) (snd.comp snd) [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] let F := fun (a : α) (n : ℕ) => (G a)^[n] (g a, f a) [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] have hF : Primrec fun a => (F a (encode (f a))).1 := (fst.comp <| nat_iterate (encode_iff.2 hf) (pair hg hf) <| hG) [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] suffices : ∀ a n, F a n = (((f a).take n).foldl (fun s b => h a (s, b)) (g a), (f a).drop n) [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this✝ : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst this : ∀ (a : α) (n : ℕ), F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a)) ⊢ Primrec fun a => List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] refine hF.of_eq fun a => ?_ [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this✝ : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst this : ∀ (a : α) (n : ℕ), F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a)) a : α ⊢ (F a (encode (f a))).fst = List.foldl (fun s b => h a (s, b)) (g a) (f a) [PROOFSTEP] rw [this, List.take_all_of_le (length_le_encode _)] [GOAL] case this α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst ⊢ ∀ (a : α) (n : ℕ), F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a)) [PROOFSTEP] introv [GOAL] case this α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α n : ℕ ⊢ F a n = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a)) [PROOFSTEP] dsimp only [GOAL] case this α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α n : ℕ ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (g a, f a) = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n (f a)), List.drop n (f a)) [PROOFSTEP] generalize f a = l [GOAL] case this α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α n : ℕ l : List β ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (g a, l) = (List.foldl (fun s b => h a (s, b)) (g a) (List.take n l), List.drop n l) [PROOFSTEP] generalize g a = x [GOAL] case this α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α n : ℕ l : List β x : σ ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l) [PROOFSTEP] induction' n with n IH generalizing l x [GOAL] case this.zero α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α l✝ : List β x✝ : σ l : List β x : σ ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[Nat.zero] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take Nat.zero l), List.drop Nat.zero l) [PROOFSTEP] rfl [GOAL] case this.succ α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α l✝ : List β x✝ : σ n : ℕ IH : ∀ (l : List β) (x : σ), (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l) l : List β x : σ ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[Nat.succ n] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) l), List.drop (Nat.succ n) l) [PROOFSTEP] simp [GOAL] case this.succ α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α l✝ : List β x✝ : σ n : ℕ IH : ∀ (l : List β) (x : σ), (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l) l : List β x : σ ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (List.rec (x, l) (fun head tail tail_ih => (h a (x, head), tail)) l) = (List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) l), List.drop (Nat.succ n) l) [PROOFSTEP] cases' l with b l [GOAL] case this.succ.nil α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α l : List β x✝ : σ n : ℕ IH : ∀ (l : List β) (x : σ), (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l) x : σ ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (List.rec (x, []) (fun head tail tail_ih => (h a (x, head), tail)) []) = (List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) []), List.drop (Nat.succ n) []) [PROOFSTEP] simp [IH] [GOAL] case this.succ.cons α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) f : α → List β g : α → σ h : α → σ × β → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h this : Primcodable (List β) := prim H G : α → σ × List β → σ × List β := fun a IH => List.casesOn IH.snd IH fun b l => (h a (IH.fst, b), l) hG : Primrec₂ G F : α → ℕ → σ × List β := fun a n => (G a)^[n] (g a, f a) hF : Primrec fun a => (F a (encode (f a))).fst a : α l✝ : List β x✝ : σ n : ℕ IH : ∀ (l : List β) (x : σ), (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (x, l) = (List.foldl (fun s b => h a (s, b)) x (List.take n l), List.drop n l) x : σ b : β l : List β ⊢ (fun IH => List.rec IH (fun head tail tail_ih => (h a (IH.fst, head), tail)) IH.snd)^[n] (List.rec (x, b :: l) (fun head tail tail_ih => (h a (x, head), tail)) (b :: l)) = (List.foldl (fun s b => h a (s, b)) x (List.take (Nat.succ n) (b :: l)), List.drop (Nat.succ n) (b :: l)) [PROOFSTEP] simp [IH] [GOAL] α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) this : Primcodable (List β) := prim H l : List β ⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r l = List.reverseAux l r [PROOFSTEP] induction l [GOAL] case nil α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) this : Primcodable (List β) := prim H ⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r [] = List.reverseAux [] r [PROOFSTEP] simp [*, List.reverseAux] [GOAL] case cons α : Type u_1 β : Type u_2 σ : Type u_3 inst✝² : Primcodable α inst✝¹ : Primcodable β inst✝ : Primcodable σ H : Nat.Primrec fun n => encode (decode n) this : Primcodable (List β) := prim H head✝ : β tail✝ : List β tail_ih✝ : ∀ (r : List β), List.foldl (fun s b => b :: s) r tail✝ = List.reverseAux tail✝ r ⊢ ∀ (r : List β), List.foldl (fun s b => b :: s) r (head✝ :: tail✝) = List.reverseAux (head✝ :: tail✝) r [PROOFSTEP] simp [*, List.reverseAux] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (bif Nat.bodd n then Option.map (fun b => 2 * encode (n, b).snd + 1) (decode (Nat.div2 n)) else Option.map (fun b => 2 * encode (n, b).snd) (decode (Nat.div2 n))) = encode (decodeSum n) [PROOFSTEP] simp [decodeSum] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (bif Nat.bodd n then Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n)) else Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) = encode (match (Nat.bodd n, Nat.div2 n) with | (false, m) => Option.map Sum.inl (decode m) | (fst, m) => Option.map Sum.inr (decode m)) [PROOFSTEP] cases Nat.bodd n [GOAL] case false α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (bif false then Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n)) else Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) = encode (match (false, Nat.div2 n) with | (false, m) => Option.map Sum.inl (decode m) | (fst, m) => Option.map Sum.inr (decode m)) [PROOFSTEP] simp [decodeSum] [GOAL] case true α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (bif true then Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n)) else Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) = encode (match (true, Nat.div2 n) with | (false, m) => Option.map Sum.inl (decode m) | (fst, m) => Option.map Sum.inr (decode m)) [PROOFSTEP] simp [decodeSum] [GOAL] case false α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (Option.map (fun b => 2 * encode b) (decode (Nat.div2 n))) = encode (Option.map Sum.inl (decode (Nat.div2 n))) [PROOFSTEP] cases @decode α _ n.div2 [GOAL] case false.none α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (Option.map (fun b => 2 * encode b) none) = encode (Option.map Sum.inl none) [PROOFSTEP] rfl [GOAL] case false.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : α ⊢ encode (Option.map (fun b => 2 * encode b) (some val✝)) = encode (Option.map Sum.inl (some val✝)) [PROOFSTEP] rfl [GOAL] case true α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (Option.map (fun b => 2 * encode b + 1) (decode (Nat.div2 n))) = encode (Option.map Sum.inr (decode (Nat.div2 n))) [PROOFSTEP] cases @decode β _ n.div2 [GOAL] case true.none α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ ⊢ encode (Option.map (fun b => 2 * encode b + 1) none) = encode (Option.map Sum.inr none) [PROOFSTEP] rfl [GOAL] case true.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β n : ℕ val✝ : β ⊢ encode (Option.map (fun b => 2 * encode b + 1) (some val✝)) = encode (Option.map Sum.inr (some val✝)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n : ℕ ⊢ encode (List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n))) = encode (decode n) [PROOFSTEP] rw [List.foldl_reverse] [GOAL] α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n : ℕ ⊢ encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) n)) = encode (decode n) [PROOFSTEP] apply Nat.case_strong_induction_on n [GOAL] case hz α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n : ℕ ⊢ encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) 0)) = encode (decode 0) [PROOFSTEP] simp [GOAL] case hi α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n : ℕ ⊢ ∀ (n : ℕ), (∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m)) → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.succ n))) = encode (decode (Nat.succ n)) [PROOFSTEP] intro n IH [GOAL] case hi α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) ⊢ encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.succ n))) = encode (decode (Nat.succ n)) [PROOFSTEP] simp [GOAL] case hi α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) ⊢ encode (Option.bind (decode (Nat.unpair n).fst) fun a => Option.map (List.cons (encode a)) (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.unpair n).snd))) = encode (Seq.seq (Option.map (fun x x_1 => x :: x_1) (decode (Nat.unpair n).fst)) fun x => decode (Nat.unpair n).snd) [PROOFSTEP] cases' @decode α _ n.unpair.1 with a [GOAL] case hi.none α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) ⊢ encode (Option.bind none fun a => Option.map (List.cons (encode a)) (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.unpair n).snd))) = encode (Seq.seq (Option.map (fun x x_1 => x :: x_1) none) fun x => decode (Nat.unpair n).snd) [PROOFSTEP] rfl [GOAL] case hi.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α ⊢ encode (Option.bind (some a) fun a => Option.map (List.cons (encode a)) (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.unpair n).snd))) = encode (Seq.seq (Option.map (fun x x_1 => x :: x_1) (some a)) fun x => decode (Nat.unpair n).snd) [PROOFSTEP] simp only [decode_eq_ofNat, Option.some.injEq, Option.some_bind, Option.map_some'] [GOAL] case hi.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α ⊢ encode (Option.map (List.cons (encode a)) (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.unpair n).snd))) = encode (Seq.seq (some fun x => a :: x) fun x => decode (Nat.unpair n).snd) [PROOFSTEP] suffices : ∀ (o : Option (List ℕ)) (p) (_ : encode o = encode p), encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p) [GOAL] case hi.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝¹ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this✝ : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α this : ∀ (o : Option (List ℕ)) (p : Option (List α)), encode o = encode p → encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p) ⊢ encode (Option.map (List.cons (encode a)) (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) (Nat.unpair n).snd))) = encode (Seq.seq (some fun x => a :: x) fun x => decode (Nat.unpair n).snd) case this α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α ⊢ ∀ (o : Option (List ℕ)) (p : Option (List α)), encode o = encode p → encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p) [PROOFSTEP] exact this _ _ (IH _ (Nat.unpair_right_le n)) [GOAL] case this α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α ⊢ ∀ (o : Option (List ℕ)) (p : Option (List α)), encode o = encode p → encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p) [PROOFSTEP] intro o p IH [GOAL] case this α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α o : Option (List ℕ) p : Option (List α) IH : encode o = encode p ⊢ encode (Option.map (List.cons (encode a)) o) = encode (Option.map (List.cons a) p) [PROOFSTEP] cases o [GOAL] case this.none α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α p : Option (List α) IH : encode none = encode p ⊢ encode (Option.map (List.cons (encode a)) none) = encode (Option.map (List.cons a) p) [PROOFSTEP] cases p [GOAL] case this.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α p : Option (List α) val✝ : List ℕ IH : encode (some val✝) = encode p ⊢ encode (Option.map (List.cons (encode a)) (some val✝)) = encode (Option.map (List.cons a) p) [PROOFSTEP] cases p [GOAL] case this.none.none α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α IH : encode none = encode none ⊢ encode (Option.map (List.cons (encode a)) none) = encode (Option.map (List.cons a) none) [PROOFSTEP] rfl [GOAL] case this.none.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α val✝ : List α IH : encode none = encode (some val✝) ⊢ encode (Option.map (List.cons (encode a)) none) = encode (Option.map (List.cons a) (some val✝)) [PROOFSTEP] injection IH [GOAL] case this.some.none α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α val✝ : List ℕ IH : encode (some val✝) = encode none ⊢ encode (Option.map (List.cons (encode a)) (some val✝)) = encode (Option.map (List.cons a) none) [PROOFSTEP] injection IH [GOAL] case this.some.some α : Type u_1 β : Type u_2 inst✝¹ : Primcodable α inst✝ : Primcodable β H : Nat.Primrec fun n => encode (decode n) := prim this✝ : Primrec₂ fun a o => Option.map (List.cons (encode a)) o this : Primrec fun n => List.foldl (fun o m => Option.bind (decode m) fun a => Option.map (List.cons (encode a)) o) (some []) (List.reverse (ofNat (List ℕ) n)) n✝ n : ℕ IH✝ : ∀ (m : ℕ), m ≤ n → encode (List.foldr (fun x y => Option.bind (decode x) fun a => Option.map (List.cons (encode a)) y) (some []) (ofNat (List ℕ) m)) = encode (decode m) a : α val✝¹ : List ℕ val✝ : List α IH : encode (some val✝¹) = encode (some val✝) ⊢ encode (Option.map (List.cons (encode a)) (some val✝¹)) = encode (Option.map (List.cons a) (some val✝)) [PROOFSTEP] exact congr_arg (fun k => (Nat.pair (encode a) k).succ.succ) (Nat.succ.inj IH) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ → σ hf : Primrec f hg : Primrec₂ g hh : Primrec₂ h a : α ⊢ (bif Nat.bodd (encode (f a)) then Option.map (h a) (decode (Nat.div2 (encode (f a)))) else Option.map (g a) (decode (Nat.div2 (encode (f a))))) = some (Sum.casesOn (f a) (g a) (h a)) [PROOFSTEP] cases' f a with b c [GOAL] case inl α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ → σ hf : Primrec f hg : Primrec₂ g hh : Primrec₂ h a : α b : β ⊢ (bif Nat.bodd (encode (Sum.inl b)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inl b)))) else Option.map (g a) (decode (Nat.div2 (encode (Sum.inl b))))) = some (Sum.casesOn (Sum.inl b) (g a) (h a)) [PROOFSTEP] simp [Nat.div2_val, encodek] [GOAL] case inr α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → β ⊕ γ g : α → β → σ h : α → γ → σ hf : Primrec f hg : Primrec₂ g hh : Primrec₂ h a : α c : γ ⊢ (bif Nat.bodd (encode (Sum.inr c)) then Option.map (h a) (decode (Nat.div2 (encode (Sum.inr c)))) else Option.map (g a) (decode (Nat.div2 (encode (Sum.inr c))))) = some (Sum.casesOn (Sum.inr c) (g a) (h a)) [PROOFSTEP] simp [Nat.div2_val, encodek] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h a : α ⊢ List.foldl (fun s b => h (a, s, b).fst ((a, s, b).snd.snd, (a, s, b).snd.fst)) (g a) (List.reverse (f a)) = List.foldr (fun b s => h a (b, s)) (g a) (f a) [PROOFSTEP] simp [List.foldl_reverse] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l : List α ⊢ (List.casesOn (id l) none fun b l_1 => some (l, b, l_1).snd.fst) = List.head? l [PROOFSTEP] cases l [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ ⊢ (List.casesOn (id []) none fun b l => some ([], b, l).snd.fst) = List.head? [] [PROOFSTEP] rfl [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ head✝ : α tail✝ : List α ⊢ (List.casesOn (id (head✝ :: tail✝)) none fun b l => some (head✝ :: tail✝, b, l).snd.fst) = List.head? (head✝ :: tail✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l : List α ⊢ (List.casesOn (id l) [] fun b l_1 => (l, b, l_1).snd.snd) = List.tail l [PROOFSTEP] cases l [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ ⊢ (List.casesOn (id []) [] fun b l => ([], b, l).snd.snd) = List.tail [] [PROOFSTEP] rfl [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ head✝ : α tail✝ : List α ⊢ (List.casesOn (id (head✝ :: tail✝)) [] fun b l => (head✝ :: tail✝, b, l).snd.snd) = List.tail (head✝ :: tail✝) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × List β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) this : Primrec F a : α ⊢ (F a).snd = List.recOn (f a) (g a) fun b l IH => h a (b, l, IH) [PROOFSTEP] suffices F a = (f a, List.recOn (f a) (g a) fun b l IH => h a (b, l, IH)) by rw [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × List β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) this✝ : Primrec F a : α this : F a = (f a, List.recOn (f a) (g a) fun b l IH => h a (b, l, IH)) ⊢ (F a).snd = List.recOn (f a) (g a) fun b l IH => h a (b, l, IH) [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × List β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) this : Primrec F a : α ⊢ F a = (f a, List.recOn (f a) (g a) fun b l IH => h a (b, l, IH)) [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × List β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) this : Primrec F a : α ⊢ List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) = (f a, List.rec (g a) (fun b l IH => h a (b, l, IH)) (f a)) [PROOFSTEP] induction' f a with b l IH [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × List β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) this : Primrec F a : α ⊢ List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) [] = ([], List.rec (g a) (fun b l IH => h a (b, l, IH)) []) [PROOFSTEP] simp [*] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → σ h : α → β × List β × σ → σ hf : Primrec f hg : Primrec g hh : Primrec₂ h F : α → List β × σ := fun a => List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (f a) this : Primrec F a : α b : β l : List β IH : List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) l = (l, List.rec (g a) (fun b l IH => h a (b, l, IH)) l) ⊢ List.foldr (fun b s => (b :: s.fst, h a (b, s))) ([], g a) (b :: l) = (b :: l, List.rec (g a) (fun b l IH => h a (b, l, IH)) (b :: l)) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some l : List α n : ℕ ⊢ Sum.casesOn (F (l, n).fst (l, n).snd) (fun x => none) some = List.get? l n [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some l : List α n : ℕ ⊢ Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) l) = List.get? l n [PROOFSTEP] symm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some l : List α n : ℕ ⊢ List.get? l n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) l) [PROOFSTEP] induction' l with a l IH generalizing n [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n✝ n : ℕ ⊢ List.get? [] n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) []) [PROOFSTEP] rfl [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n✝ : ℕ a : α l : List α IH : ∀ (n : ℕ), List.get? l n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) l) n : ℕ ⊢ List.get? (a :: l) n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) (a :: l)) [PROOFSTEP] cases' n with n [GOAL] case cons.zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n : ℕ a : α l : List α IH : ∀ (n : ℕ), List.get? l n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) l) ⊢ List.get? (a :: l) Nat.zero = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl Nat.zero) (a :: l)) [PROOFSTEP] dsimp [GOAL] case cons.zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n : ℕ a : α l : List α IH : ∀ (n : ℕ), List.get? l n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) l) ⊢ some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) l) [PROOFSTEP] clear IH [GOAL] case cons.zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n : ℕ a : α l : List α ⊢ some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) l) [PROOFSTEP] induction' l with _ l IH [GOAL] case cons.zero.nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n : ℕ a : α ⊢ some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) []) [PROOFSTEP] simp [*] [GOAL] case cons.zero.cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n : ℕ a head✝ : α l : List α IH : some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) l) ⊢ some a = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inr a) (head✝ :: l)) [PROOFSTEP] simp [*] [GOAL] case cons.succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ F : List α → ℕ → ℕ ⊕ α := fun l n => List.foldl (fun s a => Sum.casesOn s (fun x => Nat.casesOn x (Sum.inr a) Sum.inl) Sum.inr) (Sum.inl n) l hF : Primrec₂ F this : Primrec fun p => Sum.casesOn (F p.fst p.snd) (fun x => none) some n✝ : ℕ a : α l : List α IH : ∀ (n : ℕ), List.get? l n = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl n) l) n : ℕ ⊢ List.get? (a :: l) (Nat.succ n) = Sum.rec (fun val => none) (fun val => some val) (List.foldl (fun s a => Sum.rec (fun val => Nat.rec (Sum.inr a) (fun n n_ih => Sum.inl n) val) (fun val => Sum.inr val) s) (Sum.inl (Nat.succ n)) (a :: l)) [PROOFSTEP] apply IH [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ d : α ⊢ Primrec₂ fun l n => List.getD l n d [PROOFSTEP] simp only [List.getD_eq_getD_get?] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ d : α ⊢ Primrec₂ fun l n => Option.getD (List.get? l n) d [PROOFSTEP] exact option_getD.comp₂ list_get? (const _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l₁ l₂ : List α ⊢ List.foldr (fun b s => ((l₁, l₂), b, s).snd.fst :: ((l₁, l₂), b, s).snd.snd) (l₁, l₂).snd (l₁, l₂).fst = l₁ ++ l₂ [PROOFSTEP] induction l₁ [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l₂ : List α ⊢ List.foldr (fun b s => (([], l₂), b, s).snd.fst :: (([], l₂), b, s).snd.snd) ([], l₂).snd ([], l₂).fst = [] ++ l₂ [PROOFSTEP] simp [*] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l₂ : List α head✝ : α tail✝ : List α tail_ih✝ : List.foldr (fun b s => ((tail✝, l₂), b, s).snd.fst :: ((tail✝, l₂), b, s).snd.snd) (tail✝, l₂).snd (tail✝, l₂).fst = tail✝ ++ l₂ ⊢ List.foldr (fun b s => ((head✝ :: tail✝, l₂), b, s).snd.fst :: ((head✝ :: tail✝, l₂), b, s).snd.snd) (head✝ :: tail✝, l₂).snd (head✝ :: tail✝, l₂).fst = head✝ :: tail✝ ++ l₂ [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → β → σ hf : Primrec f hg : Primrec₂ g a : α ⊢ List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] (f a) = List.map (g a) (f a) [PROOFSTEP] induction f a [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → β → σ hf : Primrec f hg : Primrec₂ g a : α ⊢ List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] [] = List.map (g a) [] [PROOFSTEP] simp [*] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β g : α → β → σ hf : Primrec f hg : Primrec₂ g a : α head✝ : β tail✝ : List β tail_ih✝ : List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] tail✝ = List.map (g a) tail✝ ⊢ List.foldr (fun b s => g (a, b, s).fst (a, b, s).snd.fst :: (a, b, s).snd.snd) [] (head✝ :: tail✝) = List.map (g a) (head✝ :: tail✝) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Nat.rec [] (fun n_1 IH => (n, n_1, IH).snd.snd ++ [(n, n_1, IH).snd.fst]) (id n) = List.range n [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Nat.rec [] (fun n IH => IH ++ [n]) n = List.range n [PROOFSTEP] induction n [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ ⊢ Nat.rec [] (fun n IH => IH ++ [n]) Nat.zero = List.range Nat.zero [PROOFSTEP] simp [*, List.range_succ] [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n✝ : ℕ n_ih✝ : Nat.rec [] (fun n IH => IH ++ [n]) n✝ = List.range n✝ ⊢ Nat.rec [] (fun n IH => IH ++ [n]) (Nat.succ n✝) = List.range (Nat.succ n✝) [PROOFSTEP] simp [*, List.range_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l : List (List α) ⊢ List.foldr (fun b s => (fun x x_1 => x ++ x_1) (l, b, s).snd.fst (l, b, s).snd.snd) [] (id l) = List.join l [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l : List (List α) ⊢ List.foldr (fun b s => b ++ s) [] l = List.join l [PROOFSTEP] induction l [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ ⊢ List.foldr (fun b s => b ++ s) [] [] = List.join [] [PROOFSTEP] simp [*] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ head✝ : List α tail✝ : List (List α) tail_ih✝ : List.foldr (fun b s => b ++ s) [] tail✝ = List.join tail✝ ⊢ List.foldr (fun b s => b ++ s) [] (head✝ :: tail✝) = List.join (head✝ :: tail✝) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l : List α ⊢ List.foldr (fun b s => (fun a b => Nat.succ (a, b).snd.snd) (l, b, s).fst (l, b, s).snd) 0 (id l) = List.length l [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ l : List α ⊢ List.foldr (fun b s => Nat.succ s) 0 l = List.length l [PROOFSTEP] induction l [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ ⊢ List.foldr (fun b s => Nat.succ s) 0 [] = List.length [] [PROOFSTEP] simp [*] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ head✝ : α tail✝ : List α tail_ih✝ : List.foldr (fun b s => Nat.succ s) 0 tail✝ = List.length tail✝ ⊢ List.foldr (fun b s => Nat.succ s) 0 (head✝ :: tail✝) = List.length (head✝ :: tail✝) [PROOFSTEP] simp [*] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β p : α → β → Bool hf : Primrec f hp : Primrec₂ p a : α ⊢ List.foldr (fun b s => bif p (a, b, s).fst (a, b, s).snd.fst then 0 else Nat.succ (a, b, s).snd.snd) 0 (f a) = List.findIdx (p a) (f a) [PROOFSTEP] dsimp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β p : α → β → Bool hf : Primrec f hp : Primrec₂ p a : α ⊢ List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 (f a) = List.findIdx (p a) (f a) [PROOFSTEP] induction f a [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β p : α → β → Bool hf : Primrec f hp : Primrec₂ p a : α ⊢ List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 [] = List.findIdx (p a) [] [PROOFSTEP] simp [List.findIdx_cons, *] [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → List β p : α → β → Bool hf : Primrec f hp : Primrec₂ p a : α head✝ : β tail✝ : List β tail_ih✝ : List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 tail✝ = List.findIdx (p a) tail✝ ⊢ List.foldr (fun b s => bif p a b then 0 else Nat.succ s) 0 (head✝ :: tail✝) = List.findIdx (p a) (head✝ :: tail✝) [PROOFSTEP] simp [List.findIdx_cons, *] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Primrec₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n) a : α n : ℕ ⊢ Nat.rec (some []) (fun n IH => Option.bind (a, n, IH).snd.snd fun b => Option.map (fun b_1 => (((a, n, IH), b), b_1).fst.snd ++ [(((a, n, IH), b), b_1).snd]) (g ((a, n, IH), b).fst.fst ((a, n, IH), b).snd)) n = some (List.map (f a) (List.range n)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Primrec₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n) a : α n : ℕ ⊢ Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) n = some (List.map (f a) (List.range n)) [PROOFSTEP] induction' n with n IH [GOAL] case zero α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Primrec₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n) a : α ⊢ Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) Nat.zero = some (List.map (f a) (List.range Nat.zero)) [PROOFSTEP] rfl [GOAL] case succ α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Primrec₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n) a : α n : ℕ IH : Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) n = some (List.map (f a) (List.range n)) ⊢ Nat.rec (some []) (fun n IH => Option.bind IH fun b => Option.map (fun b_1 => b ++ [b_1]) (g a b)) (Nat.succ n) = some (List.map (f a) (List.range (Nat.succ n))) [PROOFSTEP] simp [IH, H, List.range_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → ℕ → σ g : α → List σ → Option σ hg : Primrec₂ g H : ∀ (a : α) (n : ℕ), g a (List.map (f a) (List.range n)) = some (f a n) this : Primrec₂ fun a n => List.map (f a) (List.range n) a : α n : ℕ ⊢ List.get? (List.map (f (a, n).fst) (List.range (Nat.succ (a, n).snd))) (a, n).snd = some (f a n) [PROOFSTEP] simp [List.get?_range (Nat.lt_succ_self n)] [GOAL] α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ ⊢ encode (Option.bind (decode n) fun a => Option.guard p a) = encode (Option.bind (decode n) fun a => if h : (fun a => (fun a => p a) a) a then some { val := a, property := h } else none) [PROOFSTEP] cases' @decode α _ n with a [GOAL] case none α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ ⊢ encode (Option.bind none fun a => Option.guard p a) = encode (Option.bind none fun a => if h : (fun a => (fun a => p a) a) a then some { val := a, property := h } else none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ a : α ⊢ encode (Option.bind (some a) fun a => Option.guard p a) = encode (Option.bind (some a) fun a => if h : (fun a => (fun a => p a) a) a then some { val := a, property := h } else none) [PROOFSTEP] dsimp [Option.guard] [GOAL] case some α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ a : α ⊢ encode (if p a then some a else none) = encode (if h : p a then some { val := a, property := h } else none) [PROOFSTEP] by_cases h : p a [GOAL] case pos α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ a : α h : p a ⊢ encode (if p a then some a else none) = encode (if h : p a then some { val := a, property := h } else none) [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ a : α h : ¬p a ⊢ encode (if p a then some a else none) = encode (if h : p a then some { val := a, property := h } else none) [PROOFSTEP] simp [h] [GOAL] case pos α : Type u_1 β : Type u_2 inst✝² : Primcodable α inst✝¹ : Primcodable β p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primrec fun n => Option.bind (decode n) fun a => Option.guard p a n : ℕ a : α h : p a ⊢ encode a = encode { val := a, property := (_ : p a) } [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p ⊢ Primrec Subtype.val [PROOFSTEP] letI := Primcodable.subtype hp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primcodable (Subtype p) := Primcodable.subtype hp ⊢ Primrec Subtype.val [PROOFSTEP] refine' (@Primcodable.prim (Subtype p)).of_eq fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primcodable (Subtype p) := Primcodable.subtype hp n : ℕ ⊢ encode (decode n) = encode (Option.map Subtype.val (decode n)) [PROOFSTEP] rcases@decode (Subtype p) _ n with (_ | ⟨a, h⟩) [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primcodable (Subtype p) := Primcodable.subtype hp n : ℕ ⊢ encode none = encode (Option.map Subtype.val none) [PROOFSTEP] rfl [GOAL] case some.mk α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : α → Prop inst✝ : DecidablePred p hp : PrimrecPred p this : Primcodable (Subtype p) := Primcodable.subtype hp n : ℕ a : α h : p a ⊢ encode (some { val := a, property := h }) = encode (Option.map Subtype.val (some { val := a, property := h })) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p ⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f [PROOFSTEP] letI := Primcodable.subtype hp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p this : Primcodable (Subtype p) := Primcodable.subtype hp ⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f [PROOFSTEP] refine' ⟨fun h => _, fun hf => subtype_val.comp hf⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p this : Primcodable (Subtype p) := Primcodable.subtype hp h : Primrec fun a => ↑(f a) ⊢ Primrec f [PROOFSTEP] refine' Nat.Primrec.of_eq h fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p this : Primcodable (Subtype p) := Primcodable.subtype hp h : Primrec fun a => ↑(f a) n : ℕ ⊢ encode (Option.map (fun a => ↑(f a)) (decode n)) = encode (Option.map f (decode n)) [PROOFSTEP] cases' @decode α _ n with a [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p this : Primcodable (Subtype p) := Primcodable.subtype hp h : Primrec fun a => ↑(f a) n : ℕ ⊢ encode (Option.map (fun a => ↑(f a)) none) = encode (Option.map f none) [PROOFSTEP] rfl [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p this : Primcodable (Subtype p) := Primcodable.subtype hp h : Primrec fun a => ↑(f a) n : ℕ a : α ⊢ encode (Option.map (fun a => ↑(f a)) (some a)) = encode (Option.map f (some a)) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝⁴ : Primcodable α inst✝³ : Primcodable β inst✝² : Primcodable γ inst✝¹ : Primcodable σ p : β → Prop inst✝ : DecidablePred p hp : PrimrecPred p f : α → Subtype p this : Primcodable (Subtype p) := Primcodable.subtype hp h : Primrec fun a => ↑(f a) n : ℕ a : α ⊢ Nat.succ (encode ↑(f a)) = encode (some (f a)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β h : ∀ (a : α), Option.isSome (f a) = true ⊢ Primrec f → Primrec fun a => Option.get (f a) (_ : Option.isSome (f a) = true) [PROOFSTEP] intro hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β h : ∀ (a : α), Option.isSome (f a) = true hf : Primrec f ⊢ Primrec fun a => Option.get (f a) (_ : Option.isSome (f a) = true) [PROOFSTEP] refine' (Nat.Primrec.pred.comp hf).of_eq fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β h : ∀ (a : α), Option.isSome (f a) = true hf : Primrec f n : ℕ ⊢ Nat.pred (encode (Option.map f (decode n))) = encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) (decode n)) [PROOFSTEP] generalize hx : @decode α _ n = x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β h : ∀ (a : α), Option.isSome (f a) = true hf : Primrec f n : ℕ x : Option α hx : decode n = x ⊢ Nat.pred (encode (Option.map f x)) = encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) x) [PROOFSTEP] cases x [GOAL] case none α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β h : ∀ (a : α), Option.isSome (f a) = true hf : Primrec f n : ℕ hx : decode n = none ⊢ Nat.pred (encode (Option.map f none)) = encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) none) [PROOFSTEP] simp [GOAL] case some α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ f : α → Option β h : ∀ (a : α), Option.isSome (f a) = true hf : Primrec f n : ℕ val✝ : α hx : decode n = some val✝ ⊢ Nat.pred (encode (Option.map f (some val✝))) = encode (Option.map (fun a => Option.get (f a) (_ : Option.isSome (f a) = true)) (some val✝)) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : α → Fin n ⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f [PROOFSTEP] letI : Primcodable { a // id a < n } := Primcodable.subtype (nat_lt.comp .id (const _)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : α → Fin n this : Primcodable { a // id a < n } := Primcodable.subtype (_ : PrimrecPred fun a => id a < n) ⊢ (Primrec fun a => ↑(f a)) ↔ Primrec f [PROOFSTEP] exact (Iff.trans (by rfl) subtype_val_iff).trans (of_equiv_iff _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : α → Fin n this : Primcodable { a // id a < n } := Primcodable.subtype (_ : PrimrecPred fun a => id a < n) ⊢ (Primrec fun a => ↑(f a)) ↔ Primrec fun a => ↑(↑Fin.equivSubtype (f a)) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Primrec fun a => ↑(Fin.succ a) [PROOFSTEP] simp [succ.comp fin_val] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Primrec fun a => Vector.toList (a.fst ::ᵥ a.snd) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ ⊢ Primrec fun a => a.fst :: Vector.toList a.snd [PROOFSTEP] exact list_cons.comp fst (vector_toList_iff.2 snd) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ x✝ : Vector α n l : List α h : List.length l = n ⊢ List.tail (Vector.toList { val := l, property := h }) = Vector.toList (Vector.tail { val := l, property := h }) [PROOFSTEP] cases l [GOAL] case nil α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ x✝ : Vector α n h : List.length [] = n ⊢ List.tail (Vector.toList { val := [], property := h }) = Vector.toList (Vector.tail { val := [], property := h }) [PROOFSTEP] rfl [GOAL] case cons α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ x✝ : Vector α n head✝ : α tail✝ : List α h : List.length (head✝ :: tail✝) = n ⊢ List.tail (Vector.toList { val := head✝ :: tail✝, property := h }) = Vector.toList (Vector.tail { val := head✝ :: tail✝, property := h }) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ a : Vector α n × Fin n ⊢ List.get? (Vector.toList a.fst) ↑a.snd = some (Vector.get a.fst a.snd) [PROOFSTEP] rw [Vector.get_eq_get, ← List.get?_eq_get] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ a : Vector α n × Fin n ⊢ List.get? (Vector.toList a.fst) ↑a.snd = List.get? (Vector.toList a.fst) ↑(↑(Fin.castIso (_ : n = List.length (Vector.toList a.fst))) a.snd) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin (n + 1) → α → σ hf : ∀ (i : Fin (n + 1)), Primrec (f i) ⊢ Primrec fun a => List.ofFn fun i => f i a [PROOFSTEP] simp [List.ofFn_succ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin (n + 1) → α → σ hf : ∀ (i : Fin (n + 1)), Primrec (f i) ⊢ Primrec fun a => f 0 a :: List.ofFn fun i => f (Fin.succ i) a [PROOFSTEP] exact list_cons.comp (hf 0) (list_ofFn fun i => hf i.succ) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin n → α → σ hf : ∀ (i : Fin n), Primrec (f i) ⊢ Primrec fun a => Vector.toList (Vector.ofFn fun i => f i a) [PROOFSTEP] simp [list_ofFn hf] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ x✝ : (Fin n → σ) × Fin n v : Fin n → σ i : Fin n ⊢ Vector.get (Vector.ofFn (v, i).fst) (v, i).snd = id (v, i).fst (v, i).snd [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : Fin n → α → σ h : ∀ (i : Fin n), Primrec (f i) a : Fin n × α ⊢ Vector.get (Vector.ofFn fun i => f i a.snd) a.fst = f a.fst a.snd [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : α → Fin n → σ h : Primrec₂ f a : α ⊢ Vector.get (Vector.ofFn fun i => f a i) = f a [PROOFSTEP] funext i [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 σ : Type u_4 inst✝³ : Primcodable α inst✝² : Primcodable β inst✝¹ : Primcodable γ inst✝ : Primcodable σ n : ℕ f : α → Fin n → σ h : Primrec₂ f a : α i : Fin n ⊢ Vector.get (Vector.ofFn fun i => f a i) i = f a i [PROOFSTEP] simp [GOAL] n : ℕ f : Vector ℕ n → ℕ pf : Primrec' f ⊢ Primrec f [PROOFSTEP] induction pf [GOAL] case zero n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun x => 0 case succ n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun v => Nat.succ (head v) case get n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ i✝ : Fin n✝ ⊢ Primrec fun v => Vector.get v i✝ case comp n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Primrec' f✝ a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i) a_ih✝¹ : Primrec f✝ a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i) ⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a) case prec n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Primrec' f✝ a✝ : Primrec' g✝ a_ih✝¹ : Primrec f✝ a_ih✝ : Primrec g✝ ⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] case zero => exact .const 0 [GOAL] n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun x => 0 [PROOFSTEP] case zero => exact .const 0 [GOAL] n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun x => 0 [PROOFSTEP] exact .const 0 [GOAL] case succ n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun v => Nat.succ (head v) case get n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ i✝ : Fin n✝ ⊢ Primrec fun v => Vector.get v i✝ case comp n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Primrec' f✝ a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i) a_ih✝¹ : Primrec f✝ a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i) ⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a) case prec n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Primrec' f✝ a✝ : Primrec' g✝ a_ih✝¹ : Primrec f✝ a_ih✝ : Primrec g✝ ⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] case succ => exact _root_.Primrec.succ.comp .vector_head [GOAL] n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun v => Nat.succ (head v) [PROOFSTEP] case succ => exact _root_.Primrec.succ.comp .vector_head [GOAL] n : ℕ f : Vector ℕ n → ℕ ⊢ Primrec fun v => Nat.succ (head v) [PROOFSTEP] exact _root_.Primrec.succ.comp .vector_head [GOAL] case get n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ i✝ : Fin n✝ ⊢ Primrec fun v => Vector.get v i✝ case comp n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Primrec' f✝ a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i) a_ih✝¹ : Primrec f✝ a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i) ⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a) case prec n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Primrec' f✝ a✝ : Primrec' g✝ a_ih✝¹ : Primrec f✝ a_ih✝ : Primrec g✝ ⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] case get n i => exact Primrec.vector_get.comp .id (.const i) [GOAL] n✝ : ℕ f : Vector ℕ n✝ → ℕ n : ℕ i : Fin n ⊢ Primrec fun v => Vector.get v i [PROOFSTEP] case get n i => exact Primrec.vector_get.comp .id (.const i) [GOAL] n✝ : ℕ f : Vector ℕ n✝ → ℕ n : ℕ i : Fin n ⊢ Primrec fun v => Vector.get v i [PROOFSTEP] exact Primrec.vector_get.comp .id (.const i) [GOAL] case comp n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Primrec' f✝ a✝ : ∀ (i : Fin n✝), Primrec' (g✝ i) a_ih✝¹ : Primrec f✝ a_ih✝ : ∀ (i : Fin n✝), Primrec (g✝ i) ⊢ Primrec fun a => f✝ (ofFn fun i => g✝ i a) case prec n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Primrec' f✝ a✝ : Primrec' g✝ a_ih✝¹ : Primrec f✝ a_ih✝ : Primrec g✝ ⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] case comp m n f g _ _ hf hg => exact hf.comp (.vector_ofFn fun i => hg i) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ m n : ℕ f : Vector ℕ n → ℕ g : Fin n → Vector ℕ m → ℕ a✝¹ : Primrec' f a✝ : ∀ (i : Fin n), Primrec' (g i) hf : Primrec f hg : ∀ (i : Fin n), Primrec (g i) ⊢ Primrec fun a => f (ofFn fun i => g i a) [PROOFSTEP] case comp m n f g _ _ hf hg => exact hf.comp (.vector_ofFn fun i => hg i) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ m n : ℕ f : Vector ℕ n → ℕ g : Fin n → Vector ℕ m → ℕ a✝¹ : Primrec' f a✝ : ∀ (i : Fin n), Primrec' (g i) hf : Primrec f hg : ∀ (i : Fin n), Primrec (g i) ⊢ Primrec fun a => f (ofFn fun i => g i a) [PROOFSTEP] exact hf.comp (.vector_ofFn fun i => hg i) [GOAL] case prec n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Primrec' f✝ a✝ : Primrec' g✝ a_ih✝¹ : Primrec f✝ a_ih✝ : Primrec g✝ ⊢ Primrec fun v => Nat.rec (f✝ (tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] case prec n f g _ _ hf hg => exact .nat_rec' .vector_head (hf.comp Primrec.vector_tail) (hg.comp <| Primrec.vector_cons.comp (Primrec.fst.comp .snd) <| Primrec.vector_cons.comp (Primrec.snd.comp .snd) <| (@Primrec.vector_tail _ _ (n + 1)).comp .fst).to₂ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Primrec' f a✝ : Primrec' g hf : Primrec f hg : Primrec g ⊢ Primrec fun v => Nat.rec (f (tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] case prec n f g _ _ hf hg => exact .nat_rec' .vector_head (hf.comp Primrec.vector_tail) (hg.comp <| Primrec.vector_cons.comp (Primrec.fst.comp .snd) <| Primrec.vector_cons.comp (Primrec.snd.comp .snd) <| (@Primrec.vector_tail _ _ (n + 1)).comp .fst).to₂ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Primrec' f a✝ : Primrec' g hf : Primrec f hg : Primrec g ⊢ Primrec fun v => Nat.rec (f (tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ tail v)) (head v) [PROOFSTEP] exact .nat_rec' .vector_head (hf.comp Primrec.vector_tail) (hg.comp <| Primrec.vector_cons.comp (Primrec.fst.comp .snd) <| Primrec.vector_cons.comp (Primrec.snd.comp .snd) <| (@Primrec.vector_tail _ _ (n + 1)).comp .fst).to₂ [GOAL] n : ℕ v : Vector ℕ (Nat.succ n) ⊢ Vector.get v 0 = Vector.head v [PROOFSTEP] simp [get_zero] [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f v : Vector ℕ (Nat.succ n) ⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (Vector.tail v) [PROOFSTEP] rw [← ofFn_get v.tail] [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f v : Vector ℕ (Nat.succ n) ⊢ f (ofFn fun i => Vector.get v (Fin.succ i)) = f (ofFn (Vector.get (Vector.tail v))) [PROOFSTEP] congr [GOAL] case e_a.e_a n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f v : Vector ℕ (Nat.succ n) ⊢ (fun i => Vector.get v (Fin.succ i)) = Vector.get (Vector.tail v) [PROOFSTEP] funext i [GOAL] case e_a.e_a.h n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f v : Vector ℕ (Nat.succ n) i : Fin n ⊢ Vector.get v (Fin.succ i) = Vector.get (Vector.tail v) i [PROOFSTEP] simp [GOAL] n m : ℕ f : Vector ℕ n → ℕ g : Vector ℕ n → Vector ℕ m hf : Primrec' f hg : Vec g i : Fin (Nat.succ m) ⊢ Primrec' fun v => Vector.get ((fun v => f v ::ᵥ g v) v) 0 [PROOFSTEP] simp [*] [GOAL] n m : ℕ f : Vector ℕ n → ℕ g : Vector ℕ n → Vector ℕ m hf : Primrec' f hg : Vec g i✝ : Fin (Nat.succ m) i : Fin m ⊢ Primrec' fun v => Vector.get ((fun v => f v ::ᵥ g v) v) (Fin.succ i) [PROOFSTEP] simp [hg i] [GOAL] n m : ℕ f : Vector ℕ m → ℕ g : Vector ℕ n → Vector ℕ m hf : Primrec' f hg : Vec g v : Vector ℕ n ⊢ f (ofFn fun i => Vector.get (g v) i) = f (g v) [PROOFSTEP] simp [GOAL] f : ℕ → ℕ → ℕ hf : Primrec' fun v => f (Vector.head v) (Vector.head (Vector.tail v)) n : ℕ g h : Vector ℕ n → ℕ hg : Primrec' g hh : Primrec' h ⊢ Primrec' fun v => f (g v) (h v) [PROOFSTEP] simpa using hf.comp' (hg.cons <| hh.cons Primrec'.nil) [GOAL] n : ℕ f g : Vector ℕ n → ℕ h : Vector ℕ (n + 2) → ℕ hf : Primrec' f hg : Primrec' g hh : Primrec' h ⊢ Primrec' fun v => Nat.rec (g v) (fun y IH => h (y ::ᵥ IH ::ᵥ v)) (f v) [PROOFSTEP] simpa using comp' (prec hg hh) (hf.cons idv) [GOAL] v : Vector ℕ (Nat.succ 0) ⊢ Nat.rec 0 (fun y IH => Vector.head (y ::ᵥ IH ::ᵥ v)) (Vector.head v) = Nat.pred (Vector.head v) [PROOFSTEP] simp [GOAL] v : Vector ℕ (Nat.succ 0) ⊢ Nat.rec 0 (fun y IH => y) (Vector.head v) = Nat.pred (Vector.head v) [PROOFSTEP] cases v.head [GOAL] case zero v : Vector ℕ (Nat.succ 0) ⊢ Nat.rec 0 (fun y IH => y) Nat.zero = Nat.pred Nat.zero [PROOFSTEP] rfl [GOAL] case succ v : Vector ℕ (Nat.succ 0) n✝ : ℕ ⊢ Nat.rec 0 (fun y IH => y) (Nat.succ n✝) = Nat.pred (Nat.succ n✝) [PROOFSTEP] rfl [GOAL] v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ (Vector.head (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v)))) (Vector.head v) = Vector.head v + Vector.head (Vector.tail v) [PROOFSTEP] simp [GOAL] v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) (Vector.head v) = Vector.head v + Vector.head (Vector.tail v) [PROOFSTEP] induction v.head [GOAL] case zero v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) Nat.zero = Nat.zero + Vector.head (Vector.tail v) [PROOFSTEP] simp [*, Nat.succ_add] [GOAL] case succ v : Vector ℕ (Nat.succ 0 + 1) n✝ : ℕ n_ih✝ : Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) n✝ = n✝ + Vector.head (Vector.tail v) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.succ IH) (Nat.succ n✝) = Nat.succ n✝ + Vector.head (Vector.tail v) [PROOFSTEP] simp [*, Nat.succ_add] [GOAL] ⊢ Primrec' fun v => Vector.head v - Vector.head (Vector.tail v) [PROOFSTEP] suffices [GOAL] this : ?m.372029 ⊢ Primrec' fun v => Vector.head v - Vector.head (Vector.tail v) case this ⊢ ?m.372029 [PROOFSTEP] simpa using comp₂ (fun a b => b - a) this (tail head) head [GOAL] case this ⊢ Primrec' fun v => (fun a b => b - a) (Vector.head v) (Vector.head (Vector.tail v)) [PROOFSTEP] refine' (prec head (pred.comp₁ _ (tail head))).of_eq fun v => _ [GOAL] case this v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred (Vector.head (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v)))) (Vector.head v) = (fun a b => b - a) (Vector.head v) (Vector.head (Vector.tail v)) [PROOFSTEP] simp [GOAL] case this v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) (Vector.head v) = Vector.head (Vector.tail v) - Vector.head v [PROOFSTEP] induction v.head [GOAL] case this.zero v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) Nat.zero = Vector.head (Vector.tail v) - Nat.zero [PROOFSTEP] simp [*, Nat.sub_succ] [GOAL] case this.succ v : Vector ℕ (Nat.succ 0 + 1) n✝ : ℕ n_ih✝ : Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) n✝ = Vector.head (Vector.tail v) - n✝ ⊢ Nat.rec (Vector.head (Vector.tail v)) (fun y IH => Nat.pred IH) (Nat.succ n✝) = Vector.head (Vector.tail v) - Nat.succ n✝ [PROOFSTEP] simp [*, Nat.sub_succ] [GOAL] v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v))) + Vector.head (Vector.tail (y ::ᵥ IH ::ᵥ Vector.tail v))) (Vector.head v) = Vector.head v * Vector.head (Vector.tail v) [PROOFSTEP] simp [GOAL] v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) (Vector.head v) = Vector.head v * Vector.head (Vector.tail v) [PROOFSTEP] induction v.head [GOAL] case zero v : Vector ℕ (Nat.succ 0 + 1) ⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) Nat.zero = Nat.zero * Vector.head (Vector.tail v) [PROOFSTEP] simp [*, Nat.succ_mul] [GOAL] case succ v : Vector ℕ (Nat.succ 0 + 1) n✝ : ℕ n_ih✝ : Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) n✝ = n✝ * Vector.head (Vector.tail v) ⊢ Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) (Nat.succ n✝) = Nat.succ n✝ * Vector.head (Vector.tail v) [PROOFSTEP] simp [*, Nat.succ_mul] [GOAL] case succ v : Vector ℕ (Nat.succ 0 + 1) n✝ : ℕ n_ih✝ : Nat.rec 0 (fun y IH => Vector.head (Vector.tail v) + IH) n✝ = n✝ * Vector.head (Vector.tail v) ⊢ Vector.head (Vector.tail v) + n✝ * Vector.head (Vector.tail v) = n✝ * Vector.head (Vector.tail v) + Vector.head (Vector.tail v) [PROOFSTEP] rw [add_comm] [GOAL] n : ℕ a b f g : Vector ℕ n → ℕ ha : Primrec' a hb : Primrec' b hf : Primrec' f hg : Primrec' g v : Vector ℕ n ⊢ Nat.rec (g v) (fun y IH => f (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ v)))) (b v - a v) = if a v < b v then f v else g v [PROOFSTEP] cases e : b v - a v [GOAL] case zero n : ℕ a b f g : Vector ℕ n → ℕ ha : Primrec' a hb : Primrec' b hf : Primrec' f hg : Primrec' g v : Vector ℕ n e : b v - a v = Nat.zero ⊢ Nat.rec (g v) (fun y IH => f (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ v)))) Nat.zero = if a v < b v then f v else g v [PROOFSTEP] simp [not_lt.2 (tsub_eq_zero_iff_le.mp e)] [GOAL] case succ n : ℕ a b f g : Vector ℕ n → ℕ ha : Primrec' a hb : Primrec' b hf : Primrec' f hg : Primrec' g v : Vector ℕ n n✝ : ℕ e : b v - a v = Nat.succ n✝ ⊢ Nat.rec (g v) (fun y IH => f (Vector.tail (Vector.tail (y ::ᵥ IH ::ᵥ v)))) (Nat.succ n✝) = if a v < b v then f v else g v [PROOFSTEP] simp [Nat.lt_of_sub_eq_succ e] [GOAL] v : Vector ℕ 0 ⊢ 0 = encode v [PROOFSTEP] rw [v.eq_nil] [GOAL] v : Vector ℕ 0 ⊢ 0 = encode nil [PROOFSTEP] rfl [GOAL] ⊢ Primrec' fun v => Nat.sqrt (Vector.head v) [PROOFSTEP] suffices H : ∀ n : ℕ, n.sqrt = n.rec 0 fun x y => if x.succ < y.succ * y.succ then y else y.succ [GOAL] H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n ⊢ Primrec' fun v => Nat.sqrt (Vector.head v) [PROOFSTEP] simp [H] [GOAL] H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n ⊢ Primrec' fun v => Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (Vector.head v) [PROOFSTEP] have := @prec' 1 _ _ (fun v => by have x := v.head; have y := v.tail.head; exact if x.succ < y.succ * y.succ then y else y.succ) head (const 0) ?_ [GOAL] H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n v : Vector ℕ (1 + 2) ⊢ ℕ [PROOFSTEP] have x := v.head [GOAL] H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n v : Vector ℕ (1 + 2) x : ℕ ⊢ ℕ [PROOFSTEP] have y := v.tail.head [GOAL] H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n v : Vector ℕ (1 + 2) x y : ℕ ⊢ ℕ [PROOFSTEP] exact if x.succ < y.succ * y.succ then y else y.succ [GOAL] case refine_2 H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n this : Primrec' fun v => Nat.rec 0 (fun y IH => (fun v => let_fun x := Vector.head v; let_fun y := Vector.head (Vector.tail v); if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (y ::ᵥ IH ::ᵥ v)) (Vector.head v) ⊢ Primrec' fun v => Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (Vector.head v) [PROOFSTEP] exact this [GOAL] case refine_1 H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n ⊢ Primrec' fun v => let_fun x := Vector.head v; let_fun y := Vector.head (Vector.tail v); if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y [PROOFSTEP] have x1 : @Primrec' 3 fun v => v.head.succ := succ.comp₁ _ head [GOAL] case refine_1 H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n x1 : Primrec' fun v => Nat.succ (Vector.head v) ⊢ Primrec' fun v => let_fun x := Vector.head v; let_fun y := Vector.head (Vector.tail v); if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y [PROOFSTEP] have y1 : @Primrec' 3 fun v => v.tail.head.succ := succ.comp₁ _ (tail head) [GOAL] case refine_1 H : ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n x1 : Primrec' fun v => Nat.succ (Vector.head v) y1 : Primrec' fun v => Nat.succ (Vector.head (Vector.tail v)) ⊢ Primrec' fun v => let_fun x := Vector.head v; let_fun y := Vector.head (Vector.tail v); if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y [PROOFSTEP] exact if_lt x1 (mul.comp₂ _ y1 y1) (tail head) y1 [GOAL] case H ⊢ ∀ (n : ℕ), Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n [PROOFSTEP] introv [GOAL] case H n : ℕ ⊢ Nat.sqrt n = Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n [PROOFSTEP] symm [GOAL] case H n : ℕ ⊢ Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n [PROOFSTEP] induction' n with n IH [GOAL] case H.zero ⊢ Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) Nat.zero = Nat.sqrt Nat.zero [PROOFSTEP] simp [GOAL] case H.succ n : ℕ IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n ⊢ Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) (Nat.succ n) = Nat.sqrt (Nat.succ n) [PROOFSTEP] dsimp [GOAL] case H.succ n : ℕ IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n ⊢ (if Nat.succ n < Nat.succ (Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n) * Nat.succ (Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n) then Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n else Nat.succ (Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n)) = Nat.sqrt (Nat.succ n) [PROOFSTEP] rw [IH] [GOAL] case H.succ n : ℕ IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n ⊢ (if Nat.succ n < Nat.succ (Nat.sqrt n) * Nat.succ (Nat.sqrt n) then Nat.sqrt n else Nat.succ (Nat.sqrt n)) = Nat.sqrt (Nat.succ n) [PROOFSTEP] split_ifs with h [GOAL] case pos n : ℕ IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n h : Nat.succ n < Nat.succ (Nat.sqrt n) * Nat.succ (Nat.sqrt n) ⊢ Nat.sqrt n = Nat.sqrt (Nat.succ n) [PROOFSTEP] exact le_antisymm (Nat.sqrt_le_sqrt (Nat.le_succ _)) (Nat.lt_succ_iff.1 <| Nat.sqrt_lt.2 h) [GOAL] case neg n : ℕ IH : Nat.rec 0 (fun x y => if Nat.succ x < Nat.succ y * Nat.succ y then y else Nat.succ y) n = Nat.sqrt n h : ¬Nat.succ n < Nat.succ (Nat.sqrt n) * Nat.succ (Nat.sqrt n) ⊢ Nat.succ (Nat.sqrt n) = Nat.sqrt (Nat.succ n) [PROOFSTEP] exact Nat.eq_sqrt.2 ⟨not_lt.1 h, Nat.sqrt_lt.1 <| Nat.lt_succ_iff.2 <| Nat.sqrt_succ_le_succ_sqrt _⟩ [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f ⊢ Primrec' fun v => (unpair (f v)).fst [PROOFSTEP] have s := sqrt.comp₁ _ hf [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) ⊢ Primrec' fun v => (unpair (f v)).fst [PROOFSTEP] have fss := sub.comp₂ _ hf (mul.comp₂ _ s s) [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) ⊢ Primrec' fun v => (unpair (f v)).fst [PROOFSTEP] refine' (if_lt fss s fss s).of_eq fun v => _ [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n ⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then f v - Nat.sqrt (f v) * Nat.sqrt (f v) else Nat.sqrt (f v)) = (unpair (f v)).fst [PROOFSTEP] simp [Nat.unpair] [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n ⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then f v - Nat.sqrt (f v) * Nat.sqrt (f v) else Nat.sqrt (f v)) = (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then (f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v)) else (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v))).fst [PROOFSTEP] split_ifs [GOAL] case pos n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n h✝ : f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) ⊢ f v - Nat.sqrt (f v) * Nat.sqrt (f v) = (f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v)).fst [PROOFSTEP] rfl [GOAL] case neg n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n h✝ : ¬f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) ⊢ Nat.sqrt (f v) = (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)).fst [PROOFSTEP] rfl [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f ⊢ Primrec' fun v => (unpair (f v)).snd [PROOFSTEP] have s := sqrt.comp₁ _ hf [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) ⊢ Primrec' fun v => (unpair (f v)).snd [PROOFSTEP] have fss := sub.comp₂ _ hf (mul.comp₂ _ s s) [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) ⊢ Primrec' fun v => (unpair (f v)).snd [PROOFSTEP] refine' (if_lt fss s s (sub.comp₂ _ fss s)).of_eq fun v => _ [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n ⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then Nat.sqrt (f v) else f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)) = (unpair (f v)).snd [PROOFSTEP] simp [Nat.unpair] [GOAL] n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n ⊢ (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then Nat.sqrt (f v) else f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)) = (if f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) then (f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v)) else (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v))).snd [PROOFSTEP] split_ifs [GOAL] case pos n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n h✝ : f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) ⊢ Nat.sqrt (f v) = (f v - Nat.sqrt (f v) * Nat.sqrt (f v), Nat.sqrt (f v)).snd [PROOFSTEP] rfl [GOAL] case neg n : ℕ f : Vector ℕ n → ℕ hf : Primrec' f s : Primrec' fun v => Nat.sqrt (f v) fss : Primrec' fun v => f v - Nat.sqrt (f v) * Nat.sqrt (f v) v : Vector ℕ n h✝ : ¬f v - Nat.sqrt (f v) * Nat.sqrt (f v) < Nat.sqrt (f v) ⊢ f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v) = (Nat.sqrt (f v), f v - Nat.sqrt (f v) * Nat.sqrt (f v) - Nat.sqrt (f v)).snd [PROOFSTEP] rfl [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ hf : Nat.Primrec f ⊢ Primrec' fun v => f (Vector.head v) [PROOFSTEP] induction hf [GOAL] case zero n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun x => 0) (Vector.head v) case succ n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => Nat.succ (Vector.head v) case left n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v) case right n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v) case pair n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v) case comp n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v) case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case zero => exact const 0 [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun x => 0) (Vector.head v) [PROOFSTEP] case zero => exact const 0 [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun x => 0) (Vector.head v) [PROOFSTEP] exact const 0 [GOAL] case succ n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => Nat.succ (Vector.head v) case left n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v) case right n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v) case pair n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v) case comp n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v) case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case succ => exact succ [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => Nat.succ (Vector.head v) [PROOFSTEP] case succ => exact succ [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => Nat.succ (Vector.head v) [PROOFSTEP] exact succ [GOAL] case left n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v) case right n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v) case pair n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v) case comp n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v) case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case left => exact unpair₁ head [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v) [PROOFSTEP] case left => exact unpair₁ head [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).fst) (Vector.head v) [PROOFSTEP] exact unpair₁ head [GOAL] case right n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v) case pair n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v) case comp n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v) case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case right => exact unpair₂ head [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v) [PROOFSTEP] case right => exact unpair₂ head [GOAL] n : ℕ f✝ : Vector ℕ n → ℕ f : ℕ → ℕ ⊢ Primrec' fun v => (fun n => (unpair n).snd) (Vector.head v) [PROOFSTEP] exact unpair₂ head [GOAL] case pair n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f✝ n) (g✝ n)) (Vector.head v) case comp n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v) case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case pair f g _ _ hf hg => exact natPair.comp₂ _ hf hg [GOAL] n : ℕ f✝¹ : Vector ℕ n → ℕ f✝ f g : ℕ → ℕ a✝¹ : Nat.Primrec f a✝ : Nat.Primrec g hf : Primrec' fun v => f (Vector.head v) hg : Primrec' fun v => g (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f n) (g n)) (Vector.head v) [PROOFSTEP] case pair f g _ _ hf hg => exact natPair.comp₂ _ hf hg [GOAL] n : ℕ f✝¹ : Vector ℕ n → ℕ f✝ f g : ℕ → ℕ a✝¹ : Nat.Primrec f a✝ : Nat.Primrec g hf : Primrec' fun v => f (Vector.head v) hg : Primrec' fun v => g (Vector.head v) ⊢ Primrec' fun v => (fun n => pair (f n) (g n)) (Vector.head v) [PROOFSTEP] exact natPair.comp₂ _ hf hg [GOAL] case comp n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => (fun n => f✝ (g✝ n)) (Vector.head v) case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case comp f g _ _ hf hg => exact hf.comp₁ _ hg [GOAL] n : ℕ f✝¹ : Vector ℕ n → ℕ f✝ f g : ℕ → ℕ a✝¹ : Nat.Primrec f a✝ : Nat.Primrec g hf : Primrec' fun v => f (Vector.head v) hg : Primrec' fun v => g (Vector.head v) ⊢ Primrec' fun v => (fun n => f (g n)) (Vector.head v) [PROOFSTEP] case comp f g _ _ hf hg => exact hf.comp₁ _ hg [GOAL] n : ℕ f✝¹ : Vector ℕ n → ℕ f✝ f g : ℕ → ℕ a✝¹ : Nat.Primrec f a✝ : Nat.Primrec g hf : Primrec' fun v => f (Vector.head v) hg : Primrec' fun v => g (Vector.head v) ⊢ Primrec' fun v => (fun n => f (g n)) (Vector.head v) [PROOFSTEP] exact hf.comp₁ _ hg [GOAL] case prec n : ℕ f✝¹ : Vector ℕ n → ℕ f f✝ g✝ : ℕ → ℕ a✝¹ : Nat.Primrec f✝ a✝ : Nat.Primrec g✝ a_ih✝¹ : Primrec' fun v => f✝ (Vector.head v) a_ih✝ : Primrec' fun v => g✝ (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f✝ z) (fun y IH => g✝ (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case prec f g _ _ hf hg => simpa using prec' (unpair₂ head) (hf.comp₁ _ (unpair₁ head)) (hg.comp₁ _ <| natPair.comp₂ _ (unpair₁ <| tail <| tail head) (natPair.comp₂ _ head (tail head))) [GOAL] n : ℕ f✝¹ : Vector ℕ n → ℕ f✝ f g : ℕ → ℕ a✝¹ : Nat.Primrec f a✝ : Nat.Primrec g hf : Primrec' fun v => f (Vector.head v) hg : Primrec' fun v => g (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f z) (fun y IH => g (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] case prec f g _ _ hf hg => simpa using prec' (unpair₂ head) (hf.comp₁ _ (unpair₁ head)) (hg.comp₁ _ <| natPair.comp₂ _ (unpair₁ <| tail <| tail head) (natPair.comp₂ _ head (tail head))) [GOAL] n : ℕ f✝¹ : Vector ℕ n → ℕ f✝ f g : ℕ → ℕ a✝¹ : Nat.Primrec f a✝ : Nat.Primrec g hf : Primrec' fun v => f (Vector.head v) hg : Primrec' fun v => g (Vector.head v) ⊢ Primrec' fun v => unpaired (fun z n => Nat.rec (f z) (fun y IH => g (pair z (pair y IH))) n) (Vector.head v) [PROOFSTEP] simpa using prec' (unpair₂ head) (hf.comp₁ _ (unpair₁ head)) (hg.comp₁ _ <| natPair.comp₂ _ (unpair₁ <| tail <| tail head) (natPair.comp₂ _ head (tail head))) [GOAL] n : ℕ f : Vector ℕ n → ℕ this : ∀ (f : ℕ → ℕ), Nat.Primrec f → Primrec' fun v => f (Vector.head v) hf : Primrec f i : Vector ℕ n ⊢ Nat.pred ((fun m => encode (Option.map f (decode m))) (encode i)) = f i [PROOFSTEP] simp [encodek] [GOAL] f : ℕ → ℕ h : Primrec fun v => f (Vector.head v) v : ℕ ⊢ f (Vector.head (ofFn fun i => id v)) = f v [PROOFSTEP] simp [GOAL] f : ℕ → ℕ → ℕ h : Primrec fun v => f (Vector.head v) (Vector.head (Vector.tail v)) v : ℕ × ℕ ⊢ f (Vector.head (v.fst ::ᵥ v.snd ::ᵥ nil)) (Vector.head (Vector.tail (v.fst ::ᵥ v.snd ::ᵥ nil))) = f v.fst v.snd [PROOFSTEP] simp [GOAL] m n : ℕ f : Vector ℕ m → Vector ℕ n h : Vec f ⊢ Primrec f [PROOFSTEP] simpa using Primrec.vector_ofFn fun i => to_prim (h i)
{"mathlib_filename": "Mathlib.Computability.Primrec", "llama_tokens": 85962}
[GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_meas_f : Measurable f ⊢ ∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] revert f [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} ⊢ ∀ {f : Ω → ℝ≥0∞}, Measurable f → ∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] have h_mul_indicator : ∀ g, Measurable g → Measurable fun a => g a * T.indicator (fun _ => c) a := fun g h_mg => h_mg.mul (measurable_const.indicator h_meas_T) [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a ⊢ ∀ {f : Ω → ℝ≥0∞}, Measurable f → ∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] apply @Measurable.ennreal_induction _ Mf [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a ⊢ ∀ (c_1 : ℝ≥0∞) ⦃s : Set Ω⦄, MeasurableSet s → ∫⁻ (ω : Ω), indicator s (fun x => c_1) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), indicator s (fun x => c_1) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] intro c' s' h_meas_s' [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a c' : ℝ≥0∞ s' : Set Ω h_meas_s' : MeasurableSet s' ⊢ ∫⁻ (ω : Ω), indicator s' (fun x => c') ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), indicator s' (fun x => c') ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] simp_rw [← inter_indicator_mul] [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a c' : ℝ≥0∞ s' : Set Ω h_meas_s' : MeasurableSet s' ⊢ ∫⁻ (ω : Ω), indicator (s' ∩ T) (fun x => c' * c) ω ∂μ = (∫⁻ (ω : Ω), indicator s' (fun x => c') ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] rw [lintegral_indicator _ (MeasurableSet.inter (hMf _ h_meas_s') h_meas_T), lintegral_indicator _ (hMf _ h_meas_s'), lintegral_indicator _ h_meas_T] [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a c' : ℝ≥0∞ s' : Set Ω h_meas_s' : MeasurableSet s' ⊢ ∫⁻ (a : Ω) in s' ∩ T, c' * c ∂μ = (∫⁻ (a : Ω) in s', c' ∂μ) * ∫⁻ (a : Ω) in T, c ∂μ [PROOFSTEP] simp only [measurable_const, lintegral_const, univ_inter, lintegral_const_mul, MeasurableSet.univ, Measure.restrict_apply] [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a c' : ℝ≥0∞ s' : Set Ω h_meas_s' : MeasurableSet s' ⊢ c' * c * ↑↑μ (s' ∩ T) = c' * ↑↑μ s' * (c * ↑↑μ T) [PROOFSTEP] rw [IndepSets_iff] at h_ind [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : ∀ (t1 t2 : Set Ω), t1 ∈ {s | MeasurableSet s} → t2 ∈ {T} → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a c' : ℝ≥0∞ s' : Set Ω h_meas_s' : MeasurableSet s' ⊢ c' * c * ↑↑μ (s' ∩ T) = c' * ↑↑μ s' * (c * ↑↑μ T) [PROOFSTEP] rw [mul_mul_mul_comm, h_ind s' T h_meas_s' (Set.mem_singleton _)] [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a ⊢ ∀ ⦃f g : Ω → ℝ≥0∞⦄, Disjoint (Function.support f) (Function.support g) → Measurable f → Measurable g → ∫⁻ (ω : Ω), f ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ → ∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ → ∫⁻ (ω : Ω), (f + g) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), (f + g) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] intro f' g _ h_meas_f' _ h_ind_f' h_ind_g [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_meas_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_ind_g : ∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ ⊢ ∫⁻ (ω : Ω), (f' + g) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), (f' + g) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] have h_measM_f' : Measurable f' := h_meas_f'.mono hMf le_rfl [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_meas_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_ind_g : ∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f' : Measurable f' ⊢ ∫⁻ (ω : Ω), (f' + g) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), (f' + g) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] simp_rw [Pi.add_apply, right_distrib] [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_meas_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_ind_g : ∫⁻ (ω : Ω), g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f' : Measurable f' ⊢ ∫⁻ (ω : Ω), f' ω * indicator T (fun x => c) ω + g ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f' ω + g ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] rw [lintegral_add_left (h_mul_indicator _ h_measM_f'), lintegral_add_left h_measM_f', right_distrib, h_ind_f', h_ind_g] [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a ⊢ ∀ ⦃f : ℕ → Ω → ℝ≥0∞⦄, (∀ (n : ℕ), Measurable (f n)) → Monotone f → (∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ) → ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] intro f h_meas_f h_mono_f h_ind_f [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f : ℕ → Ω → ℝ≥0∞ h_meas_f : ∀ (n : ℕ), Measurable (f n) h_mono_f : Monotone f h_ind_f : ∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ ⊢ ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] have h_measM_f : ∀ n, Measurable (f n) := fun n => (h_meas_f n).mono hMf le_rfl [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f : ℕ → Ω → ℝ≥0∞ h_meas_f : ∀ (n : ℕ), Measurable (f n) h_mono_f : Monotone f h_ind_f : ∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f : ∀ (n : ℕ), Measurable (f n) ⊢ ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f n x) ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] simp_rw [ENNReal.iSup_mul] [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f : ℕ → Ω → ℝ≥0∞ h_meas_f : ∀ (n : ℕ), Measurable (f n) h_mono_f : Monotone f h_ind_f : ∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f : ∀ (n : ℕ), Measurable (f n) ⊢ ∫⁻ (ω : Ω), ⨆ (i : ℕ), f i ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), ⨆ (n : ℕ), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] rw [lintegral_iSup h_measM_f h_mono_f, lintegral_iSup, ENNReal.iSup_mul] [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f : ℕ → Ω → ℝ≥0∞ h_meas_f : ∀ (n : ℕ), Measurable (f n) h_mono_f : Monotone f h_ind_f : ∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f : ∀ (n : ℕ), Measurable (f n) ⊢ ⨆ (n : ℕ), ∫⁻ (a : Ω), f n a * indicator T (fun x => c) a ∂μ = ⨆ (i : ℕ), (∫⁻ (a : Ω), f i a ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ [PROOFSTEP] simp_rw [← h_ind_f] [GOAL] case h_iSup.hf Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f : ℕ → Ω → ℝ≥0∞ h_meas_f : ∀ (n : ℕ), Measurable (f n) h_mono_f : Monotone f h_ind_f : ∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f : ∀ (n : ℕ), Measurable (f n) ⊢ ∀ (n : ℕ), Measurable fun ω => f n ω * indicator T (fun x => c) ω [PROOFSTEP] exact fun n => h_mul_indicator _ (h_measM_f n) [GOAL] case h_iSup.h_mono Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ c : ℝ≥0∞ T : Set Ω h_meas_T : MeasurableSet T h_ind : IndepSets {s | MeasurableSet s} {T} h_mul_indicator : ∀ (g : Ω → ℝ≥0∞), Measurable g → Measurable fun a => g a * indicator T (fun x => c) a f : ℕ → Ω → ℝ≥0∞ h_meas_f : ∀ (n : ℕ), Measurable (f n) h_mono_f : Monotone f h_ind_f : ∀ (n : ℕ), ∫⁻ (ω : Ω), f n ω * indicator T (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f n ω ∂μ) * ∫⁻ (ω : Ω), indicator T (fun x => c) ω ∂μ h_measM_f : ∀ (n : ℕ), Measurable (f n) ⊢ Monotone fun i ω => f i ω * indicator T (fun x => c) ω [PROOFSTEP] exact fun m n h_le a => mul_le_mul_right' (h_mono_f h_le a) _ [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_meas_g : Measurable g ⊢ ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ [PROOFSTEP] revert g [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f ⊢ ∀ {g : Ω → ℝ≥0∞}, Measurable g → ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ [PROOFSTEP] have h_measM_f : Measurable f := h_meas_f.mono hMf le_rfl [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f ⊢ ∀ {g : Ω → ℝ≥0∞}, Measurable g → ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ [PROOFSTEP] apply @Measurable.ennreal_induction _ Mg [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f ⊢ ∀ (c : ℝ≥0∞) ⦃s : Set Ω⦄, MeasurableSet s → ∫⁻ (ω : Ω), f ω * indicator s (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator s (fun x => c) ω ∂μ [PROOFSTEP] intro c s h_s [GOAL] case h_ind Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f c : ℝ≥0∞ s : Set Ω h_s : MeasurableSet s ⊢ ∫⁻ (ω : Ω), f ω * indicator s (fun x => c) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), indicator s (fun x => c) ω ∂μ [PROOFSTEP] apply lintegral_mul_indicator_eq_lintegral_mul_lintegral_indicator hMf _ (hMg _ h_s) _ h_meas_f [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f c : ℝ≥0∞ s : Set Ω h_s : MeasurableSet s ⊢ IndepSets {s | MeasurableSet s} {s} [PROOFSTEP] apply indepSets_of_indepSets_of_le_right h_ind [GOAL] Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f c : ℝ≥0∞ s : Set Ω h_s : MeasurableSet s ⊢ {s} ⊆ {s | MeasurableSet s} [PROOFSTEP] rwa [singleton_subset_iff] [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f ⊢ ∀ ⦃f_1 g : Ω → ℝ≥0∞⦄, Disjoint (Function.support f_1) (Function.support g) → Measurable f_1 → Measurable g → ∫⁻ (ω : Ω), f ω * f_1 ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f_1 ω ∂μ → ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ → ∫⁻ (ω : Ω), f ω * (f_1 + g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (f_1 + g) ω ∂μ [PROOFSTEP] intro f' g _ h_measMg_f' _ h_ind_f' h_ind_g' [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_measMg_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ ⊢ ∫⁻ (ω : Ω), f ω * (f' + g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (f' + g) ω ∂μ [PROOFSTEP] have h_measM_f' : Measurable f' := h_measMg_f'.mono hMg le_rfl [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_measMg_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ h_measM_f' : Measurable f' ⊢ ∫⁻ (ω : Ω), f ω * (f' + g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (f' + g) ω ∂μ [PROOFSTEP] simp_rw [Pi.add_apply, left_distrib] [GOAL] case h_add Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' g : Ω → ℝ≥0∞ a✝¹ : Disjoint (Function.support f') (Function.support g) h_measMg_f' : Measurable f' a✝ : Measurable g h_ind_f' : ∫⁻ (ω : Ω), f ω * f' ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω ∂μ h_ind_g' : ∫⁻ (ω : Ω), f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ h_measM_f' : Measurable f' ⊢ ∫⁻ (ω : Ω), f ω * f' ω + f ω * g ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' ω + g ω ∂μ [PROOFSTEP] rw [lintegral_add_left h_measM_f', lintegral_add_left (h_measM_f.mul h_measM_f'), left_distrib, h_ind_f', h_ind_g'] [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f ⊢ ∀ ⦃f_1 : ℕ → Ω → ℝ≥0∞⦄, (∀ (n : ℕ), Measurable (f_1 n)) → Monotone f_1 → (∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f_1 n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f_1 n ω ∂μ) → ∫⁻ (ω : Ω), f ω * (fun x => ⨆ (n : ℕ), f_1 n x) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f_1 n x) ω ∂μ [PROOFSTEP] intro f' h_meas_f' h_mono_f' h_ind_f' [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' : ℕ → Ω → ℝ≥0∞ h_meas_f' : ∀ (n : ℕ), Measurable (f' n) h_mono_f' : Monotone f' h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ ⊢ ∫⁻ (ω : Ω), f ω * (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ [PROOFSTEP] have h_measM_f' : ∀ n, Measurable (f' n) := fun n => (h_meas_f' n).mono hMg le_rfl [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' : ℕ → Ω → ℝ≥0∞ h_meas_f' : ∀ (n : ℕ), Measurable (f' n) h_mono_f' : Monotone f' h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ h_measM_f' : ∀ (n : ℕ), Measurable (f' n) ⊢ ∫⁻ (ω : Ω), f ω * (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), (fun x => ⨆ (n : ℕ), f' n x) ω ∂μ [PROOFSTEP] simp_rw [ENNReal.mul_iSup] [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' : ℕ → Ω → ℝ≥0∞ h_meas_f' : ∀ (n : ℕ), Measurable (f' n) h_mono_f' : Monotone f' h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ h_measM_f' : ∀ (n : ℕ), Measurable (f' n) ⊢ ∫⁻ (ω : Ω), ⨆ (i : ℕ), f ω * f' i ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), ⨆ (n : ℕ), f' n ω ∂μ [PROOFSTEP] rw [lintegral_iSup, lintegral_iSup h_measM_f' h_mono_f', ENNReal.mul_iSup] [GOAL] case h_iSup Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' : ℕ → Ω → ℝ≥0∞ h_meas_f' : ∀ (n : ℕ), Measurable (f' n) h_mono_f' : Monotone f' h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ h_measM_f' : ∀ (n : ℕ), Measurable (f' n) ⊢ ⨆ (n : ℕ), ∫⁻ (a : Ω), f a * f' n a ∂μ = ⨆ (i : ℕ), (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (a : Ω), f' i a ∂μ [PROOFSTEP] simp_rw [← h_ind_f'] [GOAL] case h_iSup.hf Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' : ℕ → Ω → ℝ≥0∞ h_meas_f' : ∀ (n : ℕ), Measurable (f' n) h_mono_f' : Monotone f' h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ h_measM_f' : ∀ (n : ℕ), Measurable (f' n) ⊢ ∀ (n : ℕ), Measurable fun ω => f ω * f' n ω [PROOFSTEP] exact fun n => h_measM_f.mul (h_measM_f' n) [GOAL] case h_iSup.h_mono Ω : Type u_1 mΩ✝ : MeasurableSpace Ω μ✝ : Measure Ω f : Ω → ℝ≥0∞ X Y : Ω → ℝ Mf Mg mΩ : MeasurableSpace Ω μ : Measure Ω hMf : Mf ≤ mΩ hMg : Mg ≤ mΩ h_ind : Indep Mf Mg h_meas_f : Measurable f h_measM_f : Measurable f f' : ℕ → Ω → ℝ≥0∞ h_meas_f' : ∀ (n : ℕ), Measurable (f' n) h_mono_f' : Monotone f' h_ind_f' : ∀ (n : ℕ), ∫⁻ (ω : Ω), f ω * f' n ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), f' n ω ∂μ h_measM_f' : ∀ (n : ℕ), Measurable (f' n) ⊢ Monotone fun i ω => f ω * f' i ω [PROOFSTEP] exact fun n m (h_le : n ≤ m) a => mul_le_mul_left' (h_mono_f' h_le a) _ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ h_meas_f : AEMeasurable f h_meas_g : AEMeasurable g h_indep_fun : IndepFun f g ⊢ ∫⁻ (ω : Ω), (f * g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ [PROOFSTEP] have fg_ae : f * g =ᵐ[μ] h_meas_f.mk _ * h_meas_g.mk _ := h_meas_f.ae_eq_mk.mul h_meas_g.ae_eq_mk [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ h_meas_f : AEMeasurable f h_meas_g : AEMeasurable g h_indep_fun : IndepFun f g fg_ae : f * g =ᵐ[μ] AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g ⊢ ∫⁻ (ω : Ω), (f * g) ω ∂μ = (∫⁻ (ω : Ω), f ω ∂μ) * ∫⁻ (ω : Ω), g ω ∂μ [PROOFSTEP] rw [lintegral_congr_ae h_meas_f.ae_eq_mk, lintegral_congr_ae h_meas_g.ae_eq_mk, lintegral_congr_ae fg_ae] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ h_meas_f : AEMeasurable f h_meas_g : AEMeasurable g h_indep_fun : IndepFun f g fg_ae : f * g =ᵐ[μ] AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g ⊢ ∫⁻ (a : Ω), (AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g) a ∂μ = (∫⁻ (a : Ω), AEMeasurable.mk f h_meas_f a ∂μ) * ∫⁻ (a : Ω), AEMeasurable.mk g h_meas_g a ∂μ [PROOFSTEP] apply lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun h_meas_f.measurable_mk h_meas_g.measurable_mk [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ h_meas_f : AEMeasurable f h_meas_g : AEMeasurable g h_indep_fun : IndepFun f g fg_ae : f * g =ᵐ[μ] AEMeasurable.mk f h_meas_f * AEMeasurable.mk g h_meas_g ⊢ IndepFun (AEMeasurable.mk f h_meas_f) (AEMeasurable.mk g h_meas_g) [PROOFSTEP] exact h_indep_fun.ae_eq h_meas_f.ae_eq_mk h_meas_g.ae_eq_mk [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y ⊢ Integrable (X * Y) [PROOFSTEP] let nX : Ω → ENNReal := fun a => ‖X a‖₊ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ ⊢ Integrable (X * Y) [PROOFSTEP] let nY : Ω → ENNReal := fun a => ‖Y a‖₊ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ ⊢ Integrable (X * Y) [PROOFSTEP] have hXY' : IndepFun (fun a => ‖X a‖₊) (fun a => ‖Y a‖₊) μ := hXY.comp measurable_nnnorm measurable_nnnorm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ ⊢ Integrable (X * Y) [PROOFSTEP] have hXY'' : IndepFun nX nY μ := hXY'.comp measurable_coe_nnreal_ennreal measurable_coe_nnreal_ennreal [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ hXY'' : IndepFun nX nY ⊢ Integrable (X * Y) [PROOFSTEP] have hnX : AEMeasurable nX μ := hX.1.aemeasurable.nnnorm.coe_nnreal_ennreal [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ hXY'' : IndepFun nX nY hnX : AEMeasurable nX ⊢ Integrable (X * Y) [PROOFSTEP] have hnY : AEMeasurable nY μ := hY.1.aemeasurable.nnnorm.coe_nnreal_ennreal [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ hXY'' : IndepFun nX nY hnX : AEMeasurable nX hnY : AEMeasurable nY ⊢ Integrable (X * Y) [PROOFSTEP] have hmul : ∫⁻ a, nX a * nY a ∂μ = (∫⁻ a, nX a ∂μ) * ∫⁻ a, nY a ∂μ := lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun' hnX hnY hXY'' [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ hXY'' : IndepFun nX nY hnX : AEMeasurable nX hnY : AEMeasurable nY hmul : ∫⁻ (a : Ω), nX a * nY a ∂μ = (∫⁻ (a : Ω), nX a ∂μ) * ∫⁻ (a : Ω), nY a ∂μ ⊢ Integrable (X * Y) [PROOFSTEP] refine' ⟨hX.1.mul hY.1, _⟩ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ hXY'' : IndepFun nX nY hnX : AEMeasurable nX hnY : AEMeasurable nY hmul : ∫⁻ (a : Ω), nX a * nY a ∂μ = (∫⁻ (a : Ω), nX a ∂μ) * ∫⁻ (a : Ω), nY a ∂μ ⊢ HasFiniteIntegral (X * Y) [PROOFSTEP] simp_rw [HasFiniteIntegral, Pi.mul_apply, nnnorm_mul, ENNReal.coe_mul, hmul] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y hX : Integrable X hY : Integrable Y nX : Ω → ℝ≥0∞ := fun a => ↑‖X a‖₊ nY : Ω → ℝ≥0∞ := fun a => ↑‖Y a‖₊ hXY' : IndepFun (fun a => ‖X a‖₊) fun a => ‖Y a‖₊ hXY'' : IndepFun nX nY hnX : AEMeasurable nX hnY : AEMeasurable nY hmul : ∫⁻ (a : Ω), nX a * nY a ∂μ = (∫⁻ (a : Ω), nX a ∂μ) * ∫⁻ (a : Ω), nY a ∂μ ⊢ (∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ) * ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ < ⊤ [PROOFSTEP] exact ENNReal.mul_lt_top hX.2.ne hY.2.ne [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 ⊢ Integrable X [PROOFSTEP] refine' ⟨hX, _⟩ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 ⊢ HasFiniteIntegral X [PROOFSTEP] have I : (∫⁻ ω, ‖Y ω‖₊ ∂μ) ≠ 0 := fun H ↦ by have I : (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hY.ennnorm).1 H apply h'Y filter_upwards [I] with ω hω simpa using hω [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0 ⊢ False [PROOFSTEP] have I : (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hY.ennnorm).1 H [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0 I : (fun ω => ↑‖Y ω‖₊) =ᵐ[μ] 0 ⊢ False [PROOFSTEP] apply h'Y [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0 I : (fun ω => ↑‖Y ω‖₊) =ᵐ[μ] 0 ⊢ Y =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [I] with ω hω [GOAL] case h Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ = 0 I : (fun ω => ↑‖Y ω‖₊) =ᵐ[μ] 0 ω : Ω hω : ↑‖Y ω‖₊ = OfNat.ofNat 0 ω ⊢ Y ω = OfNat.ofNat 0 ω [PROOFSTEP] simpa using hω [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 ⊢ HasFiniteIntegral X [PROOFSTEP] refine lt_top_iff_ne_top.2 fun H => ?_ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ ⊢ False [PROOFSTEP] have J : IndepFun (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) μ := by have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal apply IndepFun.comp hXY M M [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ ⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ [PROOFSTEP] have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ M : Measurable fun x => ↑‖x‖₊ ⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ [PROOFSTEP] apply IndepFun.comp hXY M M [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ ⊢ False [PROOFSTEP] have A : (∫⁻ ω, ‖X ω * Y ω‖₊ ∂μ) < ∞ := h'XY.2 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ A : ∫⁻ (ω : Ω), ↑‖X ω * Y ω‖₊ ∂μ < ⊤ ⊢ False [PROOFSTEP] simp only [nnnorm_mul, ENNReal.coe_mul] at A [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ A : ∫⁻ (ω : Ω), ↑‖X ω‖₊ * ↑‖Y ω‖₊ ∂μ < ⊤ ⊢ False [PROOFSTEP] rw [lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun'' hX.ennnorm hY.ennnorm J, H] at A [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'Y : ¬Y =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖X a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ A : ⊤ * ∫⁻ (ω : Ω), ↑‖Y ω‖₊ ∂μ < ⊤ ⊢ False [PROOFSTEP] simp only [ENNReal.top_mul I] at A [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 ⊢ Integrable Y [PROOFSTEP] refine' ⟨hY, _⟩ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 ⊢ HasFiniteIntegral Y [PROOFSTEP] have I : (∫⁻ ω, ‖X ω‖₊ ∂μ) ≠ 0 := fun H ↦ by have I : (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hX.ennnorm).1 H apply h'X filter_upwards [I] with ω hω simpa using hω [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0 ⊢ False [PROOFSTEP] have I : (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) =ᵐ[μ] 0 := (lintegral_eq_zero_iff' hX.ennnorm).1 H [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0 I : (fun ω => ↑‖X ω‖₊) =ᵐ[μ] 0 ⊢ False [PROOFSTEP] apply h'X [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0 I : (fun ω => ↑‖X ω‖₊) =ᵐ[μ] 0 ⊢ X =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [I] with ω hω [GOAL] case h Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 H : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ = 0 I : (fun ω => ↑‖X ω‖₊) =ᵐ[μ] 0 ω : Ω hω : ↑‖X ω‖₊ = OfNat.ofNat 0 ω ⊢ X ω = OfNat.ofNat 0 ω [PROOFSTEP] simpa using hω [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 ⊢ HasFiniteIntegral Y [PROOFSTEP] refine lt_top_iff_ne_top.2 fun H => ?_ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ ⊢ False [PROOFSTEP] have J : IndepFun (fun ω => ‖X ω‖₊ : Ω → ℝ≥0∞) (fun ω => ‖Y ω‖₊ : Ω → ℝ≥0∞) μ := by have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal apply IndepFun.comp hXY M M [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ ⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ [PROOFSTEP] have M : Measurable fun x : β => (‖x‖₊ : ℝ≥0∞) := measurable_nnnorm.coe_nnreal_ennreal [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ M : Measurable fun x => ↑‖x‖₊ ⊢ IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ [PROOFSTEP] apply IndepFun.comp hXY M M [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ ⊢ False [PROOFSTEP] have A : (∫⁻ ω, ‖X ω * Y ω‖₊ ∂μ) < ∞ := h'XY.2 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ A : ∫⁻ (ω : Ω), ↑‖X ω * Y ω‖₊ ∂μ < ⊤ ⊢ False [PROOFSTEP] simp only [nnnorm_mul, ENNReal.coe_mul] at A [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ A : ∫⁻ (ω : Ω), ↑‖X ω‖₊ * ↑‖Y ω‖₊ ∂μ < ⊤ ⊢ False [PROOFSTEP] rw [lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun'' hX.ennnorm hY.ennnorm J, H] at A [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X✝ Y✝ : Ω → ℝ β : Type u_2 inst✝² : MeasurableSpace β X Y : Ω → β inst✝¹ : NormedDivisionRing β inst✝ : BorelSpace β hXY : IndepFun X Y h'XY : Integrable (X * Y) hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 I : ∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ ≠ 0 H : ∫⁻ (a : Ω), ↑‖Y a‖₊ ∂μ = ⊤ J : IndepFun (fun ω => ↑‖X ω‖₊) fun ω => ↑‖Y ω‖₊ A : (∫⁻ (ω : Ω), ↑‖X ω‖₊ ∂μ) * ⊤ < ⊤ ⊢ False [PROOFSTEP] simp only [ENNReal.mul_top I] at A [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have h1 : AEMeasurable (fun a => ENNReal.ofReal (X a)) μ := ENNReal.measurable_ofReal.comp_aemeasurable hXm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have h2 : AEMeasurable (fun a => ENNReal.ofReal (Y a)) μ := ENNReal.measurable_ofReal.comp_aemeasurable hYm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have h3 : AEMeasurable (X * Y) μ := hXm.mul hYm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) h3 : AEMeasurable (X * Y) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have h4 : 0 ≤ᵐ[μ] X * Y := ae_of_all _ fun ω => mul_nonneg (hXp ω) (hYp ω) [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) h3 : AEMeasurable (X * Y) h4 : 0 ≤ᵐ[μ] X * Y ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] rw [integral_eq_lintegral_of_nonneg_ae (ae_of_all _ hXp) hXm.aestronglyMeasurable, integral_eq_lintegral_of_nonneg_ae (ae_of_all _ hYp) hYm.aestronglyMeasurable, integral_eq_lintegral_of_nonneg_ae h4 h3.aestronglyMeasurable] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) h3 : AEMeasurable (X * Y) h4 : 0 ≤ᵐ[μ] X * Y ⊢ ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal ((X * Y) a) ∂μ) = ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal (X a) ∂μ) * ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal (Y a) ∂μ) [PROOFSTEP] simp_rw [← ENNReal.toReal_mul, Pi.mul_apply, ENNReal.ofReal_mul (hXp _)] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) h3 : AEMeasurable (X * Y) h4 : 0 ≤ᵐ[μ] X * Y ⊢ ENNReal.toReal (∫⁻ (a : Ω), ENNReal.ofReal (X a) * ENNReal.ofReal (Y a) ∂μ) = ENNReal.toReal ((∫⁻ (a : Ω), ENNReal.ofReal (X a) ∂μ) * ∫⁻ (a : Ω), ENNReal.ofReal (Y a) ∂μ) [PROOFSTEP] congr [GOAL] case e_a Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) h3 : AEMeasurable (X * Y) h4 : 0 ≤ᵐ[μ] X * Y ⊢ ∫⁻ (a : Ω), ENNReal.ofReal (X a) * ENNReal.ofReal (Y a) ∂μ = (∫⁻ (a : Ω), ENNReal.ofReal (X a) ∂μ) * ∫⁻ (a : Ω), ENNReal.ofReal (Y a) ∂μ [PROOFSTEP] apply lintegral_mul_eq_lintegral_mul_lintegral_of_indepFun' h1 h2 [GOAL] case e_a Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hXp : 0 ≤ X hYp : 0 ≤ Y hXm : AEMeasurable X hYm : AEMeasurable Y h1 : AEMeasurable fun a => ENNReal.ofReal (X a) h2 : AEMeasurable fun a => ENNReal.ofReal (Y a) h3 : AEMeasurable (X * Y) h4 : 0 ≤ᵐ[μ] X * Y ⊢ IndepFun (fun a => ENNReal.ofReal (X a)) fun a => ENNReal.ofReal (Y a) [PROOFSTEP] exact hXY.comp ENNReal.measurable_ofReal ENNReal.measurable_ofReal [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] let pos : ℝ → ℝ := fun x => max x 0 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] let neg : ℝ → ℝ := fun x => max (-x) 0 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have posm : Measurable pos := measurable_id'.max measurable_const [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have negm : Measurable neg := measurable_id'.neg.max measurable_const [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] let Xp := pos ∘ X [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] let Xm := neg ∘ X [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] let Yp := pos ∘ Y [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] let Ym := neg ∘ Y [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hXpm : X = Xp - Xm := funext fun ω => (max_zero_sub_max_neg_zero_eq_self (X ω)).symm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hYpm : Y = Yp - Ym := funext fun ω => (max_zero_sub_max_neg_zero_eq_self (Y ω)).symm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hp1 : 0 ≤ Xm := fun ω => le_max_right _ _ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hp2 : 0 ≤ Xp := fun ω => le_max_right _ _ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hp3 : 0 ≤ Ym := fun ω => le_max_right _ _ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hp4 : 0 ≤ Yp := fun ω => le_max_right _ _ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hm1 : AEMeasurable Xm μ := hX.1.aemeasurable.neg.max aemeasurable_const [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hm2 : AEMeasurable Xp μ := hX.1.aemeasurable.max aemeasurable_const [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hm3 : AEMeasurable Ym μ := hY.1.aemeasurable.neg.max aemeasurable_const [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hm4 : AEMeasurable Yp μ := hY.1.aemeasurable.max aemeasurable_const [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hv1 : Integrable Xm μ := hX.neg_part [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hv2 : Integrable Xp μ := hX.pos_part [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hv3 : Integrable Ym μ := hY.neg_part [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hv4 : Integrable Yp μ := hY.pos_part [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hi1 : IndepFun Xm Ym μ := hXY.comp negm negm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hi2 : IndepFun Xp Ym μ := hXY.comp posm negm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hi3 : IndepFun Xm Yp μ := hXY.comp negm posm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hi4 : IndepFun Xp Yp μ := hXY.comp posm posm [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hl1 : Integrable (Xm * Ym) μ := hi1.integrable_mul hv1 hv3 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hl2 : Integrable (Xp * Ym) μ := hi2.integrable_mul hv2 hv3 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hl3 : Integrable (Xm * Yp) μ := hi3.integrable_mul hv1 hv4 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) hl3 : Integrable (Xm * Yp) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hl4 : Integrable (Xp * Yp) μ := hi4.integrable_mul hv2 hv4 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) hl3 : Integrable (Xm * Yp) hl4 : Integrable (Xp * Yp) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hl5 : Integrable (Xp * Yp - Xm * Yp) μ := hl4.sub hl3 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) hl3 : Integrable (Xm * Yp) hl4 : Integrable (Xp * Yp) hl5 : Integrable (Xp * Yp - Xm * Yp) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have hl6 : Integrable (Xp * Ym - Xm * Ym) μ := hl2.sub hl1 [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) hl3 : Integrable (Xm * Yp) hl4 : Integrable (Xp * Yp) hl5 : Integrable (Xp * Yp - Xm * Yp) hl6 : Integrable (Xp * Ym - Xm * Ym) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] rw [hXpm, hYpm, mul_sub, sub_mul, sub_mul] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) hl3 : Integrable (Xm * Yp) hl4 : Integrable (Xp * Yp) hl5 : Integrable (Xp * Yp - Xm * Yp) hl6 : Integrable (Xp * Ym - Xm * Ym) ⊢ integral μ (Xp * Yp - Xm * Yp - (Xp * Ym - Xm * Ym)) = integral μ (Xp - Xm) * integral μ (Yp - Ym) [PROOFSTEP] rw [integral_sub' hl5 hl6, integral_sub' hl4 hl3, integral_sub' hl2 hl1, integral_sub' hv2 hv1, integral_sub' hv4 hv3, hi1.integral_mul_of_nonneg hp1 hp3 hm1 hm3, hi2.integral_mul_of_nonneg hp2 hp3 hm2 hm3, hi3.integral_mul_of_nonneg hp1 hp4 hm1 hm4, hi4.integral_mul_of_nonneg hp2 hp4 hm2 hm4] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : Integrable X hY : Integrable Y pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg Xp : Ω → ℝ := pos ∘ X Xm : Ω → ℝ := neg ∘ X Yp : Ω → ℝ := pos ∘ Y Ym : Ω → ℝ := neg ∘ Y hXpm : X = Xp - Xm hYpm : Y = Yp - Ym hp1 : 0 ≤ Xm hp2 : 0 ≤ Xp hp3 : 0 ≤ Ym hp4 : 0 ≤ Yp hm1 : AEMeasurable Xm hm2 : AEMeasurable Xp hm3 : AEMeasurable Ym hm4 : AEMeasurable Yp hv1 : Integrable Xm hv2 : Integrable Xp hv3 : Integrable Ym hv4 : Integrable Yp hi1 : IndepFun Xm Ym hi2 : IndepFun Xp Ym hi3 : IndepFun Xm Yp hi4 : IndepFun Xp Yp hl1 : Integrable (Xm * Ym) hl2 : Integrable (Xp * Ym) hl3 : Integrable (Xm * Yp) hl4 : Integrable (Xp * Yp) hl5 : Integrable (Xp * Yp - Xm * Yp) hl6 : Integrable (Xp * Ym - Xm * Ym) ⊢ integral μ Xp * integral μ Yp - integral μ Xm * integral μ Yp - (integral μ Xp * integral μ Ym - integral μ Xm * integral μ Ym) = (∫ (a : Ω), Xp a ∂μ - ∫ (a : Ω), Xm a ∂μ) * (∫ (a : Ω), Yp a ∂μ - ∫ (a : Ω), Ym a ∂μ) [PROOFSTEP] ring [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] by_cases h'X : X =ᵐ[μ] 0 [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : X =ᵐ[μ] 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have h' : X * Y =ᵐ[μ] 0 := by filter_upwards [h'X] with ω hω simp [hω] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : X =ᵐ[μ] 0 ⊢ X * Y =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [h'X] with ω hω [GOAL] case h Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : X =ᵐ[μ] 0 ω : Ω hω : X ω = OfNat.ofNat 0 ω ⊢ (X * Y) ω = OfNat.ofNat 0 ω [PROOFSTEP] simp [hω] [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : X =ᵐ[μ] 0 h' : X * Y =ᵐ[μ] 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] simp only [integral_congr_ae h'X, integral_congr_ae h', Pi.zero_apply, integral_const, Algebra.id.smul_eq_mul, mul_zero, zero_mul] [GOAL] case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] by_cases h'Y : Y =ᵐ[μ] 0 [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : Y =ᵐ[μ] 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have h' : X * Y =ᵐ[μ] 0 := by filter_upwards [h'Y] with ω hω simp [hω] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : Y =ᵐ[μ] 0 ⊢ X * Y =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [h'Y] with ω hω [GOAL] case h Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : Y =ᵐ[μ] 0 ω : Ω hω : Y ω = OfNat.ofNat 0 ω ⊢ (X * Y) ω = OfNat.ofNat 0 ω [PROOFSTEP] simp [hω] [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : Y =ᵐ[μ] 0 h' : X * Y =ᵐ[μ] 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] simp only [integral_congr_ae h'Y, integral_congr_ae h', Pi.zero_apply, integral_const, Algebra.id.smul_eq_mul, mul_zero, zero_mul] [GOAL] case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] by_cases h : Integrable (X * Y) μ [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : Integrable (X * Y) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have HX : Integrable X μ := hXY.integrable_left_of_integrable_mul h hX hY h'Y [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : Integrable (X * Y) HX : Integrable X ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] have HY : Integrable Y μ := hXY.integrable_right_of_integrable_mul h hX hY h'X [GOAL] case pos Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : Integrable (X * Y) HX : Integrable X HY : Integrable Y ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] exact hXY.integral_mul_of_integrable HX HY [GOAL] case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) ⊢ integral μ (X * Y) = integral μ X * integral μ Y [PROOFSTEP] rw [integral_undef h] [GOAL] case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) ⊢ 0 = integral μ X * integral μ Y [PROOFSTEP] have I : ¬(Integrable X μ ∧ Integrable Y μ) := by rintro ⟨HX, HY⟩ exact h (hXY.integrable_mul HX HY) [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) ⊢ ¬(Integrable X ∧ Integrable Y) [PROOFSTEP] rintro ⟨HX, HY⟩ [GOAL] case intro Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) HX : Integrable X HY : Integrable Y ⊢ False [PROOFSTEP] exact h (hXY.integrable_mul HX HY) [GOAL] case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) I : ¬(Integrable X ∧ Integrable Y) ⊢ 0 = integral μ X * integral μ Y [PROOFSTEP] rw [not_and_or] at I [GOAL] case neg Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) I : ¬Integrable X ∨ ¬Integrable Y ⊢ 0 = integral μ X * integral μ Y [PROOFSTEP] cases' I with I I [GOAL] case neg.inl Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) I : ¬Integrable X ⊢ 0 = integral μ X * integral μ Y [PROOFSTEP] simp [integral_undef I] [GOAL] case neg.inr Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f g : Ω → ℝ≥0∞ X Y : Ω → ℝ hXY : IndepFun X Y hX : AEStronglyMeasurable X μ hY : AEStronglyMeasurable Y μ h'X : ¬X =ᵐ[μ] 0 h'Y : ¬Y =ᵐ[μ] 0 h : ¬Integrable (X * Y) I : ¬Integrable Y ⊢ 0 = integral μ X * integral μ Y [PROOFSTEP] simp [integral_undef I] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ inst✝ : IsFiniteMeasure μ β : Type u_2 β' : Type u_3 mβ : MeasurableSpace β mβ' : MeasurableSpace β' f : Ω → β g : Ω → β' hfm : Measurable f hgm : Measurable g ⊢ IndepFun f g ↔ ∀ {φ : β → ℝ} {ψ : β' → ℝ}, Measurable φ → Measurable ψ → Integrable (φ ∘ f) → Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g) [PROOFSTEP] refine' ⟨fun hfg _ _ hφ hψ => IndepFun.integral_mul_of_integrable (hfg.comp hφ hψ), _⟩ [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ inst✝ : IsFiniteMeasure μ β : Type u_2 β' : Type u_3 mβ : MeasurableSpace β mβ' : MeasurableSpace β' f : Ω → β g : Ω → β' hfm : Measurable f hgm : Measurable g ⊢ (∀ {φ : β → ℝ} {ψ : β' → ℝ}, Measurable φ → Measurable ψ → Integrable (φ ∘ f) → Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g)) → IndepFun f g [PROOFSTEP] rw [IndepFun_iff] [GOAL] Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ inst✝ : IsFiniteMeasure μ β : Type u_2 β' : Type u_3 mβ : MeasurableSpace β mβ' : MeasurableSpace β' f : Ω → β g : Ω → β' hfm : Measurable f hgm : Measurable g ⊢ (∀ {φ : β → ℝ} {ψ : β' → ℝ}, Measurable φ → Measurable ψ → Integrable (φ ∘ f) → Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g)) → ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 [PROOFSTEP] rintro h _ _ ⟨A, hA, rfl⟩ ⟨B, hB, rfl⟩ [GOAL] case intro.intro.intro.intro Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ inst✝ : IsFiniteMeasure μ β : Type u_2 β' : Type u_3 mβ : MeasurableSpace β mβ' : MeasurableSpace β' f : Ω → β g : Ω → β' hfm : Measurable f hgm : Measurable g h : ∀ {φ : β → ℝ} {ψ : β' → ℝ}, Measurable φ → Measurable ψ → Integrable (φ ∘ f) → Integrable (ψ ∘ g) → integral μ (φ ∘ f * ψ ∘ g) = integral μ (φ ∘ f) * integral μ (ψ ∘ g) A : Set β hA : MeasurableSet A B : Set β' hB : MeasurableSet B ⊢ ↑↑μ (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑μ (f ⁻¹' A) * ↑↑μ (g ⁻¹' B) [PROOFSTEP] specialize h (measurable_one.indicator hA) (measurable_one.indicator hB) ((integrable_const 1).indicator (hfm.comp measurable_id hA)) ((integrable_const 1).indicator (hgm.comp measurable_id hB)) [GOAL] case intro.intro.intro.intro Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ inst✝ : IsFiniteMeasure μ β : Type u_2 β' : Type u_3 mβ : MeasurableSpace β mβ' : MeasurableSpace β' f : Ω → β g : Ω → β' hfm : Measurable f hgm : Measurable g A : Set β hA : MeasurableSet A B : Set β' hB : MeasurableSet B h : integral μ (indicator A 1 ∘ f * indicator B 1 ∘ g) = integral μ (indicator A 1 ∘ f) * integral μ (indicator B 1 ∘ g) ⊢ ↑↑μ (f ⁻¹' A ∩ g ⁻¹' B) = ↑↑μ (f ⁻¹' A) * ↑↑μ (g ⁻¹' B) [PROOFSTEP] rwa [← ENNReal.toReal_eq_toReal (measure_ne_top μ _), ENNReal.toReal_mul, ← integral_indicator_one ((hfm hA).inter (hgm hB)), ← integral_indicator_one (hfm hA), ← integral_indicator_one (hgm hB), Set.inter_indicator_one] [GOAL] case intro.intro.intro.intro Ω : Type u_1 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ g✝ : Ω → ℝ≥0∞ X Y : Ω → ℝ inst✝ : IsFiniteMeasure μ β : Type u_2 β' : Type u_3 mβ : MeasurableSpace β mβ' : MeasurableSpace β' f : Ω → β g : Ω → β' hfm : Measurable f hgm : Measurable g A : Set β hA : MeasurableSet A B : Set β' hB : MeasurableSet B h : integral μ (indicator A 1 ∘ f * indicator B 1 ∘ g) = integral μ (indicator A 1 ∘ f) * integral μ (indicator B 1 ∘ g) ⊢ ↑↑μ (f ⁻¹' A) * ↑↑μ (g ⁻¹' B) ≠ ⊤ [PROOFSTEP] exact ENNReal.mul_ne_top (measure_ne_top μ _) (measure_ne_top μ _)
{"mathlib_filename": "Mathlib.Probability.Integration", "llama_tokens": 46445}
[GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n ⊢ hitting u s n m ω = m [PROOFSTEP] simp_rw [hitting] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n ⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) = m [PROOFSTEP] have h_not : ¬∃ (j : ι) (_ : j ∈ Set.Icc n m), u j ω ∈ s := by push_neg intro j rw [Set.Icc_eq_empty_of_lt h] simp only [Set.mem_empty_iff_false, IsEmpty.forall_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n ⊢ ¬∃ j x, u j ω ∈ s [PROOFSTEP] push_neg [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n ⊢ ∀ (j : ι), j ∈ Set.Icc n m → ¬u j ω ∈ s [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n j : ι ⊢ j ∈ Set.Icc n m → ¬u j ω ∈ s [PROOFSTEP] rw [Set.Icc_eq_empty_of_lt h] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n j : ι ⊢ j ∈ ∅ → ¬u j ω ∈ s [PROOFSTEP] simp only [Set.mem_empty_iff_false, IsEmpty.forall_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n h_not : ¬∃ j x, u j ω ∈ s ⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) = m [PROOFSTEP] simp only [exists_prop] at h_not [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h : m < n h_not : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) = m [PROOFSTEP] simp only [h_not, if_false] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω ⊢ hitting u s n m ω ≤ m [PROOFSTEP] cases' le_or_lt n m with h_le h_lt [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_le : n ≤ m ⊢ hitting u s n m ω ≤ m [PROOFSTEP] simp only [hitting] [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_le : n ≤ m ⊢ (if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m) ≤ m [PROOFSTEP] split_ifs with h [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_le : n ≤ m h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ m [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h [GOAL] case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_le : n ≤ m j : ι hj₁ : j ∈ Set.Icc n m hj₂ : u j ω ∈ s ⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ m [PROOFSTEP] change j ∈ {i | u i ω ∈ s} at hj₂ [GOAL] case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_le : n ≤ m j : ι hj₁ : j ∈ Set.Icc n m hj₂ : j ∈ {i | u i ω ∈ s} ⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ m [PROOFSTEP] exact (csInf_le (BddBelow.inter_of_left bddBelow_Icc) (Set.mem_inter hj₁ hj₂)).trans hj₁.2 [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_le : n ≤ m h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ m ≤ m [PROOFSTEP] exact le_rfl [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι ω : Ω h_lt : m < n ⊢ hitting u s n m ω ≤ m [PROOFSTEP] rw [hitting_of_lt h_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k ⊢ ¬u k ω ∈ s [PROOFSTEP] classical intro h have hexists : ∃ j ∈ Set.Icc n m, u j ω ∈ s refine' ⟨k, ⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩ refine' not_le.2 hk₁ _ simp_rw [hitting, if_pos hexists] exact csInf_le bddBelow_Icc.inter_of_left ⟨⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k ⊢ ¬u k ω ∈ s [PROOFSTEP] intro h [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k h : u k ω ∈ s ⊢ False [PROOFSTEP] have hexists : ∃ j ∈ Set.Icc n m, u j ω ∈ s [GOAL] case hexists Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k h : u k ω ∈ s ⊢ ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k h : u k ω ∈ s hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ False [PROOFSTEP] refine' ⟨k, ⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k h : u k ω ∈ s hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ False [PROOFSTEP] refine' not_le.2 hk₁ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k h : u k ω ∈ s hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ hitting u s n m ω ≤ k [PROOFSTEP] simp_rw [hitting, if_pos hexists] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m k : ι hk₁ : k < hitting u s n m ω hk₂ : n ≤ k h : u k ω ∈ s hexists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ k [PROOFSTEP] exact csInf_le bddBelow_Icc.inter_of_left ⟨⟨hk₂, le_trans hk₁.le <| hitting_le _⟩, h⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι ⊢ hitting u s n m ω = m ↔ (∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s) → sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] rw [hitting, ite_eq_right_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι hmn : m ≤ n ⊢ hitting u s n m ω = m [PROOFSTEP] obtain rfl | h := le_iff_eq_or_lt.1 hmn [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m ⊢ hitting u s m m ω = m [PROOFSTEP] rw [hitting, ite_eq_right_iff, forall_exists_index] [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m ⊢ ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] conv => intro; rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m | ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] intro; rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m | ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] intro; rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m | ∀ (x : ι), x ∈ Set.Icc m m ∧ u x ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] intro [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m x✝ : ι | x✝ ∈ Set.Icc m m ∧ u x✝ ω ∈ s → sInf (Set.Icc m m ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] rw [Set.mem_Icc, Set.Icc_self, and_imp, and_imp] [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i : ι ω : Ω m : ι hmn : m ≤ m ⊢ ∀ (x : ι), m ≤ x → x ≤ m → u x ω ∈ s → sInf ({m} ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] intro i hi₁ hi₂ hi [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i✝ : ι ω : Ω m : ι hmn : m ≤ m i : ι hi₁ : m ≤ i hi₂ : i ≤ m hi : u i ω ∈ s ⊢ sInf ({m} ∩ {i | u i ω ∈ s}) = m [PROOFSTEP] rw [Set.inter_eq_left_iff_subset.2, csInf_singleton] [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β i✝ : ι ω : Ω m : ι hmn : m ≤ m i : ι hi₁ : m ≤ i hi₂ : i ≤ m hi : u i ω ∈ s ⊢ {m} ⊆ {i | u i ω ∈ s} [PROOFSTEP] exact Set.singleton_subset_iff.2 (le_antisymm hi₂ hi₁ ▸ hi) [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι hmn : m ≤ n h : m < n ⊢ hitting u s n m ω = m [PROOFSTEP] exact hitting_of_lt h [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω ⊢ n ≤ hitting u s n m ω [PROOFSTEP] simp only [hitting] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω ⊢ n ≤ if ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s then sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) else m [PROOFSTEP] split_ifs with h [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ n ≤ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) [PROOFSTEP] refine' le_csInf _ fun b hb => _ [GOAL] case pos.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) [PROOFSTEP] obtain ⟨k, hk_Icc, hk_s⟩ := h [GOAL] case pos.refine'_1.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω k : ι hk_Icc : k ∈ Set.Icc n m hk_s : u k ω ∈ s ⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) [PROOFSTEP] exact ⟨k, hk_Icc, hk_s⟩ [GOAL] case pos.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s b : ι hb : b ∈ Set.Icc n m ∩ {i | u i ω ∈ s} ⊢ n ≤ b [PROOFSTEP] rw [Set.mem_inter_iff] at hb [GOAL] case pos.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s b : ι hb : b ∈ Set.Icc n m ∧ b ∈ {i | u i ω ∈ s} ⊢ n ≤ b [PROOFSTEP] exact hb.1.1 [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω✝ : Ω m : ι hnm : n ≤ m ω : Ω h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ n ≤ m [PROOFSTEP] exact hnm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ n ≤ hitting u s n m ω [PROOFSTEP] refine' le_hitting _ ω [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ n ≤ m [PROOFSTEP] by_contra h [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h : ¬n ≤ m ⊢ False [PROOFSTEP] rw [Set.Icc_eq_empty_of_lt (not_le.mp h)] at h_exists [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι h_exists : ∃ j, j ∈ ∅ ∧ u j ω ∈ s h : ¬n ≤ m ⊢ False [PROOFSTEP] simp at h_exists [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ u (hitting u s n m ω) ω ∈ s [PROOFSTEP] simp_rw [hitting, if_pos h_exists] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] have h_nonempty : (Set.Icc n m ∩ {i : ι | u i ω ∈ s}).Nonempty := by obtain ⟨k, hk₁, hk₂⟩ := h_exists exact ⟨k, Set.mem_inter hk₁ hk₂⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) [PROOFSTEP] obtain ⟨k, hk₁, hk₂⟩ := h_exists [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m k : ι hk₁ : k ∈ Set.Icc n m hk₂ : u k ω ∈ s ⊢ Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) [PROOFSTEP] exact ⟨k, Set.mem_inter hk₁ hk₂⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h_nonempty : Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] have h_mem := csInf_mem h_nonempty [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h_nonempty : Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) h_mem : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∩ {i | u i ω ∈ s} ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] rw [Set.mem_inter_iff] at h_mem [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h_nonempty : Set.Nonempty (Set.Icc n m ∩ {i | u i ω ∈ s}) h_mem : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∧ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ {i | u i ω ∈ s} ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] exact h_mem.2 [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι hl : hitting u s n m ω < m ⊢ u (hitting u s n m ω) ω ∈ s [PROOFSTEP] by_cases h : ∃ j ∈ Set.Icc n m, u j ω ∈ s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι hl : hitting u s n m ω < m h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ u (hitting u s n m ω) ω ∈ s [PROOFSTEP] exact hitting_mem_set h [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι hl : hitting u s n m ω < m h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ u (hitting u s n m ω) ω ∈ s [PROOFSTEP] simp_rw [hitting, if_neg h] at hl [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s hl : m < m ⊢ u (hitting u s n m ω) ω ∈ s [PROOFSTEP] exact False.elim (hl.ne rfl) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι hin : n ≤ i him : i ≤ m his : u i ω ∈ s ⊢ hitting u s n m ω ≤ i [PROOFSTEP] have h_exists : ∃ k ∈ Set.Icc n m, u k ω ∈ s := ⟨i, ⟨hin, him⟩, his⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι hin : n ≤ i him : i ≤ m his : u i ω ∈ s h_exists : ∃ k, k ∈ Set.Icc n m ∧ u k ω ∈ s ⊢ hitting u s n m ω ≤ i [PROOFSTEP] simp_rw [hitting, if_pos h_exists] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m : ι hin : n ≤ i him : i ≤ m his : u i ω ∈ s h_exists : ∃ k, k ∈ Set.Icc n m ∧ u k ω ∈ s ⊢ sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ≤ i [PROOFSTEP] exact csInf_le (BddBelow.inter_of_left bddBelow_Icc) (Set.mem_inter ⟨hin, him⟩ his) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ hitting u s n m ω ≤ i → ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] intro h' [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ (∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s) → hitting u s n m ω ≤ i [PROOFSTEP] intro h' [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : hitting u s n m ω ≤ i ⊢ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h_exists, h'⟩, hitting_mem_set h_exists⟩ [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s ⊢ hitting u s n m ω ≤ i [PROOFSTEP] have h'' : ∃ k ∈ Set.Icc n (min m i), u k ω ∈ s := by obtain ⟨k₁, hk₁_mem, hk₁_s⟩ := h_exists obtain ⟨k₂, hk₂_mem, hk₂_s⟩ := h' refine' ⟨min k₁ k₂, ⟨le_min hk₁_mem.1 hk₂_mem.1, min_le_min hk₁_mem.2 hk₂_mem.2⟩, _⟩ exact min_rec' (fun j => u j ω ∈ s) hk₁_s hk₂_s [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s ⊢ ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s [PROOFSTEP] obtain ⟨k₁, hk₁_mem, hk₁_s⟩ := h_exists [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s k₁ : ι hk₁_mem : k₁ ∈ Set.Icc n m hk₁_s : u k₁ ω ∈ s ⊢ ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s [PROOFSTEP] obtain ⟨k₂, hk₂_mem, hk₂_s⟩ := h' [GOAL] case intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m k₁ : ι hk₁_mem : k₁ ∈ Set.Icc n m hk₁_s : u k₁ ω ∈ s k₂ : ι hk₂_mem : k₂ ∈ Set.Icc n i hk₂_s : u k₂ ω ∈ s ⊢ ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s [PROOFSTEP] refine' ⟨min k₁ k₂, ⟨le_min hk₁_mem.1 hk₂_mem.1, min_le_min hk₁_mem.2 hk₂_mem.2⟩, _⟩ [GOAL] case intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m k₁ : ι hk₁_mem : k₁ ∈ Set.Icc n m hk₁_s : u k₁ ω ∈ s k₂ : ι hk₂_mem : k₂ ∈ Set.Icc n i hk₂_s : u k₂ ω ∈ s ⊢ u (min k₁ k₂) ω ∈ s [PROOFSTEP] exact min_rec' (fun j => u j ω ∈ s) hk₁_s hk₂_s [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s h'' : ∃ k, k ∈ Set.Icc n (min m i) ∧ u k ω ∈ s ⊢ hitting u s n m ω ≤ i [PROOFSTEP] obtain ⟨k, hk₁, hk₂⟩ := h'' [GOAL] case mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s k : ι hk₁ : k ∈ Set.Icc n (min m i) hk₂ : u k ω ∈ s ⊢ hitting u s n m ω ≤ i [PROOFSTEP] refine' le_trans _ (hk₁.2.trans (min_le_right _ _)) [GOAL] case mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m : ι h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s k : ι hk₁ : k ∈ Set.Icc n (min m i) hk₂ : u k ω ∈ s ⊢ hitting u s n m ω ≤ k [PROOFSTEP] exact hitting_le_of_mem hk₁.1 (hk₁.2.trans (min_le_left _ _)) hk₂ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i < m ⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] by_cases h_exists : ∃ j ∈ Set.Icc n m, u j ω ∈ s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i < m h_exists : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] rw [hitting_le_iff_of_exists h_exists] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i < m h_exists : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ hitting u s n m ω ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] simp_rw [hitting, if_neg h_exists] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i < m h_exists : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ m ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] push_neg at h_exists [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i < m h_exists : ∀ (j : ι), j ∈ Set.Icc n m → ¬u j ω ∈ s ⊢ m ≤ i ↔ ∃ j, j ∈ Set.Icc n i ∧ u j ω ∈ s [PROOFSTEP] simp only [not_le.mpr hi, Set.mem_Icc, false_iff_iff, not_exists, not_and, and_imp] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i < m h_exists : ∀ (j : ι), j ∈ Set.Icc n m → ¬u j ω ∈ s ⊢ ∀ (x : ι), n ≤ x → x ≤ i → ¬u x ω ∈ s [PROOFSTEP] exact fun k hkn hki => h_exists k ⟨hkn, hki.trans hi.le⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m ⊢ hitting u s n m ω < i ↔ ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m ⊢ hitting u s n m ω < i → ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s [PROOFSTEP] intro h' [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m ⊢ (∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s) → hitting u s n m ω < i [PROOFSTEP] intro h' [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m h' : hitting u s n m ω < i ⊢ ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s [PROOFSTEP] have h : ∃ j ∈ Set.Icc n m, u j ω ∈ s := by by_contra h simp_rw [hitting, if_neg h, ← not_le] at h' exact h' hi [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m h' : hitting u s n m ω < i ⊢ ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s [PROOFSTEP] by_contra h [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m h' : hitting u s n m ω < i h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ False [PROOFSTEP] simp_rw [hitting, if_neg h, ← not_le] at h' [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m h : ¬∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s h' : ¬i ≤ m ⊢ False [PROOFSTEP] exact h' hi [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m h' : hitting u s n m ω < i h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s [PROOFSTEP] exact ⟨hitting u s n m ω, ⟨le_hitting_of_exists h, h'⟩, hitting_mem_set h⟩ [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m h' : ∃ j, j ∈ Set.Ico n i ∧ u j ω ∈ s ⊢ hitting u s n m ω < i [PROOFSTEP] obtain ⟨k, hk₁, hk₂⟩ := h' [GOAL] case mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m k : ι hk₁ : k ∈ Set.Ico n i hk₂ : u k ω ∈ s ⊢ hitting u s n m ω < i [PROOFSTEP] refine' lt_of_le_of_lt _ hk₁.2 [GOAL] case mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω inst✝ : IsWellOrder ι fun x x_1 => x < x_1 m i : ι hi : i ≤ m k : ι hk₁ : k ∈ Set.Ico n i hk₂ : u k ω ∈ s ⊢ hitting u s n m ω ≤ k [PROOFSTEP] exact hitting_le_of_mem hk₁.1 (hk₁.2.le.trans hi) hk₂ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ h' : ∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s ⊢ hitting u s n m₁ ω = hitting u s n m₂ ω [PROOFSTEP] simp only [hitting, if_pos h'] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ h' : ∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) = if ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s then sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) else m₂ [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h' [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) = if ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s then sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) else m₂ [PROOFSTEP] rw [if_pos] [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) = sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) [PROOFSTEP] refine' le_antisymm _ (csInf_le_csInf bddBelow_Icc.inter_of_left ⟨j, hj₁, hj₂⟩ (Set.inter_subset_inter_left _ (Set.Icc_subset_Icc_right h))) [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) [PROOFSTEP] refine' le_csInf ⟨j, Set.Icc_subset_Icc_right h hj₁, hj₂⟩ fun i hi => _ [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s i : ι hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i [PROOFSTEP] by_cases hi' : i ≤ m₁ [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s i : ι hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} hi' : i ≤ m₁ ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i [PROOFSTEP] exact csInf_le bddBelow_Icc.inter_of_left ⟨⟨hi.1.1, hi'⟩, hi.2⟩ [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s i : ι hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} hi' : ¬i ≤ m₁ ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i [PROOFSTEP] change j ∈ {i | u i ω ∈ s} at hj₂ [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ i : ι hi : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} hi' : ¬i ≤ m₁ hj₂ : j ∈ {i | u i ω ∈ s} ⊢ sInf (Set.Icc n m₁ ∩ {i | u i ω ∈ s}) ≤ i [PROOFSTEP] exact ((csInf_le bddBelow_Icc.inter_of_left ⟨hj₁, hj₂⟩).trans (hj₁.2.trans le_rfl)).trans (le_of_lt (not_le.1 hi')) [GOAL] case intro.intro.hc Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι h : m₁ ≤ m₂ j : ι hj₁ : j ∈ Set.Icc n m₁ hj₂ : u j ω ∈ s ⊢ ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s [PROOFSTEP] exact ⟨j, ⟨hj₁.1, hj₁.2.trans h⟩, hj₂⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ ⊢ hitting u s n m₁ ω ≤ hitting u s n m₂ ω [PROOFSTEP] by_cases h : ∃ j ∈ Set.Icc n m₁, u j ω ∈ s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s ⊢ hitting u s n m₁ ω ≤ hitting u s n m₂ ω [PROOFSTEP] exact (hitting_eq_hitting_of_exists hm h).le [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s ⊢ hitting u s n m₁ ω ≤ hitting u s n m₂ ω [PROOFSTEP] simp_rw [hitting, if_neg h] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s ⊢ m₁ ≤ if ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s then sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) else m₂ [PROOFSTEP] split_ifs with h' [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s h' : ∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s ⊢ m₁ ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h' [GOAL] case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s ⊢ m₁ ≤ sInf (Set.Icc n m₂ ∩ {i | u i ω ∈ s}) [PROOFSTEP] refine' le_csInf ⟨j, hj₁, hj₂⟩ _ [GOAL] case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s ⊢ ∀ (b : ι), b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} → m₁ ≤ b [PROOFSTEP] by_contra hneg [GOAL] case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s hneg : ¬∀ (b : ι), b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} → m₁ ≤ b ⊢ False [PROOFSTEP] push_neg at hneg [GOAL] case pos.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s hneg : ∃ b, b ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} ∧ b < m₁ ⊢ False [PROOFSTEP] obtain ⟨i, hi₁, hi₂⟩ := hneg [GOAL] case pos.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i✝ : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s j : ι hj₁ : j ∈ Set.Icc n m₂ hj₂ : u j ω ∈ s i : ι hi₁ : i ∈ Set.Icc n m₂ ∩ {i | u i ω ∈ s} hi₂ : i < m₁ ⊢ False [PROOFSTEP] exact h ⟨i, ⟨hi₁.1.1, hi₂.le⟩, hi₁.2⟩ [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : ConditionallyCompleteLinearOrder ι u : ι → Ω → β s : Set β n i : ι ω : Ω m₁ m₂ : ι hm : m₁ ≤ m₂ h : ¬∃ j, j ∈ Set.Icc n m₁ ∧ u j ω ∈ s h' : ¬∃ j, j ∈ Set.Icc n m₂ ∧ u j ω ∈ s ⊢ m₁ ≤ m₂ [PROOFSTEP] exact hm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s ⊢ IsStoppingTime f (hitting u s n n') [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι ⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i} [PROOFSTEP] cases' le_or_lt n' i with hi hi [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : n' ≤ i ⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i} [PROOFSTEP] have h_le : ∀ ω, hitting u s n n' ω ≤ i := fun x => (hitting_le x).trans hi [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : n' ≤ i h_le : ∀ (ω : Ω), hitting u s n n' ω ≤ i ⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i} [PROOFSTEP] simp [h_le] [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : i < n' ⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i} [PROOFSTEP] have h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ j ∈ Set.Icc n i, u j ⁻¹' s := by ext x rw [Set.mem_setOf_eq, hitting_le_iff_of_lt _ hi] simp only [Set.mem_Icc, exists_prop, Set.mem_iUnion, Set.mem_preimage] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : i < n' ⊢ {ω | hitting u s n n' ω ≤ i} = ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s [PROOFSTEP] ext x [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : i < n' x : Ω ⊢ x ∈ {ω | hitting u s n n' ω ≤ i} ↔ x ∈ ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s [PROOFSTEP] rw [Set.mem_setOf_eq, hitting_le_iff_of_lt _ hi] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : i < n' x : Ω ⊢ (∃ j, j ∈ Set.Icc n i ∧ u j x ∈ s) ↔ x ∈ ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s [PROOFSTEP] simp only [Set.mem_Icc, exists_prop, Set.mem_iUnion, Set.mem_preimage] [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : i < n' h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s ⊢ MeasurableSet {ω | hitting u s n n' ω ≤ i} [PROOFSTEP] rw [h_set_eq_Union] [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : ConditionallyCompleteLinearOrder ι inst✝⁵ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁴ : Countable ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β s : Set β n n' : ι hu : Adapted f u hs : MeasurableSet s i : ι hi : i < n' h_set_eq_Union : {ω | hitting u s n n' ω ≤ i} = ⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s ⊢ MeasurableSet (⋃ (j : ι) (_ : j ∈ Set.Icc n i), u j ⁻¹' s) [PROOFSTEP] exact MeasurableSet.iUnion fun j => MeasurableSet.iUnion fun hj => f.mono hj.2 _ ((hu j).measurable hs) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β n m : ι ω : Ω h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ stoppedValue u (hitting u s n m) ω ∈ s [PROOFSTEP] simp only [stoppedValue, hitting, if_pos h] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β n m : ι ω : Ω h : ∃ j, j ∈ Set.Icc n m ∧ u j ω ∈ s ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β n m : ι ω : Ω j : ι hj₁ : j ∈ Set.Icc n m hj₂ : u j ω ∈ s ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] have : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∩ {i | u i ω ∈ s} := csInf_mem (Set.nonempty_of_mem ⟨hj₁, hj₂⟩) [GOAL] case intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrder ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β n m : ι ω : Ω j : ι hj₁ : j ∈ Set.Icc n m hj₂ : u j ω ∈ s this : sInf (Set.Icc n m ∩ {i | u i ω ∈ s}) ∈ Set.Icc n m ∩ {i | u i ω ∈ s} ⊢ u (sInf (Set.Icc n m ∩ {i | u i ω ∈ s})) ω ∈ s [PROOFSTEP] exact this.2 [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u ⊢ IsStoppingTime f fun x => hitting u s (τ x) N x [PROOFSTEP] intro n [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι ⊢ MeasurableSet {ω | (fun x => hitting u s (τ x) N x) ω ≤ n} [PROOFSTEP] have h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ i ≤ n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} := by ext x simp [← exists_or, ← or_and_right, le_or_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι ⊢ {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} [PROOFSTEP] ext x [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι x : Ω ⊢ x ∈ {x | hitting u s (τ x) N x ≤ n} ↔ x ∈ (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} [PROOFSTEP] simp [← exists_or, ← or_and_right, le_or_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} ⊢ MeasurableSet {ω | (fun x => hitting u s (τ x) N x) ω ≤ n} [PROOFSTEP] have h₂ : ⋃ i > n, {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅ := by ext x simp only [gt_iff_lt, Set.mem_iUnion, Set.mem_inter_iff, Set.mem_setOf_eq, exists_prop, Set.mem_empty_iff_false, iff_false_iff, not_exists, not_and, not_le] rintro m hm rfl exact lt_of_lt_of_le hm (le_hitting (hτbdd _) _) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} ⊢ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅ [PROOFSTEP] ext x [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} x : Ω ⊢ x ∈ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} ↔ x ∈ ∅ [PROOFSTEP] simp only [gt_iff_lt, Set.mem_iUnion, Set.mem_inter_iff, Set.mem_setOf_eq, exists_prop, Set.mem_empty_iff_false, iff_false_iff, not_exists, not_and, not_le] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} x : Ω ⊢ ∀ (x_1 : ι), n < x_1 → τ x = x_1 → n < hitting u s x_1 N x [PROOFSTEP] rintro m hm rfl [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} x : Ω hm : n < τ x ⊢ n < hitting u s (τ x) N x [PROOFSTEP] exact lt_of_lt_of_le hm (le_hitting (hτbdd _) _) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} h₂ : ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅ ⊢ MeasurableSet {ω | (fun x => hitting u s (τ x) N x) ω ≤ n} [PROOFSTEP] rw [h₁, h₂, Set.union_empty] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : ConditionallyCompleteLinearOrder ι inst✝⁸ : IsWellOrder ι fun x x_1 => x < x_1 inst✝⁷ : Countable ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : OrderTopology ι inst✝⁴ : FirstCountableTopology ι inst✝³ : TopologicalSpace β inst✝² : PseudoMetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β f : Filtration ι m u : ι → Ω → β τ : Ω → ι hτ : IsStoppingTime f τ N : ι hτbdd : ∀ (x : Ω), τ x ≤ N s : Set β hs : MeasurableSet s hf : Adapted f u n : ι h₁ : {x | hitting u s (τ x) N x ≤ n} = (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) ∪ ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} h₂ : ⋃ (i : ι) (_ : i > n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n} = ∅ ⊢ MeasurableSet (⋃ (i : ι) (_ : i ≤ n), {x | τ x = i} ∩ {x | hitting u s i N x ≤ n}) [PROOFSTEP] exact MeasurableSet.iUnion fun i => MeasurableSet.iUnion fun hi => (f.mono hi _ (hτ.measurableSet_eq i)).inter (hitting_isStoppingTime hf hs n) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β f : Filtration ι m ω : Ω ⊢ hitting u s ⊥ ⊤ ω = sInf {i | u i ω ∈ s} [PROOFSTEP] simp only [hitting, Set.mem_Icc, bot_le, le_top, and_self_iff, exists_true_left, Set.Icc_bot, Set.Iic_top, Set.univ_inter, ite_eq_left_iff, not_exists] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β f : Filtration ι m ω : Ω ⊢ (∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s)) → ⊤ = sInf {i | u i ω ∈ s} [PROOFSTEP] intro h_nmem_s [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β f : Filtration ι m ω : Ω h_nmem_s : ∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s) ⊢ ⊤ = sInf {i | u i ω ∈ s} [PROOFSTEP] symm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β f : Filtration ι m ω : Ω h_nmem_s : ∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s) ⊢ sInf {i | u i ω ∈ s} = ⊤ [PROOFSTEP] rw [sInf_eq_top] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β f : Filtration ι m ω : Ω h_nmem_s : ∀ (x : ι), ¬(x ∈ Set.univ ∧ u x ω ∈ s) ⊢ ∀ (a : ι), a ∈ {i | u i ω ∈ s} → a = ⊤ [PROOFSTEP] simp only [Set.mem_univ, true_and] at h_nmem_s [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : CompleteLattice ι u : ι → Ω → β s : Set β f : Filtration ι m ω : Ω h_nmem_s : ∀ (x : ι), ¬u x ω ∈ s ⊢ ∀ (a : ι), a ∈ {i | u i ω ∈ s} → a = ⊤ [PROOFSTEP] exact fun i hi_mem_s => absurd hi_mem_s (h_nmem_s i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β f : Filtration ℕ m i n : ι ω : Ω hx : ∃ j, j ≤ n ∧ u j ω ∈ s ⊢ hitting u s ⊥ n ω ≤ i ↔ ∃ j, j ≤ i ∧ u j ω ∈ s [PROOFSTEP] cases' lt_or_le i n with hi hi [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β f : Filtration ℕ m i n : ι ω : Ω hx : ∃ j, j ≤ n ∧ u j ω ∈ s hi : i < n ⊢ hitting u s ⊥ n ω ≤ i ↔ ∃ j, j ≤ i ∧ u j ω ∈ s [PROOFSTEP] rw [hitting_le_iff_of_lt _ hi] [GOAL] case inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β f : Filtration ℕ m i n : ι ω : Ω hx : ∃ j, j ≤ n ∧ u j ω ∈ s hi : i < n ⊢ (∃ j, j ∈ Set.Icc ⊥ i ∧ u j ω ∈ s) ↔ ∃ j, j ≤ i ∧ u j ω ∈ s [PROOFSTEP] simp [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β f : Filtration ℕ m i n : ι ω : Ω hx : ∃ j, j ≤ n ∧ u j ω ∈ s hi : n ≤ i ⊢ hitting u s ⊥ n ω ≤ i ↔ ∃ j, j ≤ i ∧ u j ω ∈ s [PROOFSTEP] simp only [(hitting_le ω).trans hi, true_iff_iff] [GOAL] case inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β f : Filtration ℕ m i n : ι ω : Ω hx : ∃ j, j ≤ n ∧ u j ω ∈ s hi : n ≤ i ⊢ ∃ j, j ≤ i ∧ u j ω ∈ s [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := hx [GOAL] case inr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : ConditionallyCompleteLinearOrderBot ι inst✝ : IsWellOrder ι fun x x_1 => x < x_1 u : ι → Ω → β s : Set β f : Filtration ℕ m i n : ι ω : Ω hi : n ≤ i j : ι hj₁ : j ≤ n hj₂ : u j ω ∈ s ⊢ ∃ j, j ≤ i ∧ u j ω ∈ s [PROOFSTEP] exact ⟨j, hj₁.trans hi, hj₂⟩
{"mathlib_filename": "Mathlib.Probability.Process.HittingTime", "llama_tokens": 31825}
[GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E h : ¬HasPDF X ℙ ⊢ pdf X ℙ = 0 [PROOFSTEP] simp only [pdf, dif_neg h] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E h : pdf X ℙ ≠ 0 ⊢ HasPDF X ℙ [PROOFSTEP] by_contra hpdf [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E h : pdf X ℙ ≠ 0 hpdf : ¬HasPDF X ℙ ⊢ False [PROOFSTEP] simp [pdf, hpdf] at h [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E h : pdf X ℙ ≠ 0 ⊢ Measurable X [PROOFSTEP] by_contra hX [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E h : pdf X ℙ ≠ 0 hX : ¬Measurable X ⊢ False [PROOFSTEP] exact h (pdf_eq_zero_of_not_measurable hX) [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ ⊢ Measurable (pdf X ℙ) [PROOFSTEP] unfold pdf [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ ⊢ Measurable (if hX : HasPDF X ℙ then Classical.choose (_ : ∃ f, Measurable f ∧ map X ℙ = withDensity μ f) else 0) [PROOFSTEP] split_ifs with h [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ h : HasPDF X ℙ ⊢ Measurable (Classical.choose (_ : ∃ f, Measurable f ∧ map X ℙ = withDensity μ f)) case neg Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ h : ¬HasPDF X ℙ ⊢ Measurable 0 [PROOFSTEP] exacts [(Classical.choose_spec h.1.2).1, measurable_zero] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ hX : HasPDF X ℙ ⊢ map X ℙ = withDensity μ (pdf X ℙ) [PROOFSTEP] simp only [pdf, dif_pos hX] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ hX : HasPDF X ℙ ⊢ map X ℙ = withDensity μ (Classical.choose (_ : ∃ f, Measurable f ∧ map X ℙ = withDensity μ f)) [PROOFSTEP] exact (Classical.choose_spec hX.pdf'.2).2 [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : autoParam (Measure E) _auto✝ hX : HasPDF X ℙ s : Set E hs : MeasurableSet s ⊢ ↑↑(map X ℙ) s = ∫⁻ (x : E) in s, pdf X ℙ x ∂μ [PROOFSTEP] rw [← withDensity_apply _ hs, map_eq_withDensity_pdf X ℙ μ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E inst✝ : HasPDF X ℙ ⊢ ∫⁻ (x : E), pdf X ℙ x ∂μ = ↑↑ℙ Set.univ [PROOFSTEP] rw [← set_lintegral_univ, ← map_eq_set_lintegral_pdf X ℙ μ MeasurableSet.univ, Measure.map_apply (HasPDF.measurable X ℙ μ) MeasurableSet.univ, Set.preimage_univ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ✝ : Measure E inst✝ : IsFiniteMeasure ℙ μ : Measure E X : Ω → E ⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤ [PROOFSTEP] by_cases hpdf : HasPDF X ℙ μ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ✝ : Measure E inst✝ : IsFiniteMeasure ℙ μ : Measure E X : Ω → E hpdf : HasPDF X ℙ ⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤ [PROOFSTEP] haveI := hpdf [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ✝ : Measure E inst✝ : IsFiniteMeasure ℙ μ : Measure E X : Ω → E hpdf this : HasPDF X ℙ ⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤ [PROOFSTEP] refine' ae_lt_top (measurable_pdf X ℙ μ) _ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ✝ : Measure E inst✝ : IsFiniteMeasure ℙ μ : Measure E X : Ω → E hpdf this : HasPDF X ℙ ⊢ ∫⁻ (x : E), pdf X ℙ x ∂μ ≠ ⊤ [PROOFSTEP] rw [lintegral_eq_measure_univ] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ✝ : Measure E inst✝ : IsFiniteMeasure ℙ μ : Measure E X : Ω → E hpdf this : HasPDF X ℙ ⊢ ↑↑ℙ Set.univ ≠ ⊤ [PROOFSTEP] exact (measure_lt_top _ _).ne [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ✝ : Measure E inst✝ : IsFiniteMeasure ℙ μ : Measure E X : Ω → E hpdf : ¬HasPDF X ℙ ⊢ ∀ᵐ (x : E) ∂μ, pdf X ℙ x < ⊤ [PROOFSTEP] simp [pdf, hpdf] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f ⊢ (Integrable fun x => f (X x)) ↔ Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] erw [← integrable_map_measure hf.aestronglyMeasurable (HasPDF.measurable X ℙ μ).aemeasurable, map_eq_withDensity_pdf X ℙ μ, integrable_withDensity_iff (measurable_pdf _ _ _) ae_lt_top] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f ⊢ ∫ (x : E), f x * ENNReal.toReal (pdf X ℙ x) ∂μ = ∫ (x : Ω), f (X x) ∂ℙ [PROOFSTEP] by_cases hpdf : Integrable (fun x => f x * (pdf X ℙ μ x).toReal) μ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ∫ (x : E), f x * ENNReal.toReal (pdf X ℙ x) ∂μ = ∫ (x : Ω), f (X x) ∂ℙ [PROOFSTEP] rw [← integral_map (HasPDF.measurable X ℙ μ).aemeasurable hf.aestronglyMeasurable, map_eq_withDensity_pdf X ℙ μ, integral_eq_lintegral_pos_part_sub_lintegral_neg_part hpdf, integral_eq_lintegral_pos_part_sub_lintegral_neg_part, lintegral_withDensity_eq_lintegral_mul _ (measurable_pdf X ℙ μ) hf.neg.ennreal_ofReal, lintegral_withDensity_eq_lintegral_mul _ (measurable_pdf X ℙ μ) hf.ennreal_ofReal] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ENNReal.toReal (∫⁻ (a : E), ENNReal.ofReal (f a * ENNReal.toReal (pdf X ℙ a)) ∂μ) - ENNReal.toReal (∫⁻ (a : E), ENNReal.ofReal (-(f a * ENNReal.toReal (pdf X ℙ a))) ∂μ) = ENNReal.toReal (∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ) - ENNReal.toReal (∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ) [PROOFSTEP] congr 2 [GOAL] case pos.e_a.e_a Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ∫⁻ (a : E), ENNReal.ofReal (f a * ENNReal.toReal (pdf X ℙ a)) ∂μ = ∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ [PROOFSTEP] have : ∀ x, ENNReal.ofReal (f x * (pdf X ℙ μ x).toReal) = ENNReal.ofReal (pdf X ℙ μ x).toReal * ENNReal.ofReal (f x) := fun x ↦ by rw [mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) x : E ⊢ ENNReal.ofReal (f x * ENNReal.toReal (pdf X ℙ x)) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (f x) [PROOFSTEP] rw [mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg] [GOAL] case pos.e_a.e_a Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) this : ∀ (x : E), ENNReal.ofReal (f x * ENNReal.toReal (pdf X ℙ x)) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (f x) ⊢ ∫⁻ (a : E), ENNReal.ofReal (f a * ENNReal.toReal (pdf X ℙ a)) ∂μ = ∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ [PROOFSTEP] simp_rw [this] [GOAL] case pos.e_a.e_a Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) this : ∀ (x : E), ENNReal.ofReal (f x * ENNReal.toReal (pdf X ℙ x)) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (f x) ⊢ ∫⁻ (a : E), ENNReal.ofReal (ENNReal.toReal (pdf X ℙ a)) * ENNReal.ofReal (f a) ∂μ = ∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (f x)) a ∂μ [PROOFSTEP] exact lintegral_congr_ae (Filter.EventuallyEq.mul ofReal_toReal_ae_eq (ae_eq_refl _)) [GOAL] case pos.e_a.e_a Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ∫⁻ (a : E), ENNReal.ofReal (-(f a * ENNReal.toReal (pdf X ℙ a))) ∂μ = ∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ [PROOFSTEP] have : ∀ x, ENNReal.ofReal (-(f x * (pdf X ℙ μ x).toReal)) = ENNReal.ofReal (pdf X ℙ μ x).toReal * ENNReal.ofReal (-f x) := by intro x rw [neg_mul_eq_neg_mul, mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ∀ (x : E), ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x) [PROOFSTEP] intro x [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) x : E ⊢ ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x) [PROOFSTEP] rw [neg_mul_eq_neg_mul, mul_comm, ENNReal.ofReal_mul ENNReal.toReal_nonneg] [GOAL] case pos.e_a.e_a Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) this : ∀ (x : E), ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x) ⊢ ∫⁻ (a : E), ENNReal.ofReal (-(f a * ENNReal.toReal (pdf X ℙ a))) ∂μ = ∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ [PROOFSTEP] simp_rw [this] [GOAL] case pos.e_a.e_a Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) this : ∀ (x : E), ENNReal.ofReal (-(f x * ENNReal.toReal (pdf X ℙ x))) = ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x)) * ENNReal.ofReal (-f x) ⊢ ∫⁻ (a : E), ENNReal.ofReal (ENNReal.toReal (pdf X ℙ a)) * ENNReal.ofReal (-f a) ∂μ = ∫⁻ (a : E), (pdf X ℙ * fun x => ENNReal.ofReal (-f x)) a ∂μ [PROOFSTEP] exact lintegral_congr_ae (Filter.EventuallyEq.mul ofReal_toReal_ae_eq (ae_eq_refl _)) [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ Integrable fun y => f y [PROOFSTEP] refine' ⟨hf.aestronglyMeasurable, _⟩ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ HasFiniteIntegral fun y => f y [PROOFSTEP] rw [HasFiniteIntegral, lintegral_withDensity_eq_lintegral_mul _ (measurable_pdf _ _ _) hf.nnnorm.coe_nnreal_ennreal] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ∫⁻ (a : E), (pdf X ℙ * fun x => ↑‖f x‖₊) a ∂μ < ⊤ [PROOFSTEP] have : (fun x => (pdf X ℙ μ * fun x => (‖f x‖₊ : ℝ≥0∞)) x) =ᵐ[μ] fun x => ‖f x * (pdf X ℙ μ x).toReal‖₊ := by simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul] rw [smul_eq_mul, mul_comm] refine' Filter.EventuallyEq.mul (ae_eq_refl _) (ae_eq_trans ofReal_toReal_ae_eq.symm _) simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ (fun x => (pdf X ℙ * fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ (fun x => (pdf X ℙ • fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x‖₊ * ↑‖ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] rw [smul_eq_mul, mul_comm] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ (fun x => ((fun x => ↑‖f x‖₊) * pdf X ℙ) x) =ᶠ[ae μ] fun x => ↑‖f x‖₊ * ↑‖ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] refine' Filter.EventuallyEq.mul (ae_eq_refl _) (ae_eq_trans ofReal_toReal_ae_eq.symm _) [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ (fun x => ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae μ] fun x => ↑‖ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) this : (fun x => (pdf X ℙ * fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊ ⊢ ∫⁻ (a : E), (pdf X ℙ * fun x => ↑‖f x‖₊) a ∂μ < ⊤ [PROOFSTEP] rw [lintegral_congr_ae this] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) this : (fun x => (pdf X ℙ * fun x => ↑‖f x‖₊) x) =ᶠ[ae μ] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊ ⊢ ∫⁻ (a : E), ↑‖f a * ENNReal.toReal (pdf X ℙ a)‖₊ ∂μ < ⊤ [PROOFSTEP] exact hpdf.2 [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : ¬Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ∫ (x : E), f x * ENNReal.toReal (pdf X ℙ x) ∂μ = ∫ (x : Ω), f (X x) ∂ℙ [PROOFSTEP] rw [integral_undef hpdf, integral_undef] [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝¹ : IsFiniteMeasure ℙ X : Ω → E inst✝ : HasPDF X ℙ f : E → ℝ hf : Measurable f hpdf : ¬Integrable fun x => f x * ENNReal.toReal (pdf X ℙ x) ⊢ ¬Integrable fun x => f (X x) [PROOFSTEP] rwa [← integrable_iff_integrable_mul_pdf hf] at hpdf [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E inst✝ : HasPDF X ℙ ⊢ map X ℙ ≪ μ [PROOFSTEP] rw [map_eq_withDensity_pdf X ℙ μ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E inst✝ : HasPDF X ℙ ⊢ withDensity μ (pdf X ℙ) ≪ μ [PROOFSTEP] exact withDensity_absolutelyContinuous _ _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX' : HasPDF X ℙ ⊢ Measurable (0, pdf X ℙ).snd ∧ (0, pdf X ℙ).fst ⟂ₘ μ ∧ map X ℙ = (0, pdf X ℙ).fst + withDensity μ (0, pdf X ℙ).snd [PROOFSTEP] simp only [zero_add, measurable_pdf X ℙ μ, true_and_iff, MutuallySingular.zero_left, map_eq_withDensity_pdf X ℙ μ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E ⊢ HasPDF X ℙ ↔ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E ⊢ HasPDF X ℙ → Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ [PROOFSTEP] intro hX' [GOAL] case mp Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX' : HasPDF X ℙ ⊢ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ [PROOFSTEP] exact ⟨hX'.pdf'.1, haveLebesgueDecomposition_of_hasPDF, map_absolutelyContinuous⟩ [GOAL] case mpr Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E ⊢ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ → HasPDF X ℙ [PROOFSTEP] rintro ⟨hX, h_decomp, h⟩ [GOAL] case mpr.intro.intro Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX : Measurable X h_decomp : HaveLebesgueDecomposition (map X ℙ) μ h : map X ℙ ≪ μ ⊢ HasPDF X ℙ [PROOFSTEP] haveI := h_decomp [GOAL] case mpr.intro.intro Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX : Measurable X h_decomp : HaveLebesgueDecomposition (map X ℙ) μ h : map X ℙ ≪ μ this : HaveLebesgueDecomposition (map X ℙ) μ ⊢ HasPDF X ℙ [PROOFSTEP] refine' ⟨⟨hX, (Measure.map X ℙ).rnDeriv μ, measurable_rnDeriv _ _, _⟩⟩ [GOAL] case mpr.intro.intro Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX : Measurable X h_decomp : HaveLebesgueDecomposition (map X ℙ) μ h : map X ℙ ≪ μ this : HaveLebesgueDecomposition (map X ℙ) μ ⊢ map X ℙ = withDensity μ (rnDeriv (map X ℙ) μ) [PROOFSTEP] rwa [withDensity_rnDeriv_eq] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX : Measurable X ⊢ HasPDF X ℙ ↔ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ [PROOFSTEP] rw [hasPDF_iff] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → E hX : Measurable X ⊢ Measurable X ∧ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ ↔ HaveLebesgueDecomposition (map X ℙ) μ ∧ map X ℙ ≪ μ [PROOFSTEP] simp only [hX, true_and] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν ⊢ HasPDF (g ∘ X) ℙ [PROOFSTEP] rw [hasPDF_iff, ← map_map hg.measurable (HasPDF.measurable X ℙ μ)] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν ⊢ Measurable (g ∘ X) ∧ HaveLebesgueDecomposition (map g (map X ℙ)) ν ∧ map g (map X ℙ) ≪ ν [PROOFSTEP] refine' ⟨hg.measurable.comp (HasPDF.measurable X ℙ μ), hmap, _⟩ [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν ⊢ map g (map X ℙ) ≪ ν [PROOFSTEP] rw [map_eq_withDensity_pdf X ℙ μ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν ⊢ map g (withDensity μ (pdf X ℙ)) ≪ ν [PROOFSTEP] refine' AbsolutelyContinuous.mk fun s hsm hs => _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν s : Set F hsm : MeasurableSet s hs : ↑↑ν s = 0 ⊢ ↑↑(map g (withDensity μ (pdf X ℙ))) s = 0 [PROOFSTEP] rw [map_apply hg.measurable hsm, withDensity_apply _ (hg.measurable hsm)] [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν s : Set F hsm : MeasurableSet s hs : ↑↑ν s = 0 ⊢ ∫⁻ (a : E) in g ⁻¹' s, pdf X ℙ a ∂μ = 0 [PROOFSTEP] have := hg.absolutelyContinuous hs [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν s : Set F hsm : MeasurableSet s hs : ↑↑ν s = 0 this : ↑↑(map g μ) s = 0 ⊢ ∫⁻ (a : E) in g ⁻¹' s, pdf X ℙ a ∂μ = 0 [PROOFSTEP] rw [map_apply hg.measurable hsm] at this [GOAL] Ω : Type u_1 E : Type u_2 inst✝² : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E F : Type u_3 inst✝¹ : MeasurableSpace F ν : Measure F X : Ω → E inst✝ : HasPDF X ℙ g : E → F hg : QuasiMeasurePreserving g hmap : HaveLebesgueDecomposition (map g (map X ℙ)) ν s : Set F hsm : MeasurableSet s hs : ↑↑ν s = 0 this : ↑↑μ (g ⁻¹' s) = 0 ⊢ ∫⁻ (a : E) in g ⁻¹' s, pdf X ℙ a ∂μ = 0 [PROOFSTEP] exact set_lintegral_measure_zero _ _ this [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Measurable X ⊢ HasPDF X ℙ ↔ map X ℙ ≪ volume [PROOFSTEP] rw [hasPDF_iff_of_measurable hX] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Measurable X ⊢ HaveLebesgueDecomposition (map X ℙ) volume ∧ map X ℙ ≪ volume ↔ map X ℙ ≪ volume [PROOFSTEP] exact and_iff_right inferInstance [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ ⊢ HasPDF X ℙ ↔ Measurable X ∧ map X ℙ ≪ volume [PROOFSTEP] by_cases hX : Measurable X [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Measurable X ⊢ HasPDF X ℙ ↔ Measurable X ∧ map X ℙ ≪ volume [PROOFSTEP] rw [Real.hasPDF_iff_of_measurable hX, iff_and_self] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Measurable X ⊢ map X ℙ ≪ volume → Measurable X [PROOFSTEP] exact fun _ => hX [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : ¬Measurable X ⊢ HasPDF X ℙ ↔ Measurable X ∧ map X ℙ ≪ volume [PROOFSTEP] exact ⟨fun h => False.elim (hX h.pdf'.1), fun h => False.elim (hX h.1)⟩ [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ ⊢ HasFiniteIntegral fun x => f x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] rw [HasFiniteIntegral] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ ⊢ ∫⁻ (a : ℝ), ↑‖f a * ENNReal.toReal (pdf X ℙ a)‖₊ < ⊤ [PROOFSTEP] have : (fun x => ↑‖f x‖₊ * g x) =ᵐ[volume] fun x => ‖f x * (pdf X ℙ volume x).toReal‖₊ := by refine' ae_eq_trans (Filter.EventuallyEq.mul (ae_eq_refl fun x => (‖f x‖₊ : ℝ≥0∞)) (ae_eq_trans hg.symm ofReal_toReal_ae_eq.symm)) _ simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul, smul_eq_mul] refine' Filter.EventuallyEq.mul (ae_eq_refl _) _ simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ ⊢ (fun x => ↑‖f x‖₊ * g x) =ᶠ[ae volume] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] refine' ae_eq_trans (Filter.EventuallyEq.mul (ae_eq_refl fun x => (‖f x‖₊ : ℝ≥0∞)) (ae_eq_trans hg.symm ofReal_toReal_ae_eq.symm)) _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ ⊢ (fun x => ↑‖f x‖₊ * ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae volume] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] simp_rw [← smul_eq_mul, nnnorm_smul, ENNReal.coe_mul, smul_eq_mul] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ ⊢ (fun x => ↑‖f x‖₊ * ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae volume] fun x => ↑‖f x‖₊ * ↑‖ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] refine' Filter.EventuallyEq.mul (ae_eq_refl _) _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ ⊢ (fun x => ENNReal.ofReal (ENNReal.toReal (pdf X ℙ x))) =ᶠ[ae volume] fun x => ↑‖ENNReal.toReal (pdf X ℙ x)‖₊ [PROOFSTEP] simp only [Real.ennnorm_eq_ofReal ENNReal.toReal_nonneg, ae_eq_refl] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ f : ℝ → ℝ g : ℝ → ℝ≥0∞ hg : pdf X ℙ =ᶠ[ae volume] g hgi : ∫⁻ (x : ℝ), ↑‖f x‖₊ * g x ≠ ⊤ this : (fun x => ↑‖f x‖₊ * g x) =ᶠ[ae volume] fun x => ↑‖f x * ENNReal.toReal (pdf X ℙ x)‖₊ ⊢ ∫⁻ (a : ℝ), ↑‖f a * ENNReal.toReal (pdf X ℙ a)‖₊ < ⊤ [PROOFSTEP] rwa [lt_top_iff_ne_top, ← lintegral_congr_ae this] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hu : IsUniform X s ℙ ⊢ pdf X ℙ ≠ 0 [PROOFSTEP] intro hpdf [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hu : IsUniform X s ℙ hpdf : pdf X ℙ = 0 ⊢ False [PROOFSTEP] simp only [IsUniform, hpdf] at hu [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) ⊢ False [PROOFSTEP] suffices μ (s ∩ Function.support ((μ s)⁻¹ • (1 : E → ℝ≥0∞))) = 0 by have heq : Function.support ((μ s)⁻¹ • (1 : E → ℝ≥0∞)) = Set.univ := by ext x rw [Function.mem_support] simp [hnt] rw [heq, Set.inter_univ] at this exact hns this [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0 ⊢ False [PROOFSTEP] have heq : Function.support ((μ s)⁻¹ • (1 : E → ℝ≥0∞)) = Set.univ := by ext x rw [Function.mem_support] simp [hnt] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0 ⊢ Function.support ((↑↑μ s)⁻¹ • 1) = Set.univ [PROOFSTEP] ext x [GOAL] case h Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0 x : E ⊢ x ∈ Function.support ((↑↑μ s)⁻¹ • 1) ↔ x ∈ Set.univ [PROOFSTEP] rw [Function.mem_support] [GOAL] case h Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0 x : E ⊢ ((↑↑μ s)⁻¹ • 1) x ≠ 0 ↔ x ∈ Set.univ [PROOFSTEP] simp [hnt] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) this : ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0 heq : Function.support ((↑↑μ s)⁻¹ • 1) = Set.univ ⊢ False [PROOFSTEP] rw [heq, Set.inter_univ] at this [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) this : ↑↑μ s = 0 heq : Function.support ((↑↑μ s)⁻¹ • 1) = Set.univ ⊢ False [PROOFSTEP] exact hns this [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hpdf : pdf X ℙ = 0 hu : 0 =ᶠ[ae μ] Set.indicator s ((↑↑μ s)⁻¹ • 1) ⊢ ↑↑μ (s ∩ Function.support ((↑↑μ s)⁻¹ • 1)) = 0 [PROOFSTEP] exact Set.indicator_ae_eq_zero.1 hu.symm [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ A : Set E hA : MeasurableSet A ⊢ ↑↑ℙ (X ⁻¹' A) = ↑↑μ (s ∩ A) / ↑↑μ s [PROOFSTEP] haveI := hu.hasPDF hns hnt [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ A : Set E hA : MeasurableSet A this : HasPDF X ℙ ⊢ ↑↑ℙ (X ⁻¹' A) = ↑↑μ (s ∩ A) / ↑↑μ s [PROOFSTEP] rw [← Measure.map_apply (HasPDF.measurable X ℙ μ) hA, map_eq_set_lintegral_pdf X ℙ μ hA, lintegral_congr_ae hu.restrict] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ A : Set E hA : MeasurableSet A this : HasPDF X ℙ ⊢ ∫⁻ (a : E) in A, Set.indicator s ((↑↑μ s)⁻¹ • 1) a ∂μ = ↑↑μ (s ∩ A) / ↑↑μ s [PROOFSTEP] simp only [hms, hA, lintegral_indicator, Pi.smul_apply, Pi.one_apply, Algebra.id.smul_eq_mul, mul_one, lintegral_const, restrict_apply', Set.univ_inter] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ A : Set E hA : MeasurableSet A this : HasPDF X ℙ ⊢ (↑↑μ s)⁻¹ * ↑↑μ (s ∩ A) = ↑↑μ (s ∩ A) / ↑↑μ s [PROOFSTEP] rw [ENNReal.div_eq_inv_mul] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ ⊢ ↑↑ℙ Set.univ = 1 [PROOFSTEP] have : X ⁻¹' Set.univ = Set.univ := by simp only [Set.preimage_univ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ ⊢ X ⁻¹' Set.univ = Set.univ [PROOFSTEP] simp only [Set.preimage_univ] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m✝ : MeasurableSpace Ω ℙ✝ : Measure Ω μ✝ : Measure E m : MeasurableSpace Ω X : Ω → E ℙ : Measure Ω μ : Measure E s : Set E hns : ↑↑μ s ≠ 0 hnt : ↑↑μ s ≠ ⊤ hms : MeasurableSet s hu : IsUniform X s ℙ this : X ⁻¹' Set.univ = Set.univ ⊢ ↑↑ℙ Set.univ = 1 [PROOFSTEP] rw [← this, hu.measure_preimage hns hnt hms MeasurableSet.univ, Set.inter_univ, ENNReal.div_self hns hnt] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ ⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] by_cases hsupp : volume s = ∞ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ ⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] have : pdf X ℙ =ᵐ[volume] 0 := by refine' ae_eq_trans huX _ simp [hsupp, ae_eq_refl] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ ⊢ pdf X ℙ =ᶠ[ae volume] 0 [PROOFSTEP] refine' ae_eq_trans huX _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ ⊢ Set.indicator s ((↑↑volume s)⁻¹ • 1) =ᶠ[ae volume] 0 [PROOFSTEP] simp [hsupp, ae_eq_refl] [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ this : pdf X ℙ =ᶠ[ae volume] 0 ⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] refine' Integrable.congr (integrable_zero _ _ _) _ [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ this : pdf X ℙ =ᶠ[ae volume] 0 ⊢ (fun x => 0) =ᶠ[ae volume] fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] rw [(by simp : (fun x => 0 : ℝ → ℝ) = fun x => x * (0 : ℝ≥0∞).toReal)] [GOAL] Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ this : pdf X ℙ =ᶠ[ae volume] 0 ⊢ (fun x => 0) = fun x => x * ENNReal.toReal 0 [PROOFSTEP] simp [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ↑↑volume s = ⊤ this : pdf X ℙ =ᶠ[ae volume] 0 ⊢ (fun x => x * ENNReal.toReal 0) =ᶠ[ae volume] fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] refine' Filter.EventuallyEq.mul (ae_eq_refl _) (Filter.EventuallyEq.fun_comp this.symm ENNReal.toReal) [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ⊢ Integrable fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] constructor -- porting note: `refine` was failing, don't know why [GOAL] case neg.left Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ⊢ AEStronglyMeasurable (fun x => x * ENNReal.toReal (pdf X ℙ x)) volume [PROOFSTEP] exact aestronglyMeasurable_id.mul (measurable_pdf X ℙ).aemeasurable.ennreal_toReal.aestronglyMeasurable [GOAL] case neg.right Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ⊢ HasFiniteIntegral fun x => x * ENNReal.toReal (pdf X ℙ x) [PROOFSTEP] refine' hasFiniteIntegral_mul huX _ [GOAL] case neg.right Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ⊢ ∫⁻ (x : ℝ), ↑‖x‖₊ * Set.indicator s ((↑↑volume s)⁻¹ • 1) x ≠ ⊤ [PROOFSTEP] set ind := (volume s)⁻¹ • (1 : ℝ → ℝ≥0∞) [GOAL] case neg.right Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1 ⊢ ∫⁻ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x ≠ ⊤ [PROOFSTEP] have : ∀ x, ↑‖x‖₊ * s.indicator ind x = s.indicator (fun x => ‖x‖₊ * ind x) x := fun x => (s.indicator_mul_right (fun x => ↑‖x‖₊) ind).symm [GOAL] case neg.right Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1 this : ∀ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x = Set.indicator s (fun x => ↑‖x‖₊ * ind x) x ⊢ ∫⁻ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x ≠ ⊤ [PROOFSTEP] simp only [this, lintegral_indicator _ hms, mul_one, Algebra.id.smul_eq_mul, Pi.one_apply, Pi.smul_apply] [GOAL] case neg.right Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1 this : ∀ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x = Set.indicator s (fun x => ↑‖x‖₊ * ind x) x ⊢ ∫⁻ (x : ℝ) in s, ↑‖x‖₊ * (↑↑volume s)⁻¹ ≠ ⊤ [PROOFSTEP] rw [lintegral_mul_const _ measurable_nnnorm.coe_nnreal_ennreal] [GOAL] case neg.right Ω : Type u_1 E : Type u_2 inst✝¹ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 inst✝ : IsFiniteMeasure ℙ hcs : IsCompact s huX : IsUniform X s ℙ hsupp : ¬↑↑volume s = ⊤ ind : ℝ → ℝ≥0∞ := (↑↑volume s)⁻¹ • 1 this : ∀ (x : ℝ), ↑‖x‖₊ * Set.indicator s ind x = Set.indicator s (fun x => ↑‖x‖₊ * ind x) x ⊢ (∫⁻ (a : ℝ) in s, ↑‖a‖₊) * (↑↑volume s)⁻¹ ≠ ⊤ [PROOFSTEP] refine' (ENNReal.mul_lt_top (set_lintegral_lt_top_of_isCompact hsupp hcs continuous_nnnorm).ne (ENNReal.inv_lt_top.2 (pos_iff_ne_zero.mpr hns)).ne).ne [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ ⊢ ∫ (x : Ω), X x ∂ℙ = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] haveI := hasPDF hns hnt huX [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this : HasPDF X ℙ ⊢ ∫ (x : Ω), X x ∂ℙ = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] haveI := huX.isProbabilityMeasure hns hnt hms [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ ⊢ ∫ (x : Ω), X x ∂ℙ = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] rw [← integral_mul_eq_integral] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ ⊢ ∫ (x : ℝ), x * ENNReal.toReal (pdf (fun x => X x) ℙ x) = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] rw [integral_congr_ae (Filter.EventuallyEq.mul (ae_eq_refl _) (pdf_toReal_ae_eq huX))] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ ⊢ ∫ (a : ℝ), a * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) a) = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] have : ∀ x, x * (s.indicator ((volume s)⁻¹ • (1 : ℝ → ℝ≥0∞)) x).toReal = x * s.indicator ((volume s)⁻¹.toReal • (1 : ℝ → ℝ)) x := by refine' fun x => congr_arg ((· * ·) x) _ by_cases hx : x ∈ s · simp [Set.indicator_of_mem hx] · simp [Set.indicator_of_not_mem hx] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ ⊢ ∀ (x : ℝ), x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x [PROOFSTEP] refine' fun x => congr_arg ((· * ·) x) _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ x : ℝ ⊢ ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x [PROOFSTEP] by_cases hx : x ∈ s [GOAL] case pos Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ x : ℝ hx : x ∈ s ⊢ ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x [PROOFSTEP] simp [Set.indicator_of_mem hx] [GOAL] case neg Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝ : HasPDF X ℙ this : IsProbabilityMeasure ℙ x : ℝ hx : ¬x ∈ s ⊢ ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x [PROOFSTEP] simp [Set.indicator_of_not_mem hx] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝¹ : HasPDF X ℙ this✝ : IsProbabilityMeasure ℙ this : ∀ (x : ℝ), x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x ⊢ ∫ (a : ℝ), a * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) a) = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] simp_rw [this, ← s.indicator_mul_right fun x => x, integral_indicator hms] [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝¹ : HasPDF X ℙ this✝ : IsProbabilityMeasure ℙ this : ∀ (x : ℝ), x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x ⊢ ∫ (a : ℝ) in s, a * (ENNReal.toReal (↑↑volume s)⁻¹ • 1) a = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] change ∫ x in s, x * (volume s)⁻¹.toReal • (1 : ℝ) = _ [GOAL] Ω : Type u_1 E : Type u_2 inst✝ : MeasurableSpace E m : MeasurableSpace Ω ℙ : Measure Ω μ : Measure E X : Ω → ℝ s : Set ℝ hms : MeasurableSet s hns : ↑↑volume s ≠ 0 hnt : ↑↑volume s ≠ ⊤ huX : IsUniform X s ℙ this✝¹ : HasPDF X ℙ this✝ : IsProbabilityMeasure ℙ this : ∀ (x : ℝ), x * ENNReal.toReal (Set.indicator s ((↑↑volume s)⁻¹ • 1) x) = x * Set.indicator s (ENNReal.toReal (↑↑volume s)⁻¹ • 1) x ⊢ ∫ (x : ℝ) in s, x * ENNReal.toReal (↑↑volume s)⁻¹ • 1 = ENNReal.toReal (↑↑volume s)⁻¹ * ∫ (x : ℝ) in s, x [PROOFSTEP] rw [integral_mul_right, mul_comm, smul_eq_mul, mul_one]
{"mathlib_filename": "Mathlib.Probability.Density", "llama_tokens": 25906}
[GOAL] C : Type u inst✝ : Category.{v, u} C ⊢ Category.{?u.61, max u v} (SimplicialObject C) [PROOFSTEP] dsimp only [SimplicialObject] [GOAL] C : Type u inst✝ : Category.{v, u} C ⊢ Category.{?u.61, max u v} (SimplexCategoryᵒᵖ ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (SimplicialObject C) [PROOFSTEP] dsimp [SimplicialObject] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (SimplexCategoryᵒᵖ ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (SimplicialObject C) [PROOFSTEP] dsimp [SimplicialObject] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (SimplexCategoryᵒᵖ ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : SimplicialObject C f g : X ⟶ Y h : ∀ (n : SimplexCategoryᵒᵖ), NatTrans.app f n = NatTrans.app g n ⊢ f.app = g.app [PROOFSTEP] ext [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : SimplicialObject C f g : X ⟶ Y h : ∀ (n : SimplexCategoryᵒᵖ), NatTrans.app f n = NatTrans.app g n x✝ : SimplexCategoryᵒᵖ ⊢ NatTrans.app f x✝ = NatTrans.app g x✝ [PROOFSTEP] apply h [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n m : ℕ h : n = m ⊢ op [n] = op [m] [PROOFSTEP] congr [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ h : n = n ⊢ eqToIso X h = Iso.refl (X.obj (op [n])) [PROOFSTEP] ext [GOAL] case w C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ h : n = n ⊢ (eqToIso X h).hom = (Iso.refl (X.obj (op [n]))).hom [PROOFSTEP] simp [eqToIso] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i j : Fin (n + 2) H : i ≤ j ⊢ δ X (Fin.succ j) ≫ δ X i = δ X (Fin.castSucc i) ≫ δ X j [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i j : Fin (n + 2) H : i ≤ j ⊢ X.map (SimplexCategory.δ (Fin.succ j)).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ (Fin.castSucc i)).op ≫ X.map (SimplexCategory.δ j).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j hj : j = 0 ⊢ False [PROOFSTEP] simp [hj, Fin.not_lt_zero] at H [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ δ X j ≫ δ X i = δ X (Fin.castSucc i) ≫ δ X (Fin.pred j (_ : j = 0 → False)) [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ X.map (SimplexCategory.δ j).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ (Fin.castSucc i)).op ≫ X.map (SimplexCategory.δ (Fin.pred j (_ : j = 0 → False))).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ' H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ δ X (Fin.succ j) ≫ δ X (Fin.castLT i (_ : ↑i < n + 2)) = δ X i ≫ δ X j [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ X.map (SimplexCategory.δ (Fin.succ j)).op ≫ X.map (SimplexCategory.δ (Fin.castLT i (_ : ↑i < n + 2))).op = X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.δ j).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ'' H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) ⊢ δ X (Fin.castSucc i) ≫ δ X i = δ X (Fin.succ i) ≫ δ X i [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) ⊢ X.map (SimplexCategory.δ (Fin.castSucc i)).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ (Fin.succ i)).op ≫ X.map (SimplexCategory.δ i).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ_self] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ j : Fin (n + 3) i : Fin (n + 2) H : j = Fin.castSucc i ⊢ δ X j ≫ δ X i = δ X (Fin.succ i) ≫ δ X i [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) ⊢ δ X (Fin.castSucc i) ≫ δ X i = δ X (Fin.succ i) ≫ δ X i [PROOFSTEP] rw [δ_comp_δ_self] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : i ≤ Fin.castSucc j ⊢ σ X (Fin.succ j) ≫ δ X (Fin.castSucc i) = δ X i ≫ σ X j [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : i ≤ Fin.castSucc j ⊢ X.map (SimplexCategory.σ (Fin.succ j)).op ≫ X.map (SimplexCategory.δ (Fin.castSucc i)).op = X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.σ j).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_le H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ σ X i ≫ δ X (Fin.castSucc i) = 𝟙 (X.obj (op [n])) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ X.map (SimplexCategory.σ i).op ≫ X.map (SimplexCategory.δ (Fin.castSucc i)).op = 𝟙 (X.obj (op [n])) [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_self, op_id, X.map_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ j : Fin (n + 2) i : Fin (n + 1) H : j = Fin.castSucc i ⊢ σ X i ≫ δ X j = 𝟙 (X.obj (op [n])) [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ σ X i ≫ δ X (Fin.castSucc i) = 𝟙 (X.obj (op [n])) [PROOFSTEP] rw [δ_comp_σ_self] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ σ X i ≫ δ X (Fin.succ i) = 𝟙 (X.obj (op [n])) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ X.map (SimplexCategory.σ i).op ≫ X.map (SimplexCategory.δ (Fin.succ i)).op = 𝟙 (X.obj (op [n])) [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_succ, op_id, X.map_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ j : Fin (n + 2) i : Fin (n + 1) H : j = Fin.succ i ⊢ σ X i ≫ δ X j = 𝟙 (X.obj (op [n])) [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 1) ⊢ σ X i ≫ δ X (Fin.succ i) = 𝟙 (X.obj (op [n])) [PROOFSTEP] rw [δ_comp_σ_succ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : Fin.castSucc j < i ⊢ σ X (Fin.castSucc j) ≫ δ X (Fin.succ i) = δ X i ≫ σ X j [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : Fin.castSucc j < i ⊢ X.map (SimplexCategory.σ (Fin.castSucc j)).op ≫ X.map (SimplexCategory.δ (Fin.succ i)).op = X.map (SimplexCategory.δ i).op ≫ X.map (SimplexCategory.σ j).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i hi : i = 0 ⊢ False [PROOFSTEP] simp only [Fin.not_lt_zero, hi] at H [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ σ X j ≫ δ X i = δ X (Fin.pred i (_ : i = 0 → False)) ≫ σ X (Fin.castLT j (_ : ↑j < n + 1)) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ X.map (SimplexCategory.σ j).op ≫ X.map (SimplexCategory.δ i).op = X.map (SimplexCategory.δ (Fin.pred i (_ : i = 0 → False))).op ≫ X.map (SimplexCategory.σ (Fin.castLT j (_ : ↑j < n + 1))).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt' H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i j : Fin (n + 1) H : i ≤ j ⊢ σ X j ≫ σ X (Fin.castSucc i) = σ X i ≫ σ X (Fin.succ j) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ i j : Fin (n + 1) H : i ≤ j ⊢ X.map (SimplexCategory.σ j).op ≫ X.map (SimplexCategory.σ (Fin.castSucc i)).op = X.map (SimplexCategory.σ i).op ≫ X.map (SimplexCategory.σ (Fin.succ j)).op [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.σ_comp_σ H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ ⊢ Category.{?u.68325, max u v} (Truncated C n) [PROOFSTEP] dsimp [Truncated] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C n : ℕ ⊢ Category.{?u.68325, max u v} ((SimplexCategory.Truncated n)ᵒᵖ ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C X : SimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (Truncated C n) [PROOFSTEP] dsimp [Truncated] [GOAL] C : Type u inst✝² : Category.{v, u} C X : SimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J ((SimplexCategory.Truncated n)ᵒᵖ ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C X : SimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (Truncated C n) [PROOFSTEP] dsimp [Truncated] [GOAL] C : Type u inst✝² : Category.{v, u} C X : SimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J ((SimplexCategory.Truncated n)ᵒᵖ ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C ⊢ Category.{?u.76503, max u v} (Augmented C) [PROOFSTEP] dsimp only [Augmented] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C ⊢ Category.{?u.76503, max u v} (Comma (𝟭 (SimplicialObject C)) (const C)) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ (𝟭 C).map (NatTrans.app (drop.map η) (op [0])) ≫ ((fun X => { left := (drop.obj X).obj (op [0]), right := point.obj X, hom := NatTrans.app X.hom (op [0]) }) Y✝).hom = ((fun X => { left := (drop.obj X).obj (op [0]), right := point.obj X, hom := NatTrans.app X.hom (op [0]) }) X✝).hom ≫ (𝟭 C).map (point.map η) [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ NatTrans.app η.left (op [0]) ≫ NatTrans.app Y✝.hom (op [0]) = NatTrans.app X✝.hom (op [0]) ≫ η.right [PROOFSTEP] rw [← NatTrans.comp_app] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ NatTrans.app (η.left ≫ Y✝.hom) (op [0]) = NatTrans.app X✝.hom (op [0]) ≫ η.right [PROOFSTEP] erw [η.w] [GOAL] C : Type u inst✝ : Category.{v, u} C X : SimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ NatTrans.app (X✝.hom ≫ (const C).map η.right) (op [0]) = NatTrans.app X✝.hom (op [0]) ≫ η.right [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ : SimplicialObject C X Y : Augmented C f : X ⟶ Y ⊢ NatTrans.app (drop.map f) (op [0]) ≫ NatTrans.app Y.hom (op [0]) = NatTrans.app X.hom (op [0]) ≫ point.map f [PROOFSTEP] convert congr_app f.w (op (SimplexCategory.mk 0)) [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u_1 inst✝ : Category.{?u.105136, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ (𝟭 (SimplicialObject D)).map (whiskerRight η.left F) ≫ ((fun X => { left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X), hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom }) Y✝).hom = ((fun X => { left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X), hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom }) X✝).hom ≫ (const D).map (F.map η.right) [PROOFSTEP] ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u_1 inst✝ : Category.{?u.105136, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategoryᵒᵖ ⊢ NatTrans.app ((𝟭 (SimplicialObject D)).map (whiskerRight η.left F) ≫ ((fun X => { left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X), hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom }) Y✝).hom) n✝ = NatTrans.app (((fun X => { left := ((whiskering C D).obj F).obj (drop.obj X), right := F.obj (point.obj X), hom := whiskerRight X.hom F ≫ (Functor.constComp SimplexCategoryᵒᵖ X.right F).hom }) X✝).hom ≫ (const D).map (F.map η.right)) n✝ [PROOFSTEP] dsimp [whiskerRight] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u_1 inst✝ : Category.{?u.105136, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategoryᵒᵖ ⊢ F.map (NatTrans.app η.left n✝) ≫ F.map (NatTrans.app Y✝.hom n✝) ≫ 𝟙 (F.obj Y✝.right) = (F.map (NatTrans.app X✝.hom n✝) ≫ 𝟙 (F.obj X✝.right)) ≫ F.map η.right [PROOFSTEP] simp only [Category.comp_id, ← F.map_comp, ← NatTrans.comp_app] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u_1 inst✝ : Category.{?u.105136, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategoryᵒᵖ ⊢ F.map (NatTrans.app (η.left ≫ Y✝.hom) n✝) = F.map (NatTrans.app X✝.hom n✝ ≫ η.right) [PROOFSTEP] erw [η.w] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u_1 inst✝ : Category.{?u.105136, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategoryᵒᵖ ⊢ F.map (NatTrans.app (X✝.hom ≫ (const C).map η.right) n✝) = F.map (NatTrans.app X✝.hom n✝ ≫ η.right) [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ A : Augmented C ⊢ (𝟭 (SimplicialObject D)).map (whiskerLeft (drop.obj A) η) ≫ ((whiskeringObj C D Y✝).obj A).hom = ((whiskeringObj C D X✝).obj A).hom ≫ (const D).map (NatTrans.app η (point.obj A)) [PROOFSTEP] ext n [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ A : Augmented C n : SimplexCategoryᵒᵖ ⊢ NatTrans.app ((𝟭 (SimplicialObject D)).map (whiskerLeft (drop.obj A) η) ≫ ((whiskeringObj C D Y✝).obj A).hom) n = NatTrans.app (((whiskeringObj C D X✝).obj A).hom ≫ (const D).map (NatTrans.app η (point.obj A))) n [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ A : Augmented C n : SimplexCategoryᵒᵖ ⊢ NatTrans.app η (A.left.obj n) ≫ Y✝.map (NatTrans.app A.hom n) ≫ 𝟙 (Y✝.obj A.right) = (X✝.map (NatTrans.app A.hom n) ≫ 𝟙 (X✝.obj A.right)) ≫ NatTrans.app η A.right [PROOFSTEP] rw [Category.comp_id, Category.comp_id, η.naturality] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ Z✝ : C ⥤ D x✝¹ : X✝ ⟶ Y✝ x✝ : Y✝ ⟶ Z✝ ⊢ { obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map (x✝¹ ≫ x✝) = { obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map x✝¹ ≫ { obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map x✝ [PROOFSTEP] ext [GOAL] case w.h.h₁.h C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ Z✝ : C ⥤ D x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : Augmented C n✝ : SimplexCategoryᵒᵖ ⊢ NatTrans.app (NatTrans.app ({ obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map (x✝² ≫ x✝¹)) x✝).left n✝ = NatTrans.app (NatTrans.app ({ obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map x✝² ≫ { obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map x✝¹) x✝).left n✝ [PROOFSTEP] rfl [GOAL] case w.h.h₂ C : Type u inst✝¹ : Category.{v, u} C X : SimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ Z✝ : C ⥤ D x✝² : X✝ ⟶ Y✝ x✝¹ : Y✝ ⟶ Z✝ x✝ : Augmented C ⊢ (NatTrans.app ({ obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map (x✝² ≫ x✝¹)) x✝).right = (NatTrans.app ({ obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map x✝² ≫ { obj := whiskeringObj C D, map := fun {X Y} η => NatTrans.mk fun A => CommaMorphism.mk (whiskerLeft (drop.obj A) η) (NatTrans.app η (point.obj A)) }.map x✝¹) x✝).right [PROOFSTEP] rfl [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : SimplicialObject C X₀ : C f : X.obj (op [0]) ⟶ X₀ w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f ⊢ ∀ ⦃X_1 Y : SimplexCategoryᵒᵖ⦄ (f_1 : X_1 ⟶ Y), ((𝟭 (SimplicialObject C)).obj X).map f_1 ≫ (fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) Y = (fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) X_1 ≫ ((const C).obj X₀).map f_1 [PROOFSTEP] intro i j g [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : SimplicialObject C X₀ : C f : X.obj (op [0]) ⟶ X₀ w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f i j : SimplexCategoryᵒᵖ g : i ⟶ j ⊢ ((𝟭 (SimplicialObject C)).obj X).map g ≫ (fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) j = (fun i => X.map (SimplexCategory.const i.unop 0).op ≫ f) i ≫ ((const C).obj X₀).map g [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : SimplicialObject C X₀ : C f : X.obj (op [0]) ⟶ X₀ w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f i j : SimplexCategoryᵒᵖ g : i ⟶ j ⊢ X.map g ≫ X.map (SimplexCategory.const j.unop 0).op ≫ f = (X.map (SimplexCategory.const i.unop 0).op ≫ f) ≫ 𝟙 X₀ [PROOFSTEP] rw [← g.op_unop] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : SimplicialObject C X₀ : C f : X.obj (op [0]) ⟶ X₀ w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f i j : SimplexCategoryᵒᵖ g : i ⟶ j ⊢ X.map g.unop.op ≫ X.map (SimplexCategory.const j.unop 0).op ≫ f = (X.map (SimplexCategory.const i.unop 0).op ≫ f) ≫ 𝟙 X₀ [PROOFSTEP] simpa only [← X.map_comp, ← Category.assoc, Category.comp_id, ← op_comp] using w _ _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : SimplicialObject C X₀ : C f : X.obj (op [0]) ⟶ X₀ w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f ⊢ NatTrans.app (augment X X₀ f w).hom (op [0]) = f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : SimplicialObject C X₀ : C f : X.obj (op [0]) ⟶ X₀ w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), X.map g₁.op ≫ f = X.map g₂.op ≫ f ⊢ X.map (SimplexCategory.const [0] 0).op ≫ f = f [PROOFSTEP] rw [SimplexCategory.hom_zero_zero ([0].const 0), op_id, X.map_id, Category.id_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C ⊢ Category.{?u.208707, max u v} (CosimplicialObject C) [PROOFSTEP] dsimp only [CosimplicialObject] [GOAL] C : Type u inst✝ : Category.{v, u} C ⊢ Category.{?u.208707, max u v} (SimplexCategory ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (CosimplicialObject C) [PROOFSTEP] dsimp [CosimplicialObject] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (SimplexCategory ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (CosimplicialObject C) [PROOFSTEP] dsimp [CosimplicialObject] [GOAL] C : Type u inst✝² : Category.{v, u} C J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (SimplexCategory ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X Y : CosimplicialObject C f g : X ⟶ Y h : ∀ (n : SimplexCategory), NatTrans.app f n = NatTrans.app g n ⊢ f.app = g.app [PROOFSTEP] ext [GOAL] case h C : Type u inst✝ : Category.{v, u} C X Y : CosimplicialObject C f g : X ⟶ Y h : ∀ (n : SimplexCategory), NatTrans.app f n = NatTrans.app g n x✝ : SimplexCategory ⊢ NatTrans.app f x✝ = NatTrans.app g x✝ [PROOFSTEP] apply h [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n m : ℕ h : n = m ⊢ [n] = [m] [PROOFSTEP] rw [h] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ h : n = n ⊢ eqToIso X h = Iso.refl (X.obj [n]) [PROOFSTEP] ext [GOAL] case w C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ h : n = n ⊢ (eqToIso X h).hom = (Iso.refl (X.obj [n])).hom [PROOFSTEP] simp [eqToIso] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i j : Fin (n + 2) H : i ≤ j ⊢ δ X i ≫ δ X (Fin.succ j) = δ X j ≫ δ X (Fin.castSucc i) [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i j : Fin (n + 2) H : i ≤ j ⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ (Fin.succ j)) = X.map (SimplexCategory.δ j) ≫ X.map (SimplexCategory.δ (Fin.castSucc i)) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.δ_comp_δ H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j hj : j = 0 ⊢ False [PROOFSTEP] simp only [hj, Fin.not_lt_zero] at H [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ δ X i ≫ δ X j = δ X (Fin.pred j (_ : j = 0 → False)) ≫ δ X (Fin.castSucc i) [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : Fin.castSucc i < j ⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ j) = X.map (SimplexCategory.δ (Fin.pred j (_ : j = 0 → False))) ≫ X.map (SimplexCategory.δ (Fin.castSucc i)) [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ' H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ δ X (Fin.castLT i (_ : ↑i < n + 2)) ≫ δ X (Fin.succ j) = δ X j ≫ δ X i [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : i ≤ Fin.castSucc j ⊢ X.map (SimplexCategory.δ (Fin.castLT i (_ : ↑i < n + 2))) ≫ X.map (SimplexCategory.δ (Fin.succ j)) = X.map (SimplexCategory.δ j) ≫ X.map (SimplexCategory.δ i) [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_δ'' H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) ⊢ δ X i ≫ δ X (Fin.castSucc i) = δ X i ≫ δ X (Fin.succ i) [PROOFSTEP] dsimp [δ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) ⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ (Fin.castSucc i)) = X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.δ (Fin.succ i)) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.δ_comp_δ_self] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 3) H : j = Fin.castSucc i ⊢ δ X i ≫ δ X j = δ X i ≫ δ X (Fin.succ i) [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) ⊢ δ X i ≫ δ X (Fin.castSucc i) = δ X i ≫ δ X (Fin.succ i) [PROOFSTEP] rw [δ_comp_δ_self] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : i ≤ Fin.castSucc j ⊢ δ X (Fin.castSucc i) ≫ σ X (Fin.succ j) = σ X j ≫ δ X i [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : i ≤ Fin.castSucc j ⊢ X.map (SimplexCategory.δ (Fin.castSucc i)) ≫ X.map (SimplexCategory.σ (Fin.succ j)) = X.map (SimplexCategory.σ j) ≫ X.map (SimplexCategory.δ i) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.δ_comp_σ_of_le H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 1) ⊢ δ X (Fin.castSucc i) ≫ σ X i = 𝟙 (X.obj [n]) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 1) ⊢ X.map (SimplexCategory.δ (Fin.castSucc i)) ≫ X.map (SimplexCategory.σ i) = 𝟙 (X.obj [n]) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.δ_comp_σ_self, X.map_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ j : Fin (n + 2) i : Fin (n + 1) H : j = Fin.castSucc i ⊢ δ X j ≫ σ X i = 𝟙 (X.obj [n]) [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 1) ⊢ δ X (Fin.castSucc i) ≫ σ X i = 𝟙 (X.obj [n]) [PROOFSTEP] rw [δ_comp_σ_self] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 1) ⊢ δ X (Fin.succ i) ≫ σ X i = 𝟙 (X.obj [n]) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 1) ⊢ X.map (SimplexCategory.δ (Fin.succ i)) ≫ X.map (SimplexCategory.σ i) = 𝟙 (X.obj [n]) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.δ_comp_σ_succ, X.map_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ j : Fin (n + 2) i : Fin (n + 1) H : j = Fin.succ i ⊢ δ X j ≫ σ X i = 𝟙 (X.obj [n]) [PROOFSTEP] subst H [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 1) ⊢ δ X (Fin.succ i) ≫ σ X i = 𝟙 (X.obj [n]) [PROOFSTEP] rw [δ_comp_σ_succ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : Fin.castSucc j < i ⊢ δ X (Fin.succ i) ≫ σ X (Fin.castSucc j) = σ X j ≫ δ X i [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 2) j : Fin (n + 1) H : Fin.castSucc j < i ⊢ X.map (SimplexCategory.δ (Fin.succ i)) ≫ X.map (SimplexCategory.σ (Fin.castSucc j)) = X.map (SimplexCategory.σ j) ≫ X.map (SimplexCategory.δ i) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.δ_comp_σ_of_gt H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i hi : i = 0 ⊢ False [PROOFSTEP] simp only [Fin.not_lt_zero, hi] at H [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ δ X i ≫ σ X j = σ X (Fin.castLT j (_ : ↑j < n + 1)) ≫ δ X (Fin.pred i (_ : i = 0 → False)) [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i : Fin (n + 3) j : Fin (n + 2) H : Fin.succ j < i ⊢ X.map (SimplexCategory.δ i) ≫ X.map (SimplexCategory.σ j) = X.map (SimplexCategory.σ (Fin.castLT j (_ : ↑j < n + 1))) ≫ X.map (SimplexCategory.δ (Fin.pred i (_ : i = 0 → False))) [PROOFSTEP] simp only [← X.map_comp, ← op_comp, SimplexCategory.δ_comp_σ_of_gt' H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i j : Fin (n + 1) H : i ≤ j ⊢ σ X (Fin.castSucc i) ≫ σ X j = σ X (Fin.succ j) ≫ σ X i [PROOFSTEP] dsimp [δ, σ] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ i j : Fin (n + 1) H : i ≤ j ⊢ X.map (SimplexCategory.σ (Fin.castSucc i)) ≫ X.map (SimplexCategory.σ j) = X.map (SimplexCategory.σ (Fin.succ j)) ≫ X.map (SimplexCategory.σ i) [PROOFSTEP] simp only [← X.map_comp, SimplexCategory.σ_comp_σ H] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ ⊢ Category.{?u.295628, max u v} (Truncated C n) [PROOFSTEP] dsimp [Truncated] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C n : ℕ ⊢ Category.{?u.295628, max u v} (SimplexCategory.Truncated n ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C X : CosimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (Truncated C n) [PROOFSTEP] dsimp [Truncated] [GOAL] C : Type u inst✝² : Category.{v, u} C X : CosimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasLimitsOfShape J C ⊢ HasLimitsOfShape J (SimplexCategory.Truncated n ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝² : Category.{v, u} C X : CosimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (Truncated C n) [PROOFSTEP] dsimp [Truncated] [GOAL] C : Type u inst✝² : Category.{v, u} C X : CosimplicialObject C n : ℕ J : Type v inst✝¹ : SmallCategory J inst✝ : HasColimitsOfShape J C ⊢ HasColimitsOfShape J (SimplexCategory.Truncated n ⥤ C) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C ⊢ Category.{?u.303800, max u v} (Augmented C) [PROOFSTEP] dsimp only [Augmented] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C ⊢ Category.{?u.303800, max u v} (Comma (const C) (𝟭 (CosimplicialObject C))) [PROOFSTEP] infer_instance [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ (𝟭 C).map (point.map η) ≫ ((fun X => { left := point.obj X, right := (drop.obj X).obj [0], hom := NatTrans.app X.hom [0] }) Y✝).hom = ((fun X => { left := point.obj X, right := (drop.obj X).obj [0], hom := NatTrans.app X.hom [0] }) X✝).hom ≫ (𝟭 C).map (NatTrans.app (drop.map η) [0]) [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ η.left ≫ NatTrans.app Y✝.hom [0] = NatTrans.app X✝.hom [0] ≫ NatTrans.app η.right [0] [PROOFSTEP] rw [← NatTrans.comp_app] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ η.left ≫ NatTrans.app Y✝.hom [0] = NatTrans.app (X✝.hom ≫ η.right) [0] [PROOFSTEP] erw [← η.w] [GOAL] C : Type u inst✝ : Category.{v, u} C X : CosimplicialObject C X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ η.left ≫ NatTrans.app Y✝.hom [0] = NatTrans.app ((const C).map η.left ≫ Y✝.hom) [0] [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u_1 inst✝ : Category.{?u.334362, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ ⊢ (const D).map (F.map η.left) ≫ ((fun X => { left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X), hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F }) Y✝).hom = ((fun X => { left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X), hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F }) X✝).hom ≫ (𝟭 (CosimplicialObject D)).map (whiskerRight η.right F) [PROOFSTEP] ext [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u_1 inst✝ : Category.{?u.334362, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategory ⊢ NatTrans.app ((const D).map (F.map η.left) ≫ ((fun X => { left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X), hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F }) Y✝).hom) n✝ = NatTrans.app (((fun X => { left := F.obj (point.obj X), right := ((whiskering C D).obj F).obj (drop.obj X), hom := (Functor.constComp SimplexCategory (point.obj X) F).inv ≫ whiskerRight X.hom F }) X✝).hom ≫ (𝟭 (CosimplicialObject D)).map (whiskerRight η.right F)) n✝ [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u_1 inst✝ : Category.{?u.334362, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategory ⊢ F.map η.left ≫ 𝟙 (F.obj Y✝.left) ≫ F.map (NatTrans.app Y✝.hom n✝) = (𝟙 (F.obj X✝.left) ≫ F.map (NatTrans.app X✝.hom n✝)) ≫ F.map (NatTrans.app η.right n✝) [PROOFSTEP] rw [Category.id_comp, Category.id_comp, ← F.map_comp, ← F.map_comp, ← NatTrans.comp_app] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u_1 inst✝ : Category.{?u.334362, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategory ⊢ F.map (η.left ≫ NatTrans.app Y✝.hom n✝) = F.map (NatTrans.app (X✝.hom ≫ η.right) n✝) [PROOFSTEP] erw [← η.w] [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u_1 inst✝ : Category.{?u.334362, u_1} D F : C ⥤ D X✝ Y✝ : Augmented C η : X✝ ⟶ Y✝ n✝ : SimplexCategory ⊢ F.map (η.left ≫ NatTrans.app Y✝.hom n✝) = F.map (NatTrans.app ((const C).map η.left ≫ Y✝.hom) n✝) [PROOFSTEP] rfl [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ A : Augmented C ⊢ (const D).map (NatTrans.app η (point.obj A)) ≫ ((whiskeringObj C D Y✝).obj A).hom = ((whiskeringObj C D X✝).obj A).hom ≫ (𝟭 (CosimplicialObject D)).map (whiskerLeft (drop.obj A) η) [PROOFSTEP] ext n [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ A : Augmented C n : SimplexCategory ⊢ NatTrans.app ((const D).map (NatTrans.app η (point.obj A)) ≫ ((whiskeringObj C D Y✝).obj A).hom) n = NatTrans.app (((whiskeringObj C D X✝).obj A).hom ≫ (𝟭 (CosimplicialObject D)).map (whiskerLeft (drop.obj A) η)) n [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ A : Augmented C n : SimplexCategory ⊢ NatTrans.app η A.left ≫ 𝟙 (Y✝.obj A.left) ≫ Y✝.map (NatTrans.app A.hom n) = (𝟙 (X✝.obj A.left) ≫ X✝.map (NatTrans.app A.hom n)) ≫ NatTrans.app η (A.right.obj n) [PROOFSTEP] rw [Category.id_comp, Category.id_comp, η.naturality] [GOAL] C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ x✝¹ x✝ : Augmented C f : x✝¹ ⟶ x✝ ⊢ (whiskeringObj C D X✝).map f ≫ (fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝ = (fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝¹ ≫ (whiskeringObj C D Y✝).map f [PROOFSTEP] ext [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ x✝¹ x✝ : Augmented C f : x✝¹ ⟶ x✝ ⊢ ((whiskeringObj C D X✝).map f ≫ (fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝).left = ((fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝¹ ≫ (whiskeringObj C D Y✝).map f).left [PROOFSTEP] dsimp [GOAL] case h₂.h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ x✝¹ x✝ : Augmented C f : x✝¹ ⟶ x✝ n✝ : SimplexCategory ⊢ NatTrans.app ((whiskeringObj C D X✝).map f ≫ (fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝).right n✝ = NatTrans.app ((fun A => CommaMorphism.mk (NatTrans.app η (point.obj A)) (whiskerLeft (drop.obj A) η)) x✝¹ ≫ (whiskeringObj C D Y✝).map f).right n✝ [PROOFSTEP] dsimp [GOAL] case h₁ C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ x✝¹ x✝ : Augmented C f : x✝¹ ⟶ x✝ ⊢ X✝.map f.left ≫ NatTrans.app η x✝.left = NatTrans.app η x✝¹.left ≫ Y✝.map f.left [PROOFSTEP] simp [GOAL] case h₂.h C : Type u inst✝¹ : Category.{v, u} C X : CosimplicialObject C D : Type u' inst✝ : Category.{v', u'} D X✝ Y✝ : C ⥤ D η : X✝ ⟶ Y✝ x✝¹ x✝ : Augmented C f : x✝¹ ⟶ x✝ n✝ : SimplexCategory ⊢ X✝.map (NatTrans.app f.right n✝) ≫ NatTrans.app η (x✝.right.obj n✝) = NatTrans.app η (x✝¹.right.obj n✝) ≫ Y✝.map (NatTrans.app f.right n✝) [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : CosimplicialObject C X₀ : C f : X₀ ⟶ X.obj [0] w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂ ⊢ ∀ ⦃X_1 Y : SimplexCategory⦄ (f_1 : X_1 ⟶ Y), ((const C).obj X₀).map f_1 ≫ (fun i => f ≫ X.map (SimplexCategory.const i 0)) Y = (fun i => f ≫ X.map (SimplexCategory.const i 0)) X_1 ≫ ((𝟭 (CosimplicialObject C)).obj X).map f_1 [PROOFSTEP] intro i j g [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : CosimplicialObject C X₀ : C f : X₀ ⟶ X.obj [0] w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂ i j : SimplexCategory g : i ⟶ j ⊢ ((const C).obj X₀).map g ≫ (fun i => f ≫ X.map (SimplexCategory.const i 0)) j = (fun i => f ≫ X.map (SimplexCategory.const i 0)) i ≫ ((𝟭 (CosimplicialObject C)).obj X).map g [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : CosimplicialObject C X₀ : C f : X₀ ⟶ X.obj [0] w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂ i j : SimplexCategory g : i ⟶ j ⊢ 𝟙 X₀ ≫ f ≫ X.map (SimplexCategory.const j 0) = (f ≫ X.map (SimplexCategory.const i 0)) ≫ X.map g [PROOFSTEP] simpa [← X.map_comp] using w _ _ _ [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : CosimplicialObject C X₀ : C f : X₀ ⟶ X.obj [0] w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂ ⊢ NatTrans.app (augment X X₀ f w).hom [0] = f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ X : CosimplicialObject C X₀ : C f : X₀ ⟶ X.obj [0] w : ∀ (i : SimplexCategory) (g₁ g₂ : [0] ⟶ i), f ≫ X.map g₁ = f ≫ X.map g₂ ⊢ f ≫ X.map (SimplexCategory.const [0] 0) = f [PROOFSTEP] rw [SimplexCategory.hom_zero_zero ([0].const 0), X.map_id, Category.comp_id] [GOAL] C : Type u inst✝ : Category.{v, u} C X : Augmented C ⊢ (CosimplicialObject.Augmented.leftOp (rightOp X)).right = X.right [PROOFSTEP] aesop_cat [GOAL] C : Type u inst✝ : Category.{v, u} C X : Augmented Cᵒᵖ ⊢ (SimplicialObject.Augmented.rightOp (leftOp X)).left = X.left [PROOFSTEP] simp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ ⊢ (CosimplicialObject.const Cᵒᵖ).map f.unop.right.op ≫ ((fun X => SimplicialObject.Augmented.rightOp X.unop) Y✝).hom = ((fun X => SimplicialObject.Augmented.rightOp X.unop) X✝).hom ≫ (𝟭 (CosimplicialObject Cᵒᵖ)).map (NatTrans.rightOp f.unop.left) [PROOFSTEP] ext x [GOAL] case h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategory ⊢ NatTrans.app ((CosimplicialObject.const Cᵒᵖ).map f.unop.right.op ≫ ((fun X => SimplicialObject.Augmented.rightOp X.unop) Y✝).hom) x = NatTrans.app (((fun X => SimplicialObject.Augmented.rightOp X.unop) X✝).hom ≫ (𝟭 (CosimplicialObject Cᵒᵖ)).map (NatTrans.rightOp f.unop.left)) x [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategory ⊢ f.unop.right.op ≫ (NatTrans.app Y✝.unop.hom (op x)).op = (NatTrans.app X✝.unop.hom (op x)).op ≫ (NatTrans.app f.unop.left (op x)).op [PROOFSTEP] simp_rw [← op_comp] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategory ⊢ (NatTrans.app Y✝.unop.hom (op x) ≫ f.unop.right).op = (NatTrans.app f.unop.left (op x) ≫ NatTrans.app X✝.unop.hom (op x)).op [PROOFSTEP] congr 1 [GOAL] case h.e_f C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategory ⊢ NatTrans.app Y✝.unop.hom (op x) ≫ f.unop.right = NatTrans.app f.unop.left (op x) ≫ NatTrans.app X✝.unop.hom (op x) [PROOFSTEP] exact (congr_app f.unop.w (op x)).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ f : X✝ ⟶ Y✝ ⊢ (𝟭 (SimplicialObject C)).map (NatTrans.leftOp f.right) ≫ (CosimplicialObject.Augmented.leftOp X✝).hom = (CosimplicialObject.Augmented.leftOp Y✝).hom ≫ (SimplicialObject.const C).map f.left.unop [PROOFSTEP] ext x [GOAL] case h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategoryᵒᵖ ⊢ NatTrans.app ((𝟭 (SimplicialObject C)).map (NatTrans.leftOp f.right) ≫ (CosimplicialObject.Augmented.leftOp X✝).hom) x = NatTrans.app ((CosimplicialObject.Augmented.leftOp Y✝).hom ≫ (SimplicialObject.const C).map f.left.unop) x [PROOFSTEP] dsimp [GOAL] case h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategoryᵒᵖ ⊢ (NatTrans.app f.right x.unop).unop ≫ (NatTrans.app X✝.hom x.unop).unop = (NatTrans.app Y✝.hom x.unop).unop ≫ f.left.unop [PROOFSTEP] simp_rw [← unop_comp] [GOAL] case h C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategoryᵒᵖ ⊢ (NatTrans.app X✝.hom x.unop ≫ NatTrans.app f.right x.unop).unop = (f.left ≫ NatTrans.app Y✝.hom x.unop).unop [PROOFSTEP] congr 1 [GOAL] case h.e_f C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : CosimplicialObject.Augmented Cᵒᵖ f : X✝ ⟶ Y✝ x : SimplexCategoryᵒᵖ ⊢ NatTrans.app X✝.hom x.unop ≫ NatTrans.app f.right x.unop = f.left ≫ NatTrans.app Y✝.hom x.unop [PROOFSTEP] exact (congr_app f.w (unop x)).symm [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ ⊢ (𝟭 (SimplicialObject.Augmented C)ᵒᵖ).map f ≫ ((fun X => Iso.op (SimplicialObject.Augmented.rightOpLeftOpIso X.unop)) Y✝).hom = ((fun X => Iso.op (SimplicialObject.Augmented.rightOpLeftOpIso X.unop)) X✝).hom ≫ (simplicialToCosimplicialAugmented C ⋙ cosimplicialToSimplicialAugmented C).map f [PROOFSTEP] dsimp [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ ⊢ f ≫ (SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom.op = (SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom.op ≫ (CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.left)) f.unop.right).op [PROOFSTEP] rw [← f.op_unop] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ ⊢ f.unop.op ≫ (SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom.op = (SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom.op ≫ (CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.op.unop.left)) f.unop.op.unop.right).op [PROOFSTEP] simp_rw [← op_comp] [GOAL] C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ ⊢ ((SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom ≫ f.unop).op = (CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.op.unop.left)) f.unop.op.unop.right ≫ (SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom).op [PROOFSTEP] congr 1 [GOAL] case e_f C : Type u inst✝ : Category.{v, u} C X✝ Y✝ : (SimplicialObject.Augmented C)ᵒᵖ f : X✝ ⟶ Y✝ ⊢ (SimplicialObject.Augmented.rightOpLeftOpIso Y✝.unop).hom ≫ f.unop = CommaMorphism.mk (NatTrans.leftOp (NatTrans.rightOp f.unop.op.unop.left)) f.unop.op.unop.right ≫ (SimplicialObject.Augmented.rightOpLeftOpIso X✝.unop).hom [PROOFSTEP] aesop_cat
{"mathlib_filename": "Mathlib.AlgebraicTopology.SimplicialObject", "llama_tokens": 23094}
[GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : IndepSet t t ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] rw [IndepSet_iff] at h_indep [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] specialize h_indep t t (measurableSet_generateFrom (Set.mem_singleton t)) (measurableSet_generateFrom (Set.mem_singleton t)) [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] by_cases h0 : μ t = 0 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t h0 : ↑↑μ t = 0 ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] exact Or.inl h0 [GOAL] case neg Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t h0 : ¬↑↑μ t = 0 ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] by_cases h_top : μ t = ∞ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t h0 : ¬↑↑μ t = 0 h_top : ↑↑μ t = ⊤ ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] exact Or.inr (Or.inr h_top) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : ↑↑μ (t ∩ t) = ↑↑μ t * ↑↑μ t h0 : ¬↑↑μ t = 0 h_top : ¬↑↑μ t = ⊤ ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] rw [← one_mul (μ (t ∩ t)), Set.inter_self, ENNReal.mul_eq_mul_right h0 h_top] at h_indep [GOAL] case neg Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω t : Set Ω h_indep : 1 = ↑↑μ t h0 : ¬↑↑μ t = 0 h_top : ¬↑↑μ t = ⊤ ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ [PROOFSTEP] exact Or.inr (Or.inl h_indep.symm) [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ t : Set Ω h_indep : IndepSet t t ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 [PROOFSTEP] have h_0_1_top := measure_eq_zero_or_one_or_top_of_indepSet_self h_indep [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ t : Set Ω h_indep : IndepSet t t h_0_1_top : ↑↑μ t = 0 ∨ ↑↑μ t = 1 ∨ ↑↑μ t = ⊤ ⊢ ↑↑μ t = 0 ∨ ↑↑μ t = 1 [PROOFSTEP] simpa [measure_ne_top μ] using h_0_1_top [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f t : Set ι ht : p t ⊢ Indep (⨆ (n : ι) (_ : n ∈ t), s n) (limsup s f) [PROOFSTEP] refine' indep_of_indep_of_le_right (indep_biSup_compl h_le h_indep t) _ [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f t : Set ι ht : p t ⊢ limsup s f ≤ ⨆ (n : ι) (_ : n ∈ tᶜ), s n [PROOFSTEP] refine' limsSup_le_of_le (by isBoundedDefault) _ [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f t : Set ι ht : p t ⊢ IsCobounded (fun x x_1 => x ≤ x_1) (map s f) [PROOFSTEP] isBoundedDefault [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f t : Set ι ht : p t ⊢ ∀ᶠ (n : MeasurableSpace Ω) in map s f, n ≤ ⨆ (n : ι) (_ : n ∈ tᶜ), s n [PROOFSTEP] simp only [Set.mem_compl_iff, eventually_map] [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f t : Set ι ht : p t ⊢ ∀ᶠ (a : ι) in f, s a ≤ ⨆ (n : ι) (_ : ¬n ∈ t), s n [PROOFSTEP] exact eventually_of_mem (hf t ht) le_iSup₂ [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) ⊢ Indep (⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n) (limsup s f) [PROOFSTEP] refine' indep_iSup_of_directed_le _ _ _ _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) ⊢ ∀ (i : α), Indep (⨆ (n : ι) (_ : n ∈ ns i), s n) (limsup s f) [PROOFSTEP] exact fun a => indep_biSup_limsup h_le h_indep hf (hnsp a) [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) ⊢ ∀ (i : α), ⨆ (n : ι) (_ : n ∈ ns i), s n ≤ m0 [PROOFSTEP] exact fun a => iSup₂_le fun n _ => h_le n [GOAL] case refine'_3 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) ⊢ limsup s f ≤ m0 [PROOFSTEP] exact limsup_le_iSup.trans (iSup_le h_le) [GOAL] case refine'_4 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) ⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n [PROOFSTEP] intro a b [GOAL] case refine'_4 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) a b : α ⊢ ∃ z, (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) a) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z) ∧ (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) b) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z) [PROOFSTEP] obtain ⟨c, hc⟩ := hns a b [GOAL] case refine'_4.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) a b c : α hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c) ⊢ ∃ z, (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) a) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z) ∧ (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) b) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) z) [PROOFSTEP] refine' ⟨c, _, _⟩ [GOAL] case refine'_4.intro.refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) a b c : α hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c) ⊢ (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) a) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) c) [PROOFSTEP] refine' iSup_mono fun n => iSup_mono' fun hn => ⟨_, le_rfl⟩ [GOAL] case refine'_4.intro.refine'_2 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) a b c : α hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c) ⊢ (fun x x_1 => x ≤ x_1) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) b) ((fun a => ⨆ (n : ι) (_ : n ∈ ns a), s n) c) [PROOFSTEP] refine' iSup_mono fun n => iSup_mono' fun hn => ⟨_, le_rfl⟩ [GOAL] case refine'_4.intro.refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) a b c : α hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c) n : ι hn : n ∈ ns a ⊢ n ∈ ns c [PROOFSTEP] exact hc.1 hn [GOAL] case refine'_4.intro.refine'_2 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) a b c : α hc : (fun x x_1 => x ≤ x_1) (ns a) (ns c) ∧ (fun x x_1 => x ≤ x_1) (ns b) (ns c) n : ι hn : n ∈ ns b ⊢ n ∈ ns c [PROOFSTEP] exact hc.2 hn [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a ⊢ Indep (⨆ (n : ι), s n) (limsup s f) [PROOFSTEP] suffices (⨆ a, ⨆ n ∈ ns a, s n) = ⨆ n, s n by rw [← this] exact indep_iSup_directed_limsup h_le h_indep hf hns hnsp [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a this : ⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n = ⨆ (n : ι), s n ⊢ Indep (⨆ (n : ι), s n) (limsup s f) [PROOFSTEP] rw [← this] [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a this : ⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n = ⨆ (n : ι), s n ⊢ Indep (⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n) (limsup s f) [PROOFSTEP] exact indep_iSup_directed_limsup h_le h_indep hf hns hnsp [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a ⊢ ⨆ (a : α) (n : ι) (_ : n ∈ ns a), s n = ⨆ (n : ι), s n [PROOFSTEP] rw [iSup_comm] [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a ⊢ ⨆ (j : ι) (i : α) (_ : j ∈ ns i), s j = ⨆ (n : ι), s n [PROOFSTEP] refine' iSup_congr fun n => _ [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a n : ι ⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = s n [PROOFSTEP] have h : ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ _ : ∃ i, n ∈ ns i, s n := by rw [iSup_exists] [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a n : ι ⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ (_ : ∃ i, n ∈ ns i), s n [PROOFSTEP] rw [iSup_exists] [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a n : ι h : ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ (_ : ∃ i, n ∈ ns i), s n ⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = s n [PROOFSTEP] haveI : Nonempty (∃ i : α, n ∈ ns i) := ⟨hns_univ n⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω α : Type u_3 p : Set ι → Prop f : Filter ι ns : α → Set ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s hf : ∀ (t : Set ι), p t → tᶜ ∈ f hns : Directed (fun x x_1 => x ≤ x_1) ns hnsp : ∀ (a : α), p (ns a) hns_univ : ∀ (n : ι), ∃ a, n ∈ ns a n : ι h : ⨆ (i : α) (_ : n ∈ ns i), s n = ⨆ (_ : ∃ i, n ∈ ns i), s n this : Nonempty (∃ i, n ∈ ns i) ⊢ ⨆ (i : α) (_ : n ∈ ns i), s n = s n [PROOFSTEP] rw [h, iSup_const] [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ⊢ Indep (limsup s atTop) (limsup s atTop) [PROOFSTEP] let ns : ι → Set ι := Set.Iic [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic ⊢ Indep (limsup s atTop) (limsup s atTop) [PROOFSTEP] have hnsp : ∀ i, BddAbove (ns i) := fun i => bddAbove_Iic [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ Indep (limsup s atTop) (limsup s atTop) [PROOFSTEP] refine' indep_limsup_self h_le h_indep _ _ hnsp _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ ∀ (t : Set ι), BddAbove t → tᶜ ∈ atTop [PROOFSTEP] simp only [mem_atTop_sets, ge_iff_le, Set.mem_compl_iff, BddAbove, upperBounds, Set.Nonempty] [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ ∀ (t : Set ι), (∃ x, x ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x}) → ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t [PROOFSTEP] rintro t ⟨a, ha⟩ [GOAL] case refine'_1.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x} ⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t [PROOFSTEP] obtain ⟨b, hb⟩ : ∃ b, a < b := exists_gt a [GOAL] case refine'_1.intro.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x} b : ι hb : a < b ⊢ ∃ a, ∀ (b : ι), a ≤ b → ¬b ∈ t [PROOFSTEP] refine' ⟨b, fun c hc hct => _⟩ [GOAL] case refine'_1.intro.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x} b : ι hb : a < b c : ι hc : b ≤ c hct : c ∈ t ⊢ False [PROOFSTEP] suffices : ∀ i ∈ t, i < c [GOAL] case refine'_1.intro.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x} b : ι hb : a < b c : ι hc : b ≤ c hct : c ∈ t this : ∀ (i : ι), i ∈ t → i < c ⊢ False case this Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x} b : ι hb : a < b c : ι hc : b ≤ c hct : c ∈ t ⊢ ∀ (i : ι), i ∈ t → i < c [PROOFSTEP] exact lt_irrefl c (this c hct) [GOAL] case this Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → a ≤ x} b : ι hb : a < b c : ι hc : b ≤ c hct : c ∈ t ⊢ ∀ (i : ι), i ∈ t → i < c [PROOFSTEP] exact fun i hi => (ha hi).trans_lt (hb.trans_le hc) [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ns a [PROOFSTEP] exact Monotone.directed_le fun i j hij k hki => le_trans hki hij [GOAL] case refine'_3 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeSup ι inst✝¹ : NoMaxOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Iic hnsp : ∀ (i : ι), BddAbove (ns i) ⊢ ∀ (n : ι), ∃ a, n ∈ ns a [PROOFSTEP] exact fun n => ⟨n, le_rfl⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ⊢ Indep (limsup s atBot) (limsup s atBot) [PROOFSTEP] let ns : ι → Set ι := Set.Ici [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici ⊢ Indep (limsup s atBot) (limsup s atBot) [PROOFSTEP] have hnsp : ∀ i, BddBelow (ns i) := fun i => bddBelow_Ici [GOAL] Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) ⊢ Indep (limsup s atBot) (limsup s atBot) [PROOFSTEP] refine' indep_limsup_self h_le h_indep _ _ hnsp _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) ⊢ ∀ (t : Set ι), BddBelow t → tᶜ ∈ atBot [PROOFSTEP] simp only [mem_atBot_sets, ge_iff_le, Set.mem_compl_iff, BddBelow, lowerBounds, Set.Nonempty] [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) ⊢ ∀ (t : Set ι), (∃ x, x ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a}) → ∃ a, ∀ (b : ι), b ≤ a → ¬b ∈ t [PROOFSTEP] rintro t ⟨a, ha⟩ [GOAL] case refine'_1.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a} ⊢ ∃ a, ∀ (b : ι), b ≤ a → ¬b ∈ t [PROOFSTEP] obtain ⟨b, hb⟩ : ∃ b, b < a := exists_lt a [GOAL] case refine'_1.intro.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a} b : ι hb : b < a ⊢ ∃ a, ∀ (b : ι), b ≤ a → ¬b ∈ t [PROOFSTEP] refine' ⟨b, fun c hc hct => _⟩ [GOAL] case refine'_1.intro.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a} b : ι hb : b < a c : ι hc : c ≤ b hct : c ∈ t ⊢ False [PROOFSTEP] suffices : ∀ i ∈ t, c < i [GOAL] case refine'_1.intro.intro Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a} b : ι hb : b < a c : ι hc : c ≤ b hct : c ∈ t this : ∀ (i : ι), i ∈ t → c < i ⊢ False case this Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a} b : ι hb : b < a c : ι hc : c ≤ b hct : c ∈ t ⊢ ∀ (i : ι), i ∈ t → c < i [PROOFSTEP] exact lt_irrefl c (this c hct) [GOAL] case this Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) t : Set ι a : ι ha : a ∈ {x | ∀ ⦃a : ι⦄, a ∈ t → x ≤ a} b : ι hb : b < a c : ι hc : c ≤ b hct : c ∈ t ⊢ ∀ (i : ι), i ∈ t → c < i [PROOFSTEP] exact fun i hi => hc.trans_lt (hb.trans_le (ha hi)) [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) ⊢ Directed (fun x x_1 => x ≤ x_1) fun a => ns a [PROOFSTEP] exact directed_of_inf fun i j hij k hki => hij.trans hki [GOAL] case refine'_3 Ω : Type u_1 ι : Type u_2 m m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : IsProbabilityMeasure μ s : ι → MeasurableSpace Ω inst✝² : SemilatticeInf ι inst✝¹ : NoMinOrder ι inst✝ : Nonempty ι h_le : ∀ (n : ι), s n ≤ m0 h_indep : iIndep s ns : ι → Set ι := Set.Ici hnsp : ∀ (i : ι), BddBelow (ns i) ⊢ ∀ (n : ι), ∃ a, n ∈ ns a [PROOFSTEP] exact fun n => ⟨n, le_rfl⟩
{"mathlib_filename": "Mathlib.Probability.Independence.ZeroOne", "llama_tokens": 14731}
[GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁷ : TopologicalSpace Ω inst✝⁶ : MeasurableSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : BorelSpace Ω inst✝³ : Nonempty Ω inst✝² : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝¹ : IsFiniteMeasure μ X : α → β Y : α → Ω inst✝ : MeasurableSpace β ⊢ IsMarkovKernel (condDistrib Y X μ) [PROOFSTEP] rw [condDistrib] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁷ : TopologicalSpace Ω inst✝⁶ : MeasurableSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : BorelSpace Ω inst✝³ : Nonempty Ω inst✝² : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝¹ : IsFiniteMeasure μ X : α → β Y : α → Ω inst✝ : MeasurableSpace β ⊢ IsMarkovKernel (Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hY : AEMeasurable Y hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ) ⊢ ((∀ᵐ (a : β) ∂Measure.map X μ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(condDistrib Y X μ) a) ↔ Integrable f [PROOFSTEP] rw [condDistrib, ← hf.ae_integrable_condKernel_iff, Measure.fst_map_prod_mk₀ hY] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hY : AEMeasurable Y hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ) ⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(condDistrib Y X μ) x) (Measure.map X μ) [PROOFSTEP] rw [← Measure.fst_map_prod_mk₀ hY, condDistrib] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hY : AEMeasurable Y hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ) ⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) x) (Measure.fst (Measure.map (fun a => (X a, Y a)) μ)) [PROOFSTEP] exact hf.integral_condKernel [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : AEMeasurable X hs : MeasurableSet s ⊢ Integrable fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s) [PROOFSTEP] refine' integrable_toReal_of_lintegral_ne_top _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : AEMeasurable X hs : MeasurableSet s ⊢ AEMeasurable fun a => ↑↑(↑(condDistrib Y X μ) (X a)) s [PROOFSTEP] exact Measurable.comp_aemeasurable (kernel.measurable_coe _ hs) hX [GOAL] case refine'_2 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : AEMeasurable X hs : MeasurableSet s ⊢ ∫⁻ (x : α), ↑↑(↑(condDistrib Y X μ) (X x)) s ∂μ ≠ ⊤ [PROOFSTEP] refine' ne_of_lt _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : AEMeasurable X hs : MeasurableSet s ⊢ ∫⁻ (x : α), ↑↑(↑(condDistrib Y X μ) (X x)) s ∂μ < ⊤ [PROOFSTEP] calc ∫⁻ a, condDistrib Y X μ (X a) s ∂μ ≤ ∫⁻ _, 1 ∂μ := lintegral_mono fun a => prob_le_one _ = μ univ := lintegral_one _ < ∞ := measure_lt_top _ _ [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hY : AEMeasurable Y hf_int : Integrable f ⊢ ∀ᵐ (b : β) ∂Measure.map X μ, Integrable fun ω => f (b, ω) [PROOFSTEP] rw [condDistrib, ← Measure.fst_map_prod_mk₀ (X := X) hY] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hY : AEMeasurable Y hf_int : Integrable f ⊢ ∀ᵐ (b : β) ∂Measure.fst (Measure.map (fun a => (X a, Y a)) μ), Integrable fun ω => f (b, ω) [PROOFSTEP] exact hf_int.condKernel_ae [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hY : AEMeasurable Y hf_int : Integrable f ⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(condDistrib Y X μ) x [PROOFSTEP] rw [condDistrib, ← Measure.fst_map_prod_mk₀ (X := X) hY] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hY : AEMeasurable Y hf_int : Integrable f ⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) x [PROOFSTEP] exact hf_int.integral_norm_condKernel [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hY : AEMeasurable Y hf_int : Integrable f ⊢ Integrable fun x => ‖∫ (y : Ω), f (x, y) ∂↑(condDistrib Y X μ) x‖ [PROOFSTEP] rw [condDistrib, ← Measure.fst_map_prod_mk₀ (X := X) hY] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hY : AEMeasurable Y hf_int : Integrable f ⊢ Integrable fun x => ‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel (Measure.map (fun a => (X a, Y a)) μ)) x‖ [PROOFSTEP] exact hf_int.norm_integral_condKernel [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s ht : MeasurableSet t ⊢ ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ = ↑↑μ (X ⁻¹' t ∩ Y ⁻¹' s) [PROOFSTEP] conv_lhs => arg 2; change (fun a => ((condDistrib Y X μ) a) s) ∘ X [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s ht : MeasurableSet t | ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ [PROOFSTEP] arg 2; change (fun a => ((condDistrib Y X μ) a) s) ∘ X [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s ht : MeasurableSet t | ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ [PROOFSTEP] arg 2; change (fun a => ((condDistrib Y X μ) a) s) ∘ X [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s ht : MeasurableSet t | ∫⁻ (a : α) in X ⁻¹' t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ [PROOFSTEP] arg 2 [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s ht : MeasurableSet t | fun a => ↑↑(↑(condDistrib Y X μ) (X a)) s [PROOFSTEP] change (fun a => ((condDistrib Y X μ) a) s) ∘ X [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s ht : MeasurableSet t ⊢ lintegral (Measure.restrict μ (X ⁻¹' t)) ((fun a => ↑↑(↑(condDistrib Y X μ) a) s) ∘ X) = ↑↑μ (X ⁻¹' t ∩ Y ⁻¹' s) [PROOFSTEP] rw [lintegral_comp (kernel.measurable_coe _ hs) hX, condDistrib, ← Measure.restrict_map hX ht, ← Measure.fst_map_prod_mk₀ hY, set_lintegral_condKernel_eq_measure_prod _ ht hs, Measure.map_apply_of_aemeasurable (hX.aemeasurable.prod_mk hY) (ht.prod hs), mk_preimage_prod] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s t : Set α ht : MeasurableSet t ⊢ ∫⁻ (a : α) in t, ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ = ↑↑μ (t ∩ Y ⁻¹' s) [PROOFSTEP] obtain ⟨t', ht', rfl⟩ := ht [GOAL] case intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : AEMeasurable Y hs : MeasurableSet s t' : Set β ht' : MeasurableSet t' ⊢ ∫⁻ (a : α) in X ⁻¹' t', ↑↑(↑(condDistrib Y X μ) (X a)) s ∂μ = ↑↑μ (X ⁻¹' t' ∩ Y ⁻¹' s) [PROOFSTEP] rw [set_lintegral_preimage_condDistrib hX hY hs ht'] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s ⊢ (fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)) =ᵐ[μ] μ[indicator (Y ⁻¹' s) fun ω => 1|MeasurableSpace.comap X mβ] [PROOFSTEP] refine' ae_eq_condexp_of_forall_set_integral_eq hX.comap_le _ _ _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s ⊢ Integrable (indicator (Y ⁻¹' s) fun ω => 1) [PROOFSTEP] exact (integrable_const _).indicator (hY hs) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s ⊢ ∀ (s_1 : Set α), MeasurableSet s_1 → ↑↑μ s_1 < ⊤ → IntegrableOn (fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)) s_1 [PROOFSTEP] exact fun t _ _ => (integrable_toReal_condDistrib hX.aemeasurable hs).integrableOn [GOAL] case refine'_3 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s ⊢ ∀ (s_1 : Set α), MeasurableSet s_1 → ↑↑μ s_1 < ⊤ → ∫ (x : α) in s_1, ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X x)) s) ∂μ = ∫ (x : α) in s_1, indicator (Y ⁻¹' s) (fun ω => 1) x ∂μ [PROOFSTEP] intro t ht _ [GOAL] case refine'_3 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s t : Set α ht : MeasurableSet t a✝ : ↑↑μ t < ⊤ ⊢ ∫ (x : α) in t, ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X x)) s) ∂μ = ∫ (x : α) in t, indicator (Y ⁻¹' s) (fun ω => 1) x ∂μ [PROOFSTEP] rw [integral_toReal ((measurable_condDistrib hs).mono hX.comap_le le_rfl).aemeasurable (eventually_of_forall fun ω => measure_lt_top (condDistrib Y X μ (X ω)) _), integral_indicator_const _ (hY hs), Measure.restrict_apply (hY hs), smul_eq_mul, mul_one, inter_comm, set_lintegral_condDistrib_of_measurableSet hX hY.aemeasurable hs ht] [GOAL] case refine'_4 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s ⊢ AEStronglyMeasurable' (MeasurableSpace.comap X mβ) (fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s)) μ [PROOFSTEP] refine' (Measurable.stronglyMeasurable _).aeStronglyMeasurable' [GOAL] case refine'_4 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝ : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F hX : Measurable X hY : Measurable Y hs : MeasurableSet s ⊢ Measurable fun a => ENNReal.toReal (↑↑(↑(condDistrib Y X μ) (X a)) s) [PROOFSTEP] exact @Measurable.ennreal_toReal _ (mβ.comap X) _ (measurable_condDistrib hs) [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f ⊢ μ[fun a => f (X a, Y a)|MeasurableSpace.comap X mβ] =ᵐ[μ] fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a) [PROOFSTEP] have hf_int' : Integrable (fun a => f (X a, Y a)) μ := (integrable_map_measure hf_int.1 (hX.aemeasurable.prod_mk hY)).mp hf_int [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) ⊢ μ[fun a => f (X a, Y a)|MeasurableSpace.comap X mβ] =ᵐ[μ] fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a) [PROOFSTEP] refine' (ae_eq_condexp_of_forall_set_integral_eq hX.comap_le hf_int' (fun s _ _ => _) _ _).symm [GOAL] case refine'_1 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s✝ : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) s : Set α x✝¹ : MeasurableSet s x✝ : ↑↑μ s < ⊤ ⊢ IntegrableOn (fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a)) s [PROOFSTEP] exact (hf_int.integral_condDistrib hX.aemeasurable hY).integrableOn [GOAL] case refine'_2 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) ⊢ ∀ (s : Set α), MeasurableSet s → ↑↑μ s < ⊤ → ∫ (x : α) in s, ∫ (y : Ω), f (X x, y) ∂↑(condDistrib Y X μ) (X x) ∂μ = ∫ (x : α) in s, f (X x, Y x) ∂μ [PROOFSTEP] rintro s ⟨t, ht, rfl⟩ _ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ ∫ (x : α) in X ⁻¹' t, ∫ (y : Ω), f (X x, y) ∂↑(condDistrib Y X μ) (X x) ∂μ = ∫ (x : α) in X ⁻¹' t, f (X x, Y x) ∂μ [PROOFSTEP] change ∫ a in X ⁻¹' t, ((fun x' => ∫ y, f (x', y) ∂(condDistrib Y X μ) x') ∘ X) a ∂μ = ∫ a in X ⁻¹' t, f (X a, Y a) ∂μ [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ ∫ (a : α) in X ⁻¹' t, ((fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x') ∘ X) a ∂μ = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ [PROOFSTEP] simp only [Function.comp_apply] [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ ∫ (a : α) in X ⁻¹' t, ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a) ∂μ = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ [PROOFSTEP] rw [← integral_map hX.aemeasurable (f := fun x' => ∫ y, f (x', y) ∂(condDistrib Y X μ) x')] [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ ∫ (y : β), ∫ (y_1 : Ω), f (y, y_1) ∂↑(condDistrib Y X μ) y ∂Measure.map X (Measure.restrict μ (X ⁻¹' t)) = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ AEStronglyMeasurable (fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x') (Measure.map X (Measure.restrict μ (X ⁻¹' t))) [PROOFSTEP] swap [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ AEStronglyMeasurable (fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x') (Measure.map X (Measure.restrict μ (X ⁻¹' t))) [PROOFSTEP] rw [← Measure.restrict_map hX ht] [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ AEStronglyMeasurable (fun x' => ∫ (y : Ω), f (x', y) ∂↑(condDistrib Y X μ) x') (Measure.restrict (Measure.map X μ) t) [PROOFSTEP] exact (hf_int.1.integral_condDistrib_map hY).restrict [GOAL] case refine'_2.intro.intro α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t✝ : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) t : Set β ht : MeasurableSet t a✝ : ↑↑μ (X ⁻¹' t) < ⊤ ⊢ ∫ (y : β), ∫ (y_1 : Ω), f (y, y_1) ∂↑(condDistrib Y X μ) y ∂Measure.map X (Measure.restrict μ (X ⁻¹' t)) = ∫ (a : α) in X ⁻¹' t, f (X a, Y a) ∂μ [PROOFSTEP] rw [← Measure.restrict_map hX ht, ← Measure.fst_map_prod_mk₀ hY, condDistrib, set_integral_condKernel_univ_right ht hf_int.integrableOn, set_integral_map (ht.prod MeasurableSet.univ) hf_int.1 (hX.aemeasurable.prod_mk hY), mk_preimage_prod, preimage_univ, inter_univ] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf_int : Integrable f hf_int' : Integrable fun a => f (X a, Y a) ⊢ AEStronglyMeasurable' (MeasurableSpace.comap X mβ) (fun a => ∫ (y : Ω), f (X a, y) ∂↑(condDistrib Y X μ) (X a)) μ [PROOFSTEP] exact aestronglyMeasurable'_integral_condDistrib hX.aemeasurable hY hf_int.1 [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf : AEStronglyMeasurable f (Measure.map (fun a => (X a, Y a)) μ) hf_int : Integrable fun a => f (X a, Y a) ⊢ Integrable f [PROOFSTEP] rwa [integrable_map_measure hf (hX.aemeasurable.prod_mk hY)] [GOAL] α : Type u_1 β : Type u_2 Ω : Type u_3 F : Type u_4 inst✝⁸ : TopologicalSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω inst✝³ : NormedAddCommGroup F mα : MeasurableSpace α μ : Measure α inst✝² : IsFiniteMeasure μ X : α → β Y : α → Ω mβ : MeasurableSpace β s : Set Ω t : Set β f : β × Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hX : Measurable X hY : AEMeasurable Y hf : StronglyMeasurable f hf_int : Integrable fun a => f (X a, Y a) ⊢ Integrable f [PROOFSTEP] rwa [integrable_map_measure hf.aestronglyMeasurable (hX.aemeasurable.prod_mk hY)] [GOAL] α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ) [PROOFSTEP] refine' ⟨fun x => hf.mk f x.2, hf.stronglyMeasurable_mk.comp_measurable measurable_snd, _⟩ [GOAL] α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ ⊢ (fun x => f x.snd) =ᵐ[Measure.map (fun ω => (X ω, ω)) μ] fun x => AEStronglyMeasurable.mk f hf x.snd [PROOFSTEP] suffices h : Measure.QuasiMeasurePreserving Prod.snd (μ.map fun ω => (X ω, ω)) μ [GOAL] α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ h : Measure.QuasiMeasurePreserving Prod.snd ⊢ (fun x => f x.snd) =ᵐ[Measure.map (fun ω => (X ω, ω)) μ] fun x => AEStronglyMeasurable.mk f hf x.snd [PROOFSTEP] exact Measure.QuasiMeasurePreserving.ae_eq h hf.ae_eq_mk [GOAL] case h α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ ⊢ Measure.QuasiMeasurePreserving Prod.snd [PROOFSTEP] refine' ⟨measurable_snd, Measure.AbsolutelyContinuous.mk fun s hs hμs => _⟩ [GOAL] case h α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 ⊢ ↑↑(Measure.map Prod.snd (Measure.map (fun ω => (X ω, ω)) μ)) s = 0 [PROOFSTEP] rw [Measure.map_apply _ hs] [GOAL] case h α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 ⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0 α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 ⊢ Measurable Prod.snd [PROOFSTEP] swap [GOAL] α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 ⊢ Measurable Prod.snd [PROOFSTEP] exact measurable_snd [GOAL] case h α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 ⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0 [PROOFSTEP] by_cases hX : AEMeasurable X μ [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : AEMeasurable X ⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0 [PROOFSTEP] rw [Measure.map_apply_of_aemeasurable] [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : AEMeasurable X ⊢ ↑↑μ ((fun ω => (X ω, ω)) ⁻¹' (Prod.snd ⁻¹' s)) = 0 [PROOFSTEP] rw [← univ_prod, mk_preimage_prod, preimage_univ, univ_inter, preimage_id'] [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : AEMeasurable X ⊢ ↑↑μ s = 0 [PROOFSTEP] exact hμs [GOAL] case pos.hf α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : AEMeasurable X ⊢ AEMeasurable fun ω => (X ω, ω) [PROOFSTEP] exact hX.prod_mk aemeasurable_id [GOAL] case pos.hs α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : AEMeasurable X ⊢ MeasurableSet (Prod.snd ⁻¹' s) [PROOFSTEP] exact measurable_snd hs [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : ¬AEMeasurable X ⊢ ↑↑(Measure.map (fun ω => (X ω, ω)) μ) (Prod.snd ⁻¹' s) = 0 [PROOFSTEP] rw [Measure.map_of_not_aemeasurable] [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : ¬AEMeasurable X ⊢ ↑↑0 (Prod.snd ⁻¹' s) = 0 [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : ¬AEMeasurable X ⊢ ¬AEMeasurable fun ω => (X ω, ω) [PROOFSTEP] contrapose! hX [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F✝ : Type u_4 inst✝⁷ : TopologicalSpace Ω✝ inst✝⁶ : MeasurableSpace Ω✝ inst✝⁵ : PolishSpace Ω✝ inst✝⁴ : BorelSpace Ω✝ inst✝³ : Nonempty Ω✝ inst✝² : NormedAddCommGroup F✝ mα : MeasurableSpace α μ✝ : Measure α inst✝¹ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s✝ : Set Ω✝ t : Set β f✝ : β × Ω✝ → F✝ Ω : Type u_5 F : Type u_6 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω inst✝ : TopologicalSpace F f : Ω → F hf : AEStronglyMeasurable f μ s : Set Ω hs : MeasurableSet s hμs : ↑↑μ s = 0 hX : AEMeasurable fun ω => (X ω, ω) ⊢ AEMeasurable X [PROOFSTEP] exact measurable_fst.comp_aemeasurable hX [GOAL] α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f ⊢ Integrable fun x => f x.snd [PROOFSTEP] by_cases hX : AEMeasurable X μ [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : AEMeasurable X ⊢ Integrable fun x => f x.snd [PROOFSTEP] have hf := hf_int.1.comp_snd_map_prod_mk X (mΩ := mΩ) (mβ := mβ) [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : AEMeasurable X hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ) ⊢ Integrable fun x => f x.snd [PROOFSTEP] refine' ⟨hf, _⟩ [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : AEMeasurable X hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ) ⊢ HasFiniteIntegral fun x => f x.snd [PROOFSTEP] rw [HasFiniteIntegral, lintegral_map' hf.ennnorm (hX.prod_mk aemeasurable_id)] [GOAL] case pos α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : AEMeasurable X hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (X ω, ω)) μ) ⊢ ∫⁻ (a : Ω), ↑‖f (X a, a).snd‖₊ ∂μ < ⊤ [PROOFSTEP] exact hf_int.2 [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : ¬AEMeasurable X ⊢ Integrable fun x => f x.snd [PROOFSTEP] rw [Measure.map_of_not_aemeasurable] [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : ¬AEMeasurable X ⊢ Integrable fun x => f x.snd [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : ¬AEMeasurable X ⊢ ¬AEMeasurable fun ω => (X ω, ω) [PROOFSTEP] contrapose! hX [GOAL] case neg α : Type u_1 β : Type u_2 Ω✝ : Type u_3 F : Type u_4 inst✝⁶ : TopologicalSpace Ω✝ inst✝⁵ : MeasurableSpace Ω✝ inst✝⁴ : PolishSpace Ω✝ inst✝³ : BorelSpace Ω✝ inst✝² : Nonempty Ω✝ inst✝¹ : NormedAddCommGroup F mα : MeasurableSpace α μ✝ : Measure α inst✝ : IsFiniteMeasure μ✝ X✝ : α → β Y : α → Ω✝ mβ : MeasurableSpace β s : Set Ω✝ t : Set β f✝ : β × Ω✝ → F Ω : Type u_5 mΩ : MeasurableSpace Ω X : Ω → β μ : Measure Ω f : Ω → F hf_int : Integrable f hX : AEMeasurable fun ω => (X ω, ω) ⊢ AEMeasurable X [PROOFSTEP] exact measurable_fst.comp_aemeasurable hX
{"mathlib_filename": "Mathlib.Probability.Kernel.CondDistrib", "llama_tokens": 24704}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β I : Finset ι κ : ι → { x // x ∈ kernel α β } a : α ⊢ ↑(∑ i in I, κ i) a = ∑ i in I, ↑(κ i) a [PROOFSTEP] rw [coe_finset_sum, Finset.sum_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β I : Finset ι κ : ι → { x // x ∈ kernel α β } a : α s : Set β ⊢ ↑↑(↑(∑ i in I, κ i) a) s = ∑ i in I, ↑↑(↑(κ i) a) s [PROOFSTEP] rw [finset_sum_apply, Measure.finset_sum_apply] [GOAL] α✝ : Type u_1 β✝ : Type u_2 ι : Type u_3 mα✝ : MeasurableSpace α✝ mβ✝ : MeasurableSpace β✝ α : Type u_4 β : Type u_5 mα : MeasurableSpace α mβ : MeasurableSpace β x✝ : α ⊢ ↑↑(↑0 x✝) Set.univ ≤ 0 [PROOFSTEP] simp only [kernel.zero_apply, Measure.coe_zero, Pi.zero_apply, le_zero_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η ⊢ IsFiniteKernel (κ + η) [PROOFSTEP] refine ⟨⟨IsFiniteKernel.bound κ + IsFiniteKernel.bound η, ENNReal.add_lt_top.mpr ⟨IsFiniteKernel.bound_lt_top κ, IsFiniteKernel.bound_lt_top η⟩, fun a => ?_⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η a : α ⊢ ↑↑(↑(κ + η) a) Set.univ ≤ bound κ + bound η [PROOFSTEP] exact add_le_add (kernel.measure_le_bound _ _ _) (kernel.measure_le_bound _ _ _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } ⊢ κ = η ↔ ∀ (a : α) (s : Set β), MeasurableSet s → ↑↑(↑κ a) s = ↑↑(↑η a) s [PROOFSTEP] simp_rw [ext_iff, Measure.ext_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } h : ∀ (a : α) (f : β → ℝ≥0∞), Measurable f → ∫⁻ (b : β), f b ∂↑κ a = ∫⁻ (b : β), f b ∂↑η a ⊢ κ = η [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } h : ∀ (a : α) (f : β → ℝ≥0∞), Measurable f → ∫⁻ (b : β), f b ∂↑κ a = ∫⁻ (b : β), f b ∂↑η a a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑κ a) s = ↑↑(↑η a) s [PROOFSTEP] specialize h a (s.indicator fun _ => 1) (Measurable.indicator measurable_const hs) [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } a : α s : Set β hs : MeasurableSet s h : ∫⁻ (b : β), Set.indicator s (fun x => 1) b ∂↑κ a = ∫⁻ (b : β), Set.indicator s (fun x => 1) b ∂↑η a ⊢ ↑↑(↑κ a) s = ↑↑(↑η a) s [PROOFSTEP] simp_rw [lintegral_indicator_const hs, one_mul] at h [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } a : α s : Set β hs : MeasurableSet s h : ↑↑(↑κ a) s = ↑↑(↑η a) s ⊢ ↑↑(↑κ a) s = ↑↑(↑η a) s [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } h : κ = η a : α f : β → ℝ≥0∞ x✝ : Measurable f ⊢ ∫⁻ (b : β), f b ∂↑κ a = ∫⁻ (b : β), f b ∂↑η a [PROOFSTEP] rw [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } μ : Measure α inst✝¹ : IsFiniteMeasure μ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ s : Set β hs : MeasurableSet s ⊢ Integrable fun x => ENNReal.toReal (↑↑(↑κ x) s) [PROOFSTEP] refine' Integrable.mono' (integrable_const (IsFiniteKernel.bound κ).toReal) ((kernel.measurable_coe κ hs).ennreal_toReal.aestronglyMeasurable) (ae_of_all μ <| fun x => _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } μ : Measure α inst✝¹ : IsFiniteMeasure μ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ s : Set β hs : MeasurableSet s x : α ⊢ ‖ENNReal.toReal (↑↑(↑κ x) s)‖ ≤ ENNReal.toReal (IsFiniteKernel.bound κ) [PROOFSTEP] rw [Real.norm_eq_abs, abs_of_nonneg ENNReal.toReal_nonneg, ENNReal.toReal_le_toReal (measure_ne_top _ _) (IsFiniteKernel.bound_ne_top _)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } μ : Measure α inst✝¹ : IsFiniteMeasure μ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ s : Set β hs : MeasurableSet s x : α ⊢ ↑↑(↑κ x) s ≤ IsFiniteKernel.bound κ [PROOFSTEP] exact kernel.measure_le_bound _ _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } ⊢ (fun a => Measure.sum fun n => ↑(κ n) a) ∈ kernel α β [PROOFSTEP] refine' Measure.measurable_of_measurable_coe _ fun s hs => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(Measure.sum fun n => ↑(κ n) b) s [PROOFSTEP] simp_rw [Measure.sum_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ∑' (i : ι), ↑↑(↑(κ i) b) s [PROOFSTEP] exact Measurable.ennreal_tsum fun n => kernel.measurable_coe (κ n) hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum κ) a) s = ∑' (n : ι), ↑↑(↑(κ n) a) s [PROOFSTEP] rw [sum_apply κ a, Measure.sum_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι ⊢ (kernel.sum fun x => 0) = 0 [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun x => 0) a) s = ↑↑(↑0 a) s [PROOFSTEP] rw [sum_apply' _ a hs] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι a : α s : Set β hs : MeasurableSet s ⊢ ∑' (n : ι), ↑↑(↑0 a) s = ↑↑(↑0 a) s [PROOFSTEP] simp only [zero_apply, Measure.coe_zero, Pi.zero_apply, tsum_zero] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → ι → { x // x ∈ kernel α β } ⊢ (kernel.sum fun n => kernel.sum (κ n)) = kernel.sum fun m => kernel.sum fun n => κ n m [PROOFSTEP] ext a s [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → ι → { x // x ∈ kernel α β } a : α s : Set β a✝ : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun n => kernel.sum (κ n)) a) s = ↑↑(↑(kernel.sum fun m => kernel.sum fun n => κ n m) a) s [PROOFSTEP] simp_rw [sum_apply] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ : ι → ι → { x // x ∈ kernel α β } a : α s : Set β a✝ : MeasurableSet s ⊢ ↑↑(Measure.sum fun n => Measure.sum fun n_1 => ↑(κ n n_1) a) s = ↑↑(Measure.sum fun n => Measure.sum fun n_1 => ↑(κ n_1 n) a) s [PROOFSTEP] rw [Measure.sum_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Fintype ι κ : ι → { x // x ∈ kernel α β } ⊢ kernel.sum κ = ∑ i : ι, κ i [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Fintype ι κ : ι → { x // x ∈ kernel α β } a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum κ) a) s = ↑↑(↑(∑ i : ι, κ i) a) s [PROOFSTEP] simp only [sum_apply' κ a hs, finset_sum_apply' _ κ a s, tsum_fintype] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ η : ι → { x // x ∈ kernel α β } ⊢ (kernel.sum fun n => κ n + η n) = kernel.sum κ + kernel.sum η [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } inst✝ : Countable ι κ η : ι → { x // x ∈ kernel α β } a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun n => κ n + η n) a) s = ↑↑(↑(kernel.sum κ + kernel.sum η) a) s [PROOFSTEP] simp only [coeFn_add, Pi.add_apply, sum_apply, Measure.sum_apply _ hs, Pi.add_apply, Measure.coe_add, tsum_add ENNReal.summable ENNReal.summable] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ n : ℕ ⊢ IsFiniteKernel ((fun n => if n = 0 then κ else 0) n) [PROOFSTEP] simp only [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ n : ℕ ⊢ IsFiniteKernel (if n = 0 then κ else 0) [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ n : ℕ h✝ : n = 0 ⊢ IsFiniteKernel κ case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ n : ℕ h✝ : ¬n = 0 ⊢ IsFiniteKernel 0 [PROOFSTEP] exact h [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ n : ℕ h✝ : ¬n = 0 ⊢ IsFiniteKernel 0 [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ ⊢ κ = kernel.sum fun n => if n = 0 then κ else 0 [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑κ a) s = ↑↑(↑(kernel.sum fun n => if n = 0 then κ else 0) a) s [PROOFSTEP] rw [kernel.sum_apply' _ _ hs] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑κ a) s = ∑' (n : ℕ), ↑↑(↑(if n = 0 then κ else 0) a) s [PROOFSTEP] have : (fun i => ((ite (i = 0) κ 0) a) s) = fun i => ite (i = 0) (κ a s) 0 := by ext1 i; split_ifs <;> rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s ⊢ (fun i => ↑↑(↑(if i = 0 then κ else 0) a) s) = fun i => if i = 0 then ↑↑(↑κ a) s else 0 [PROOFSTEP] ext1 i [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s i : ℕ ⊢ ↑↑(↑(if i = 0 then κ else 0) a) s = if i = 0 then ↑↑(↑κ a) s else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s i : ℕ h✝ : i = 0 ⊢ ↑↑(↑κ a) s = ↑↑(↑κ a) s [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s i : ℕ h✝ : ¬i = 0 ⊢ ↑↑(↑0 a) s = 0 [PROOFSTEP] rfl [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } h : IsFiniteKernel κ a : α s : Set β hs : MeasurableSet s this : (fun i => ↑↑(↑(if i = 0 then κ else 0) a) s) = fun i => if i = 0 then ↑↑(↑κ a) s else 0 ⊢ ↑↑(↑κ a) s = ∑' (n : ℕ), ↑↑(↑(if n = 0 then κ else 0) a) s [PROOFSTEP] rw [this, tsum_ite_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ κ : { x // x ∈ kernel α β } h : IsSFiniteKernel κ a : α ⊢ (Measure.sum fun n => ↑(seq κ n) a) = ↑κ a [PROOFSTEP] rw [← kernel.sum_apply, kernel_sum_seq κ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η ⊢ IsSFiniteKernel (κ + η) [PROOFSTEP] refine' ⟨⟨fun n => seq κ n + seq η n, fun n => inferInstance, _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η ⊢ κ + η = kernel.sum fun n => seq κ n + seq η n [PROOFSTEP] rw [sum_add, kernel_sum_seq κ, kernel_sum_seq η] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I : Finset ι h : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i) ⊢ IsSFiniteKernel (∑ i in I, κs i) [PROOFSTEP] classical induction' I using Finset.induction with i I hi_nmem_I h_ind h · rw [Finset.sum_empty]; infer_instance · rw [Finset.sum_insert hi_nmem_I] haveI : IsSFiniteKernel (κs i) := h i (Finset.mem_insert_self _ _) have : IsSFiniteKernel (∑ x : ι in I, κs x) := h_ind fun i hiI => h i (Finset.mem_insert_of_mem hiI) exact IsSFiniteKernel.add _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I : Finset ι h : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i) ⊢ IsSFiniteKernel (∑ i in I, κs i) [PROOFSTEP] induction' I using Finset.induction with i I hi_nmem_I h_ind h [GOAL] case empty α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I : Finset ι h✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i) h : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i) ⊢ IsSFiniteKernel (∑ i in ∅, κs i) [PROOFSTEP] rw [Finset.sum_empty] [GOAL] case empty α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I : Finset ι h✝ : ∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i) h : ∀ (i : ι), i ∈ ∅ → IsSFiniteKernel (κs i) ⊢ IsSFiniteKernel 0 [PROOFSTEP] infer_instance [GOAL] case insert α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I✝ : Finset ι h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i) i : ι I : Finset ι hi_nmem_I : ¬i ∈ I h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i) h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1) ⊢ IsSFiniteKernel (∑ i in insert i I, κs i) [PROOFSTEP] rw [Finset.sum_insert hi_nmem_I] [GOAL] case insert α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I✝ : Finset ι h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i) i : ι I : Finset ι hi_nmem_I : ¬i ∈ I h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i) h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1) ⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x) [PROOFSTEP] haveI : IsSFiniteKernel (κs i) := h i (Finset.mem_insert_self _ _) [GOAL] case insert α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I✝ : Finset ι h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i) i : ι I : Finset ι hi_nmem_I : ¬i ∈ I h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i) h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1) this : IsSFiniteKernel (κs i) ⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x) [PROOFSTEP] have : IsSFiniteKernel (∑ x : ι in I, κs x) := h_ind fun i hiI => h i (Finset.mem_insert_of_mem hiI) [GOAL] case insert α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } κs : ι → { x // x ∈ kernel α β } I✝ : Finset ι h✝ : ∀ (i : ι), i ∈ I✝ → IsSFiniteKernel (κs i) i : ι I : Finset ι hi_nmem_I : ¬i ∈ I h_ind : (∀ (i : ι), i ∈ I → IsSFiniteKernel (κs i)) → IsSFiniteKernel (∑ i in I, κs i) h : ∀ (i_1 : ι), i_1 ∈ insert i I → IsSFiniteKernel (κs i_1) this✝ : IsSFiniteKernel (κs i) this : IsSFiniteKernel (∑ x in I, κs x) ⊢ IsSFiniteKernel (κs i + ∑ x in I, κs x) [PROOFSTEP] exact IsSFiniteKernel.add _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) ⊢ IsSFiniteKernel (kernel.sum κs) [PROOFSTEP] let e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm ⊢ IsSFiniteKernel (kernel.sum κs) [PROOFSTEP] refine' ⟨⟨fun n => seq (κs (e n).1) (e n).2, inferInstance, _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm ⊢ kernel.sum κs = kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd [PROOFSTEP] have hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) := by simp_rw [kernel_sum_seq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm ⊢ kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) [PROOFSTEP] simp_rw [kernel_sum_seq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) ⊢ kernel.sum κs = kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum κs) a) s = ↑↑(↑(kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd) a) s [PROOFSTEP] rw [hκ_eq] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun n => kernel.sum (seq (κs n))) a) s = ↑↑(↑(kernel.sum fun n => seq (κs (↑e n).fst) (↑e n).snd) a) s [PROOFSTEP] simp_rw [kernel.sum_apply' _ _ hs] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) a : α s : Set β hs : MeasurableSet s ⊢ ∑' (n : ι) (n_1 : ℕ), ↑↑(↑(seq (κs n) n_1) a) s = ∑' (n : ℕ), ↑↑(↑(seq (κs (↑(Denumerable.eqv (ι × ℕ)).symm n).fst) (↑(Denumerable.eqv (ι × ℕ)).symm n).snd) a) s [PROOFSTEP] change (∑' i, ∑' m, seq (κs i) m a s) = ∑' n, (fun im : ι × ℕ => seq (κs im.fst) im.snd a s) (e n) [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Denumerable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) e : ℕ ≃ ι × ℕ := (Denumerable.eqv (ι × ℕ)).symm hκ_eq : kernel.sum κs = kernel.sum fun n => kernel.sum (seq (κs n)) a : α s : Set β hs : MeasurableSet s ⊢ ∑' (i : ι) (m : ℕ), ↑↑(↑(seq (κs i) m) a) s = ∑' (n : ℕ), (fun im => ↑↑(↑(seq (κs im.fst) im.snd) a) s) (↑e n) [PROOFSTEP] rw [e.tsum_eq (fun im : ι × ℕ => seq (κs im.fst) im.snd a s), tsum_prod' ENNReal.summable fun _ => ENNReal.summable] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) ⊢ IsSFiniteKernel (kernel.sum κs) [PROOFSTEP] cases fintypeOrInfinite ι [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) val✝ : Fintype ι ⊢ IsSFiniteKernel (kernel.sum κs) [PROOFSTEP] rw [sum_fintype] [GOAL] case inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) val✝ : Fintype ι ⊢ IsSFiniteKernel (∑ i : ι, κs i) [PROOFSTEP] exact IsSFiniteKernel.finset_sum Finset.univ fun i _ => hκs i [GOAL] case inr α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) val✝ : Infinite ι ⊢ IsSFiniteKernel (kernel.sum κs) [PROOFSTEP] cases nonempty_denumerable ι [GOAL] case inr.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } inst✝ : Countable ι κs : ι → { x // x ∈ kernel α β } hκs : ∀ (n : ι), IsSFiniteKernel (κs n) val✝¹ : Infinite ι val✝ : Denumerable ι ⊢ IsSFiniteKernel (kernel.sum κs) [PROOFSTEP] exact isSFiniteKernel_sum_of_denumerable hκs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f ⊢ (fun a => Measure.dirac (f a)) ∈ kernel α β [PROOFSTEP] refine' Measure.measurable_of_measurable_coe _ fun s hs => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(Measure.dirac (f b)) s [PROOFSTEP] simp_rw [Measure.dirac_apply' _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f s : Set β hs : MeasurableSet s ⊢ Measurable fun b => Set.indicator s 1 (f b) [PROOFSTEP] exact measurable_one.indicator (hf hs) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(deterministic f hf) a) s = Set.indicator s (fun x => 1) (f a) [PROOFSTEP] rw [deterministic] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑{ val := fun a => Measure.dirac (f a), property := (_ : Measurable fun a => Measure.dirac (f a)) } a) s = Set.indicator s (fun x => 1) (f a) [PROOFSTEP] change Measure.dirac (f a) s = s.indicator 1 (f a) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(Measure.dirac (f a)) s = Set.indicator s 1 (f a) [PROOFSTEP] simp_rw [Measure.dirac_apply' _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f a : α ⊢ IsProbabilityMeasure (↑(deterministic f hf) a) [PROOFSTEP] rw [deterministic_apply hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : α → β hf : Measurable f a : α ⊢ IsProbabilityMeasure (Measure.dirac (f a)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : β → ℝ≥0∞ g : α → β a : α hg : Measurable g hf : Measurable f ⊢ ∫⁻ (x : β), f x ∂↑(deterministic g hg) a = f (g a) [PROOFSTEP] rw [kernel.deterministic_apply, lintegral_dirac' _ hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : β → ℝ≥0∞ g : α → β a : α hg : Measurable g inst✝ : MeasurableSingletonClass β ⊢ ∫⁻ (x : β), f x ∂↑(deterministic g hg) a = f (g a) [PROOFSTEP] rw [kernel.deterministic_apply, lintegral_dirac (g a) f] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : β → ℝ≥0∞ g : α → β a : α hg : Measurable g hf : Measurable f s : Set β hs : MeasurableSet s inst✝ : Decidable (g a ∈ s) ⊢ ∫⁻ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0 [PROOFSTEP] rw [kernel.deterministic_apply, set_lintegral_dirac' hf hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : β → ℝ≥0∞ g : α → β a : α hg : Measurable g inst✝¹ : MeasurableSingletonClass β s : Set β inst✝ : Decidable (g a ∈ s) ⊢ ∫⁻ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0 [PROOFSTEP] rw [kernel.deterministic_apply, set_lintegral_dirac f s] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β → E g : α → β a : α hg : Measurable g hf : StronglyMeasurable f ⊢ ∫ (x : β), f x ∂↑(deterministic g hg) a = f (g a) [PROOFSTEP] rw [kernel.deterministic_apply, integral_dirac' _ _ hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : β → E g : α → β a : α hg : Measurable g inst✝ : MeasurableSingletonClass β ⊢ ∫ (x : β), f x ∂↑(deterministic g hg) a = f (g a) [PROOFSTEP] rw [kernel.deterministic_apply, integral_dirac _ (g a)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : β → E g : α → β a : α hg : Measurable g hf : StronglyMeasurable f s : Set β hs : MeasurableSet s inst✝ : Decidable (g a ∈ s) ⊢ ∫ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0 [PROOFSTEP] rw [kernel.deterministic_apply, set_integral_dirac' hf _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : β → E g : α → β a : α hg : Measurable g inst✝¹ : MeasurableSingletonClass β s : Set β inst✝ : Decidable (g a ∈ s) ⊢ ∫ (x : β) in s, f x ∂↑(deterministic g hg) a = if g a ∈ s then f (g a) else 0 [PROOFSTEP] rw [kernel.deterministic_apply, set_integral_dirac f _ s] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : β → ℝ≥0∞ μ : Measure β a : α ⊢ ∫⁻ (x : β), f x ∂↑(const α μ) a = ∫⁻ (x : β), f x ∂μ [PROOFSTEP] rw [kernel.const_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f : β → ℝ≥0∞ μ : Measure β a : α s : Set β ⊢ ∫⁻ (x : β) in s, f x ∂↑(const α μ) a = ∫⁻ (x : β) in s, f x ∂μ [PROOFSTEP] rw [kernel.const_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : β → E μ : Measure β a : α ⊢ ∫ (x : β), f x ∂↑(const α μ) a = ∫ (x : β), f x ∂μ [PROOFSTEP] rw [kernel.const_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : β → E μ : Measure β a : α s : Set β ⊢ ∫ (x : β) in s, f x ∂↑(const α μ) a = ∫ (x : β) in s, f x ∂μ [PROOFSTEP] rw [kernel.const_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } hs : MeasurableSet s ⊢ (fun a => Measure.restrict (↑κ a) s) ∈ kernel α β [PROOFSTEP] refine' Measure.measurable_of_measurable_coe _ fun t ht => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t✝ : Set β κ : { x // x ∈ kernel α β } hs : MeasurableSet s t : Set β ht : MeasurableSet t ⊢ Measurable fun b => ↑↑(Measure.restrict (↑κ b) s) t [PROOFSTEP] simp_rw [Measure.restrict_apply ht] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t✝ : Set β κ : { x // x ∈ kernel α β } hs : MeasurableSet s t : Set β ht : MeasurableSet t ⊢ Measurable fun b => ↑↑(↑κ b) (t ∩ s) [PROOFSTEP] exact kernel.measurable_coe κ (ht.inter hs) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } hs : MeasurableSet s a : α ht : MeasurableSet t ⊢ ↑↑(↑(kernel.restrict κ hs) a) t = ↑↑(↑κ a) (t ∩ s) [PROOFSTEP] rw [restrict_apply κ hs a, Measure.restrict_apply ht] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } s t : Set β ⊢ kernel.restrict κ (_ : MeasurableSet Set.univ) = κ [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } s t : Set β a : α ⊢ ↑(kernel.restrict κ (_ : MeasurableSet Set.univ)) a = ↑κ a [PROOFSTEP] rw [kernel.restrict_apply, Measure.restrict_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } hs : MeasurableSet s a : α f : β → ℝ≥0∞ ⊢ ∫⁻ (b : β), f b ∂↑(kernel.restrict κ hs) a = ∫⁻ (b : β) in s, f b ∂↑κ a [PROOFSTEP] rw [restrict_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t✝ : Set β κ : { x // x ∈ kernel α β } hs : MeasurableSet s a : α f : β → ℝ≥0∞ t : Set β ⊢ ∫⁻ (b : β) in t, f b ∂↑(kernel.restrict κ hs) a = ∫⁻ (b : β) in t ∩ s, f b ∂↑κ a [PROOFSTEP] rw [restrict_apply, Measure.restrict_restrict' hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } s t✝ : Set β E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E f : β → E a : α hs : MeasurableSet s t : Set β ⊢ ∫ (x : β) in t, f x ∂↑(kernel.restrict κ hs) a = ∫ (x : β) in t ∩ s, f x ∂↑κ a [PROOFSTEP] rw [restrict_apply, Measure.restrict_restrict' hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hs : MeasurableSet s ⊢ IsFiniteKernel (kernel.restrict κ hs) [PROOFSTEP] refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hs : MeasurableSet s a : α ⊢ ↑↑(↑(kernel.restrict κ hs) a) Set.univ ≤ IsFiniteKernel.bound κ [PROOFSTEP] rw [restrict_apply' κ hs a MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hs : MeasurableSet s a : α ⊢ ↑↑(↑κ a) (Set.univ ∩ s) ≤ IsFiniteKernel.bound κ [PROOFSTEP] exact measure_le_bound κ a _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hs : MeasurableSet s ⊢ IsSFiniteKernel (kernel.restrict κ hs) [PROOFSTEP] refine' ⟨⟨fun n => kernel.restrict (seq κ n) hs, inferInstance, _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hs : MeasurableSet s ⊢ kernel.restrict κ hs = kernel.sum fun n => kernel.restrict (seq κ n) hs [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } s t : Set β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hs : MeasurableSet s a : α ⊢ ↑(kernel.restrict κ hs) a = ↑(kernel.sum fun n => kernel.restrict (seq κ n) hs) a [PROOFSTEP] simp_rw [sum_apply, restrict_apply, ← Measure.restrict_sum _ hs, ← sum_apply, kernel_sum_seq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f ⊢ (fun a => Measure.comap f (↑κ a)) ∈ kernel α γ [PROOFSTEP] refine' Measure.measurable_measure.mpr fun t ht => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f t : Set γ ht : MeasurableSet t ⊢ Measurable fun b => ↑↑(Measure.comap f (↑κ b)) t [PROOFSTEP] have : (fun a => Measure.comap f (κ a) t) = fun a => κ a (f '' t) := by ext1 a rw [Measure.comap_apply _ hf.injective _ _ ht] exact fun s' hs' ↦ hf.measurableSet_image.mpr hs' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f t : Set γ ht : MeasurableSet t ⊢ (fun a => ↑↑(Measure.comap f (↑κ a)) t) = fun a => ↑↑(↑κ a) (f '' t) [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f t : Set γ ht : MeasurableSet t a : α ⊢ ↑↑(Measure.comap f (↑κ a)) t = ↑↑(↑κ a) (f '' t) [PROOFSTEP] rw [Measure.comap_apply _ hf.injective _ _ ht] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f t : Set γ ht : MeasurableSet t a : α ⊢ ∀ (s : Set γ), MeasurableSet s → MeasurableSet (f '' s) [PROOFSTEP] exact fun s' hs' ↦ hf.measurableSet_image.mpr hs' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f t : Set γ ht : MeasurableSet t this : (fun a => ↑↑(Measure.comap f (↑κ a)) t) = fun a => ↑↑(↑κ a) (f '' t) ⊢ Measurable fun b => ↑↑(Measure.comap f (↑κ b)) t [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f t : Set γ ht : MeasurableSet t this : (fun a => ↑↑(Measure.comap f (↑κ a)) t) = fun a => ↑↑(↑κ a) (f '' t) ⊢ Measurable fun a => ↑↑(↑κ a) (f '' t) [PROOFSTEP] exact kernel.measurable_coe _ (hf.measurableSet_image.mpr ht) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f a : α t : Set γ ht : MeasurableSet t ⊢ ↑↑(↑(comapRight κ hf) a) t = ↑↑(↑κ a) (f '' t) [PROOFSTEP] rw [comapRight_apply, Measure.comap_apply _ hf.injective (fun s => hf.measurableSet_image.mpr) _ ht] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1 ⊢ IsMarkovKernel (kernel.comapRight κ hf) [PROOFSTEP] refine' ⟨fun a => ⟨_⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1 a : α ⊢ ↑↑(↑(kernel.comapRight κ hf) a) Set.univ = 1 [PROOFSTEP] rw [comapRight_apply' κ hf a MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1 a : α ⊢ ↑↑(↑κ a) (f '' Set.univ) = 1 [PROOFSTEP] simp only [Set.image_univ, Subtype.range_coe_subtype, Set.setOf_mem_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } hf : MeasurableEmbedding f hκ : ∀ (a : α), ↑↑(↑κ a) (Set.range f) = 1 a : α ⊢ ↑↑(↑κ a) (Set.range f) = 1 [PROOFSTEP] exact hκ a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf : MeasurableEmbedding f ⊢ IsFiniteKernel (kernel.comapRight κ hf) [PROOFSTEP] refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf : MeasurableEmbedding f a : α ⊢ ↑↑(↑(kernel.comapRight κ hf) a) Set.univ ≤ IsFiniteKernel.bound κ [PROOFSTEP] rw [comapRight_apply' κ hf a .univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf : MeasurableEmbedding f a : α ⊢ ↑↑(↑κ a) (f '' Set.univ) ≤ IsFiniteKernel.bound κ [PROOFSTEP] exact measure_le_bound κ a _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f ⊢ IsSFiniteKernel (comapRight κ hf) [PROOFSTEP] refine' ⟨⟨fun n => comapRight (seq κ n) hf, inferInstance, _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f ⊢ comapRight κ hf = kernel.sum fun n => comapRight (seq κ n) hf [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α ⊢ ↑(comapRight κ hf) a = ↑(kernel.sum fun n => comapRight (seq κ n) hf) a [PROOFSTEP] rw [sum_apply] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α ⊢ ↑(comapRight κ hf) a = Measure.sum fun n => ↑(comapRight (seq κ n) hf) a [PROOFSTEP] simp_rw [comapRight_apply _ hf] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α ⊢ Measure.comap f (↑κ a) = Measure.sum fun n => Measure.comap f (↑(seq κ n) a) [PROOFSTEP] have : (Measure.sum fun n => Measure.comap f (seq κ n a)) = Measure.comap f (Measure.sum fun n => seq κ n a) := by ext1 t ht rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht, Measure.sum_apply _ ht, Measure.sum_apply _ (hf.measurableSet_image.mpr ht)] congr with n : 1 rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α ⊢ (Measure.sum fun n => Measure.comap f (↑(seq κ n) a)) = Measure.comap f (Measure.sum fun n => ↑(seq κ n) a) [PROOFSTEP] ext1 t ht [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α t : Set γ ht : MeasurableSet t ⊢ ↑↑(Measure.sum fun n => Measure.comap f (↑(seq κ n) a)) t = ↑↑(Measure.comap f (Measure.sum fun n => ↑(seq κ n) a)) t [PROOFSTEP] rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht, Measure.sum_apply _ ht, Measure.sum_apply _ (hf.measurableSet_image.mpr ht)] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α t : Set γ ht : MeasurableSet t ⊢ ∑' (i : ℕ), ↑↑(Measure.comap f (↑(seq κ i) a)) t = ∑' (i : ℕ), ↑↑(↑(seq κ i) a) (f '' t) [PROOFSTEP] congr with n : 1 [GOAL] case h.e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α t : Set γ ht : MeasurableSet t n : ℕ ⊢ ↑↑(Measure.comap f (↑(seq κ n) a)) t = ↑↑(↑(seq κ n) a) (f '' t) [PROOFSTEP] rw [Measure.comap_apply _ hf.injective (fun s' => hf.measurableSet_image.mpr) _ ht] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } γ : Type u_4 mγ : MeasurableSpace γ f : γ → β κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : MeasurableEmbedding f a : α this : (Measure.sum fun n => Measure.comap f (↑(seq κ n) a)) = Measure.comap f (Measure.sum fun n => ↑(seq κ n) a) ⊢ Measure.comap f (↑κ a) = Measure.sum fun n => Measure.comap f (↑(seq κ n) a) [PROOFSTEP] rw [this, measure_sum_seq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α t : Set β ⊢ ↑↑(↑(piecewise hs κ η) a) t = if a ∈ s then ↑↑(↑κ a) t else ↑↑(↑η a) t [PROOFSTEP] rw [piecewise_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α t : Set β ⊢ ↑↑(if a ∈ s then ↑κ a else ↑η a) t = if a ∈ s then ↑↑(↑κ a) t else ↑↑(↑η a) t [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α t : Set β h✝ : a ∈ s ⊢ ↑↑(↑κ a) t = ↑↑(↑κ a) t [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α t : Set β h✝ : ¬a ∈ s ⊢ ↑↑(↑η a) t = ↑↑(↑η a) t [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsMarkovKernel κ inst✝ : IsMarkovKernel η ⊢ IsMarkovKernel (kernel.piecewise hs κ η) [PROOFSTEP] refine' ⟨fun a => ⟨_⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsMarkovKernel κ inst✝ : IsMarkovKernel η a : α ⊢ ↑↑(↑(kernel.piecewise hs κ η) a) Set.univ = 1 [PROOFSTEP] rw [piecewise_apply', measure_univ, measure_univ, ite_self] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η ⊢ IsFiniteKernel (kernel.piecewise hs κ η) [PROOFSTEP] refine' ⟨⟨max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η), _, fun a => _⟩⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η ⊢ max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η) < ⊤ [PROOFSTEP] exact max_lt (IsFiniteKernel.bound_lt_top κ) (IsFiniteKernel.bound_lt_top η) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η a : α ⊢ ↑↑(↑(kernel.piecewise hs κ η) a) Set.univ ≤ max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η) [PROOFSTEP] rw [piecewise_apply'] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsFiniteKernel κ inst✝ : IsFiniteKernel η a : α ⊢ (if a ∈ s then ↑↑(↑κ a) Set.univ else ↑↑(↑η a) Set.univ) ≤ max (IsFiniteKernel.bound κ) (IsFiniteKernel.bound η) [PROOFSTEP] exact (ite_le_sup _ _ _).trans (sup_le_sup (measure_le_bound _ _ _) (measure_le_bound _ _ _)) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η ⊢ IsSFiniteKernel (piecewise hs κ η) [PROOFSTEP] refine' ⟨⟨fun n => piecewise hs (seq κ n) (seq η n), inferInstance, _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η ⊢ piecewise hs κ η = kernel.sum fun n => piecewise hs (seq κ n) (seq η n) [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η a : α ⊢ ↑(piecewise hs κ η) a = ↑(kernel.sum fun n => piecewise hs (seq κ n) (seq η n)) a [PROOFSTEP] simp_rw [sum_apply, kernel.piecewise_apply] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η a : α ⊢ (if a ∈ s then ↑κ a else ↑η a) = Measure.sum fun n => if a ∈ s then ↑(seq κ n) a else ↑(seq η n) a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η a : α h✝ : a ∈ s ⊢ ↑κ a = Measure.sum fun n => ↑(seq κ n) a [PROOFSTEP] exact (measure_sum_seq _ a).symm [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η a : α h✝ : ¬a ∈ s ⊢ ↑η a = Measure.sum fun n => ↑(seq η n) a [PROOFSTEP] exact (measure_sum_seq _ a).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ ⊢ ∫⁻ (b : β), g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫⁻ (b : β), g b ∂↑κ a else ∫⁻ (b : β), g b ∂↑η a [PROOFSTEP] simp_rw [piecewise_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ ⊢ (∫⁻ (b : β), g b ∂if a ∈ s then ↑κ a else ↑η a) = if a ∈ s then ∫⁻ (b : β), g b ∂↑κ a else ∫⁻ (b : β), g b ∂↑η a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ h✝ : a ∈ s ⊢ ∫⁻ (b : β), g b ∂↑κ a = ∫⁻ (b : β), g b ∂↑κ a [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ h✝ : ¬a ∈ s ⊢ ∫⁻ (b : β), g b ∂↑η a = ∫⁻ (b : β), g b ∂↑η a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ t : Set β ⊢ ∫⁻ (b : β) in t, g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫⁻ (b : β) in t, g b ∂↑κ a else ∫⁻ (b : β) in t, g b ∂↑η a [PROOFSTEP] simp_rw [piecewise_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ t : Set β ⊢ (∫⁻ (b : β) in t, g b ∂if a ∈ s then ↑κ a else ↑η a) = if a ∈ s then ∫⁻ (b : β) in t, g b ∂↑κ a else ∫⁻ (b : β) in t, g b ∂↑η a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ t : Set β h✝ : a ∈ s ⊢ ∫⁻ (b : β) in t, g b ∂↑κ a = ∫⁻ (b : β) in t, g b ∂↑κ a [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝ : DecidablePred fun x => x ∈ s a : α g : β → ℝ≥0∞ t : Set β h✝ : ¬a ∈ s ⊢ ∫⁻ (b : β) in t, g b ∂↑η a = ∫⁻ (b : β) in t, g b ∂↑η a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E ⊢ ∫ (b : β), g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫ (b : β), g b ∂↑κ a else ∫ (b : β), g b ∂↑η a [PROOFSTEP] simp_rw [piecewise_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E ⊢ (∫ (b : β), g b ∂if a ∈ s then ↑κ a else ↑η a) = if a ∈ s then ∫ (b : β), g b ∂↑κ a else ∫ (b : β), g b ∂↑η a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E h✝ : a ∈ s ⊢ ∫ (b : β), g b ∂↑κ a = ∫ (b : β), g b ∂↑κ a [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E h✝ : ¬a ∈ s ⊢ ∫ (b : β), g b ∂↑η a = ∫ (b : β), g b ∂↑η a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E t : Set β ⊢ ∫ (b : β) in t, g b ∂↑(piecewise hs κ η) a = if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a [PROOFSTEP] simp_rw [piecewise_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E t : Set β ⊢ (∫ (b : β) in t, g b ∂if a ∈ s then ↑κ a else ↑η a) = if a ∈ s then ∫ (b : β) in t, g b ∂↑κ a else ∫ (b : β) in t, g b ∂↑η a [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E t : Set β h✝ : a ∈ s ⊢ ∫ (b : β) in t, g b ∂↑κ a = ∫ (b : β) in t, g b ∂↑κ a [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ η : { x // x ∈ kernel α β } s : Set α hs : MeasurableSet s inst✝² : DecidablePred fun x => x ∈ s E : Type u_4 inst✝¹ : NormedAddCommGroup E inst✝ : NormedSpace ℝ E a : α g : β → E t : Set β h✝ : ¬a ∈ s ⊢ ∫ (b : β) in t, g b ∂↑η a = ∫ (b : β) in t, g b ∂↑η a [PROOFSTEP] rfl
{"mathlib_filename": "Mathlib.Probability.Kernel.Basic", "llama_tokens": 28761}
[GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω π : ι → Set (Set Ω) μ : Measure Ω ⊢ iIndepSets π ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ (i : ι), i ∈ s → f i ∈ π i) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i) [PROOFSTEP] simp only [iIndepSets, kernel.iIndepSets, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω s1 s2 : Set (Set Ω) μ : Measure Ω ⊢ IndepSets s1 s2 ↔ ∀ (t1 t2 : Set Ω), t1 ∈ s1 → t2 ∈ s2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 [PROOFSTEP] simp only [IndepSets, kernel.IndepSets, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m : ι → MeasurableSpace Ω inst✝ : MeasurableSpace Ω μ : Measure Ω ⊢ iIndep m ↔ iIndepSets fun x => {s | MeasurableSet s} [PROOFSTEP] simp only [iIndep, iIndepSets, kernel.iIndep] [GOAL] Ω : Type u_1 ι : Type u_2 m : ι → MeasurableSpace Ω inst✝ : MeasurableSpace Ω μ : Measure Ω ⊢ iIndep m ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ (i : ι), i ∈ s → MeasurableSet (f i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i) [PROOFSTEP] simp only [iIndep_iff_iIndepSets, iIndepSets_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m : ι → MeasurableSpace Ω inst✝ : MeasurableSpace Ω μ : Measure Ω ⊢ (∀ (s : Finset ι) {f : ι → Set Ω}, (∀ (i : ι), i ∈ s → f i ∈ {s | MeasurableSet s}) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i)) ↔ ∀ (s : Finset ι) {f : ι → Set Ω}, (∀ (i : ι), i ∈ s → MeasurableSet (f i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f i) = ∏ i in s, ↑↑μ (f i) [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m₁ m₂ inst✝ : MeasurableSpace Ω μ : Measure Ω ⊢ Indep m₁ m₂ ↔ IndepSets {s | MeasurableSet s} {s | MeasurableSet s} [PROOFSTEP] simp only [Indep, IndepSets, kernel.Indep] [GOAL] Ω : Type u_1 ι : Type u_2 m₁ m₂ inst✝ : MeasurableSpace Ω μ : Measure Ω ⊢ Indep m₁ m₂ ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 [PROOFSTEP] rw [Indep_iff_IndepSets, IndepSets_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m₁ m₂ inst✝ : MeasurableSpace Ω μ : Measure Ω ⊢ (∀ (t1 t2 : Set Ω), t1 ∈ {s | MeasurableSet s} → t2 ∈ {s | MeasurableSet s} → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2) ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω s : ι → Set Ω μ : Measure Ω ⊢ iIndepSet s ↔ iIndep fun i => generateFrom {s i} [PROOFSTEP] simp only [iIndepSet, iIndep, kernel.iIndepSet] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω s : ι → Set Ω μ : Measure Ω ⊢ iIndepSet s ↔ ∀ (s' : Finset ι) {f : ι → Set Ω}, (∀ (i : ι), i ∈ s' → MeasurableSet (f i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s'), f i) = ∏ i in s', ↑↑μ (f i) [PROOFSTEP] simp only [iIndepSet_iff_iIndep, iIndep_iff] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω s t : Set Ω μ : Measure Ω ⊢ IndepSet s t ↔ Indep (generateFrom {s}) (generateFrom {t}) [PROOFSTEP] simp only [IndepSet, Indep, kernel.IndepSet] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω s t : Set Ω μ : Measure Ω ⊢ IndepSet s t ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 [PROOFSTEP] simp only [IndepSet_iff_Indep, Indep_iff] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω β : ι → Type u_3 m : (x : ι) → MeasurableSpace (β x) f : (x : ι) → Ω → β x μ : Measure Ω ⊢ iIndepFun m f ↔ iIndep fun x => MeasurableSpace.comap (f x) (m x) [PROOFSTEP] simp only [iIndepFun, iIndep, kernel.iIndepFun] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω β : ι → Type u_3 m : (x : ι) → MeasurableSpace (β x) f : (x : ι) → Ω → β x μ : Measure Ω ⊢ iIndepFun m f ↔ ∀ (s : Finset ι) {f' : ι → Set Ω}, (∀ (i : ι), i ∈ s → MeasurableSet (f' i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ s), f' i) = ∏ i in s, ↑↑μ (f' i) [PROOFSTEP] simp only [iIndepFun_iff_iIndep, iIndep_iff] [GOAL] Ω : Type u_1 ι : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : MeasurableSpace Ω mβ : MeasurableSpace β mγ : MeasurableSpace γ f : Ω → β g : Ω → γ μ : Measure Ω ⊢ IndepFun f g ↔ Indep (MeasurableSpace.comap f mβ) (MeasurableSpace.comap g mγ) [PROOFSTEP] simp only [IndepFun, Indep, kernel.IndepFun] [GOAL] Ω : Type u_1 ι : Type u_2 β : Type u_3 γ : Type u_4 inst✝ : MeasurableSpace Ω mβ : MeasurableSpace β mγ : MeasurableSpace γ f : Ω → β g : Ω → γ μ : Measure Ω ⊢ IndepFun f g ↔ ∀ (t1 t2 : Set Ω), MeasurableSet t1 → MeasurableSet t2 → ↑↑μ (t1 ∩ t2) = ↑↑μ t1 * ↑↑μ t2 [PROOFSTEP] rw [IndepFun_iff_Indep, Indep_iff] [GOAL] Ω : Type u_1 ι : Type u_2 inst✝ : MeasurableSpace Ω s t : Set Ω μ : Measure Ω ⊢ IndepSets {s} {t} ↔ ↑↑μ (s ∩ t) = ↑↑μ s * ↑↑μ t [PROOFSTEP] simp only [IndepSets, kernel.indepSets_singleton_iff, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' ⊢ IndepFun f g ↔ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → ↑↑μ (f ⁻¹' s ∩ g ⁻¹' t) = ↑↑μ (f ⁻¹' s) * ↑↑μ (g ⁻¹' t) [PROOFSTEP] simp only [IndepFun, kernel.indepFun_iff_measure_inter_preimage_eq_mul, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] Ω : Type u_1 ι✝ : Type u_2 β✝ : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → β✝ g : Ω → β' ι : Type u_7 β : ι → Type u_8 m : (x : ι) → MeasurableSpace (β x) f : (i : ι) → Ω → β i ⊢ iIndepFun m f ↔ ∀ (S : Finset ι) {sets : (i : ι) → Set (β i)}, (∀ (i : ι), i ∈ S → MeasurableSet (sets i)) → ↑↑μ (⋂ (i : ι) (_ : i ∈ S), f i ⁻¹' sets i) = ∏ i in S, ↑↑μ (f i ⁻¹' sets i) [PROOFSTEP] simp only [iIndepFun, kernel.iIndepFun_iff_measure_inter_preimage_eq_mul, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → β g : Ω → β' mβ : MeasurableSpace β mβ' : MeasurableSpace β' inst✝ : IsProbabilityMeasure μ hf : Measurable f hg : Measurable g ⊢ IndepFun f g ↔ ∀ (s : Set β) (t : Set β'), MeasurableSet s → MeasurableSet t → IndepSet (f ⁻¹' s) (g ⁻¹' t) [PROOFSTEP] simp only [IndepFun, IndepSet, kernel.indepFun_iff_indepSet_preimage hf hg, ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g hf : f =ᵐ[μ] f' hg : g =ᵐ[μ] g' ⊢ IndepFun f' g' [PROOFSTEP] refine kernel.IndepFun.ae_eq hfg ?_ ?_ [GOAL] case refine_1 Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g hf : f =ᵐ[μ] f' hg : g =ᵐ[μ] g' ⊢ ∀ᵐ (a : Unit) ∂Measure.dirac (), f =ᵐ[↑(kernel.const Unit μ) a] f' [PROOFSTEP] simp only [ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] case refine_2 Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g hf : f =ᵐ[μ] f' hg : g =ᵐ[μ] g' ⊢ ∀ᵐ (a : Unit) ∂Measure.dirac (), g =ᵐ[↑(kernel.const Unit μ) a] g' [PROOFSTEP] simp only [ae_dirac_eq, Filter.eventually_pure, kernel.const_apply] [GOAL] case refine_1 Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g hf : f =ᵐ[μ] f' hg : g =ᵐ[μ] g' ⊢ f =ᵐ[μ] f' case refine_2 Ω : Type u_1 ι : Type u_2 β : Type u_3 β' : Type u_4 γ : Type u_5 γ' : Type u_6 mΩ : MeasurableSpace Ω μ : Measure Ω f✝ : Ω → β g✝ : Ω → β' mβ : MeasurableSpace β f g f' g' : Ω → β hfg : IndepFun f g hf : f =ᵐ[μ] f' hg : g =ᵐ[μ] g' ⊢ g =ᵐ[μ] g' [PROOFSTEP] exacts [hf, hg]
{"mathlib_filename": "Mathlib.Probability.Independence.Basic", "llama_tokens": 4345}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ ⊢ HasFiniteIntegral fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) [PROOFSTEP] let t := toMeasurable ((κ ⊗ₖ η) a) s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s ⊢ HasFiniteIntegral fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) [PROOFSTEP] simp_rw [HasFiniteIntegral, ennnorm_eq_ofReal toReal_nonneg] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s ⊢ ∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s))) ∂↑κ a < ⊤ [PROOFSTEP] calc ∫⁻ b, ENNReal.ofReal (η (a, b) (Prod.mk b ⁻¹' s)).toReal ∂κ a _ ≤ ∫⁻ b, η (a, b) (Prod.mk b ⁻¹' t) ∂κ a := by refine' lintegral_mono_ae _ filter_upwards [ae_kernel_lt_top a h2s] with b hb rw [ofReal_toReal hb.ne] exact measure_mono (preimage_mono (subset_toMeasurable _ _)) _ ≤ (κ ⊗ₖ η) a t := (le_compProd_apply _ _ _ _) _ = (κ ⊗ₖ η) a s := (measure_toMeasurable s) _ < ⊤ := h2s.lt_top [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s ⊢ ∫⁻ (b : β), ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))) ∂↑κ a ≤ ∫⁻ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ∂↑κ a [PROOFSTEP] refine' lintegral_mono_ae _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s ⊢ ∀ᵐ (a_1 : β) ∂↑κ a, ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s))) ≤ ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' t) [PROOFSTEP] filter_upwards [ae_kernel_lt_top a h2s] with b hb [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s b : β hb : ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ ⊢ ENNReal.ofReal (ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' toMeasurable (↑(κ ⊗ₖ η) a) s) [PROOFSTEP] rw [ofReal_toReal hb.ne] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s b : β hb : ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ ⊢ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' toMeasurable (↑(κ ⊗ₖ η) a) s) [PROOFSTEP] exact measure_mono (preimage_mono (subset_toMeasurable _ _)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ ⊢ Integrable fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) [PROOFSTEP] constructor [GOAL] case left α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ ⊢ AEStronglyMeasurable (fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s))) (↑κ a) [PROOFSTEP] exact (measurable_kernel_prod_mk_left' hs a).ennreal_toReal.aestronglyMeasurable [GOAL] case right α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ ⊢ HasFiniteIntegral fun b => ENNReal.toReal (↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) [PROOFSTEP] exact hasFiniteIntegral_prod_mk_left a h2s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁴ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝³ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝² : IsSFiniteKernel η a : α inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : β × γ → E hf : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ (fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x)) =ᵐ[↑κ a] fun x => ∫ (y : γ), AEStronglyMeasurable.mk f hf (x, y) ∂↑η (a, x) [PROOFSTEP] filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with _ hx using integral_congr_ae hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝³ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝² : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝¹ : IsSFiniteKernel η a : α δ : Type u_5 inst✝ : TopologicalSpace δ f : β × γ → δ hf : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ ∀ᵐ (x : β) ∂↑κ a, AEStronglyMeasurable (fun y => f (x, y)) (↑η (a, x)) [PROOFSTEP] filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with x hx using ⟨fun y => hf.mk f (x, y), hf.stronglyMeasurable_mk.comp_measurable measurable_prod_mk_left, hx⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f ⊢ HasFiniteIntegral f ↔ (∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)) ∧ HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x) [PROOFSTEP] simp only [HasFiniteIntegral] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f ⊢ ∫⁻ (a : β × γ), ↑‖f a‖₊ ∂↑(κ ⊗ₖ η) a < ⊤ ↔ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ↑‖∫ (y : γ), ‖f (a_1, y)‖ ∂↑η (a, a_1)‖₊ ∂↑κ a < ⊤ [PROOFSTEP] rw [kernel.lintegral_compProd _ _ _ h1f.ennnorm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ↑‖∫ (y : γ), ‖f (a_1, y)‖ ∂↑η (a, a_1)‖₊ ∂↑κ a < ⊤ [PROOFSTEP] have : ∀ x, ∀ᵐ y ∂η (a, x), 0 ≤ ‖f (x, y)‖ := fun x => eventually_of_forall fun y => norm_nonneg _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ↑‖∫ (y : γ), ‖f (a_1, y)‖ ∂↑η (a, a_1)‖₊ ∂↑κ a < ⊤ [PROOFSTEP] simp_rw [integral_eq_lintegral_of_nonneg_ae (this _) (h1f.norm.comp_measurable measurable_prod_mk_left).aestronglyMeasurable, ennnorm_eq_ofReal toReal_nonneg, ofReal_norm_eq_coe_nnnorm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) ∂↑κ a < ⊤ [PROOFSTEP] have : ∀ {p q r : Prop} (_ : r → p), (r ↔ p ∧ q) ↔ p → (r ↔ q) := fun {p q r} h1 => by rw [← and_congr_right_iff, and_iff_right_of_imp h1] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ p q r : Prop h1 : r → p ⊢ (r ↔ p ∧ q) ↔ p → (r ↔ q) [PROOFSTEP] rw [← and_congr_right_iff, and_iff_right_of_imp h1] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) ∧ ∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) ∂↑κ a < ⊤ [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) ⊢ (∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤) → (∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔ ∫⁻ (a_2 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_2, a)‖₊ ∂↑η (a, a_2))) ∂↑κ a < ⊤) [PROOFSTEP] intro h2f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ↔ ∫⁻ (a_1 : β), ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) ∂↑κ a < ⊤ [PROOFSTEP] rw [lintegral_congr_ae] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ (fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) =ᵐ[↑κ a] fun a_1 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1))) [PROOFSTEP] refine' h2f.mp _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ → (fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) x = (fun a_2 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_2, a)‖₊ ∂↑η (a, a_2)))) x [PROOFSTEP] apply eventually_of_forall [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ ∀ (x : β), ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ → (fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) x = (fun a_2 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_2, a)‖₊ ∂↑η (a, a_2)))) x [PROOFSTEP] intro x hx [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ x : β hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ (fun b => ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b)) x = (fun a_1 => ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (a_1, a)‖₊ ∂↑η (a, a_1)))) x [PROOFSTEP] dsimp only [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ x : β hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ ∫⁻ (c : γ), ↑‖f (x, c)‖₊ ∂↑η (a, x) = ENNReal.ofReal (ENNReal.toReal (∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x))) [PROOFSTEP] rw [ofReal_toReal] [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ x : β hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) ≠ ⊤ [PROOFSTEP] rw [← lt_top_iff_ne_top] [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ x : β hx : ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ ⊢ ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ [PROOFSTEP] exact hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) ⊢ ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ → ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ [PROOFSTEP] intro h2f [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ⊢ ∀ᵐ (x : β) ∂↑κ a, ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) < ⊤ [PROOFSTEP] refine' ae_lt_top _ h2f.ne [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : StronglyMeasurable f this✝ : ∀ (x : β), ∀ᵐ (y : γ) ∂↑η (a, x), 0 ≤ ‖f (x, y)‖ this : ∀ {p q r : Prop}, (r → p) → ((r ↔ p ∧ q) ↔ p → (r ↔ q)) h2f : ∫⁻ (b : β), ∫⁻ (c : γ), ↑‖f (b, c)‖₊ ∂↑η (a, b) ∂↑κ a < ⊤ ⊢ Measurable fun x => ∫⁻ (a : γ), ↑‖f (x, a)‖₊ ∂↑η (a, x) [PROOFSTEP] exact h1f.ennnorm.lintegral_kernel_prod_right'' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ HasFiniteIntegral f ↔ (∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)) ∧ HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x) [PROOFSTEP] rw [hasFiniteIntegral_congr h1f.ae_eq_mk, hasFiniteIntegral_compProd_iff h1f.stronglyMeasurable_mk] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ ((∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ∧ HasFiniteIntegral fun x => ∫ (y : γ), ‖AEStronglyMeasurable.mk f h1f (x, y)‖ ∂↑η (a, x)) ↔ (∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y)) ∧ HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x) [PROOFSTEP] apply and_congr [GOAL] case h₁ α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ (∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ↔ ∀ᵐ (x : β) ∂↑κ a, HasFiniteIntegral fun y => f (x, y) [PROOFSTEP] apply eventually_congr [GOAL] case h₁.h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ ∀ᵐ (x : β) ∂↑κ a, (HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ↔ HasFiniteIntegral fun y => f (x, y) [PROOFSTEP] filter_upwards [ae_ae_of_ae_compProd h1f.ae_eq_mk.symm] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ ∀ (a_1 : β), (∀ᵐ (c : γ) ∂↑η (a, a_1), AEStronglyMeasurable.mk f h1f (a_1, c) = f (a_1, c)) → ((HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (a_1, y)) ↔ HasFiniteIntegral fun y => f (a_1, y)) [PROOFSTEP] intro x hx [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) x : β hx : ∀ᵐ (c : γ) ∂↑η (a, x), AEStronglyMeasurable.mk f h1f (x, c) = f (x, c) ⊢ (HasFiniteIntegral fun y => AEStronglyMeasurable.mk f h1f (x, y)) ↔ HasFiniteIntegral fun y => f (x, y) [PROOFSTEP] exact hasFiniteIntegral_congr hx [GOAL] case h₂ α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ (HasFiniteIntegral fun x => ∫ (y : γ), ‖AEStronglyMeasurable.mk f h1f (x, y)‖ ∂↑η (a, x)) ↔ HasFiniteIntegral fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x) [PROOFSTEP] apply hasFiniteIntegral_congr [GOAL] case h₂.h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E h1f : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ (fun x => ∫ (y : γ), ‖AEStronglyMeasurable.mk f h1f (x, y)‖ ∂↑η (a, x)) =ᵐ[↑κ a] fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x) [PROOFSTEP] filter_upwards [ae_ae_of_ae_compProd h1f.ae_eq_mk.symm] with _ hx using integral_congr_ae (EventuallyEq.fun_comp hx _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝² : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → E hf : AEStronglyMeasurable f (↑(κ ⊗ₖ η) a) ⊢ Integrable f ↔ (∀ᵐ (x : β) ∂↑κ a, Integrable fun y => f (x, y)) ∧ Integrable fun x => ∫ (y : γ), ‖f (x, y)‖ ∂↑η (a, x) [PROOFSTEP] simp only [Integrable, hasFiniteIntegral_compProd_iff' hf, hf.norm.integral_kernel_compProd, hf, hf.compProd_mk_left, eventually_and, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → E' hf : Integrable f hg : Integrable g ⊢ ∫ (x : β), F (∫ (y : γ), f (x, y) + g (x, y) ∂↑η (a, x)) ∂↑κ a = ∫ (x : β), F (∫ (y : γ), f (x, y) ∂↑η (a, x) + ∫ (y : γ), g (x, y) ∂↑η (a, x)) ∂↑κ a [PROOFSTEP] refine' integral_congr_ae _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → E' hf : Integrable f hg : Integrable g ⊢ (fun x => F (∫ (y : γ), f (x, y) + g (x, y) ∂↑η (a, x))) =ᵐ[↑κ a] fun x => F (∫ (y : γ), f (x, y) ∂↑η (a, x) + ∫ (y : γ), g (x, y) ∂↑η (a, x)) [PROOFSTEP] filter_upwards [hf.compProd_mk_left_ae, hg.compProd_mk_left_ae] with _ h2f h2g [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → E' hf : Integrable f hg : Integrable g a✝ : β h2f : Integrable fun y => f (a✝, y) h2g : Integrable fun y => g (a✝, y) ⊢ F (∫ (y : γ), f (a✝, y) + g (a✝, y) ∂↑η (a, a✝)) = F (∫ (y : γ), f (a✝, y) ∂↑η (a, a✝) + ∫ (y : γ), g (a✝, y) ∂↑η (a, a✝)) [PROOFSTEP] simp [integral_add h2f h2g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → E' hf : Integrable f hg : Integrable g ⊢ ∫ (x : β), F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x)) ∂↑κ a = ∫ (x : β), F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x)) ∂↑κ a [PROOFSTEP] refine' integral_congr_ae _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → E' hf : Integrable f hg : Integrable g ⊢ (fun x => F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x))) =ᵐ[↑κ a] fun x => F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x)) [PROOFSTEP] filter_upwards [hf.compProd_mk_left_ae, hg.compProd_mk_left_ae] with _ h2f h2g [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → E' hf : Integrable f hg : Integrable g a✝ : β h2f : Integrable fun y => f (a✝, y) h2g : Integrable fun y => g (a✝, y) ⊢ F (∫ (y : γ), f (a✝, y) - g (a✝, y) ∂↑η (a, a✝)) = F (∫ (y : γ), f (a✝, y) ∂↑η (a, a✝) - ∫ (y : γ), g (a✝, y) ∂↑η (a, a✝)) [PROOFSTEP] simp [integral_sub h2f h2g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → ℝ≥0∞ hf : Integrable f hg : Integrable g ⊢ ∫⁻ (x : β), F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x)) ∂↑κ a = ∫⁻ (x : β), F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x)) ∂↑κ a [PROOFSTEP] refine' lintegral_congr_ae _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → ℝ≥0∞ hf : Integrable f hg : Integrable g ⊢ (fun x => F (∫ (y : γ), f (x, y) - g (x, y) ∂↑η (a, x))) =ᵐ[↑κ a] fun x => F (∫ (y : γ), f (x, y) ∂↑η (a, x) - ∫ (y : γ), g (x, y) ∂↑η (a, x)) [PROOFSTEP] filter_upwards [hf.compProd_mk_left_ae, hg.compProd_mk_left_ae] with _ h2f h2g [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E F : E → ℝ≥0∞ hf : Integrable f hg : Integrable g a✝ : β h2f : Integrable fun y => f (a✝, y) h2g : Integrable fun y => g (a✝, y) ⊢ F (∫ (y : γ), f (a✝, y) - g (a✝, y) ∂↑η (a, a✝)) = F (∫ (y : γ), f (a✝, y) ∂↑η (a, a✝) - ∫ (y : γ), g (a✝, y) ∂↑η (a, a✝)) [PROOFSTEP] simp [integral_sub h2f h2g] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ Continuous fun f => ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] rw [continuous_iff_continuousAt] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ ∀ (x : { x // x ∈ Lp E 1 }), ContinuousAt (fun f => ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a) x [PROOFSTEP] intro g [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ ContinuousAt (fun f => ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a) g [PROOFSTEP] refine' tendsto_integral_of_L1 _ (L1.integrable_coeFn g).integral_compProd (eventually_of_forall fun h => (L1.integrable_coeFn h).integral_compProd) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ Tendsto (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) ∂↑η (a, x) - ∫ (y : γ), ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) (𝓝 g) (𝓝 0) [PROOFSTEP] simp_rw [← kernel.lintegral_fn_integral_sub (fun x => (‖x‖₊ : ℝ≥0∞)) (L1.integrable_coeFn _) (L1.integrable_coeFn g)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ Tendsto (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) - ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) (𝓝 g) (𝓝 0) [PROOFSTEP] refine' tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds _ (fun i => zero_le _) _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ { x // x ∈ Lp E 1 } → ℝ≥0∞ [PROOFSTEP] exact fun i => ∫⁻ x, ∫⁻ y, ‖i (x, y) - g (x, y)‖₊ ∂η (a, x) ∂κ a [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0) case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) - ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) ≤ fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a [PROOFSTEP] swap [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ (fun i => ∫⁻ (x : β), ↑‖∫ (y : γ), ↑↑i (x, y) - ↑↑g (x, y) ∂↑η (a, x)‖₊ ∂↑κ a) ≤ fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a [PROOFSTEP] exact fun i => lintegral_mono fun x => ennnorm_integral_le_lintegral_ennnorm _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0) [PROOFSTEP] show Tendsto (fun i : β × γ →₁[(κ ⊗ₖ η) a] E => ∫⁻ x, ∫⁻ y : γ, ‖i (x, y) - g (x, y)‖₊ ∂η (a, x) ∂κ a) (𝓝 g) (𝓝 0) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } ⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0) [PROOFSTEP] have : ∀ i : (MeasureTheory.Lp (α := β × γ) E 1 (((κ ⊗ₖ η) a) : Measure (β × γ))), Measurable fun z => (‖i z - g z‖₊ : ℝ≥0∞) := fun i => ((Lp.stronglyMeasurable i).sub (Lp.stronglyMeasurable g)).ennnorm [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊ ⊢ Tendsto (fun i => ∫⁻ (x : β), ∫⁻ (y : γ), ↑‖↑↑i (x, y) - ↑↑g (x, y)‖₊ ∂↑η (a, x) ∂↑κ a) (𝓝 g) (𝓝 0) [PROOFSTEP] simp_rw [← kernel.lintegral_compProd _ _ _ (this _), ← L1.ofReal_norm_sub_eq_lintegral, ← ofReal_zero] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊ ⊢ Tendsto (fun i => ENNReal.ofReal ‖i - g‖) (𝓝 g) (𝓝 (ENNReal.ofReal 0)) [PROOFSTEP] refine' (continuous_ofReal.tendsto 0).comp _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊ ⊢ Tendsto (fun i => ‖i - g‖) (𝓝 g) (𝓝 0) [PROOFSTEP] rw [← tendsto_iff_norm_tendsto_zero] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' g : { x // x ∈ Lp E 1 } this : ∀ (i : { x // x ∈ Lp E 1 }), Measurable fun z => ↑‖↑↑i z - ↑↑g z‖₊ ⊢ Tendsto (fun i => i) (𝓝 g) (𝓝 g) [PROOFSTEP] exact tendsto_id [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ ∀ {f : β × γ → E}, Integrable f → ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] apply Integrable.induction [GOAL] case h_ind α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ ∀ (c : E) ⦃s : Set (β × γ)⦄, MeasurableSet s → ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ → ∫ (z : β × γ), indicator s (fun x => c) z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), indicator s (fun x => c) (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] intro c s hs h2s [GOAL] case h_ind α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ∫ (z : β × γ), indicator s (fun x => c) z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), indicator s (fun x => c) (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [integral_indicator hs, ← indicator_comp_right, Function.comp, integral_indicator (measurable_prod_mk_left hs), MeasureTheory.set_integral_const, integral_smul_const] [GOAL] case h_ind α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) • c = (∫ (x : β), ENNReal.toReal (↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s)) ∂↑κ a) • c [PROOFSTEP] congr 1 [GOAL] case h_ind.e_a α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) = ∫ (x : β), ENNReal.toReal (↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s)) ∂↑κ a [PROOFSTEP] rw [integral_toReal] [GOAL] case h_ind.e_a α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) = ENNReal.toReal (∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s) ∂↑κ a) case h_ind.e_a.hfm α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ AEMeasurable fun x => ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s) case h_ind.e_a.hf α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ∀ᵐ (x : β) ∂↑κ a, ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s) < ⊤ [PROOFSTEP] rotate_left [GOAL] case h_ind.e_a.hfm α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ AEMeasurable fun x => ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s) [PROOFSTEP] exact (kernel.measurable_kernel_prod_mk_left' hs _).aemeasurable [GOAL] case h_ind.e_a.hf α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ∀ᵐ (x : β) ∂↑κ a, ↑↑(↑η (a, x)) (Prod.mk x ⁻¹' s) < ⊤ [PROOFSTEP] exact ae_kernel_lt_top a h2s.ne [GOAL] case h_ind.e_a α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ENNReal.toReal (↑↑(↑(κ ⊗ₖ η) a) s) = ENNReal.toReal (∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s) ∂↑κ a) [PROOFSTEP] rw [kernel.compProd_apply _ _ _ hs] [GOAL] case h_ind.e_a α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' c : E s : Set (β × γ) hs : MeasurableSet s h2s : ↑↑(↑(κ ⊗ₖ η) a) s < ⊤ ⊢ ENNReal.toReal (∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a) = ENNReal.toReal (∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) (Prod.mk a_1 ⁻¹' s) ∂↑κ a) [PROOFSTEP] rfl [GOAL] case h_add α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ ∀ ⦃f g : β × γ → E⦄, Disjoint (support f) (support g) → Integrable f → Integrable g → ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a → ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a → ∫ (z : β × γ), (f + g) z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), (f + g) (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] intro f g _ i_f i_g hf hg [GOAL] case h_add α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E a✝ : Disjoint (support f) (support g) i_f : Integrable f i_g : Integrable g hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a hg : ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a ⊢ ∫ (z : β × γ), (f + g) z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), (f + g) (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [integral_add' i_f i_g, kernel.integral_integral_add' i_f i_g, hf, hg] [GOAL] case h_closed α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ IsClosed {f | ∫ (z : β × γ), ↑↑f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), ↑↑f (x, y) ∂↑η (a, x) ∂↑κ a} [PROOFSTEP] exact isClosed_eq continuous_integral kernel.continuous_integral_integral [GOAL] case h_ae α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' ⊢ ∀ ⦃f g : β × γ → E⦄, f =ᵐ[↑(κ ⊗ₖ η) a] g → Integrable f → ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a → ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] intro f g hfg _ hf [GOAL] case h_ae α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g a✝ : Integrable f hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a ⊢ ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] convert hf using 1 [GOAL] case h.e'_2 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g a✝ : Integrable f hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a ⊢ ∫ (z : β × γ), g z ∂↑(κ ⊗ₖ η) a = ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a [PROOFSTEP] exact integral_congr_ae hfg.symm [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g a✝ : Integrable f hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a ⊢ ∫ (x : β), ∫ (y : γ), g (x, y) ∂↑η (a, x) ∂↑κ a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] refine' integral_congr_ae _ [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g a✝ : Integrable f hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a ⊢ (fun x => ∫ (y : γ), g (x, y) ∂↑η (a, x)) =ᵐ[↑κ a] fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x) [PROOFSTEP] refine' (ae_ae_of_ae_compProd hfg).mp (eventually_of_forall _) [GOAL] case h.e'_3 α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f g : β × γ → E hfg : f =ᵐ[↑(κ ⊗ₖ η) a] g a✝ : Integrable f hf : ∫ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a ⊢ ∀ (x : β), (∀ᵐ (c : γ) ∂↑η (a, x), f (x, c) = g (x, c)) → (fun x => ∫ (y : γ), g (x, y) ∂↑η (a, x)) x = (fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x)) x [PROOFSTEP] exact fun x hfgx => integral_congr_ae (ae_eq_symm hfgx) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f : β × γ → E s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ ∫ (z : β × γ) in s ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β) in s, ∫ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] rw [← kernel.restrict_apply (κ ⊗ₖ η) (hs.prod ht), ← compProd_restrict hs ht, integral_compProd] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f : β × γ → E s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ ∫ (x : β), ∫ (y : γ), f (x, y) ∂↑(kernel.restrict η ht) (a, x) ∂↑(kernel.restrict κ hs) a = ∫ (x : β) in s, ∫ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [kernel.restrict_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f : β × γ → E s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ Integrable fun z => f z [PROOFSTEP] rw [compProd_restrict, kernel.restrict_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f : β × γ → E s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ Integrable fun z => f z [PROOFSTEP] exact hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f : β × γ → E s : Set β hs : MeasurableSet s hf : IntegrableOn f (s ×ˢ univ) ⊢ ∫ (z : β × γ) in s ×ˢ univ, f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β) in s, ∫ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [set_integral_compProd hs MeasurableSet.univ hf, Measure.restrict_univ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 E : Type u_4 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ inst✝⁷ : NormedAddCommGroup E κ : { x // x ∈ kernel α β } inst✝⁶ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝⁵ : IsSFiniteKernel η a : α inst✝⁴ : NormedSpace ℝ E inst✝³ : CompleteSpace E E' : Type u_5 inst✝² : NormedAddCommGroup E' inst✝¹ : CompleteSpace E' inst✝ : NormedSpace ℝ E' f : β × γ → E t : Set γ ht : MeasurableSet t hf : IntegrableOn f (univ ×ˢ t) ⊢ ∫ (z : β × γ) in univ ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫ (x : β), ∫ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [set_integral_compProd MeasurableSet.univ ht hf, Measure.restrict_univ]
{"mathlib_filename": "Mathlib.Probability.Kernel.IntegralCompProd", "llama_tokens": 33300}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) ⊢ (fun a => Measure.withDensity (↑κ a) (f a)) ∈ kernel α β [PROOFSTEP] refine' Measure.measurable_of_measurable_coe _ fun s hs => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(Measure.withDensity (↑κ b) (f b)) s [PROOFSTEP] simp_rw [withDensity_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ∫⁻ (a : β) in s, f b a ∂↑κ b [PROOFSTEP] exact hf.set_lintegral_kernel_prod_right hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : ¬Measurable (Function.uncurry f) ⊢ withDensity κ f = 0 [PROOFSTEP] classical exact dif_neg hf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : ¬Measurable (Function.uncurry f) ⊢ withDensity κ f = 0 [PROOFSTEP] exact dif_neg hf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable (Function.uncurry f) a : α ⊢ ↑(withDensity κ f) a = Measure.withDensity (↑κ a) (f a) [PROOFSTEP] classical rw [withDensity, dif_pos hf] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable (Function.uncurry f) a : α ⊢ ↑(withDensity κ f) a = Measure.withDensity (↑κ a) (f a) [PROOFSTEP] rw [withDensity, dif_pos hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable (Function.uncurry f) a : α ⊢ ↑{ val := fun a => Measure.withDensity (↑κ a) (f a), property := (_ : Measurable fun a => Measure.withDensity (↑κ a) (f a)) } a = Measure.withDensity (↑κ a) (f a) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable (Function.uncurry f) a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(withDensity κ f) a) s = ∫⁻ (b : β) in s, f a b ∂↑κ a [PROOFSTEP] rw [kernel.withDensity_apply κ hf, withDensity_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable (Function.uncurry f) a : α g : β → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (b : β), g b ∂↑(withDensity κ f) a = ∫⁻ (b : β), f a b * g b ∂↑κ a [PROOFSTEP] rw [kernel.withDensity_apply _ hf, lintegral_withDensity_eq_lintegral_mul _ (Measurable.of_uncurry_left hf) hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable (Function.uncurry f) a : α g : β → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (a_1 : β), (f a * g) a_1 ∂↑κ a = ∫⁻ (b : β), f a b * g b ∂↑κ a [PROOFSTEP] simp_rw [Pi.mul_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : β → E inst✝ : IsSFiniteKernel κ a : α g : α → β → ℝ≥0 hg : Measurable (Function.uncurry g) ⊢ ∫ (b : β), f b ∂↑(withDensity κ fun a b => ↑(g a b)) a = ∫ (b : β), g a b • f b ∂↑κ a [PROOFSTEP] rw [kernel.withDensity_apply, integral_withDensity_eq_integral_smul] [GOAL] case f_meas α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : β → E inst✝ : IsSFiniteKernel κ a : α g : α → β → ℝ≥0 hg : Measurable (Function.uncurry g) ⊢ Measurable fun b => g a b [PROOFSTEP] exact Measurable.of_uncurry_left hg [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ E : Type u_4 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : β → E inst✝ : IsSFiniteKernel κ a : α g : α → β → ℝ≥0 hg : Measurable (Function.uncurry g) ⊢ Measurable (Function.uncurry fun a b => ↑(g a b)) [PROOFSTEP] exact measurable_coe_nnreal_ennreal.comp hg [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ ⊢ withDensity (κ + η) f = withDensity κ f + withDensity η f [PROOFSTEP] by_cases hf : Measurable (Function.uncurry f) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) ⊢ withDensity (κ + η) f = withDensity κ f + withDensity η f [PROOFSTEP] ext a s [GOAL] case pos.h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) a : α s : Set β a✝ : MeasurableSet s ⊢ ↑↑(↑(withDensity (κ + η) f) a) s = ↑↑(↑(withDensity κ f + withDensity η f) a) s [PROOFSTEP] simp only [kernel.withDensity_apply _ hf, coeFn_add, Pi.add_apply, withDensity_add_measure, Measure.add_apply] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : ¬Measurable (Function.uncurry f) ⊢ withDensity (κ + η) f = withDensity κ f + withDensity η f [PROOFSTEP] simp_rw [withDensity_of_not_measurable _ hf] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ κ η : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : ¬Measurable (Function.uncurry f) ⊢ 0 = 0 + 0 [PROOFSTEP] rw [zero_add] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } hκ : ∀ (i : ι), IsSFiniteKernel (κ i) f : α → β → ℝ≥0∞ ⊢ withDensity (kernel.sum κ) f = kernel.sum fun i => withDensity (κ i) f [PROOFSTEP] by_cases hf : Measurable (Function.uncurry f) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } hκ : ∀ (i : ι), IsSFiniteKernel (κ i) f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) ⊢ withDensity (kernel.sum κ) f = kernel.sum fun i => withDensity (κ i) f [PROOFSTEP] ext1 a [GOAL] case pos.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } hκ : ∀ (i : ι), IsSFiniteKernel (κ i) f : α → β → ℝ≥0∞ hf : Measurable (Function.uncurry f) a : α ⊢ ↑(withDensity (kernel.sum κ) f) a = ↑(kernel.sum fun i => withDensity (κ i) f) a [PROOFSTEP] simp_rw [sum_apply, kernel.withDensity_apply _ hf, sum_apply, withDensity_sum (fun n => κ n a) (f a)] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } hκ : ∀ (i : ι), IsSFiniteKernel (κ i) f : α → β → ℝ≥0∞ hf : ¬Measurable (Function.uncurry f) ⊢ withDensity (kernel.sum κ) f = kernel.sum fun i => withDensity (κ i) f [PROOFSTEP] simp_rw [withDensity_of_not_measurable _ hf] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝ : Countable ι κ : ι → { x // x ∈ kernel α β } hκ : ∀ (i : ι), IsSFiniteKernel (κ i) f : α → β → ℝ≥0∞ hf : ¬Measurable (Function.uncurry f) ⊢ 0 = kernel.sum fun i => 0 [PROOFSTEP] exact sum_zero.symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) ⊢ withDensity κ (∑' (n : ι), f n) = kernel.sum fun n => withDensity κ (f n) [PROOFSTEP] have h_sum_a : ∀ a, Summable fun n => f n a := fun a => Pi.summable.mpr fun b => ENNReal.summable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a ⊢ withDensity κ (∑' (n : ι), f n) = kernel.sum fun n => withDensity κ (f n) [PROOFSTEP] have h_sum : Summable fun n => f n := Pi.summable.mpr h_sum_a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n ⊢ withDensity κ (∑' (n : ι), f n) = kernel.sum fun n => withDensity κ (f n) [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(withDensity κ (∑' (n : ι), f n)) a) s = ↑↑(↑(kernel.sum fun n => withDensity κ (f n)) a) s [PROOFSTEP] rw [sum_apply' _ a hs, withDensity_apply' κ _ a hs] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ Measurable (Function.uncurry (∑' (n : ι), f n)) [PROOFSTEP] swap [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ Measurable (Function.uncurry (∑' (n : ι), f n)) [PROOFSTEP] have : Function.uncurry (∑' n, f n) = ∑' n, Function.uncurry (f n) := by ext1 p simp only [Function.uncurry_def] rw [tsum_apply h_sum, tsum_apply (h_sum_a _), tsum_apply] exact Pi.summable.mpr fun p => ENNReal.summable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ Function.uncurry (∑' (n : ι), f n) = ∑' (n : ι), Function.uncurry (f n) [PROOFSTEP] ext1 p [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s p : α × β ⊢ Function.uncurry (∑' (n : ι), f n) p = tsum (fun n => Function.uncurry (f n)) p [PROOFSTEP] simp only [Function.uncurry_def] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s p : α × β ⊢ tsum (fun n => f n) p.fst p.snd = tsum (fun n p => f n p.fst p.snd) p [PROOFSTEP] rw [tsum_apply h_sum, tsum_apply (h_sum_a _), tsum_apply] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s p : α × β ⊢ Summable fun n p => f n p.fst p.snd [PROOFSTEP] exact Pi.summable.mpr fun p => ENNReal.summable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s this : Function.uncurry (∑' (n : ι), f n) = ∑' (n : ι), Function.uncurry (f n) ⊢ Measurable (Function.uncurry (∑' (n : ι), f n)) [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s this : Function.uncurry (∑' (n : ι), f n) = ∑' (n : ι), Function.uncurry (f n) ⊢ Measurable (∑' (n : ι), Function.uncurry (f n)) [PROOFSTEP] exact Measurable.ennreal_tsum' hf [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s [PROOFSTEP] have : ∫⁻ b in s, (∑' n, f n) a b ∂κ a = ∫⁻ b in s, ∑' n, (fun b => f n a b) b ∂κ a := by congr with b rw [tsum_apply h_sum, tsum_apply (h_sum_a a)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s ⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a [PROOFSTEP] congr with b [GOAL] case e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s b : β ⊢ tsum (fun n => f n) a b = ∑' (n : ι), (fun b => f n a b) b [PROOFSTEP] rw [tsum_apply h_sum, tsum_apply (h_sum_a a)] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s this : ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a ⊢ ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s [PROOFSTEP] rw [this, lintegral_tsum fun n => (Measurable.of_uncurry_left (hf n)).aemeasurable] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s this : ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a ⊢ ∑' (i : ι), ∫⁻ (a_1 : β) in s, f i a a_1 ∂↑κ a = ∑' (n : ι), ↑↑(↑(withDensity κ (f n)) a) s [PROOFSTEP] congr with n [GOAL] case h.h.e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f✝ : α → β → ℝ≥0∞ inst✝¹ : Countable ι κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ f : ι → α → β → ℝ≥0∞ hf : ∀ (i : ι), Measurable (Function.uncurry (f i)) h_sum_a : ∀ (a : α), Summable fun n => f n a h_sum : Summable fun n => f n a : α s : Set β hs : MeasurableSet s this : ∫⁻ (b : β) in s, tsum (fun n => f n) a b ∂↑κ a = ∫⁻ (b : β) in s, ∑' (n : ι), (fun b => f n a b) b ∂↑κ a n : ι ⊢ ∫⁻ (a_1 : β) in s, f n a a_1 ∂↑κ a = ↑↑(↑(withDensity κ (f n)) a) s [PROOFSTEP] rw [withDensity_apply' _ (hf n) a hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B ⊢ IsFiniteKernel (withDensity κ f) [PROOFSTEP] by_cases hf : Measurable (Function.uncurry f) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B hf : Measurable (Function.uncurry f) ⊢ IsFiniteKernel (withDensity κ f) [PROOFSTEP] exact ⟨⟨B * IsFiniteKernel.bound κ, ENNReal.mul_lt_top hB_top (IsFiniteKernel.bound_ne_top κ), fun a => by rw [withDensity_apply' κ hf a MeasurableSet.univ] calc ∫⁻ b in Set.univ, f a b ∂κ a ≤ ∫⁻ _ in Set.univ, B ∂κ a := lintegral_mono (hf_B a) _ = B * κ a Set.univ := by simp only [Measure.restrict_univ, MeasureTheory.lintegral_const] _ ≤ B * IsFiniteKernel.bound κ := mul_le_mul_left' (measure_le_bound κ a Set.univ) _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B hf : Measurable (Function.uncurry f) a : α ⊢ ↑↑(↑(withDensity κ f) a) Set.univ ≤ B * IsFiniteKernel.bound κ [PROOFSTEP] rw [withDensity_apply' κ hf a MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B hf : Measurable (Function.uncurry f) a : α ⊢ ∫⁻ (b : β) in Set.univ, f a b ∂↑κ a ≤ B * IsFiniteKernel.bound κ [PROOFSTEP] calc ∫⁻ b in Set.univ, f a b ∂κ a ≤ ∫⁻ _ in Set.univ, B ∂κ a := lintegral_mono (hf_B a) _ = B * κ a Set.univ := by simp only [Measure.restrict_univ, MeasureTheory.lintegral_const] _ ≤ B * IsFiniteKernel.bound κ := mul_le_mul_left' (measure_le_bound κ a Set.univ) _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B hf : Measurable (Function.uncurry f) a : α ⊢ ∫⁻ (x : β) in Set.univ, B ∂↑κ a = B * ↑↑(↑κ a) Set.univ [PROOFSTEP] simp only [Measure.restrict_univ, MeasureTheory.lintegral_const] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B hf : ¬Measurable (Function.uncurry f) ⊢ IsFiniteKernel (withDensity κ f) [PROOFSTEP] rw [withDensity_of_not_measurable _ hf] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ B : ℝ≥0∞ hB_top : B ≠ ⊤ hf_B : ∀ (a : α) (b : β), f a b ≤ B hf : ¬Measurable (Function.uncurry f) ⊢ IsFiniteKernel 0 [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] by_cases hf : Measurable (Function.uncurry f) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) ⊢ IsSFiniteKernel (withDensity κ f) case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : ¬Measurable (Function.uncurry f) ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : ¬Measurable (Function.uncurry f) ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] rw [withDensity_of_not_measurable _ hf] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : ¬Measurable (Function.uncurry f) ⊢ IsSFiniteKernel 0 [PROOFSTEP] infer_instance [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] let fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (n + 1) - min (f a b) n [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] have h_le : ∀ a b n, ⌈(f a b).toReal⌉₊ ≤ n → f a b ≤ n := by intro a b n hn have : (f a b).toReal ≤ n := Nat.le_of_ceil_le hn rw [← ENNReal.le_ofReal_iff_toReal_le (hf_ne_top a b) _] at this · refine' this.trans (le_of_eq _) rw [ENNReal.ofReal_coe_nat] · norm_cast exact zero_le _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n ⊢ ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n [PROOFSTEP] intro a b n hn [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n ⊢ f a b ≤ ↑n [PROOFSTEP] have : (f a b).toReal ≤ n := Nat.le_of_ceil_le hn [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n this : ENNReal.toReal (f a b) ≤ ↑n ⊢ f a b ≤ ↑n [PROOFSTEP] rw [← ENNReal.le_ofReal_iff_toReal_le (hf_ne_top a b) _] at this [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n this : f a b ≤ ENNReal.ofReal ↑n ⊢ f a b ≤ ↑n [PROOFSTEP] refine' this.trans (le_of_eq _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n this : f a b ≤ ENNReal.ofReal ↑n ⊢ ENNReal.ofReal ↑n = ↑n [PROOFSTEP] rw [ENNReal.ofReal_coe_nat] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n this : ENNReal.toReal (f a b) ≤ ↑n ⊢ 0 ≤ ↑n [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n this : ENNReal.toReal (f a b) ≤ ↑n ⊢ 0 ≤ n [PROOFSTEP] exact zero_le _ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] have h_zero : ∀ a b n, ⌈(f a b).toReal⌉₊ ≤ n → fs n a b = 0 := by intro a b n hn suffices min (f a b) (n + 1) = f a b ∧ min (f a b) n = f a b by simp_rw [this.1, this.2, tsub_self (f a b)] exact ⟨min_eq_left ((h_le a b n hn).trans (le_add_of_nonneg_right zero_le_one)), min_eq_left (h_le a b n hn)⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n ⊢ ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 [PROOFSTEP] intro a b n hn [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n ⊢ fs n a b = 0 [PROOFSTEP] suffices min (f a b) (n + 1) = f a b ∧ min (f a b) n = f a b by simp_rw [this.1, this.2, tsub_self (f a b)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n this : min (f a b) (↑n + 1) = f a b ∧ min (f a b) ↑n = f a b ⊢ fs n a b = 0 [PROOFSTEP] simp_rw [this.1, this.2, tsub_self (f a b)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n a : α b : β n : ℕ hn : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n ⊢ min (f a b) (↑n + 1) = f a b ∧ min (f a b) ↑n = f a b [PROOFSTEP] exact ⟨min_eq_left ((h_le a b n hn).trans (le_add_of_nonneg_right zero_le_one)), min_eq_left (h_le a b n hn)⟩ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] have hf_eq_tsum : f = ∑' n, fs n := by have h_sum_a : ∀ a, Summable fun n => fs n a := by refine' fun a => Pi.summable.mpr fun b => _ suffices : ∀ n, n ∉ Finset.range ⌈(f a b).toReal⌉₊ → fs n a b = 0 exact summable_of_ne_finset_zero this intro n hn_not_mem rw [Finset.mem_range, not_lt] at hn_not_mem exact h_zero a b n hn_not_mem ext a b : 2 rw [tsum_apply (Pi.summable.mpr h_sum_a), tsum_apply (h_sum_a a), ENNReal.tsum_eq_liminf_sum_nat] have h_finset_sum : ∀ n, ∑ i in Finset.range n, fs i a b = min (f a b) n := by intro n induction' n with n hn · simp rw [Finset.sum_range_succ, hn] simp simp_rw [h_finset_sum] refine' (Filter.Tendsto.liminf_eq _).symm refine' Filter.Tendsto.congr' _ tendsto_const_nhds rw [Filter.EventuallyEq, Filter.eventually_atTop] exact ⟨⌈(f a b).toReal⌉₊, fun n hn => (min_eq_left (h_le a b n hn)).symm⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 ⊢ f = ∑' (n : ℕ), fs n [PROOFSTEP] have h_sum_a : ∀ a, Summable fun n => fs n a := by refine' fun a => Pi.summable.mpr fun b => _ suffices : ∀ n, n ∉ Finset.range ⌈(f a b).toReal⌉₊ → fs n a b = 0 exact summable_of_ne_finset_zero this intro n hn_not_mem rw [Finset.mem_range, not_lt] at hn_not_mem exact h_zero a b n hn_not_mem [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 ⊢ ∀ (a : α), Summable fun n => fs n a [PROOFSTEP] refine' fun a => Pi.summable.mpr fun b => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 a : α b : β ⊢ Summable fun i => fs i a b [PROOFSTEP] suffices : ∀ n, n ∉ Finset.range ⌈(f a b).toReal⌉₊ → fs n a b = 0 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 a : α b : β this : ∀ (n : ℕ), ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ → fs n a b = 0 ⊢ Summable fun i => fs i a b case this α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 a : α b : β ⊢ ∀ (n : ℕ), ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ → fs n a b = 0 [PROOFSTEP] exact summable_of_ne_finset_zero this [GOAL] case this α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 a : α b : β ⊢ ∀ (n : ℕ), ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ → fs n a b = 0 [PROOFSTEP] intro n hn_not_mem [GOAL] case this α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 a : α b : β n : ℕ hn_not_mem : ¬n ∈ Finset.range ⌈ENNReal.toReal (f a b)⌉₊ ⊢ fs n a b = 0 [PROOFSTEP] rw [Finset.mem_range, not_lt] at hn_not_mem [GOAL] case this α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 a : α b : β n : ℕ hn_not_mem : ⌈ENNReal.toReal (f a b)⌉₊ ≤ n ⊢ fs n a b = 0 [PROOFSTEP] exact h_zero a b n hn_not_mem [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a ⊢ f = ∑' (n : ℕ), fs n [PROOFSTEP] ext a b : 2 [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β ⊢ f a b = tsum (fun n => fs n) a b [PROOFSTEP] rw [tsum_apply (Pi.summable.mpr h_sum_a), tsum_apply (h_sum_a a), ENNReal.tsum_eq_liminf_sum_nat] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β ⊢ f a b = Filter.liminf (fun n => ∑ i in Finset.range n, fs i a b) Filter.atTop [PROOFSTEP] have h_finset_sum : ∀ n, ∑ i in Finset.range n, fs i a b = min (f a b) n := by intro n induction' n with n hn · simp rw [Finset.sum_range_succ, hn] simp [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β ⊢ ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β n : ℕ ⊢ ∑ i in Finset.range n, fs i a b = min (f a b) ↑n [PROOFSTEP] induction' n with n hn [GOAL] case zero α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β ⊢ ∑ i in Finset.range Nat.zero, fs i a b = min (f a b) ↑Nat.zero [PROOFSTEP] simp [GOAL] case succ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β n : ℕ hn : ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ ∑ i in Finset.range (Nat.succ n), fs i a b = min (f a b) ↑(Nat.succ n) [PROOFSTEP] rw [Finset.sum_range_succ, hn] [GOAL] case succ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β n : ℕ hn : ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ min (f a b) ↑n + fs n a b = min (f a b) ↑(Nat.succ n) [PROOFSTEP] simp [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ f a b = Filter.liminf (fun n => ∑ i in Finset.range n, fs i a b) Filter.atTop [PROOFSTEP] simp_rw [h_finset_sum] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ f a b = Filter.liminf (fun n => min (f a b) ↑n) Filter.atTop [PROOFSTEP] refine' (Filter.Tendsto.liminf_eq _).symm [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ Filter.Tendsto (fun n => min (f a b) ↑n) Filter.atTop (nhds (f a b)) [PROOFSTEP] refine' Filter.Tendsto.congr' _ tendsto_const_nhds [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ (fun x => f a b) =ᶠ[Filter.atTop] fun n => min (f a b) ↑n [PROOFSTEP] rw [Filter.EventuallyEq, Filter.eventually_atTop] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 h_sum_a : ∀ (a : α), Summable fun n => fs n a a : α b : β h_finset_sum : ∀ (n : ℕ), ∑ i in Finset.range n, fs i a b = min (f a b) ↑n ⊢ ∃ a_1, ∀ (b_1 : ℕ), b_1 ≥ a_1 → f a b = min (f a b) ↑b_1 [PROOFSTEP] exact ⟨⌈(f a b).toReal⌉₊, fun n hn => (min_eq_left (h_le a b n hn)).symm⟩ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n ⊢ IsSFiniteKernel (withDensity κ f) [PROOFSTEP] rw [hf_eq_tsum, withDensity_tsum _ fun n : ℕ => _] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n ⊢ IsSFiniteKernel (kernel.sum fun n => withDensity κ (fs n)) α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n ⊢ ∀ (n : ℕ), Measurable (Function.uncurry (fs n)) [PROOFSTEP] swap [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n ⊢ ∀ (n : ℕ), Measurable (Function.uncurry (fs n)) [PROOFSTEP] exact fun _ => (hf.min measurable_const).sub (hf.min measurable_const) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n ⊢ IsSFiniteKernel (kernel.sum fun n => withDensity κ (fs n)) [PROOFSTEP] refine' isSFiniteKernel_sum fun n => _ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ ⊢ IsSFiniteKernel (withDensity κ (fs n)) [PROOFSTEP] suffices IsFiniteKernel (withDensity κ (fs n)) by haveI := this; infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ this : IsFiniteKernel (withDensity κ (fs n)) ⊢ IsSFiniteKernel (withDensity κ (fs n)) [PROOFSTEP] haveI := this [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ this✝ this : IsFiniteKernel (withDensity κ (fs n)) ⊢ IsSFiniteKernel (withDensity κ (fs n)) [PROOFSTEP] infer_instance [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ ⊢ IsFiniteKernel (withDensity κ (fs n)) [PROOFSTEP] refine' isFiniteKernel_withDensity_of_bounded _ (ENNReal.coe_ne_top : ↑n + 1 ≠ ∞) fun a b => _ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ a : α b : β ⊢ fs n a b ≤ ↑((fun x x_1 => x + x_1) (↑n) 1) [PROOFSTEP] norm_cast [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ a : α b : β ⊢ fs n a b ≤ ↑(n + 1) [PROOFSTEP] calc fs n a b ≤ min (f a b) (n + 1) := tsub_le_self _ ≤ n + 1 := (min_le_right _ _) _ = ↑(n + 1) := by norm_cast [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ hf : Measurable (Function.uncurry f) fs : ℕ → α → β → ℝ≥0∞ := fun n a b => min (f a b) (↑n + 1) - min (f a b) ↑n h_le : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → f a b ≤ ↑n h_zero : ∀ (a : α) (b : β) (n : ℕ), ⌈ENNReal.toReal (f a b)⌉₊ ≤ n → fs n a b = 0 hf_eq_tsum : f = ∑' (n : ℕ), fs n n : ℕ a : α b : β ⊢ ↑n + 1 = ↑(n + 1) [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ ⊢ IsSFiniteKernel (kernel.withDensity κ f) [PROOFSTEP] have h_eq_sum : withDensity κ f = kernel.sum fun i => withDensity (seq κ i) f := by rw [← withDensity_kernel_sum _ _] congr exact (kernel_sum_seq κ).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ ⊢ kernel.withDensity κ f = kernel.sum fun i => kernel.withDensity (seq κ i) f [PROOFSTEP] rw [← withDensity_kernel_sum _ _] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ ⊢ kernel.withDensity κ f = kernel.withDensity (kernel.sum fun i => seq κ i) f [PROOFSTEP] congr [GOAL] case e_κ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ ⊢ κ = kernel.sum fun i => seq κ i [PROOFSTEP] exact (kernel_sum_seq κ).symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ h_eq_sum : kernel.withDensity κ f = kernel.sum fun i => kernel.withDensity (seq κ i) f ⊢ IsSFiniteKernel (kernel.withDensity κ f) [PROOFSTEP] rw [h_eq_sum] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β κ✝ : { x // x ∈ kernel α β } f : α → β → ℝ≥0∞ κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf_ne_top : ∀ (a : α) (b : β), f a b ≠ ⊤ h_eq_sum : kernel.withDensity κ f = kernel.sum fun i => kernel.withDensity (seq κ i) f ⊢ IsSFiniteKernel (kernel.sum fun i => kernel.withDensity (seq κ i) f) [PROOFSTEP] exact isSFiniteKernel_sum fun n => isSFiniteKernel_withDensity_of_isFiniteKernel (seq κ n) hf_ne_top
{"mathlib_filename": "Mathlib.Probability.Kernel.WithDensity", "llama_tokens": 32693}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α ⊢ ↑p a = 0 ↔ ¬a ∈ support p [PROOFSTEP] rw [mem_support_iff, Classical.not_not] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α ⊢ ↑p a = 1 ↔ support p = {a} [PROOFSTEP] refine' ⟨fun h => Set.Subset.antisymm (fun a' ha' => by_contra fun ha => _) fun a' ha' => ha'.symm ▸ (p.mem_support_iff a).2 fun ha => zero_ne_one <| ha.symm.trans h, fun h => _root_.trans (symm <| tsum_eq_single a fun a' ha' => (p.apply_eq_zero_iff a').2 (h.symm ▸ ha')) p.tsum_coe⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} ⊢ False [PROOFSTEP] suffices : 1 < ∑' a, p a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 1 < ∑' (a : α), ↑p a ⊢ False case this α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} ⊢ 1 < ∑' (a : α), ↑p a [PROOFSTEP] exact ne_of_lt this p.tsum_coe.symm [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} ⊢ 1 < ∑' (a : α), ↑p a [PROOFSTEP] have : 0 < ∑' b, ite (b = a) 0 (p b) := lt_of_le_of_ne' zero_le' ((tsum_ne_zero_iff ENNReal.summable).2 ⟨a', ite_ne_left_iff.2 ⟨ha, Ne.symm <| (p.mem_support_iff a').2 ha'⟩⟩) [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b ⊢ 1 < ∑' (a : α), ↑p a [PROOFSTEP] calc 1 = 1 + 0 := (add_zero 1).symm _ < p a + ∑' b, ite (b = a) 0 (p b) := (ENNReal.add_lt_add_of_le_of_lt ENNReal.one_ne_top (le_of_eq h.symm) this) _ = ite (a = a) (p a) 0 + ∑' b, ite (b = a) 0 (p b) := by rw [eq_self_iff_true, if_true] _ = (∑' b, ite (b = a) (p b) 0) + ∑' b, ite (b = a) 0 (p b) := by congr exact symm (tsum_eq_single a fun b hb => if_neg hb) _ = ∑' b, (ite (b = a) (p b) 0 + ite (b = a) 0 (p b)) := ENNReal.tsum_add.symm _ = ∑' b, p b := tsum_congr fun b => by split_ifs <;> simp only [zero_add, add_zero, le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b ⊢ (↑p a + ∑' (b : α), if b = a then 0 else ↑p b) = (if a = a then ↑p a else 0) + ∑' (b : α), if b = a then 0 else ↑p b [PROOFSTEP] rw [eq_self_iff_true, if_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b ⊢ ((if a = a then ↑p a else 0) + ∑' (b : α), if b = a then 0 else ↑p b) = (∑' (b : α), if b = a then ↑p b else 0) + ∑' (b : α), if b = a then 0 else ↑p b [PROOFSTEP] congr [GOAL] case e_a α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b ⊢ (if a = a then ↑p a else 0) = ∑' (b : α), if b = a then ↑p b else 0 [PROOFSTEP] exact symm (tsum_eq_single a fun b hb => if_neg hb) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b b : α ⊢ ((if b = a then ↑p b else 0) + if b = a then 0 else ↑p b) = ↑p b [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b b : α h✝ : b = a ⊢ ↑p b + 0 = ↑p b [PROOFSTEP] simp only [zero_add, add_zero, le_rfl] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α h : ↑p a = 1 a' : α ha' : a' ∈ support p ha : ¬a' ∈ {a} this : 0 < ∑' (b : α), if b = a then 0 else ↑p b b : α h✝ : ¬b = a ⊢ 0 + ↑p b = ↑p b [PROOFSTEP] simp only [zero_add, add_zero, le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a : α ⊢ ↑p a ≤ 1 [PROOFSTEP] refine' hasSum_le (fun b => _) (hasSum_ite_eq a (p a)) (hasSum_coe_one p) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a b : α ⊢ (if b = a then ↑p a else 0) ≤ ↑p b [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a b : α h : b = a ⊢ ↑p a ≤ ↑p b [PROOFSTEP] simp only [h, zero_le', le_rfl] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α a b : α h : ¬b = a ⊢ 0 ≤ ↑p b [PROOFSTEP] simp only [h, zero_le', le_rfl] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α ⊢ OuterMeasure.caratheodory (toOuterMeasure p) = ⊤ [PROOFSTEP] refine' eq_top_iff.2 <| le_trans (le_sInf fun x hx => _) (le_sum_caratheodory _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α x : MeasurableSpace α hx : x ∈ Set.range fun i => OuterMeasure.caratheodory (↑p i • dirac i) ⊢ ⊤ ≤ x [PROOFSTEP] have ⟨y, hy⟩ := hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α x : MeasurableSpace α hx : x ∈ Set.range fun i => OuterMeasure.caratheodory (↑p i • dirac i) y : α hy : (fun i => OuterMeasure.caratheodory (↑p i • dirac i)) y = x ⊢ ⊤ ≤ x [PROOFSTEP] exact ((le_of_eq (dirac_caratheodory y).symm).trans (le_smul_caratheodory _ _)).trans (le_of_eq hy) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s✝ t : Set α s : Finset α ⊢ ↑(toOuterMeasure p) ↑s = ∑ x in s, ↑p x [PROOFSTEP] refine' (toOuterMeasure_apply p s).trans ((tsum_eq_sum (s := s) _).trans _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s✝ t : Set α s : Finset α ⊢ ∀ (b : α), ¬b ∈ s → Set.indicator (↑s) (↑p) b = 0 [PROOFSTEP] exact fun x hx => Set.indicator_of_not_mem (Finset.mem_coe.not.2 hx) _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s✝ t : Set α s : Finset α ⊢ ∑ b in s, Set.indicator (↑s) (↑p) b = ∑ x in s, ↑p x [PROOFSTEP] exact Finset.sum_congr rfl fun x hx => Set.indicator_of_mem (Finset.mem_coe.2 hx) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α a : α ⊢ ↑(toOuterMeasure p) {a} = ↑p a [PROOFSTEP] refine' (p.toOuterMeasure_apply { a }).trans ((tsum_eq_single a fun b hb => _).trans _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α a b : α hb : b ≠ a ⊢ Set.indicator {a} (↑p) b = 0 [PROOFSTEP] exact ite_eq_right_iff.2 fun hb' => False.elim <| hb hb' [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α a : α ⊢ Set.indicator {a} (↑p) a = ↑p a [PROOFSTEP] exact ite_eq_left_iff.2 fun ha' => False.elim <| ha' rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α ⊢ ↑(toOuterMeasure p) s = 0 ↔ Disjoint (support p) s [PROOFSTEP] rw [toOuterMeasure_apply, ENNReal.tsum_eq_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α ⊢ (∀ (i : α), Set.indicator s (↑p) i = 0) ↔ Disjoint (support p) s [PROOFSTEP] exact Function.funext_iff.symm.trans Set.indicator_eq_zero' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α ⊢ ↑(toOuterMeasure p) s = 1 ↔ support p ⊆ s [PROOFSTEP] refine' (p.toOuterMeasure_apply s).symm ▸ ⟨fun h a hap => _, fun h => _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : ∑' (x : α), Set.indicator s (↑p) x = 1 a : α hap : a ∈ support p ⊢ a ∈ s [PROOFSTEP] refine' by_contra fun hs => ne_of_lt _ (h.trans p.tsum_coe.symm) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : ∑' (x : α), Set.indicator s (↑p) x = 1 a : α hap : a ∈ support p hs : ¬a ∈ s ⊢ ∑' (x : α), Set.indicator s (↑p) x < ∑' (a : α), ↑p a [PROOFSTEP] have hs' : s.indicator p a = 0 := Set.indicator_apply_eq_zero.2 fun hs' => False.elim <| hs hs' [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : ∑' (x : α), Set.indicator s (↑p) x = 1 a : α hap : a ∈ support p hs : ¬a ∈ s hs' : Set.indicator s (↑p) a = 0 ⊢ ∑' (x : α), Set.indicator s (↑p) x < ∑' (a : α), ↑p a [PROOFSTEP] have hsa : s.indicator p a < p a := hs'.symm ▸ (p.apply_pos_iff a).2 hap [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : ∑' (x : α), Set.indicator s (↑p) x = 1 a : α hap : a ∈ support p hs : ¬a ∈ s hs' : Set.indicator s (↑p) a = 0 hsa : Set.indicator s (↑p) a < ↑p a ⊢ ∑' (x : α), Set.indicator s (↑p) x < ∑' (a : α), ↑p a [PROOFSTEP] exact ENNReal.tsum_lt_tsum (p.tsum_coe_indicator_ne_top s) (fun x => Set.indicator_apply_le fun _ => le_rfl) hsa [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : support p ⊆ s ⊢ ∑' (x : α), Set.indicator s (↑p) x = 1 [PROOFSTEP] suffices : ∀ (x) (_ : x ∉ s), p x = 0 [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : support p ⊆ s this : ∀ (x : α), ¬x ∈ s → ↑p x = 0 ⊢ ∑' (x : α), Set.indicator s (↑p) x = 1 case this α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : support p ⊆ s ⊢ ∀ (x : α), ¬x ∈ s → ↑p x = 0 [PROOFSTEP] exact _root_.trans (tsum_congr fun a => (Set.indicator_apply s p a).trans (ite_eq_left_iff.2 <| symm ∘ this a)) p.tsum_coe [GOAL] case this α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α h : support p ⊆ s ⊢ ∀ (x : α), ¬x ∈ s → ↑p x = 0 [PROOFSTEP] exact fun a ha => (p.apply_eq_zero_iff a).2 <| Set.not_mem_subset h ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s t : Set α ⊢ ↑(toOuterMeasure p) (s ∩ support p) = ↑(toOuterMeasure p) s [PROOFSTEP] simp only [toOuterMeasure_apply, Pmf.support, Set.indicator_inter_support] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : MeasurableSpace α p : Pmf α s t : Set α a : α h : MeasurableSet {a} ⊢ ↑↑(toMeasure p) {a} = ↑p a [PROOFSTEP] simp [toMeasure_apply_eq_toOuterMeasure_apply _ _ h, toOuterMeasure_apply_singleton] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : MeasurableSpace α p : Pmf α s t : Set α hs : MeasurableSet s ⊢ ↑↑(toMeasure p) s = 0 ↔ Disjoint (support p) s [PROOFSTEP] rw [toMeasure_apply_eq_toOuterMeasure_apply p s hs, toOuterMeasure_apply_eq_zero_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : MeasurableSpace α p : Pmf α s t : Set α hs : MeasurableSet s hp : MeasurableSet (support p) ⊢ ↑↑(toMeasure p) (s ∩ support p) = ↑↑(toMeasure p) s [PROOFSTEP] simp [p.toMeasure_apply_eq_toOuterMeasure_apply s hs, p.toMeasure_apply_eq_toOuterMeasure_apply _ (hs.inter hp)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : MeasurableSpace α p : Pmf α s✝ t✝ s t : Set α hs : MeasurableSet s ht : MeasurableSet t h : s ∩ support p ⊆ t ⊢ ↑↑(toMeasure p) s ≤ ↑↑(toMeasure p) t [PROOFSTEP] simpa only [p.toMeasure_apply_eq_toOuterMeasure_apply, hs, ht] using toOuterMeasure_mono p h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : MeasurableSpace α p : Pmf α s✝ t✝ s t : Set α hs : MeasurableSet s ht : MeasurableSet t h : s ∩ support p = t ∩ support p ⊢ ↑↑(toMeasure p) s = ↑↑(toMeasure p) t [PROOFSTEP] simpa only [p.toMeasure_apply_eq_toOuterMeasure_apply, hs, ht] using toOuterMeasure_apply_eq_of_inter_support_eq p h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : MeasurableSpace α p : Pmf α s t : Set α inst✝ : MeasurableSingletonClass α ⊢ Function.Injective toMeasure [PROOFSTEP] intro p q h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : MeasurableSpace α p✝ : Pmf α s t : Set α inst✝ : MeasurableSingletonClass α p q : Pmf α h : toMeasure p = toMeasure q ⊢ p = q [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : MeasurableSpace α p✝ : Pmf α s t : Set α inst✝ : MeasurableSingletonClass α p q : Pmf α h : toMeasure p = toMeasure q x : α ⊢ ↑p x = ↑q x [PROOFSTEP] rw [← p.toMeasure_apply_singleton x <| measurableSet_singleton x, ← q.toMeasure_apply_singleton x <| measurableSet_singleton x, h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Countable α inst✝² : MeasurableSpace α inst✝¹ : MeasurableSingletonClass α μ : Measure α inst✝ : IsProbabilityMeasure μ s : Set α hs : MeasurableSet s ⊢ ↑↑(toMeasure (toPmf μ)) s = ↑↑μ s [PROOFSTEP] rw [μ.toPmf.toMeasure_apply s hs, ← μ.tsum_indicator_apply_singleton s hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Countable α inst✝² : MeasurableSpace α inst✝¹ : MeasurableSingletonClass α μ : Measure α inst✝ : IsProbabilityMeasure μ s : Set α hs : MeasurableSet s ⊢ ∑' (x : α), Set.indicator s (↑(toPmf μ)) x = ∑' (x : α), Set.indicator s (fun x => ↑↑μ {x}) x [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝ : MeasurableSpace α p : Pmf α ⊢ ↑↑(toMeasure p) Set.univ = 1 [PROOFSTEP] simpa only [MeasurableSet.univ, toMeasure_apply_eq_toOuterMeasure_apply, Set.indicator_univ, toOuterMeasure_apply, ENNReal.coe_eq_one] using tsum_coe p [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Countable α inst✝² : MeasurableSpace α inst✝¹ : MeasurableSingletonClass α p : Pmf α μ : Measure α inst✝ : IsProbabilityMeasure μ x : α ⊢ ↑(Measure.toPmf (toMeasure p)) x = ↑p x [PROOFSTEP] rw [← p.toMeasure_apply_singleton x (measurableSet_singleton x), p.toMeasure.toPmf_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : Countable α inst✝³ : MeasurableSpace α inst✝² : MeasurableSingletonClass α p : Pmf α μ✝ : Measure α inst✝¹ : IsProbabilityMeasure μ✝ μ : Measure α inst✝ : IsProbabilityMeasure μ ⊢ toMeasure p = μ ↔ p = Measure.toPmf μ [PROOFSTEP] rw [← toMeasure_inj, Measure.toPmf_toMeasure] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝⁴ : Countable α inst✝³ : MeasurableSpace α inst✝² : MeasurableSingletonClass α p : Pmf α μ✝ : Measure α inst✝¹ : IsProbabilityMeasure μ✝ μ : Measure α inst✝ : IsProbabilityMeasure μ ⊢ Measure.toPmf μ = p ↔ μ = toMeasure p [PROOFSTEP] rw [← toMeasure_inj, Measure.toPmf_toMeasure]
{"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Basic", "llama_tokens": 7207}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s ⊢ Pmf α [PROOFSTEP] refine' ofFinset (fun a => if a ∈ s then s.card⁻¹ else 0) s _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s ⊢ ∑ a in s, (fun a => if a ∈ s then (↑(Finset.card s))⁻¹ else 0) a = 1 [PROOFSTEP] simp only [Finset.sum_ite_mem, Finset.inter_self, Finset.sum_const, nsmul_eq_mul] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s ⊢ ↑(Finset.card s) * (↑(Finset.card s))⁻¹ = 1 [PROOFSTEP] have : (s.card : ℝ≥0∞) ≠ 0 := by simpa only [Ne.def, Nat.cast_eq_zero, Finset.card_eq_zero] using Finset.nonempty_iff_ne_empty.1 hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s ⊢ ↑(Finset.card s) ≠ 0 [PROOFSTEP] simpa only [Ne.def, Nat.cast_eq_zero, Finset.card_eq_zero] using Finset.nonempty_iff_ne_empty.1 hs [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s this : ↑(Finset.card s) ≠ 0 ⊢ ↑(Finset.card s) * (↑(Finset.card s))⁻¹ = 1 [PROOFSTEP] refine' ENNReal.mul_inv_cancel this <| ENNReal.nat_ne_top s.card [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s ⊢ ∀ (a : α), ¬a ∈ s → (fun a => if a ∈ s then (↑(Finset.card s))⁻¹ else 0) a = 0 [PROOFSTEP] exact fun x hx => by simp only [hx, if_false] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s x : α hx : ¬x ∈ s ⊢ (fun a => if a ∈ s then (↑(Finset.card s))⁻¹ else 0) x = 0 [PROOFSTEP] simp only [hx, if_false] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α ha : a ∈ s ⊢ ↑(uniformOfFinset s hs) a = (↑(Finset.card s))⁻¹ [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α ha : ¬a ∈ s ⊢ ↑(uniformOfFinset s hs) a = 0 [PROOFSTEP] simp [ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α ⊢ ∀ (x : α), x ∈ support (uniformOfFinset s hs) ↔ x ∈ ↑s [PROOFSTEP] let ⟨a, ha⟩ := hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a✝ a : α ha : a ∈ s ⊢ ∀ (x : α), x ∈ support (uniformOfFinset s (_ : ∃ x, x ∈ s)) ↔ x ∈ ↑s [PROOFSTEP] simp [mem_support_iff, Finset.ne_empty_of_mem ha] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a✝ a : α ⊢ a ∈ support (uniformOfFinset s hs) ↔ a ∈ s [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α t : Set α x : α ⊢ (if x ∈ t then ↑(uniformOfFinset s hs) x else 0) = if x ∈ s ∧ x ∈ t then (↑(Finset.card s))⁻¹ else 0 [PROOFSTEP] simp_rw [uniformOfFinset_apply, ← ite_and, and_comm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α t : Set α x : α hx : x ∈ Finset.filter (fun x => x ∈ t) s ⊢ (if x ∈ s ∧ x ∈ t then (↑(Finset.card s))⁻¹ else 0) = (↑(Finset.card s))⁻¹ [PROOFSTEP] let this : x ∈ s ∧ x ∈ t := by simpa using hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α t : Set α x : α hx : x ∈ Finset.filter (fun x => x ∈ t) s ⊢ x ∈ s ∧ x ∈ t [PROOFSTEP] simpa using hx [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α t : Set α x : α hx : x ∈ Finset.filter (fun x => x ∈ t) s this : x ∈ s ∧ x ∈ t := Eq.mp Mathlib.Data.Finset.Basic._auxLemma.130 hx ⊢ (if x ∈ s ∧ x ∈ t then (↑(Finset.card s))⁻¹ else 0) = (↑(Finset.card s))⁻¹ [PROOFSTEP] simp only [this, and_self_iff, if_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Finset α hs : Finset.Nonempty s a : α t : Set α ⊢ ∑ _x in Finset.filter (fun x => x ∈ t) s, (↑(Finset.card s))⁻¹ = ↑(Finset.card (Finset.filter (fun x => x ∈ t) s)) / ↑(Finset.card s) [PROOFSTEP] simp only [div_eq_mul_inv, Finset.sum_const, nsmul_eq_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : Fintype α inst✝ : Nonempty α a : α ⊢ ↑(uniformOfFintype α) a = (↑(Fintype.card α))⁻¹ [PROOFSTEP] simp [uniformOfFintype, Finset.mem_univ, if_true, uniformOfFinset_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : Fintype α inst✝ : Nonempty α a : α ⊢ Finset.card Finset.univ = Fintype.card α [PROOFSTEP] rfl [GOAL] α✝ : Type u_1 β : Type u_2 γ : Type u_3 inst✝³ : Fintype α✝ inst✝² : Nonempty α✝ α : Type u_4 inst✝¹ : Fintype α inst✝ : Nonempty α x : α ⊢ x ∈ support (uniformOfFintype α) ↔ x ∈ ⊤ [PROOFSTEP] simp [mem_support_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : Fintype α inst✝ : Nonempty α a : α ⊢ a ∈ support (uniformOfFintype α) [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : Fintype α inst✝ : Nonempty α s : Set α ⊢ ↑(toOuterMeasure (uniformOfFintype α)) s = ↑(Fintype.card ↑s) / ↑(Fintype.card α) [PROOFSTEP] rw [uniformOfFintype, toOuterMeasure_uniformOfFinset_apply, Fintype.card_ofFinset] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝¹ : Fintype α inst✝ : Nonempty α s : Set α ⊢ ↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Finset.card Finset.univ) = ↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Fintype.card α) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Fintype α inst✝¹ : Nonempty α s : Set α inst✝ : MeasurableSpace α hs : MeasurableSet s ⊢ ↑↑(toMeasure (uniformOfFintype α)) s = ↑(Fintype.card ↑s) / ↑(Fintype.card α) [PROOFSTEP] simp [uniformOfFintype, hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 inst✝² : Fintype α inst✝¹ : Nonempty α s : Set α inst✝ : MeasurableSpace α hs : MeasurableSet s ⊢ ↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Finset.card Finset.univ) = ↑(Finset.card (Finset.filter (fun x => x ∈ s) Finset.univ)) / ↑(Fintype.card α) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 ⊢ ∑' (b : α), ↑(Multiset.count b s) / ↑(↑Multiset.card s) = (↑(↑Multiset.card s))⁻¹ * ∑' (b : α), ↑(Multiset.count b s) [PROOFSTEP] simp_rw [ENNReal.div_eq_inv_mul, ENNReal.tsum_mul_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 a : α ha : ¬a ∈ Multiset.toFinset s ⊢ Multiset.count a s = 0 [PROOFSTEP] rwa [Multiset.count_eq_zero, ← Multiset.mem_toFinset] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 ⊢ (↑(↑Multiset.card s))⁻¹ * ∑ b in Multiset.toFinset s, ↑(Multiset.count b s) = 1 [PROOFSTEP] rw [← Nat.cast_sum, Multiset.toFinset_sum_count_eq s, ENNReal.inv_mul_cancel (Nat.cast_ne_zero.2 (hs ∘ Multiset.card_eq_zero.1)) (ENNReal.nat_ne_top _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 ⊢ ∀ (x : α), x ∈ support (ofMultiset s hs) ↔ x ∈ ↑(Multiset.toFinset s) [PROOFSTEP] simp [mem_support_iff, hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 a : α ⊢ a ∈ support (ofMultiset s hs) ↔ a ∈ Multiset.toFinset s [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 a : α ha : ¬a ∈ s ⊢ ↑(ofMultiset s hs) a = 0 [PROOFSTEP] simpa only [ofMultiset_apply, ENNReal.div_eq_zero_iff, Nat.cast_eq_zero, Multiset.count_eq_zero, ENNReal.nat_ne_top, or_false_iff] using ha [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 t : Set α ⊢ ↑(toOuterMeasure (ofMultiset s hs)) t = (∑' (x : α), ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s))) / ↑(↑Multiset.card s) [PROOFSTEP] simp_rw [div_eq_mul_inv, ← ENNReal.tsum_mul_right, toOuterMeasure_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 t : Set α ⊢ ∑' (x : α), Set.indicator t (↑(ofMultiset s hs)) x = ∑' (i : α), ↑(Multiset.count i (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹ [PROOFSTEP] refine' tsum_congr fun x => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 t : Set α x : α ⊢ Set.indicator t (↑(ofMultiset s hs)) x = ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹ [PROOFSTEP] by_cases hx : x ∈ t [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 t : Set α x : α hx : x ∈ t ⊢ Set.indicator t (↑(ofMultiset s hs)) x = ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹ [PROOFSTEP] simp [Set.indicator, hx, div_eq_mul_inv] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 s : Multiset α hs : s ≠ 0 t : Set α x : α hx : ¬x ∈ t ⊢ Set.indicator t (↑(ofMultiset s hs)) x = ↑(Multiset.count x (Multiset.filter (fun x => x ∈ t) s)) * (↑(↑Multiset.card s))⁻¹ [PROOFSTEP] simp [Set.indicator, hx, div_eq_mul_inv]
{"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Uniform", "llama_tokens": 4401}
[GOAL] Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → F inst✝ : TopologicalSpace F hm : m ≤ mΩ hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (id ω, id ω)) μ) [PROOFSTEP] rw [← aestronglyMeasurable_comp_snd_map_prod_mk_iff (measurable_id'' hm)] at hf [GOAL] Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → F inst✝ : TopologicalSpace F hm : m ≤ mΩ hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (id ω, ω)) μ) ⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (id ω, id ω)) μ) [PROOFSTEP] simp_rw [id.def] at hf ⊢ [GOAL] Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → F inst✝ : TopologicalSpace F hm : m ≤ mΩ hf : AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (ω, ω)) μ) ⊢ AEStronglyMeasurable (fun x => f x.snd) (Measure.map (fun ω => (ω, ω)) μ) [PROOFSTEP] exact hf [GOAL] Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → F inst✝ : NormedAddCommGroup F hm : m ≤ mΩ hf : Integrable f ⊢ Integrable fun x => f x.snd [PROOFSTEP] rw [← integrable_comp_snd_map_prod_mk_iff (measurable_id'' hm)] at hf [GOAL] Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → F inst✝ : NormedAddCommGroup F hm : m ≤ mΩ hf : Integrable fun x => f x.snd ⊢ Integrable fun x => f x.snd [PROOFSTEP] simp_rw [id.def] at hf ⊢ [GOAL] Ω : Type u_1 F : Type u_2 m mΩ : MeasurableSpace Ω μ : Measure Ω f : Ω → F inst✝ : NormedAddCommGroup F hm : m ≤ mΩ hf : Integrable fun x => f x.snd ⊢ Integrable fun x => f x.snd [PROOFSTEP] exact hf [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁴ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝³ : PolishSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ ω : Ω ⊢ ↑(condexpKernel μ m) ω = ↑(condDistrib id id μ) (id ω) [PROOFSTEP] simp_rw [condexpKernel, kernel.comap_apply] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁴ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝³ : PolishSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ ⊢ IsMarkovKernel (condexpKernel μ m) [PROOFSTEP] simp only [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁴ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝³ : PolishSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω μ : Measure Ω inst✝ : IsFiniteMeasure μ ⊢ IsMarkovKernel (kernel.comap (condDistrib id id μ) id (_ : Measurable id)) [PROOFSTEP] infer_instance [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ↑↑(↑(condexpKernel μ m) ω) s [PROOFSTEP] simp_rw [condexpKernel_apply_eq_condDistrib] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ↑↑(↑(condDistrib id id μ) (id ω)) s [PROOFSTEP] refine Measurable.mono ?_ (inf_le_left : m ⊓ mΩ ≤ m) le_rfl [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ↑↑(↑(condDistrib id id μ) (id ω)) s [PROOFSTEP] convert measurable_condDistrib (μ := μ) hs [GOAL] case h.e'_3 Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ m ⊓ mΩ = MeasurableSpace.comap id (m ⊓ mΩ) [PROOFSTEP] rw [MeasurableSpace.comap_id] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable (fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω) μ [PROOFSTEP] simp_rw [condexpKernel_apply_eq_condDistrib] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable (fun ω => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id ω)) μ [PROOFSTEP] exact AEStronglyMeasurable.integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id (hf.comp_snd_map_prod_id inf_le_right) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω) μ [PROOFSTEP] rw [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf : AEStronglyMeasurable f μ ⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) μ [PROOFSTEP] have h := aestronglyMeasurable'_integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id (hf.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ)) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf : AEStronglyMeasurable f μ h : AEStronglyMeasurable' (MeasurableSpace.comap id (m ⊓ mΩ)) (fun a => ∫ (y : Ω), f (id a, y).snd ∂↑(condDistrib id id μ) (id a)) μ ⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) μ [PROOFSTEP] rw [MeasurableSpace.comap_id] at h [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf : AEStronglyMeasurable f μ h : AEStronglyMeasurable' (m ⊓ mΩ) (fun a => ∫ (y : Ω), f (id a, y).snd ∂↑(condDistrib id id μ) (id a)) μ ⊢ AEStronglyMeasurable' m (fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) μ [PROOFSTEP] exact AEStronglyMeasurable'.mono h inf_le_left [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F hf_int : Integrable f ⊢ ∀ᵐ (ω : Ω) ∂μ, Integrable f [PROOFSTEP] rw [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F hf_int : Integrable f ⊢ ∀ᵐ (ω : Ω) ∂μ, Integrable f [PROOFSTEP] exact Integrable.condDistrib_ae (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id (hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ)) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F hf_int : Integrable f ⊢ Integrable fun ω => ∫ (y : Ω), ‖f y‖ ∂↑(condexpKernel μ m) ω [PROOFSTEP] rw [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F hf_int : Integrable f ⊢ Integrable fun ω => ∫ (y : Ω), ‖f y‖ ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω [PROOFSTEP] exact Integrable.integral_norm_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id (hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ)) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f ⊢ Integrable fun ω => ‖∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω‖ [PROOFSTEP] rw [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f ⊢ Integrable fun ω => ‖∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω‖ [PROOFSTEP] exact Integrable.norm_integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id (hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ)) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f ⊢ Integrable fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω [PROOFSTEP] rw [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f ⊢ Integrable fun ω => ∫ (y : Ω), f y ∂↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω [PROOFSTEP] exact Integrable.integral_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) aemeasurable_id (hf_int.comp_snd_map_prod_id (inf_le_right : m ⊓ mΩ ≤ mΩ)) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Integrable fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s) [PROOFSTEP] rw [condexpKernel] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ : IsFiniteMeasure μ inst✝ : NormedAddCommGroup F f : Ω → F s : Set Ω hs : MeasurableSet s ⊢ Integrable fun ω => ENNReal.toReal (↑↑(↑(kernel.comap (condDistrib id id μ) id (_ : Measurable id)) ω) s) [PROOFSTEP] exact integrable_toReal_condDistrib (aemeasurable_id'' μ (inf_le_right : m ⊓ mΩ ≤ mΩ)) hs [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ s : Set Ω hs : MeasurableSet s ⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ] [PROOFSTEP] have h := condDistrib_ae_eq_condexp (μ := μ) (measurable_id'' (inf_le_right : m ⊓ mΩ ≤ mΩ)) measurable_id hs [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ s : Set Ω hs : MeasurableSet s h : (fun a => ENNReal.toReal (↑↑(↑(condDistrib id id μ) (id a)) s)) =ᵐ[μ] μ[indicator (id ⁻¹' s) fun ω => 1|MeasurableSpace.comap id (m ⊓ mΩ)] ⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ] [PROOFSTEP] simp only [id_eq, ge_iff_le, MeasurableSpace.comap_id, preimage_id_eq] at h [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ s : Set Ω hs : MeasurableSet s h : (fun a => ENNReal.toReal (↑↑(↑(condDistrib id id μ) a) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ] ⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ] [PROOFSTEP] simp_rw [condexpKernel_apply_eq_condDistrib] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ s : Set Ω hs : MeasurableSet s h : (fun a => ENNReal.toReal (↑↑(↑(condDistrib id id μ) a) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ] ⊢ (fun ω => ENNReal.toReal (↑↑(↑(condDistrib id id μ) (id ω)) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m ⊓ mΩ] [PROOFSTEP] exact h [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ hm : m ≤ mΩ s : Set Ω hs : MeasurableSet s ⊢ μ[indicator s fun ω => 1|m ⊓ mΩ] =ᵐ[μ] μ[indicator s fun ω => 1|m] [PROOFSTEP] rw [inf_of_le_left hm] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ hm : m ≤ mΩ s : Set Ω hs : MeasurableSet s ⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[Measure.trim μ hm] μ[indicator s fun ω => 1|m] [PROOFSTEP] rw [ae_eq_trim_iff hm _ stronglyMeasurable_condexp] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ hm : m ≤ mΩ s : Set Ω hs : MeasurableSet s ⊢ (fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s)) =ᵐ[μ] μ[indicator s fun ω => 1|m] [PROOFSTEP] exact condexpKernel_ae_eq_condexp hm hs [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ hm : m ≤ mΩ s : Set Ω hs : MeasurableSet s ⊢ StronglyMeasurable fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s) [PROOFSTEP] refine Measurable.stronglyMeasurable ?_ [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁵ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω μ : Measure Ω inst✝¹ inst✝ : IsFiniteMeasure μ hm : m ≤ mΩ s : Set Ω hs : MeasurableSet s ⊢ Measurable fun ω => ENNReal.toReal (↑↑(↑(condexpKernel μ m) ω) s) [PROOFSTEP] exact @Measurable.ennreal_toReal _ m _ (measurable_condexpKernel hs) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f ⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω [PROOFSTEP] have hX : @Measurable Ω Ω mΩ (m ⊓ mΩ) id := measurable_id.mono le_rfl (inf_le_right : m ⊓ mΩ ≤ mΩ) [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f hX : Measurable id ⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condexpKernel μ m) ω [PROOFSTEP] simp_rw [condexpKernel_apply_eq_condDistrib] [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f hX : Measurable id ⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id ω) [PROOFSTEP] have h := condexp_ae_eq_integral_condDistrib_id hX hf_int [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hf_int : Integrable f hX : Measurable id h : μ[f|MeasurableSpace.comap id (m ⊓ mΩ)] =ᵐ[μ] fun a => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id a) ⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] fun ω => ∫ (y : Ω), f y ∂↑(condDistrib id id μ) (id ω) [PROOFSTEP] simpa only [MeasurableSpace.comap_id, id_eq] using h [GOAL] Ω : Type u_1 F : Type u_2 inst✝⁷ : TopologicalSpace Ω m mΩ : MeasurableSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : BorelSpace Ω inst✝⁴ : Nonempty Ω μ : Measure Ω inst✝³ : IsFiniteMeasure μ inst✝² : NormedAddCommGroup F f : Ω → F inst✝¹ : NormedSpace ℝ F inst✝ : CompleteSpace F hm : m ≤ mΩ hf_int : Integrable f ⊢ μ[f|m ⊓ mΩ] =ᵐ[μ] μ[f|m] [PROOFSTEP] rw [inf_of_le_left hm]
{"mathlib_filename": "Mathlib.Probability.Kernel.Condexp", "llama_tokens": 9181}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β ⊢ ↑(map f p) b = ∑' (a : α), if b = f a then ↑p a else 0 [PROOFSTEP] simp [map] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b✝ b : β ⊢ b ∈ support (map f p) ↔ b ∈ f '' support p [PROOFSTEP] simp [map, @eq_comm β b] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β ⊢ b ∈ support (map f p) ↔ ∃ a, a ∈ support p ∧ f a = b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β g : β → γ ⊢ map g (map f p) = map (g ∘ f) p [PROOFSTEP] simp [map, Function.comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β ⊢ map (Function.const α b) p = pure b [PROOFSTEP] simp only [map, Function.comp, bind_const, Function.const] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β s : Set β ⊢ ↑(toOuterMeasure (map f p)) s = ↑(toOuterMeasure p) (f ⁻¹' s) [PROOFSTEP] simp [map, Set.indicator, toOuterMeasure_apply p (f ⁻¹' s)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β s : Set β inst✝¹ : MeasurableSpace α inst✝ : MeasurableSpace β hf : Measurable f hs : MeasurableSet s ⊢ ↑↑(toMeasure (map f p)) s = ↑↑(toMeasure p) (f ⁻¹' s) [PROOFSTEP] rw [toMeasure_apply_eq_toOuterMeasure_apply _ s hs, toMeasure_apply_eq_toOuterMeasure_apply _ (f ⁻¹' s) (measurableSet_preimage hf hs)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → β p : Pmf α b : β s : Set β inst✝¹ : MeasurableSpace α inst✝ : MeasurableSpace β hf : Measurable f hs : MeasurableSet s ⊢ ↑(toOuterMeasure (map f p)) s = ↑(toOuterMeasure p) (f ⁻¹' s) [PROOFSTEP] exact toOuterMeasure_map_apply f p s [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 q : Pmf (α → β) p : Pmf α b : β ⊢ ↑(seq q p) b = ∑' (f : α → β) (a : α), if b = f a then ↑q f * ↑p a else 0 [PROOFSTEP] simp only [seq, mul_boole, bind_apply, pure_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 q : Pmf (α → β) p : Pmf α b : β ⊢ (∑' (a : α → β), ↑q a * ∑' (a_1 : α), if b = a a_1 then ↑p a_1 else 0) = ∑' (f : α → β) (a : α), if b = f a then ↑q f * ↑p a else 0 [PROOFSTEP] refine' tsum_congr fun f => ENNReal.tsum_mul_left.symm.trans (tsum_congr fun a => _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 q : Pmf (α → β) p : Pmf α b : β f : α → β a : α ⊢ (↑q f * if b = f a then ↑p a else 0) = if b = f a then ↑q f * ↑p a else 0 [PROOFSTEP] simpa only [mul_zero] using mul_ite (b = f a) (q f) (p a) 0 [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 q : Pmf (α → β) p : Pmf α b✝ b : β ⊢ b ∈ support (seq q p) ↔ b ∈ ⋃ (f : α → β) (_ : f ∈ support q), f '' support p [PROOFSTEP] simp [-mem_support_iff, seq, @eq_comm β b] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 q : Pmf (α → β) p : Pmf α b : β ⊢ b ∈ support (seq q p) ↔ ∃ f, f ∈ support q ∧ b ∈ f '' support p [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0∞ s : Finset α h : ∑ a in s, f a = 1 h' : ∀ (a : α), ¬a ∈ s → f a = 0 a : α ⊢ a ∈ support (ofFinset f s h h') ↔ a ∈ ↑s ∩ Function.support f [PROOFSTEP] simpa [mem_support_iff] using mt (h' a) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0∞ s : Finset α h : ∑ a in s, f a = 1 h' : ∀ (a : α), ¬a ∈ s → f a = 0 a : α ⊢ a ∈ support (ofFinset f s h h') ↔ a ∈ s ∧ f a ≠ 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0∞ hf0 : tsum f ≠ 0 hf : tsum f ≠ ⊤ a : α ⊢ a ∈ support (normalize f hf0 hf) ↔ a ∈ Function.support f [PROOFSTEP] simp [hf, mem_support_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 f : α → ℝ≥0∞ hf0 : tsum f ≠ 0 hf : tsum f ≠ ⊤ a : α ⊢ a ∈ support (normalize f hf0 hf) ↔ f a ≠ 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s : Set α h : ∃ a, a ∈ s ∧ a ∈ support p ⊢ tsum (Set.indicator s ↑p) ≠ 0 [PROOFSTEP] simpa using h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s : Set α h : ∃ a, a ∈ s ∧ a ∈ support p a : α ⊢ ↑(filter p s h) a = Set.indicator s (↑p) a * (∑' (a' : α), Set.indicator s (↑p) a')⁻¹ [PROOFSTEP] rw [filter, normalize_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s : Set α h : ∃ a, a ∈ s ∧ a ∈ support p a : α ha : ¬a ∈ s ⊢ ↑(filter p s h) a = 0 [PROOFSTEP] rw [filter_apply, Set.indicator_apply_eq_zero.mpr fun ha' => absurd ha' ha, zero_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s : Set α h : ∃ a, a ∈ s ∧ a ∈ support p a : α ⊢ ↑(filter p s h) a = 0 ↔ ¬a ∈ s ∨ ¬a ∈ support p [PROOFSTEP] erw [apply_eq_zero_iff, support_filter, Set.mem_inter_iff, not_and_or] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α s : Set α h : ∃ a, a ∈ s ∧ a ∈ support p a : α ⊢ ↑(filter p s h) a ≠ 0 ↔ a ∈ s ∧ a ∈ support p [PROOFSTEP] rw [Ne.def, filter_apply_eq_zero_iff, not_or, Classical.not_not, Classical.not_not] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 ⊢ ∑ a : Bool, (fun b => bif b then p else 1 - p) a = 1 [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 b : Bool ⊢ support (bernoulli p h) = {b | bif b then p ≠ 0 else p ≠ 1} [PROOFSTEP] refine' Set.ext fun b => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 b✝ b : Bool ⊢ b ∈ support (bernoulli p h) ↔ b ∈ {b | bif b then p ≠ 0 else p ≠ 1} [PROOFSTEP] induction b [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 b : Bool ⊢ false ∈ support (bernoulli p h) ↔ false ∈ {b | bif b then p ≠ 0 else p ≠ 1} [PROOFSTEP] simp_rw [mem_support_iff, bernoulli_apply, Bool.cond_false, Ne.def, tsub_eq_zero_iff_le, not_le] [GOAL] case false α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 b : Bool ⊢ p < 1 ↔ false ∈ {b | bif b then ¬p = 0 else ¬p = 1} [PROOFSTEP] exact ⟨ne_of_lt, lt_of_le_of_ne h⟩ [GOAL] case true α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 b : Bool ⊢ true ∈ support (bernoulli p h) ↔ true ∈ {b | bif b then p ≠ 0 else p ≠ 1} [PROOFSTEP] simp only [mem_support_iff, bernoulli_apply, Bool.cond_true, Set.mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : ℝ≥0∞ h : p ≤ 1 b : Bool ⊢ b ∈ support (bernoulli p h) ↔ bif b then p ≠ 0 else p ≠ 1 [PROOFSTEP] simp
{"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Constructions", "llama_tokens": 3316}
[GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C ⊢ Compatibility.τ₀ = Compatibility.τ₁ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)) (eqToIso (_ : (toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse = Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor)) N₁Γ₀ [PROOFSTEP] ext K : 3 [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ NatTrans.app Compatibility.τ₀.hom K = NatTrans.app (Compatibility.τ₁ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)) (eqToIso (_ : (toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse = Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor)) N₁Γ₀).hom K [PROOFSTEP] simp only [Compatibility.τ₀_hom_app, Compatibility.τ₁_hom_app, eqToIso.hom] [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ NatTrans.app Preadditive.DoldKan.equivalence.counitIso.hom ((toKaroubiEquivalence (ChainComplex C ℕ)).functor.obj K) = Preadditive.DoldKan.equivalence.functor.map (NatTrans.app (eqToHom (_ : (toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse = Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor)) K) ≫ NatTrans.app (eqToHom (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)) (Γ.obj K) ≫ NatTrans.app N₁Γ₀.hom K [PROOFSTEP] refine' (N₂Γ₂_compatible_with_N₁Γ₀ K).trans _ [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C K : ChainComplex C ℕ ⊢ NatTrans.app N₂Γ₂ToKaroubiIso.hom K ≫ NatTrans.app N₁Γ₀.hom K = Preadditive.DoldKan.equivalence.functor.map (NatTrans.app (eqToHom (_ : (toKaroubiEquivalence (ChainComplex C ℕ)).functor ⋙ Preadditive.DoldKan.equivalence.inverse = Γ ⋙ (toKaroubiEquivalence (SimplicialObject C)).functor)) K) ≫ NatTrans.app (eqToHom (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)) (Γ.obj K) ≫ NatTrans.app N₁Γ₀.hom K [PROOFSTEP] simp only [N₂Γ₂ToKaroubiIso_hom, eqToHom_map, eqToHom_app, eqToHom_trans_assoc] [GOAL] C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C ⊢ Compatibility.υ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)) = Γ₂N₁ [PROOFSTEP] ext1 [GOAL] case w C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C ⊢ (Compatibility.υ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))).hom = Γ₂N₁.hom [PROOFSTEP] rw [← cancel_epi Γ₂N₁.inv, Iso.inv_hom_id] [GOAL] case w C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C ⊢ Γ₂N₁.inv ≫ (Compatibility.υ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))).hom = 𝟙 (N₁ ⋙ Γ₂) [PROOFSTEP] ext X : 2 [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app (Γ₂N₁.inv ≫ (Compatibility.υ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))).hom) X = NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X [PROOFSTEP] rw [NatTrans.comp_app] [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app Γ₂N₁.inv X ≫ NatTrans.app (Compatibility.υ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))).hom X = NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X [PROOFSTEP] erw [compatibility_Γ₂N₁_Γ₂N₂_natTrans X] [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ ((compatibility_Γ₂N₁_Γ₂N₂.app X).inv ≫ NatTrans.app Γ₂N₂.natTrans ((toKaroubi (SimplicialObject C)).obj X)) ≫ NatTrans.app (Compatibility.υ (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁))).hom X = NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X [PROOFSTEP] rw [Compatibility.υ_hom_app, Preadditive.DoldKan.equivalence_unitIso, Iso.app_inv, assoc] [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫ NatTrans.app Γ₂N₂.natTrans ((toKaroubi (SimplicialObject C)).obj X) ≫ NatTrans.app Γ₂N₂.hom ((toKaroubiEquivalence (SimplicialObject C)).functor.obj X) ≫ Preadditive.DoldKan.equivalence.inverse.map (NatTrans.app (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)).hom X) = NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X [PROOFSTEP] erw [← NatTrans.comp_app_assoc, IsIso.hom_inv_id] [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫ NatTrans.app (𝟙 (N₂ ⋙ Γ₂)) ((toKaroubi (SimplicialObject C)).obj X) ≫ Preadditive.DoldKan.equivalence.inverse.map (NatTrans.app (eqToIso (_ : (toKaroubiEquivalence (SimplicialObject C)).functor ⋙ Preadditive.DoldKan.equivalence.functor = N₁)).hom X) = NatTrans.app (𝟙 (N₁ ⋙ Γ₂)) X [PROOFSTEP] rw [NatTrans.id_app, id_comp, NatTrans.id_app, eqToIso.hom, eqToHom_app, eqToHom_map] [GOAL] case w.w.h C : Type u_1 inst✝³ : Category.{u_2, u_1} C inst✝² : Preadditive C inst✝¹ : IsIdempotentComplete C inst✝ : HasFiniteCoproducts C X : SimplicialObject C ⊢ NatTrans.app compatibility_Γ₂N₁_Γ₂N₂.inv X ≫ eqToHom (_ : Preadditive.DoldKan.equivalence.inverse.obj (Preadditive.DoldKan.equivalence.functor.obj ((toKaroubiEquivalence (SimplicialObject C)).functor.obj X)) = Preadditive.DoldKan.equivalence.inverse.obj (N₁.obj X)) = 𝟙 ((N₁ ⋙ Γ₂).obj X) [PROOFSTEP] rw [compatibility_Γ₂N₁_Γ₂N₂_inv_app, eqToHom_trans, eqToHom_refl]
{"mathlib_filename": "Mathlib.AlgebraicTopology.DoldKan.EquivalencePseudoabelian", "llama_tokens": 3418}
[GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ IsProbabilityMeasure (↑(condKernelReal ρ) a) [PROOFSTEP] rw [condKernelReal] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ IsProbabilityMeasure (↑{ val := fun a => StieltjesFunction.measure (condCdf ρ a), property := (_ : Measurable fun a => StieltjesFunction.measure (condCdf ρ a)) } a) [PROOFSTEP] exact instIsProbabilityMeasure ρ a [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (Iic x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] simp_rw [condKernelReal_Iic] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] exact set_lintegral_condCdf ρ x hs [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ univ) [PROOFSTEP] simp only [measure_univ, lintegral_const, Measure.restrict_apply, MeasurableSet.univ, univ_inter, one_mul, Measure.fst_apply hs, ← prod_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ = ↑↑ρ univ [PROOFSTEP] rw [← set_lintegral_univ, set_lintegral_condKernelReal_univ ρ MeasurableSet.univ, univ_prod_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) [PROOFSTEP] apply MeasurableSpace.induction_on_inter (borel_eq_generateFrom_Iic ℝ) isPiSystem_Iic _ _ _ _ ht [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) ∅ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ∅) [PROOFSTEP] simp only [measure_empty, lintegral_const, zero_mul, prod_empty] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ⊢ ∀ (t : Set ℝ), t ∈ range Iic → ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) [PROOFSTEP] rintro t ⟨q, rfl⟩ [GOAL] case intro α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t q : ℝ ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (Iic q) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic q) [PROOFSTEP] exact set_lintegral_condKernelReal_Iic ρ q hs [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ⊢ ∀ (t : Set ℝ), MeasurableSet t → ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) → ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) tᶜ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ tᶜ) [PROOFSTEP] intro t ht ht_lintegral [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) tᶜ ∂Measure.fst ρ = ↑↑ρ (s ×ˢ tᶜ) [PROOFSTEP] calc ∫⁻ a in s, condKernelReal ρ a tᶜ ∂ρ.fst = ∫⁻ a in s, condKernelReal ρ a univ - condKernelReal ρ a t ∂ρ.fst := by congr with a; rw [measure_compl ht (measure_ne_top (condKernelReal ρ a) _)] _ = ∫⁻ a in s, condKernelReal ρ a univ ∂ρ.fst - ∫⁻ a in s, condKernelReal ρ a t ∂ρ.fst := by rw [lintegral_sub (kernel.measurable_coe (condKernelReal ρ) ht)] · rw [ht_lintegral] exact measure_ne_top ρ _ · exact eventually_of_forall fun a => measure_mono (subset_univ _) _ = ρ (s ×ˢ univ) - ρ (s ×ˢ t) := by rw [set_lintegral_condKernelReal_univ ρ hs, ht_lintegral] _ = ρ (s ×ˢ tᶜ) := by rw [← measure_diff _ (hs.prod ht) (measure_ne_top ρ _)] · rw [prod_diff_prod, compl_eq_univ_diff] simp only [diff_self, empty_prod, union_empty] · rw [prod_subset_prod_iff] exact Or.inl ⟨subset_rfl, subset_univ t⟩ [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) tᶜ ∂Measure.fst ρ = ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ [PROOFSTEP] congr with a [GOAL] case e_f.h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) a : α ⊢ ↑↑(↑(condKernelReal ρ) a) tᶜ = ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) t [PROOFSTEP] rw [measure_compl ht (measure_ne_top (condKernelReal ρ a) _)] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ - ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ [PROOFSTEP] rw [lintegral_sub (kernel.measurable_coe (condKernelReal ρ) ht)] [GOAL] case hg_fin α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ ≠ ⊤ [PROOFSTEP] rw [ht_lintegral] [GOAL] case hg_fin α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ↑↑ρ (s ×ˢ t) ≠ ⊤ [PROOFSTEP] exact measure_ne_top ρ _ [GOAL] case h_le α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ (fun a => ↑↑(↑(condKernelReal ρ) a) t) ≤ᵐ[Measure.restrict (Measure.fst ρ) s] fun a => ↑↑(↑(condKernelReal ρ) a) univ [PROOFSTEP] exact eventually_of_forall fun a => measure_mono (subset_univ _) [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ - ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ univ) - ↑↑ρ (s ×ˢ t) [PROOFSTEP] rw [set_lintegral_condKernelReal_univ ρ hs, ht_lintegral] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ↑↑ρ (s ×ˢ univ) - ↑↑ρ (s ×ˢ t) = ↑↑ρ (s ×ˢ tᶜ) [PROOFSTEP] rw [← measure_diff _ (hs.prod ht) (measure_ne_top ρ _)] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ↑↑ρ (s ×ˢ univ \ s ×ˢ t) = ↑↑ρ (s ×ˢ tᶜ) [PROOFSTEP] rw [prod_diff_prod, compl_eq_univ_diff] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ ↑↑ρ (s ×ˢ (univ \ t) ∪ (s \ s) ×ˢ univ) = ↑↑ρ (s ×ˢ (univ \ t)) [PROOFSTEP] simp only [diff_self, empty_prod, union_empty] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ s ×ˢ t ⊆ s ×ˢ univ [PROOFSTEP] rw [prod_subset_prod_iff] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t✝ : Set ℝ ht✝ : MeasurableSet t✝ t : Set ℝ ht : MeasurableSet t ht_lintegral : ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) ⊢ s ⊆ s ∧ t ⊆ univ ∨ s = ∅ ∨ t = ∅ [PROOFSTEP] exact Or.inl ⟨subset_rfl, subset_univ t⟩ [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ⊢ ∀ (f : ℕ → Set ℝ), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i)) → ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ⋃ (i : ℕ), f i) [PROOFSTEP] intro f hf_disj hf_meas hf_eq [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ⋃ (i : ℕ), f i) [PROOFSTEP] simp_rw [measure_iUnion hf_disj hf_meas] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) ⊢ ∫⁻ (a : α) in s, ∑' (i : ℕ), ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ ⋃ (i : ℕ), f i) [PROOFSTEP] rw [lintegral_tsum fun i => (kernel.measurable_coe _ (hf_meas i)).aemeasurable.restrict, prod_iUnion, measure_iUnion] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) ⊢ ∑' (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ∑' (i : ℕ), ↑↑ρ (s ×ˢ f i) [PROOFSTEP] simp_rw [hf_eq] [GOAL] case hn α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) ⊢ Pairwise (Disjoint on fun i => s ×ˢ f i) [PROOFSTEP] intro i j hij [GOAL] case hn α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) i j : ℕ hij : i ≠ j ⊢ (Disjoint on fun i => s ×ˢ f i) i j [PROOFSTEP] rw [Function.onFun, disjoint_prod] [GOAL] case hn α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) i j : ℕ hij : i ≠ j ⊢ Disjoint s s ∨ Disjoint (f i) (f j) [PROOFSTEP] exact Or.inr (hf_disj hij) [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α) in s, ↑↑(↑(condKernelReal ρ) a) (f i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ f i) ⊢ ∀ (i : ℕ), MeasurableSet (s ×ˢ f i) [PROOFSTEP] exact fun i => MeasurableSet.prod hs (hf_meas i) [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ s} ∂Measure.fst ρ = ↑↑ρ s [PROOFSTEP] apply MeasurableSpace.induction_on_inter generateFrom_prod.symm isPiSystem_prod _ _ _ _ hs [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ∅} ∂Measure.fst ρ = ↑↑ρ ∅ [PROOFSTEP] simp only [mem_empty_iff_false, setOf_false, measure_empty, lintegral_const, zero_mul] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ∀ (t : Set (α × ℝ)), t ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t} → ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t [PROOFSTEP] intro t ht [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : t ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t} ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t [PROOFSTEP] rw [mem_image2] at ht [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : ∃ a b, a ∈ {s | MeasurableSet s} ∧ b ∈ {t | MeasurableSet t} ∧ a ×ˢ b = t ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t [PROOFSTEP] obtain ⟨t₁, t₂, ht₁, ht₂, rfl⟩ := ht [GOAL] case intro.intro.intro.intro α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] have h_prod_eq_snd : ∀ a ∈ t₁, {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = t₂ := by intro a ha simp only [ha, prod_mk_mem_set_prod_eq, true_and_iff, setOf_mem_eq] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} ⊢ ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ [PROOFSTEP] intro a ha [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} a : α ha : a ∈ t₁ ⊢ {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ [PROOFSTEP] simp only [ha, prod_mk_mem_set_prod_eq, true_and_iff, setOf_mem_eq] [GOAL] case intro.intro.intro.intro α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] cases' eq_empty_or_nonempty t₂ with h h [GOAL] case intro.intro.intro.intro.inl α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : t₂ = ∅ ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] simp only [h, prod_empty, mem_empty_iff_false, setOf_false, measure_empty, lintegral_const, zero_mul] [GOAL] case intro.intro.intro.intro.inr α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] rw [← lintegral_add_compl _ ht₁] [GOAL] case intro.intro.intro.intro.inr α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ ⊢ ∫⁻ (x : α) in t₁, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ + ∫⁻ (x : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] have h_eq1 : ∫⁻ a in t₁, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} ∂ρ.fst = ∫⁻ a in t₁, condKernelReal ρ a t₂ ∂ρ.fst := by refine' set_lintegral_congr_fun ht₁ (eventually_of_forall fun a ha => _) rw [h_prod_eq_snd a ha] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ ⊢ ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ [PROOFSTEP] refine' set_lintegral_congr_fun ht₁ (eventually_of_forall fun a ha => _) [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ a : α ha : a ∈ t₁ ⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = ↑↑(↑(condKernelReal ρ) a) t₂ [PROOFSTEP] rw [h_prod_eq_snd a ha] [GOAL] case intro.intro.intro.intro.inr α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ ⊢ ∫⁻ (x : α) in t₁, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ + ∫⁻ (x : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] have h_eq2 : ∫⁻ a in t₁ᶜ, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} ∂ρ.fst = 0 := by suffices h_eq_zero : ∀ a ∈ t₁ᶜ, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = 0 · rw [set_lintegral_congr_fun ht₁.compl (eventually_of_forall h_eq_zero)] simp only [lintegral_const, zero_mul] intro a hat₁ rw [mem_compl_iff] at hat₁ simp only [hat₁, prod_mk_mem_set_prod_eq, false_and_iff, setOf_false, measure_empty] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ ⊢ ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0 [PROOFSTEP] suffices h_eq_zero : ∀ a ∈ t₁ᶜ, condKernelReal ρ a {x : ℝ | (a, x) ∈ t₁ ×ˢ t₂} = 0 [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ h_eq_zero : ∀ (a : α), a ∈ t₁ᶜ → ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0 ⊢ ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0 [PROOFSTEP] rw [set_lintegral_congr_fun ht₁.compl (eventually_of_forall h_eq_zero)] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ h_eq_zero : ∀ (a : α), a ∈ t₁ᶜ → ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0 ⊢ ∫⁻ (x : α) in t₁ᶜ, 0 ∂Measure.fst ρ = 0 [PROOFSTEP] simp only [lintegral_const, zero_mul] [GOAL] case h_eq_zero α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ ⊢ ∀ (a : α), a ∈ t₁ᶜ → ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0 [PROOFSTEP] intro a hat₁ [GOAL] case h_eq_zero α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ a : α hat₁ : a ∈ t₁ᶜ ⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0 [PROOFSTEP] rw [mem_compl_iff] at hat₁ [GOAL] case h_eq_zero α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ a : α hat₁ : ¬a ∈ t₁ ⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} = 0 [PROOFSTEP] simp only [hat₁, prod_mk_mem_set_prod_eq, false_and_iff, setOf_false, measure_empty] [GOAL] case intro.intro.intro.intro.inr α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ h_eq2 : ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0 ⊢ ∫⁻ (x : α) in t₁, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ + ∫⁻ (x : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) x) {x_1 | (x, x_1) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] rw [h_eq1, h_eq2, add_zero] [GOAL] case intro.intro.intro.intro.inr α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t₁ : Set α t₂ : Set ℝ ht₁ : t₁ ∈ {s | MeasurableSet s} ht₂ : t₂ ∈ {t | MeasurableSet t} h_prod_eq_snd : ∀ (a : α), a ∈ t₁ → {x | (a, x) ∈ t₁ ×ˢ t₂} = t₂ h : Set.Nonempty t₂ h_eq1 : ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ h_eq2 : ∫⁻ (a : α) in t₁ᶜ, ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t₁ ×ˢ t₂} ∂Measure.fst ρ = 0 ⊢ ∫⁻ (a : α) in t₁, ↑↑(↑(condKernelReal ρ) a) t₂ ∂Measure.fst ρ = ↑↑ρ (t₁ ×ˢ t₂) [PROOFSTEP] exact set_lintegral_condKernelReal_prod ρ ht₁ ht₂ [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ∀ (t : Set (α × ℝ)), MeasurableSet t → ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t → ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ tᶜ} ∂Measure.fst ρ = ↑↑ρ tᶜ [PROOFSTEP] intro t ht ht_eq [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ tᶜ} ∂Measure.fst ρ = ↑↑ρ tᶜ [PROOFSTEP] calc ∫⁻ a, condKernelReal ρ a {x : ℝ | (a, x) ∈ tᶜ} ∂ρ.fst = ∫⁻ a, condKernelReal ρ a {x : ℝ | (a, x) ∈ t}ᶜ ∂ρ.fst := rfl _ = ∫⁻ a, condKernelReal ρ a univ - condKernelReal ρ a {x : ℝ | (a, x) ∈ t} ∂ρ.fst := by congr with a : 1 exact measure_compl (measurable_prod_mk_left ht) (measure_ne_top (condKernelReal ρ a) _) _ = ∫⁻ a, condKernelReal ρ a univ ∂ρ.fst - ∫⁻ a, condKernelReal ρ a {x : ℝ | (a, x) ∈ t} ∂ρ.fst := by have h_le : (fun a => condKernelReal ρ a {x : ℝ | (a, x) ∈ t}) ≤ᵐ[ρ.fst] fun a => condKernelReal ρ a univ := eventually_of_forall fun a => measure_mono (subset_univ _) rw [lintegral_sub _ _ h_le] · exact kernel.measurable_kernel_prod_mk_left ht refine' ((lintegral_mono_ae h_le).trans_lt _).ne rw [lintegral_condKernelReal_univ] exact measure_lt_top ρ univ _ = ρ univ - ρ t := by rw [ht_eq, lintegral_condKernelReal_univ] _ = ρ tᶜ := (measure_compl ht (measure_ne_top _ _)).symm [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}ᶜ ∂Measure.fst ρ = ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ [PROOFSTEP] congr with a : 1 [GOAL] case e_f.h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t a : α ⊢ ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}ᶜ = ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} [PROOFSTEP] exact measure_compl (measurable_prod_mk_left ht) (measure_ne_top (condKernelReal ρ a) _) [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ - ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ [PROOFSTEP] have h_le : (fun a => condKernelReal ρ a {x : ℝ | (a, x) ∈ t}) ≤ᵐ[ρ.fst] fun a => condKernelReal ρ a univ := eventually_of_forall fun a => measure_mono (subset_univ _) [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ - ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ - ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ [PROOFSTEP] rw [lintegral_sub _ _ h_le] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ ⊢ Measurable fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} [PROOFSTEP] exact kernel.measurable_kernel_prod_mk_left ht [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ ≠ ⊤ [PROOFSTEP] refine' ((lintegral_mono_ae h_le).trans_lt _).ne [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ ⊢ ∫⁻ (a : α), (fun a => ↑↑(↑(condKernelReal ρ) a) univ) a ∂Measure.fst ρ < ⊤ [PROOFSTEP] rw [lintegral_condKernelReal_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t h_le : (fun a => ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t}) ≤ᵐ[Measure.fst ρ] fun a => ↑↑(↑(condKernelReal ρ) a) univ ⊢ ↑↑ρ univ < ⊤ [PROOFSTEP] exact measure_lt_top ρ univ [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s t : Set (α × ℝ) ht : MeasurableSet t ht_eq : ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ t ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) univ ∂Measure.fst ρ - ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ t} ∂Measure.fst ρ = ↑↑ρ univ - ↑↑ρ t [PROOFSTEP] rw [ht_eq, lintegral_condKernelReal_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ∀ (f : ℕ → Set (α × ℝ)), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i)) → ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ⋃ (i : ℕ), f i} ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i) [PROOFSTEP] intro f hf_disj hf_meas hf_eq [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ⋃ (i : ℕ), f i} ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i) [PROOFSTEP] have h_eq : ∀ a, {x | (a, x) ∈ ⋃ i, f i} = ⋃ i, {x | (a, x) ∈ f i} := by intro a ext1 x simp only [mem_iUnion, mem_setOf_eq] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) ⊢ ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} [PROOFSTEP] intro a [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) a : α ⊢ {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) a : α x : ℝ ⊢ x ∈ {x | (a, x) ∈ ⋃ (i : ℕ), f i} ↔ x ∈ ⋃ (i : ℕ), {x | (a, x) ∈ f i} [PROOFSTEP] simp only [mem_iUnion, mem_setOf_eq] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ ⋃ (i : ℕ), f i} ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i) [PROOFSTEP] simp_rw [h_eq] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i) [PROOFSTEP] have h_disj : ∀ a, Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) := by intro a i j hij have h_disj := hf_disj hij rw [Function.onFun, disjoint_iff_inter_eq_empty] at h_disj ⊢ ext1 x simp only [mem_inter_iff, mem_setOf_eq, mem_empty_iff_false, iff_false_iff] intro h_mem_both suffices (a, x) ∈ ∅ by rwa [mem_empty_iff_false] at this rwa [← h_disj, mem_inter_iff] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} ⊢ ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) [PROOFSTEP] intro a i j hij [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j ⊢ (Disjoint on fun i => {x | (a, x) ∈ f i}) i j [PROOFSTEP] have h_disj := hf_disj hij [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : (Disjoint on f) i j ⊢ (Disjoint on fun i => {x | (a, x) ∈ f i}) i j [PROOFSTEP] rw [Function.onFun, disjoint_iff_inter_eq_empty] at h_disj ⊢ [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : f i ∩ f j = ∅ ⊢ {x | (a, x) ∈ f i} ∩ {x | (a, x) ∈ f j} = ∅ [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : f i ∩ f j = ∅ x : ℝ ⊢ x ∈ {x | (a, x) ∈ f i} ∩ {x | (a, x) ∈ f j} ↔ x ∈ ∅ [PROOFSTEP] simp only [mem_inter_iff, mem_setOf_eq, mem_empty_iff_false, iff_false_iff] [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : f i ∩ f j = ∅ x : ℝ ⊢ ¬((a, x) ∈ f i ∧ (a, x) ∈ f j) [PROOFSTEP] intro h_mem_both [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : f i ∩ f j = ∅ x : ℝ h_mem_both : (a, x) ∈ f i ∧ (a, x) ∈ f j ⊢ False [PROOFSTEP] suffices (a, x) ∈ ∅ by rwa [mem_empty_iff_false] at this [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : f i ∩ f j = ∅ x : ℝ h_mem_both : (a, x) ∈ f i ∧ (a, x) ∈ f j this : (a, x) ∈ ∅ ⊢ False [PROOFSTEP] rwa [mem_empty_iff_false] at this [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} a : α i j : ℕ hij : i ≠ j h_disj : f i ∩ f j = ∅ x : ℝ h_mem_both : (a, x) ∈ f i ∧ (a, x) ∈ f j ⊢ (a, x) ∈ ∅ [PROOFSTEP] rwa [← h_disj, mem_inter_iff] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) ∂Measure.fst ρ = ↑↑ρ (⋃ (i : ℕ), f i) [PROOFSTEP] calc ∫⁻ a, condKernelReal ρ a (⋃ i, {x | (a, x) ∈ f i}) ∂ρ.fst = ∫⁻ a, ∑' i, condKernelReal ρ a {x | (a, x) ∈ f i} ∂ρ.fst := by congr with a : 1 rw [measure_iUnion (h_disj a) fun i => measurable_prod_mk_left (hf_meas i)] _ = ∑' i, ∫⁻ a, condKernelReal ρ a {x | (a, x) ∈ f i} ∂ρ.fst := (lintegral_tsum fun i => (kernel.measurable_kernel_prod_mk_left (hf_meas i)).aemeasurable) _ = ∑' i, ρ (f i) := by simp_rw [hf_eq] _ = ρ (iUnion f) := (measure_iUnion hf_disj hf_meas).symm [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) ⊢ ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) ∂Measure.fst ρ = ∫⁻ (a : α), ∑' (i : ℕ), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ [PROOFSTEP] congr with a : 1 [GOAL] case e_f.h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) a : α ⊢ ↑↑(↑(condKernelReal ρ) a) (⋃ (i : ℕ), {x | (a, x) ∈ f i}) = ∑' (i : ℕ), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} [PROOFSTEP] rw [measure_iUnion (h_disj a) fun i => measurable_prod_mk_left (hf_meas i)] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set (α × ℝ) hs : MeasurableSet s f : ℕ → Set (α × ℝ) hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_eq : ∀ (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ↑↑ρ (f i) h_eq : ∀ (a : α), {x | (a, x) ∈ ⋃ (i : ℕ), f i} = ⋃ (i : ℕ), {x | (a, x) ∈ f i} h_disj : ∀ (a : α), Pairwise (Disjoint on fun i => {x | (a, x) ∈ f i}) ⊢ ∑' (i : ℕ), ∫⁻ (a : α), ↑↑(↑(condKernelReal ρ) a) {x | (a, x) ∈ f i} ∂Measure.fst ρ = ∑' (i : ℕ), ↑↑ρ (f i) [PROOFSTEP] simp_rw [hf_eq] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ✝ : Measure (α × ℝ) inst✝² : IsFiniteMeasure ρ✝ γ : Type u_2 inst✝¹ : MeasurableSpace γ ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ const γ ρ = const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (condKernelReal ρ) [PROOFSTEP] ext a s hs : 2 [GOAL] case h.h α : Type u_1 mα : MeasurableSpace α ρ✝ : Measure (α × ℝ) inst✝² : IsFiniteMeasure ρ✝ γ : Type u_2 inst✝¹ : MeasurableSpace γ ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : γ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ↑↑(↑(const γ ρ) a) s = ↑↑(↑(const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (condKernelReal ρ)) a) s [PROOFSTEP] rw [kernel.compProd_apply _ _ _ hs, kernel.const_apply, kernel.const_apply] [GOAL] case h.h α : Type u_1 mα : MeasurableSpace α ρ✝ : Measure (α × ℝ) inst✝² : IsFiniteMeasure ρ✝ γ : Type u_2 inst✝¹ : MeasurableSpace γ ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : γ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ↑↑ρ s = ∫⁻ (b : α), ↑↑(↑(prodMkLeft γ (condKernelReal ρ)) (a, b)) {c | (b, c) ∈ s} ∂Measure.fst ρ [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply] [GOAL] case h.h α : Type u_1 mα : MeasurableSpace α ρ✝ : Measure (α × ℝ) inst✝² : IsFiniteMeasure ρ✝ γ : Type u_2 inst✝¹ : MeasurableSpace γ ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : γ s : Set (α × ℝ) hs : MeasurableSet s ⊢ ↑↑ρ s = ∫⁻ (b : α), ↑↑(↑(condKernelReal ρ) b) {c | (b, c) ∈ s} ∂Measure.fst ρ [PROOFSTEP] rw [lintegral_condKernelReal_mem ρ hs] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ρ = ↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) () [PROOFSTEP] rw [← kernel.const_eq_compProd_real Unit ρ, kernel.const_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ f : α × ℝ → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (a : α), ∫⁻ (y : ℝ), f (a, y) ∂↑(condKernelReal ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × ℝ), f x ∂ρ [PROOFSTEP] nth_rw 3 [measure_eq_compProd_real ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ f : α × ℝ → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (a : α), ∫⁻ (y : ℝ), f (a, y) ∂↑(condKernelReal ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × ℝ), f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) () [PROOFSTEP] rw [kernel.lintegral_compProd _ _ _ hf, kernel.const_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ f : α × ℝ → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (a : α), ∫⁻ (y : ℝ), f (a, y) ∂↑(condKernelReal ρ) a ∂Measure.fst ρ = ∫⁻ (b : α), ∫⁻ (c : ℝ), f (b, c) ∂↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b) ∂Measure.fst ρ [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] have h : ρ {x | x.snd ∈ sᶜ} = (kernel.const Unit ρ.fst ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) () {x | x.snd ∈ sᶜ} := by rw [← measure_eq_compProd_real] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 ⊢ ↑↑ρ {x | x.snd ∈ sᶜ} = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ} [PROOFSTEP] rw [← measure_eq_compProd_real] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : ↑↑ρ {x | x.snd ∈ sᶜ} = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ} ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] rw [hρ, kernel.compProd_apply] at h [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : 0 = ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 case hs α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : 0 = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ} ⊢ MeasurableSet {x | x.snd ∈ sᶜ} [PROOFSTEP] swap [GOAL] case hs α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : 0 = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (condKernelReal ρ)) ()) {x | x.snd ∈ sᶜ} ⊢ MeasurableSet {x | x.snd ∈ sᶜ} [PROOFSTEP] exact measurable_snd hs.compl [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : 0 = ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] rw [eq_comm, lintegral_eq_zero_iff] at h [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : (fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}) =ᵐ[↑(kernel.const Unit (Measure.fst ρ)) ()] 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () = 0 ⊢ Measurable fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} [PROOFSTEP] swap [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () = 0 ⊢ Measurable fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply'] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () = 0 ⊢ Measurable fun b => ↑↑(↑(condKernelReal ρ) b) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} [PROOFSTEP] simp only [mem_compl_iff, mem_setOf_eq] [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}} ∂↑(kernel.const Unit (Measure.fst ρ)) () = 0 ⊢ Measurable fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s} [PROOFSTEP] exact kernel.measurable_coe _ hs.compl [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : (fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}) =ᵐ[↑(kernel.const Unit (Measure.fst ρ)) ()] 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] rw [kernel.const_apply] at h [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : (fun b => ↑↑(↑(kernel.prodMkLeft Unit (condKernelReal ρ)) ((), b)) {c | (b, c) ∈ {x | x.snd ∈ sᶜ}}) =ᵐ[Measure.fst ρ] 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] simp only [mem_compl_iff, mem_setOf_eq, kernel.prodMkLeft_apply'] at h [GOAL] α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : (fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}) =ᵐ[Measure.fst ρ] 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] filter_upwards [h] with a ha [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : (fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}) =ᵐ[Measure.fst ρ] 0 a : α ha : ↑↑(↑(condKernelReal ρ) a) {c | ¬c ∈ s} = OfNat.ofNat 0 a ⊢ ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] change condKernelReal ρ a sᶜ = 0 at ha [GOAL] case h α : Type u_1 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set ℝ hs : MeasurableSet s hρ : ↑↑ρ {x | x.snd ∈ sᶜ} = 0 h : (fun b => ↑↑(↑(condKernelReal ρ) b) {c | ¬c ∈ s}) =ᵐ[Measure.fst ρ] 0 a : α ha : ↑↑(↑(condKernelReal ρ) a) sᶜ = 0 ⊢ ↑↑(↑(condKernelReal ρ) a) s = 1 [PROOFSTEP] rwa [prob_compl_eq_zero_iff hs] at ha [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] obtain ⟨f, hf⟩ := exists_measurableEmbedding_real Ω [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] let ρ' : Measure (α × ℝ) := ρ.map (Prod.map id f) -- The general idea is to define `η = kernel.comapRight (condKernelReal ρ') hf`. There is -- however an issue: that `η` may not be a Markov kernel since its value is only a -- probability distribution almost everywhere with respect to `ρ.fst`, not everywhere. -- We modify it to obtain a Markov kernel which is almost everywhere equal. [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] let ρ_set := (toMeasurable ρ.fst {a | condKernelReal ρ' a (range f) = 1}ᶜ)ᶜ [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] have hm : MeasurableSet ρ_set := (measurableSet_toMeasurable _ _).compl [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] have h_eq_one_of_mem : ∀ a ∈ ρ_set, condKernelReal ρ' a (range f) = 1 := by intro a ha rw [mem_compl_iff] at ha have h_ss := subset_toMeasurable ρ.fst {a : α | condKernelReal ρ' a (range f) = 1}ᶜ suffices ha' : a ∉ {a : α | condKernelReal ρ' a (range f) = 1}ᶜ · rwa [not_mem_compl_iff] at ha' exact not_mem_subset h_ss ha [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set ⊢ ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 [PROOFSTEP] intro a ha [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set a : α ha : a ∈ ρ_set ⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1 [PROOFSTEP] rw [mem_compl_iff] at ha [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set a : α ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1 [PROOFSTEP] have h_ss := subset_toMeasurable ρ.fst {a : α | condKernelReal ρ' a (range f) = 1}ᶜ [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set a : α ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ h_ss : {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊆ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1 [PROOFSTEP] suffices ha' : a ∉ {a : α | condKernelReal ρ' a (range f) = 1}ᶜ [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set a : α ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ h_ss : {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊆ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ha' : ¬a ∈ {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1 [PROOFSTEP] rwa [not_mem_compl_iff] at ha' [GOAL] case ha' α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set a : α ha : ¬a ∈ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ h_ss : {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊆ toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ ⊢ ¬a ∈ {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ [PROOFSTEP] exact not_mem_subset h_ss ha [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] have h_prod_embed : MeasurableEmbedding (Prod.map (id : α → α) f) := MeasurableEmbedding.id.prod_mk hf [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] have h_fst : ρ'.fst = ρ.fst := by ext1 u hu rw [Measure.fst_apply hu, Measure.fst_apply hu, Measure.map_apply h_prod_embed.measurable (measurable_fst hu)] rfl [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) ⊢ Measure.fst ρ' = Measure.fst ρ [PROOFSTEP] ext1 u hu [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) u : Set α hu : MeasurableSet u ⊢ ↑↑(Measure.fst ρ') u = ↑↑(Measure.fst ρ) u [PROOFSTEP] rw [Measure.fst_apply hu, Measure.fst_apply hu, Measure.map_apply h_prod_embed.measurable (measurable_fst hu)] [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) u : Set α hu : MeasurableSet u ⊢ ↑↑ρ (Prod.map id f ⁻¹' (Prod.fst ⁻¹' u)) = ↑↑ρ (Prod.fst ⁻¹' u) [PROOFSTEP] rfl [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] have h_ae : ∀ᵐ a ∂ρ.fst, a ∈ ρ_set := by rw [ae_iff] simp only [not_mem_compl_iff, setOf_mem_eq, measure_toMeasurable] change ρ.fst {a : α | a ∉ {a' : α | condKernelReal ρ' a' (range f) = 1}} = 0 rw [← ae_iff, ← h_fst] refine' ae_condKernelReal_eq_one ρ' hf.measurableSet_range _ rw [Measure.map_apply h_prod_embed.measurable] swap; · exact measurable_snd hf.measurableSet_range.compl convert measure_empty (α := α × Ω) ext1 x simp only [mem_compl_iff, mem_range, preimage_setOf_eq, Prod_map, mem_setOf_eq, mem_empty_iff_false, iff_false_iff, Classical.not_not, exists_apply_eq_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set [PROOFSTEP] rw [ae_iff] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ↑↑(Measure.fst ρ) {a | ¬a ∈ ρ_set} = 0 [PROOFSTEP] simp only [not_mem_compl_iff, setOf_mem_eq, measure_toMeasurable] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ↑↑(Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ = 0 [PROOFSTEP] change ρ.fst {a : α | a ∉ {a' : α | condKernelReal ρ' a' (range f) = 1}} = 0 [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ↑↑(Measure.fst ρ) {a | ¬a ∈ {a' | ↑↑(↑(condKernelReal ρ') a') (range f) = 1}} = 0 [PROOFSTEP] rw [← ae_iff, ← h_fst] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ', a ∈ {a' | ↑↑(↑(condKernelReal ρ') a') (range f) = 1} [PROOFSTEP] refine' ae_condKernelReal_eq_one ρ' hf.measurableSet_range _ [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ↑↑ρ' {x | x.snd ∈ (range f)ᶜ} = 0 [PROOFSTEP] rw [Measure.map_apply h_prod_embed.measurable] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ↑↑ρ (Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ}) = 0 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ MeasurableSet {x | x.snd ∈ (range f)ᶜ} [PROOFSTEP] swap [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ MeasurableSet {x | x.snd ∈ (range f)ᶜ} [PROOFSTEP] exact measurable_snd hf.measurableSet_range.compl [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ ↑↑ρ (Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ}) = 0 [PROOFSTEP] convert measure_empty (α := α × Ω) [GOAL] case h.e'_2.h.e'_3 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ ⊢ Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ} = ∅ [PROOFSTEP] ext1 x [GOAL] case h.e'_2.h.e'_3.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ x : α × Ω ⊢ x ∈ Prod.map id f ⁻¹' {x | x.snd ∈ (range f)ᶜ} ↔ x ∈ ∅ [PROOFSTEP] simp only [mem_compl_iff, mem_range, preimage_setOf_eq, Prod_map, mem_setOf_eq, mem_empty_iff_false, iff_false_iff, Classical.not_not, exists_apply_eq_apply] [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] classical obtain ⟨x₀, hx₀⟩ : ∃ x, x ∈ range f := range_nonempty _ let η' := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun _ => x₀) measurable_const) -- We show that `kernel.comapRight η' hf` is a suitable Markov kernel. refine' ⟨kernel.comapRight η' hf, _, _⟩ · refine' kernel.IsMarkovKernel.comapRight _ _ fun a => _ rw [kernel.piecewise_apply'] split_ifs with h_mem · exact h_eq_one_of_mem _ h_mem · rw [kernel.deterministic_apply' _ _ hf.measurableSet_range, Set.indicator_apply, if_pos hx₀] have : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed := by ext c t ht : 2 rw [kernel.const_apply, kernel.comapRight_apply' _ _ _ ht, kernel.const_apply, Measure.map_apply h_prod_embed.measurable (h_prod_embed.measurableSet_image.mpr ht)] congr with x : 1 rw [← @Prod.mk.eta _ _ x] simp only [id.def, mem_preimage, Prod.map_mk, mem_image, Prod.mk.inj_iff, Prod.exists] refine' ⟨fun h => ⟨x.1, x.2, h, rfl, rfl⟩, _⟩ rintro ⟨a, b, h_mem, rfl, hf_eq⟩ rwa [hf.injective hf_eq] at h_mem rw [this, kernel.const_eq_compProd_real _ ρ'] ext c t ht : 2 rw [kernel.comapRight_apply' _ _ _ ht, kernel.compProd_apply _ _ _ (h_prod_embed.measurableSet_image.mpr ht), kernel.const_apply, h_fst, kernel.compProd_apply _ _ _ ht, kernel.const_apply] refine' lintegral_congr_ae _ filter_upwards [h_ae] with a ha rw [kernel.prodMkLeft_apply', kernel.prodMkLeft_apply', kernel.comapRight_apply'] swap · exact measurable_prod_mk_left ht have h1 : {c : ℝ | (a, c) ∈ Prod.map id f '' t} = f '' {c : Ω | (a, c) ∈ t} := by ext1 x simp only [Prod_map, id.def, mem_image, Prod.mk.inj_iff, Prod.exists, mem_setOf_eq] constructor · rintro ⟨a', b, h_mem, rfl, hf_eq⟩ exact ⟨b, h_mem, hf_eq⟩ · rintro ⟨b, h_mem, hf_eq⟩ exact ⟨a, b, h_mem, rfl, hf_eq⟩ have h2 : condKernelReal ρ' (c, a).snd = η' (c, a).snd := by rw [kernel.piecewise_apply, if_pos ha] rw [h1, h2] [GOAL] case intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] obtain ⟨x₀, hx₀⟩ : ∃ x, x ∈ range f := range_nonempty _ [GOAL] case intro.intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] let η' := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun _ => x₀) measurable_const) -- We show that `kernel.comapRight η' hf` is a suitable Markov kernel. [GOAL] case intro.intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) ⊢ ∃ η _h, kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ η [PROOFSTEP] refine' ⟨kernel.comapRight η' hf, _, _⟩ [GOAL] case intro.intro.refine'_1 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) ⊢ IsMarkovKernel (kernel.comapRight η' hf) [PROOFSTEP] refine' kernel.IsMarkovKernel.comapRight _ _ fun a => _ [GOAL] case intro.intro.refine'_1 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a : α ⊢ ↑↑(↑η' a) (range f) = 1 [PROOFSTEP] rw [kernel.piecewise_apply'] [GOAL] case intro.intro.refine'_1 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a : α ⊢ (if a ∈ ρ_set then ↑↑(↑(condKernelReal ρ') a) (range f) else ↑↑(↑(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a) (range f)) = 1 [PROOFSTEP] split_ifs with h_mem [GOAL] case pos α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a : α h_mem : a ∈ ρ_set ⊢ ↑↑(↑(condKernelReal ρ') a) (range f) = 1 [PROOFSTEP] exact h_eq_one_of_mem _ h_mem [GOAL] case neg α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a : α h_mem : ¬a ∈ ρ_set ⊢ ↑↑(↑(kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) a) (range f) = 1 [PROOFSTEP] rw [kernel.deterministic_apply' _ _ hf.measurableSet_range, Set.indicator_apply, if_pos hx₀] [GOAL] case intro.intro.refine'_2 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) ⊢ kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf) [PROOFSTEP] have : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed := by ext c t ht : 2 rw [kernel.const_apply, kernel.comapRight_apply' _ _ _ ht, kernel.const_apply, Measure.map_apply h_prod_embed.measurable (h_prod_embed.measurableSet_image.mpr ht)] congr with x : 1 rw [← @Prod.mk.eta _ _ x] simp only [id.def, mem_preimage, Prod.map_mk, mem_image, Prod.mk.inj_iff, Prod.exists] refine' ⟨fun h => ⟨x.1, x.2, h, rfl, rfl⟩, _⟩ rintro ⟨a, b, h_mem, rfl, hf_eq⟩ rwa [hf.injective hf_eq] at h_mem [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) ⊢ kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed [PROOFSTEP] ext c t ht : 2 [GOAL] case h.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t ⊢ ↑↑(↑(kernel.const γ ρ) c) t = ↑↑(↑(kernel.comapRight (kernel.const γ ρ') h_prod_embed) c) t [PROOFSTEP] rw [kernel.const_apply, kernel.comapRight_apply' _ _ _ ht, kernel.const_apply, Measure.map_apply h_prod_embed.measurable (h_prod_embed.measurableSet_image.mpr ht)] [GOAL] case h.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t ⊢ ↑↑ρ t = ↑↑ρ (Prod.map id f ⁻¹' (Prod.map id f '' t)) [PROOFSTEP] congr with x : 1 [GOAL] case h.h.e_a.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t x : α × Ω ⊢ x ∈ t ↔ x ∈ Prod.map id f ⁻¹' (Prod.map id f '' t) [PROOFSTEP] rw [← @Prod.mk.eta _ _ x] [GOAL] case h.h.e_a.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t x : α × Ω ⊢ (x.fst, x.snd) ∈ t ↔ (x.fst, x.snd) ∈ Prod.map id f ⁻¹' (Prod.map id f '' t) [PROOFSTEP] simp only [id.def, mem_preimage, Prod.map_mk, mem_image, Prod.mk.inj_iff, Prod.exists] [GOAL] case h.h.e_a.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t x : α × Ω ⊢ (x.fst, x.snd) ∈ t ↔ ∃ a b, (a, b) ∈ t ∧ a = x.fst ∧ f b = f x.snd [PROOFSTEP] refine' ⟨fun h => ⟨x.1, x.2, h, rfl, rfl⟩, _⟩ [GOAL] case h.h.e_a.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t x : α × Ω ⊢ (∃ a b, (a, b) ∈ t ∧ a = x.fst ∧ f b = f x.snd) → (x.fst, x.snd) ∈ t [PROOFSTEP] rintro ⟨a, b, h_mem, rfl, hf_eq⟩ [GOAL] case h.h.e_a.h.intro.intro.intro.intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) c : γ t : Set (α × Ω) ht : MeasurableSet t x : α × Ω b : Ω hf_eq : f b = f x.snd h_mem : (x.fst, b) ∈ t ⊢ (x.fst, x.snd) ∈ t [PROOFSTEP] rwa [hf.injective hf_eq] at h_mem [GOAL] case intro.intro.refine'_2 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed ⊢ kernel.const γ ρ = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf) [PROOFSTEP] rw [this, kernel.const_eq_compProd_real _ ρ'] [GOAL] case intro.intro.refine'_2 α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed ⊢ kernel.comapRight (kernel.const γ (Measure.fst ρ') ⊗ₖ kernel.prodMkLeft γ (condKernelReal ρ')) h_prod_embed = kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf) [PROOFSTEP] ext c t ht : 2 [GOAL] case intro.intro.refine'_2.h.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t ⊢ ↑↑(↑(kernel.comapRight (kernel.const γ (Measure.fst ρ') ⊗ₖ kernel.prodMkLeft γ (condKernelReal ρ')) h_prod_embed) c) t = ↑↑(↑(kernel.const γ (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft γ (kernel.comapRight η' hf)) c) t [PROOFSTEP] rw [kernel.comapRight_apply' _ _ _ ht, kernel.compProd_apply _ _ _ (h_prod_embed.measurableSet_image.mpr ht), kernel.const_apply, h_fst, kernel.compProd_apply _ _ _ ht, kernel.const_apply] [GOAL] case intro.intro.refine'_2.h.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t ⊢ ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft γ (condKernelReal ρ')) (c, b)) {c | (b, c) ∈ Prod.map id f '' t} ∂Measure.fst ρ = ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft γ (kernel.comapRight η' hf)) (c, b)) {c | (b, c) ∈ t} ∂Measure.fst ρ [PROOFSTEP] refine' lintegral_congr_ae _ [GOAL] case intro.intro.refine'_2.h.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t ⊢ (fun b => ↑↑(↑(kernel.prodMkLeft γ (condKernelReal ρ')) (c, b)) {c | (b, c) ∈ Prod.map id f '' t}) =ᵐ[Measure.fst ρ] fun b => ↑↑(↑(kernel.prodMkLeft γ (kernel.comapRight η' hf)) (c, b)) {c | (b, c) ∈ t} [PROOFSTEP] filter_upwards [h_ae] with a ha [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ ↑↑(↑(kernel.prodMkLeft γ (condKernelReal (Measure.map (Prod.map id f) ρ))) (c, a)) {c | (a, c) ∈ Prod.map id f '' t} = ↑↑(↑(kernel.prodMkLeft γ (kernel.comapRight (kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ)) (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))) hf)) (c, a)) {c | (a, c) ∈ t} [PROOFSTEP] rw [kernel.prodMkLeft_apply', kernel.prodMkLeft_apply', kernel.comapRight_apply'] [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} = ↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ)) (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))) (c, a).snd) (f '' {c | (a, c) ∈ t}) case h.ht α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ MeasurableSet {c | (a, c) ∈ t} [PROOFSTEP] swap [GOAL] case h.ht α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ MeasurableSet {c | (a, c) ∈ t} [PROOFSTEP] exact measurable_prod_mk_left ht [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} = ↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ)) (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))) (c, a).snd) (f '' {c | (a, c) ∈ t}) [PROOFSTEP] have h1 : {c : ℝ | (a, c) ∈ Prod.map id f '' t} = f '' {c : Ω | (a, c) ∈ t} := by ext1 x simp only [Prod_map, id.def, mem_image, Prod.mk.inj_iff, Prod.exists, mem_setOf_eq] constructor · rintro ⟨a', b, h_mem, rfl, hf_eq⟩ exact ⟨b, h_mem, hf_eq⟩ · rintro ⟨b, h_mem, hf_eq⟩ exact ⟨a, b, h_mem, rfl, hf_eq⟩ [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t} [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ x : ℝ ⊢ x ∈ {c | (a, c) ∈ Prod.map id f '' t} ↔ x ∈ f '' {c | (a, c) ∈ t} [PROOFSTEP] simp only [Prod_map, id.def, mem_image, Prod.mk.inj_iff, Prod.exists, mem_setOf_eq] [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ x : ℝ ⊢ (∃ a_1 b, (a_1, b) ∈ t ∧ a_1 = a ∧ f b = x) ↔ ∃ x_1, (a, x_1) ∈ t ∧ f x_1 = x [PROOFSTEP] constructor [GOAL] case h.mp α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ x : ℝ ⊢ (∃ a_1 b, (a_1, b) ∈ t ∧ a_1 = a ∧ f b = x) → ∃ x_1, (a, x_1) ∈ t ∧ f x_1 = x [PROOFSTEP] rintro ⟨a', b, h_mem, rfl, hf_eq⟩ [GOAL] case h.mp.intro.intro.intro.intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t x : ℝ a' : α b : Ω h_mem : (a', b) ∈ t hf_eq : f b = x ha : a' ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ ⊢ ∃ x_1, (a', x_1) ∈ t ∧ f x_1 = x [PROOFSTEP] exact ⟨b, h_mem, hf_eq⟩ [GOAL] case h.mpr α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ x : ℝ ⊢ (∃ x_1, (a, x_1) ∈ t ∧ f x_1 = x) → ∃ a_2 b, (a_2, b) ∈ t ∧ a_2 = a ∧ f b = x [PROOFSTEP] rintro ⟨b, h_mem, hf_eq⟩ [GOAL] case h.mpr.intro.intro α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ x : ℝ b : Ω h_mem : (a, b) ∈ t hf_eq : f b = x ⊢ ∃ a_1 b, (a_1, b) ∈ t ∧ a_1 = a ∧ f b = x [PROOFSTEP] exact ⟨a, b, h_mem, rfl, hf_eq⟩ [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ h1 : {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t} ⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} = ↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ)) (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))) (c, a).snd) (f '' {c | (a, c) ∈ t}) [PROOFSTEP] have h2 : condKernelReal ρ' (c, a).snd = η' (c, a).snd := by rw [kernel.piecewise_apply, if_pos ha] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ h1 : {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t} ⊢ ↑(condKernelReal ρ') (c, a).snd = ↑η' (c, a).snd [PROOFSTEP] rw [kernel.piecewise_apply, if_pos ha] [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁶ : TopologicalSpace Ω inst✝⁵ : PolishSpace Ω inst✝⁴ : MeasurableSpace Ω inst✝³ : BorelSpace Ω inst✝² : Nonempty Ω ρ : Measure (α × Ω) inst✝¹ : IsFiniteMeasure ρ γ : Type u_3 inst✝ : MeasurableSpace γ f : Ω → ℝ hf : MeasurableEmbedding f ρ' : Measure (α × ℝ) := Measure.map (Prod.map id f) ρ ρ_set : Set α := (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal ρ') a) (range f) = 1}ᶜ)ᶜ hm : MeasurableSet ρ_set h_eq_one_of_mem : ∀ (a : α), a ∈ ρ_set → ↑↑(↑(condKernelReal ρ') a) (range f) = 1 h_prod_embed : MeasurableEmbedding (Prod.map id f) h_fst : Measure.fst ρ' = Measure.fst ρ h_ae : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ ρ_set x₀ : ℝ hx₀ : x₀ ∈ range f η' : { x // x ∈ kernel α ℝ } := kernel.piecewise hm (condKernelReal ρ') (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀)) this : kernel.const γ ρ = kernel.comapRight (kernel.const γ ρ') h_prod_embed c : γ t : Set (α × Ω) ht : MeasurableSet t a : α ha : a ∈ (toMeasurable (Measure.fst ρ) {a | ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) a) (range f) = 1}ᶜ)ᶜ h1 : {c | (a, c) ∈ Prod.map id f '' t} = f '' {c | (a, c) ∈ t} h2 : ↑(condKernelReal ρ') (c, a).snd = ↑η' (c, a).snd ⊢ ↑↑(↑(condKernelReal (Measure.map (Prod.map id f) ρ)) (c, a).snd) {c | (a, c) ∈ Prod.map id f '' t} = ↑↑(↑(kernel.piecewise hm (condKernelReal (Measure.map (Prod.map id f) ρ)) (kernel.deterministic (fun x => x₀) (_ : Measurable fun x => x₀))) (c, a).snd) (f '' {c | (a, c) ∈ t}) [PROOFSTEP] rw [h1, h2] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ Measure.condKernel ρ = Exists.choose (_ : ∃ η _h, kernel.const Unit ρ = kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit η) [PROOFSTEP] rw [MeasureTheory.Measure.condKernel] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ IsMarkovKernel (Measure.condKernel ρ) [PROOFSTEP] rw [condKernel_def] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ IsMarkovKernel (Exists.choose (_ : ∃ η _h, kernel.const Unit ρ = kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit η)) [PROOFSTEP] exact (exists_cond_kernel ρ Unit).choose_spec.choose [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ const Unit ρ = const Unit (Measure.fst ρ) ⊗ₖ prodMkLeft Unit (Measure.condKernel ρ) [PROOFSTEP] simp_rw [condKernel_def] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ const Unit ρ = const Unit (Measure.fst ρ) ⊗ₖ prodMkLeft Unit (Exists.choose (_ : ∃ η _h, const Unit ρ = const Unit (Measure.fst ρ) ⊗ₖ prodMkLeft Unit η)) [PROOFSTEP] exact (exists_cond_kernel ρ Unit).choose_spec.choose_spec [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ ρ = ↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] rw [← kernel.const_unit_eq_compProd, kernel.const_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁷ : TopologicalSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : BorelSpace Ω inst✝³ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝² : IsFiniteMeasure ρ✝ γ : Type u_3 inst✝¹ : MeasurableSpace γ ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ ⊢ const γ ρ = const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (Measure.condKernel ρ) [PROOFSTEP] ext a s hs : 2 [GOAL] case h.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁷ : TopologicalSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : MeasurableSpace Ω inst✝⁴ : BorelSpace Ω inst✝³ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝² : IsFiniteMeasure ρ✝ γ : Type u_3 inst✝¹ : MeasurableSpace γ ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ a : γ s : Set (α × Ω) hs : MeasurableSet s ⊢ ↑↑(↑(const γ ρ) a) s = ↑↑(↑(const γ (Measure.fst ρ) ⊗ₖ prodMkLeft γ (Measure.condKernel ρ)) a) s [PROOFSTEP] simpa only [kernel.const_apply, kernel.compProd_apply _ _ _ hs, kernel.prodMkLeft_apply'] using kernel.ext_iff'.mp (kernel.const_unit_eq_compProd ρ) () s hs [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set (α × Ω) hs : MeasurableSet s ⊢ ∫⁻ (a : α), ↑↑(↑(Measure.condKernel ρ) a) {x | (a, x) ∈ s} ∂Measure.fst ρ = ↑↑ρ s [PROOFSTEP] conv_rhs => rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set (α × Ω) hs : MeasurableSet s | ↑↑ρ s [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set (α × Ω) hs : MeasurableSet s | ↑↑ρ s [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set (α × Ω) hs : MeasurableSet s | ↑↑ρ s [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set (α × Ω) hs : MeasurableSet s ⊢ ∫⁻ (a : α), ↑↑(↑(Measure.condKernel ρ) a) {x | (a, x) ∈ s} ∂Measure.fst ρ = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) s [PROOFSTEP] simp_rw [kernel.compProd_apply _ _ _ hs, kernel.const_apply, kernel.prodMkLeft_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t ⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) [PROOFSTEP] have : ρ (s ×ˢ t) = ((kernel.const Unit ρ.fst ⊗ₖ kernel.prodMkLeft Unit ρ.condKernel) ()) (s ×ˢ t) := by congr; exact measure_eq_compProd ρ [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t ⊢ ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) [PROOFSTEP] congr [GOAL] case e_self.e_self α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t ⊢ ρ = ↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] exact measure_eq_compProd ρ [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ = ↑↑ρ (s ×ˢ t) [PROOFSTEP] rw [this, kernel.compProd_apply _ _ _ (hs.prod ht)] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ = ∫⁻ (b : α), ↑↑(↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), b)) {c | (b, c) ∈ s ×ˢ t} ∂↑(kernel.const Unit (Measure.fst ρ)) () [PROOFSTEP] simp only [prod_mk_mem_set_prod_eq, kernel.lintegral_const, kernel.prodMkLeft_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) ⊢ ∫⁻ (a : α) in s, ↑↑(↑(Measure.condKernel ρ) a) t ∂Measure.fst ρ = ∫⁻ (x : α), ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} ∂Measure.fst ρ [PROOFSTEP] rw [← lintegral_indicator _ hs] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) ⊢ ∫⁻ (a : α), indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) a ∂Measure.fst ρ = ∫⁻ (x : α), ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} ∂Measure.fst ρ [PROOFSTEP] congr [GOAL] case e_f α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) ⊢ (fun a => indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) a) = fun x => ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} [PROOFSTEP] ext1 x [GOAL] case e_f.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) x : α ⊢ indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) x = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} [PROOFSTEP] classical rw [indicator_apply] split_ifs with hx · simp only [hx, if_true, true_and_iff, setOf_mem_eq] · simp only [hx, if_false, false_and_iff, setOf_false, measure_empty] [GOAL] case e_f.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) x : α ⊢ indicator s (fun a => ↑↑(↑(Measure.condKernel ρ) a) t) x = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} [PROOFSTEP] rw [indicator_apply] [GOAL] case e_f.h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) x : α ⊢ (if x ∈ s then ↑↑(↑(Measure.condKernel ρ) x) t else 0) = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} [PROOFSTEP] split_ifs with hx [GOAL] case pos α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) x : α hx : x ∈ s ⊢ ↑↑(↑(Measure.condKernel ρ) x) t = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} [PROOFSTEP] simp only [hx, if_true, true_and_iff, setOf_mem_eq] [GOAL] case neg α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t this : ↑↑ρ (s ×ˢ t) = ↑↑(↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) (s ×ˢ t) x : α hx : ¬x ∈ s ⊢ 0 = ↑↑(↑(Measure.condKernel ρ) x) {c | x ∈ s ∧ c ∈ t} [PROOFSTEP] simp only [hx, if_false, false_and_iff, setOf_false, measure_empty] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω), f x ∂ρ [PROOFSTEP] conv_rhs => rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f | ∫⁻ (x : α × Ω), f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f | ∫⁻ (x : α × Ω), f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f | ∫⁻ (x : α × Ω), f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω), f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] rw [kernel.lintegral_compProd _ _ _ hf, kernel.const_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (b : α), ∫⁻ (c : Ω), f (b, c) ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), b) ∂Measure.fst ρ [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t ⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] conv_rhs => rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t | ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t | ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t | ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t ⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω) in s ×ˢ t, f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] rw [← kernel.restrict_apply _ (hs.prod ht), ← kernel.compProd_restrict hs ht, kernel.lintegral_compProd _ _ _ hf, kernel.restrict_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t ⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (b : α) in s, ∫⁻ (c : Ω), f (b, c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht) ((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) () [PROOFSTEP] conv_rhs => enter [2, b, 1]; rw [kernel.restrict_apply _ ht] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t | ∫⁻ (b : α) in s, ∫⁻ (c : Ω), f (b, c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht) ((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) () [PROOFSTEP] enter [2, b, 1]; rw [kernel.restrict_apply _ ht] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t | ∫⁻ (b : α) in s, ∫⁻ (c : Ω), f (b, c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht) ((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) () [PROOFSTEP] enter [2, b, 1]; rw [kernel.restrict_apply _ ht] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t | ∫⁻ (b : α) in s, ∫⁻ (c : Ω), f (b, c) ∂↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht) ((), b) ∂↑(kernel.const Unit (Measure.fst ρ)) () [PROOFSTEP] enter [2, b, 1] [GOAL] case h α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t b : α | ↑(kernel.restrict (kernel.prodMkLeft Unit (Measure.condKernel ρ)) ht) ((), b) [PROOFSTEP] rw [kernel.restrict_apply _ ht] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω) in s ×ˢ univ, f x ∂ρ [PROOFSTEP] rw [← set_lintegral_condKernel ρ hf hs MeasurableSet.univ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ∫⁻ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (a : α) in s, ∫⁻ (ω : Ω) in univ, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ [PROOFSTEP] simp_rw [Measure.restrict_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f t : Set Ω ht : MeasurableSet t ⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (x : α × Ω) in univ ×ˢ t, f x ∂ρ [PROOFSTEP] rw [← set_lintegral_condKernel ρ hf MeasurableSet.univ ht] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁵ : TopologicalSpace Ω inst✝⁴ : PolishSpace Ω inst✝³ : MeasurableSpace Ω inst✝² : BorelSpace Ω inst✝¹ : Nonempty Ω ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → ℝ≥0∞ hf : Measurable f t : Set Ω ht : MeasurableSet t ⊢ ∫⁻ (a : α), ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫⁻ (a : α) in univ, ∫⁻ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ [PROOFSTEP] simp_rw [Measure.restrict_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : AEStronglyMeasurable f ρ ⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x) (Measure.fst ρ) [PROOFSTEP] rw [measure_eq_compProd ρ] at hf [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) ⊢ AEStronglyMeasurable (fun x => ∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x) (Measure.fst ρ) [PROOFSTEP] exact AEStronglyMeasurable.integral_kernel_compProd hf [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f ⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (ω : α × Ω), f ω ∂ρ [PROOFSTEP] conv_rhs => rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f | ∫ (ω : α × Ω), f ω ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f | ∫ (ω : α × Ω), f ω ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f | ∫ (ω : α × Ω), f ω ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f ⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (ω : α × Ω), f ω ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] have hf' : Integrable f ((kernel.const Unit ρ.fst ⊗ₖ kernel.prodMkLeft Unit ρ.condKernel) ()) := by rwa [measure_eq_compProd ρ] at hf [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f ⊢ Integrable f [PROOFSTEP] rwa [measure_eq_compProd ρ] at hf [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f hf' : Integrable f ⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (ω : α × Ω), f ω ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] rw [integral_compProd hf', kernel.const_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf : Integrable f hf' : Integrable f ⊢ ∫ (a : α), ∫ (x : Ω), f (a, x) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α), ∫ (y : Ω), f (x, y) ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), x) ∂Measure.fst ρ [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] conv_rhs => rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) | ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) | ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) | ∫ (x : α × Ω) in s ×ˢ t, f x ∂ρ [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ t, f x ∂↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) () [PROOFSTEP] rw [set_integral_compProd hs ht] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ ∫ (a : α) in s, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α) in s, ∫ (y : Ω) in t, f (x, y) ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), x) ∂↑(kernel.const Unit (Measure.fst ρ)) () [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply, kernel.const_apply] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (s ×ˢ t) ⊢ IntegrableOn (fun x => f x) (s ×ˢ t) [PROOFSTEP] rwa [measure_eq_compProd ρ] at hf [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s hf : IntegrableOn f (s ×ˢ univ) ⊢ ∫ (a : α) in s, ∫ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in s ×ˢ univ, f x ∂ρ [PROOFSTEP] rw [← set_integral_condKernel hs MeasurableSet.univ hf] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E s : Set α hs : MeasurableSet s hf : IntegrableOn f (s ×ˢ univ) ⊢ ∫ (a : α) in s, ∫ (ω : Ω), f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (a : α) in s, ∫ (ω : Ω) in univ, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ [PROOFSTEP] simp_rw [Measure.restrict_univ] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (univ ×ˢ t) ⊢ ∫ (a : α), ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (x : α × Ω) in univ ×ˢ t, f x ∂ρ [PROOFSTEP] rw [← set_integral_condKernel MeasurableSet.univ ht hf] [GOAL] α : Type u_1 mα : MeasurableSpace α Ω : Type u_2 inst✝⁹ : TopologicalSpace Ω inst✝⁸ : PolishSpace Ω inst✝⁷ : MeasurableSpace Ω inst✝⁶ : BorelSpace Ω inst✝⁵ : Nonempty Ω ρ✝ : Measure (α × Ω) inst✝⁴ : IsFiniteMeasure ρ✝ E : Type u_3 inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E t : Set Ω ht : MeasurableSet t hf : IntegrableOn f (univ ×ˢ t) ⊢ ∫ (a : α), ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ = ∫ (a : α) in univ, ∫ (ω : Ω) in t, f (a, ω) ∂↑(Measure.condKernel ρ) a ∂Measure.fst ρ [PROOFSTEP] simp_rw [Measure.restrict_univ] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f ρ ⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔ Integrable f [PROOFSTEP] rw [measure_eq_compProd ρ] at hf [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) ⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔ Integrable f [PROOFSTEP] conv_rhs => rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) | Integrable f [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) | Integrable f [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) | Integrable f [PROOFSTEP] rw [measure_eq_compProd ρ] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) ⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔ Integrable f [PROOFSTEP] rw [integrable_compProd_iff hf] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf : AEStronglyMeasurable f (↑(kernel.const Unit (Measure.fst ρ) ⊗ₖ kernel.prodMkLeft Unit (Measure.condKernel ρ)) ()) ⊢ ((∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a) ↔ (∀ᵐ (x : α) ∂↑(kernel.const Unit (Measure.fst ρ)) (), Integrable fun y => f (x, y)) ∧ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(kernel.prodMkLeft Unit (Measure.condKernel ρ)) ((), x) [PROOFSTEP] simp_rw [kernel.prodMkLeft_apply, kernel.const_apply] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf_int : Integrable f ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω) [PROOFSTEP] have hf_ae : AEStronglyMeasurable f ρ := hf_int.1 [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf_int : Integrable f hf_ae : AEStronglyMeasurable f ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω) [PROOFSTEP] rw [← hf_ae.ae_integrable_condKernel_iff] at hf_int [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf_int : (∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a hf_ae : AEStronglyMeasurable f ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω) [PROOFSTEP] exact hf_int.1 [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf_int : Integrable f ⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x [PROOFSTEP] have hf_ae : AEStronglyMeasurable f ρ := hf_int.1 [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf_int : Integrable f hf_ae : AEStronglyMeasurable f ρ ⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x [PROOFSTEP] rw [← hf_ae.ae_integrable_condKernel_iff] at hf_int [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → F hf_int : (∀ᵐ (a : α) ∂Measure.fst ρ, Integrable fun ω => f (a, ω)) ∧ Integrable fun a => ∫ (ω : Ω), ‖f (a, ω)‖ ∂↑(Measure.condKernel ρ) a hf_ae : AEStronglyMeasurable f ρ ⊢ Integrable fun x => ∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x [PROOFSTEP] exact hf_int.2 [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf_int : Integrable f ⊢ Integrable fun x => ‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x‖ [PROOFSTEP] refine' hf_int.integral_norm_condKernel.mono hf_int.1.integral_condKernel.norm _ [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf_int : Integrable f ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ‖‖∫ (y : Ω), f (a, y) ∂↑(Measure.condKernel ρ) a‖‖ ≤ ‖∫ (y : Ω), ‖f (a, y)‖ ∂↑(Measure.condKernel ρ) a‖ [PROOFSTEP] refine' eventually_of_forall fun x => _ [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf_int : Integrable f x : α ⊢ ‖‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x‖‖ ≤ ‖∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x‖ [PROOFSTEP] rw [norm_norm] [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf_int : Integrable f x : α ⊢ ‖∫ (y : Ω), f (x, y) ∂↑(Measure.condKernel ρ) x‖ ≤ ‖∫ (y : Ω), ‖f (x, y)‖ ∂↑(Measure.condKernel ρ) x‖ [PROOFSTEP] refine' (norm_integral_le_integral_norm _).trans_eq (Real.norm_of_nonneg _).symm [GOAL] α : Type u_1 Ω : Type u_2 E : Type u_3 F : Type u_4 mα : MeasurableSpace α inst✝⁹ : MeasurableSpace Ω inst✝⁸ : TopologicalSpace Ω inst✝⁷ : BorelSpace Ω inst✝⁶ : PolishSpace Ω inst✝⁵ : Nonempty Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : NormedAddCommGroup F ρ : Measure (α × Ω) inst✝ : IsFiniteMeasure ρ f : α × Ω → E hf_int : Integrable f x : α ⊢ 0 ≤ ∫ (a : Ω), ‖f (x, a)‖ ∂↑(Measure.condKernel ρ) x [PROOFSTEP] exact integral_nonneg_of_ae (eventually_of_forall fun y => norm_nonneg _)
{"mathlib_filename": "Mathlib.Probability.Kernel.Disintegration", "llama_tokens": 88426}
[GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ ⊢ predictablePart f ℱ μ 0 = 0 [PROOFSTEP] simp_rw [predictablePart, Finset.range_zero, Finset.sum_empty] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ ⊢ martingalePart f ℱ μ = fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) [PROOFSTEP] unfold martingalePart predictablePart [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ ⊢ (fun n => f n - ∑ i in Finset.range n, μ[f (i + 1) - f i|↑ℱ i]) = fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) [PROOFSTEP] ext1 n [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ n : ℕ ⊢ f n - ∑ i in Finset.range n, μ[f (i + 1) - f i|↑ℱ i] = f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) [PROOFSTEP] rw [Finset.eq_sum_range_sub f n, ← add_sub, ← Finset.sum_sub_distrib] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ hf_int : ∀ (n : ℕ), Integrable (f n) n : ℕ ⊢ Integrable (martingalePart f ℱ μ n) [PROOFSTEP] rw [martingalePart_eq_sum] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ hf_int : ∀ (n : ℕ), Integrable (f n) n : ℕ ⊢ Integrable ((fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) n) [PROOFSTEP] exact (hf_int 0).add (integrable_finset_sum' _ fun i _ => ((hf_int _).sub (hf_int _)).sub integrable_condexp) [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ ⊢ Martingale (martingalePart f ℱ μ) ℱ μ [PROOFSTEP] refine' ⟨adapted_martingalePart hf, fun i j hij => _⟩ -- ⊢ μ[martingalePart f ℱ μ j | ℱ i] =ᵐ[μ] martingalePart f ℱ μ i [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] martingalePart f ℱ μ i [PROOFSTEP] have h_eq_sum : μ[martingalePart f ℱ μ j|ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|ℱ i] - μ[μ[f (k + 1) - f k|ℱ k]|ℱ i]) := by rw [martingalePart_eq_sum] refine' (condexp_add (hf_int 0) _).trans _ · exact integrable_finset_sum' _ fun i _ => ((hf_int _).sub (hf_int _)).sub integrable_condexp refine' (EventuallyEq.add EventuallyEq.rfl (condexp_finset_sum fun i _ => _)).trans _ · exact ((hf_int _).sub (hf_int _)).sub integrable_condexp refine' EventuallyEq.add _ _ · rw [condexp_of_stronglyMeasurable (ℱ.le _) _ (hf_int 0)] · exact (hf 0).mono (ℱ.mono (zero_le i)) · exact eventuallyEq_sum fun k _ => condexp_sub ((hf_int _).sub (hf_int _)) integrable_condexp [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) [PROOFSTEP] rw [martingalePart_eq_sum] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ μ[(fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) [PROOFSTEP] refine' (condexp_add (hf_int 0) _).trans _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ Integrable (∑ i in Finset.range j, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) [PROOFSTEP] exact integrable_finset_sum' _ fun i _ => ((hf_int _).sub (hf_int _)).sub integrable_condexp [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ μ[f 0|↑ℱ i] + μ[∑ i in Finset.range j, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) [PROOFSTEP] refine' (EventuallyEq.add EventuallyEq.rfl (condexp_finset_sum fun i _ => _)).trans _ [GOAL] case refine'_2.refine'_1 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i✝ j : ℕ hij : i✝ ≤ j i : ℕ x✝ : i ∈ Finset.range j ⊢ Integrable (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) [PROOFSTEP] exact ((hf_int _).sub (hf_int _)).sub integrable_condexp [GOAL] case refine'_2.refine'_2 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ (fun x => (μ[f 0|↑ℱ i]) x + Finset.sum (Finset.range j) (fun i_1 => μ[f (i_1 + 1) - f i_1 - μ[f (i_1 + 1) - f i_1|↑ℱ i_1]|↑ℱ i]) x) =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) [PROOFSTEP] refine' EventuallyEq.add _ _ [GOAL] case refine'_2.refine'_2.refine'_1 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ (fun x => (μ[f 0|↑ℱ i]) x) =ᵐ[μ] fun x => f 0 x [PROOFSTEP] rw [condexp_of_stronglyMeasurable (ℱ.le _) _ (hf_int 0)] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ StronglyMeasurable (f 0) [PROOFSTEP] exact (hf 0).mono (ℱ.mono (zero_le i)) [GOAL] case refine'_2.refine'_2.refine'_2 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j ⊢ (fun x => Finset.sum (Finset.range j) (fun i_1 => μ[f (i_1 + 1) - f i_1 - μ[f (i_1 + 1) - f i_1|↑ℱ i_1]|↑ℱ i]) x) =ᵐ[μ] fun x => Finset.sum (Finset.range j) (fun k => μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x [PROOFSTEP] exact eventuallyEq_sum fun k _ => condexp_sub ((hf_int _).sub (hf_int _)) integrable_condexp [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) ⊢ μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] martingalePart f ℱ μ i [PROOFSTEP] refine' h_eq_sum.trans _ [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) ⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] martingalePart f ℱ μ i [PROOFSTEP] have h_ge : ∀ k, i ≤ k → μ[f (k + 1) - f k|ℱ i] - μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] 0 := by intro k hk have : μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|ℱ i] := condexp_condexp_of_le (ℱ.mono hk) (ℱ.le k) filter_upwards [this] with x hx rw [Pi.sub_apply, Pi.zero_apply, hx, sub_self] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) ⊢ ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 [PROOFSTEP] intro k hk [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) k : ℕ hk : i ≤ k ⊢ μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 [PROOFSTEP] have : μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|ℱ i] := condexp_condexp_of_le (ℱ.mono hk) (ℱ.le k) [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) k : ℕ hk : i ≤ k this : μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|↑ℱ i] ⊢ μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [this] with x hx [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) k : ℕ hk : i ≤ k this : μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] μ[f (k + 1) - f k|↑ℱ i] x : Ω hx : (μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x = (μ[f (k + 1) - f k|↑ℱ i]) x ⊢ (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x = OfNat.ofNat 0 x [PROOFSTEP] rw [Pi.sub_apply, Pi.zero_apply, hx, sub_self] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 ⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] martingalePart f ℱ μ i [PROOFSTEP] have h_lt : ∀ k, k < i → μ[f (k + 1) - f k|ℱ i] - μ[μ[f (k + 1) - f k|ℱ k]|ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|ℱ k] := by refine' fun k hk => EventuallyEq.sub _ _ · rw [condexp_of_stronglyMeasurable] · exact ((hf (k + 1)).mono (ℱ.mono (Nat.succ_le_of_lt hk))).sub ((hf k).mono (ℱ.mono hk.le)) · exact (hf_int _).sub (hf_int _) · rw [condexp_of_stronglyMeasurable] · exact stronglyMeasurable_condexp.mono (ℱ.mono hk.le) · exact integrable_condexp [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 ⊢ ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] [PROOFSTEP] refine' fun k hk => EventuallyEq.sub _ _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 k : ℕ hk : k < i ⊢ (fun x => (μ[f (k + 1) - f k|↑ℱ i]) x) =ᵐ[μ] fun x => (f (k + 1) - f k) x [PROOFSTEP] rw [condexp_of_stronglyMeasurable] [GOAL] case refine'_1.hf Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 k : ℕ hk : k < i ⊢ StronglyMeasurable (f (k + 1) - f k) [PROOFSTEP] exact ((hf (k + 1)).mono (ℱ.mono (Nat.succ_le_of_lt hk))).sub ((hf k).mono (ℱ.mono hk.le)) [GOAL] case refine'_1.hfi Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 k : ℕ hk : k < i ⊢ Integrable (f (k + 1) - f k) [PROOFSTEP] exact (hf_int _).sub (hf_int _) [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 k : ℕ hk : k < i ⊢ (fun x => (μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x) =ᵐ[μ] fun x => (μ[f (k + 1) - f k|↑ℱ k]) x [PROOFSTEP] rw [condexp_of_stronglyMeasurable] [GOAL] case refine'_2.hf Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 k : ℕ hk : k < i ⊢ StronglyMeasurable (μ[f (k + 1) - f k|↑ℱ k]) [PROOFSTEP] exact stronglyMeasurable_condexp.mono (ℱ.mono hk.le) [GOAL] case refine'_2.hfi Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 k : ℕ hk : k < i ⊢ Integrable (μ[f (k + 1) - f k|↑ℱ k]) [PROOFSTEP] exact integrable_condexp [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] martingalePart f ℱ μ i [PROOFSTEP] rw [martingalePart_eq_sum] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) =ᵐ[μ] (fun n => f 0 + ∑ i in Finset.range n, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i])) i [PROOFSTEP] refine' EventuallyEq.add EventuallyEq.rfl _ [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ (fun x => Finset.sum (Finset.range j) (fun k => μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x) =ᵐ[μ] fun x => Finset.sum (Finset.range i) (fun i => f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) x [PROOFSTEP] rw [← Finset.sum_range_add_sum_Ico _ hij, ← add_zero (∑ i in Finset.range i, (f (i + 1) - f i - μ[f (i + 1) - f i|ℱ i]))] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ (fun x => (∑ k in Finset.range i, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) + ∑ k in Finset.Ico i j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i])) x) =ᵐ[μ] fun x => (∑ i in Finset.range i, (f (i + 1) - f i - μ[f (i + 1) - f i|↑ℱ i]) + 0) x [PROOFSTEP] refine' (eventuallyEq_sum fun k hk => h_lt k (Finset.mem_range.mp hk)).add _ [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ (fun x => Finset.sum (Finset.Ico i j) (fun k => μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) x) =ᵐ[μ] fun x => OfNat.ofNat 0 x [PROOFSTEP] refine' (eventuallyEq_sum fun k hk => h_ge k (Finset.mem_Ico.mp hk).1).trans _ [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ ∑ i in Finset.Ico i j, 0 =ᵐ[μ] fun x => OfNat.ofNat 0 x [PROOFSTEP] simp only [Finset.sum_const_zero, Pi.zero_apply] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f : ℕ → Ω → E ℱ : Filtration ℕ m0 n : ℕ hf : Adapted ℱ f hf_int : ∀ (n : ℕ), Integrable (f n) inst✝ : SigmaFiniteFiltration μ ℱ i j : ℕ hij : i ≤ j h_eq_sum : μ[martingalePart f ℱ μ j|↑ℱ i] =ᵐ[μ] f 0 + ∑ k in Finset.range j, (μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i]) h_ge : ∀ (k : ℕ), i ≤ k → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] 0 h_lt : ∀ (k : ℕ), k < i → μ[f (k + 1) - f k|↑ℱ i] - μ[μ[f (k + 1) - f k|↑ℱ k]|↑ℱ i] =ᵐ[μ] f (k + 1) - f k - μ[f (k + 1) - f k|↑ℱ k] ⊢ 0 =ᵐ[μ] fun x => 0 [PROOFSTEP] rfl [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n [PROOFSTEP] set h := f - martingalePart (f + g) ℱ μ with hhdef [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ ⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n [PROOFSTEP] have hh : h = predictablePart (f + g) ℱ μ - g := by rw [hhdef, sub_eq_sub_iff_add_eq_add, add_comm (predictablePart (f + g) ℱ μ), martingalePart_add_predictablePart] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ ⊢ h = predictablePart (f + g) ℱ μ - g [PROOFSTEP] rw [hhdef, sub_eq_sub_iff_add_eq_add, add_comm (predictablePart (f + g) ℱ μ), martingalePart_add_predictablePart] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g ⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n [PROOFSTEP] have hhpred : Adapted ℱ fun n => h (n + 1) := by rw [hh] exact adapted_predictablePart.sub hg [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g ⊢ Adapted ℱ fun n => h (n + 1) [PROOFSTEP] rw [hh] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g ⊢ Adapted ℱ fun n => (predictablePart (f + g) ℱ μ - g) (n + 1) [PROOFSTEP] exact adapted_predictablePart.sub hg [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g hhpred : Adapted ℱ fun n => h (n + 1) ⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n [PROOFSTEP] have hhmgle : Martingale h ℱ μ := hf.sub (martingale_martingalePart (hf.adapted.add <| Predictable.adapted hg <| hg0.symm ▸ stronglyMeasurable_zero) fun n => (hf.integrable n).add <| hgint n) [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g hhpred : Adapted ℱ fun n => h (n + 1) hhmgle : Martingale h ℱ μ ⊢ martingalePart (f + g) ℱ μ n =ᵐ[μ] f n [PROOFSTEP] refine' (eventuallyEq_iff_sub.2 _).symm [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g hhpred : Adapted ℱ fun n => h (n + 1) hhmgle : Martingale h ℱ μ ⊢ f n - martingalePart (f + g) ℱ μ n =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [hhmgle.eq_zero_of_predictable hhpred n] with ω hω [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g hhpred : Adapted ℱ fun n => h (n + 1) hhmgle : Martingale h ℱ μ ω : Ω hω : (f - martingalePart (f + g) ℱ μ) n ω = (f - martingalePart (f + g) ℱ μ) 0 ω ⊢ (f n - martingalePart (f + g) ℱ μ n) ω = OfNat.ofNat 0 ω [PROOFSTEP] rw [Pi.sub_apply] at hω [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g hhpred : Adapted ℱ fun n => h (n + 1) hhmgle : Martingale h ℱ μ ω : Ω hω : (f n - martingalePart (f + g) ℱ μ n) ω = (f - martingalePart (f + g) ℱ μ) 0 ω ⊢ (f n - martingalePart (f + g) ℱ μ n) ω = OfNat.ofNat 0 ω [PROOFSTEP] rw [hω, Pi.sub_apply, martingalePart] [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ h : ℕ → Ω → E := f - martingalePart (f + g) ℱ μ hhdef : h = f - martingalePart (f + g) ℱ μ hh : h = predictablePart (f + g) ℱ μ - g hhpred : Adapted ℱ fun n => h (n + 1) hhmgle : Martingale h ℱ μ ω : Ω hω : (f n - martingalePart (f + g) ℱ μ n) ω = (f - martingalePart (f + g) ℱ μ) 0 ω ⊢ (f 0 - ((f + g) 0 - predictablePart (f + g) ℱ μ 0)) ω = OfNat.ofNat 0 ω [PROOFSTEP] simp [hg0] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ⊢ predictablePart (f + g) ℱ μ n =ᵐ[μ] g n [PROOFSTEP] filter_upwards [martingalePart_add_ae_eq hf hg hg0 hgint n] with ω hω [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ω : Ω hω : martingalePart (f + g) ℱ μ n ω = f n ω ⊢ predictablePart (f + g) ℱ μ n ω = g n ω [PROOFSTEP] rw [← add_right_inj (f n ω)] [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ω : Ω hω : martingalePart (f + g) ℱ μ n ω = f n ω ⊢ f n ω + predictablePart (f + g) ℱ μ n ω = f n ω + g n ω [PROOFSTEP] conv_rhs => rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ω : Ω hω : martingalePart (f + g) ℱ μ n ω = f n ω | f n ω + g n ω [PROOFSTEP] rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ω : Ω hω : martingalePart (f + g) ℱ μ n ω = f n ω | f n ω + g n ω [PROOFSTEP] rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ω : Ω hω : martingalePart (f + g) ℱ μ n ω = f n ω | f n ω + g n ω [PROOFSTEP] rw [← Pi.add_apply, ← Pi.add_apply, ← martingalePart_add_predictablePart ℱ μ (f + g)] [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ : ℕ → Ω → E ℱ : Filtration ℕ m0 n✝ : ℕ inst✝ : SigmaFiniteFiltration μ ℱ f g : ℕ → Ω → E hf : Martingale f ℱ μ hg : Adapted ℱ fun n => g (n + 1) hg0 : g 0 = 0 hgint : ∀ (n : ℕ), Integrable (g n) n : ℕ ω : Ω hω : martingalePart (f + g) ℱ μ n ω = f n ω ⊢ f n ω + predictablePart (f + g) ℱ μ n ω = (martingalePart (f + g) ℱ μ + predictablePart (f + g) ℱ μ) n ω [PROOFSTEP] rw [Pi.add_apply, Pi.add_apply, hω] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R [PROOFSTEP] simp_rw [predictablePart, Finset.sum_apply, Finset.sum_range_succ_sub_sum] [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(μ[f (i + 1) - f i|↑ℱ i]) ω| ≤ ↑R [PROOFSTEP] exact ae_all_iff.2 fun i => ae_bdd_condexp_of_ae_bdd <| ae_all_iff.1 hbdd i [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |martingalePart f ℱ μ (i + 1) ω - martingalePart f ℱ μ i ω| ≤ ↑(2 * R) [PROOFSTEP] filter_upwards [hbdd, predictablePart_bdd_difference ℱ hbdd] with ω hω₁ hω₂ i [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R i : ℕ ⊢ |martingalePart f ℱ μ (i + 1) ω - martingalePart f ℱ μ i ω| ≤ ↑(2 * R) [PROOFSTEP] simp only [two_mul, martingalePart, Pi.sub_apply] [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R i : ℕ ⊢ |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| ≤ ↑(R + R) [PROOFSTEP] have : |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| = |f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| := by ring_nf -- `ring` suggests `ring_nf` despite proving the goal [GOAL] Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R i : ℕ ⊢ |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| = |f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| [PROOFSTEP] ring_nf -- `ring` suggests `ring_nf` despite proving the goal [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R i : ℕ this : |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| = |f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| ⊢ |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| ≤ ↑(R + R) [PROOFSTEP] rw [this] [GOAL] case h Ω : Type u_1 E : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ : ℕ → Ω → E ℱ✝ : Filtration ℕ m0 n : ℕ R : ℝ≥0 f : ℕ → Ω → ℝ ℱ : Filtration ℕ m0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω₁ : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hω₂ : ∀ (i : ℕ), |predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω| ≤ ↑R i : ℕ this : |f (i + 1) ω - predictablePart f ℱ μ (i + 1) ω - (f i ω - predictablePart f ℱ μ i ω)| = |f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| ⊢ |f (i + 1) ω - f i ω - (predictablePart f ℱ μ (i + 1) ω - predictablePart f ℱ μ i ω)| ≤ ↑(R + R) [PROOFSTEP] exact (abs_sub _ _).trans (add_le_add (hω₁ i) (hω₂ i))
{"mathlib_filename": "Mathlib.Probability.Martingale.Centering", "llama_tokens": 24799}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t) [PROOFSTEP] refine' MeasurableSpace.induction_on_inter (C := fun t => Measurable fun a => κ a (Prod.mk a ⁻¹' t)) generateFrom_prod.symm isPiSystem_prod _ _ _ _ ht [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) ⊢ (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) ∅ [PROOFSTEP] simp only [preimage_empty, measure_empty, measurable_const] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) ⊢ ∀ (t : Set (α × β)), t ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t} → (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) t [PROOFSTEP] intro t' ht' [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : t' ∈ image2 (fun x x_1 => x ×ˢ x_1) {s | MeasurableSet s} {t | MeasurableSet t} ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') [PROOFSTEP] simp only [Set.mem_image2, Set.mem_setOf_eq, exists_and_left] at ht' [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : ∃ a, MeasurableSet a ∧ ∃ x, MeasurableSet x ∧ a ×ˢ x = t' ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') [PROOFSTEP] obtain ⟨t₁, ht₁, t₂, ht₂, rfl⟩ := ht' [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t₁ ×ˢ t₂) [PROOFSTEP] classical simp_rw [mk_preimage_prod_right_eq_if] have h_eq_ite : (fun a => κ a (ite (a ∈ t₁) t₂ ∅)) = fun a => ite (a ∈ t₁) (κ a t₂) 0 := by ext1 a split_ifs exacts [rfl, measure_empty] rw [h_eq_ite] exact Measurable.ite ht₁ (kernel.measurable_coe κ ht₂) measurable_const [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t₁ ×ˢ t₂) [PROOFSTEP] simp_rw [mk_preimage_prod_right_eq_if] [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ ⊢ Measurable fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅) [PROOFSTEP] have h_eq_ite : (fun a => κ a (ite (a ∈ t₁) t₂ ∅)) = fun a => ite (a ∈ t₁) (κ a t₂) 0 := by ext1 a split_ifs exacts [rfl, measure_empty] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ ⊢ (fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0 [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ a : α ⊢ ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅) = if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ a : α h✝ : a ∈ t₁ ⊢ ↑↑(↑κ a) t₂ = ↑↑(↑κ a) t₂ case neg α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ a : α h✝ : ¬a ∈ t₁ ⊢ ↑↑(↑κ a) ∅ = 0 [PROOFSTEP] exacts [rfl, measure_empty] [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ h_eq_ite : (fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0 ⊢ Measurable fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅) [PROOFSTEP] rw [h_eq_ite] [GOAL] case refine'_2.intro.intro.intro.intro α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t₁ : Set α ht₁ : MeasurableSet t₁ t₂ : Set β ht₂ : MeasurableSet t₂ h_eq_ite : (fun a => ↑↑(↑κ a) (if a ∈ t₁ then t₂ else ∅)) = fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0 ⊢ Measurable fun a => if a ∈ t₁ then ↑↑(↑κ a) t₂ else 0 [PROOFSTEP] exact Measurable.ite ht₁ (kernel.measurable_coe κ ht₂) measurable_const [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) ⊢ ∀ (t : Set (α × β)), MeasurableSet t → (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) t → (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) tᶜ [PROOFSTEP] intro t' ht' h_meas [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t'ᶜ) [PROOFSTEP] have h_eq_sdiff : ∀ a, Prod.mk a ⁻¹' t'ᶜ = Set.univ \ Prod.mk a ⁻¹' t' := by intro a ext1 b simp only [mem_compl_iff, mem_preimage, mem_diff, mem_univ, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') ⊢ ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' [PROOFSTEP] intro a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') a : α ⊢ Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' [PROOFSTEP] ext1 b [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') a : α b : β ⊢ b ∈ Prod.mk a ⁻¹' t'ᶜ ↔ b ∈ univ \ Prod.mk a ⁻¹' t' [PROOFSTEP] simp only [mem_compl_iff, mem_preimage, mem_diff, mem_univ, true_and_iff] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t'ᶜ) [PROOFSTEP] simp_rw [h_eq_sdiff] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' ⊢ Measurable fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t') [PROOFSTEP] have : (fun a => κ a (Set.univ \ Prod.mk a ⁻¹' t')) = fun a => κ a Set.univ - κ a (Prod.mk a ⁻¹' t') := by ext1 a rw [← Set.diff_inter_self_eq_diff, Set.inter_univ, measure_diff (Set.subset_univ _)] · exact (@measurable_prod_mk_left α β _ _ a) ht' · exact measure_ne_top _ _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' ⊢ (fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')) = fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t') [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' a : α ⊢ ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t') = ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t') [PROOFSTEP] rw [← Set.diff_inter_self_eq_diff, Set.inter_univ, measure_diff (Set.subset_univ _)] [GOAL] case h.h₂ α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' a : α ⊢ MeasurableSet (Prod.mk a ⁻¹' t') [PROOFSTEP] exact (@measurable_prod_mk_left α β _ _ a) ht' [GOAL] case h.h_fin α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' a : α ⊢ ↑↑(↑κ a) (Prod.mk a ⁻¹' t') ≠ ⊤ [PROOFSTEP] exact measure_ne_top _ _ [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' this : (fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')) = fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t') ⊢ Measurable fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t') [PROOFSTEP] rw [this] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) t' : Set (α × β) ht' : MeasurableSet t' h_meas : Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t') h_eq_sdiff : ∀ (a : α), Prod.mk a ⁻¹' t'ᶜ = univ \ Prod.mk a ⁻¹' t' this : (fun a => ↑↑(↑κ a) (univ \ Prod.mk a ⁻¹' t')) = fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t') ⊢ Measurable fun a => ↑↑(↑κ a) univ - ↑↑(↑κ a) (Prod.mk a ⁻¹' t') [PROOFSTEP] exact Measurable.sub (kernel.measurable_coe κ MeasurableSet.univ) h_meas [GOAL] case refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) ⊢ ∀ (f : ℕ → Set (α × β)), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i)) → (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (⋃ (i : ℕ), f i) [PROOFSTEP] intro f h_disj hf_meas hf [GOAL] case refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i) [PROOFSTEP] have h_Union : (fun a => κ a (Prod.mk a ⁻¹' ⋃ i, f i)) = fun a => κ a (⋃ i, Prod.mk a ⁻¹' f i) := by ext1 a congr with b simp only [mem_iUnion, mem_preimage] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) ⊢ (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) a : α ⊢ ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i) = ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) [PROOFSTEP] congr with b [GOAL] case h.e_a.h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) a : α b : β ⊢ b ∈ Prod.mk a ⁻¹' ⋃ (i : ℕ), f i ↔ b ∈ ⋃ (i : ℕ), Prod.mk a ⁻¹' f i [PROOFSTEP] simp only [mem_iUnion, mem_preimage] [GOAL] case refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i) [PROOFSTEP] rw [h_Union] [GOAL] case refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) ⊢ Measurable fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) [PROOFSTEP] have h_tsum : (fun a => κ a (⋃ i, Prod.mk a ⁻¹' f i)) = fun a => ∑' i, κ a (Prod.mk a ⁻¹' f i) := by ext1 a rw [measure_iUnion] · intro i j hij s hsi hsj b hbs have habi : {(a, b)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hbs have habj : {(a, b)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hbs simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using h_disj hij habi habj · exact fun i => (@measurable_prod_mk_left α β _ _ a) (hf_meas i) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) ⊢ (fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)) = fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i) [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α ⊢ ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) = ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i) [PROOFSTEP] rw [measure_iUnion] [GOAL] case h.hn α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α ⊢ Pairwise (Disjoint on fun i => Prod.mk a ⁻¹' f i) [PROOFSTEP] intro i j hij s hsi hsj b hbs [GOAL] case h.hn α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s ⊢ b ∈ ⊥ [PROOFSTEP] have habi : {(a, b)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hbs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s ⊢ {(a, b)} ⊆ f i [PROOFSTEP] rw [Set.singleton_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s ⊢ (a, b) ∈ f i [PROOFSTEP] exact hsi hbs [GOAL] case h.hn α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s habi : {(a, b)} ⊆ f i ⊢ b ∈ ⊥ [PROOFSTEP] have habj : {(a, b)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hbs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s habi : {(a, b)} ⊆ f i ⊢ {(a, b)} ⊆ f j [PROOFSTEP] rw [Set.singleton_subset_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s habi : {(a, b)} ⊆ f i ⊢ (a, b) ∈ f j [PROOFSTEP] exact hsj hbs [GOAL] case h.hn α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α i j : ℕ hij : i ≠ j s : Set β hsi : s ≤ (fun i => Prod.mk a ⁻¹' f i) i hsj : s ≤ (fun i => Prod.mk a ⁻¹' f i) j b : β hbs : b ∈ s habi : {(a, b)} ⊆ f i habj : {(a, b)} ⊆ f j ⊢ b ∈ ⊥ [PROOFSTEP] simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using h_disj hij habi habj [GOAL] case h.h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) a : α ⊢ ∀ (i : ℕ), MeasurableSet (Prod.mk a ⁻¹' f i) [PROOFSTEP] exact fun i => (@measurable_prod_mk_left α β _ _ a) (hf_meas i) [GOAL] case refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) h_tsum : (fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)) = fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i) ⊢ Measurable fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) [PROOFSTEP] rw [h_tsum] [GOAL] case refine'_4 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α t : Set (α × β) ht : MeasurableSet t hκs : ∀ (a : α), IsFiniteMeasure (↑κ a) f : ℕ → Set (α × β) h_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf : ∀ (i : ℕ), (fun t => Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t)) (f i) h_Union : (fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' ⋃ (i : ℕ), f i)) = fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i) h_tsum : (fun a => ↑↑(↑κ a) (⋃ (i : ℕ), Prod.mk a ⁻¹' f i)) = fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i) ⊢ Measurable fun a => ∑' (i : ℕ), ↑↑(↑κ a) (Prod.mk a ⁻¹' f i) [PROOFSTEP] exact Measurable.ennreal_tsum hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝ : IsSFiniteKernel κ t : Set (α × β) ht : MeasurableSet t ⊢ Measurable fun a => ↑↑(↑κ a) (Prod.mk a ⁻¹' t) [PROOFSTEP] rw [← kernel.kernel_sum_seq κ] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝ : IsSFiniteKernel κ t : Set (α × β) ht : MeasurableSet t ⊢ Measurable fun a => ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) [PROOFSTEP] have : ∀ a, kernel.sum (kernel.seq κ) a (Prod.mk a ⁻¹' t) = ∑' n, kernel.seq κ n a (Prod.mk a ⁻¹' t) := fun a => kernel.sum_apply' _ _ (measurable_prod_mk_left ht) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝ : IsSFiniteKernel κ t : Set (α × β) ht : MeasurableSet t this : ∀ (a : α), ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) = ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t) ⊢ Measurable fun a => ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) [PROOFSTEP] simp_rw [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝ : IsSFiniteKernel κ t : Set (α × β) ht : MeasurableSet t this : ∀ (a : α), ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) = ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t) ⊢ Measurable fun a => ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t) [PROOFSTEP] refine' Measurable.ennreal_tsum fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝ : IsSFiniteKernel κ t : Set (α × β) ht : MeasurableSet t this : ∀ (a : α), ↑↑(↑(kernel.sum (seq κ)) a) (Prod.mk a ⁻¹' t) = ∑' (n : ℕ), ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t) n : ℕ ⊢ Measurable fun a => ↑↑(↑(seq κ n) a) (Prod.mk a ⁻¹' t) [PROOFSTEP] exact measurable_kernel_prod_mk_left_of_finite ht inferInstance [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α ⊢ Measurable fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) [PROOFSTEP] have : ∀ b, Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p : (α × β) × γ | (p.1.2, p.2) ∈ s}} := by intro b; rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α ⊢ ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}} [PROOFSTEP] intro b [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α b : β ⊢ Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}} [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}} ⊢ Measurable fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) [PROOFSTEP] simp_rw [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}} ⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}} [PROOFSTEP] refine' (measurable_kernel_prod_mk_left _).comp measurable_prod_mk_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α this : ∀ (b : β), Prod.mk b ⁻¹' s = {c | ((a, b), c) ∈ {p | (p.fst.snd, p.snd) ∈ s}} ⊢ MeasurableSet {p | (p.fst.snd, p.snd) ∈ s} [PROOFSTEP] exact (measurable_fst.snd.prod_mk measurable_snd) hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ ⊢ Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a [PROOFSTEP] conv => congr ext erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ | Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a [PROOFSTEP] congr ext erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ | Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a [PROOFSTEP] congr ext erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ | Measurable fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a [PROOFSTEP] congr [GOAL] case f α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ | fun a => ∫⁻ (b : β), indicator t (Function.const (α × β) c) (a, b) ∂↑κ a [PROOFSTEP] ext [GOAL] case f.h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ x✝ : α | ∫⁻ (b : β), indicator t (Function.const (α × β) c) (x✝, b) ∂↑κ x✝ [PROOFSTEP] erw [lintegral_indicator_const_comp measurable_prod_mk_left ht _] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η t : Set (α × β) ht : MeasurableSet t c : ℝ≥0∞ ⊢ Measurable fun x => c * ↑↑(↑κ x) (Prod.mk x ⁻¹' t) [PROOFSTEP] exact Measurable.const_mul (measurable_kernel_prod_mk_left ht) c [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) ⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a [PROOFSTEP] let F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) ⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a [PROOFSTEP] have h : ∀ a, ⨆ n, F n a = uncurry f a := SimpleFunc.iSup_eapprox_apply (uncurry f) hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α × β), ⨆ (n : ℕ), ↑(F n) a = uncurry f a ⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a [PROOFSTEP] simp only [Prod.forall, uncurry_apply_pair] at h [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b ⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑κ a [PROOFSTEP] simp_rw [← h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b ⊢ Measurable fun a => ∫⁻ (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a [PROOFSTEP] have : ∀ a, (∫⁻ b, ⨆ n, F n (a, b) ∂κ a) = ⨆ n, ∫⁻ b, F n (a, b) ∂κ a := by intro a rw [lintegral_iSup] · exact fun n => (F n).measurable.comp measurable_prod_mk_left · exact fun i j hij b => SimpleFunc.monotone_eapprox (uncurry f) hij _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b ⊢ ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a [PROOFSTEP] intro a [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b a : α ⊢ ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a [PROOFSTEP] rw [lintegral_iSup] [GOAL] case hf α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b a : α ⊢ ∀ (n : ℕ), Measurable fun b => ↑(F n) (a, b) [PROOFSTEP] exact fun n => (F n).measurable.comp measurable_prod_mk_left [GOAL] case h_mono α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝ : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b a : α ⊢ Monotone fun n b => ↑(F n) (a, b) [PROOFSTEP] exact fun i j hij b => SimpleFunc.monotone_eapprox (uncurry f) hij _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a ⊢ Measurable fun a => ∫⁻ (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a [PROOFSTEP] simp_rw [this] -- Porting note: trouble finding the induction motive -- refine' measurable_iSup fun n => SimpleFunc.induction _ _ (F n) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a ⊢ Measurable fun a => ⨆ (n : ℕ), ∫⁻ (b : β), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a [PROOFSTEP] refine' measurable_iSup fun n => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ ⊢ Measurable fun a => ∫⁻ (b : β), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) ∂↑κ a [PROOFSTEP] refine' SimpleFunc.induction (P := fun f => Measurable (fun (a : α) => ∫⁻ (b : β), f (a, b) ∂κ a)) _ _ (F n) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ ⊢ ∀ (c : ℝ≥0∞) {s : Set (α × β)} (hs : MeasurableSet s), (fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) (SimpleFunc.piecewise s hs (SimpleFunc.const (α × β) c) (SimpleFunc.const (α × β) 0)) [PROOFSTEP] intro c t ht [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ c : ℝ≥0∞ t : Set (α × β) ht : MeasurableSet t ⊢ Measurable fun a => ∫⁻ (b : β), ↑(SimpleFunc.piecewise t ht (SimpleFunc.const (α × β) c) (SimpleFunc.const (α × β) 0)) (a, b) ∂↑κ a [PROOFSTEP] simp only [SimpleFunc.const_zero, SimpleFunc.coe_piecewise, SimpleFunc.coe_const, SimpleFunc.coe_zero, Set.piecewise_eq_indicator] [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ c : ℝ≥0∞ t : Set (α × β) ht : MeasurableSet t ⊢ Measurable fun a => ∫⁻ (b : β), Set.piecewise t (Function.const (α × β) c) 0 (a, b) ∂↑κ a [PROOFSTEP] exact kernel.measurable_lintegral_indicator_const (κ := κ) ht c [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ ⊢ ∀ ⦃f g : SimpleFunc (α × β) ℝ≥0∞⦄, Disjoint (support ↑f) (support ↑g) → (fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) f → (fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) g → (fun f => Measurable fun a => ∫⁻ (b : β), ↑f (a, b) ∂↑κ a) (f + g) [PROOFSTEP] intro g₁ g₂ _ hm₁ hm₂ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a ⊢ Measurable fun a => ∫⁻ (b : β), ↑(g₁ + g₂) (a, b) ∂↑κ a [PROOFSTEP] simp only [SimpleFunc.coe_add, Pi.add_apply] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a ⊢ Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a [PROOFSTEP] have h_add : (fun a => ∫⁻ b, g₁ (a, b) + g₂ (a, b) ∂κ a) = (fun a => ∫⁻ b, g₁ (a, b) ∂κ a) + fun a => ∫⁻ b, g₂ (a, b) ∂κ a := by ext1 a rw [Pi.add_apply] -- Porting note: was `rw` (`Function.comp` reducibility) erw [lintegral_add_left (g₁.measurable.comp measurable_prod_mk_left)] simp_rw [Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a ⊢ (fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a) = (fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝¹ : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a a : α ⊢ ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a = ((fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a) a [PROOFSTEP] rw [Pi.add_apply] -- Porting note: was `rw` (`Function.comp` reducibility) [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝¹ : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a a : α ⊢ ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a = ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a + ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a [PROOFSTEP] erw [lintegral_add_left (g₁.measurable.comp measurable_prod_mk_left)] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a✝¹ : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a a : α ⊢ ∫⁻ (a_1 : β), (↑g₁ ∘ Prod.mk a) a_1 ∂↑κ a + ∫⁻ (a_1 : β), ↑g₂ (a, a_1) ∂↑κ a = ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a + ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a [PROOFSTEP] simp_rw [Function.comp_apply] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a h_add : (fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a) = (fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a ⊢ Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a [PROOFSTEP] rw [h_add] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) F : ℕ → SimpleFunc (α × β) ℝ≥0∞ := SimpleFunc.eapprox (uncurry f) h : ∀ (a : α) (b : β), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (uncurry f) n) (a, b) = f a b this : ∀ (a : α), ∫⁻ (b : β), ⨆ (n : ℕ), ↑(F n) (a, b) ∂↑κ a = ⨆ (n : ℕ), ∫⁻ (b : β), ↑(F n) (a, b) ∂↑κ a n : ℕ g₁ g₂ : SimpleFunc (α × β) ℝ≥0∞ a✝ : Disjoint (support ↑g₁) (support ↑g₂) hm₁ : Measurable fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a hm₂ : Measurable fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a h_add : (fun a => ∫⁻ (b : β), ↑g₁ (a, b) + ↑g₂ (a, b) ∂↑κ a) = (fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a ⊢ Measurable ((fun a => ∫⁻ (b : β), ↑g₁ (a, b) ∂↑κ a) + fun a => ∫⁻ (b : β), ↑g₂ (a, b) ∂↑κ a) [PROOFSTEP] exact Measurable.add hm₁ hm₂ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → ℝ≥0∞ hf : Measurable f ⊢ Measurable fun a => ∫⁻ (b : β), f (a, b) ∂↑κ a [PROOFSTEP] refine' Measurable.lintegral_kernel_prod_right _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → ℝ≥0∞ hf : Measurable f ⊢ Measurable (uncurry fun a b => f (a, b)) [PROOFSTEP] have : (uncurry fun (a : α) (b : β) => f (a, b)) = f := by ext x; rw [← @Prod.mk.eta _ _ x, uncurry_apply_pair] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → ℝ≥0∞ hf : Measurable f ⊢ (uncurry fun a b => f (a, b)) = f [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → ℝ≥0∞ hf : Measurable f x : α × β ⊢ uncurry (fun a b => f (a, b)) x = f x [PROOFSTEP] rw [← @Prod.mk.eta _ _ x, uncurry_apply_pair] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → ℝ≥0∞ hf : Measurable f this : (uncurry fun a b => f (a, b)) = f ⊢ Measurable (uncurry fun a b => f (a, b)) [PROOFSTEP] rwa [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → ℝ≥0∞ hf : Measurable f ⊢ Measurable fun x => ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) [PROOFSTEP] change Measurable ((fun x => ∫⁻ y, (fun u : (α × β) × γ => f (u.1.2, u.2)) (x, y) ∂η x) ∘ Prod.mk a) -- Porting note: specified `κ`, `f`. [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → ℝ≥0∞ hf : Measurable f ⊢ Measurable ((fun x => ∫⁻ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x) ∘ Prod.mk a) [PROOFSTEP] refine' (Measurable.lintegral_kernel_prod_right' (κ := η) (f := (fun u ↦ f (u.fst.snd, u.snd))) _).comp measurable_prod_mk_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → ℝ≥0∞ hf : Measurable f ⊢ Measurable fun u => f (u.fst.snd, u.snd) [PROOFSTEP] exact hf.comp (measurable_fst.snd.prod_mk measurable_snd) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) s : Set β hs : MeasurableSet s ⊢ Measurable fun a => ∫⁻ (b : β) in s, f a b ∂↑κ a [PROOFSTEP] simp_rw [← lintegral_restrict κ hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → ℝ≥0∞ hf : Measurable (uncurry f) s : Set β hs : MeasurableSet s ⊢ Measurable fun a => ∫⁻ (b : β), f a b ∂↑(kernel.restrict κ hs) a [PROOFSTEP] exact hf.lintegral_kernel_prod_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β → α → ℝ≥0∞ hf : Measurable (uncurry f) s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ∫⁻ (a : β) in s, f a b ∂↑κ b [PROOFSTEP] simp_rw [← lintegral_restrict κ hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β → α → ℝ≥0∞ hf : Measurable (uncurry f) s : Set β hs : MeasurableSet s ⊢ Measurable fun b => ∫⁻ (a : β), f a b ∂↑(kernel.restrict κ hs) b [PROOFSTEP] exact hf.lintegral_kernel_prod_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β → ℝ≥0∞ hf : Measurable f s : Set β hs : MeasurableSet s ⊢ Measurable fun a => ∫⁻ (b : β) in s, f b ∂↑κ a [PROOFSTEP] refine Measurable.set_lintegral_kernel_prod_right ?_ hs [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β → ℝ≥0∞ hf : Measurable f s : Set β hs : MeasurableSet s ⊢ Measurable (uncurry fun a b => f b) [PROOFSTEP] convert (hf.comp measurable_snd) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) ⊢ MeasurableSet {x | Integrable (f x)} [PROOFSTEP] simp_rw [Integrable, hf.of_uncurry_left.aestronglyMeasurable, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝² : NormedAddCommGroup E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) ⊢ MeasurableSet {x | HasFiniteIntegral (f x)} [PROOFSTEP] exact measurableSet_lt (Measurable.lintegral_kernel_prod_right hf.ennnorm) measurable_const [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] classical borelize E haveI : TopologicalSpace.SeparableSpace (range (uncurry f) ∪ {0} : Set E) := hf.separableSpace_range_union_singleton let s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn _ hf.measurable (range (uncurry f) ∪ {0}) 0 (by simp) let s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) measurable_prod_mk_left let f' : ℕ → α → E := fun n => {x | Integrable (f x) (κ x)}.indicator fun x => (s' n x).integral (κ x) have hf' : ∀ n, StronglyMeasurable (f' n) := by intro n; refine' StronglyMeasurable.indicator _ (measurableSet_kernel_integrable hf) have : ∀ x, ((s' n x).range.filter fun x => x ≠ 0) ⊆ (s n).range := by intro x; refine' Finset.Subset.trans (Finset.filter_subset _ _) _; intro y simp_rw [SimpleFunc.mem_range]; rintro ⟨z, rfl⟩; exact ⟨(x, z), rfl⟩ simp only [SimpleFunc.integral_eq_sum_of_subset (this _)] refine' Finset.stronglyMeasurable_sum _ fun x _ => _ refine' (Measurable.ennreal_toReal _).stronglyMeasurable.smul_const _ simp (config := { singlePass := true }) only [SimpleFunc.coe_comp, preimage_comp] apply kernel.measurable_kernel_prod_mk_left exact (s n).measurableSet_fiber x have h2f' : Tendsto f' atTop (𝓝 fun x : α => ∫ y : β, f x y ∂κ x) := by rw [tendsto_pi_nhds]; intro x by_cases hfx : Integrable (f x) (κ x) · have : ∀ n, Integrable (s' n x) (κ x) := by intro n; apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable apply eventually_of_forall; intro y simp_rw [SimpleFunc.coe_comp]; exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n simp only [hfx, SimpleFunc.integral_eq_integral _ (this _), indicator_of_mem, mem_setOf_eq] refine' tendsto_integral_of_dominated_convergence (fun y => ‖f x y‖ + ‖f x y‖) (fun n => (s' n x).aestronglyMeasurable) (hfx.norm.add hfx.norm) _ _ · -- Porting note: was -- exact fun n => eventually_of_forall fun y => -- SimpleFunc.norm_approxOn_zero_le _ _ (x, y) nexact fun n => eventually_of_forall fun y => SimpleFunc.norm_approxOn_zero_le hf.measurable (by simp) (x, y) n · -- Porting note: -- refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn _ _ _ refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn hf.measurable (by simp) _ apply subset_closure simp [-uncurry_apply_pair] · simp [hfx, integral_undef] exact stronglyMeasurable_of_tendsto _ hf' h2f' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] borelize E [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] haveI : TopologicalSpace.SeparableSpace (range (uncurry f) ∪ {0} : Set E) := hf.separableSpace_range_union_singleton [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] let s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn _ hf.measurable (range (uncurry f) ∪ {0}) 0 (by simp) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) ⊢ 0 ∈ range (uncurry f) ∪ {0} [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] let s' : ℕ → α → SimpleFunc β E := fun n x => (s n).comp (Prod.mk x) measurable_prod_mk_left [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] let f' : ℕ → α → E := fun n => {x | Integrable (f x) (κ x)}.indicator fun x => (s' n x).integral (κ x) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] have hf' : ∀ n, StronglyMeasurable (f' n) := by intro n; refine' StronglyMeasurable.indicator _ (measurableSet_kernel_integrable hf) have : ∀ x, ((s' n x).range.filter fun x => x ≠ 0) ⊆ (s n).range := by intro x; refine' Finset.Subset.trans (Finset.filter_subset _ _) _; intro y simp_rw [SimpleFunc.mem_range]; rintro ⟨z, rfl⟩; exact ⟨(x, z), rfl⟩ simp only [SimpleFunc.integral_eq_sum_of_subset (this _)] refine' Finset.stronglyMeasurable_sum _ fun x _ => _ refine' (Measurable.ennreal_toReal _).stronglyMeasurable.smul_const _ simp (config := { singlePass := true }) only [SimpleFunc.coe_comp, preimage_comp] apply kernel.measurable_kernel_prod_mk_left exact (s n).measurableSet_fiber x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) ⊢ ∀ (n : ℕ), StronglyMeasurable (f' n) [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ ⊢ StronglyMeasurable (f' n) [PROOFSTEP] refine' StronglyMeasurable.indicator _ (measurableSet_kernel_integrable hf) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ ⊢ StronglyMeasurable fun x => SimpleFunc.integral (↑κ x) (s' n x) [PROOFSTEP] have : ∀ x, ((s' n x).range.filter fun x => x ≠ 0) ⊆ (s n).range := by intro x; refine' Finset.Subset.trans (Finset.filter_subset _ _) _; intro y simp_rw [SimpleFunc.mem_range]; rintro ⟨z, rfl⟩; exact ⟨(x, z), rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ ⊢ ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ x : α ⊢ Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) [PROOFSTEP] refine' Finset.Subset.trans (Finset.filter_subset _ _) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ x : α ⊢ SimpleFunc.range (s' n x) ⊆ SimpleFunc.range (s n) [PROOFSTEP] intro y [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ x : α y : E ⊢ y ∈ SimpleFunc.range (s' n x) → y ∈ SimpleFunc.range (s n) [PROOFSTEP] simp_rw [SimpleFunc.mem_range] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ x : α y : E ⊢ y ∈ range ↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x) (_ : Measurable (Prod.mk x))) → y ∈ range ↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) [PROOFSTEP] rintro ⟨z, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ x : α z : β ⊢ ↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x) (_ : Measurable (Prod.mk x))) z ∈ range ↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) [PROOFSTEP] exact ⟨(x, z), rfl⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) ⊢ StronglyMeasurable fun x => SimpleFunc.integral (↑κ x) (s' n x) [PROOFSTEP] simp only [SimpleFunc.integral_eq_sum_of_subset (this _)] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) ⊢ StronglyMeasurable fun x => Finset.sum (SimpleFunc.range (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n)) fun x_1 => ENNReal.toReal (↑↑(↑κ x) (↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x) (_ : Measurable (Prod.mk x))) ⁻¹' {x_1})) • x_1 [PROOFSTEP] refine' Finset.stronglyMeasurable_sum _ fun x _ => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) x : E x✝ : x ∈ SimpleFunc.range (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⊢ StronglyMeasurable fun x_1 => ENNReal.toReal (↑↑(↑κ x_1) (↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x_1) (_ : Measurable (Prod.mk x_1))) ⁻¹' {x})) • x [PROOFSTEP] refine' (Measurable.ennreal_toReal _).stronglyMeasurable.smul_const _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) x : E x✝ : x ∈ SimpleFunc.range (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⊢ Measurable fun x_1 => ↑↑(↑κ x_1) (↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x_1) (_ : Measurable (Prod.mk x_1))) ⁻¹' {x}) [PROOFSTEP] simp (config := { singlePass := true }) only [SimpleFunc.coe_comp, preimage_comp] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) x : E x✝ : x ∈ SimpleFunc.range (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⊢ Measurable fun x_1 => ↑↑(↑κ x_1) (Prod.mk x_1 ⁻¹' (↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⁻¹' {x})) [PROOFSTEP] apply kernel.measurable_kernel_prod_mk_left [GOAL] case ht α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) n : ℕ this : ∀ (x : α), Finset.filter (fun x => x ≠ 0) (SimpleFunc.range (s' n x)) ⊆ SimpleFunc.range (s n) x : E x✝ : x ∈ SimpleFunc.range (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⊢ MeasurableSet (↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ⁻¹' {x}) [PROOFSTEP] exact (s n).measurableSet_fiber x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] have h2f' : Tendsto f' atTop (𝓝 fun x : α => ∫ y : β, f x y ∂κ x) := by rw [tendsto_pi_nhds]; intro x by_cases hfx : Integrable (f x) (κ x) · have : ∀ n, Integrable (s' n x) (κ x) := by intro n; apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable apply eventually_of_forall; intro y simp_rw [SimpleFunc.coe_comp]; exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n simp only [hfx, SimpleFunc.integral_eq_integral _ (this _), indicator_of_mem, mem_setOf_eq] refine' tendsto_integral_of_dominated_convergence (fun y => ‖f x y‖ + ‖f x y‖) (fun n => (s' n x).aestronglyMeasurable) (hfx.norm.add hfx.norm) _ _ · -- Porting note: was -- exact fun n => eventually_of_forall fun y => -- SimpleFunc.norm_approxOn_zero_le _ _ (x, y) nexact fun n => eventually_of_forall fun y => SimpleFunc.norm_approxOn_zero_le hf.measurable (by simp) (x, y) n · -- Porting note: -- refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn _ _ _ refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn hf.measurable (by simp) _ apply subset_closure simp [-uncurry_apply_pair] · simp [hfx, integral_undef] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) ⊢ Tendsto f' atTop (𝓝 fun x => ∫ (y : β), f x y ∂↑κ x) [PROOFSTEP] rw [tendsto_pi_nhds] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) ⊢ ∀ (x : α), Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x)) [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α ⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x)) [PROOFSTEP] by_cases hfx : Integrable (f x) (κ x) [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) ⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x)) [PROOFSTEP] have : ∀ n, Integrable (s' n x) (κ x) := by intro n; apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable apply eventually_of_forall; intro y simp_rw [SimpleFunc.coe_comp]; exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) ⊢ ∀ (n : ℕ), Integrable ↑(s' n x) [PROOFSTEP] intro n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) n : ℕ ⊢ Integrable ↑(s' n x) [PROOFSTEP] apply (hfx.norm.add hfx.norm).mono' (s' n x).aestronglyMeasurable [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) n : ℕ ⊢ ∀ᵐ (a : β) ∂↑κ x, ‖↑(s' n x) a‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) a [PROOFSTEP] apply eventually_of_forall [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) n : ℕ ⊢ ∀ (x_1 : β), ‖↑(s' n x) x_1‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) x_1 [PROOFSTEP] intro y [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) n : ℕ y : β ⊢ ‖↑(s' n x) y‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) y [PROOFSTEP] simp_rw [SimpleFunc.coe_comp] [GOAL] case hp α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) n : ℕ y : β ⊢ ‖(↑(SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) ∘ Prod.mk x) y‖ ≤ ((fun a => ‖f x a‖) + fun a => ‖f x a‖) y [PROOFSTEP] exact SimpleFunc.norm_approxOn_zero_le _ _ (x, y) n [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) ⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x)) [PROOFSTEP] simp only [hfx, SimpleFunc.integral_eq_integral _ (this _), indicator_of_mem, mem_setOf_eq] [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) ⊢ Tendsto (fun i => ∫ (x_1 : β), ↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) i) (Prod.mk x) (_ : Measurable (Prod.mk x))) x_1 ∂↑κ x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x)) [PROOFSTEP] refine' tendsto_integral_of_dominated_convergence (fun y => ‖f x y‖ + ‖f x y‖) (fun n => (s' n x).aestronglyMeasurable) (hfx.norm.add hfx.norm) _ _ [GOAL] case pos.refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) ⊢ ∀ (n : ℕ), ∀ᵐ (a : β) ∂↑κ x, ‖↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x) (_ : Measurable (Prod.mk x))) a‖ ≤ (fun y => ‖f x y‖ + ‖f x y‖) a [PROOFSTEP] exact fun n => eventually_of_forall fun y => SimpleFunc.norm_approxOn_zero_le hf.measurable (by simp) (x, y) n [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) n : ℕ y : β ⊢ 0 ∈ range (uncurry f) ∪ {0} [PROOFSTEP] simp [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) ⊢ ∀ᵐ (a : β) ∂↑κ x, Tendsto (fun n => ↑(SimpleFunc.comp (SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) n) (Prod.mk x) (_ : Measurable (Prod.mk x))) a) atTop (𝓝 (f x a)) [PROOFSTEP] refine' eventually_of_forall fun y => SimpleFunc.tendsto_approxOn hf.measurable (by simp) _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) y : β ⊢ 0 ∈ range (uncurry f) ∪ {0} [PROOFSTEP] simp [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) y : β ⊢ uncurry f (x, y) ∈ closure (range (uncurry f) ∪ {0}) [PROOFSTEP] apply subset_closure [GOAL] case pos.refine'_2.a α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝² : MeasurableSpace E := borel E this✝¹ : BorelSpace E this✝ : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : Integrable (f x) this : ∀ (n : ℕ), Integrable ↑(s' n x) y : β ⊢ uncurry f (x, y) ∈ range (uncurry f) ∪ {0} [PROOFSTEP] simp [-uncurry_apply_pair] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) x : α hfx : ¬Integrable (f x) ⊢ Tendsto (fun i => f' i x) atTop (𝓝 (∫ (y : β), f x y ∂↑κ x)) [PROOFSTEP] simp [hfx, integral_undef] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α → β → E hf : StronglyMeasurable (uncurry f) this✝¹ : MeasurableSpace E := borel E this✝ : BorelSpace E this : TopologicalSpace.SeparableSpace ↑(range (uncurry f) ∪ {0}) s : ℕ → SimpleFunc (α × β) E := SimpleFunc.approxOn (uncurry f) (_ : Measurable (uncurry f)) (range (uncurry f) ∪ {0}) 0 (_ : 0 ∈ range (uncurry f) ∪ {0}) s' : ℕ → α → SimpleFunc β E := fun n x => SimpleFunc.comp (s n) (Prod.mk x) (_ : Measurable (Prod.mk x)) f' : ℕ → α → E := fun n => indicator {x | Integrable (f x)} fun x => SimpleFunc.integral (↑κ x) (s' n x) hf' : ∀ (n : ℕ), StronglyMeasurable (f' n) h2f' : Tendsto f' atTop (𝓝 fun x => ∫ (y : β), f x y ∂↑κ x) ⊢ StronglyMeasurable fun x => ∫ (y : β), f x y ∂↑κ x [PROOFSTEP] exact stronglyMeasurable_of_tendsto _ hf' h2f' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → E hf : StronglyMeasurable f ⊢ StronglyMeasurable fun x => ∫ (y : β), f (x, y) ∂↑κ x [PROOFSTEP] rw [← uncurry_curry f] at hf [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : α × β → E hf : StronglyMeasurable (uncurry (curry f)) ⊢ StronglyMeasurable fun x => ∫ (y : β), f (x, y) ∂↑κ x [PROOFSTEP] exact hf.integral_kernel_prod_right [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → E hf : StronglyMeasurable f ⊢ StronglyMeasurable fun x => ∫ (y : γ), f (x, y) ∂↑η (a, x) [PROOFSTEP] change StronglyMeasurable ((fun x => ∫ y, (fun u : (α × β) × γ => f (u.1.2, u.2)) (x, y) ∂η x) ∘ fun x => (a, x)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → E hf : StronglyMeasurable f ⊢ StronglyMeasurable ((fun x => ∫ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x) ∘ fun x => (a, x)) [PROOFSTEP] refine' StronglyMeasurable.comp_measurable _ measurable_prod_mk_left [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → E hf : StronglyMeasurable f ⊢ StronglyMeasurable fun x => ∫ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → E hf : StronglyMeasurable f ⊢ MeasurableSpace α [PROOFSTEP] have := MeasureTheory.StronglyMeasurable.integral_kernel_prod_right' (κ := η) (hf.comp_measurable (measurable_fst.snd.prod_mk measurable_snd)) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → E hf : StronglyMeasurable f this : StronglyMeasurable fun x => ∫ (y : γ), (f ∘ fun a => (a.fst.snd, a.snd)) (x, y) ∂↑η x ⊢ StronglyMeasurable fun x => ∫ (y : γ), (fun u => f (u.fst.snd, u.snd)) (x, y) ∂↑η x case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : β × γ → E hf : StronglyMeasurable f ⊢ MeasurableSpace α [PROOFSTEP] simpa using this [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : γ × β → E hf : StronglyMeasurable f ⊢ StronglyMeasurable fun y => ∫ (x : γ), f (x, y) ∂↑η (a, y) [PROOFSTEP] change StronglyMeasurable ((fun y => ∫ x, (fun u : γ × α × β => f (u.1, u.2.2)) (x, y) ∂η y) ∘ fun x => (a, x)) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : γ × β → E hf : StronglyMeasurable f ⊢ StronglyMeasurable ((fun y => ∫ (x : γ), (fun u => f (u.fst, u.snd.snd)) (x, y) ∂↑η y) ∘ fun x => (a, x)) [PROOFSTEP] refine' StronglyMeasurable.comp_measurable _ measurable_prod_mk_left [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : γ × β → E hf : StronglyMeasurable f ⊢ StronglyMeasurable fun y => ∫ (x : γ), (fun u => f (u.fst, u.snd.snd)) (x, y) ∂↑η y case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : γ × β → E hf : StronglyMeasurable f ⊢ MeasurableSpace α [PROOFSTEP] have := MeasureTheory.StronglyMeasurable.integral_kernel_prod_left' (κ := η) (hf.comp_measurable (measurable_fst.prod_mk measurable_snd.snd)) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : γ × β → E hf : StronglyMeasurable f this : StronglyMeasurable fun y => ∫ (x : γ), (f ∘ fun a => (a.fst, a.snd.snd)) (x, y) ∂↑η y ⊢ StronglyMeasurable fun y => ∫ (x : γ), (fun u => f (u.fst, u.snd.snd)) (x, y) ∂↑η y case refine'_2 α : Type u_1 β : Type u_2 γ : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E inst✝¹ : IsSFiniteKernel κ inst✝ : IsSFiniteKernel η f : γ × β → E hf : StronglyMeasurable f ⊢ MeasurableSpace α [PROOFSTEP] simpa using this
{"mathlib_filename": "Mathlib.Probability.Kernel.MeasurableIntegral", "llama_tokens": 61072}
[GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E ι : Type u_3 inst✝⁶ : LinearOrder ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : FirstCountableTopology ι ℱ : Filtration ι m inst✝² : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι inst✝¹ : Filter.IsCountablyGenerated Filter.atTop h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) hin : i ≤ n ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i [PROOFSTEP] refine' Filter.EventuallyEq.trans _ (ae_restrict_of_ae (h.condexp_ae_eq hin)) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E ι : Type u_3 inst✝⁶ : LinearOrder ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : FirstCountableTopology ι ℱ : Filtration ι m inst✝² : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι inst✝¹ : Filter.IsCountablyGenerated Filter.atTop h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) hin : i ≤ n ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] fun x => (μ[f n|↑ℱ i]) x [PROOFSTEP] refine' condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (ℱ.le i) (hτ.measurableSet_eq' i) fun t => _ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E ι : Type u_3 inst✝⁶ : LinearOrder ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : FirstCountableTopology ι ℱ : Filtration ι m inst✝² : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι inst✝¹ : Filter.IsCountablyGenerated Filter.atTop h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) hin : i ≤ n t : Set Ω ⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i [PROOFSTEP] by_cases hin : i ≤ n [GOAL] case pos Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : i ≤ n ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i [PROOFSTEP] refine' Filter.EventuallyEq.trans _ (ae_restrict_of_ae (h.condexp_ae_eq hin)) [GOAL] case pos Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : i ≤ n ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] fun x => (μ[f n|↑ℱ i]) x [PROOFSTEP] refine' condexp_ae_eq_restrict_of_measurableSpace_eq_on (hτ.measurableSpace_le_of_le hτ_le) (ℱ.le i) (hτ.measurableSet_eq' i) fun t => _ [GOAL] case pos Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : i ≤ n t : Set Ω ⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff] [GOAL] case neg Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : ¬i ≤ n ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i [PROOFSTEP] suffices {x : Ω | τ x = i} = ∅ by simp [this]; norm_cast [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : ¬i ≤ n this : {x | τ x = i} = ∅ ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] f i [PROOFSTEP] simp [this] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : ¬i ≤ n this : {x | τ x = i} = ∅ ⊢ μ[f n|IsStoppingTime.measurableSpace hτ] =ᶠ[⊥] f i [PROOFSTEP] norm_cast [GOAL] case neg Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : ¬i ≤ n ⊢ {x | τ x = i} = ∅ [PROOFSTEP] ext1 x [GOAL] case neg.h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : ¬i ≤ n x : Ω ⊢ x ∈ {x | τ x = i} ↔ x ∈ ∅ [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false_iff] [GOAL] case neg.h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι hin : ¬i ≤ n x : Ω ⊢ ¬τ x = i [PROOFSTEP] rintro rfl [GOAL] case neg.h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) x : Ω hin : ¬τ x ≤ n ⊢ False [PROOFSTEP] exact hin (hτ_le x) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι ⊢ stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f n|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] refine' Filter.EventuallyEq.trans _ (condexp_stopping_time_ae_eq_restrict_eq_const_of_le_const h hτ hτ_le i).symm [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι ⊢ stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x = i}] f i [PROOFSTEP] rw [Filter.EventuallyEq, ae_restrict_iff' (ℱ.le _ _ (hτ.measurableSet_eq i))] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ {ω | τ ω = i} → stoppedValue f τ x = f i x [PROOFSTEP] refine' Filter.eventually_of_forall fun x hx => _ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι x : Ω hx : x ∈ {ω | τ ω = i} ⊢ stoppedValue f τ x = f i x [PROOFSTEP] rw [Set.mem_setOf_eq] at hx [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i✝ n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι x : Ω hx : τ x = i ⊢ stoppedValue f τ x = f i x [PROOFSTEP] simp_rw [stoppedValue, hx] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n h_countable_range : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) ⊢ stoppedValue f τ =ᵐ[μ] μ[f n|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] have : Set.univ = ⋃ i ∈ Set.range τ, {x | τ x = i} := by ext1 x simp only [Set.mem_univ, Set.mem_range, true_and_iff, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_iUnion, Set.mem_setOf_eq, exists_apply_eq_apply'] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n h_countable_range : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) ⊢ Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i} [PROOFSTEP] ext1 x [GOAL] case h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n h_countable_range : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) x : Ω ⊢ x ∈ Set.univ ↔ x ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i} [PROOFSTEP] simp only [Set.mem_univ, Set.mem_range, true_and_iff, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_iUnion, Set.mem_setOf_eq, exists_apply_eq_apply'] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n h_countable_range : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) this : Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i} ⊢ stoppedValue f τ =ᵐ[μ] μ[f n|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] nth_rw 1 [← @Measure.restrict_univ Ω _ μ] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n h_countable_range : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) this : Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i} ⊢ stoppedValue f τ =ᵐ[Measure.restrict μ Set.univ] μ[f n|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] rw [this, ae_eq_restrict_biUnion_iff _ h_countable_range] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hτ_le : ∀ (x : Ω), τ x ≤ n h_countable_range : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) this : Set.univ = ⋃ (i : ι) (_ : i ∈ Set.range τ), {x | τ x = i} ⊢ ∀ (i : ι), i ∈ Set.range τ → stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f n|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] exact fun i _ => stoppedValue_ae_eq_restrict_eq h _ hτ_le i [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ hσ_le_τ : σ ≤ τ hτ_le : ∀ (x : Ω), τ x ≤ n hτ_countable_range : Set.Countable (Set.range τ) hσ_countable_range : Set.Countable (Set.range σ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) ⊢ stoppedValue f σ =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] have : SigmaFinite (μ.trim (hτ.measurableSpace_le_of_le hτ_le)) := sigmaFiniteTrim_mono _ (IsStoppingTime.measurableSpace_mono hσ hτ hσ_le_τ) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ hσ_le_τ : σ ≤ τ hτ_le : ∀ (x : Ω), τ x ≤ n hτ_countable_range : Set.Countable (Set.range τ) hσ_countable_range : Set.Countable (Set.range σ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) ⊢ stoppedValue f σ =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] have : μ[stoppedValue f τ|hσ.measurableSpace] =ᵐ[μ] μ[μ[f n|hτ.measurableSpace]|hσ.measurableSpace] := condexp_congr_ae (h.stoppedValue_ae_eq_condexp_of_le_const_of_countable_range hτ hτ_le hτ_countable_range) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ hσ_le_τ : σ ≤ τ hτ_le : ∀ (x : Ω), τ x ≤ n hτ_countable_range : Set.Countable (Set.range τ) hσ_countable_range : Set.Countable (Set.range σ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) this✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) this : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[μ] μ[μ[f n|IsStoppingTime.measurableSpace hτ]|IsStoppingTime.measurableSpace hσ] ⊢ stoppedValue f σ =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] refine' (Filter.EventuallyEq.trans _ (condexp_condexp_of_le _ (hτ.measurableSpace_le_of_le hτ_le)).symm).trans this.symm [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ hσ_le_τ : σ ≤ τ hτ_le : ∀ (x : Ω), τ x ≤ n hτ_countable_range : Set.Countable (Set.range τ) hσ_countable_range : Set.Countable (Set.range σ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) this✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) this : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[μ] μ[μ[f n|IsStoppingTime.measurableSpace hτ]|IsStoppingTime.measurableSpace hσ] ⊢ stoppedValue f σ =ᵐ[μ] μ[f n|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] exact h.stoppedValue_ae_eq_condexp_of_le_const_of_countable_range hσ (fun x => (hσ_le_τ x).trans (hτ_le x)) hσ_countable_range [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E ι : Type u_3 inst✝⁵ : LinearOrder ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι ℱ : Filtration ι m inst✝¹ : SigmaFiniteFiltration μ ℱ τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ hσ_le_τ : σ ≤ τ hτ_le : ∀ (x : Ω), τ x ≤ n hτ_countable_range : Set.Countable (Set.range τ) hσ_countable_range : Set.Countable (Set.range σ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) this✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) this : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[μ] μ[μ[f n|IsStoppingTime.measurableSpace hτ]|IsStoppingTime.measurableSpace hσ] ⊢ IsStoppingTime.measurableSpace hσ ≤ IsStoppingTime.measurableSpace hτ [PROOFSTEP] exact hσ.measurableSpace_mono hτ hσ_le_τ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] stoppedValue f τ [PROOFSTEP] rw [ae_eq_restrict_iff_indicator_ae_eq (hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ))] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n ⊢ Set.indicator {ω | τ ω ≤ σ ω} (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) =ᵐ[μ] Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ) [PROOFSTEP] refine' (condexp_indicator (integrable_stoppedValue ι hτ h.integrable hτ_le) (hτ.measurableSet_stopping_time_le hσ)).symm.trans _ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n ⊢ μ[Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)|IsStoppingTime.measurableSpace hσ] =ᵐ[μ] Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ) [PROOFSTEP] have h_int : Integrable ({ω : Ω | τ ω ≤ σ ω}.indicator (stoppedValue (fun n : ι => f n) τ)) μ := by refine' (integrable_stoppedValue ι hτ h.integrable hτ_le).indicator _ exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n ⊢ Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) [PROOFSTEP] refine' (integrable_stoppedValue ι hτ h.integrable hτ_le).indicator _ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n ⊢ MeasurableSet {ω | τ ω ≤ σ ω} [PROOFSTEP] exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ μ[Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)|IsStoppingTime.measurableSpace hσ] =ᵐ[μ] Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ) [PROOFSTEP] have h_meas : AEStronglyMeasurable' hσ.measurableSpace ({ω : Ω | τ ω ≤ σ ω}.indicator (stoppedValue (fun n : ι => f n) τ)) μ := by refine' StronglyMeasurable.aeStronglyMeasurable' _ refine' StronglyMeasurable.stronglyMeasurable_of_measurableSpace_le_on (hτ.measurableSet_le_stopping_time hσ) _ _ _ · intro t ht rw [Set.inter_comm _ t] at ht ⊢ rw [hτ.measurableSet_inter_le_iff hσ, IsStoppingTime.measurableSet_min_iff hτ hσ] at ht exact ht.2 · refine' StronglyMeasurable.indicator _ (hτ.measurableSet_le_stopping_time hσ) refine' Measurable.stronglyMeasurable _ exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ · intro x hx simp only [hx, Set.indicator_of_not_mem, not_false_iff] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ AEStronglyMeasurable' (IsStoppingTime.measurableSpace hσ) (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) μ [PROOFSTEP] refine' StronglyMeasurable.aeStronglyMeasurable' _ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ StronglyMeasurable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) [PROOFSTEP] refine' StronglyMeasurable.stronglyMeasurable_of_measurableSpace_le_on (hτ.measurableSet_le_stopping_time hσ) _ _ _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ ∀ (t : Set Ω), MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) → MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) [PROOFSTEP] intro t ht [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) t : Set Ω ht : MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) ⊢ MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t] at ht ⊢ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) t : Set Ω ht : MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ⊢ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) [PROOFSTEP] rw [hτ.measurableSet_inter_le_iff hσ, IsStoppingTime.measurableSet_min_iff hτ hσ] at ht [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) t : Set Ω ht : MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ∧ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) ⊢ MeasurableSet (t ∩ {ω | τ ω ≤ σ ω}) [PROOFSTEP] exact ht.2 [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ StronglyMeasurable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) [PROOFSTEP] refine' StronglyMeasurable.indicator _ (hτ.measurableSet_le_stopping_time hσ) [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ StronglyMeasurable (stoppedValue (fun n => f n) τ) [PROOFSTEP] refine' Measurable.stronglyMeasurable _ [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ Measurable (stoppedValue (fun n => f n) τ) [PROOFSTEP] exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ [GOAL] case refine'_3 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) ⊢ ∀ (x : Ω), ¬x ∈ {ω | τ ω ≤ σ ω} → Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ) x = 0 [PROOFSTEP] intro x hx [GOAL] case refine'_3 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) x : Ω hx : ¬x ∈ {ω | τ ω ≤ σ ω} ⊢ Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ) x = 0 [PROOFSTEP] simp only [hx, Set.indicator_of_not_mem, not_false_iff] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n : ι h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hσ ≤ m)) hτ_le : ∀ (x : Ω), τ x ≤ n h_int : Integrable (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) h_meas : AEStronglyMeasurable' (IsStoppingTime.measurableSpace hσ) (Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)) μ ⊢ μ[Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue (fun n => f n) τ)|IsStoppingTime.measurableSpace hσ] =ᵐ[μ] Set.indicator {ω | τ ω ≤ σ ω} (stoppedValue f τ) [PROOFSTEP] exact condexp_of_aestronglyMeasurable' hσ.measurableSpace_le h_meas h_int [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ (stoppedValue f fun x => min (σ x) (τ x)) =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] refine' (h.stoppedValue_ae_eq_condexp_of_le hτ (hσ.min hτ) (fun x => min_le_right _ _) hτ_le).trans _ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[μ] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] refine' ae_of_ae_restrict_of_ae_restrict_compl {x | σ x ≤ τ x} _ _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | σ x ≤ τ x}, (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] exact condexp_min_stopping_time_ae_eq_restrict_le hσ hτ [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | σ x ≤ τ x}ᶜ, (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] suffices μ[stoppedValue f τ|(hσ.min hτ).measurableSpace] =ᵐ[μ.restrict {x | τ x ≤ σ x}] μ[stoppedValue f τ|hσ.measurableSpace] by rw [ae_restrict_iff' (hσ.measurableSpace_le _ (hσ.measurableSet_le_stopping_time hτ).compl)] rw [Filter.EventuallyEq, ae_restrict_iff'] at this swap; · exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ) filter_upwards [this] with x hx hx_mem simp only [Set.mem_compl_iff, Set.mem_setOf_eq, not_le] at hx_mem exact hx hx_mem.le [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] ⊢ ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | σ x ≤ τ x}ᶜ, (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] rw [ae_restrict_iff' (hσ.measurableSpace_le _ (hσ.measurableSet_le_stopping_time hτ).compl)] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ {ω | σ ω ≤ τ ω}ᶜ → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] rw [Filter.EventuallyEq, ae_restrict_iff'] at this [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : ∀ᵐ (x : Ω) ∂μ, x ∈ {x | τ x ≤ σ x} → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ {ω | σ ω ≤ τ ω}ᶜ → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | τ x ≤ σ x}, (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x ⊢ MeasurableSet {x | τ x ≤ σ x} [PROOFSTEP] swap [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : ∀ᵐ (x : Ω) ∂Measure.restrict μ {x | τ x ≤ σ x}, (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x ⊢ MeasurableSet {x | τ x ≤ σ x} [PROOFSTEP] exact hτ.measurableSpace_le _ (hτ.measurableSet_le_stopping_time hσ) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : ∀ᵐ (x : Ω) ∂μ, x ∈ {x | τ x ≤ σ x} → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ {ω | σ ω ≤ τ ω}ᶜ → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] filter_upwards [this] with x hx hx_mem [GOAL] case h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : ∀ᵐ (x : Ω) ∂μ, x ∈ {x | τ x ≤ σ x} → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x x : Ω hx : τ x ≤ σ x → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x hx_mem : x ∈ {ω | σ ω ≤ τ ω}ᶜ ⊢ (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] simp only [Set.mem_compl_iff, Set.mem_setOf_eq, not_le] at hx_mem [GOAL] case h Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : ∀ᵐ (x : Ω) ∂μ, x ∈ {x | τ x ≤ σ x} → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x x : Ω hx : τ x ≤ σ x → (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x hx_mem : τ x < σ x ⊢ (μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))]) x = (μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ]) x [PROOFSTEP] exact hx hx_mem.le [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] apply Filter.EventuallyEq.trans _ ((condexp_min_stopping_time_ae_eq_restrict_le hτ hσ).trans _) [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ Ω → E [PROOFSTEP] exact stoppedValue f τ [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (σ ω) (τ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω))] [PROOFSTEP] rw [IsStoppingTime.measurableSpace_min hσ, IsStoppingTime.measurableSpace_min hτ, inf_comm] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] have h1 : μ[stoppedValue f τ|hτ.measurableSpace] = stoppedValue f τ := by refine' condexp_of_stronglyMeasurable hτ.measurableSpace_le _ _ · refine' Measurable.stronglyMeasurable _ exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ · exact integrable_stoppedValue ι hτ h.integrable hτ_le [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] = stoppedValue f τ [PROOFSTEP] refine' condexp_of_stronglyMeasurable hτ.measurableSpace_le _ _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ StronglyMeasurable (stoppedValue f τ) [PROOFSTEP] refine' Measurable.stronglyMeasurable _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ Measurable (stoppedValue f τ) [PROOFSTEP] exact measurable_stoppedValue h.adapted.progMeasurable_of_discrete hτ [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ Integrable (stoppedValue f τ) [PROOFSTEP] exact integrable_stoppedValue ι hτ h.integrable hτ_le [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) h1 : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] = stoppedValue f τ ⊢ μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] rw [h1] [GOAL] Ω : Type u_1 E : Type u_2 m : MeasurableSpace Ω μ : Measure Ω inst✝¹³ : NormedAddCommGroup E inst✝¹² : NormedSpace ℝ E inst✝¹¹ : CompleteSpace E ι : Type u_3 inst✝¹⁰ : LinearOrder ι inst✝⁹ : LocallyFiniteOrder ι inst✝⁸ : OrderBot ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : DiscreteTopology ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : MeasurableSpace E inst✝² : BorelSpace E inst✝¹ : SecondCountableTopology E ℱ : Filtration ι m τ σ : Ω → ι f : ι → Ω → E i n✝ : ι inst✝ : SigmaFiniteFiltration μ ℱ h : Martingale f ℱ μ hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ n : ι hτ_le : ∀ (x : Ω), τ x ≤ n h_sf_min : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) h1 : μ[stoppedValue f τ|IsStoppingTime.measurableSpace hτ] = stoppedValue f τ ⊢ stoppedValue f τ =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[stoppedValue f τ|IsStoppingTime.measurableSpace hσ] [PROOFSTEP] exact (condexp_stoppedValue_stopping_time_ae_eq_restrict_le h hτ hσ hτ_le).symm
{"mathlib_filename": "Mathlib.Probability.Martingale.OptionalSampling", "llama_tokens": 32449}
[GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a'✝ a' : α ⊢ a' ∈ support (pure a) ↔ a' ∈ {a} [PROOFSTEP] simp [mem_support_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α ⊢ a' ∈ support (pure a) ↔ a' = a [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α ⊢ ↑(toOuterMeasure (pure a)) s = if a ∈ s then 1 else 0 [PROOFSTEP] refine' (toOuterMeasure_apply (pure a) s).trans _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α ⊢ ∑' (x : α), Set.indicator s (↑(pure a)) x = if a ∈ s then 1 else 0 [PROOFSTEP] split_ifs with ha [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α ha : a ∈ s ⊢ ∑' (x : α), Set.indicator s (↑(pure a)) x = 1 [PROOFSTEP] refine' (tsum_congr fun b => _).trans (tsum_ite_eq a 1) [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α ha : a ∈ s b : α ⊢ Set.indicator s (↑(pure a)) b = if b = a then 1 else 0 [PROOFSTEP] exact ite_eq_left_iff.2 fun hb => symm (ite_eq_right_iff.2 fun h => (hb <| h.symm ▸ ha).elim) [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α ha : ¬a ∈ s ⊢ ∑' (x : α), Set.indicator s (↑(pure a)) x = 0 [PROOFSTEP] refine' (tsum_congr fun b => _).trans tsum_zero [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α ha : ¬a ∈ s b : α ⊢ Set.indicator s (↑(pure a)) b = 0 [PROOFSTEP] exact ite_eq_right_iff.2 fun hb => ite_eq_right_iff.2 fun h => (ha <| h ▸ hb).elim [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s✝ : Set α inst✝ : MeasurableSpace α s : Set α hs : MeasurableSet s ⊢ ↑↑(toMeasure (pure a)) s = ↑↑(Measure.dirac a) s [PROOFSTEP] rw [toMeasure_pure_apply a s hs, Measure.dirac_apply' a hs] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s✝ : Set α inst✝ : MeasurableSpace α s : Set α hs : MeasurableSet s ⊢ (if a ∈ s then 1 else 0) = Set.indicator s 1 a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 a a' : α s : Set α inst✝¹ : MeasurableSpace α inst✝ : Countable α h : MeasurableSingletonClass α ⊢ Measure.toPmf (Measure.dirac a) = pure a [PROOFSTEP] rw [toPmf_eq_iff_toMeasure_eq, toMeasure_pure] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β ⊢ ∑' (b : α) (a : β), ↑p b * ↑(f b) a = 1 [PROOFSTEP] simp only [ENNReal.tsum_mul_left, tsum_coe, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ b : β ⊢ b ∈ support (bind p f) ↔ b ∈ ⋃ (a : α) (_ : a ∈ support p), support (f a) [PROOFSTEP] simp [mem_support_iff, ENNReal.tsum_eq_zero, not_or] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ b : β ⊢ b ∈ support (bind p f) ↔ ∃ a, a ∈ support p ∧ b ∈ support (f a) [PROOFSTEP] simp only [support_bind, Set.mem_iUnion, Set.mem_setOf_eq, exists_prop] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β ⊢ bind (pure a) f = f a [PROOFSTEP] have : ∀ b a', ite (a' = a) (f a' b) 0 = ite (a' = a) (f a b) 0 := fun b a' => by split_ifs with h <;> simp; subst h; simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β b : β a' : α ⊢ (if a' = a then ↑(f a') b else 0) = if a' = a then ↑(f a) b else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β b : β a' : α h : a' = a ⊢ ↑(f a') b = ↑(f a) b [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β b : β a' : α h : ¬a' = a ⊢ 0 = 0 [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β b : β a' : α h : a' = a ⊢ ↑(f a') b = ↑(f a) b [PROOFSTEP] subst h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ f : α → Pmf β b : β a' : α ⊢ ↑(f a') b = ↑(f a') b [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β this : ∀ (b : β) (a' : α), (if a' = a then ↑(f a') b else 0) = if a' = a then ↑(f a) b else 0 ⊢ bind (pure a) f = f a [PROOFSTEP] ext b [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : α → Pmf β g : β → Pmf γ a : α f : α → Pmf β this : ∀ (b : β) (a' : α), (if a' = a then ↑(f a') b else 0) = if a' = a then ↑(f a) b else 0 b : β ⊢ ↑(bind (pure a) f) b = ↑(f a) b [PROOFSTEP] simp [this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ x y : α hy : y ≠ x ⊢ ↑p y * ↑(pure y) x = 0 [PROOFSTEP] rw [pure_apply_of_ne _ _ hy.symm, mul_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ x : α ⊢ ↑p x * ↑(pure x) x = ↑p x [PROOFSTEP] rw [pure_apply_self, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f : α → Pmf β g : β → Pmf γ p : Pmf α q : Pmf β x : β ⊢ ↑(bind p fun x => q) x = ↑q x [PROOFSTEP] rw [bind_apply, ENNReal.tsum_mul_right, tsum_coe, one_mul] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ b : γ ⊢ ↑(bind (bind p f) g) b = ↑(bind p fun a => bind (f a) g) b [PROOFSTEP] simpa only [ENNReal.coe_eq_coe.symm, bind_apply, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm, mul_assoc, mul_left_comm, mul_comm] using ENNReal.tsum_comm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : α → Pmf β g : β → Pmf γ p : Pmf α q : Pmf β f : α → β → Pmf γ b : γ ⊢ ↑(bind p fun a => bind q (f a)) b = ↑(bind q fun b => bind p fun a => f a b) b [PROOFSTEP] simpa only [ENNReal.coe_eq_coe.symm, bind_apply, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm, mul_assoc, mul_left_comm, mul_comm] using ENNReal.tsum_comm [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β ⊢ ↑(toOuterMeasure (bind p f)) s = ∑' (b : β), if b ∈ s then ∑' (a : α), ↑p a * ↑(f a) b else 0 [PROOFSTEP] simp [toOuterMeasure_apply, Set.indicator_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β b : β ⊢ (if b ∈ s then ∑' (a : α), ↑p a * ↑(f a) b else 0) = ∑' (a : α), ↑p a * if b ∈ s then ↑(f a) b else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β b : β h✝ : b ∈ s ⊢ ∑' (a : α), ↑p a * ↑(f a) b = ∑' (a : α), ↑p a * ↑(f a) b [PROOFSTEP] simp [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β b : β h✝ : ¬b ∈ s ⊢ 0 = ∑' (a : α), ↑p a * 0 [PROOFSTEP] simp [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β a : α b : β ⊢ (if b ∈ s then ↑(f a) b else 0) = if b ∈ s then ↑(f a) b else 0 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β a : α b : β h✝ : b ∈ s ⊢ ↑(f a) b = ↑(f a) b [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β a : α b : β h✝ : ¬b ∈ s ⊢ 0 = 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : α → Pmf β g : β → Pmf γ s : Set β a : α ⊢ (↑p a * ∑' (b : β), if b ∈ s then ↑(f a) b else 0) = ↑p a * ↑(toOuterMeasure (f a)) s [PROOFSTEP] simp only [toOuterMeasure_apply, Set.indicator_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β ⊢ (∑' (b : β) (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 1 [PROOFSTEP] refine' ENNReal.tsum_comm.trans (_root_.trans (tsum_congr fun a => _) p.tsum_coe) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β a : α ⊢ (∑' (a_1 : β), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = ↑p a [PROOFSTEP] simp_rw [ENNReal.tsum_mul_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β a : α ⊢ (↑p a * ∑' (i : β), if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) i) = ↑p a [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β a : α h : ↑p a = 0 ⊢ ↑p a * ∑' (i : β), 0 = ↑p a [PROOFSTEP] simp only [h, zero_mul] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β a : α h : ¬↑p a = 0 ⊢ ↑p a * ∑' (i : β), ↑(f a (_ : ¬↑p a = 0)) i = ↑p a [PROOFSTEP] rw [(f a h).tsum_coe, mul_one] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β ⊢ support (bindOnSupport p f) = ⋃ (a : α) (h : a ∈ support p), support (f a h) [PROOFSTEP] refine' Set.ext fun b => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β ⊢ b ∈ support (bindOnSupport p f) ↔ b ∈ ⋃ (a : α) (h : a ∈ support p), support (f a h) [PROOFSTEP] simp only [ENNReal.tsum_eq_zero, not_or, mem_support_iff, bindOnSupport_apply, Ne.def, not_forall, mul_eq_zero, Set.mem_iUnion] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β ⊢ (∃ x, ¬↑p x = 0 ∧ ¬(if h : ↑p x = 0 then 0 else ↑(f x (_ : ¬↑p x = 0)) b) = 0) ↔ ∃ i h, ¬↑(f i (_ : i ∈ support p)) b = 0 [PROOFSTEP] exact ⟨fun hb => let ⟨a, ⟨ha, ha'⟩⟩ := hb ⟨a, ha, by simpa [ha] using ha'⟩, fun hb => let ⟨a, ha, ha'⟩ := hb ⟨a, ⟨ha, by simpa [(mem_support_iff _ a).1 ha] using ha'⟩⟩⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β hb : ∃ x, ¬↑p x = 0 ∧ ¬(if h : ↑p x = 0 then 0 else ↑(f x (_ : ¬↑p x = 0)) b) = 0 a : α ha : ¬↑p a = 0 ha' : ¬(if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) b) = 0 ⊢ ¬↑(f a (_ : a ∈ support p)) b = 0 [PROOFSTEP] simpa [ha] using ha' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β hb : ∃ i h, ¬↑(f i (_ : i ∈ support p)) b = 0 a : α ha : ¬↑p a = 0 ha' : ¬↑(f a (_ : a ∈ support p)) b = 0 ⊢ ¬(if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) b) = 0 [PROOFSTEP] simpa [(mem_support_iff _ a).1 ha] using ha' [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β ⊢ b ∈ support (bindOnSupport p f) ↔ ∃ a h, b ∈ support (f a h) [PROOFSTEP] simp only [support_bindOnSupport, Set.mem_setOf_eq, Set.mem_iUnion] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : α → Pmf β ⊢ (bindOnSupport p fun a x => f a) = bind p f [PROOFSTEP] ext b [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : α → Pmf β b : β ⊢ ↑(bindOnSupport p fun a x => f a) b = ↑(bind p f) b [PROOFSTEP] have : ∀ a, ite (p a = 0) 0 (p a * f a b) = p a * f a b := fun a => ite_eq_right_iff.2 fun h => h.symm ▸ symm (zero_mul <| f a b) [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : α → Pmf β b : β this : ∀ (a : α), (if ↑p a = 0 then 0 else ↑p a * ↑(f a) b) = ↑p a * ↑(f a) b ⊢ ↑(bindOnSupport p fun a x => f a) b = ↑(bind p f) b [PROOFSTEP] simp only [bindOnSupport_apply fun a _ => f a, p.bind_apply f, dite_eq_ite, mul_ite, mul_zero, this] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β ⊢ ↑(bindOnSupport p f) b = 0 ↔ ∀ (a : α) (ha : ↑p a ≠ 0), ↑(f a ha) b = 0 [PROOFSTEP] simp only [bindOnSupport_apply, ENNReal.tsum_eq_zero, mul_eq_zero, or_iff_not_imp_left] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β b : β ⊢ (∀ (i : α), ¬↑p i = 0 → (if h : ↑p i = 0 then 0 else ↑(f i (_ : ¬↑p i = 0)) b) = 0) ↔ ∀ (a : α) (ha : ↑p a ≠ 0), ↑(f a ha) b = 0 [PROOFSTEP] exact ⟨fun h a ha => Trans.trans (dif_neg ha).symm (h a ha), fun h a ha => Trans.trans (dif_neg ha) (h a ha)⟩ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : (a : α) → a ∈ support p → Pmf β a : α f : (a' : α) → a' ∈ support (pure a) → Pmf β ⊢ bindOnSupport (pure a) f = f a (_ : a ∈ support (pure a)) [PROOFSTEP] refine' Pmf.ext fun b => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : (a : α) → a ∈ support p → Pmf β a : α f : (a' : α) → a' ∈ support (pure a) → Pmf β b : β ⊢ ↑(bindOnSupport (pure a) f) b = ↑(f a (_ : a ∈ support (pure a))) b [PROOFSTEP] simp only [bindOnSupport_apply, pure_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : (a : α) → a ∈ support p → Pmf β a : α f : (a' : α) → a' ∈ support (pure a) → Pmf β b : β ⊢ (∑' (a_1 : α), (if a_1 = a then 1 else 0) * if h : (if a_1 = a then 1 else 0) = 0 then 0 else ↑(f a_1 (_ : ¬↑(pure a) a_1 = 0)) b) = ↑(f a (_ : a ∈ support (pure a))) b [PROOFSTEP] refine' _root_.trans (tsum_congr fun a' => _) (tsum_ite_eq a _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : (a : α) → a ∈ support p → Pmf β a : α f : (a' : α) → a' ∈ support (pure a) → Pmf β b : β a' : α ⊢ ((if a' = a then 1 else 0) * if h : (if a' = a then 1 else 0) = 0 then 0 else ↑(f a' (_ : ¬↑(pure a) a' = 0)) b) = if a' = a then ↑(f a (_ : a ∈ support (pure a))) b else 0 [PROOFSTEP] by_cases h : a' = a [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : (a : α) → a ∈ support p → Pmf β a : α f : (a' : α) → a' ∈ support (pure a) → Pmf β b : β a' : α h : a' = a ⊢ ((if a' = a then 1 else 0) * if h : (if a' = a then 1 else 0) = 0 then 0 else ↑(f a' (_ : ¬↑(pure a) a' = 0)) b) = if a' = a then ↑(f a (_ : a ∈ support (pure a))) b else 0 [PROOFSTEP] simp [h] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f✝ : (a : α) → a ∈ support p → Pmf β a : α f : (a' : α) → a' ∈ support (pure a) → Pmf β b : β a' : α h : ¬a' = a ⊢ ((if a' = a then 1 else 0) * if h : (if a' = a then 1 else 0) = 0 then 0 else ↑(f a' (_ : ¬↑(pure a) a' = 0)) b) = if a' = a then ↑(f a (_ : a ∈ support (pure a))) b else 0 [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α ⊢ (bindOnSupport p fun a x => pure a) = p [PROOFSTEP] simp only [Pmf.bind_pure, Pmf.bindOnSupport_eq_bind] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ ⊢ bindOnSupport (bindOnSupport p f) g = bindOnSupport p fun a ha => bindOnSupport (f a ha) fun b hb => g b (_ : b ∈ support (bindOnSupport p f)) [PROOFSTEP] refine' Pmf.ext fun a => _ [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ ⊢ ↑(bindOnSupport (bindOnSupport p f) g) a = ↑(bindOnSupport p fun a ha => bindOnSupport (f a ha) fun b hb => g b (_ : b ∈ support (bindOnSupport p f))) a [PROOFSTEP] dsimp only [bindOnSupport_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ ⊢ (∑' (a_1 : β), (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) * if h : (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = 0 then 0 else ↑(g a_1 h) a) = ∑' (a_1 : α), ↑p a_1 * if h : ↑p a_1 = 0 then 0 else ∑' (a_2 : β), ↑(f a_1 h) a_2 * if h : ↑(f a_1 h) a_2 = 0 then 0 else ↑(g a_2 (_ : a_2 ∈ support (bindOnSupport p f))) a [PROOFSTEP] simp only [← tsum_dite_right, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ ⊢ (∑' (a_1 : β) (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) a_1) * if h : (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = 0 then 0 else ↑(g a_1 h) a) = ∑' (a_1 : α) (i : β), ↑p a_1 * if h : ↑p a_1 = 0 then 0 else ↑(f a_1 h) i * if h : ↑(f a_1 h) i = 0 then 0 else ↑(g i (_ : i ∈ support (bindOnSupport p f))) a [PROOFSTEP] simp only [ENNReal.tsum_eq_zero, dite_eq_left_iff] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ ⊢ (∑' (a_1 : β) (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) a_1) * if h : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) a_1) = 0 then 0 else ↑(g a_1 (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) a_1) = 0)) a) = ∑' (a_1 : α) (i : β), ↑p a_1 * if h : ↑p a_1 = 0 then 0 else ↑(f a_1 h) i * if h : ↑(f a_1 h) i = 0 then 0 else ↑(g i (_ : i ∈ support (bindOnSupport p f))) a [PROOFSTEP] refine' ENNReal.tsum_comm.trans (tsum_congr fun a' => tsum_congr fun b => _) [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β ⊢ ((↑p a' * if h : ↑p a' = 0 then 0 else ↑(f a' h) b) * if h : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 then 0 else ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a) = ↑p a' * if h : ↑p a' = 0 then 0 else ↑(f a' h) b * if h : ↑(f a' h) b = 0 then 0 else ↑(g b (_ : b ∈ support (bindOnSupport p f))) a [PROOFSTEP] split_ifs with h _ h_1 _ h_2 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ↑p a' = 0 _ : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 ⊢ ↑p a' * 0 * 0 = ↑p a' * 0 case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ↑p a' = 0 _ : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 ⊢ ↑p a' * 0 * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * 0 case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * 0) case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ¬↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 h_2 : ↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * (↑(f a' h) b * 0) case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 h_2 : ¬↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) [PROOFSTEP] any_goals ring1 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ↑p a' = 0 _ : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 ⊢ ↑p a' * 0 * 0 = ↑p a' * 0 [PROOFSTEP] ring1 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ↑p a' = 0 _ : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 ⊢ ↑p a' * 0 * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * 0 [PROOFSTEP] ring1 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * 0) [PROOFSTEP] ring1 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ¬↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) [PROOFSTEP] ring1 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 h_2 : ↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * (↑(f a' h) b * 0) [PROOFSTEP] ring1 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 h_2 : ¬↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) [PROOFSTEP] ring1 [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ¬↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) [PROOFSTEP] have := h_1 a' [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ¬↑(f a' h) b = 0 this : (↑p a' * if h : ↑p a' = 0 then 0 else ↑(f a' h) b) = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) [PROOFSTEP] simp [h] at this [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 _ : ¬↑(f a' h) b = 0 this : ↑(f a' (_ : ¬↑p a' = 0)) b = 0 ⊢ ↑p a' * ↑(f a' h) b * 0 = ↑p a' * (↑(f a' h) b * ↑(g b (_ : b ∈ support (bindOnSupport p f))) a) [PROOFSTEP] contradiction [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α f : (a : α) → a ∈ support p → Pmf β g : (b : β) → b ∈ support (bindOnSupport p f) → Pmf γ a : γ a' : α b : β h : ¬↑p a' = 0 h_1 : ¬∀ (i : α), (↑p i * if h : ↑p i = 0 then 0 else ↑(f i h) b) = 0 h_2 : ↑(f a' h) b = 0 ⊢ ↑p a' * ↑(f a' h) b * ↑(g b (_ : ¬(∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = 0)) a = ↑p a' * (↑(f a' h) b * 0) [PROOFSTEP] simp [h_2] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ ⊢ (bindOnSupport p fun a ha => bindOnSupport q (f a ha)) = bindOnSupport q fun b hb => bindOnSupport p fun a ha => f a ha b hb [PROOFSTEP] apply Pmf.ext [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ ⊢ ∀ (x : γ), ↑(bindOnSupport p fun a ha => bindOnSupport q (f a ha)) x = ↑(bindOnSupport q fun b hb => bindOnSupport p fun a ha => f a ha b hb) x [PROOFSTEP] rintro c [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ ⊢ ↑(bindOnSupport p fun a ha => bindOnSupport q (f a ha)) c = ↑(bindOnSupport q fun b hb => bindOnSupport p fun a ha => f a ha b hb) c [PROOFSTEP] simp only [ENNReal.coe_eq_coe.symm, bindOnSupport_apply, ← tsum_dite_right, ENNReal.tsum_mul_left.symm, ENNReal.tsum_mul_right.symm] [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ ⊢ (∑' (a : α) (i : β), ↑p a * if h : ↑p a = 0 then 0 else ↑q i * if h : ↑q i = 0 then 0 else ↑(f a (_ : ¬↑p a = 0) i (_ : ¬↑q i = 0)) c) = ∑' (a : β) (i : α), ↑q a * if h : ↑q a = 0 then 0 else ↑p i * if h : ↑p i = 0 then 0 else ↑(f i (_ : ¬↑p i = 0) a (_ : ¬↑q a = 0)) c [PROOFSTEP] refine' _root_.trans ENNReal.tsum_comm (tsum_congr fun b => tsum_congr fun a => _) [GOAL] case h α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ b : β a : α ⊢ (↑p a * if h : ↑p a = 0 then 0 else ↑q b * if h : ↑q b = 0 then 0 else ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c) = ↑q b * if h : ↑q b = 0 then 0 else ↑p a * if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c [PROOFSTEP] split_ifs with h1 h2 h2 [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ b : β a : α h1 : ↑p a = 0 h2 : ↑q b = 0 ⊢ ↑p a * 0 = ↑q b * 0 [PROOFSTEP] ring [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ b : β a : α h1 : ↑p a = 0 h2 : ¬↑q b = 0 ⊢ ↑p a * 0 = ↑q b * (↑p a * 0) [PROOFSTEP] ring [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ b : β a : α h1 : ¬↑p a = 0 h2 : ↑q b = 0 ⊢ ↑p a * (↑q b * 0) = ↑q b * 0 [PROOFSTEP] ring [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p✝ : Pmf α f✝ : (a : α) → a ∈ support p✝ → Pmf β p : Pmf α q : Pmf β f : (a : α) → a ∈ support p → (b : β) → b ∈ support q → Pmf γ c : γ b : β a : α h1 : ¬↑p a = 0 h2 : ¬↑q b = 0 ⊢ ↑p a * (↑q b * ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c) = ↑q b * (↑p a * ↑(f a (_ : ¬↑p a = 0) b (_ : ¬↑q b = 0)) c) [PROOFSTEP] ring [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β ⊢ ↑(toOuterMeasure (bindOnSupport p f)) s = ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(toOuterMeasure (f a h)) s [PROOFSTEP] simp only [toOuterMeasure_apply, Set.indicator_apply, bindOnSupport_apply] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β ⊢ (∑' (x : β), if x ∈ s then ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a (_ : ¬↑p a = 0)) x else 0) = ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ∑' (x : β), if x ∈ s then ↑(f a (_ : ¬↑p a = 0)) x else 0 [PROOFSTEP] calc (∑' b, ite (b ∈ s) (∑' a, p a * dite (p a = 0) (fun h => 0) fun h => f a h b) 0) = ∑' (b) (a), ite (b ∈ s) (p a * dite (p a = 0) (fun h => 0) fun h => f a h b) 0 := tsum_congr fun b => by split_ifs with hbs <;> simp only [eq_self_iff_true, tsum_zero] _ = ∑' (a) (b), ite (b ∈ s) (p a * dite (p a = 0) (fun h => 0) fun h => f a h b) 0 := ENNReal.tsum_comm _ = ∑' a, p a * ∑' b, ite (b ∈ s) (dite (p a = 0) (fun h => 0) fun h => f a h b) 0 := (tsum_congr fun a => by simp only [← ENNReal.tsum_mul_left, mul_ite, mul_zero]) _ = ∑' a, p a * dite (p a = 0) (fun h => 0) fun h => ∑' b, ite (b ∈ s) (f a h b) 0 := tsum_congr fun a => by split_ifs with ha <;> simp only [ite_self, tsum_zero, eq_self_iff_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β b : β ⊢ (if b ∈ s then ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b else 0) = ∑' (a : α), if b ∈ s then ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b else 0 [PROOFSTEP] split_ifs with hbs [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β b : β hbs : b ∈ s ⊢ (∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b) = ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b [PROOFSTEP] simp only [eq_self_iff_true, tsum_zero] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β b : β hbs : ¬b ∈ s ⊢ 0 = ∑' (a : α), 0 [PROOFSTEP] simp only [eq_self_iff_true, tsum_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β a : α ⊢ (∑' (b : β), if b ∈ s then ↑p a * if h : ↑p a = 0 then 0 else ↑(f a h) b else 0) = ↑p a * ∑' (b : β), if b ∈ s then if h : ↑p a = 0 then 0 else ↑(f a h) b else 0 [PROOFSTEP] simp only [← ENNReal.tsum_mul_left, mul_ite, mul_zero] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β a : α ⊢ (↑p a * ∑' (b : β), if b ∈ s then if h : ↑p a = 0 then 0 else ↑(f a h) b else 0) = ↑p a * if h : ↑p a = 0 then 0 else ∑' (b : β), if b ∈ s then ↑(f a h) b else 0 [PROOFSTEP] split_ifs with ha [GOAL] case pos α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β a : α ha : ↑p a = 0 ⊢ (↑p a * ∑' (b : β), if b ∈ s then 0 else 0) = ↑p a * 0 [PROOFSTEP] simp only [ite_self, tsum_zero, eq_self_iff_true] [GOAL] case neg α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β a : α ha : ¬↑p a = 0 ⊢ (↑p a * ∑' (b : β), if b ∈ s then ↑(f a ha) b else 0) = ↑p a * ∑' (b : β), if b ∈ s then ↑(f a ha) b else 0 [PROOFSTEP] simp only [ite_self, tsum_zero, eq_self_iff_true] [GOAL] α : Type u_1 β : Type u_2 γ : Type u_3 p : Pmf α f : (a : α) → a ∈ support p → Pmf β s : Set β inst✝ : MeasurableSpace β hs : MeasurableSet s ⊢ ↑↑(toMeasure (bindOnSupport p f)) s = ∑' (a : α), ↑p a * if h : ↑p a = 0 then 0 else ↑↑(toMeasure (f a h)) s [PROOFSTEP] simp only [toMeasure_apply_eq_toOuterMeasure_apply _ _ hs, toOuterMeasure_bindOnSupport_apply]
{"mathlib_filename": "Mathlib.Probability.ProbabilityMassFunction.Monad", "llama_tokens": 18358}
[GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ [PROOFSTEP] rw [← sub_nonneg, ← integral_sub', stoppedValue_sub_eq_sum' hle hbdd] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ 0 ≤ ∫ (a : Ω), (fun ω => Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i)) ω) a ∂μ [PROOFSTEP] simp only [Finset.sum_apply] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ 0 ≤ ∫ (a : Ω), Finset.sum (Finset.range (N + 1)) fun c => Set.indicator {ω | τ ω ≤ c ∧ c < π ω} (f (c + 1) - f c) a ∂μ [PROOFSTEP] have : ∀ i, MeasurableSet[𝒢 i] {ω : Ω | τ ω ≤ i ∧ i < π ω} := by intro i refine' (hτ i).inter _ convert (hπ i).compl using 1 ext x simp; rfl [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} [PROOFSTEP] intro i [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N i : ℕ ⊢ MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} [PROOFSTEP] refine' (hτ i).inter _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N i : ℕ ⊢ MeasurableSet fun ω => Nat.le (Nat.succ i) (π ω) [PROOFSTEP] convert (hπ i).compl using 1 [GOAL] case h.e'_3 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N i : ℕ ⊢ (fun ω => Nat.le (Nat.succ i) (π ω)) = {ω | π ω ≤ i}ᶜ [PROOFSTEP] ext x [GOAL] case h.e'_3.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N i : ℕ x : Ω ⊢ (x ∈ fun ω => Nat.le (Nat.succ i) (π ω)) ↔ x ∈ {ω | π ω ≤ i}ᶜ [PROOFSTEP] simp [GOAL] case h.e'_3.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N i : ℕ x : Ω ⊢ (x ∈ fun ω => Nat.succ i ≤ π ω) ↔ i < π x [PROOFSTEP] rfl [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} ⊢ 0 ≤ ∫ (a : Ω), Finset.sum (Finset.range (N + 1)) fun c => Set.indicator {ω | τ ω ≤ c ∧ c < π ω} (f (c + 1) - f c) a ∂μ [PROOFSTEP] rw [integral_finset_sum] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} ⊢ 0 ≤ Finset.sum (Finset.range (N + 1)) fun i => ∫ (a : Ω), Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a ∂μ [PROOFSTEP] refine' Finset.sum_nonneg fun i _ => _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} i : ℕ x✝ : i ∈ Finset.range (N + 1) ⊢ 0 ≤ ∫ (a : Ω), Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a ∂μ [PROOFSTEP] rw [integral_indicator (𝒢.le _ _ (this _)), integral_sub', sub_nonneg] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} i : ℕ x✝ : i ∈ Finset.range (N + 1) ⊢ ∫ (a : Ω) in {ω | τ ω ≤ i ∧ i < π ω}, f i a ∂μ ≤ ∫ (a : Ω) in {ω | τ ω ≤ i ∧ i < π ω}, f (i + 1) a ∂μ [PROOFSTEP] exact hf.set_integral_le (Nat.le_succ i) (this _) [GOAL] case hf Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} i : ℕ x✝ : i ∈ Finset.range (N + 1) ⊢ Integrable (f (i + 1)) [PROOFSTEP] exact (hf.integrable _).integrableOn [GOAL] case hg Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} i : ℕ x✝ : i ∈ Finset.range (N + 1) ⊢ Integrable (f i) [PROOFSTEP] exact (hf.integrable _).integrableOn [GOAL] case hf Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} ⊢ ∀ (i : ℕ), i ∈ Finset.range (N + 1) → Integrable fun a => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a [PROOFSTEP] intro i _ [GOAL] case hf Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N this : ∀ (i : ℕ), MeasurableSet {ω | τ ω ≤ i ∧ i < π ω} i : ℕ a✝ : i ∈ Finset.range (N + 1) ⊢ Integrable fun a => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (f (i + 1) - f i) a [PROOFSTEP] exact Integrable.indicator (Integrable.sub (hf.integrable _) (hf.integrable _)) (𝒢.le _ _ (this _)) [GOAL] case hf Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ Integrable fun x => stoppedValue f π x [PROOFSTEP] exact hf.integrable_stoppedValue hπ hbdd [GOAL] case hg Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : SigmaFiniteFiltration μ 𝒢 hf : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ hπ : IsStoppingTime 𝒢 π hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ Integrable fun x => stoppedValue f τ x [PROOFSTEP] exact hf.integrable_stoppedValue hτ fun ω => le_trans (hle ω) (hbdd ω) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (τ π : Ω → ℕ), IsStoppingTime 𝒢 τ → IsStoppingTime 𝒢 π → τ ≤ π → (∃ N, ∀ (ω : Ω), π ω ≤ N) → ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ ⊢ Submartingale f 𝒢 μ [PROOFSTEP] refine' submartingale_of_set_integral_le hadp hint fun i j hij s hs => _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (τ π : Ω → ℕ), IsStoppingTime 𝒢 τ → IsStoppingTime 𝒢 π → τ ≤ π → (∃ N, ∀ (ω : Ω), π ω ≤ N) → ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ i j : ℕ hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ [PROOFSTEP] classical specialize hf (s.piecewise (fun _ => i) fun _ => j) _ (isStoppingTime_piecewise_const hij hs) (isStoppingTime_const 𝒢 j) (fun x => (ite_le_sup _ _ (x ∈ s)).trans (max_eq_right hij).le) ⟨j, fun _ => le_rfl⟩ rwa [stoppedValue_const, stoppedValue_piecewise_const, integral_piecewise (𝒢.le _ _ hs) (hint _).integrableOn (hint _).integrableOn, ← integral_add_compl (𝒢.le _ _ hs) (hint j), add_le_add_iff_right] at hf [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (τ π : Ω → ℕ), IsStoppingTime 𝒢 τ → IsStoppingTime 𝒢 π → τ ≤ π → (∃ N, ∀ (ω : Ω), π ω ≤ N) → ∫ (x : Ω), stoppedValue f τ x ∂μ ≤ ∫ (x : Ω), stoppedValue f π x ∂μ i j : ℕ hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ [PROOFSTEP] specialize hf (s.piecewise (fun _ => i) fun _ => j) _ (isStoppingTime_piecewise_const hij hs) (isStoppingTime_const 𝒢 j) (fun x => (ite_le_sup _ _ (x ∈ s)).trans (max_eq_right hij).le) ⟨j, fun _ => le_rfl⟩ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) i j : ℕ hij : i ≤ j s : Set Ω hs : MeasurableSet s hf : ∫ (x : Ω), stoppedValue f (Set.piecewise s (fun x => i) fun x => j) x ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun x => j) x ∂μ ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ [PROOFSTEP] rwa [stoppedValue_const, stoppedValue_piecewise_const, integral_piecewise (𝒢.le _ _ hs) (hint _).integrableOn (hint _).integrableOn, ← integral_add_compl (𝒢.le _ _ hs) (hint j), add_le_add_iff_right] at hf [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ ⊢ Submartingale (stoppedProcess f τ) 𝒢 μ [PROOFSTEP] rw [submartingale_iff_expected_stoppedValue_mono] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ ⊢ ∀ (τ_1 π : Ω → ℕ), IsStoppingTime 𝒢 τ_1 → IsStoppingTime 𝒢 π → τ_1 ≤ π → (∃ N, ∀ (x : Ω), π x ≤ N) → ∫ (x : Ω), stoppedValue (stoppedProcess f τ) τ_1 x ∂μ ≤ ∫ (x : Ω), stoppedValue (stoppedProcess f τ) π x ∂μ [PROOFSTEP] intro σ π hσ hπ hσ_le_π hπ_bdd [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π✝ : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ σ π : Ω → ℕ hσ : IsStoppingTime 𝒢 σ hπ : IsStoppingTime 𝒢 π hσ_le_π : σ ≤ π hπ_bdd : ∃ N, ∀ (x : Ω), π x ≤ N ⊢ ∫ (x : Ω), stoppedValue (stoppedProcess f τ) σ x ∂μ ≤ ∫ (x : Ω), stoppedValue (stoppedProcess f τ) π x ∂μ [PROOFSTEP] simp_rw [stoppedValue_stoppedProcess] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π✝ : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ σ π : Ω → ℕ hσ : IsStoppingTime 𝒢 σ hπ : IsStoppingTime 𝒢 π hσ_le_π : σ ≤ π hπ_bdd : ∃ N, ∀ (x : Ω), π x ≤ N ⊢ ∫ (x : Ω), stoppedValue f (fun ω => min (σ ω) (τ ω)) x ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun ω => min (π ω) (τ ω)) x ∂μ [PROOFSTEP] obtain ⟨n, hπ_le_n⟩ := hπ_bdd [GOAL] case intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π✝ : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ σ π : Ω → ℕ hσ : IsStoppingTime 𝒢 σ hπ : IsStoppingTime 𝒢 π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ ∫ (x : Ω), stoppedValue f (fun ω => min (σ ω) (τ ω)) x ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun ω => min (π ω) (τ ω)) x ∂μ [PROOFSTEP] exact h.expected_stoppedValue_mono (hσ.min hτ) (hπ.min hτ) (fun ω => min_le_min (hσ_le_π ω) le_rfl) fun ω => (min_le_left _ _).trans (hπ_le_n ω) [GOAL] case hadp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ ⊢ Adapted 𝒢 (stoppedProcess f τ) [PROOFSTEP] exact Adapted.stoppedProcess_of_discrete h.adapted hτ [GOAL] case hint Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ h : Submartingale f 𝒢 μ hτ : IsStoppingTime 𝒢 τ ⊢ ∀ (i : ℕ), Integrable (stoppedProcess f τ i) [PROOFSTEP] exact fun i => h.integrable_stoppedValue ((isStoppingTime_const _ i).min hτ) fun ω => min_le_left _ _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] have hn : Set.Icc 0 n = {k | k ≤ n} := by ext x; simp [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ ⊢ Set.Icc 0 n = {k | k ≤ n} [PROOFSTEP] ext x [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n x : ℕ ⊢ x ∈ Set.Icc 0 n ↔ x ∈ {k | k ≤ n} [PROOFSTEP] simp [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] have : ∀ ω, ((ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω) → (ε : ℝ) ≤ stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω := by intro x hx simp_rw [le_sup'_iff, mem_range, Nat.lt_succ_iff] at hx refine' stoppedValue_hitting_mem _ simp only [Set.mem_setOf_eq, exists_prop, hn] exact let ⟨j, hj₁, hj₂⟩ := hx ⟨j, hj₁, hj₂⟩ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} ⊢ ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω [PROOFSTEP] intro x hx [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} x : Ω hx : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k x ⊢ ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x [PROOFSTEP] simp_rw [le_sup'_iff, mem_range, Nat.lt_succ_iff] at hx [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} x : Ω hx : ∃ b, b ≤ n ∧ ↑ε ≤ f b x ⊢ ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x [PROOFSTEP] refine' stoppedValue_hitting_mem _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} x : Ω hx : ∃ b, b ≤ n ∧ ↑ε ≤ f b x ⊢ ∃ j, j ∈ Set.Icc 0 n ∧ f j x ∈ {y | ↑ε ≤ y} [PROOFSTEP] simp only [Set.mem_setOf_eq, exists_prop, hn] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} x : Ω hx : ∃ b, b ≤ n ∧ ↑ε ≤ f b x ⊢ ∃ j, j ≤ n ∧ ↑ε ≤ f j x [PROOFSTEP] exact let ⟨j, hj₁, hj₂⟩ := hx ⟨j, hj₁, hj₂⟩ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} this : ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] have h := set_integral_ge_of_const_le (measurableSet_le measurable_const (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n))) (measure_ne_top _ _) this (Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} this : ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω h : ↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤ ∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] rw [ENNReal.le_ofReal_iff_toReal_le, ENNReal.toReal_smul] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} this : ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω h : ↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤ ∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ ⊢ ε • ENNReal.toReal (↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}) ≤ ∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ [PROOFSTEP] exact h [GOAL] case ha Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} this : ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω h : ↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤ ∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≠ ⊤ [PROOFSTEP] exact ENNReal.mul_ne_top (by simp) (measure_ne_top _ _) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} this : ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω h : ↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤ ∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ ⊢ ↑(RingHom.id ℝ≥0∞) (↑ENNReal.ofNNRealHom ε) ≠ ⊤ [PROOFSTEP] simp [GOAL] case hb Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ ε : ℝ≥0 n : ℕ hn : Set.Icc 0 n = {k | k ≤ n} this : ∀ (ω : Ω), (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) → ↑ε ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω h : ↑ε * ENNReal.toReal (↑↑μ {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}) ≤ ∫ (x : Ω) in {a | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k a}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ ⊢ 0 ≤ ∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ [PROOFSTEP] exact le_trans (mul_nonneg ε.coe_nonneg ENNReal.toReal_nonneg) h [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) [PROOFSTEP] suffices ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} + ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ε}, f n ω ∂μ) ≤ ENNReal.ofReal (μ[f n]) by have hadd : ENNReal.ofReal (∫ ω, f n ω ∂μ) = ENNReal.ofReal (∫ ω in {ω | ↑ε ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ) + ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ↑ε}, f n ω ∂μ) := by rw [← ENNReal.ofReal_add, ← integral_union] · rw [← integral_univ] convert rfl ext ω change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _ simp only [le_or_lt, Set.mem_univ] · rw [disjoint_iff_inf_le] rintro ω ⟨hω₁, hω₂⟩ change (ε : ℝ) ≤ _ at hω₁ change _ < (ε : ℝ) at hω₂ exact (not_le.2 hω₂) hω₁ · exact measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const exacts [(hsub.integrable _).integrableOn, (hsub.integrable _).integrableOn, integral_nonneg (hnonneg _), integral_nonneg (hnonneg _)] rwa [hadd, ENNReal.add_le_add_iff_right ENNReal.ofReal_ne_top] at this [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) [PROOFSTEP] have hadd : ENNReal.ofReal (∫ ω, f n ω ∂μ) = ENNReal.ofReal (∫ ω in {ω | ↑ε ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, f n ω ∂μ) + ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ↑ε}, f n ω ∂μ) := by rw [← ENNReal.ofReal_add, ← integral_union] · rw [← integral_univ] convert rfl ext ω change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _ simp only [le_or_lt, Set.mem_univ] · rw [disjoint_iff_inf_le] rintro ω ⟨hω₁, hω₂⟩ change (ε : ℝ) ≤ _ at hω₁ change _ < (ε : ℝ) at hω₂ exact (not_le.2 hω₂) hω₁ · exact measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const exacts [(hsub.integrable _).integrableOn, (hsub.integrable _).integrableOn, integral_nonneg (hnonneg _), integral_nonneg (hnonneg _)] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) = ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) [PROOFSTEP] rw [← ENNReal.ofReal_add, ← integral_union] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) = ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n x ∂μ) [PROOFSTEP] rw [← integral_univ] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ ENNReal.ofReal (∫ (x : Ω) in Set.univ, f n x ∂μ) = ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n x ∂μ) [PROOFSTEP] convert rfl [GOAL] case h.e'_3.h.e'_1.h.e'_6.h.e'_4 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} = Set.univ [PROOFSTEP] ext ω [GOAL] case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ω : Ω ⊢ ω ∈ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ↔ ω ∈ Set.univ [PROOFSTEP] change (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) ↔ _ [GOAL] case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ω : Ω ⊢ (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) ∨ (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ↔ ω ∈ Set.univ [PROOFSTEP] simp only [le_or_lt, Set.mem_univ] [GOAL] case hst Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ Disjoint {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case hst Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ⊓ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ≤ ⊥ [PROOFSTEP] rintro ω ⟨hω₁, hω₂⟩ [GOAL] case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ω : Ω hω₁ : ω ∈ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ⊢ ω ∈ ⊥ [PROOFSTEP] change (ε : ℝ) ≤ _ at hω₁ [GOAL] case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ω : Ω hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω ⊢ ω ∈ ⊥ [PROOFSTEP] change _ < (ε : ℝ) at hω₂ [GOAL] case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ω : Ω hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω hω₂ : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ⊢ ω ∈ ⊥ [PROOFSTEP] exact (not_le.2 hω₂) hω₁ [GOAL] case ht Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ MeasurableSet {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] exact measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const [GOAL] case hfs Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ IntegrableOn (fun ω => f n ω) {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} case hft Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ IntegrableOn (fun ω => f n ω) {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} case hp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ 0 ≤ ∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ case hq Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) ⊢ 0 ≤ ∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ [PROOFSTEP] exacts [(hsub.integrable _).integrableOn, (hsub.integrable _).integrableOn, integral_nonneg (hnonneg _), integral_nonneg (hnonneg _)] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ this : ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) hadd : ENNReal.ofReal (∫ (ω : Ω), f n ω ∂μ) = ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, f n ω ∂μ) [PROOFSTEP] rwa [hadd, ENNReal.add_le_add_iff_right ENNReal.ofReal_ne_top] at this [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) [PROOFSTEP] calc ε • μ {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω} + ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ ω in {ω | (ε : ℝ) ≤ (range (n + 1)).sup' nonempty_range_succ fun k => f k ω}, stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω ∂μ) + ENNReal.ofReal (∫ ω in {ω | ((range (n + 1)).sup' nonempty_range_succ fun k => f k ω) < ε}, stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω ∂μ) := by refine' add_le_add (smul_le_stoppedValue_hitting hsub _) (ENNReal.ofReal_le_ofReal (set_integral_mono_on (hsub.integrable n).integrableOn (Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)) (measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const) _)) intro ω hω rw [Set.mem_setOf_eq] at hω have : hitting f {y : ℝ | ↑ε ≤ y} 0 n ω = n := by classical simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff, forall_exists_index, and_imp] intro m hm hεm exact False.elim ((not_le.2 hω) ((le_sup'_iff _).2 ⟨m, mem_range.2 (Nat.lt_succ_of_le hm.2), hεm⟩)) simp_rw [stoppedValue, this, le_rfl] _ = ENNReal.ofReal (∫ ω, stoppedValue f (hitting f {y : ℝ | ↑ε ≤ y} 0 n) ω ∂μ) := by rw [← ENNReal.ofReal_add, ← integral_union] · rw [← integral_univ (μ := μ)] convert rfl ext ω change _ ↔ (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) simp only [le_or_lt, Set.mem_univ] · rw [disjoint_iff_inf_le] rintro ω ⟨hω₁, hω₂⟩ change (ε : ℝ) ≤ _ at hω₁ change _ < (ε : ℝ) at hω₂ exact (not_le.2 hω₂) hω₁ · exact measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const · exact Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le) · exact Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le) exacts [integral_nonneg fun x => hnonneg _ _, integral_nonneg fun x => hnonneg _ _] _ ≤ ENNReal.ofReal (μ[f n]) := by refine' ENNReal.ofReal_le_ofReal _ rw [← stoppedValue_const f n] exact hsub.expected_stoppedValue_mono (hitting_isStoppingTime hsub.adapted measurableSet_Ici) (isStoppingTime_const _ _) (fun ω => hitting_le ω) (fun _ => le_rfl : ∀ _, n ≤ n) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ε • ↑↑μ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, f n ω ∂μ) ≤ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] refine' add_le_add (smul_le_stoppedValue_hitting hsub _) (ENNReal.ofReal_le_ofReal (set_integral_mono_on (hsub.integrable n).integrableOn (Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le)) (measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const) _)) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ∀ (x : Ω), x ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} → f n x ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x [PROOFSTEP] intro ω hω [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ⊢ f n ω ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω [PROOFSTEP] rw [Set.mem_setOf_eq] at hω [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ⊢ f n ω ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω [PROOFSTEP] have : hitting f {y : ℝ | ↑ε ≤ y} 0 n ω = n := by classical simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff, forall_exists_index, and_imp] intro m hm hεm exact False.elim ((not_le.2 hω) ((le_sup'_iff _).2 ⟨m, mem_range.2 (Nat.lt_succ_of_le hm.2), hεm⟩)) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ⊢ hitting f {y | ↑ε ≤ y} 0 n ω = n [PROOFSTEP] classical simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff, forall_exists_index, and_imp] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ⊢ hitting f {y | ↑ε ≤ y} 0 n ω = n [PROOFSTEP] simp only [hitting, Set.mem_setOf_eq, exists_prop, Pi.coe_nat, Nat.cast_id, ite_eq_right_iff, forall_exists_index, and_imp] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ⊢ ∀ (x : ℕ), x ∈ Set.Icc 0 n → ↑ε ≤ f x ω → sInf (Set.Icc 0 n ∩ {i | ↑ε ≤ f i ω}) = n [PROOFSTEP] intro m hm hεm [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε m : ℕ hm : m ∈ Set.Icc 0 n hεm : ↑ε ≤ f m ω ⊢ sInf (Set.Icc 0 n ∩ {i | ↑ε ≤ f i ω}) = n [PROOFSTEP] exact False.elim ((not_le.2 hω) ((le_sup'_iff _).2 ⟨m, mem_range.2 (Nat.lt_succ_of_le hm.2), hεm⟩)) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε this : hitting f {y | ↑ε ≤ y} 0 n ω = n ⊢ f n ω ≤ stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω [PROOFSTEP] simp_rw [stoppedValue, this, le_rfl] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ENNReal.ofReal (∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) + ENNReal.ofReal (∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) = ENNReal.ofReal (∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] rw [← ENNReal.ofReal_add, ← integral_union] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ) = ENNReal.ofReal (∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) [PROOFSTEP] rw [← integral_univ (μ := μ)] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ENNReal.ofReal (∫ (x : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ) = ENNReal.ofReal (∫ (x : Ω) in Set.univ, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) x ∂μ) [PROOFSTEP] convert rfl [GOAL] case h.e'_3.h.e'_1.h.e'_6.h.e'_4 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ Set.univ = {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] ext ω [GOAL] case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω ⊢ ω ∈ Set.univ ↔ ω ∈ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ∪ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] change _ ↔ (ε : ℝ) ≤ _ ∨ _ < (ε : ℝ) [GOAL] case h.e'_3.h.e'_1.h.e'_6.h.e'_4.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω ⊢ ω ∈ Set.univ ↔ (↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) ∨ (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε [PROOFSTEP] simp only [le_or_lt, Set.mem_univ] [GOAL] case hst Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ Disjoint {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] rw [disjoint_iff_inf_le] [GOAL] case hst Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} ⊓ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ≤ ⊥ [PROOFSTEP] rintro ω ⟨hω₁, hω₂⟩ [GOAL] case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω₁ : ω ∈ {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} ⊢ ω ∈ ⊥ [PROOFSTEP] change (ε : ℝ) ≤ _ at hω₁ [GOAL] case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω₂ : ω ∈ {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω ⊢ ω ∈ ⊥ [PROOFSTEP] change _ < (ε : ℝ) at hω₂ [GOAL] case hst.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ω : Ω hω₁ : ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω hω₂ : (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε ⊢ ω ∈ ⊥ [PROOFSTEP] exact (not_le.2 hω₂) hω₁ [GOAL] case ht Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ MeasurableSet {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] exact measurableSet_lt (Finset.measurable_range_sup'' fun n _ => (hsub.stronglyMeasurable n).measurable.le (𝒢.le n)) measurable_const [GOAL] case hfs Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ IntegrableOn (fun ω => stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω) {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω} [PROOFSTEP] exact Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le) [GOAL] case hft Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ IntegrableOn (fun ω => stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω) {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε} [PROOFSTEP] exact Integrable.integrableOn (hsub.integrable_stoppedValue (hitting_isStoppingTime hsub.adapted measurableSet_Ici) hitting_le) [GOAL] case hp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ 0 ≤ ∫ (ω : Ω) in {ω | ↑ε ≤ sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ case hq Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ 0 ≤ ∫ (ω : Ω) in {ω | (sup' (range (n + 1)) (_ : Finset.Nonempty (range (n + 1))) fun k => f k ω) < ↑ε}, stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ [PROOFSTEP] exacts [integral_nonneg fun x => hnonneg _ _, integral_nonneg fun x => hnonneg _ _] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ENNReal.ofReal (∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ) ≤ ENNReal.ofReal (∫ (x : Ω), f n x ∂μ) [PROOFSTEP] refine' ENNReal.ofReal_le_ofReal _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ ≤ ∫ (x : Ω), f n x ∂μ [PROOFSTEP] rw [← stoppedValue_const f n] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω 𝒢 : Filtration ℕ m0 f : ℕ → Ω → ℝ τ π : Ω → ℕ inst✝ : IsFiniteMeasure μ hsub : Submartingale f 𝒢 μ hnonneg : 0 ≤ f ε : ℝ≥0 n : ℕ ⊢ ∫ (ω : Ω), stoppedValue f (hitting f {y | ↑ε ≤ y} 0 n) ω ∂μ ≤ ∫ (x : Ω), stoppedValue f (fun x => n) x ∂μ [PROOFSTEP] exact hsub.expected_stoppedValue_mono (hitting_isStoppingTime hsub.adapted measurableSet_Ici) (isStoppingTime_const _ _) (fun ω => hitting_le ω) (fun _ => le_rfl : ∀ _, n ≤ n)
{"mathlib_filename": "Mathlib.Probability.Martingale.OptionalStopping", "llama_tokens": 30288}
[GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : upcrossings a b f ω ≠ ⊤ ⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω) [PROOFSTEP] rw [← lt_top_iff_ne_top, upcrossings_lt_top_iff] at hω [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k ⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω) [PROOFSTEP] replace hω : ∃ k, ∀ N, upcrossingsBefore a b f N ω < k [GOAL] case hω Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k ⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k [PROOFSTEP] obtain ⟨k, hk⟩ := hω [GOAL] case hω.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b k : ℕ hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k ⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k [PROOFSTEP] exact ⟨k + 1, fun N => lt_of_le_of_lt (hk N) k.lt_succ_self⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k ⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω) [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∃ᶠ (n : ℕ) in atTop, f n ω < a h₂ : ∃ᶠ (n : ℕ) in atTop, b < f n ω ⊢ False [PROOFSTEP] rw [frequently_atTop] at h₁ h₂ [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω ⊢ False [PROOFSTEP] refine' Classical.not_not.2 hω _ [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω ⊢ ¬∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k [PROOFSTEP] push_neg [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω ⊢ ∀ (k : ℕ), ∃ N, k ≤ upcrossingsBefore a b f N ω [PROOFSTEP] intro k [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω k : ℕ ⊢ ∃ N, k ≤ upcrossingsBefore a b f N ω [PROOFSTEP] induction' k with k ih [GOAL] case intro.zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω ⊢ ∃ N, Nat.zero ≤ upcrossingsBefore a b f N ω [PROOFSTEP] simp only [Nat.zero_eq, zero_le, exists_const] [GOAL] case intro.succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω k : ℕ ih : ∃ N, k ≤ upcrossingsBefore a b f N ω ⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω [PROOFSTEP] obtain ⟨N, hN⟩ := ih [GOAL] case intro.succ.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω k N : ℕ hN : k ≤ upcrossingsBefore a b f N ω ⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω [PROOFSTEP] obtain ⟨N₁, hN₁, hN₁'⟩ := h₁ N [GOAL] case intro.succ.intro.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω k N : ℕ hN : k ≤ upcrossingsBefore a b f N ω N₁ : ℕ hN₁ : N₁ ≥ N hN₁' : f N₁ ω < a ⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω [PROOFSTEP] obtain ⟨N₂, hN₂, hN₂'⟩ := h₂ N₁ [GOAL] case intro.succ.intro.intro.intro.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hab : a < b hω : ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω < k h₁ : ∀ (a_1 : ℕ), ∃ b, b ≥ a_1 ∧ f b ω < a h₂ : ∀ (a : ℕ), ∃ b_1, b_1 ≥ a ∧ b < f b_1 ω k N : ℕ hN : k ≤ upcrossingsBefore a b f N ω N₁ : ℕ hN₁ : N₁ ≥ N hN₁' : f N₁ ω < a N₂ : ℕ hN₂ : N₂ ≥ N₁ hN₂' : b < f N₂ ω ⊢ ∃ N, Nat.succ k ≤ upcrossingsBefore a b f N ω [PROOFSTEP] exact ⟨N₂ + 1, Nat.succ_le_of_lt <| lt_of_le_of_lt hN (upcrossingsBefore_lt_of_exists_upcrossing hab hN₁ hN₁' hN₂ hN₂')⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] by_cases h : IsBoundedUnder (· ≤ ·) atTop fun n => |f n ω| [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => |f n ω| ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] rw [isBoundedUnder_le_abs] at h [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧ IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] refine' tendsto_of_no_upcrossings Rat.denseRange_cast _ h.1 h.2 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧ IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω ⊢ ∀ (a : ℝ), a ∈ Set.range Rat.cast → ∀ (b : ℝ), b ∈ Set.range Rat.cast → a < b → ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω) [PROOFSTEP] intro a ha b hb hab [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a✝ b✝ : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧ IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω a : ℝ ha : a ∈ Set.range Rat.cast b : ℝ hb : b ∈ Set.range Rat.cast hab : a < b ⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < a) ∧ ∃ᶠ (n : ℕ) in atTop, b < f n ω) [PROOFSTEP] obtain ⟨⟨a, rfl⟩, ⟨b, rfl⟩⟩ := ha, hb [GOAL] case pos.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a✝ b✝ : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : (IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => f n ω) ∧ IsBoundedUnder (fun x x_1 => x ≥ x_1) atTop fun n => f n ω a b : ℚ hab : ↑a < ↑b ⊢ ¬((∃ᶠ (n : ℕ) in atTop, f n ω < ↑a) ∧ ∃ᶠ (n : ℕ) in atTop, ↑b < f n ω) [PROOFSTEP] exact not_frequently_of_upcrossings_lt_top hab (hf₂ a b (Rat.cast_lt.1 hab)).ne [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => |f n ω| ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] obtain ⟨a, b, hab, h₁, h₂⟩ := ENNReal.exists_upcrossings_of_not_bounded_under hf₁.ne h [GOAL] case neg.intro.intro.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a✝ b✝ : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 hf₁ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ hf₂ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h : ¬IsBoundedUnder (fun x x_1 => x ≤ x_1) atTop fun n => |f n ω| a b : ℚ hab : a < b h₁ : ∃ᶠ (i : ℕ) in atTop, f i ω < ↑a h₂ : ∃ᶠ (i : ℕ) in atTop, ↑b < f i ω ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] exact False.elim ((hf₂ a b hab).ne (upcrossings_eq_top_of_frequently_lt (Rat.cast_lt.2 hab) h₁ h₂)) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b ⊢ ∀ᵐ (ω : Ω) ∂μ, upcrossings a b f ω < ⊤ [PROOFSTEP] refine' ae_lt_top (hf.adapted.measurable_upcrossings hab) _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b ⊢ ∫⁻ (x : Ω), upcrossings a b f x ∂μ ≠ ⊤ [PROOFSTEP] have := hf.mul_lintegral_upcrossings_le_lintegral_pos_part a b [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ⊢ ∫⁻ (x : Ω), upcrossings a b f x ∂μ ≠ ⊤ [PROOFSTEP] rw [mul_comm, ← ENNReal.le_div_iff_mul_le] at this [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) ⊢ ∫⁻ (x : Ω), upcrossings a b f x ∂μ ≠ ⊤ [PROOFSTEP] refine' (lt_of_le_of_lt this (ENNReal.div_lt_top _ _)).ne [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) ⊢ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ ⊤ [PROOFSTEP] have hR' : ∀ n, ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ R + ‖a‖₊ * μ Set.univ := by simp_rw [snorm_one_eq_lintegral_nnnorm] at hbdd intro n refine' (lintegral_mono _ : ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ ∫⁻ ω, ‖f n ω‖₊ + ‖a‖₊ ∂μ).trans _ · intro ω simp_rw [sub_eq_add_neg, ← nnnorm_neg a, ← ENNReal.coe_add, ENNReal.coe_le_coe] exact nnnorm_add_le _ _ · simp_rw [lintegral_add_right _ measurable_const, lintegral_const] exact add_le_add (hbdd _) le_rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) ⊢ ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ [PROOFSTEP] simp_rw [snorm_one_eq_lintegral_nnnorm] at hbdd [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R ⊢ ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ [PROOFSTEP] intro n [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R n : ℕ ⊢ ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ [PROOFSTEP] refine' (lintegral_mono _ : ∫⁻ ω, ‖f n ω - a‖₊ ∂μ ≤ ∫⁻ ω, ‖f n ω‖₊ + ‖a‖₊ ∂μ).trans _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R n : ℕ ⊢ (fun ω => ↑‖f n ω - a‖₊) ≤ fun ω => ↑‖f n ω‖₊ + ↑‖a‖₊ [PROOFSTEP] intro ω [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R n : ℕ ω : Ω ⊢ (fun ω => ↑‖f n ω - a‖₊) ω ≤ (fun ω => ↑‖f n ω‖₊ + ↑‖a‖₊) ω [PROOFSTEP] simp_rw [sub_eq_add_neg, ← nnnorm_neg a, ← ENNReal.coe_add, ENNReal.coe_le_coe] [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R n : ℕ ω : Ω ⊢ ‖f n ω + -a‖₊ ≤ ‖f n ω‖₊ + ‖-a‖₊ [PROOFSTEP] exact nnnorm_add_le _ _ [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R n : ℕ ⊢ ∫⁻ (a_1 : Ω), ↑‖f n a_1‖₊ + ↑‖a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ [PROOFSTEP] simp_rw [lintegral_add_right _ measurable_const, lintegral_const] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hbdd : ∀ (n : ℕ), ∫⁻ (x : Ω), ↑‖f n x‖₊ ∂μ ≤ ↑R n : ℕ ⊢ ∫⁻ (a : Ω), ↑‖f n a‖₊ ∂μ + ↑‖a‖₊ * ↑↑μ Set.univ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ [PROOFSTEP] exact add_le_add (hbdd _) le_rfl [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ ⊢ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ ⊤ [PROOFSTEP] refine' ne_of_lt (iSup_lt_iff.2 ⟨R + ‖a‖₊ * μ Set.univ, ENNReal.add_lt_top.2 ⟨ENNReal.coe_lt_top, ENNReal.mul_lt_top ENNReal.coe_lt_top.ne (measure_ne_top _ _)⟩, fun n => le_trans _ (hR' n)⟩) [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ⊢ ∫⁻ (ω : Ω), ENNReal.ofReal (f n ω - a)⁺ ∂μ ≤ ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ [PROOFSTEP] refine' lintegral_mono fun ω => _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω ⊢ ENNReal.ofReal (f n ω - a)⁺ ≤ ↑‖f n ω - a‖₊ [PROOFSTEP] rw [ENNReal.ofReal_le_iff_le_toReal, ENNReal.coe_toReal, coe_nnnorm] [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω ⊢ (f n ω - a)⁺ ≤ ‖f n ω - a‖ case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω ⊢ ↑‖f n ω - a‖₊ ≠ ⊤ [PROOFSTEP] by_cases hnonneg : 0 ≤ f n ω - a [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω hnonneg : 0 ≤ f n ω - a ⊢ (f n ω - a)⁺ ≤ ‖f n ω - a‖ [PROOFSTEP] rw [LatticeOrderedGroup.pos_of_nonneg _ hnonneg, Real.norm_eq_abs, abs_of_nonneg hnonneg] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω hnonneg : ¬0 ≤ f n ω - a ⊢ (f n ω - a)⁺ ≤ ‖f n ω - a‖ [PROOFSTEP] rw [LatticeOrderedGroup.pos_of_nonpos _ (not_le.1 hnonneg).le] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω hnonneg : ¬0 ≤ f n ω - a ⊢ 0 ≤ ‖f n ω - a‖ [PROOFSTEP] exact norm_nonneg _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) hR' : ∀ (n : ℕ), ∫⁻ (ω : Ω), ↑‖f n ω - a‖₊ ∂μ ≤ ↑R + ↑‖a‖₊ * ↑↑μ Set.univ n : ℕ ω : Ω ⊢ ↑‖f n ω - a‖₊ ≠ ⊤ [PROOFSTEP] simp only [Ne.def, ENNReal.coe_ne_top, not_false_iff] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ (⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ) / ENNReal.ofReal (b - a) ⊢ ENNReal.ofReal (b - a) ≠ 0 [PROOFSTEP] simp only [hab, Ne.def, ENNReal.ofReal_eq_zero, sub_nonpos, not_le] [GOAL] case h0 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : (∫⁻ (ω : Ω), upcrossings a b f ω ∂μ) * ENNReal.ofReal (b - a) ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ⊢ ENNReal.ofReal (b - a) ≠ 0 ∨ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ 0 [PROOFSTEP] simp only [hab, Ne.def, ENNReal.ofReal_eq_zero, sub_nonpos, not_le, true_or_iff] [GOAL] case ht Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R hab : a < b this : (∫⁻ (ω : Ω), upcrossings a b f ω ∂μ) * ENNReal.ofReal (b - a) ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ⊢ ENNReal.ofReal (b - a) ≠ ⊤ ∨ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ ≠ ⊤ [PROOFSTEP] simp only [Ne.def, ENNReal.ofReal_ne_top, not_false_iff, true_or_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ [PROOFSTEP] simp only [ae_all_iff, eventually_imp_distrib_left] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∀ (i i_1 : ℚ), i < i_1 → ∀ᵐ (x : Ω) ∂μ, upcrossings (↑i) (↑i_1) f x < ⊤ [PROOFSTEP] rintro a b hab [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a✝ b✝ : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R a b : ℚ hab : a < b ⊢ ∀ᵐ (x : Ω) ∂μ, upcrossings (↑a) (↑b) f x < ⊤ [PROOFSTEP] exact hf.upcrossings_ae_lt_top' hbdd (Rat.cast_lt.2 hab) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] filter_upwards [hf.upcrossings_ae_lt_top hbdd, ae_bdd_liminf_atTop_of_snorm_bdd one_ne_zero (fun n => (hf.stronglyMeasurable n).measurable.mono (ℱ.le n) le_rfl) hbdd] with ω h₁ h₂ [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ω : Ω h₁ : ∀ (a b : ℚ), a < b → upcrossings (↑a) (↑b) f ω < ⊤ h₂ : liminf (fun n => ↑‖f n ω‖₊) atTop < ⊤ ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] exact tendsto_of_uncrossing_lt_top h₂ h₁ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂Measure.trim μ (_ : sSup (Set.range fun n => ↑ℱ n) ≤ m0), ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] rw [@ae_iff _ (⨆ n, ℱ n) _ _, trim_measurableSet_eq] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ↑↑μ {a | ¬∃ c, Tendsto (fun n => f n a) atTop (𝓝 c)} = 0 [PROOFSTEP] exact hf.exists_ae_tendsto_of_bdd hbdd [GOAL] case hs Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ MeasurableSet {a | ¬∃ c, Tendsto (fun n => f n a) atTop (𝓝 c)} [PROOFSTEP] exact MeasurableSet.compl (@measurableSet_exists_tendsto _ _ _ _ _ _ (⨆ n, ℱ n) _ _ _ _ _ fun n => (hf.stronglyMeasurable n).measurable.mono (le_sSup ⟨n, rfl⟩) le_rfl) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (limitProcess f ℱ μ ω)) [PROOFSTEP] classical suffices ∃ g, StronglyMeasurable[⨆ n, ℱ n] g ∧ ∀ᵐ ω ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) by rw [limitProcess, dif_pos this] exact (Classical.choose_spec this).2 set g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then h.choose else 0 have hle : ⨆ n, ℱ n ≤ m0 := sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _ have hg' : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) := by filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω simp_rw [dif_pos hω] exact hω.choose_spec have hg'm : @AEStronglyMeasurable _ _ _ (⨆ n, ℱ n) g' (μ.trim hle) := (@aemeasurable_of_tendsto_metrizable_ae' _ _ (⨆ n, ℱ n) _ _ _ _ _ _ _ (fun n => ((hf.stronglyMeasurable n).measurable.mono (le_sSup ⟨n, rfl⟩ : ℱ n ≤ ⨆ n, ℱ n) le_rfl).aemeasurable) hg').aestronglyMeasurable obtain ⟨g, hgm, hae⟩ := hg'm have hg : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) := by filter_upwards [hae, hg'] with ω hω hg'ω exact hω ▸ hg'ω exact ⟨g, hgm, measure_eq_zero_of_trim_eq_zero hle hg⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (limitProcess f ℱ μ ω)) [PROOFSTEP] suffices ∃ g, StronglyMeasurable[⨆ n, ℱ n] g ∧ ∀ᵐ ω ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) by rw [limitProcess, dif_pos this] exact (Classical.choose_spec this).2 [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R this : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (limitProcess f ℱ μ ω)) [PROOFSTEP] rw [limitProcess, dif_pos this] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R this : ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (Classical.choose this ω)) [PROOFSTEP] exact (Classical.choose_spec this).2 [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] set g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then h.choose else 0 [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] have hle : ⨆ n, ℱ n ≤ m0 := sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] have hg' : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) := by filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω simp_rw [dif_pos hω] exact hω.choose_spec [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 ⊢ ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) [PROOFSTEP] filter_upwards [hf.exists_ae_trim_tendsto_of_bdd hbdd] with ω hω [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 ω : Ω hω : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) ⊢ Tendsto (fun n => f n ω) atTop (𝓝 (if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0)) [PROOFSTEP] simp_rw [dif_pos hω] [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 ω : Ω hω : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) ⊢ Tendsto (fun n => f n ω) atTop (𝓝 (Exists.choose hω)) [PROOFSTEP] exact hω.choose_spec [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] have hg'm : @AEStronglyMeasurable _ _ _ (⨆ n, ℱ n) g' (μ.trim hle) := (@aemeasurable_of_tendsto_metrizable_ae' _ _ (⨆ n, ℱ n) _ _ _ _ _ _ _ (fun n => ((hf.stronglyMeasurable n).measurable.mono (le_sSup ⟨n, rfl⟩ : ℱ n ≤ ⨆ n, ℱ n) le_rfl).aemeasurable) hg').aestronglyMeasurable [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) hg'm : AEStronglyMeasurable g' (Measure.trim μ hle) ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] obtain ⟨g, hgm, hae⟩ := hg'm [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) g : Ω → ℝ hgm : StronglyMeasurable g hae : g' =ᵐ[Measure.trim μ hle] g ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] have hg : ∀ᵐ ω ∂μ.trim hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) := by filter_upwards [hae, hg'] with ω hω hg'ω exact hω ▸ hg'ω [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) g : Ω → ℝ hgm : StronglyMeasurable g hae : g' =ᵐ[Measure.trim μ hle] g ⊢ ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] filter_upwards [hae, hg'] with ω hω hg'ω [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω✝ : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) g : Ω → ℝ hgm : StronglyMeasurable g hae : g' =ᵐ[Measure.trim μ hle] g ω : Ω hω : (if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0) = g ω hg'ω : Tendsto (fun n => f n ω) atTop (𝓝 (if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0)) ⊢ Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] exact hω ▸ hg'ω [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ (n : ℕ), snorm (f n) 1 μ ≤ ↑R g' : Ω → ℝ := fun ω => if h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) then Exists.choose h else 0 hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hg' : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g' ω)) g : Ω → ℝ hgm : StronglyMeasurable g hae : g' =ᵐ[Measure.trim μ hle] g hg : ∀ᵐ (ω : Ω) ∂Measure.trim μ hle, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) ⊢ ∃ g, StronglyMeasurable g ∧ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop (𝓝 (g ω)) [PROOFSTEP] exact ⟨g, hgm, measure_eq_zero_of_trim_eq_zero hle hg⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hf : Submartingale f ℱ μ hunif : UniformIntegrable f 1 μ ⊢ Tendsto (fun n => snorm (f n - limitProcess f ℱ μ) 1 μ) atTop (𝓝 0) [PROOFSTEP] obtain ⟨R, hR⟩ := hunif.2.2 [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hf : Submartingale f ℱ μ hunif : UniformIntegrable f 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm (f i) 1 μ ≤ ↑R ⊢ Tendsto (fun n => snorm (f n - limitProcess f ℱ μ) 1 μ) atTop (𝓝 0) [PROOFSTEP] have hmeas : ∀ n, AEStronglyMeasurable (f n) μ := fun n => ((hf.stronglyMeasurable n).mono (ℱ.le _)).aestronglyMeasurable [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hf : Submartingale f ℱ μ hunif : UniformIntegrable f 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm (f i) 1 μ ≤ ↑R hmeas : ∀ (n : ℕ), AEStronglyMeasurable (f n) μ ⊢ Tendsto (fun n => snorm (f n - limitProcess f ℱ μ) 1 μ) atTop (𝓝 0) [PROOFSTEP] exact tendsto_Lp_of_tendstoInMeasure _ le_rfl ENNReal.one_ne_top hmeas (memℒp_limitProcess_of_snorm_bdd hmeas hR) hunif.2.1 (tendstoInMeasure_of_tendsto_ae hmeas <| hf.ae_tendsto_limitProcess hR) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ⊢ f n =ᵐ[μ] μ[g|↑ℱ n] [PROOFSTEP] rw [← sub_ae_eq_zero, ← snorm_eq_zero_iff (((hf.stronglyMeasurable n).mono (ℱ.le _)).sub (stronglyMeasurable_condexp.mono (ℱ.le _))).aestronglyMeasurable one_ne_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ⊢ snorm (f n - μ[g|↑ℱ n]) 1 μ = 0 [PROOFSTEP] have ht : Tendsto (fun m => snorm (μ[f m - g|ℱ n]) 1 μ) atTop (𝓝 0) := haveI hint : ∀ m, Integrable (f m - g) μ := fun m => (hf.integrable m).sub hg tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds hgtends (fun m => zero_le _) fun m => snorm_one_condexp_le_snorm _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0) ⊢ snorm (f n - μ[g|↑ℱ n]) 1 μ = 0 [PROOFSTEP] have hev : ∀ m ≥ n, snorm (μ[f m - g|ℱ n]) 1 μ = snorm (f n - μ[g|ℱ n]) 1 μ := by refine' fun m hm => snorm_congr_ae ((condexp_sub (hf.integrable m) hg).trans _) filter_upwards [hf.2 n m hm] with x hx simp only [hx, Pi.sub_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0) ⊢ ∀ (m : ℕ), m ≥ n → snorm (μ[f m - g|↑ℱ n]) 1 μ = snorm (f n - μ[g|↑ℱ n]) 1 μ [PROOFSTEP] refine' fun m hm => snorm_congr_ae ((condexp_sub (hf.integrable m) hg).trans _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0) m : ℕ hm : m ≥ n ⊢ μ[f m|↑ℱ n] - μ[g|↑ℱ n] =ᵐ[μ] f n - μ[g|↑ℱ n] [PROOFSTEP] filter_upwards [hf.2 n m hm] with x hx [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0) m : ℕ hm : m ≥ n x : Ω hx : (μ[f m|↑ℱ n]) x = f n x ⊢ (μ[f m|↑ℱ n] - μ[g|↑ℱ n]) x = (f n - μ[g|↑ℱ n]) x [PROOFSTEP] simp only [hx, Pi.sub_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ✝ g : Ω → ℝ μ : Measure Ω hf : Martingale f ℱ μ hg : Integrable g hgtends : Tendsto (fun n => snorm (f n - g) 1 μ) atTop (𝓝 0) n : ℕ ht : Tendsto (fun m => snorm (μ[f m - g|↑ℱ n]) 1 μ) atTop (𝓝 0) hev : ∀ (m : ℕ), m ≥ n → snorm (μ[f m - g|↑ℱ n]) 1 μ = snorm (f n - μ[g|↑ℱ n]) 1 μ ⊢ snorm (f n - μ[g|↑ℱ n]) 1 μ = 0 [PROOFSTEP] exact tendsto_nhds_unique (tendsto_atTop_of_eventually_const hev) ht [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] have hle : ⨆ n, ℱ n ≤ m0 := sSup_le fun m ⟨n, hn⟩ => hn ▸ ℱ.le _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] have hunif : UniformIntegrable (fun n => μ[g|ℱ n]) 1 μ := hg.uniformIntegrable_condexp_filtration [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] obtain ⟨R, hR⟩ := hunif.2.2 [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] have hlimint : Integrable (ℱ.limitProcess (fun n => μ[g|ℱ n]) μ) μ := (memℒp_limitProcess_of_snorm_bdd hunif.1 hR).integrable le_rfl [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] suffices g =ᵐ[μ] ℱ.limitProcess (fun n x => (μ[g|ℱ n]) x) μ by filter_upwards [this, (martingale_condexp g ℱ μ).submartingale.ae_tendsto_limitProcess hR] with x heq ht rwa [heq] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] filter_upwards [this, (martingale_condexp g ℱ μ).submartingale.ae_tendsto_limitProcess hR] with x heq ht [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x : Ω heq : g x = limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ht : Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (limitProcess (fun i => μ[g|↑ℱ i]) ℱ μ x)) ⊢ Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 (g x)) [PROOFSTEP] rwa [heq] [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) ⊢ g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ [PROOFSTEP] have : ∀ n s, MeasurableSet[ℱ n] s → ∫ x in s, g x ∂μ = ∫ x in s, ℱ.limitProcess (fun n x => (μ[g|ℱ n]) x) μ x ∂μ := by intro n s hs rw [← set_integral_condexp (ℱ.le n) hg hs, ← set_integral_condexp (ℱ.le n) hlimint hs] refine' set_integral_congr_ae (ℱ.le _ _ hs) _ filter_upwards [(martingale_condexp g ℱ μ).ae_eq_condexp_limitProcess hunif n] with x hx _ rw [hx] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) ⊢ ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] intro n s hs [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) n : ℕ s : Set Ω hs : MeasurableSet s ⊢ ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rw [← set_integral_condexp (ℱ.le n) hg hs, ← set_integral_condexp (ℱ.le n) hlimint hs] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) n : ℕ s : Set Ω hs : MeasurableSet s ⊢ ∫ (x : Ω) in s, (μ[g|↑ℱ n]) x ∂μ = ∫ (x : Ω) in s, (μ[limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ|↑ℱ n]) x ∂μ [PROOFSTEP] refine' set_integral_congr_ae (ℱ.le _ _ hs) _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) n : ℕ s : Set Ω hs : MeasurableSet s ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ s → (μ[g|↑ℱ n]) x = (μ[limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ|↑ℱ n]) x [PROOFSTEP] filter_upwards [(martingale_condexp g ℱ μ).ae_eq_condexp_limitProcess hunif n] with x hx _ [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) n : ℕ s : Set Ω hs : MeasurableSet s x : Ω hx : (μ[g|↑ℱ n]) x = (μ[limitProcess (fun i => μ[g|↑ℱ i]) ℱ μ|↑ℱ n]) x a✝ : x ∈ s ⊢ (μ[g|↑ℱ n]) x = (μ[limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ|↑ℱ n]) x [PROOFSTEP] rw [hx] [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ ⊢ g =ᵐ[μ] limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ [PROOFSTEP] refine' ae_eq_of_forall_set_integral_eq_of_sigmaFinite' hle (fun s _ _ => hg.integrableOn) (fun s _ _ => hlimint.integrableOn) (fun s hs => _) hgmeas.aeStronglyMeasurable' stronglyMeasurable_limitProcess.aeStronglyMeasurable' [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s ⊢ ↑↑μ s < ⊤ → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] apply @MeasurableSpace.induction_on_inter _ _ _ (⨆ n, ℱ n) (MeasurableSpace.measurableSpace_iSup_eq ℱ) _ _ _ _ _ _ hs [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s ⊢ IsPiSystem {s | ∃ n, MeasurableSet s} [PROOFSTEP] rintro s ⟨n, hs⟩ t ⟨m, ht⟩ - [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s✝ : Set Ω hs✝ : MeasurableSet s✝ s : Set Ω n : ℕ hs : MeasurableSet s t : Set Ω m : ℕ ht : MeasurableSet t ⊢ s ∩ t ∈ {s | ∃ n, MeasurableSet s} [PROOFSTEP] by_cases hnm : n ≤ m [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s✝ : Set Ω hs✝ : MeasurableSet s✝ s : Set Ω n : ℕ hs : MeasurableSet s t : Set Ω m : ℕ ht : MeasurableSet t hnm : n ≤ m ⊢ s ∩ t ∈ {s | ∃ n, MeasurableSet s} [PROOFSTEP] exact ⟨m, (ℱ.mono hnm _ hs).inter ht⟩ [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s✝ : Set Ω hs✝ : MeasurableSet s✝ s : Set Ω n : ℕ hs : MeasurableSet s t : Set Ω m : ℕ ht : MeasurableSet t hnm : ¬n ≤ m ⊢ s ∩ t ∈ {s | ∃ n, MeasurableSet s} [PROOFSTEP] exact ⟨n, hs.inter (ℱ.mono (not_le.1 hnm).le _ ht)⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s ⊢ ↑↑μ ∅ < ⊤ → ∫ (x : Ω) in ∅, g x ∂μ = ∫ (x : Ω) in ∅, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] simp only [measure_empty, WithTop.zero_lt_top, Measure.restrict_empty, integral_zero_measure, forall_true_left] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s ⊢ ∀ (t : Set Ω), t ∈ {s | ∃ n, MeasurableSet s} → ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rintro t ⟨n, ht⟩ - [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s t : Set Ω n : ℕ ht : MeasurableSet t ⊢ ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] exact this n _ ht [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s ⊢ ∀ (t : Set Ω), MeasurableSet t → (↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ) → ↑↑μ tᶜ < ⊤ → ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rintro t htmeas ht - [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s t : Set Ω htmeas : MeasurableSet t ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ ⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] have hgeq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ htmeas (hg.trim hle hgmeas) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s t : Set Ω htmeas : MeasurableSet t ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ hgeq : ∫ (x : Ω) in t, g x ∂Measure.trim μ hle + ∫ (x : Ω) in tᶜ, g x ∂Measure.trim μ hle = ∫ (x : Ω), g x ∂Measure.trim μ hle ⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] have hheq := @integral_add_compl _ _ (⨆ n, ℱ n) _ _ _ _ _ htmeas (hlimint.trim hle stronglyMeasurable_limitProcess) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s t : Set Ω htmeas : MeasurableSet t ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ hgeq : ∫ (x : Ω) in t, g x ∂Measure.trim μ hle + ∫ (x : Ω) in tᶜ, g x ∂Measure.trim μ hle = ∫ (x : Ω), g x ∂Measure.trim μ hle hheq : ∫ (x : Ω) in t, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle + ∫ (x : Ω) in tᶜ, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle = ∫ (x : Ω), limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle ⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rw [add_comm, ← eq_sub_iff_add_eq] at hgeq hheq [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s t : Set Ω htmeas : MeasurableSet t ht : ↑↑μ t < ⊤ → ∫ (x : Ω) in t, g x ∂μ = ∫ (x : Ω) in t, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ hgeq : ∫ (x : Ω) in tᶜ, g x ∂Measure.trim μ hle = ∫ (x : Ω), g x ∂Measure.trim μ hle - ∫ (x : Ω) in t, g x ∂Measure.trim μ hle hheq : ∫ (x : Ω) in tᶜ, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle = ∫ (x : Ω), limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle - ∫ (x : Ω) in t, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ x ∂Measure.trim μ hle ⊢ ∫ (x : Ω) in tᶜ, g x ∂μ = ∫ (x : Ω) in tᶜ, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rw [set_integral_trim hle hgmeas htmeas.compl, set_integral_trim hle stronglyMeasurable_limitProcess htmeas.compl, hgeq, hheq, ← set_integral_trim hle hgmeas htmeas, ← set_integral_trim hle stronglyMeasurable_limitProcess htmeas, ← integral_trim hle hgmeas, ← integral_trim hle stronglyMeasurable_limitProcess, ← integral_univ, this 0 _ MeasurableSet.univ, integral_univ, ht (measure_lt_top _ _)] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s ⊢ ∀ (f : ℕ → Set Ω), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), ↑↑μ (f i) < ⊤ → ∫ (x : Ω) in f i, g x ∂μ = ∫ (x : Ω) in f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ) → ↑↑μ (⋃ (i : ℕ), f i) < ⊤ → ∫ (x : Ω) in ⋃ (i : ℕ), f i, g x ∂μ = ∫ (x : Ω) in ⋃ (i : ℕ), f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rintro f hf hfmeas heq - [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f✝ : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s f : ℕ → Set Ω hf : Pairwise (Disjoint on f) hfmeas : ∀ (i : ℕ), MeasurableSet (f i) heq : ∀ (i : ℕ), ↑↑μ (f i) < ⊤ → ∫ (x : Ω) in f i, g x ∂μ = ∫ (x : Ω) in f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ ⊢ ∫ (x : Ω) in ⋃ (i : ℕ), f i, g x ∂μ = ∫ (x : Ω) in ⋃ (i : ℕ), f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ [PROOFSTEP] rw [integral_iUnion (fun n => hle _ (hfmeas n)) hf hg.integrableOn, integral_iUnion (fun n => hle _ (hfmeas n)) hf hlimint.integrableOn] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f✝ : ℕ → Ω → ℝ ω : Ω R✝ : ℝ≥0 inst✝ : IsFiniteMeasure μ g : Ω → ℝ hg : Integrable g hgmeas : StronglyMeasurable g hle : ⨆ (n : ℕ), ↑ℱ n ≤ m0 hunif : UniformIntegrable (fun n => μ[g|↑ℱ n]) 1 μ R : ℝ≥0 hR : ∀ (i : ℕ), snorm ((fun n => μ[g|↑ℱ n]) i) 1 μ ≤ ↑R hlimint : Integrable (limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ) this : ∀ (n : ℕ) (s : Set Ω), MeasurableSet s → ∫ (x : Ω) in s, g x ∂μ = ∫ (x : Ω) in s, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ s : Set Ω hs : MeasurableSet s f : ℕ → Set Ω hf : Pairwise (Disjoint on f) hfmeas : ∀ (i : ℕ), MeasurableSet (f i) heq : ∀ (i : ℕ), ↑↑μ (f i) < ⊤ → ∫ (x : Ω) in f i, g x ∂μ = ∫ (x : Ω) in f i, limitProcess (fun n x => (μ[g|↑ℱ n]) x) ℱ μ x ∂μ ⊢ ∑' (n : ℕ), ∫ (a : Ω) in f n, g a ∂μ = ∑' (n : ℕ), ∫ (a : Ω) in f n, limitProcess (fun n => μ[g|↑ℱ n]) ℱ μ a ∂μ [PROOFSTEP] exact tsum_congr fun n => heq _ (measure_lt_top _ _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) [PROOFSTEP] have ht : ∀ᵐ x ∂μ, Tendsto (fun n => (μ[μ[g|⨆ n, ℱ n]|ℱ n]) x) atTop (𝓝 ((μ[g|⨆ n, ℱ n]) x)) := integrable_condexp.tendsto_ae_condexp stronglyMeasurable_condexp [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) [PROOFSTEP] have heq : ∀ n, ∀ᵐ x ∂μ, (μ[μ[g|⨆ n, ℱ n]|ℱ n]) x = (μ[g|ℱ n]) x := fun n => condexp_condexp_of_le (le_iSup _ n) (iSup_le fun n => ℱ.le n) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) [PROOFSTEP] rw [← ae_all_iff] at heq [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) heq : ∀ᵐ (a : Ω) ∂μ, ∀ (i : ℕ), (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ i]) a = (μ[g|↑ℱ i]) a ⊢ ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) [PROOFSTEP] filter_upwards [heq, ht] with x hxeq hxt [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : ∀ᵐ (x : Ω) ∂μ, Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) heq : ∀ᵐ (a : Ω) ∂μ, ∀ (i : ℕ), (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ i]) a = (μ[g|↑ℱ i]) a x : Ω hxeq : ∀ (i : ℕ), (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ i]) x = (μ[g|↑ℱ i]) x hxt : Tendsto (fun n => (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) ⊢ Tendsto (fun n => (μ[g|↑ℱ n]) x) atTop (𝓝 ((μ[g|⨆ (n : ℕ), ↑ℱ n]) x)) [PROOFSTEP] exact hxt.congr hxeq [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ⊢ Tendsto (fun n => snorm (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) [PROOFSTEP] have ht : Tendsto (fun n => snorm (μ[μ[g|⨆ n, ℱ n]|ℱ n] - μ[g|⨆ n, ℱ n]) 1 μ) atTop (𝓝 0) := integrable_condexp.tendsto_snorm_condexp stronglyMeasurable_condexp [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) ⊢ Tendsto (fun n => snorm (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) [PROOFSTEP] have heq : ∀ n, ∀ᵐ x ∂μ, (μ[μ[g|⨆ n, ℱ n]|ℱ n]) x = (μ[g|ℱ n]) x := fun n => condexp_condexp_of_le (le_iSup _ n) (iSup_le fun n => ℱ.le n) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x ⊢ Tendsto (fun n => snorm (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) [PROOFSTEP] refine' ht.congr fun n => snorm_congr_ae _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x n : ℕ ⊢ μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n] =ᵐ[μ] μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n] [PROOFSTEP] filter_upwards [heq n] with x hxeq [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 a b : ℝ f : ℕ → Ω → ℝ ω : Ω R : ℝ≥0 inst✝ : IsFiniteMeasure μ g✝ g : Ω → ℝ ht : Tendsto (fun n => snorm (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) 1 μ) atTop (𝓝 0) heq : ∀ (n : ℕ), ∀ᵐ (x : Ω) ∂μ, (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x n : ℕ x : Ω hxeq : (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n]) x = (μ[g|↑ℱ n]) x ⊢ (μ[μ[g|⨆ (n : ℕ), ↑ℱ n]|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) x = (μ[g|↑ℱ n] - μ[g|⨆ (n : ℕ), ↑ℱ n]) x [PROOFSTEP] simp only [hxeq, Pi.sub_apply]
{"mathlib_filename": "Mathlib.Probability.Martingale.Convergence", "llama_tokens": 42294}
[GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n ⊢ leastGE f r (π ω) ω = min (π ω) (leastGE f r n ω) [PROOFSTEP] classical refine' le_antisymm (le_min (leastGE_le _) (leastGE_mono (hπn ω) r ω)) _ by_cases hle : π ω ≤ leastGE f r n ω · rw [min_eq_left hle, leastGE] by_cases h : ∃ j ∈ Set.Icc 0 (π ω), f j ω ∈ Set.Ici r · refine' hle.trans (Eq.le _) rw [leastGE, ← hitting_eq_hitting_of_exists (hπn ω) h] · simp only [hitting, if_neg h, le_rfl] · rw [min_eq_right (not_le.1 hle).le, leastGE, leastGE, ← hitting_eq_hitting_of_exists (hπn ω) _] rw [not_le, leastGE, hitting_lt_iff _ (hπn ω)] at hle exact let ⟨j, hj₁, hj₂⟩ := hle ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n ⊢ leastGE f r (π ω) ω = min (π ω) (leastGE f r n ω) [PROOFSTEP] refine' le_antisymm (le_min (leastGE_le _) (leastGE_mono (hπn ω) r ω)) _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n ⊢ min (π ω) (leastGE f r n ω) ≤ leastGE f r (π ω) ω [PROOFSTEP] by_cases hle : π ω ≤ leastGE f r n ω [GOAL] case pos Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω ⊢ min (π ω) (leastGE f r n ω) ≤ leastGE f r (π ω) ω [PROOFSTEP] rw [min_eq_left hle, leastGE] [GOAL] case pos Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω ⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω [PROOFSTEP] by_cases h : ∃ j ∈ Set.Icc 0 (π ω), f j ω ∈ Set.Ici r [GOAL] case pos Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω h : ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r ⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω [PROOFSTEP] refine' hle.trans (Eq.le _) [GOAL] case pos Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω h : ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r ⊢ leastGE f r n ω = hitting f (Set.Ici r) 0 (π ω) ω [PROOFSTEP] rw [leastGE, ← hitting_eq_hitting_of_exists (hπn ω) h] [GOAL] case neg Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : π ω ≤ leastGE f r n ω h : ¬∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r ⊢ π ω ≤ hitting f (Set.Ici r) 0 (π ω) ω [PROOFSTEP] simp only [hitting, if_neg h, le_rfl] [GOAL] case neg Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : ¬π ω ≤ leastGE f r n ω ⊢ min (π ω) (leastGE f r n ω) ≤ leastGE f r (π ω) ω [PROOFSTEP] rw [min_eq_right (not_le.1 hle).le, leastGE, leastGE, ← hitting_eq_hitting_of_exists (hπn ω) _] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : ¬π ω ≤ leastGE f r n ω ⊢ ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r [PROOFSTEP] rw [not_le, leastGE, hitting_lt_iff _ (hπn ω)] at hle [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω π : Ω → ℕ r : ℝ ω : Ω n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n hle : ∃ j, j ∈ Set.Ico 0 (π ω) ∧ f j ω ∈ Set.Ici r ⊢ ∃ j, j ∈ Set.Icc 0 (π ω) ∧ f j ω ∈ Set.Ici r [PROOFSTEP] exact let ⟨j, hj₁, hj₂⟩ := hle ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f✝ : ℕ → Ω → ℝ ω : Ω f : ℕ → Ω → ℝ π : Ω → ℕ r : ℝ n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n ⊢ stoppedValue (fun i => stoppedValue f (leastGE f r i)) π = stoppedValue (stoppedProcess f (leastGE f r n)) π [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f✝ : ℕ → Ω → ℝ ω✝ : Ω f : ℕ → Ω → ℝ π : Ω → ℕ r : ℝ n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n ω : Ω ⊢ stoppedValue (fun i => stoppedValue f (leastGE f r i)) π ω = stoppedValue (stoppedProcess f (leastGE f r n)) π ω [PROOFSTEP] simp_rw [stoppedProcess, stoppedValue] [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f✝ : ℕ → Ω → ℝ ω✝ : Ω f : ℕ → Ω → ℝ π : Ω → ℕ r : ℝ n : ℕ hπn : ∀ (ω : Ω), π ω ≤ n ω : Ω ⊢ f (leastGE f r (π ω) ω) ω = f (min (π ω) (leastGE f r n ω)) ω [PROOFSTEP] rw [leastGE_eq_min _ _ _ hπn] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ ⊢ Submartingale (fun i => stoppedValue f (leastGE f r i)) ℱ μ [PROOFSTEP] rw [submartingale_iff_expected_stoppedValue_mono] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ ⊢ ∀ (τ π : Ω → ℕ), IsStoppingTime ℱ τ → IsStoppingTime ℱ π → τ ≤ π → (∃ N, ∀ (x : Ω), π x ≤ N) → ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) τ x ∂μ ≤ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ [PROOFSTEP] intro σ π hσ hπ hσ_le_π hπ_bdd [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π hπ_bdd : ∃ N, ∀ (x : Ω), π x ≤ N ⊢ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) σ x ∂μ ≤ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ [PROOFSTEP] obtain ⟨n, hπ_le_n⟩ := hπ_bdd [GOAL] case intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) σ x ∂μ ≤ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ [PROOFSTEP] simp_rw [stoppedValue_stoppedValue_leastGE f σ r fun i => (hσ_le_π i).trans (hπ_le_n i)] [GOAL] case intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ ∫ (x : Ω), stoppedValue (stoppedProcess f (leastGE f r n)) σ x ∂μ ≤ ∫ (x : Ω), stoppedValue (fun i => stoppedValue f (leastGE f r i)) π x ∂μ [PROOFSTEP] simp_rw [stoppedValue_stoppedValue_leastGE f π r hπ_le_n] [GOAL] case intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ ∫ (x : Ω), stoppedValue (stoppedProcess f (leastGE f r n)) σ x ∂μ ≤ ∫ (x : Ω), stoppedValue (stoppedProcess f (leastGE f r n)) π x ∂μ [PROOFSTEP] refine' hf.expected_stoppedValue_mono _ _ _ fun ω => (min_le_left _ _).trans (hπ_le_n ω) [GOAL] case intro.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ IsStoppingTime ℱ fun x => min (σ x) (leastGE f r n x) [PROOFSTEP] exact hσ.min (hf.adapted.isStoppingTime_leastGE _ _) [GOAL] case intro.refine'_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ IsStoppingTime ℱ fun x => min (π x) (leastGE f r n x) [PROOFSTEP] exact hπ.min (hf.adapted.isStoppingTime_leastGE _ _) [GOAL] case intro.refine'_3 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ σ π : Ω → ℕ hσ : IsStoppingTime ℱ σ hπ : IsStoppingTime ℱ π hσ_le_π : σ ≤ π n : ℕ hπ_le_n : ∀ (x : Ω), π x ≤ n ⊢ (fun x => min (σ x) (leastGE f r n x)) ≤ fun x => min (π x) (leastGE f r n x) [PROOFSTEP] exact fun ω => min_le_min (hσ_le_π ω) le_rfl [GOAL] case hadp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ ⊢ Adapted ℱ fun i => stoppedValue f (leastGE f r i) [PROOFSTEP] exact fun i => stronglyMeasurable_stoppedValue_of_le hf.adapted.progMeasurable_of_discrete (hf.adapted.isStoppingTime_leastGE _ _) leastGE_le [GOAL] case hint Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ r : ℝ ⊢ ∀ (i : ℕ), Integrable (stoppedValue f (leastGE f r i)) [PROOFSTEP] exact fun i => integrable_stoppedValue _ (hf.adapted.isStoppingTime_leastGE _ _) hf.integrable leastGE_le [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ ∀ᵐ (ω : Ω) ∂μ, stoppedValue f (leastGE f r i) ω ≤ r + ↑R [PROOFSTEP] filter_upwards [hbdd] with ω hbddω [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ stoppedValue f (leastGE f r i) ω ≤ r + ↑R [PROOFSTEP] change f (leastGE f r i ω) ω ≤ r + R [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ f (leastGE f r i ω) ω ≤ r + ↑R [PROOFSTEP] by_cases heq : leastGE f r i ω = 0 [GOAL] case pos Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : leastGE f r i ω = 0 ⊢ f (leastGE f r i ω) ω ≤ r + ↑R [PROOFSTEP] rw [heq, hf0, Pi.zero_apply] [GOAL] case pos Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : leastGE f r i ω = 0 ⊢ 0 ≤ r + ↑R [PROOFSTEP] exact add_nonneg hr R.coe_nonneg [GOAL] case neg Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 ⊢ f (leastGE f r i ω) ω ≤ r + ↑R [PROOFSTEP] obtain ⟨k, hk⟩ := Nat.exists_eq_succ_of_ne_zero heq [GOAL] case neg.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 k : ℕ hk : leastGE f r i ω = Nat.succ k ⊢ f (leastGE f r i ω) ω ≤ r + ↑R [PROOFSTEP] rw [hk, add_comm, ← sub_le_iff_le_add] [GOAL] case neg.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 k : ℕ hk : leastGE f r i ω = Nat.succ k ⊢ f (Nat.succ k) ω - r ≤ ↑R [PROOFSTEP] have := not_mem_of_lt_hitting (hk.symm ▸ k.lt_succ_self : k < leastGE f r i ω) (zero_le _) [GOAL] case neg.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 k : ℕ hk : leastGE f r i ω = Nat.succ k this : ¬f k ω ∈ Set.Ici r ⊢ f (Nat.succ k) ω - r ≤ ↑R [PROOFSTEP] simp only [Set.mem_union, Set.mem_Iic, Set.mem_Ici, not_or, not_le] at this [GOAL] case neg.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ω : Ω hbddω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R heq : ¬leastGE f r i ω = 0 k : ℕ hk : leastGE f r i ω = Nat.succ k this : f k ω < r ⊢ f (Nat.succ k) ω - r ≤ ↑R [PROOFSTEP] exact (sub_lt_sub_left this _).le.trans ((le_abs_self _).trans (hbddω _)) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ snorm (stoppedValue f (leastGE f r i)) 1 μ ≤ 2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R) [PROOFSTEP] refine' snorm_one_le_of_le' ((hf.stoppedValue_leastGE r).integrable _) _ (norm_stoppedValue_leastGE_le hr hf0 hbdd i) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ 0 ≤ ∫ (x : Ω), stoppedValue f (leastGE f r i) x ∂μ [PROOFSTEP] rw [← integral_univ] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ 0 ≤ ∫ (x : Ω) in Set.univ, stoppedValue f (leastGE f r i) x ∂μ [PROOFSTEP] refine' le_trans _ ((hf.stoppedValue_leastGE r).set_integral_le (zero_le _) MeasurableSet.univ) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ 0 ≤ ∫ (ω : Ω) in Set.univ, stoppedValue f (leastGE f r 0) ω ∂μ [PROOFSTEP] simp_rw [stoppedValue, leastGE, hitting_of_le le_rfl, hf0, integral_zero', le_rfl] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ snorm (stoppedValue f (leastGE f r i)) 1 μ ≤ ↑(ENNReal.toNNReal (2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R))) [PROOFSTEP] refine' (hf.stoppedValue_leastGE_snorm_le hr hf0 hbdd i).trans _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hr : 0 ≤ r hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ 2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R) ≤ ↑(ENNReal.toNNReal (2 * ↑↑μ Set.univ * ENNReal.ofReal (r + ↑R))) [PROOFSTEP] simp [ENNReal.coe_toNNReal (measure_ne_top μ _), ENNReal.coe_toNNReal] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) → ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] have ht : ∀ᵐ ω ∂μ, ∀ i : ℕ, ∃ c, Tendsto (fun n => stoppedValue f (leastGE f i n) ω) atTop (𝓝 c) := by rw [ae_all_iff] exact fun i => Submartingale.exists_ae_tendsto_of_bdd (hf.stoppedValue_leastGE i) (hf.stoppedValue_leastGE_snorm_le' i.cast_nonneg hf0 hbdd) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) [PROOFSTEP] rw [ae_all_iff] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ (i : ℕ), ∀ᵐ (a : Ω) ∂μ, ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) a) atTop (𝓝 c) [PROOFSTEP] exact fun i => Submartingale.exists_ae_tendsto_of_bdd (hf.stoppedValue_leastGE i) (hf.stoppedValue_leastGE_snorm_le' i.cast_nonneg hf0 hbdd) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) → ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] filter_upwards [ht] with ω hω hωb [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : BddAbove (Set.range fun n => f n ω) ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] rw [BddAbove] at hωb [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] obtain ⟨i, hi⟩ := exists_nat_gt hωb.some [GOAL] case h.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] have hib : ∀ n, f n ω < i := by intro n exact lt_of_le_of_lt ((mem_upperBounds.1 hωb.some_mem) _ ⟨n, rfl⟩) hi [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i ⊢ ∀ (n : ℕ), f n ω < ↑i [PROOFSTEP] intro n [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i n : ℕ ⊢ f n ω < ↑i [PROOFSTEP] exact lt_of_le_of_lt ((mem_upperBounds.1 hωb.some_mem) _ ⟨n, rfl⟩) hi [GOAL] case h.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] have heq : ∀ n, stoppedValue f (leastGE f i n) ω = f n ω := by intro n rw [leastGE]; unfold hitting; rw [stoppedValue] rw [if_neg] simp only [Set.mem_Icc, Set.mem_union, Set.mem_Ici] push_neg exact fun j _ => hib j [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i ⊢ ∀ (n : ℕ), stoppedValue f (leastGE f (↑i) n) ω = f n ω [PROOFSTEP] intro n [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ stoppedValue f (leastGE f (↑i) n) ω = f n ω [PROOFSTEP] rw [leastGE] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ stoppedValue f (hitting f (Set.Ici ↑i) 0 n) ω = f n ω [PROOFSTEP] unfold hitting [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ stoppedValue f (fun x => if ∃ j, j ∈ Set.Icc 0 n ∧ f j x ∈ Set.Ici ↑i then sInf (Set.Icc 0 n ∩ {i_1 | f i_1 x ∈ Set.Ici ↑i}) else n) ω = f n ω [PROOFSTEP] rw [stoppedValue] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ f (if ∃ j, j ∈ Set.Icc 0 n ∧ f j ω ∈ Set.Ici ↑i then sInf (Set.Icc 0 n ∩ {i_1 | f i_1 ω ∈ Set.Ici ↑i}) else n) ω = f n ω [PROOFSTEP] rw [if_neg] [GOAL] case hnc Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ ¬∃ j, j ∈ Set.Icc 0 n ∧ f j ω ∈ Set.Ici ↑i [PROOFSTEP] simp only [Set.mem_Icc, Set.mem_union, Set.mem_Ici] [GOAL] case hnc Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ ¬∃ j, (0 ≤ j ∧ j ≤ n) ∧ ↑i ≤ f j ω [PROOFSTEP] push_neg [GOAL] case hnc Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i n : ℕ ⊢ ∀ (j : ℕ), 0 ≤ j ∧ j ≤ n → f j ω < ↑i [PROOFSTEP] exact fun j _ => hib j [GOAL] case h.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ht : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) ω : Ω hω : ∀ (i : ℕ), ∃ c, Tendsto (fun n => stoppedValue f (leastGE f (↑i) n) ω) atTop (𝓝 c) hωb : Set.Nonempty (upperBounds (Set.range fun n => f n ω)) i : ℕ hi : Set.Nonempty.some hωb < ↑i hib : ∀ (n : ℕ), f n ω < ↑i heq : ∀ (n : ℕ), stoppedValue f (leastGE f (↑i) n) ω = f n ω ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] simp only [← heq, hω i] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hf0 : f 0 = 0 hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] filter_upwards [hf.exists_tendsto_of_abs_bddAbove_aux hf0 hbdd] with ω hω using ⟨hω, fun ⟨c, hc⟩ => hc.bddAbove_range⟩ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] set g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] have hg : Submartingale g ℱ μ := hf.sub_martingale (martingale_const_fun _ _ (hf.adapted 0) (hf.integrable 0)) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] have hg0 : g 0 = 0 := by ext ω simp only [sub_self, Pi.zero_apply] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ ⊢ g 0 = 0 [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ ω : Ω ⊢ g 0 ω = OfNat.ofNat 0 ω [PROOFSTEP] simp only [sub_self, Pi.zero_apply] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] have hgbdd : ∀ᵐ ω ∂μ, ∀ i : ℕ, |g (i + 1) ω - g i ω| ≤ ↑R := by simpa only [sub_sub_sub_cancel_right] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R [PROOFSTEP] simpa only [sub_sub_sub_cancel_right] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] filter_upwards [hg.bddAbove_iff_exists_tendsto_aux hg0 hgbdd] with ω hω [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) ⊢ BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] convert hω using 1 [GOAL] case h.e'_1.a Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) ⊢ BddAbove (Set.range fun n => f n ω) ↔ BddAbove (Set.range fun n => f n ω - f 0 ω) [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case h.e'_1.a.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) h : BddAbove (Set.range fun n => f n ω) ⊢ BddAbove (Set.range fun n => f n ω - f 0 ω) [PROOFSTEP] obtain ⟨b, hb⟩ := h [GOAL] case h.e'_1.a.refine'_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) h : BddAbove (Set.range fun n => f n ω - f 0 ω) ⊢ BddAbove (Set.range fun n => f n ω) [PROOFSTEP] obtain ⟨b, hb⟩ := h [GOAL] case h.e'_1.a.refine'_1.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω) ⊢ BddAbove (Set.range fun n => f n ω - f 0 ω) [PROOFSTEP] refine' ⟨b + |f 0 ω|, fun y hy => _⟩ [GOAL] case h.e'_1.a.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω - f 0 ω) ⊢ BddAbove (Set.range fun n => f n ω) [PROOFSTEP] refine' ⟨b + |f 0 ω|, fun y hy => _⟩ [GOAL] case h.e'_1.a.refine'_1.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω) y : ℝ hy : y ∈ Set.range fun n => f n ω - f 0 ω ⊢ y ≤ b + |f 0 ω| [PROOFSTEP] obtain ⟨n, rfl⟩ := hy [GOAL] case h.e'_1.a.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω - f 0 ω) y : ℝ hy : y ∈ Set.range fun n => f n ω ⊢ y ≤ b + |f 0 ω| [PROOFSTEP] obtain ⟨n, rfl⟩ := hy [GOAL] case h.e'_1.a.refine'_1.intro.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω) n : ℕ ⊢ (fun n => f n ω - f 0 ω) n ≤ b + |f 0 ω| [PROOFSTEP] simp_rw [sub_eq_add_neg] [GOAL] case h.e'_1.a.refine'_1.intro.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω) n : ℕ ⊢ f n ω + -f 0 ω ≤ b + |f 0 ω| [PROOFSTEP] exact add_le_add (hb ⟨n, rfl⟩) (neg_le_abs_self _) [GOAL] case h.e'_1.a.refine'_2.intro.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) b : ℝ hb : b ∈ upperBounds (Set.range fun n => f n ω - f 0 ω) n : ℕ ⊢ (fun n => f n ω) n ≤ b + |f 0 ω| [PROOFSTEP] exact sub_le_iff_le_add.1 (le_trans (sub_le_sub_left (le_abs_self _) _) (hb ⟨n, rfl⟩)) [GOAL] case h.e'_2.a Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) ⊢ (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case h.e'_2.a.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) h : ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) ⊢ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) [PROOFSTEP] obtain ⟨c, hc⟩ := h [GOAL] case h.e'_2.a.refine'_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) h : ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] obtain ⟨c, hc⟩ := h [GOAL] case h.e'_2.a.refine'_1.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => f n ω) atTop (𝓝 c) ⊢ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) [PROOFSTEP] exact ⟨c - f 0 ω, hc.sub_const _⟩ [GOAL] case h.e'_2.a.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] refine' ⟨c + f 0 ω, _⟩ [GOAL] case h.e'_2.a.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) ⊢ Tendsto (fun n => f n ω) atTop (𝓝 (c + f 0 ω)) [PROOFSTEP] have := hc.add_const (f 0 ω) [GOAL] case h.e'_2.a.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R g : ℕ → Ω → ℝ := fun n ω => f n ω - f 0 ω hg : Submartingale g ℱ μ hg0 : g 0 = 0 hgbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |g (i + 1) ω - g i ω| ≤ ↑R ω : Ω hω : BddAbove (Set.range fun n => f n ω - f 0 ω) ↔ ∃ c, Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => f n ω - f 0 ω) atTop (𝓝 c) this : Tendsto (fun k => f k ω - f 0 ω + f 0 ω) atTop (𝓝 (c + f 0 ω)) ⊢ Tendsto (fun n => f n ω) atTop (𝓝 (c + f 0 ω)) [PROOFSTEP] simpa only [sub_add_cancel] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] have hbdd' : ∀ᵐ ω ∂μ, ∀ i, |(-f) (i + 1) ω - (-f) i ω| ≤ R := by filter_upwards [hbdd] with ω hω i erw [← abs_neg, neg_sub, sub_neg_eq_add, neg_add_eq_sub] exact hω i [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R [PROOFSTEP] filter_upwards [hbdd] with ω hω i [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R [PROOFSTEP] erw [← abs_neg, neg_sub, sub_neg_eq_add, neg_add_eq_sub] [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ω : Ω hω : ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R i : ℕ ⊢ |f (i + 1) ω - f i ω| ≤ ↑R [PROOFSTEP] exact hω i [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] have hup := hf.submartingale.bddAbove_iff_exists_tendsto hbdd [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] have hdown := hf.neg.submartingale.bddAbove_iff_exists_tendsto hbdd' [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] filter_upwards [hup, hdown] with ω hω₁ hω₂ [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] have : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) := by constructor <;> rintro ⟨c, hc⟩ · exact ⟨-c, hc.neg⟩ · refine' ⟨-c, _⟩ convert hc.neg simp only [neg_neg, Pi.neg_apply] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) → ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case mpr Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ (∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c)) → ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case mp.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => f n ω) atTop (𝓝 c) ⊢ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) [PROOFSTEP] exact ⟨-c, hc.neg⟩ [GOAL] case mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) [PROOFSTEP] refine' ⟨-c, _⟩ [GOAL] case mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ Tendsto (fun n => f n ω) atTop (𝓝 (-c)) [PROOFSTEP] convert hc.neg [GOAL] case h.e'_3.h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) c : ℝ hc : Tendsto (fun n => (-f) n ω) atTop (𝓝 c) x✝ : ℕ ⊢ f x✝ ω = -(-f) x✝ ω [PROOFSTEP] simp only [neg_neg, Pi.neg_apply] [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ BddAbove (Set.range fun n => f n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] rw [hω₁, this, ← hω₂] [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ BddAbove (Set.range fun n => (-f) n ω) ↔ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ BddAbove (Set.range fun n => (-f) n ω) → BddBelow (Set.range fun n => f n ω) [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case h.mpr Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ⊢ BddBelow (Set.range fun n => f n ω) → BddAbove (Set.range fun n => (-f) n ω) [PROOFSTEP] rintro ⟨c, hc⟩ [GOAL] case h.mp.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) c : ℝ hc : c ∈ upperBounds (Set.range fun n => (-f) n ω) ⊢ BddBelow (Set.range fun n => f n ω) [PROOFSTEP] refine' ⟨-c, fun ω hω => _⟩ [GOAL] case h.mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω : Ω hω₁ : BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) c : ℝ hc : c ∈ lowerBounds (Set.range fun n => f n ω) ⊢ BddAbove (Set.range fun n => (-f) n ω) [PROOFSTEP] refine' ⟨-c, fun ω hω => _⟩ [GOAL] case h.mp.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : c ∈ upperBounds (Set.range fun n => (-f) n ω✝) ω : ℝ hω : ω ∈ Set.range fun n => f n ω✝ ⊢ -c ≤ ω [PROOFSTEP] rw [mem_upperBounds] at hc [GOAL] case h.mp.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : ∀ (x : ℝ), (x ∈ Set.range fun n => (-f) n ω✝) → x ≤ c ω : ℝ hω : ω ∈ Set.range fun n => f n ω✝ ⊢ -c ≤ ω [PROOFSTEP] refine' neg_le.2 (hc _ _) [GOAL] case h.mp.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : ∀ (x : ℝ), (x ∈ Set.range fun n => (-f) n ω✝) → x ≤ c ω : ℝ hω : ω ∈ Set.range fun n => f n ω✝ ⊢ -ω ∈ Set.range fun n => (-f) n ω✝ [PROOFSTEP] simpa only [Pi.neg_apply, Set.mem_range, neg_inj] [GOAL] case h.mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : c ∈ lowerBounds (Set.range fun n => f n ω✝) ω : ℝ hω : ω ∈ Set.range fun n => (-f) n ω✝ ⊢ ω ≤ -c [PROOFSTEP] rw [mem_lowerBounds] at hc [GOAL] case h.mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : ∀ (x : ℝ), (x ∈ Set.range fun n => f n ω✝) → c ≤ x ω : ℝ hω : ω ∈ Set.range fun n => (-f) n ω✝ ⊢ ω ≤ -c [PROOFSTEP] simp_rw [Set.mem_range, Pi.neg_apply, neg_eq_iff_eq_neg] at hω [GOAL] case h.mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : ∀ (x : ℝ), (x ∈ Set.range fun n => f n ω✝) → c ≤ x ω : ℝ hω : ∃ y, f y ω✝ = -ω ⊢ ω ≤ -c [PROOFSTEP] refine' le_neg.1 (hc _ _) [GOAL] case h.mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝¹ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R hbdd' : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |(-f) (i + 1) ω - (-f) i ω| ≤ ↑R hup : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => f n ω) ↔ ∃ c, Tendsto (fun n => f n ω) atTop (𝓝 c) hdown : ∀ᵐ (ω : Ω) ∂μ, BddAbove (Set.range fun n => (-f) n ω) ↔ ∃ c, Tendsto (fun n => (-f) n ω) atTop (𝓝 c) ω✝ : Ω hω₁ : BddAbove (Set.range fun n => f n ω✝) ↔ ∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c) hω₂ : BddAbove (Set.range fun n => (-f) n ω✝) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) this : (∃ c, Tendsto (fun n => f n ω✝) atTop (𝓝 c)) ↔ ∃ c, Tendsto (fun n => (-f) n ω✝) atTop (𝓝 c) c : ℝ hc : ∀ (x : ℝ), (x ∈ Set.range fun n => f n ω✝) → c ≤ x ω : ℝ hω : ∃ y, f y ω✝ = -ω ⊢ -ω ∈ Set.range fun n => f n ω✝ [PROOFSTEP] simpa only [Set.mem_range] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => f n ω) atTop atTop [PROOFSTEP] filter_upwards [hf.bddAbove_range_iff_bddBelow_range hbdd] with ω hω htop using unbounded_of_tendsto_atTop htop (hω.2 <| bddBelow_range_of_tendsto_atTop_atTop htop) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hf : Martingale f ℱ μ hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (i : ℕ), |f (i + 1) ω - f i ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => f n ω) atTop atBot [PROOFSTEP] filter_upwards [hf.bddAbove_range_iff_bddBelow_range hbdd] with ω hω htop using unbounded_of_tendsto_atBot htop (hω.1 <| bddAbove_range_of_tendsto_atTop_atBot htop) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s : ℕ → Set Ω ⊢ process s 0 = 0 [PROOFSTEP] rw [process, Finset.range_zero, Finset.sum_empty] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ✝ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s✝ : ℕ → Set Ω ℱ : Filtration ℕ m0 μ : Measure Ω s : ℕ → Set Ω n : ℕ ⊢ martingalePart (process s) ℱ μ n = ∑ k in Finset.range n, (Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) [PROOFSTEP] simp only [martingalePart_eq_sum, process_zero, zero_add] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ✝ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s✝ : ℕ → Set Ω ℱ : Filtration ℕ m0 μ : Measure Ω s : ℕ → Set Ω n : ℕ ⊢ ∑ i in Finset.range n, (process s (i + 1) - process s i - μ[process s (i + 1) - process s i|↑ℱ i]) = ∑ k in Finset.range n, (Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) [PROOFSTEP] refine' Finset.sum_congr rfl fun k _ => _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ✝ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s✝ : ℕ → Set Ω ℱ : Filtration ℕ m0 μ : Measure Ω s : ℕ → Set Ω n k : ℕ x✝ : k ∈ Finset.range n ⊢ process s (k + 1) - process s k - μ[process s (k + 1) - process s k|↑ℱ k] = Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k] [PROOFSTEP] simp only [process, Finset.sum_range_succ_sub_sum] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ✝ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s✝ : ℕ → Set Ω ℱ : Filtration ℕ m0 μ : Measure Ω s : ℕ → Set Ω n : ℕ ⊢ predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, μ[Set.indicator (s (k + 1)) 1|↑ℱ k] [PROOFSTEP] have := martingalePart_process_ae_eq ℱ μ s n [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ✝ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s✝ : ℕ → Set Ω ℱ : Filtration ℕ m0 μ : Measure Ω s : ℕ → Set Ω n : ℕ this : martingalePart (process s) ℱ μ n = ∑ k in Finset.range n, (Set.indicator (s (k + 1)) 1 - μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ⊢ predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, μ[Set.indicator (s (k + 1)) 1|↑ℱ k] [PROOFSTEP] simp_rw [martingalePart, process, Finset.sum_sub_distrib] at this [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ✝ : Measure Ω ℱ✝ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 s✝ : ℕ → Set Ω ℱ : Filtration ℕ m0 μ : Measure Ω s : ℕ → Set Ω n : ℕ this : ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 - predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 - ∑ x in Finset.range n, μ[Set.indicator (s (x + 1)) 1|↑ℱ x] ⊢ predictablePart (process s) ℱ μ n = ∑ k in Finset.range n, μ[Set.indicator (s (k + 1)) 1|↑ℱ k] [PROOFSTEP] exact sub_right_injective this [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 s✝ s : ℕ → Set Ω ω : Ω n : ℕ ⊢ |process s (n + 1) ω - process s n ω| ≤ ↑1 [PROOFSTEP] norm_cast [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 s✝ s : ℕ → Set Ω ω : Ω n : ℕ ⊢ |process s (n + 1) ω - process s n ω| ≤ 1 [PROOFSTEP] rw [process, process, Finset.sum_apply, Finset.sum_apply, Finset.sum_range_succ_sub_sum, ← Real.norm_eq_abs, norm_indicator_eq_indicator_norm] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 s✝ s : ℕ → Set Ω ω : Ω n : ℕ ⊢ Set.indicator (s (n + 1)) (fun a => ‖OfNat.ofNat 1 a‖) ω ≤ 1 [PROOFSTEP] refine' Set.indicator_le' (fun _ _ => _) (fun _ _ => zero_le_one) _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 s✝ s : ℕ → Set Ω ω : Ω n : ℕ x✝¹ : Ω x✝ : x✝¹ ∈ s (n + 1) ⊢ ‖OfNat.ofNat 1 x✝¹‖ ≤ 1 [PROOFSTEP] rw [Pi.one_apply, norm_one] [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] have h₁ := (martingale_martingalePart hf hint).ae_not_tendsto_atTop_atTop (martingalePart_bdd_difference ℱ hbdd) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] have h₂ := (martingale_martingalePart hf hint).ae_not_tendsto_atTop_atBot (martingalePart_bdd_difference ℱ hbdd) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] have h₃ : ∀ᵐ ω ∂μ, ∀ n, 0 ≤ (μ[f (n + 1) - f n|ℱ n]) ω := by refine' ae_all_iff.2 fun n => condexp_nonneg _ filter_upwards [ae_all_iff.1 hfmono n] with ω hω using sub_nonneg.2 hω [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot ⊢ ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω [PROOFSTEP] refine' ae_all_iff.2 fun n => condexp_nonneg _ [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot n : ℕ ⊢ 0 ≤ᵐ[μ] f (n + 1) - f n [PROOFSTEP] filter_upwards [ae_all_iff.1 hfmono n] with ω hω using sub_nonneg.2 hω [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] filter_upwards [h₁, h₂, h₃, hfmono] with ω hω₁ hω₂ hω₃ hω₄ [GOAL] case h Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ⊢ Tendsto (fun n => f n ω) atTop atTop ↔ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ⊢ Tendsto (fun n => f n ω) atTop atTop → Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] intro ht [GOAL] case h.mpr Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ⊢ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop → Tendsto (fun n => f n ω) atTop atTop [PROOFSTEP] intro ht [GOAL] case h.mp Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop ⊢ Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop [PROOFSTEP] refine' tendsto_atTop_atTop_of_monotone' _ _ [GOAL] case h.mp.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop ⊢ Monotone fun n => predictablePart f ℱ μ n ω [PROOFSTEP] intro n m hnm [GOAL] case h.mp.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop n m : ℕ hnm : n ≤ m ⊢ (fun n => predictablePart f ℱ μ n ω) n ≤ (fun n => predictablePart f ℱ μ n ω) m [PROOFSTEP] simp only [predictablePart, Finset.sum_apply] [GOAL] case h.mp.refine'_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop n m : ℕ hnm : n ≤ m ⊢ ∑ c in Finset.range n, (μ[f (c + 1) - f c|↑ℱ c]) ω ≤ ∑ c in Finset.range m, (μ[f (c + 1) - f c|↑ℱ c]) ω [PROOFSTEP] refine' Finset.sum_mono_set_of_nonneg hω₃ (Finset.range_mono hnm) [GOAL] case h.mp.refine'_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop ⊢ ¬BddAbove (Set.range fun n => predictablePart f ℱ μ n ω) [PROOFSTEP] rintro ⟨b, hbdd⟩ [GOAL] case h.mp.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => f n ω) atTop atTop b : ℝ hbdd : b ∈ upperBounds (Set.range fun n => predictablePart f ℱ μ n ω) ⊢ False [PROOFSTEP] rw [← tendsto_neg_atBot_iff] at ht [GOAL] case h.mp.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun x => -f x ω) atTop atBot b : ℝ hbdd : b ∈ upperBounds (Set.range fun n => predictablePart f ℱ μ n ω) ⊢ False [PROOFSTEP] simp only [martingalePart, sub_eq_add_neg] at hω₁ [GOAL] case h.mp.refine'_2.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun x => -f x ω) atTop atBot b : ℝ hbdd : b ∈ upperBounds (Set.range fun n => predictablePart f ℱ μ n ω) hω₁ : ¬Tendsto (fun n => (f n + -predictablePart f ℱ μ n) ω) atTop atTop ⊢ False [PROOFSTEP] exact hω₁ (tendsto_atTop_add_right_of_le _ (-b) (tendsto_neg_atBot_iff.1 ht) fun n => neg_le_neg (hbdd ⟨n, rfl⟩)) [GOAL] case h.mpr Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop ⊢ Tendsto (fun n => f n ω) atTop atTop [PROOFSTEP] refine' tendsto_atTop_atTop_of_monotone' (monotone_nat_of_le_succ hω₄) _ [GOAL] case h.mpr Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop ⊢ ¬BddAbove (Set.range fun n => f n ω) [PROOFSTEP] rintro ⟨b, hbdd⟩ [GOAL] case h.mpr.intro Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ hfmono : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), f n ω ≤ f (n + 1) ω hf : Adapted ℱ f hint : ∀ (n : ℕ), Integrable (f n) hbdd✝ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), |f (n + 1) ω - f n ω| ≤ ↑R h₁ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop h₂ : ∀ᵐ (ω : Ω) ∂μ, ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot h₃ : ∀ᵐ (ω : Ω) ∂μ, ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω ω : Ω hω₁ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atTop hω₂ : ¬Tendsto (fun n => martingalePart f ℱ μ n ω) atTop atBot hω₃ : ∀ (n : ℕ), 0 ≤ (μ[f (n + 1) - f n|↑ℱ n]) ω hω₄ : ∀ (n : ℕ), f n ω ≤ f (n + 1) ω ht : Tendsto (fun n => predictablePart f ℱ μ n ω) atTop atTop b : ℝ hbdd : b ∈ upperBounds (Set.range fun n => f n ω) ⊢ False [PROOFSTEP] exact hω₂ ((tendsto_atBot_add_left_of_ge _ b fun n => hbdd ⟨n, rfl⟩) <| tendsto_neg_atBot_iff.2 ht) [GOAL] Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔ Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop [PROOFSTEP] have := tendsto_sum_indicator_atTop_iff (eventually_of_forall fun ω n => ?_) (adapted_process hs) (integrable_process μ hs) (eventually_of_forall <| process_difference_le s) [GOAL] case refine_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) this : ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => process (fun n => s n) n ω) atTop atTop ↔ Tendsto (fun n => predictablePart (process fun n => s n) ℱ μ n ω) atTop atTop ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔ Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop case refine_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) ω : Ω n : ℕ ⊢ process (fun n => s n) n ω ≤ process (fun n => s n) (n + 1) ω [PROOFSTEP] swap [GOAL] case refine_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) ω : Ω n : ℕ ⊢ process (fun n => s n) n ω ≤ process (fun n => s n) (n + 1) ω [PROOFSTEP] rw [process, process, ← sub_nonneg, Finset.sum_apply, Finset.sum_apply, Finset.sum_range_succ_sub_sum] [GOAL] case refine_1 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω✝ : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) ω : Ω n : ℕ ⊢ 0 ≤ Set.indicator (s (n + 1)) 1 ω [PROOFSTEP] exact Set.indicator_nonneg (fun _ _ => zero_le_one) _ [GOAL] case refine_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) this : ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => process (fun n => s n) n ω) atTop atTop ↔ Tendsto (fun n => predictablePart (process fun n => s n) ℱ μ n ω) atTop atTop ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔ Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop [PROOFSTEP] simp_rw [process, predictablePart_process_ae_eq] at this [GOAL] case refine_2 Ω : Type u_1 m0 : MeasurableSpace Ω μ : Measure Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω r : ℝ R : ℝ≥0 inst✝ : IsFiniteMeasure μ s : ℕ → Set Ω hs : ∀ (n : ℕ), MeasurableSet (s n) this : ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => Finset.sum (Finset.range n) (fun k => Set.indicator (s (k + 1)) 1) ω) atTop atTop ↔ Tendsto (fun n => Finset.sum (Finset.range n) (fun k => μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop ⊢ ∀ᵐ (ω : Ω) ∂μ, Tendsto (fun n => ∑ k in Finset.range n, Set.indicator (s (k + 1)) 1 ω) atTop atTop ↔ Tendsto (fun n => ∑ k in Finset.range n, (μ[Set.indicator (s (k + 1)) 1|↑ℱ k]) ω) atTop atTop [PROOFSTEP] simpa using this
{"mathlib_filename": "Mathlib.Probability.Martingale.BorelCantelli", "llama_tokens": 55307}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } a : α ⊢ compProdFun κ η a ∅ = 0 [PROOFSTEP] simp only [compProdFun, Set.mem_empty_iff_false, Set.setOf_false, measure_empty, MeasureTheory.lintegral_const, zero_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) ⊢ compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i) [PROOFSTEP] have h_Union : (fun b => η (a, b) {c : γ | (b, c) ∈ ⋃ i, f i}) = fun b => η (a, b) (⋃ i, {c : γ | (b, c) ∈ f i}) := by ext1 b congr with c simp only [Set.mem_iUnion, Set.iSup_eq_iUnion, Set.mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) ⊢ (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) [PROOFSTEP] ext1 b [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) b : β ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i} = ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) [PROOFSTEP] congr with c [GOAL] case h.e_a.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) b : β c : γ ⊢ c ∈ {c | (b, c) ∈ ⋃ (i : ℕ), f i} ↔ c ∈ ⋃ (i : ℕ), {c | (b, c) ∈ f i} [PROOFSTEP] simp only [Set.mem_iUnion, Set.iSup_eq_iUnion, Set.mem_setOf_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ⊢ compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i) [PROOFSTEP] rw [compProdFun, h_Union] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ∂↑κ a = ∑' (i : ℕ), compProdFun κ η a (f i) [PROOFSTEP] have h_tsum : (fun b => η (a, b) (⋃ i, {c : γ | (b, c) ∈ f i})) = fun b => ∑' i, η (a, b) {c : γ | (b, c) ∈ f i} := by ext1 b rw [measure_iUnion] · intro i j hij s hsi hsj c hcs have hbci : {(b, c)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hcs have hbcj : {(b, c)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hcs simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using hf_disj hij hbci hbcj · -- Porting note: behavior of `@` changed relative to lean 3, was -- exact fun i => (@measurable_prod_mk_left β γ _ _ b) _ (hf_meas i)exact fun i => (@measurable_prod_mk_left β γ _ _ b) (hf_meas i) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ⊢ (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} [PROOFSTEP] ext1 b [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β ⊢ ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) = ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} [PROOFSTEP] rw [measure_iUnion] [GOAL] case h.hn α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β ⊢ Pairwise (Disjoint on fun i => {c | (b, c) ∈ f i}) [PROOFSTEP] intro i j hij s hsi hsj c hcs [GOAL] case h.hn α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s ⊢ c ∈ ⊥ [PROOFSTEP] have hbci : {(b, c)} ⊆ f i := by rw [Set.singleton_subset_iff]; exact hsi hcs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s ⊢ {(b, c)} ⊆ f i [PROOFSTEP] rw [Set.singleton_subset_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s ⊢ (b, c) ∈ f i [PROOFSTEP] exact hsi hcs [GOAL] case h.hn α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s hbci : {(b, c)} ⊆ f i ⊢ c ∈ ⊥ [PROOFSTEP] have hbcj : {(b, c)} ⊆ f j := by rw [Set.singleton_subset_iff]; exact hsj hcs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s hbci : {(b, c)} ⊆ f i ⊢ {(b, c)} ⊆ f j [PROOFSTEP] rw [Set.singleton_subset_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s hbci : {(b, c)} ⊆ f i ⊢ (b, c) ∈ f j [PROOFSTEP] exact hsj hcs [GOAL] case h.hn α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β i j : ℕ hij : i ≠ j s : Set γ hsi : s ≤ (fun i => {c | (b, c) ∈ f i}) i hsj : s ≤ (fun i => {c | (b, c) ∈ f i}) j c : γ hcs : c ∈ s hbci : {(b, c)} ⊆ f i hbcj : {(b, c)} ⊆ f j ⊢ c ∈ ⊥ [PROOFSTEP] simpa only [Set.bot_eq_empty, Set.le_eq_subset, Set.singleton_subset_iff, Set.mem_empty_iff_false] using hf_disj hij hbci hbcj [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) b : β ⊢ ∀ (i : ℕ), MeasurableSet {c | (b, c) ∈ f i} [PROOFSTEP] exact fun i => (@measurable_prod_mk_left β γ _ _ b) (hf_meas i) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) h_tsum : (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} ⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) ∂↑κ a = ∑' (i : ℕ), compProdFun κ η a (f i) [PROOFSTEP] rw [h_tsum, lintegral_tsum] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) h_tsum : (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} ⊢ ∑' (i : ℕ), ∫⁻ (a_1 : β), ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ f i} ∂↑κ a = ∑' (i : ℕ), compProdFun κ η a (f i) [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) h_tsum : (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} ⊢ ∀ (i : ℕ), AEMeasurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} [PROOFSTEP] intro i [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) h_tsum : (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} i : ℕ ⊢ AEMeasurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} [PROOFSTEP] have hm : MeasurableSet {p : (α × β) × γ | (p.1.2, p.2) ∈ f i} := measurable_fst.snd.prod_mk measurable_snd (hf_meas i) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : ℕ → Set (β × γ) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_disj : Pairwise (Disjoint on f) h_Union : (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ ⋃ (i : ℕ), f i}) = fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i}) h_tsum : (fun b => ↑↑(↑η (a, b)) (⋃ (i : ℕ), {c | (b, c) ∈ f i})) = fun b => ∑' (i : ℕ), ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} i : ℕ hm : MeasurableSet {p | (p.fst.snd, p.snd) ∈ f i} ⊢ AEMeasurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ f i} [PROOFSTEP] exact ((measurable_kernel_prod_mk_left hm).comp measurable_prod_mk_left).aemeasurable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ compProdFun κ η a s = ∑' (n : ℕ), compProdFun κ (seq η n) a s [PROOFSTEP] simp_rw [compProdFun, (measure_sum_seq η _).symm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a = ∑' (n : ℕ), ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] have : ∫⁻ b, Measure.sum (fun n => seq η n (a, b)) {c : γ | (b, c) ∈ s} ∂κ a = ∫⁻ b, ∑' n, seq η n (a, b) {c : γ | (b, c) ∈ s} ∂κ a := by congr ext1 b rw [Measure.sum_apply] exact measurable_prod_mk_left hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a = ∫⁻ (b : β), ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] congr [GOAL] case e_f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ (fun b => ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun b => ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} [PROOFSTEP] ext1 b [GOAL] case e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s b : β ⊢ ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} = ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} [PROOFSTEP] rw [Measure.sum_apply] [GOAL] case e_f.h.hs α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s b : β ⊢ MeasurableSet {c | (b, c) ∈ s} [PROOFSTEP] exact measurable_prod_mk_left hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s this : ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a = ∫⁻ (b : β), ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a ⊢ ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a = ∑' (n : ℕ), ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] rw [this, lintegral_tsum] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s this : ∫⁻ (b : β), ↑↑(Measure.sum fun n => ↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a = ∫⁻ (b : β), ∑' (n : ℕ), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a ⊢ ∀ (i : ℕ), AEMeasurable fun b => ↑↑(↑(seq η i) (a, b)) {c | (b, c) ∈ s} [PROOFSTEP] exact fun n => ((measurable_kernel_prod_mk_left (κ := (seq η n)) ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left).aemeasurable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel κ a : α s : Set (β × γ) ⊢ compProdFun κ η a s = ∑' (n : ℕ), compProdFun (seq κ n) η a s [PROOFSTEP] simp_rw [compProdFun, (measure_sum_seq κ _).symm, lintegral_sum_measure] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ compProdFun κ η a s = ∑' (n : ℕ) (m : ℕ), compProdFun (seq κ n) (seq η m) a s [PROOFSTEP] simp_rw [compProdFun_tsum_left κ η a s, compProdFun_tsum_right _ η a hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s ⊢ Measurable fun a => compProdFun κ η a s [PROOFSTEP] simp only [compProdFun] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s ⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] have h_meas : Measurable (Function.uncurry fun a b => η (a, b) {c : γ | (b, c) ∈ s}) := by have : (Function.uncurry fun a b => η (a, b) {c : γ | (b, c) ∈ s}) = fun p => η p {c : γ | (p.2, c) ∈ s} := by ext1 p have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm rw [hp_eq_mk, Function.uncurry_apply_pair] rw [this] exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s ⊢ Measurable (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) [PROOFSTEP] have : (Function.uncurry fun a b => η (a, b) {c : γ | (b, c) ∈ s}) = fun p => η p {c : γ | (p.2, c) ∈ s} := by ext1 p have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm rw [hp_eq_mk, Function.uncurry_apply_pair] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s ⊢ (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s} [PROOFSTEP] ext1 p [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s p : α × β ⊢ Function.uncurry (fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑η p) {c | (p.snd, c) ∈ s} [PROOFSTEP] have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s p : α × β hp_eq_mk : p = (p.fst, p.snd) ⊢ Function.uncurry (fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑η p) {c | (p.snd, c) ∈ s} [PROOFSTEP] rw [hp_eq_mk, Function.uncurry_apply_pair] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s this : (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s} ⊢ Measurable (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s this : (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s} ⊢ Measurable fun p => ↑↑(↑η p) {c | (p.snd, c) ∈ s} [PROOFSTEP] exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η hs : MeasurableSet s h_meas : Measurable (Function.uncurry fun a b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) ⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] exact h_meas.lintegral_kernel_prod_right [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s ⊢ Measurable fun a => compProdFun κ η a s [PROOFSTEP] simp_rw [compProdFun_tsum_right κ η _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s ⊢ Measurable fun a => ∑' (n : ℕ), compProdFun κ (seq η n) a s [PROOFSTEP] refine' Measurable.ennreal_tsum fun n => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ ⊢ Measurable fun a => compProdFun κ (seq η n) a s [PROOFSTEP] simp only [compProdFun] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ ⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] have h_meas : Measurable (Function.uncurry fun a b => seq η n (a, b) {c : γ | (b, c) ∈ s}) := by have : (Function.uncurry fun a b => seq η n (a, b) {c : γ | (b, c) ∈ s}) = fun p => seq η n p {c : γ | (p.2, c) ∈ s} := by ext1 p have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm rw [hp_eq_mk, Function.uncurry_apply_pair] rw [this] exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ ⊢ Measurable (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) [PROOFSTEP] have : (Function.uncurry fun a b => seq η n (a, b) {c : γ | (b, c) ∈ s}) = fun p => seq η n p {c : γ | (p.2, c) ∈ s} := by ext1 p have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm rw [hp_eq_mk, Function.uncurry_apply_pair] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ ⊢ (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s} [PROOFSTEP] ext1 p [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ p : α × β ⊢ Function.uncurry (fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s} [PROOFSTEP] have hp_eq_mk : p = (p.fst, p.snd) := Prod.mk.eta.symm [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ p : α × β hp_eq_mk : p = (p.fst, p.snd) ⊢ Function.uncurry (fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) p = ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s} [PROOFSTEP] rw [hp_eq_mk, Function.uncurry_apply_pair] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ this : (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s} ⊢ Measurable (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ this : (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) = fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s} ⊢ Measurable fun p => ↑↑(↑(seq η n) p) {c | (p.snd, c) ∈ s} [PROOFSTEP] exact measurable_kernel_prod_mk_left (measurable_fst.snd.prod_mk measurable_snd hs) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hs : MeasurableSet s n : ℕ h_meas : Measurable (Function.uncurry fun a b => ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s}) ⊢ Measurable fun a => ∫⁻ (b : β), ↑↑(↑(seq η n) (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] exact h_meas.lintegral_kernel_prod_right [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η ⊢ (fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) ∈ kernel α (β × γ) [PROOFSTEP] have : IsSFiniteKernel κ := h.1 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this : IsSFiniteKernel κ ⊢ (fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) ∈ kernel α (β × γ) [PROOFSTEP] have : IsSFiniteKernel η := h.2 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this✝ : IsSFiniteKernel κ this : IsSFiniteKernel η ⊢ (fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) ∈ kernel α (β × γ) [PROOFSTEP] refine' Measure.measurable_of_measurable_coe _ fun s hs => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this✝ : IsSFiniteKernel κ this : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η b s) (_ : compProdFun κ η b ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η b (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η b (f i))) s [PROOFSTEP] have : (fun a => Measure.ofMeasurable (fun s _ => compProdFun κ η a s) (compProdFun_empty κ η a) (compProdFun_iUnion κ η a) s) = fun a => compProdFun κ η a s := by ext1 a; rwa [Measure.ofMeasurable_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this✝ : IsSFiniteKernel κ this : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s ⊢ (fun a => ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) s) = fun a => compProdFun κ η a s [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this✝ : IsSFiniteKernel κ this : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s a : α ⊢ ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) s = compProdFun κ η a s [PROOFSTEP] rwa [Measure.ofMeasurable_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this✝¹ : IsSFiniteKernel κ this✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s this : (fun a => ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) s) = fun a => compProdFun κ η a s ⊢ Measurable fun b => ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η b s) (_ : compProdFun κ η b ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η b (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η b (f i))) s [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ∧ IsSFiniteKernel η this✝¹ : IsSFiniteKernel κ this✝ : IsSFiniteKernel η s : Set (β × γ) hs : MeasurableSet s this : (fun a => ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) s) = fun a => compProdFun κ η a s ⊢ Measurable fun a => compProdFun κ η a s [PROOFSTEP] exact measurable_compProdFun κ η hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ↑↑(↑(κ ⊗ₖ η) a) s = compProdFun κ η a s [PROOFSTEP] rw [compProd, dif_pos] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ↑↑(↑{ val := fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)), property := (_ : Measurable fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) } a) s = compProdFun κ η a s case hc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ IsSFiniteKernel κ ∧ IsSFiniteKernel η [PROOFSTEP] swap [GOAL] case hc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ IsSFiniteKernel κ ∧ IsSFiniteKernel η [PROOFSTEP] constructor [GOAL] case hc.left α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ IsSFiniteKernel κ [PROOFSTEP] infer_instance [GOAL] case hc.right α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ IsSFiniteKernel η [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ↑↑(↑{ val := fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i)), property := (_ : Measurable fun a => Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) } a) s = compProdFun κ η a s [PROOFSTEP] change Measure.ofMeasurable (fun s _ => compProdFun κ η a s) (compProdFun_empty κ η a) (compProdFun_iUnion κ η a) s = ∫⁻ b, η (a, b) {c | (b, c) ∈ s} ∂κ a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ↑↑(Measure.ofMeasurable (fun s x => compProdFun κ η a s) (_ : compProdFun κ η a ∅ = 0) (_ : ∀ (f : ℕ → Set (β × γ)), (∀ (i : ℕ), MeasurableSet (f i)) → Pairwise (Disjoint on f) → compProdFun κ η a (⋃ (i : ℕ), f i) = ∑' (i : ℕ), compProdFun κ η a (f i))) s = ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] rw [Measure.ofMeasurable_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ compProdFun κ η a s = ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel κ ⊢ κ ⊗ₖ η = 0 [PROOFSTEP] rw [compProd, dif_neg] [GOAL] case hnc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel κ ⊢ ¬(IsSFiniteKernel κ ∧ IsSFiniteKernel η) [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel η ⊢ κ ⊗ₖ η = 0 [PROOFSTEP] rw [compProd, dif_neg] [GOAL] case hnc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel η ⊢ ¬(IsSFiniteKernel κ ∧ IsSFiniteKernel η) [PROOFSTEP] simp [h] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] let t := toMeasurable ((κ ⊗ₖ η) a) s [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] have : ∀ b : β, η (a, b) (Prod.mk b ⁻¹' s) ≤ η (a, b) (Prod.mk b ⁻¹' t) := fun b => measure_mono (Set.preimage_mono (subset_toMeasurable _ _)) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] have ht : MeasurableSet t := measurableSet_toMeasurable _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] have h2t : (κ ⊗ₖ η) a t ≠ ∞ := by rwa [measure_toMeasurable] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t ⊢ ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤ [PROOFSTEP] rwa [measure_toMeasurable] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤ ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] have ht_lt_top : ∀ᵐ b ∂κ a, η (a, b) (Prod.mk b ⁻¹' t) < ∞ := by rw [kernel.compProd_apply _ _ _ ht] at h2t exact ae_lt_top (kernel.measurable_kernel_prod_mk_left' ht a) h2t [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤ ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤ [PROOFSTEP] rw [kernel.compProd_apply _ _ _ ht] at h2t [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t h2t : ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ t} ∂↑κ a ≠ ⊤ ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤ [PROOFSTEP] exact ae_lt_top (kernel.measurable_kernel_prod_mk_left' ht a) h2t [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤ ht_lt_top : ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤ ⊢ ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] filter_upwards [ht_lt_top] with b hb [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α h2s : ↑↑(↑(κ ⊗ₖ η) a) s ≠ ⊤ t : Set (β × γ) := toMeasurable (↑(κ ⊗ₖ η) a) s this : ∀ (b : β), ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) ≤ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) ht : MeasurableSet t h2t : ↑↑(↑(κ ⊗ₖ η) a) t ≠ ⊤ ht_lt_top : ∀ᵐ (b : β) ∂↑κ a, ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t) < ⊤ b : β hb : ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' toMeasurable (↑(κ ⊗ₖ η) a) s) < ⊤ ⊢ ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) < ⊤ [PROOFSTEP] exact (this b).trans_lt hb [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α hs : MeasurableSet s ⊢ ↑↑(↑(κ ⊗ₖ η) a) s = 0 ↔ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0 [PROOFSTEP] rw [kernel.compProd_apply _ _ _ hs, lintegral_eq_zero_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α hs : MeasurableSet s ⊢ (fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s}) =ᵐ[↑κ a] 0 ↔ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ a : α hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s} [PROOFSTEP] exact kernel.measurable_kernel_prod_mk_left' hs a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α h : ↑↑(↑(κ ⊗ₖ η) a) s = 0 ⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0 [PROOFSTEP] obtain ⟨t, hst, mt, ht⟩ := exists_measurable_superset_of_null h [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α h : ↑↑(↑(κ ⊗ₖ η) a) s = 0 t : Set (β × γ) hst : s ⊆ t mt : MeasurableSet t ht : ↑↑(↑(κ ⊗ₖ η) a) t = 0 ⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0 [PROOFSTEP] simp_rw [compProd_null a mt] at ht [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α h : ↑↑(↑(κ ⊗ₖ η) a) s = 0 t : Set (β × γ) hst : s ⊆ t mt : MeasurableSet t ht : (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)) =ᵐ[↑κ a] 0 ⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) =ᵐ[↑κ a] 0 [PROOFSTEP] rw [Filter.eventuallyLE_antisymm_iff] [GOAL] case intro.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α h : ↑↑(↑(κ ⊗ₖ η) a) s = 0 t : Set (β × γ) hst : s ⊆ t mt : MeasurableSet t ht : (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' t)) =ᵐ[↑κ a] 0 ⊢ (fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s)) ≤ᵐ[↑κ a] 0 ∧ 0 ≤ᵐ[↑κ a] fun b => ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) [PROOFSTEP] exact ⟨Filter.EventuallyLE.trans_eq (Filter.eventually_of_forall fun x => (measure_mono (Set.preimage_mono hst) : _)) ht, Filter.eventually_of_forall fun x => zero_le _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t ⊢ kernel.restrict κ hs ⊗ₖ kernel.restrict η ht = kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (s ×ˢ t)) [PROOFSTEP] ext a u hu [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u ⊢ ↑↑(↑(kernel.restrict κ hs ⊗ₖ kernel.restrict η ht) a) u = ↑↑(↑(kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (s ×ˢ t))) a) u [PROOFSTEP] rw [compProd_apply _ _ _ hu, restrict_apply' _ _ _ hu, compProd_apply _ _ _ (hu.inter (hs.prod ht))] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u ⊢ ∫⁻ (b : β), ↑↑(↑(kernel.restrict η ht) (a, b)) {c | (b, c) ∈ u} ∂↑(kernel.restrict κ hs) a = ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∩ s ×ˢ t} ∂↑κ a [PROOFSTEP] simp only [kernel.restrict_apply, Measure.restrict_apply' ht, Set.mem_inter_iff, Set.prod_mk_mem_set_prod_eq] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u ⊢ ∫⁻ (b : β) in s, ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) ∂↑κ a = ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} ∂↑κ a [PROOFSTEP] have : ∀ b, η (a, b) {c : γ | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = s.indicator (fun b => η (a, b) ({c : γ | (b, c) ∈ u} ∩ t)) b := by intro b classical rw [Set.indicator_apply] split_ifs with h · simp only [h, true_and_iff] rfl · simp only [h, false_and_iff, and_false_iff, Set.setOf_false, measure_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u ⊢ ∀ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b [PROOFSTEP] intro b [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u b : β ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b [PROOFSTEP] classical rw [Set.indicator_apply] split_ifs with h · simp only [h, true_and_iff] rfl · simp only [h, false_and_iff, and_false_iff, Set.setOf_false, measure_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u b : β ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b [PROOFSTEP] rw [Set.indicator_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u b : β ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = if b ∈ s then ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) else 0 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u b : β h : b ∈ s ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) [PROOFSTEP] simp only [h, true_and_iff] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u b : β h : b ∈ s ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ c ∈ t} = ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) [PROOFSTEP] rfl [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u b : β h : ¬b ∈ s ⊢ ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = 0 [PROOFSTEP] simp only [h, false_and_iff, and_false_iff, Set.setOf_false, measure_empty] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u this : ∀ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b ⊢ ∫⁻ (b : β) in s, ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) ∂↑κ a = ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} ∂↑κ a [PROOFSTEP] simp_rw [this] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t a : α u : Set (β × γ) hu : MeasurableSet u this : ∀ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ u ∧ b ∈ s ∧ c ∈ t} = Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b ⊢ ∫⁻ (b : β) in s, ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t) ∂↑κ a = ∫⁻ (b : β), Set.indicator s (fun b => ↑↑(↑η (a, b)) ({c | (b, c) ∈ u} ∩ t)) b ∂↑κ a [PROOFSTEP] rw [lintegral_indicator _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β hs : MeasurableSet s ⊢ kernel.restrict κ hs ⊗ₖ η = kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (s ×ˢ Set.univ)) [PROOFSTEP] rw [← compProd_restrict] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β hs : MeasurableSet s ⊢ kernel.restrict κ hs ⊗ₖ η = kernel.restrict κ ?hs ⊗ₖ kernel.restrict η ?ht case hs α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β hs : MeasurableSet s ⊢ MeasurableSet s case ht α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β hs : MeasurableSet s ⊢ MeasurableSet Set.univ [PROOFSTEP] congr [GOAL] case e_η α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β hs : MeasurableSet s ⊢ η = kernel.restrict η ?ht case ht α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set β hs : MeasurableSet s ⊢ MeasurableSet Set.univ [PROOFSTEP] exact kernel.restrict_univ.symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α t : Set γ ht : MeasurableSet t ⊢ κ ⊗ₖ kernel.restrict η ht = kernel.restrict (κ ⊗ₖ η) (_ : MeasurableSet (Set.univ ×ˢ t)) [PROOFSTEP] rw [← compProd_restrict] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α t : Set γ ht : MeasurableSet t ⊢ κ ⊗ₖ kernel.restrict η ht = kernel.restrict κ ?hs ⊗ₖ kernel.restrict η ?ht case hs α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α t : Set γ ht : MeasurableSet t ⊢ MeasurableSet Set.univ case ht α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α t : Set γ ht : MeasurableSet t ⊢ MeasurableSet t [PROOFSTEP] congr [GOAL] case e_κ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α t : Set γ ht : MeasurableSet t ⊢ κ = kernel.restrict κ ?hs case hs α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α t : Set γ ht : MeasurableSet t ⊢ MeasurableSet Set.univ [PROOFSTEP] exact kernel.restrict_univ.symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) ⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a [PROOFSTEP] let F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) ⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a [PROOFSTEP] have h : ∀ a, ⨆ n, F n a = Function.uncurry f a := SimpleFunc.iSup_eapprox_apply (Function.uncurry f) hf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β × γ), ⨆ (n : ℕ), ↑(F n) a = Function.uncurry f a ⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a [PROOFSTEP] simp only [Prod.forall, Function.uncurry_apply_pair] at h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b ⊢ ∫⁻ (bc : β × γ), f bc.fst bc.snd ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f b c ∂↑η (a, b) ∂↑κ a [PROOFSTEP] simp_rw [← h, Prod.mk.eta] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b ⊢ ∫⁻ (bc : β × γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] have h_mono : Monotone F := fun i j hij b => SimpleFunc.monotone_eapprox (Function.uncurry f) hij _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F ⊢ ∫⁻ (bc : β × γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] rw [lintegral_iSup (fun n => (F n).measurable) h_mono] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F ⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(F n) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] have : ∀ b, ∫⁻ c, ⨆ n, F n (b, c) ∂η (a, b) = ⨆ n, ∫⁻ c, F n (b, c) ∂η (a, b) := by intro a rw [lintegral_iSup] · exact fun n => (F n).measurable.comp measurable_prod_mk_left · exact fun i j hij b => h_mono hij _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F ⊢ ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) [PROOFSTEP] intro a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F a : β ⊢ ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (a, c) ∂↑η (a✝, a) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (a, c) ∂↑η (a✝, a) [PROOFSTEP] rw [lintegral_iSup] [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F a : β ⊢ ∀ (n : ℕ), Measurable fun c => ↑(F n) (a, c) [PROOFSTEP] exact fun n => (F n).measurable.comp measurable_prod_mk_left [GOAL] case h_mono α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a✝ : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F a : β ⊢ Monotone fun n c => ↑(F n) (a, c) [PROOFSTEP] exact fun i j hij b => h_mono hij _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) ⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(F n) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] simp_rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) ⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] have h_some_meas_integral : ∀ f' : SimpleFunc (β × γ) ℝ≥0∞, Measurable fun b => ∫⁻ c, f' (b, c) ∂η (a, b) := by intro f' have : (fun b => ∫⁻ c, f' (b, c) ∂η (a, b)) = (fun ab => ∫⁻ c, f' (ab.2, c) ∂η ab) ∘ fun b => (a, b) := by ext1 ab; rfl rw [this] refine' Measurable.comp _ measurable_prod_mk_left exact Measurable.lintegral_kernel_prod_right ((SimpleFunc.measurable _).comp (measurable_fst.snd.prod_mk measurable_snd)) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) ⊢ ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) [PROOFSTEP] intro f' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ ⊢ Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) [PROOFSTEP] have : (fun b => ∫⁻ c, f' (b, c) ∂η (a, b)) = (fun ab => ∫⁻ c, f' (ab.2, c) ∂η ab) ∘ fun b => (a, b) := by ext1 ab; rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ ⊢ (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b) [PROOFSTEP] ext1 ab [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ ab : β ⊢ ∫⁻ (c : γ), ↑f' (ab, c) ∂↑η (a, ab) = ((fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)) ab [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b) ⊢ Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b) ⊢ Measurable ((fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b)) [PROOFSTEP] refine' Measurable.comp _ measurable_prod_mk_left [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b) ⊢ Measurable fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this✝ : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) f' : SimpleFunc (β × γ) ℝ≥0∞ this : (fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b)) = (fun ab => ∫⁻ (c : γ), ↑f' (ab.snd, c) ∂↑η ab) ∘ fun b => (a, b) ⊢ MeasurableSpace α [PROOFSTEP] exact Measurable.lintegral_kernel_prod_right ((SimpleFunc.measurable _).comp (measurable_fst.snd.prod_mk measurable_snd)) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] rw [lintegral_iSup] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a = ⨆ (n : ℕ), ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ ∀ (n : ℕ), Measurable fun b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) case h_mono α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ Monotone fun n b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) [PROOFSTEP] rotate_left [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ ∀ (n : ℕ), Measurable fun b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) [PROOFSTEP] exact fun n => h_some_meas_integral (F n) [GOAL] case h_mono α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ Monotone fun n b => ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (b, c) ∂↑η (a, b) [PROOFSTEP] exact fun i j hij b => lintegral_mono fun c => h_mono hij _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ ⨆ (n : ℕ), ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a = ⨆ (n : ℕ), ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] congr [GOAL] case e_s α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) ⊢ (fun n => ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a) = fun n => ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] ext1 n [GOAL] case e_s.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ ⊢ ∫⁻ (a : β × γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a_1, c) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] refine' SimpleFunc.induction (P := fun f => (∫⁻ (a : β × γ), f a ∂(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), f (a_1, c) ∂η (a, a_1) ∂κ a)) _ _ (F n) [GOAL] case e_s.h.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ ⊢ ∀ (c : ℝ≥0∞) {s : Set (β × γ)} (hs : MeasurableSet s), (fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a) (SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) [PROOFSTEP] intro c s hs [GOAL] case e_s.h.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ ∫⁻ (a : β × γ), ↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), ↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] classical -- Porting note: Added `classical` for `Set.piecewise_eq_indicator` simp only [SimpleFunc.const_zero, SimpleFunc.coe_piecewise, SimpleFunc.coe_const, SimpleFunc.coe_zero, Set.piecewise_eq_indicator, Function.const, lintegral_indicator_const hs] rw [compProd_apply κ η _ hs, ← lintegral_const_mul c _] swap · exact (measurable_kernel_prod_mk_left ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left congr ext1 b rw [lintegral_indicator_const_comp measurable_prod_mk_left hs] rfl [GOAL] case e_s.h.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ ∫⁻ (a : β × γ), ↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), ↑(SimpleFunc.piecewise s hs (SimpleFunc.const (β × γ) c) (SimpleFunc.const (β × γ) 0)) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] simp only [SimpleFunc.const_zero, SimpleFunc.coe_piecewise, SimpleFunc.coe_const, SimpleFunc.coe_zero, Set.piecewise_eq_indicator, Function.const, lintegral_indicator_const hs] [GOAL] case e_s.h.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ c * ↑↑(↑(κ ⊗ₖ η) a) s = ∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] rw [compProd_apply κ η _ hs, ← lintegral_const_mul c _] [GOAL] case e_s.h.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ ∫⁻ (a_1 : β), c * ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ s} ∂↑κ a = ∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s} [PROOFSTEP] swap [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(↑η (a, b)) {c | (b, c) ∈ s} [PROOFSTEP] exact (measurable_kernel_prod_mk_left ((measurable_fst.snd.prod_mk measurable_snd) hs)).comp measurable_prod_mk_left [GOAL] case e_s.h.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ ∫⁻ (a_1 : β), c * ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ s} ∂↑κ a = ∫⁻ (a_1 : β), ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] congr [GOAL] case e_s.h.refine'_1.e_f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s ⊢ (fun a_1 => c * ↑↑(↑η (a, a_1)) {c | (a_1, c) ∈ s}) = fun a_1 => ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (a_1, c_1) ∂↑η (a, a_1) [PROOFSTEP] ext1 b [GOAL] case e_s.h.refine'_1.e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s b : β ⊢ c * ↑↑(↑η (a, b)) {c | (b, c) ∈ s} = ∫⁻ (c_1 : γ), Set.indicator s (fun x => c) (b, c_1) ∂↑η (a, b) [PROOFSTEP] rw [lintegral_indicator_const_comp measurable_prod_mk_left hs] [GOAL] case e_s.h.refine'_1.e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ c : ℝ≥0∞ s : Set (β × γ) hs : MeasurableSet s b : β ⊢ c * ↑↑(↑η (a, b)) {c | (b, c) ∈ s} = c * ↑↑(↑η (a, b)) (Prod.mk b ⁻¹' s) [PROOFSTEP] rfl [GOAL] case e_s.h.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f) n) (a, b) = f a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ ⊢ ∀ ⦃f g : SimpleFunc (β × γ) ℝ≥0∞⦄, Disjoint (Function.support ↑f) (Function.support ↑g) → (fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a) f → (fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a) g → (fun f => ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a) (f + g) [PROOFSTEP] intro f f' _ hf_eq hf'_eq [GOAL] case e_s.h.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ ∫⁻ (a : β × γ), ↑(f + f') a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑(f + f') (a_1, c) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] simp_rw [SimpleFunc.coe_add, Pi.add_apply] [GOAL] case e_s.h.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ ∫⁻ (a : β × γ), ↑f a + ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) + ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a [PROOFSTEP] change ∫⁻ x, (f : β × γ → ℝ≥0∞) x + f' x ∂(κ ⊗ₖ η) a = ∫⁻ b, ∫⁻ c : γ, f (b, c) + f' (b, c) ∂η (a, b) ∂κ a [GOAL] case e_s.h.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ ∫⁻ (x : β × γ), ↑f x + ↑f' x ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] rw [lintegral_add_left (SimpleFunc.measurable _), hf_eq, hf'_eq, ← lintegral_add_left] [GOAL] case e_s.h.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) + ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a = ∫⁻ (b : β), ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) ∂↑κ a case e_s.h.refine'_2.hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ Measurable fun a_1 => ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) [PROOFSTEP] swap [GOAL] case e_s.h.refine'_2.hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ Measurable fun a_1 => ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) [PROOFSTEP] exact h_some_meas_integral f [GOAL] case e_s.h.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a ⊢ ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) + ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a = ∫⁻ (b : β), ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] congr with b [GOAL] case e_s.h.refine'_2.e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a b : β ⊢ ∫⁻ (c : γ), ↑f (b, c) ∂↑η (a, b) + ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) = ∫⁻ (c : γ), ↑f (b, c) + ↑f' (b, c) ∂↑η (a, b) [PROOFSTEP] rw [lintegral_add_left] [GOAL] case e_s.h.refine'_2.e_f.h.hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f✝ : β → γ → ℝ≥0∞ hf : Measurable (Function.uncurry f✝) F : ℕ → SimpleFunc (β × γ) ℝ≥0∞ := SimpleFunc.eapprox (Function.uncurry f✝) h : ∀ (a : β) (b : γ), ⨆ (n : ℕ), ↑(SimpleFunc.eapprox (Function.uncurry f✝) n) (a, b) = f✝ a b h_mono : Monotone F this : ∀ (b : β), ∫⁻ (c : γ), ⨆ (n : ℕ), ↑(F n) (b, c) ∂↑η (a, b) = ⨆ (n : ℕ), ∫⁻ (c : γ), ↑(F n) (b, c) ∂↑η (a, b) h_some_meas_integral : ∀ (f' : SimpleFunc (β × γ) ℝ≥0∞), Measurable fun b => ∫⁻ (c : γ), ↑f' (b, c) ∂↑η (a, b) n : ℕ f f' : SimpleFunc (β × γ) ℝ≥0∞ a✝ : Disjoint (Function.support ↑f) (Function.support ↑f') hf_eq : ∫⁻ (a : β × γ), ↑f a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f (a_1, c) ∂↑η (a, a_1) ∂↑κ a hf'_eq : ∫⁻ (a : β × γ), ↑f' a ∂↑(κ ⊗ₖ η) a = ∫⁻ (a_1 : β), ∫⁻ (c : γ), ↑f' (a_1, c) ∂↑η (a, a_1) ∂↑κ a b : β ⊢ Measurable fun c => ↑f (b, c) [PROOFSTEP] exact (SimpleFunc.measurable _).comp measurable_prod_mk_left [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] let g := Function.curry f [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f g : β → γ → ℝ≥0∞ := Function.curry f ⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), f (b, c) ∂↑η (a, b) ∂↑κ a [PROOFSTEP] change ∫⁻ bc, f bc ∂(κ ⊗ₖ η) a = ∫⁻ b, ∫⁻ c, g b c ∂η (a, b) ∂κ a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f g : β → γ → ℝ≥0∞ := Function.curry f ⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), g b c ∂↑η (a, b) ∂↑κ a [PROOFSTEP] rw [← lintegral_compProd'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f g : β → γ → ℝ≥0∞ := Function.curry f ⊢ ∫⁻ (bc : β × γ), f bc ∂↑(κ ⊗ₖ η) a = ∫⁻ (bc : β × γ), g bc.fst bc.snd ∂↑(κ ⊗ₖ η) a [PROOFSTEP] simp_rw [Function.curry_apply] [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f g : β → γ → ℝ≥0∞ := Function.curry f ⊢ Measurable (Function.uncurry fun b c => g b c) [PROOFSTEP] simp_rw [Function.uncurry_curry] [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f g : β → γ → ℝ≥0∞ := Function.curry f ⊢ Measurable f [PROOFSTEP] exact hf [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : AEMeasurable f ⊢ ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] have A : ∫⁻ z, f z ∂(κ ⊗ₖ η) a = ∫⁻ z, hf.mk f z ∂(κ ⊗ₖ η) a := lintegral_congr_ae hf.ae_eq_mk [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : AEMeasurable f A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a ⊢ ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] have B : ∫⁻ x, ∫⁻ y, f (x, y) ∂η (a, x) ∂κ a = ∫⁻ x, ∫⁻ y, hf.mk f (x, y) ∂η (a, x) ∂κ a := by apply lintegral_congr_ae filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with _ ha using lintegral_congr_ae ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : AEMeasurable f A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a ⊢ ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a = ∫⁻ (x : β), ∫⁻ (y : γ), AEMeasurable.mk f hf (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] apply lintegral_congr_ae [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : AEMeasurable f A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a ⊢ (fun a_1 => ∫⁻ (y : γ), f (a_1, y) ∂↑η (a, a_1)) =ᵐ[↑κ a] fun a_1 => ∫⁻ (y : γ), AEMeasurable.mk f hf (a_1, y) ∂↑η (a, a_1) [PROOFSTEP] filter_upwards [ae_ae_of_ae_compProd hf.ae_eq_mk] with _ ha using lintegral_congr_ae ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : AEMeasurable f A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a B : ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a = ∫⁻ (x : β), ∫⁻ (y : γ), AEMeasurable.mk f hf (x, y) ∂↑η (a, x) ∂↑κ a ⊢ ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] rw [A, B, lintegral_compProd] [GOAL] case hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : AEMeasurable f A : ∫⁻ (z : β × γ), f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (z : β × γ), AEMeasurable.mk f hf z ∂↑(κ ⊗ₖ η) a B : ∫⁻ (x : β), ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a = ∫⁻ (x : β), ∫⁻ (y : γ), AEMeasurable.mk f hf (x, y) ∂↑η (a, x) ∂↑κ a ⊢ Measurable fun z => AEMeasurable.mk f hf z [PROOFSTEP] exact hf.measurable_mk [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f s : Set β t : Set γ hs : MeasurableSet s ht : MeasurableSet t ⊢ ∫⁻ (z : β × γ) in s ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β) in s, ∫⁻ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [← kernel.restrict_apply (κ ⊗ₖ η) (hs.prod ht), ← compProd_restrict hs ht, lintegral_compProd _ _ _ hf, kernel.restrict_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f s : Set β hs : MeasurableSet s ⊢ ∫⁻ (z : β × γ) in s ×ˢ Set.univ, f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β) in s, ∫⁻ (y : γ), f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [set_lintegral_compProd κ η a hf hs MeasurableSet.univ, Measure.restrict_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α f : β × γ → ℝ≥0∞ hf : Measurable f t : Set γ ht : MeasurableSet t ⊢ ∫⁻ (z : β × γ) in Set.univ ×ˢ t, f z ∂↑(κ ⊗ₖ η) a = ∫⁻ (x : β), ∫⁻ (y : γ) in t, f (x, y) ∂↑η (a, x) ∂↑κ a [PROOFSTEP] simp_rw [set_lintegral_compProd κ η a hf MeasurableSet.univ ht, Measure.restrict_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ ↑↑(↑(κ ⊗ₖ η) a) s = ∑' (n : ℕ) (m : ℕ), ↑↑(↑(seq κ n ⊗ₖ seq η m) a) s [PROOFSTEP] simp_rw [compProd_apply_eq_compProdFun _ _ _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α hs : MeasurableSet s ⊢ compProdFun κ η a s = ∑' (n : ℕ) (m : ℕ), compProdFun (seq κ n) (seq η m) a s [PROOFSTEP] exact compProdFun_eq_tsum κ η a hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η ⊢ κ ⊗ₖ η = kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set (β × γ) hs : MeasurableSet s ⊢ ↑↑(↑(κ ⊗ₖ η) a) s = ↑↑(↑(kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) a) s [PROOFSTEP] simp_rw [kernel.sum_apply' _ a hs] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η a : α s : Set (β × γ) hs : MeasurableSet s ⊢ ↑↑(↑(κ ⊗ₖ η) a) s = ∑' (n : ℕ) (n_1 : ℕ), ↑↑(↑(seq κ n ⊗ₖ seq η n_1) a) s [PROOFSTEP] rw [compProd_eq_tsum_compProd κ η a hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } ⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η [PROOFSTEP] by_cases h : IsSFiniteKernel η [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel η ⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel η ⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel η ⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η [PROOFSTEP] simp_rw [compProd_of_not_isSFiniteKernel_right _ _ h] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel η ⊢ 0 = kernel.sum fun n => 0 [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel η ⊢ κ ⊗ₖ η = kernel.sum fun n => seq κ n ⊗ₖ η [PROOFSTEP] rw [compProd_eq_sum_compProd] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel η ⊢ (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) = kernel.sum fun n => seq κ n ⊗ₖ η [PROOFSTEP] congr with n a s hs [GOAL] case pos.e_κ.h.h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s✝ : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel η n : ℕ a : α s : Set (β × γ) hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun m => seq κ n ⊗ₖ seq η m) a) s = ↑↑(↑(seq κ n ⊗ₖ η) a) s [PROOFSTEP] simp_rw [kernel.sum_apply' _ _ hs, compProd_apply_eq_compProdFun _ _ _ hs, compProdFun_tsum_right _ η a hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η ⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n [PROOFSTEP] by_cases hκ : IsSFiniteKernel κ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : IsSFiniteKernel κ ⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : ¬IsSFiniteKernel κ ⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : ¬IsSFiniteKernel κ ⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n [PROOFSTEP] simp_rw [compProd_of_not_isSFiniteKernel_left _ _ hκ] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : ¬IsSFiniteKernel κ ⊢ 0 = kernel.sum fun n => 0 [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : IsSFiniteKernel κ ⊢ κ ⊗ₖ η = kernel.sum fun n => κ ⊗ₖ seq η n [PROOFSTEP] rw [compProd_eq_sum_compProd] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : IsSFiniteKernel κ ⊢ (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) = kernel.sum fun n => κ ⊗ₖ seq η n [PROOFSTEP] simp_rw [compProd_eq_sum_compProd_left κ _] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel η hκ : IsSFiniteKernel κ ⊢ (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) = kernel.sum fun n => kernel.sum fun n_1 => seq κ n_1 ⊗ₖ seq η n [PROOFSTEP] rw [kernel.sum_comm] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsMarkovKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsMarkovKernel η a : α ⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ = 1 [PROOFSTEP] rw [compProd_apply κ η a MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } inst✝¹ : IsMarkovKernel κ η : { x // x ∈ kernel (α × β) γ } inst✝ : IsMarkovKernel η a : α ⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ Set.univ} ∂↑κ a = 1 [PROOFSTEP] simp only [Set.mem_univ, Set.setOf_true, measure_univ, lintegral_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α ⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] by_cases hκ : IsSFiniteKernel κ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : IsSFiniteKernel κ ⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : ¬IsSFiniteKernel κ ⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : ¬IsSFiniteKernel κ ⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] rw [compProd_of_not_isSFiniteKernel_left _ _ hκ] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : ¬IsSFiniteKernel κ ⊢ ↑↑(↑0 a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] simp [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : IsSFiniteKernel κ ⊢ ↑↑(↑(κ ⊗ₖ η) a) Set.univ ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] rw [compProd_apply κ η a MeasurableSet.univ] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : IsSFiniteKernel κ ⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) {c | (b, c) ∈ Set.univ} ∂↑κ a ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] simp only [Set.mem_univ, Set.setOf_true] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : IsSFiniteKernel κ ⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) Set.univ ∂↑κ a ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] let Cη := IsFiniteKernel.bound η [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel η a : α hκ : IsSFiniteKernel κ Cη : ℝ≥0∞ := IsFiniteKernel.bound η ⊢ ∫⁻ (b : β), ↑↑(↑η (a, b)) Set.univ ∂↑κ a ≤ ↑↑(↑κ a) Set.univ * IsFiniteKernel.bound η [PROOFSTEP] calc ∫⁻ b, η (a, b) Set.univ ∂κ a ≤ ∫⁻ _, Cη ∂κ a := lintegral_mono fun b => measure_le_bound η (a, b) Set.univ _ = Cη * κ a Set.univ := (MeasureTheory.lintegral_const Cη) _ = κ a Set.univ * Cη := mul_comm _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] by_cases h : IsSFiniteKernel κ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ⊢ IsSFiniteKernel (κ ⊗ₖ η) case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel κ ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel κ ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] rw [compProd_of_not_isSFiniteKernel_left _ _ h] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : ¬IsSFiniteKernel κ ⊢ IsSFiniteKernel 0 [PROOFSTEP] infer_instance [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h : IsSFiniteKernel κ ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] by_cases h : IsSFiniteKernel η [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h✝ : IsSFiniteKernel κ h : IsSFiniteKernel η ⊢ IsSFiniteKernel (κ ⊗ₖ η) case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h✝ : IsSFiniteKernel κ h : ¬IsSFiniteKernel η ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] swap [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h✝ : IsSFiniteKernel κ h : ¬IsSFiniteKernel η ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] rw [compProd_of_not_isSFiniteKernel_right _ _ h] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h✝ : IsSFiniteKernel κ h : ¬IsSFiniteKernel η ⊢ IsSFiniteKernel 0 [PROOFSTEP] infer_instance [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h✝ : IsSFiniteKernel κ h : IsSFiniteKernel η ⊢ IsSFiniteKernel (κ ⊗ₖ η) [PROOFSTEP] rw [compProd_eq_sum_compProd] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ s : Set (β × γ) κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel (α × β) γ } h✝ : IsSFiniteKernel κ h : IsSFiniteKernel η ⊢ IsSFiniteKernel (kernel.sum fun n => kernel.sum fun m => seq κ n ⊗ₖ seq η m) [PROOFSTEP] exact kernel.isSFiniteKernel_sum fun n => kernel.isSFiniteKernel_sum inferInstance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } hf : Measurable f a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑(map κ f hf) a) s = ↑↑(↑κ a) (f ⁻¹' s) [PROOFSTEP] rw [map_apply, Measure.map_apply hf hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } hf : Measurable f a : α g' : γ → ℝ≥0∞ hg : Measurable g' ⊢ ∫⁻ (b : γ), g' b ∂↑(map κ f hf) a = ∫⁻ (a : β), g' (f a) ∂↑κ a [PROOFSTEP] rw [map_apply _ hf, lintegral_map hg hf] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable f ⊢ (kernel.sum fun n => map (seq κ n) f hf) = map κ f hf [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable f a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun n => map (seq κ n) f hf) a) s = ↑↑(↑(map κ f hf) a) s [PROOFSTEP] rw [kernel.sum_apply, map_apply' κ hf a hs, Measure.sum_apply _ hs, ← measure_sum_seq κ, Measure.sum_apply _ (hf hs)] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hf : Measurable f a : α s : Set γ hs : MeasurableSet s ⊢ ∑' (i : ℕ), ↑↑(↑(map (seq κ i) f hf) a) s = ∑' (i : ℕ), ↑↑(↑(seq κ i) a) (f ⁻¹' s) [PROOFSTEP] simp_rw [map_apply' _ hf _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsMarkovKernel κ hf : Measurable f a : α ⊢ ↑↑(↑(kernel.map κ f hf) a) Set.univ = 1 [PROOFSTEP] rw [map_apply' κ hf a MeasurableSet.univ, Set.preimage_univ, measure_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf : Measurable f ⊢ IsFiniteKernel (kernel.map κ f hf) [PROOFSTEP] refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf : Measurable f a : α ⊢ ↑↑(↑(kernel.map κ f hf) a) Set.univ ≤ IsFiniteKernel.bound κ [PROOFSTEP] rw [map_apply' κ hf a MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hf : Measurable f a : α ⊢ ↑↑(↑κ a) (f ⁻¹' Set.univ) ≤ IsFiniteKernel.bound κ [PROOFSTEP] exact measure_le_bound κ a _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hg : Measurable g ⊢ (kernel.sum fun n => comap (seq κ n) g hg) = comap κ g hg [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hg : Measurable g a : γ s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(kernel.sum fun n => comap (seq κ n) g hg) a) s = ↑↑(↑(comap κ g hg) a) s [PROOFSTEP] rw [kernel.sum_apply, comap_apply' κ hg a s, Measure.sum_apply _ hs, ← measure_sum_seq κ, Measure.sum_apply _ hs] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ hg : Measurable g a : γ s : Set β hs : MeasurableSet s ⊢ ∑' (i : ℕ), ↑↑(↑(comap (seq κ i) g hg) a) s = ∑' (i : ℕ), ↑↑(↑(seq κ i) (g a)) s [PROOFSTEP] simp_rw [comap_apply' _ hg _ s] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsMarkovKernel κ hg : Measurable g a : γ ⊢ ↑↑(↑(kernel.comap κ g hg) a) Set.univ = 1 [PROOFSTEP] rw [comap_apply' κ hg a Set.univ, measure_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hg : Measurable g ⊢ IsFiniteKernel (kernel.comap κ g hg) [PROOFSTEP] refine' ⟨⟨IsFiniteKernel.bound κ, IsFiniteKernel.bound_lt_top κ, fun a => _⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hg : Measurable g a : γ ⊢ ↑↑(↑(kernel.comap κ g hg) a) Set.univ ≤ IsFiniteKernel.bound κ [PROOFSTEP] rw [comap_apply' κ hg a Set.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ hg : Measurable g a : γ ⊢ ↑↑(↑κ (g a)) Set.univ ≤ IsFiniteKernel.bound κ [PROOFSTEP] exact measure_le_bound κ _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.prodMkLeft γ κ) [PROOFSTEP] rw [prodMkLeft] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.comap κ Prod.snd (_ : Measurable Prod.snd)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.prodMkLeft γ κ) [PROOFSTEP] rw [prodMkLeft] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.comap κ Prod.snd (_ : Measurable Prod.snd)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.prodMkLeft γ κ) [PROOFSTEP] rw [prodMkLeft] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.comap κ Prod.snd (_ : Measurable Prod.snd)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g✝ : γ → α κ : { x // x ∈ kernel (α × β) γ } a : β × α g : γ → ℝ≥0∞ ⊢ ∫⁻ (c : γ), g c ∂↑(swapLeft κ) a = ∫⁻ (c : γ), g c ∂↑κ (Prod.swap a) [PROOFSTEP] rw [swapLeft, lintegral_comap _ measurable_swap a] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel (α × β) γ } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.swapLeft κ) [PROOFSTEP] rw [swapLeft] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel (α × β) γ } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.comap κ Prod.swap (_ : Measurable Prod.swap)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.swapLeft κ) [PROOFSTEP] rw [swapLeft] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel (α × β) γ } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.comap κ Prod.swap (_ : Measurable Prod.swap)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.swapLeft κ) [PROOFSTEP] rw [swapLeft] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel (α × β) γ } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.comap κ Prod.swap (_ : Measurable Prod.swap)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α s : Set (γ × β) hs : MeasurableSet s ⊢ ↑↑(↑(swapRight κ) a) s = ↑↑(↑κ a) {p | Prod.swap p ∈ s} [PROOFSTEP] rw [swapRight_apply, Measure.map_apply measurable_swap hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α s : Set (γ × β) hs : MeasurableSet s ⊢ ↑↑(↑κ a) (Prod.swap ⁻¹' s) = ↑↑(↑κ a) {p | Prod.swap p ∈ s} [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g✝ : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α g : γ × β → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (c : γ × β), g c ∂↑(swapRight κ) a = ∫⁻ (bc : β × γ), g (Prod.swap bc) ∂↑κ a [PROOFSTEP] rw [swapRight, lintegral_map _ measurable_swap a hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.swapRight κ) [PROOFSTEP] rw [swapRight] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.map κ Prod.swap (_ : Measurable Prod.swap)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.swapRight κ) [PROOFSTEP] rw [swapRight] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.map κ Prod.swap (_ : Measurable Prod.swap)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.swapRight κ) [PROOFSTEP] rw [swapRight] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.map κ Prod.swap (_ : Measurable Prod.swap)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(fst κ) a) s = ↑↑(↑κ a) {p | p.fst ∈ s} [PROOFSTEP] rw [fst_apply, Measure.map_apply measurable_fst hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α s : Set β hs : MeasurableSet s ⊢ ↑↑(↑κ a) (Prod.fst ⁻¹' s) = ↑↑(↑κ a) {p | p.fst ∈ s} [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g✝ : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α g : β → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (c : β), g c ∂↑(fst κ) a = ∫⁻ (bc : β × γ), g bc.fst ∂↑κ a [PROOFSTEP] rw [fst, lintegral_map _ measurable_fst a hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.fst κ) [PROOFSTEP] rw [fst] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.map κ Prod.fst (_ : Measurable Prod.fst)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.fst κ) [PROOFSTEP] rw [fst] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.map κ Prod.fst (_ : Measurable Prod.fst)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.fst κ) [PROOFSTEP] rw [fst] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.map κ Prod.fst (_ : Measurable Prod.fst)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑(snd κ) a) s = ↑↑(↑κ a) {p | p.snd ∈ s} [PROOFSTEP] rw [snd_apply, Measure.map_apply measurable_snd hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑κ a) (Prod.snd ⁻¹' s) = ↑↑(↑κ a) {p | p.snd ∈ s} [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g✝ : γ → α κ : { x // x ∈ kernel α (β × γ) } a : α g : γ → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (c : γ), g c ∂↑(snd κ) a = ∫⁻ (bc : β × γ), g bc.snd ∂↑κ a [PROOFSTEP] rw [snd, lintegral_map _ measurable_snd a hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.snd κ) [PROOFSTEP] rw [snd] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.map κ Prod.snd (_ : Measurable Prod.snd)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.snd κ) [PROOFSTEP] rw [snd] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.map κ Prod.snd (_ : Measurable Prod.snd)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.snd κ) [PROOFSTEP] rw [snd] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α (β × γ) } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.map κ Prod.snd (_ : Measurable Prod.snd)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } κ : { x // x ∈ kernel α β } a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑(η ∘ₖ κ) a) s = ∫⁻ (b : β), ↑↑(↑η b) s ∂↑κ a [PROOFSTEP] rw [comp_apply, Measure.bind_apply hs (kernel.measurable _)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ ⊢ η ∘ₖ κ = snd (κ ⊗ₖ prodMkLeft α η) [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑(η ∘ₖ κ) a) s = ↑↑(↑(snd (κ ⊗ₖ prodMkLeft α η)) a) s [PROOFSTEP] rw [comp_apply' _ _ _ hs, snd_apply' _ _ hs, compProd_apply] [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ a : α s : Set γ hs : MeasurableSet s ⊢ ∫⁻ (b : β), ↑↑(↑η b) s ∂↑κ a = ∫⁻ (b : β), ↑↑(↑(prodMkLeft α η) (a, b)) {c | (b, c) ∈ {p | p.snd ∈ s}} ∂↑κ a case h.h.hs α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ a : α s : Set γ hs : MeasurableSet s ⊢ MeasurableSet {p | p.snd ∈ s} [PROOFSTEP] swap [GOAL] case h.h.hs α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ a : α s : Set γ hs : MeasurableSet s ⊢ MeasurableSet {p | p.snd ∈ s} [PROOFSTEP] exact measurable_snd hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ a : α s : Set γ hs : MeasurableSet s ⊢ ∫⁻ (b : β), ↑↑(↑η b) s ∂↑κ a = ∫⁻ (b : β), ↑↑(↑(prodMkLeft α η) (a, b)) {c | (b, c) ∈ {p | p.snd ∈ s}} ∂↑κ a [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.setOf_mem_eq, prodMkLeft_apply' _ _ s] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g✝ : γ → α η : { x // x ∈ kernel β γ } κ : { x // x ∈ kernel α β } a : α g : γ → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (c : γ), g c ∂↑(η ∘ₖ κ) a = ∫⁻ (b : β), ∫⁻ (c : γ), g c ∂↑η b ∂↑κ a [PROOFSTEP] rw [comp_apply, Measure.lintegral_bind (kernel.measurable _) hg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsMarkovKernel η κ : { x // x ∈ kernel α β } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (η ∘ₖ κ) [PROOFSTEP] rw [comp_eq_snd_compProd] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsMarkovKernel η κ : { x // x ∈ kernel α β } inst✝ : IsMarkovKernel κ ⊢ IsMarkovKernel (kernel.snd (κ ⊗ₖ kernel.prodMkLeft α η)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (η ∘ₖ κ) [PROOFSTEP] rw [comp_eq_snd_compProd] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsFiniteKernel κ ⊢ IsFiniteKernel (kernel.snd (κ ⊗ₖ kernel.prodMkLeft α η)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (η ∘ₖ κ) [PROOFSTEP] rw [comp_eq_snd_compProd] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α η : { x // x ∈ kernel β γ } inst✝¹ : IsSFiniteKernel η κ : { x // x ∈ kernel α β } inst✝ : IsSFiniteKernel κ ⊢ IsSFiniteKernel (kernel.snd (κ ⊗ₖ kernel.prodMkLeft α η)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α δ : Type u_5 mδ : MeasurableSpace δ ξ : { x // x ∈ kernel γ δ } inst✝ : IsSFiniteKernel ξ η : { x // x ∈ kernel β γ } κ : { x // x ∈ kernel α β } ⊢ ξ ∘ₖ η ∘ₖ κ = ξ ∘ₖ (η ∘ₖ κ) [PROOFSTEP] refine' ext_fun fun a f hf => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f✝ : β → γ g : γ → α δ : Type u_5 mδ : MeasurableSpace δ ξ : { x // x ∈ kernel γ δ } inst✝ : IsSFiniteKernel ξ η : { x // x ∈ kernel β γ } κ : { x // x ∈ kernel α β } a : α f : δ → ℝ≥0∞ hf : Measurable f ⊢ ∫⁻ (b : δ), f b ∂↑(ξ ∘ₖ η ∘ₖ κ) a = ∫⁻ (b : δ), f b ∂↑(ξ ∘ₖ (η ∘ₖ κ)) a [PROOFSTEP] simp_rw [lintegral_comp _ _ _ hf, lintegral_comp _ _ _ hf.lintegral_kernel] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α hf : Measurable f κ : { x // x ∈ kernel α β } ⊢ deterministic f hf ∘ₖ κ = map κ f hf [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α hf : Measurable f κ : { x // x ∈ kernel α β } a : α s : Set γ hs : MeasurableSet s ⊢ ↑↑(↑(deterministic f hf ∘ₖ κ) a) s = ↑↑(↑(map κ f hf) a) s [PROOFSTEP] simp_rw [map_apply' _ _ _ hs, comp_apply' _ _ _ hs, deterministic_apply' hf _ hs, lintegral_indicator_const_comp hf hs, one_mul] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } hg : Measurable g ⊢ κ ∘ₖ deterministic g hg = comap κ g hg [PROOFSTEP] ext a s hs [GOAL] case h.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ f : β → γ g : γ → α κ : { x // x ∈ kernel α β } hg : Measurable g a : γ s : Set β hs : MeasurableSet s ⊢ ↑↑(↑(κ ∘ₖ deterministic g hg) a) s = ↑↑(↑(comap κ g hg) a) s [PROOFSTEP] simp_rw [comap_apply' _ _ _ s, comp_apply' _ _ _ hs, deterministic_apply hg a, lintegral_dirac' _ (kernel.measurable_coe κ hs)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel α γ } inst✝ : IsSFiniteKernel η a : α s : Set (β × γ) hs : MeasurableSet s ⊢ ↑↑(↑(κ ×ₖ η) a) s = ∫⁻ (b : β), ↑↑(↑η a) {c | (b, c) ∈ s} ∂↑κ a [PROOFSTEP] simp_rw [prod, compProd_apply _ _ _ hs, swapLeft_apply _ _, prodMkLeft_apply, Prod.swap_prod_mk] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } inst✝¹ : IsSFiniteKernel κ η : { x // x ∈ kernel α γ } inst✝ : IsSFiniteKernel η a : α g : β × γ → ℝ≥0∞ hg : Measurable g ⊢ ∫⁻ (c : β × γ), g c ∂↑(κ ×ₖ η) a = ∫⁻ (b : β), ∫⁻ (c : γ), g (b, c) ∂↑η a ∂↑κ a [PROOFSTEP] simp_rw [prod, lintegral_compProd _ _ _ hg, swapLeft_apply, prodMkLeft_apply, Prod.swap_prod_mk] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } inst✝¹ : IsMarkovKernel κ η : { x // x ∈ kernel α γ } inst✝ : IsMarkovKernel η ⊢ IsMarkovKernel (κ ×ₖ η) [PROOFSTEP] rw [prod] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } inst✝¹ : IsMarkovKernel κ η : { x // x ∈ kernel α γ } inst✝ : IsMarkovKernel η ⊢ IsMarkovKernel (κ ⊗ₖ kernel.swapLeft (kernel.prodMkLeft β η)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel α γ } inst✝ : IsFiniteKernel η ⊢ IsFiniteKernel (κ ×ₖ η) [PROOFSTEP] rw [prod] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } inst✝¹ : IsFiniteKernel κ η : { x // x ∈ kernel α γ } inst✝ : IsFiniteKernel η ⊢ IsFiniteKernel (κ ⊗ₖ kernel.swapLeft (kernel.prodMkLeft β η)) [PROOFSTEP] infer_instance [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel α γ } ⊢ IsSFiniteKernel (κ ×ₖ η) [PROOFSTEP] rw [prod] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α mβ : MeasurableSpace β γ : Type u_4 mγ : MeasurableSpace γ κ : { x // x ∈ kernel α β } η : { x // x ∈ kernel α γ } ⊢ IsSFiniteKernel (κ ⊗ₖ kernel.swapLeft (kernel.prodMkLeft β η)) [PROOFSTEP] infer_instance
{"mathlib_filename": "Mathlib.Probability.Kernel.Composition", "llama_tokens": 90393}
[GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m i j : ι ⊢ MeasurableSet {ω | (fun x => i) ω ≤ j} [PROOFSTEP] simp only [MeasurableSet.const] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] by_cases hi_min : IsMin i [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] suffices {ω : Ω | τ ω < i} = ∅ by rw [this]; exact @MeasurableSet.empty _ (f i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i this : {ω | τ ω < i} = ∅ ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i this : {ω | τ ω < i} = ∅ ⊢ MeasurableSet ∅ [PROOFSTEP] exact @MeasurableSet.empty _ (f i) [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i ⊢ {ω | τ ω < i} = ∅ [PROOFSTEP] ext1 ω [GOAL] case pos.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ ∅ [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false_iff] [GOAL] case pos.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : IsMin i ω : Ω ⊢ ¬τ ω < i [PROOFSTEP] rw [isMin_iff_forall_not_lt] at hi_min [GOAL] case pos.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : ∀ (b : ι), ¬b < i ω : Ω ⊢ ¬τ ω < i [PROOFSTEP] exact hi_min (τ ω) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : ¬IsMin i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have : {ω : Ω | τ ω < i} = τ ⁻¹' Set.Iio i := rfl [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : ¬IsMin i this : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [this, ← Iic_pred_of_not_isMin hi_min] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ : Ω → ι inst✝ : PredOrder ι hτ : IsStoppingTime f τ i : ι hi_min : ¬IsMin i this : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet (τ ⁻¹' Set.Iic (pred i)) [PROOFSTEP] exact f.mono (pred_le i) _ (hτ.measurableSet_le <| pred i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] have : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} := by ext1 a simp only [Set.mem_setOf_eq, Set.mem_range, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_diff, Set.mem_iUnion, exists_prop, not_exists, not_and, not_le] constructor <;> intro h · simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, imp_true_iff, and_self_iff] · have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1 rcases h_lt_or_eq with (h_lt | rfl) · exfalso exact h.2 a h_lt (le_refl (τ a)) · rfl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} [PROOFSTEP] ext1 a [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω ⊢ a ∈ {ω | τ ω = i} ↔ a ∈ {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_range, Set.iUnion_exists, Set.iUnion_iUnion_eq', Set.mem_diff, Set.mem_iUnion, exists_prop, not_exists, not_and, not_le] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω ⊢ τ a = i ↔ τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω ⊢ τ a = i → τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x [PROOFSTEP] intro h [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω ⊢ (τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x) → τ a = i [PROOFSTEP] intro h [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω h : τ a = i ⊢ τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x [PROOFSTEP] simp only [h, lt_iff_le_not_le, le_refl, and_imp, imp_self, imp_true_iff, and_self_iff] [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x ⊢ τ a = i [PROOFSTEP] have h_lt_or_eq : τ a < i ∨ τ a = i := lt_or_eq_of_le h.1 [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x h_lt_or_eq : τ a < i ∨ τ a = i ⊢ τ a = i [PROOFSTEP] rcases h_lt_or_eq with (h_lt | rfl) [GOAL] case h.mpr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x h_lt : τ a < i ⊢ τ a = i [PROOFSTEP] exfalso [GOAL] case h.mpr.inl.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι a : Ω h : τ a ≤ i ∧ ∀ (x : Ω), τ x < i → ¬τ a ≤ τ x h_lt : τ a < i ⊢ False [PROOFSTEP] exact h.2 a h_lt (le_refl (τ a)) [GOAL] case h.mpr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) a : Ω h : τ a ≤ τ a ∧ ∀ (x : Ω), τ x < τ a → ¬τ a ≤ τ x ⊢ τ a = τ a [PROOFSTEP] rfl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} ⊢ MeasurableSet ({ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}) [PROOFSTEP] refine' (hτ.measurableSet_le i).diff _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} ⊢ MeasurableSet (⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j}) [PROOFSTEP] refine' MeasurableSet.biUnion h_countable fun j _ => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} j : ι x✝ : j ∈ Set.range τ ⊢ MeasurableSet (⋃ (_ : j < i), {ω | τ ω ≤ j}) [PROOFSTEP] by_cases hji : j < i [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} j : ι x✝ : j ∈ Set.range τ hji : j < i ⊢ MeasurableSet (⋃ (_ : j < i), {ω | τ ω ≤ j}) [PROOFSTEP] simp only [hji, Set.iUnion_true] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} j : ι x✝ : j ∈ Set.range τ hji : j < i ⊢ MeasurableSet {ω | τ ω ≤ j} [PROOFSTEP] exact f.mono hji.le _ (hτ.measurableSet_le j) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} j : ι x✝ : j ∈ Set.range τ hji : ¬j < i ⊢ MeasurableSet (⋃ (_ : j < i), {ω | τ ω ≤ j}) [PROOFSTEP] simp only [hji, Set.iUnion_false] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} \ ⋃ (j : ι) (_ : j ∈ Set.range τ) (_ : j < i), {ω | τ ω ≤ j} j : ι x✝ : j ∈ Set.range τ hji : ¬j < i ⊢ MeasurableSet ∅ [PROOFSTEP] exact @MeasurableSet.empty _ (f i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by ext1 ω; simp [lt_iff_le_and_ne] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i} [PROOFSTEP] simp [lt_iff_le_and_ne] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : PartialOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i}) [PROOFSTEP] exact (hτ.measurableSet_le i).diff (hτ.measurableSet_eq_of_countable_range h_countable i) [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝¹ : PartialOrder ι✝ τ✝ : Ω → ι✝ f✝ : Filtration ι✝ m ι : Type u_4 inst✝ : LinearOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝¹ : PartialOrder ι✝ τ✝ : Ω → ι✝ f✝ : Filtration ι✝ m ι : Type u_4 inst✝ : LinearOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝¹ : PartialOrder ι✝ τ✝ : Ω → ι✝ f✝ : Filtration ι✝ m ι : Type u_4 inst✝ : LinearOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ω : Ω ⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω < i}ᶜ [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝¹ : PartialOrder ι✝ τ✝ : Ω → ι✝ f✝ : Filtration ι✝ m ι : Type u_4 inst✝ : LinearOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝¹ : PartialOrder ι✝ τ✝ : Ω → ι✝ f✝ : Filtration ι✝ m ι : Type u_4 inst✝ : LinearOrder ι τ : Ω → ι f : Filtration ι m hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ ⊢ MeasurableSet {ω | τ ω < i}ᶜ [PROOFSTEP] exact (hτ.measurableSet_lt_of_countable_range h_countable i).compl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | i < τ ω} [PROOFSTEP] have : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_le] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι ⊢ {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | i < τ ω} ↔ ω ∈ {ω | τ ω ≤ i}ᶜ [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_le] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ ⊢ MeasurableSet {ω | i < τ ω} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ ⊢ MeasurableSet {ω | τ ω ≤ i}ᶜ [PROOFSTEP] exact (hτ.measurableSet_le i).compl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] by_cases hi_min : IsMin i [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : IsMin i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] suffices {ω | τ ω < i} = ∅ by rw [this]; exact @MeasurableSet.empty _ (f i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : IsMin i this : {ω | τ ω < i} = ∅ ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : IsMin i this : {ω | τ ω < i} = ∅ ⊢ MeasurableSet ∅ [PROOFSTEP] exact @MeasurableSet.empty _ (f i) [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : IsMin i ⊢ {ω | τ ω < i} = ∅ [PROOFSTEP] ext1 ω [GOAL] case pos.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : IsMin i ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ ∅ [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_empty_iff_false, iff_false_iff] [GOAL] case pos.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : IsMin i ω : Ω ⊢ ¬τ ω < i [PROOFSTEP] exact isMin_iff_forall_not_lt.mp hi_min (τ ω) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] obtain ⟨seq, -, -, h_tendsto, h_bound⟩ : ∃ seq : ℕ → ι, Monotone seq ∧ (∀ j, seq j ≤ i) ∧ Tendsto seq atTop (𝓝 i) ∧ ∀ j, seq j < i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i ⊢ ∃ seq, Monotone seq ∧ (∀ (j : ℕ), seq j ≤ i) ∧ Tendsto seq atTop (𝓝 i) ∧ ∀ (j : ℕ), seq j < i case neg.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] exact h_lub.exists_seq_monotone_tendsto (not_isMin_iff.mp hi_min) [GOAL] case neg.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have h_Ioi_eq_Union : Set.Iio i = ⋃ j, {k | k ≤ seq j} := by ext1 k simp only [Set.mem_Iio, Set.mem_iUnion, Set.mem_setOf_eq] refine' ⟨fun hk_lt_i => _, fun h_exists_k_le_seq => _⟩ · rw [tendsto_atTop'] at h_tendsto have h_nhds : Set.Ici k ∈ 𝓝 i := mem_nhds_iff.mpr ⟨Set.Ioi k, Set.Ioi_subset_Ici le_rfl, isOpen_Ioi, hk_lt_i⟩ obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, b ≥ a → k ≤ seq b := h_tendsto (Set.Ici k) h_nhds exact ⟨a, ha a le_rfl⟩ · obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq exact hk_seq_j.trans_lt (h_bound j) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i ⊢ Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} [PROOFSTEP] ext1 k [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i k : ι ⊢ k ∈ Set.Iio i ↔ k ∈ ⋃ (j : ℕ), {k | k ≤ seq j} [PROOFSTEP] simp only [Set.mem_Iio, Set.mem_iUnion, Set.mem_setOf_eq] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i k : ι ⊢ k < i ↔ ∃ i, k ≤ seq i [PROOFSTEP] refine' ⟨fun hk_lt_i => _, fun h_exists_k_le_seq => _⟩ [GOAL] case h.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i k : ι hk_lt_i : k < i ⊢ ∃ i, k ≤ seq i [PROOFSTEP] rw [tendsto_atTop'] at h_tendsto [GOAL] case h.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : ∀ (s : Set ι), s ∈ 𝓝 i → ∃ a, ∀ (b : ℕ), b ≥ a → seq b ∈ s h_bound : ∀ (j : ℕ), seq j < i k : ι hk_lt_i : k < i ⊢ ∃ i, k ≤ seq i [PROOFSTEP] have h_nhds : Set.Ici k ∈ 𝓝 i := mem_nhds_iff.mpr ⟨Set.Ioi k, Set.Ioi_subset_Ici le_rfl, isOpen_Ioi, hk_lt_i⟩ [GOAL] case h.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : ∀ (s : Set ι), s ∈ 𝓝 i → ∃ a, ∀ (b : ℕ), b ≥ a → seq b ∈ s h_bound : ∀ (j : ℕ), seq j < i k : ι hk_lt_i : k < i h_nhds : Set.Ici k ∈ 𝓝 i ⊢ ∃ i, k ≤ seq i [PROOFSTEP] obtain ⟨a, ha⟩ : ∃ a : ℕ, ∀ b : ℕ, b ≥ a → k ≤ seq b := h_tendsto (Set.Ici k) h_nhds [GOAL] case h.refine'_1.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : ∀ (s : Set ι), s ∈ 𝓝 i → ∃ a, ∀ (b : ℕ), b ≥ a → seq b ∈ s h_bound : ∀ (j : ℕ), seq j < i k : ι hk_lt_i : k < i h_nhds : Set.Ici k ∈ 𝓝 i a : ℕ ha : ∀ (b : ℕ), b ≥ a → k ≤ seq b ⊢ ∃ i, k ≤ seq i [PROOFSTEP] exact ⟨a, ha a le_rfl⟩ [GOAL] case h.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i k : ι h_exists_k_le_seq : ∃ i, k ≤ seq i ⊢ k < i [PROOFSTEP] obtain ⟨j, hk_seq_j⟩ := h_exists_k_le_seq [GOAL] case h.refine'_2.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i k : ι j : ℕ hk_seq_j : k ≤ seq j ⊢ k < i [PROOFSTEP] exact hk_seq_j.trans_lt (h_bound j) [GOAL] case neg.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iio] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} ⊢ {ω | τ ω < i} = τ ⁻¹' Set.Iio i [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ τ ⁻¹' Set.Iio i [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_preimage, Set.mem_Iio] [GOAL] case neg.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [h_lt_eq_preimage, h_Ioi_eq_Union] [GOAL] case neg.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet (τ ⁻¹' ⋃ (j : ℕ), {k | k ≤ seq j}) [PROOFSTEP] simp only [Set.preimage_iUnion, Set.preimage_setOf_eq] [GOAL] case neg.intro.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι h_lub : IsLUB (Set.Iio i) i hi_min : ¬IsMin i seq : ℕ → ι h_tendsto : Tendsto seq atTop (𝓝 i) h_bound : ∀ (j : ℕ), seq j < i h_Ioi_eq_Union : Set.Iio i = ⋃ (j : ℕ), {k | k ≤ seq j} h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet (⋃ (i : ℕ), {a | τ a ≤ seq i}) [PROOFSTEP] exact MeasurableSet.iUnion fun n => f.mono (h_bound n).le _ (hτ.measurableSet_le (seq n)) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] obtain ⟨i', hi'_lub⟩ : ∃ i', IsLUB (Set.Iio i) i' [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ ∃ i', IsLUB (Set.Iio i) i' case intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] exact exists_lub_Iio i [GOAL] case intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] cases' lub_Iio_eq_self_or_Iio_eq_Iic i hi'_lub with hi'_eq_i h_Iio_eq_Iic [GOAL] case intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' hi'_eq_i : i' = i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [← hi'_eq_i] at hi'_lub ⊢ [GOAL] case intro.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i') i' hi'_eq_i : i' = i ⊢ MeasurableSet {ω | τ ω < i'} [PROOFSTEP] exact hτ.measurableSet_lt_of_isLUB i' hi'_lub [GOAL] case intro.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' h_Iio_eq_Iic : Set.Iio i = Set.Iic i' ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have h_lt_eq_preimage : {ω : Ω | τ ω < i} = τ ⁻¹' Set.Iio i := rfl [GOAL] case intro.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' h_Iio_eq_Iic : Set.Iio i = Set.Iic i' h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [h_lt_eq_preimage, h_Iio_eq_Iic] [GOAL] case intro.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i i' : ι hi'_lub : IsLUB (Set.Iio i) i' h_Iio_eq_Iic : Set.Iio i = Set.Iic i' h_lt_eq_preimage : {ω | τ ω < i} = τ ⁻¹' Set.Iio i ⊢ MeasurableSet (τ ⁻¹' Set.Iic i') [PROOFSTEP] exact f.mono (lub_Iio_le i hi'_lub) _ (hτ.measurableSet_le i') [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] have : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ := by ext1 ω; simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω < i}ᶜ [PROOFSTEP] simp only [Set.mem_setOf_eq, Set.mem_compl_iff, not_lt] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | i ≤ τ ω} = {ω | τ ω < i}ᶜ ⊢ MeasurableSet {ω | τ ω < i}ᶜ [PROOFSTEP] exact (hτ.measurableSet_lt i).compl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] have : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i} := by ext1 ω; simp only [Set.mem_setOf_eq, ge_iff_le, Set.mem_inter_iff, le_antisymm_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | τ ω = i} ↔ ω ∈ {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i} [PROOFSTEP] simp only [Set.mem_setOf_eq, ge_iff_le, Set.mem_inter_iff, le_antisymm_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i} ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | τ ω = i} = {ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i} ⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ {ω | τ ω ≥ i}) [PROOFSTEP] exact (hτ.measurableSet_le i).inter (hτ.measurableSet_ge i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι inst✝ : Countable ι f : Filtration ι m τ : Ω → ι hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i} ⊢ IsStoppingTime f τ [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι inst✝ : Countable ι f : Filtration ι m τ : Ω → ι hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i} i : ι ⊢ MeasurableSet {ω | τ ω ≤ i} [PROOFSTEP] rw [show {ω | τ ω ≤ i} = ⋃ k ≤ i, {ω | τ ω = k} by ext; simp] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι inst✝ : Countable ι f : Filtration ι m τ : Ω → ι hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i} i : ι ⊢ {ω | τ ω ≤ i} = ⋃ (k : ι) (_ : k ≤ i), {ω | τ ω = k} [PROOFSTEP] ext [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι inst✝ : Countable ι f : Filtration ι m τ : Ω → ι hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i} i : ι x✝ : Ω ⊢ x✝ ∈ {ω | τ ω ≤ i} ↔ x✝ ∈ ⋃ (k : ι) (_ : k ≤ i), {ω | τ ω = k} [PROOFSTEP] simp [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι inst✝ : Countable ι f : Filtration ι m τ : Ω → ι hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i} i : ι ⊢ MeasurableSet (⋃ (k : ι) (_ : k ≤ i), {ω | τ ω = k}) [PROOFSTEP] refine' MeasurableSet.biUnion (Set.to_countable _) fun k hk => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι inst✝ : Countable ι f : Filtration ι m τ : Ω → ι hτ : ∀ (i : ι), MeasurableSet {ω | τ ω = i} i k : ι hk : k ∈ fun k => Preorder.toLE.1 k i ⊢ MeasurableSet {ω | τ ω = k} [PROOFSTEP] exact f.mono hk _ (hτ k) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ IsStoppingTime f fun ω => max (τ ω) (π ω) [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ι ⊢ MeasurableSet {ω | (fun ω => max (τ ω) (π ω)) ω ≤ i} [PROOFSTEP] simp_rw [max_le_iff, Set.setOf_and] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ι ⊢ MeasurableSet ({a | τ a ≤ i} ∩ {a | π a ≤ i}) [PROOFSTEP] exact (hτ i).inter (hπ i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ IsStoppingTime f fun ω => min (τ ω) (π ω) [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ι ⊢ MeasurableSet {ω | (fun ω => min (τ ω) (π ω)) ω ≤ i} [PROOFSTEP] simp_rw [min_le_iff, Set.setOf_or] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ι ⊢ MeasurableSet ({a | τ a ≤ i} ∪ {a | π a ≤ i}) [PROOFSTEP] exact (hτ i).union (hπ i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : AddGroup ι inst✝² : Preorder ι inst✝¹ : CovariantClass ι ι (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι hi : 0 ≤ i ⊢ IsStoppingTime f fun ω => τ ω + i [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : AddGroup ι inst✝² : Preorder ι inst✝¹ : CovariantClass ι ι (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι hi : 0 ≤ i j : ι ⊢ MeasurableSet {ω | (fun ω => τ ω + i) ω ≤ j} [PROOFSTEP] simp_rw [← le_sub_iff_add_le] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : AddGroup ι inst✝² : Preorder ι inst✝¹ : CovariantClass ι ι (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 inst✝ : CovariantClass ι ι (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 f : Filtration ι m τ : Ω → ι hτ : IsStoppingTime f τ i : ι hi : 0 ≤ i j : ι ⊢ MeasurableSet {ω | τ ω ≤ j - i} [PROOFSTEP] exact f.mono (sub_le_self j hi) _ (hτ (j - i)) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i : ℕ ⊢ IsStoppingTime f fun ω => τ ω + i [PROOFSTEP] refine' isStoppingTime_of_measurableSet_eq fun j => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ ⊢ MeasurableSet {ω | τ ω + i = j} [PROOFSTEP] by_cases hij : i ≤ j [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : i ≤ j ⊢ MeasurableSet {ω | τ ω + i = j} [PROOFSTEP] simp_rw [eq_comm, ← Nat.sub_eq_iff_eq_add hij, eq_comm] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : i ≤ j ⊢ MeasurableSet {ω | τ ω = j - i} [PROOFSTEP] exact f.mono (j.sub_le i) _ (hτ.measurableSet_eq (j - i)) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : ¬i ≤ j ⊢ MeasurableSet {ω | τ ω + i = j} [PROOFSTEP] rw [not_le] at hij [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : j < i ⊢ MeasurableSet {ω | τ ω + i = j} [PROOFSTEP] convert @MeasurableSet.empty _ (f.1 j) [GOAL] case h.e'_3 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : j < i ⊢ {ω | τ ω + i = j} = ∅ [PROOFSTEP] ext ω [GOAL] case h.e'_3.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : j < i ω : Ω ⊢ ω ∈ {ω | τ ω + i = j} ↔ ω ∈ ∅ [PROOFSTEP] simp only [Set.mem_empty_iff_false, iff_false_iff] [GOAL] case h.e'_3.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : j < i ω : Ω ⊢ ¬ω ∈ {ω | τ ω + i = j} [PROOFSTEP] rintro (hx : τ ω + i = j) [GOAL] case h.e'_3.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ : Ω → ℕ hτ : IsStoppingTime f τ i j : ℕ hij : j < i ω : Ω hx : τ ω + i = j ⊢ False [PROOFSTEP] linarith [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ IsStoppingTime f (τ + π) [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ⊢ MeasurableSet {ω | (τ + π) ω ≤ i} [PROOFSTEP] rw [(_ : {ω | (τ + π) ω ≤ i} = ⋃ k ≤ i, {ω | π ω = k} ∩ {ω | τ ω + k ≤ i})] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ⊢ MeasurableSet (⋃ (k : ℕ) (_ : k ≤ i), {ω | π ω = k} ∩ {ω | τ ω + k ≤ i}) [PROOFSTEP] exact MeasurableSet.iUnion fun k => MeasurableSet.iUnion fun hk => (hπ.measurableSet_eq_le hk).inter (hτ.add_const_nat i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ⊢ {ω | (τ + π) ω ≤ i} = ⋃ (k : ℕ) (_ : k ≤ i), {ω | π ω = k} ∩ {ω | τ ω + k ≤ i} [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ω : Ω ⊢ ω ∈ {ω | (τ + π) ω ≤ i} ↔ ω ∈ ⋃ (k : ℕ) (_ : k ≤ i), {ω | π ω = k} ∩ {ω | τ ω + k ≤ i} [PROOFSTEP] simp only [Pi.add_apply, Set.mem_setOf_eq, Set.mem_iUnion, Set.mem_inter_iff, exists_prop] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ω : Ω ⊢ τ ω + π ω ≤ i ↔ ∃ i_1, i_1 ≤ i ∧ π ω = i_1 ∧ τ ω + i_1 ≤ i [PROOFSTEP] refine' ⟨fun h => ⟨π ω, by linarith, rfl, h⟩, _⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ω : Ω h : τ ω + π ω ≤ i ⊢ π ω ≤ i [PROOFSTEP] linarith [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ω : Ω ⊢ (∃ i_1, i_1 ≤ i ∧ π ω = i_1 ∧ τ ω + i_1 ≤ i) → τ ω + π ω ≤ i [PROOFSTEP] rintro ⟨j, hj, rfl, h⟩ [GOAL] case h.intro.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m τ π : Ω → ℕ hτ : IsStoppingTime f τ hπ : IsStoppingTime f π i : ℕ ω : Ω hj : π ω ≤ i h : τ ω + π ω ≤ i ⊢ τ ω + π ω ≤ i [PROOFSTEP] assumption [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ MeasurableSet (sᶜ ∩ {ω | τ ω ≤ i}) [PROOFSTEP] rw [(_ : sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i})] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ MeasurableSet ((sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i}) [PROOFSTEP] refine' MeasurableSet.inter _ _ [GOAL] case refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ MeasurableSet (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) [PROOFSTEP] rw [← Set.compl_inter] [GOAL] case refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i})ᶜ [PROOFSTEP] exact (hs i).compl [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ MeasurableSet {ω | τ ω ≤ i} [PROOFSTEP] exact hτ i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ sᶜ ∩ {ω | τ ω ≤ i} = (sᶜ ∪ {ω | τ ω ≤ i}ᶜ) ∩ {ω | τ ω ≤ i} [PROOFSTEP] rw [Set.union_inter_distrib_right] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω hs : (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) s i : ι ⊢ sᶜ ∩ {ω | τ ω ≤ i} = sᶜ ∩ {ω | τ ω ≤ i} ∪ {ω | τ ω ≤ i}ᶜ ∩ {ω | τ ω ≤ i} [PROOFSTEP] simp only [Set.compl_inter_self, Set.union_empty] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : ℕ → Set Ω hs : ∀ (i : ℕ), (fun s => ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) (s i) i : ι ⊢ MeasurableSet ((⋃ (i : ℕ), s i) ∩ {ω | τ ω ≤ i}) [PROOFSTEP] rw [forall_swap] at hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : ℕ → Set Ω hs : ∀ (y : ι) (x : ℕ), MeasurableSet (s x ∩ {ω | τ ω ≤ y}) i : ι ⊢ MeasurableSet ((⋃ (i : ℕ), s i) ∩ {ω | τ ω ≤ i}) [PROOFSTEP] rw [Set.iUnion_inter] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : ℕ → Set Ω hs : ∀ (y : ι) (x : ℕ), MeasurableSet (s x ∩ {ω | τ ω ≤ y}) i : ι ⊢ MeasurableSet (⋃ (i_1 : ℕ), s i_1 ∩ {ω | τ ω ≤ i}) [PROOFSTEP] exact MeasurableSet.iUnion (hs i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π ⊢ IsStoppingTime.measurableSpace hτ ≤ IsStoppingTime.measurableSpace hπ [PROOFSTEP] intro s hs i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π s : Set Ω hs : MeasurableSet s i : ι ⊢ MeasurableSet (s ∩ {ω | π ω ≤ i}) [PROOFSTEP] rw [(_ : s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i})] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π s : Set Ω hs : MeasurableSet s i : ι ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i}) [PROOFSTEP] exact (hs i).inter (hπ i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π s : Set Ω hs : MeasurableSet s i : ι ⊢ s ∩ {ω | π ω ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i} [PROOFSTEP] ext [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π s : Set Ω hs : MeasurableSet s i : ι x✝ : Ω ⊢ x✝ ∈ s ∩ {ω | π ω ≤ i} ↔ x✝ ∈ s ∩ {ω | τ ω ≤ i} ∩ {ω | π ω ≤ i} [PROOFSTEP] simp only [Set.mem_inter_iff, iff_self_and, and_congr_left_iff, Set.mem_setOf_eq] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π s : Set Ω hs : MeasurableSet s i : ι x✝ : Ω ⊢ π x✝ ≤ i → x✝ ∈ s → τ x✝ ≤ i [PROOFSTEP] intro hle' _ [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π hle : τ ≤ π s : Set Ω hs : MeasurableSet s i : ι x✝ : Ω hle' : π x✝ ≤ i a✝ : x✝ ∈ s ⊢ τ x✝ ≤ i [PROOFSTEP] exact le_trans (hle _) hle' [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] intro s hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : MeasurableSet s ⊢ MeasurableSet s [PROOFSTEP] change ∀ i, MeasurableSet[f i] (s ∩ {ω | τ ω ≤ i}) at hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet s [PROOFSTEP] rw [(_ : s = ⋃ i, s ∩ {ω | τ ω ≤ i})] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet (⋃ (i : ι), s ∩ {ω | τ ω ≤ i}) [PROOFSTEP] exact MeasurableSet.iUnion fun i => f.le i _ (hs i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ s = ⋃ (i : ι), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ s ↔ ω ∈ ⋃ (i : ι), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ s → ω ∈ ⋃ (i : ι), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ ⋃ (i : ι), s ∩ {ω | τ ω ≤ i} → ω ∈ s [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ s → ∃ i, ω ∈ s ∩ {ω | τ ω ≤ i} [PROOFSTEP] exact fun hx => ⟨τ ω, hx, le_rfl⟩ [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ (∃ i, ω ∈ s ∩ {ω | τ ω ≤ i}) → ω ∈ s [PROOFSTEP] rintro ⟨_, hx, _⟩ [GOAL] case h.mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝ : Countable ι hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω w✝ : ι hx : ω ∈ s right✝ : ω ∈ {ω | τ ω ≤ w✝} ⊢ ω ∈ s [PROOFSTEP] exact hx [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] intro s hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : MeasurableSet s ⊢ MeasurableSet s [PROOFSTEP] change ∀ i, MeasurableSet[f i] (s ∩ {ω | τ ω ≤ i}) at hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet s [PROOFSTEP] obtain ⟨seq : ℕ → ι, h_seq_tendsto⟩ := (atTop : Filter ι).exists_seq_tendsto [GOAL] case intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ⊢ MeasurableSet s [PROOFSTEP] rw [(_ : s = ⋃ n, s ∩ {ω | τ ω ≤ seq n})] [GOAL] case intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ⊢ MeasurableSet (⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n}) [PROOFSTEP] exact MeasurableSet.iUnion fun i => f.le (seq i) _ (hs (seq i)) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ⊢ s = ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n} [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω ⊢ ω ∈ s ↔ ω ∈ ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n} [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω ⊢ ω ∈ s → ω ∈ ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n} [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω ⊢ ω ∈ ⋃ (n : ℕ), s ∩ {ω | τ ω ≤ seq n} → ω ∈ s [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω ⊢ ω ∈ s → ∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i} [PROOFSTEP] intro hx [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω hx : ω ∈ s ⊢ ∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i} [PROOFSTEP] suffices : ∃ i, τ ω ≤ seq i [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω hx : ω ∈ s this : ∃ i, τ ω ≤ seq i ⊢ ∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i} case this Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω hx : ω ∈ s ⊢ ∃ i, τ ω ≤ seq i [PROOFSTEP] exact ⟨this.choose, hx, this.choose_spec⟩ [GOAL] case this Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω hx : ω ∈ s ⊢ ∃ i, τ ω ≤ seq i [PROOFSTEP] rw [tendsto_atTop] at h_seq_tendsto [GOAL] case this Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : ∀ (b : ι), ∀ᶠ (a : ℕ) in atTop, b ≤ seq a ω : Ω hx : ω ∈ s ⊢ ∃ i, τ ω ≤ seq i [PROOFSTEP] exact (h_seq_tendsto (τ ω)).exists [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω ⊢ (∃ i, ω ∈ s ∩ {ω | τ ω ≤ seq i}) → ω ∈ s [PROOFSTEP] rintro ⟨_, hx, _⟩ [GOAL] case h.mpr.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι f : Filtration ι m τ π : Ω → ι inst✝¹ : IsCountablyGenerated atTop inst✝ : NeBot atTop hτ : IsStoppingTime f τ s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) seq : ℕ → ι h_seq_tendsto : Tendsto seq atTop atTop ω : Ω w✝ : ℕ hx : ω ∈ s right✝ : ω ∈ {ω | τ ω ≤ seq w✝} ⊢ ω ∈ s [PROOFSTEP] exact hx [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] cases isEmpty_or_nonempty ι [GOAL] case inl Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] haveI : IsEmpty Ω := ⟨fun ω => IsEmpty.false (τ ω)⟩ [GOAL] case inl Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι this : IsEmpty Ω ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] intro s _ [GOAL] case inl Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι this : IsEmpty Ω s : Set Ω a✝ : MeasurableSet s ⊢ MeasurableSet s [PROOFSTEP] suffices hs : s = ∅ [GOAL] case inl Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι this : IsEmpty Ω s : Set Ω a✝ : MeasurableSet s hs : s = ∅ ⊢ MeasurableSet s [PROOFSTEP] rw [hs] [GOAL] case inl Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι this : IsEmpty Ω s : Set Ω a✝ : MeasurableSet s hs : s = ∅ ⊢ MeasurableSet ∅ [PROOFSTEP] exact MeasurableSet.empty [GOAL] case hs Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι this : IsEmpty Ω s : Set Ω a✝ : MeasurableSet s ⊢ s = ∅ [PROOFSTEP] haveI : Unique (Set Ω) := Set.uniqueEmpty [GOAL] case hs Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : IsEmpty ι this✝ : IsEmpty Ω s : Set Ω a✝ : MeasurableSet s this : Unique (Set Ω) ⊢ s = ∅ [PROOFSTEP] rw [Unique.eq_default s, Unique.eq_default ∅] [GOAL] case inr Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω inst✝² : Preorder ι✝ f✝ : Filtration ι✝ m τ✝ π : Ω → ι✝ ι : Type u_4 inst✝¹ : SemilatticeSup ι f : Filtration ι m τ : Ω → ι inst✝ : IsCountablyGenerated atTop hτ : IsStoppingTime f τ h✝ : Nonempty ι ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] exact measurableSpace_le' hτ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι ⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun x => i) = ↑f i [PROOFSTEP] ext1 s [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω ⊢ MeasurableSet s ↔ MeasurableSet s [PROOFSTEP] change MeasurableSet[(isStoppingTime_const f i).measurableSpace] s ↔ MeasurableSet[f i] s [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω ⊢ MeasurableSet s ↔ MeasurableSet s [PROOFSTEP] rw [IsStoppingTime.measurableSet] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω ⊢ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})) ↔ MeasurableSet s [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω ⊢ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1})) → MeasurableSet s [PROOFSTEP] intro h [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω ⊢ MeasurableSet s → ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1}) [PROOFSTEP] intro h [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1}) ⊢ MeasurableSet s [PROOFSTEP] specialize h i [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : MeasurableSet (s ∩ {ω | i ≤ i}) ⊢ MeasurableSet s [PROOFSTEP] simpa only [le_refl, Set.setOf_true, Set.inter_univ] using h [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : MeasurableSet s ⊢ ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | i ≤ i_1}) [PROOFSTEP] intro j [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : MeasurableSet s j : ι ⊢ MeasurableSet (s ∩ {ω | i ≤ j}) [PROOFSTEP] by_cases hij : i ≤ j [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : MeasurableSet s j : ι hij : i ≤ j ⊢ MeasurableSet (s ∩ {ω | i ≤ j}) [PROOFSTEP] simp only [hij, Set.setOf_true, Set.inter_univ] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : MeasurableSet s j : ι hij : i ≤ j ⊢ MeasurableSet s [PROOFSTEP] exact f.mono hij _ h [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f✝ : Filtration ι m τ π : Ω → ι f : Filtration ι m i : ι s : Set Ω h : MeasurableSet s j : ι hij : ¬i ≤ j ⊢ MeasurableSet (s ∩ {ω | i ≤ j}) [PROOFSTEP] simp only [hij, Set.setOf_false, Set.inter_empty, @MeasurableSet.empty _ (f.1 j)] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) ↔ MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] have : ∀ j, {ω : Ω | τ ω = i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω = i} ∩ {_ω | i ≤ j} := by intro j ext1 ω simp only [Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff] intro hxi rw [hxi] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι ⊢ ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i j : ι ⊢ {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i j : ι ω : Ω ⊢ ω ∈ {ω | τ ω = i} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | τ ω = i} ∩ {_ω | i ≤ j} [PROOFSTEP] simp only [Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i j : ι ω : Ω ⊢ τ ω = i → (τ ω ≤ j ↔ i ≤ j) [PROOFSTEP] intro hxi [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i j : ι ω : Ω hxi : τ ω = i ⊢ τ ω ≤ j ↔ i ≤ j [PROOFSTEP] rw [hxi] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) ↔ MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) → MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] intro h [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) → MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] intro h [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] specialize h i [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i} ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] simpa only [Set.inter_assoc, this, le_refl, Set.setOf_true, Set.inter_univ] using h [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] intro j [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) j : ι ⊢ MeasurableSet (s ∩ {ω | τ ω = i} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] rw [Set.inter_assoc, this] [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) j : ι ⊢ MeasurableSet (s ∩ ({ω | τ ω = i} ∩ {_ω | i ≤ j})) [PROOFSTEP] by_cases hij : i ≤ j [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) j : ι hij : i ≤ j ⊢ MeasurableSet (s ∩ ({ω | τ ω = i} ∩ {_ω | i ≤ j})) [PROOFSTEP] simp only [hij, Set.setOf_true, Set.inter_univ] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) j : ι hij : i ≤ j ⊢ MeasurableSet (s ∩ {ω | τ ω = i}) [PROOFSTEP] exact f.mono hij _ h [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) j : ι hij : ¬i ≤ j ⊢ MeasurableSet (s ∩ ({ω | τ ω = i} ∩ {_ω | i ≤ j})) [PROOFSTEP] simp [hij] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : Preorder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι this : ∀ (j : ι), {ω | τ ω = i} ∩ {ω | τ ω ≤ j} = {ω | τ ω = i} ∩ {_ω | i ≤ j} h : MeasurableSet (s ∩ {ω | τ ω = i}) j : ι hij : ¬i ≤ j ⊢ MeasurableSet ∅ [PROOFSTEP] convert @MeasurableSet.empty _ (Filtration.seq f j) [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.96517 inst✝³ : SemilatticeSup ι inst✝² : OrderBot ι inst✝¹ : IsCountablyGenerated atTop μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ ⊢ SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) [PROOFSTEP] refine @sigmaFiniteTrim_mono _ _ ?_ _ _ _ ?_ ?_ [GOAL] case refine_1 Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.96517 inst✝³ : SemilatticeSup ι inst✝² : OrderBot ι inst✝¹ : IsCountablyGenerated atTop μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ ⊢ MeasurableSpace Ω [PROOFSTEP] exact f ⊥ [GOAL] case refine_2 Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.96517 inst✝³ : SemilatticeSup ι inst✝² : OrderBot ι inst✝¹ : IsCountablyGenerated atTop μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ ⊢ ↑f ⊥ ≤ IsStoppingTime.measurableSpace hτ [PROOFSTEP] exact hτ.le_measurableSpace_of_const_le fun _ => bot_le [GOAL] case refine_3 Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.96517 inst✝³ : SemilatticeSup ι inst✝² : OrderBot ι inst✝¹ : IsCountablyGenerated atTop μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ ⊢ SigmaFinite (Measure.trim μ (_ : ↑f ⊥ ≤ m)) [PROOFSTEP] infer_instance [GOAL] Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.101660 inst✝² : SemilatticeSup ι inst✝¹ : OrderBot ι μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ⊢ SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) [PROOFSTEP] refine @sigmaFiniteTrim_mono _ _ ?_ _ _ _ ?_ ?_ [GOAL] case refine_1 Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.101660 inst✝² : SemilatticeSup ι inst✝¹ : OrderBot ι μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ⊢ MeasurableSpace Ω [PROOFSTEP] exact f ⊥ [GOAL] case refine_2 Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.101660 inst✝² : SemilatticeSup ι inst✝¹ : OrderBot ι μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ⊢ ↑f ⊥ ≤ IsStoppingTime.measurableSpace hτ [PROOFSTEP] exact hτ.le_measurableSpace_of_const_le fun _ => bot_le [GOAL] case refine_3 Ω : Type u_1 β : Type u_2 ι✝ : Type u_3 m : MeasurableSpace Ω ι : Type ?u.101660 inst✝² : SemilatticeSup ι inst✝¹ : OrderBot ι μ : Measure Ω f : Filtration ι m τ : Ω → ι inst✝ : SigmaFiniteFiltration μ f hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ⊢ SigmaFinite (Measure.trim μ (_ : ↑f ⊥ ≤ m)) [PROOFSTEP] infer_instance [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω ≤ i} [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i j : ι ⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] have : {ω : Ω | τ ω ≤ i} ∩ {ω : Ω | τ ω ≤ j} = {ω : Ω | τ ω ≤ min i j} := by ext1 ω; simp only [Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i j : ι ⊢ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} = {ω | τ ω ≤ min i j} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i j : ι ω : Ω ⊢ ω ∈ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | τ ω ≤ min i j} [PROOFSTEP] simp only [Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i j : ι this : {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} = {ω | τ ω ≤ min i j} ⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i j : ι this : {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ j} = {ω | τ ω ≤ min i j} ⊢ MeasurableSet {ω | τ ω ≤ min i j} [PROOFSTEP] exact f.mono (min_le_right i j) _ (hτ _) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | i < τ ω} [PROOFSTEP] have : {ω : Ω | i < τ ω} = {ω : Ω | τ ω ≤ i}ᶜ := by ext1 ω; simp [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι ⊢ {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | i < τ ω} ↔ ω ∈ {ω | τ ω ≤ i}ᶜ [PROOFSTEP] simp [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ ⊢ MeasurableSet {ω | i < τ ω} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι this : {ω | i < τ ω} = {ω | τ ω ≤ i}ᶜ ⊢ MeasurableSet {ω | τ ω ≤ i}ᶜ [PROOFSTEP] exact (hτ.measurableSet_le' i).compl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] rw [← Set.univ_inter {ω | τ ω = i}, measurableSet_inter_eq_iff, Set.univ_inter] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] exact hτ.measurableSet_eq i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} := by ext1 ω simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union] rw [@eq_comm _ i, or_comm] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω = i} ∪ {ω | i < τ ω} [PROOFSTEP] simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ i < τ ω ∨ i = τ ω ↔ τ ω = i ∨ i < τ ω [PROOFSTEP] rw [@eq_comm _ i, or_comm] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} ⊢ MeasurableSet ({ω | τ ω = i} ∪ {ω | i < τ ω}) [PROOFSTEP] exact (hτ.measurableSet_eq' i).union (hτ.measurableSet_gt' i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by ext1 ω simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i} [PROOFSTEP] simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝³ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝² : TopologicalSpace ι inst✝¹ : OrderTopology ι inst✝ : FirstCountableTopology ι hτ : IsStoppingTime f τ i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i}) [PROOFSTEP] exact (hτ.measurableSet_le' i).diff (hτ.measurableSet_eq' i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] rw [← Set.univ_inter {ω | τ ω = i}, measurableSet_inter_eq_iff, Set.univ_inter] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] exact hτ.measurableSet_eq_of_countable_range h_countable i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] have : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} := by ext1 ω simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union] rw [@eq_comm _ i, or_comm] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ω : Ω ⊢ ω ∈ {ω | i ≤ τ ω} ↔ ω ∈ {ω | τ ω = i} ∪ {ω | i < τ ω} [PROOFSTEP] simp only [le_iff_lt_or_eq, Set.mem_setOf_eq, Set.mem_union] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ω : Ω ⊢ i < τ ω ∨ i = τ ω ↔ τ ω = i ∨ i < τ ω [PROOFSTEP] rw [@eq_comm _ i, or_comm] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} ⊢ MeasurableSet {ω | i ≤ τ ω} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | i ≤ τ ω} = {ω | τ ω = i} ∪ {ω | i < τ ω} ⊢ MeasurableSet ({ω | τ ω = i} ∪ {ω | i < τ ω}) [PROOFSTEP] exact (hτ.measurableSet_eq_of_countable_range' h_countable i).union (hτ.measurableSet_gt' i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by ext1 ω simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i} [PROOFSTEP] simp only [lt_iff_le_and_ne, Set.mem_setOf_eq, Set.mem_diff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet {ω | τ ω < i} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i}) [PROOFSTEP] exact (hτ.measurableSet_le' i).diff (hτ.measurableSet_eq_of_countable_range' h_countable i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) ⊢ IsStoppingTime.measurableSpace hτ ≤ m [PROOFSTEP] intro s hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : MeasurableSet s ⊢ MeasurableSet s [PROOFSTEP] change ∀ i, MeasurableSet[f i] (s ∩ {ω | τ ω ≤ i}) at hs [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet s [PROOFSTEP] rw [(_ : s = ⋃ i ∈ Set.range τ, s ∩ {ω | τ ω ≤ i})] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet (⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}) [PROOFSTEP] exact MeasurableSet.biUnion h_countable fun i _ => f.le i _ (hs i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ s = ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ s ↔ ω ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] constructor [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ s → ω ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ ⋃ (i : ι) (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} → ω ∈ s [PROOFSTEP] rw [Set.mem_iUnion] [GOAL] case h.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ ω ∈ s → ∃ i, ω ∈ ⋃ (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} [PROOFSTEP] exact fun hx => ⟨τ ω, by simpa using hx⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω hx : ω ∈ s ⊢ ω ∈ ⋃ (_ : τ ω ∈ Set.range τ), s ∩ {ω_1 | τ ω_1 ≤ τ ω} [PROOFSTEP] simpa using hx [GOAL] case h.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω ⊢ (∃ i, ω ∈ ⋃ (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i}) → ω ∈ s [PROOFSTEP] rintro ⟨i, hx⟩ [GOAL] case h.mpr.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω i : ι hx : ω ∈ ⋃ (_ : i ∈ Set.range τ), s ∩ {ω | τ ω ≤ i} ⊢ ω ∈ s [PROOFSTEP] simp only [Set.mem_range, Set.iUnion_exists, Set.mem_iUnion, Set.mem_inter_iff, Set.mem_setOf_eq, exists_prop, exists_and_right] at hx [GOAL] case h.mpr.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : Set.Countable (Set.range τ) s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ω : Ω i : ι hx : (∃ y, τ y = i) ∧ ω ∈ s ∧ τ ω ≤ i ⊢ ω ∈ s [PROOFSTEP] exact hx.2.1 [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) (π ω)) = IsStoppingTime.measurableSpace hτ ⊓ IsStoppingTime.measurableSpace hπ [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) (π ω)) ≤ IsStoppingTime.measurableSpace hτ ⊓ IsStoppingTime.measurableSpace hπ [PROOFSTEP] exact le_inf (measurableSpace_mono _ hτ fun _ => min_le_left _ _) (measurableSpace_mono _ hπ fun _ => min_le_right _ _) [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ IsStoppingTime.measurableSpace hτ ⊓ IsStoppingTime.measurableSpace hπ ≤ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) (π ω)) [PROOFSTEP] intro s [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet s → MeasurableSet s [PROOFSTEP] change MeasurableSet[hτ.measurableSpace] s ∧ MeasurableSet[hπ.measurableSpace] s → MeasurableSet[(hτ.min hπ).measurableSpace] s [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet s ∧ MeasurableSet s → MeasurableSet s [PROOFSTEP] simp_rw [IsStoppingTime.measurableSet] [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ ((∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) ∧ ∀ (i : ι), MeasurableSet (s ∩ {ω | π ω ≤ i})) → ∀ (i : ι), MeasurableSet (s ∩ {ω | min (τ ω) (π ω) ≤ i}) [PROOFSTEP] have : ∀ i, {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} := by intro i; ext1 ω; simp [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ ∀ (i : ι), {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω i : ι ⊢ {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω i : ι ω : Ω ⊢ ω ∈ {ω | min (τ ω) (π ω) ≤ i} ↔ ω ∈ {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} [PROOFSTEP] simp [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω this : ∀ (i : ι), {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} ⊢ ((∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) ∧ ∀ (i : ι), MeasurableSet (s ∩ {ω | π ω ≤ i})) → ∀ (i : ι), MeasurableSet (s ∩ {ω | min (τ ω) (π ω) ≤ i}) [PROOFSTEP] simp_rw [this, Set.inter_union_distrib_left] [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω this : ∀ (i : ι), {ω | min (τ ω) (π ω) ≤ i} = {ω | τ ω ≤ i} ∪ {ω | π ω ≤ i} ⊢ ((∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i})) ∧ ∀ (i : ι), MeasurableSet (s ∩ {ω | π ω ≤ i})) → ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∪ s ∩ {ω | π ω ≤ i}) [PROOFSTEP] exact fun h i => (h.left i).union (h.right i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s [PROOFSTEP] rw [measurableSpace_min hτ hπ] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s [PROOFSTEP] rfl [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ i : ι ⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime f fun ω => min (τ ω) i) = IsStoppingTime.measurableSpace hτ ⊓ ↑f i [PROOFSTEP] rw [hτ.measurableSpace_min (isStoppingTime_const _ i), measurableSpace_const] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι ⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s [PROOFSTEP] rw [measurableSpace_min_const hτ] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι ⊢ MeasurableSet s ↔ MeasurableSet s ∧ MeasurableSet s [PROOFSTEP] apply MeasurableSpace.measurableSet_inf [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : MeasurableSet s ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] simp_rw [IsStoppingTime.measurableSet] at hs ⊢ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) ⊢ ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i}) [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i}) [PROOFSTEP] have : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} := by ext1 ω simp only [min_le_iff, Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff, le_refl, true_and_iff, and_true_iff, true_or_iff, or_true_iff] by_cases hτi : τ ω ≤ i · simp only [hτi, true_or_iff, and_true_iff, and_congr_right_iff] intro constructor <;> intro h · exact Or.inl h · cases' h with h h · exact h · exact hτi.trans h simp only [hτi, false_or_iff, and_false_iff, false_and_iff, iff_false_iff, not_and, not_le, and_imp] refine' fun _ hτ_le_π => lt_of_lt_of_le _ hτ_le_π rw [← not_le] exact hτi [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ⊢ s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω ⊢ ω ∈ s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} ↔ ω ∈ s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} [PROOFSTEP] simp only [min_le_iff, Set.mem_inter_iff, Set.mem_setOf_eq, le_min_iff, le_refl, true_and_iff, and_true_iff, true_or_iff, or_true_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω ⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω) [PROOFSTEP] by_cases hτi : τ ω ≤ i [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i ⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω) [PROOFSTEP] simp only [hτi, true_or_iff, and_true_iff, and_congr_right_iff] [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i ⊢ ω ∈ s → (τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ i ≤ π ω) [PROOFSTEP] intro [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s ⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ i ≤ π ω [PROOFSTEP] constructor [GOAL] case pos.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s ⊢ τ ω ≤ π ω → τ ω ≤ π ω ∨ i ≤ π ω [PROOFSTEP] intro h [GOAL] case pos.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s ⊢ τ ω ≤ π ω ∨ i ≤ π ω → τ ω ≤ π ω [PROOFSTEP] intro h [GOAL] case pos.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s h : τ ω ≤ π ω ⊢ τ ω ≤ π ω ∨ i ≤ π ω [PROOFSTEP] exact Or.inl h [GOAL] case pos.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s h : τ ω ≤ π ω ∨ i ≤ π ω ⊢ τ ω ≤ π ω [PROOFSTEP] cases' h with h h [GOAL] case pos.mpr.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s h : τ ω ≤ π ω ⊢ τ ω ≤ π ω [PROOFSTEP] exact h [GOAL] case pos.mpr.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : τ ω ≤ i a✝ : ω ∈ s h : i ≤ π ω ⊢ τ ω ≤ π ω [PROOFSTEP] exact hτi.trans h [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : ¬τ ω ≤ i ⊢ (ω ∈ s ∧ τ ω ≤ π ω) ∧ (τ ω ≤ i ∨ π ω ≤ i) ↔ ((ω ∈ s ∧ τ ω ≤ i) ∧ (τ ω ≤ i ∨ π ω ≤ i)) ∧ (τ ω ≤ π ω ∨ i ≤ π ω) [PROOFSTEP] simp only [hτi, false_or_iff, and_false_iff, false_and_iff, iff_false_iff, not_and, not_le, and_imp] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : ¬τ ω ≤ i ⊢ ω ∈ s → τ ω ≤ π ω → i < π ω [PROOFSTEP] refine' fun _ hτ_le_π => lt_of_lt_of_le _ hτ_le_π [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : ¬τ ω ≤ i x✝ : ω ∈ s hτ_le_π : τ ω ≤ π ω ⊢ i < τ ω [PROOFSTEP] rw [← not_le] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι ω : Ω hτi : ¬τ ω ≤ i x✝ : ω ∈ s hτ_le_π : τ ω ≤ π ω ⊢ ¬τ ω ≤ i [PROOFSTEP] exact hτi [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i}) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i}) [PROOFSTEP] refine' ((hs i).inter ((hτ.min hπ) i)).inter _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} ⊢ MeasurableSet {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} [PROOFSTEP] apply @measurableSet_le _ _ _ _ _ (Filtration.seq f i) _ _ _ _ _ ?_ ?_ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} ⊢ Measurable fun a => min (τ a) i [PROOFSTEP] exact (hτ.min_const i).measurable_of_le fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω hs : ∀ (i : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i}) i : ι this : s ∩ {ω | τ ω ≤ π ω} ∩ {ω | min (τ ω) (π ω) ≤ i} = s ∩ {ω | τ ω ≤ i} ∩ {ω | min (τ ω) (π ω) ≤ i} ∩ {ω | min (τ ω) i ≤ min (min (τ ω) (π ω)) i} ⊢ Measurable fun a => min (min (τ a) (π a)) i [PROOFSTEP] exact ((hτ.min hπ).min_const i).measurable_of_le fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ↔ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) → MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] intro h [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) → MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] intro h [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] have : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω} := by rw [Set.inter_assoc, Set.inter_self] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ⊢ s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω} [PROOFSTEP] rw [Set.inter_assoc, Set.inter_self] [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) this : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] rw [this] [GOAL] case mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) this : s ∩ {ω | τ ω ≤ π ω} = s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] exact measurableSet_inter_le _ hπ _ h [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] rw [measurableSet_min_iff hτ hπ] at h [GOAL] case mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π s : Set Ω h : MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ∧ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ π ω}) [PROOFSTEP] exact h.1 [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i}) ↔ MeasurableSet (s ∩ {ω | τ ω ≤ i}) [PROOFSTEP] rw [IsStoppingTime.measurableSet_min_iff hτ (isStoppingTime_const _ i), IsStoppingTime.measurableSpace_const, IsStoppingTime.measurableSet] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι ⊢ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i_1})) ↔ (∀ (i_1 : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i_1})) ∧ MeasurableSet (s ∩ {ω | τ ω ≤ i}) [PROOFSTEP] refine' ⟨fun h => ⟨h, _⟩, fun h j => h.1 j⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι h : ∀ (i_1 : ι), MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i_1}) ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i}) [PROOFSTEP] specialize h i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ s : Set Ω i : ι h : MeasurableSet (s ∩ {ω | τ ω ≤ i} ∩ {ω | τ ω ≤ i}) ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ i}) [PROOFSTEP] rwa [Set.inter_assoc, Set.inter_self] at h [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ MeasurableSet {ω | τ ω ≤ π ω} [PROOFSTEP] rw [hτ.measurableSet] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ ∀ (i : ι), MeasurableSet ({ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ i}) [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ⊢ MeasurableSet ({ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] have : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} := by ext1 ω simp only [Set.mem_inter_iff, Set.mem_setOf_eq, min_le_iff, le_min_iff, le_refl, and_true_iff, and_congr_left_iff] intro h simp only [h, or_self_iff, and_true_iff] by_cases hj : j ≤ π ω · simp only [hj, h.trans hj, or_self_iff] · simp only [hj, or_false_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ⊢ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω ⊢ ω ∈ {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} [PROOFSTEP] simp only [Set.mem_inter_iff, Set.mem_setOf_eq, min_le_iff, le_min_iff, le_refl, and_true_iff, and_congr_left_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω ⊢ τ ω ≤ j → (τ ω ≤ π ω ↔ (τ ω ≤ π ω ∨ j ≤ π ω) ∧ (τ ω ≤ j ∨ True)) [PROOFSTEP] intro h [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω ≤ j ⊢ τ ω ≤ π ω ↔ (τ ω ≤ π ω ∨ j ≤ π ω) ∧ (τ ω ≤ j ∨ True) [PROOFSTEP] simp only [h, or_self_iff, and_true_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω ≤ j ⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ j ≤ π ω [PROOFSTEP] by_cases hj : j ≤ π ω [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω ≤ j hj : j ≤ π ω ⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ j ≤ π ω [PROOFSTEP] simp only [hj, h.trans hj, or_self_iff] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω ≤ j hj : ¬j ≤ π ω ⊢ τ ω ≤ π ω ↔ τ ω ≤ π ω ∨ j ≤ π ω [PROOFSTEP] simp only [hj, or_false_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} ⊢ MeasurableSet ({ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} ⊢ MeasurableSet ({ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] refine' MeasurableSet.inter _ (hτ.measurableSet_le j) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} ⊢ MeasurableSet {ω | min (τ ω) j ≤ min (π ω) j} [PROOFSTEP] apply @measurableSet_le _ _ _ _ _ (Filtration.seq f j) _ _ _ _ _ ?_ ?_ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} ⊢ Measurable fun a => min (τ a) j [PROOFSTEP] exact (hτ.min_const j).measurable_of_le fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω ≤ π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j ≤ min (π ω) j} ∩ {ω | τ ω ≤ j} ⊢ Measurable fun a => min (π a) j [PROOFSTEP] exact (hπ.min_const j).measurable_of_le fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ MeasurableSet {ω | τ ω ≤ π ω} [PROOFSTEP] suffices MeasurableSet[(hτ.min hπ).measurableSpace] {ω : Ω | τ ω ≤ π ω} by rw [measurableSet_min_iff hτ hπ] at this ; exact this.2 [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π this : MeasurableSet {ω | τ ω ≤ π ω} ⊢ MeasurableSet {ω | τ ω ≤ π ω} [PROOFSTEP] rw [measurableSet_min_iff hτ hπ] at this [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π this : MeasurableSet {ω | τ ω ≤ π ω} ∧ MeasurableSet {ω | τ ω ≤ π ω} ⊢ MeasurableSet {ω | τ ω ≤ π ω} [PROOFSTEP] exact this.2 [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ MeasurableSet {ω | τ ω ≤ π ω} [PROOFSTEP] rw [← Set.univ_inter {ω : Ω | τ ω ≤ π ω}, ← hτ.measurableSet_inter_le_iff hπ, Set.univ_inter] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁴ : TopologicalSpace ι inst✝³ : SecondCountableTopology ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSpace ι inst✝ : BorelSpace ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ MeasurableSet {ω | τ ω ≤ π ω} [PROOFSTEP] exact measurableSet_le_stopping_time hτ hπ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ MeasurableSet {ω | τ ω = π ω} [PROOFSTEP] rw [hτ.measurableSet] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ ∀ (i : ι), MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ i}) [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} := by ext1 ω simp only [Set.mem_inter_iff, Set.mem_setOf_eq] refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩ · rw [h.1] · rw [← h.1]; exact h.2 · cases' h with h' hσ_le cases' h' with h_eq hτ_le rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ⊢ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω ⊢ ω ∈ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} [PROOFSTEP] simp only [Set.mem_inter_iff, Set.mem_setOf_eq] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω ⊢ τ ω = π ω ∧ τ ω ≤ j ↔ (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j [PROOFSTEP] refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩ [GOAL] case h.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω = π ω ∧ τ ω ≤ j ⊢ min (τ ω) j = min (π ω) j [PROOFSTEP] rw [h.1] [GOAL] case h.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω = π ω ∧ τ ω ≤ j ⊢ π ω ≤ j [PROOFSTEP] rw [← h.1] [GOAL] case h.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω = π ω ∧ τ ω ≤ j ⊢ τ ω ≤ j [PROOFSTEP] exact h.2 [GOAL] case h.refine'_3 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j ⊢ τ ω = π ω [PROOFSTEP] cases' h with h' hσ_le [GOAL] case h.refine'_3.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h' : min (τ ω) j = min (π ω) j ∧ τ ω ≤ j hσ_le : π ω ≤ j ⊢ τ ω = π ω [PROOFSTEP] cases' h' with h_eq hτ_le [GOAL] case h.refine'_3.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω hσ_le : π ω ≤ j h_eq : min (τ ω) j = min (π ω) j hτ_le : τ ω ≤ j ⊢ τ ω = π ω [PROOFSTEP] rwa [min_eq_left hτ_le, min_eq_left hσ_le] at h_eq [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ MeasurableSet ({ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}) [PROOFSTEP] refine' MeasurableSet.inter (MeasurableSet.inter _ (hτ.measurableSet_le j)) (hπ.measurableSet_le j) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ MeasurableSet {ω | min (τ ω) j = min (π ω) j} [PROOFSTEP] apply measurableSet_eq_fun [GOAL] case hf Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ Measurable fun x => min (τ x) j [PROOFSTEP] exact (hτ.min_const j).measurable_of_le fun _ => min_le_right _ _ [GOAL] case hg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁸ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁷ : AddGroup ι inst✝⁶ : TopologicalSpace ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : BorelSpace ι inst✝³ : OrderTopology ι inst✝² : MeasurableSingletonClass ι inst✝¹ : SecondCountableTopology ι inst✝ : MeasurableSub₂ ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ Measurable fun x => min (π x) j [PROOFSTEP] exact (hπ.min_const j).measurable_of_le fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ MeasurableSet {ω | τ ω = π ω} [PROOFSTEP] rw [hτ.measurableSet] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π ⊢ ∀ (i : ι), MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ i}) [PROOFSTEP] intro j [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] have : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} := by ext1 ω simp only [Set.mem_inter_iff, Set.mem_setOf_eq] refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩ · rw [h.1] · rw [← h.1]; exact h.2 · cases' h with h' hπ_le cases' h' with h_eq hτ_le rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ⊢ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω ⊢ ω ∈ {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} ↔ ω ∈ {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} [PROOFSTEP] simp only [Set.mem_inter_iff, Set.mem_setOf_eq] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω ⊢ τ ω = π ω ∧ τ ω ≤ j ↔ (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j [PROOFSTEP] refine' ⟨fun h => ⟨⟨_, h.2⟩, _⟩, fun h => ⟨_, h.1.2⟩⟩ [GOAL] case h.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω = π ω ∧ τ ω ≤ j ⊢ min (τ ω) j = min (π ω) j [PROOFSTEP] rw [h.1] [GOAL] case h.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω = π ω ∧ τ ω ≤ j ⊢ π ω ≤ j [PROOFSTEP] rw [← h.1] [GOAL] case h.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : τ ω = π ω ∧ τ ω ≤ j ⊢ τ ω ≤ j [PROOFSTEP] exact h.2 [GOAL] case h.refine'_3 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h : (min (τ ω) j = min (π ω) j ∧ τ ω ≤ j) ∧ π ω ≤ j ⊢ τ ω = π ω [PROOFSTEP] cases' h with h' hπ_le [GOAL] case h.refine'_3.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω h' : min (τ ω) j = min (π ω) j ∧ τ ω ≤ j hπ_le : π ω ≤ j ⊢ τ ω = π ω [PROOFSTEP] cases' h' with h_eq hτ_le [GOAL] case h.refine'_3.intro.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι ω : Ω hπ_le : π ω ≤ j h_eq : min (τ ω) j = min (π ω) j hτ_le : τ ω ≤ j ⊢ τ ω = π ω [PROOFSTEP] rwa [min_eq_left hτ_le, min_eq_left hπ_le] at h_eq [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ MeasurableSet ({ω | τ ω = π ω} ∩ {ω | τ ω ≤ j}) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ MeasurableSet ({ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j}) [PROOFSTEP] refine' MeasurableSet.inter (MeasurableSet.inter _ (hτ.measurableSet_le j)) (hπ.measurableSet_le j) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ MeasurableSet {ω | min (τ ω) j = min (π ω) j} [PROOFSTEP] apply measurableSet_eq_fun_of_countable [GOAL] case hf Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ Measurable fun x => min (τ x) j [PROOFSTEP] exact (hτ.min_const j).measurable_of_le fun _ => min_le_right _ _ [GOAL] case hg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι f : Filtration ι m τ π : Ω → ι inst✝⁶ : Countable ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : MeasurableSpace ι inst✝³ : BorelSpace ι inst✝² : OrderTopology ι inst✝¹ : MeasurableSingletonClass ι inst✝ : SecondCountableTopology ι hτ : IsStoppingTime f τ hπ : IsStoppingTime f π j : ι this : {ω | τ ω = π ω} ∩ {ω | τ ω ≤ j} = {ω | min (τ ω) j = min (π ω) j} ∩ {ω | τ ω ≤ j} ∩ {ω | π ω ≤ j} ⊢ Measurable fun x => min (π x) j [PROOFSTEP] exact (hπ.min_const j).measurable_of_le fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι u : ι → Ω → β τ : Ω → ι i : ι ω : Ω h : i ≤ τ ω ⊢ stoppedProcess u τ i ω = u i ω [PROOFSTEP] simp [stoppedProcess, min_eq_left h] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι u : ι → Ω → β τ : Ω → ι i : ι ω : Ω h : τ ω ≤ i ⊢ stoppedProcess u τ i ω = u (τ ω) ω [PROOFSTEP] simp [stoppedProcess, min_eq_right h] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ ⊢ ProgMeasurable f fun i ω => min i (τ ω) [PROOFSTEP] intro i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι ⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] let m_prod : MeasurableSpace (Set.Iic i × Ω) := Subtype.instMeasurableSpace.prod (f i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) ⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] let m_set : ∀ t : Set (Set.Iic i × Ω), MeasurableSpace t := fun _ => @Subtype.instMeasurableSpace (Set.Iic i × Ω) _ m_prod [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace ⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] let s := {p : Set.Iic i × Ω | τ p.2 ≤ i} [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} ⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] have hs : MeasurableSet[m_prod] s := @measurable_snd (Set.Iic i) Ω _ (f i) _ (hτ i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s ⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] have h_meas_fst : ∀ t : Set (Set.Iic i × Ω), Measurable[m_set t] fun x : t => ((x : Set.Iic i × Ω).fst : ι) := fun t => (@measurable_subtype_coe (Set.Iic i × Ω) m_prod _).fst.subtype_val [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst ⊢ StronglyMeasurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] apply Measurable.stronglyMeasurable [GOAL] case hf Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst ⊢ Measurable fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd [PROOFSTEP] refine' measurable_of_restrict_of_restrict_compl hs _ _ [GOAL] case hf.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst ⊢ Measurable (Set.restrict s fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd) [PROOFSTEP] refine @Measurable.min _ _ _ _ _ (m_set s) _ _ _ _ _ (h_meas_fst s) ?_ [GOAL] case hf.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst ⊢ Measurable fun a => τ (↑a).snd [PROOFSTEP] refine' @measurable_of_Iic ι s _ _ _ (m_set s) _ _ _ _ fun j => _ [GOAL] case hf.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι ⊢ MeasurableSet ((fun a => τ (↑a).snd) ⁻¹' Set.Iic j) [PROOFSTEP] have h_set_eq : (fun x : s => τ (x : Set.Iic i × Ω).snd) ⁻¹' Set.Iic j = (fun x : s => (x : Set.Iic i × Ω).snd) ⁻¹' {ω | τ ω ≤ min i j} := by ext1 ω simp only [Set.mem_preimage, Set.mem_Iic, iff_and_self, le_min_iff, Set.mem_setOf_eq] exact fun _ => ω.prop [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι ⊢ (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι ω : ↑s ⊢ ω ∈ (fun x => τ (↑x).snd) ⁻¹' Set.Iic j ↔ ω ∈ (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} [PROOFSTEP] simp only [Set.mem_preimage, Set.mem_Iic, iff_and_self, le_min_iff, Set.mem_setOf_eq] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι ω : ↑s ⊢ τ (↑ω).snd ≤ j → τ (↑ω).snd ≤ i [PROOFSTEP] exact fun _ => ω.prop [GOAL] case hf.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} ⊢ MeasurableSet ((fun a => τ (↑a).snd) ⁻¹' Set.Iic j) [PROOFSTEP] rw [h_set_eq] [GOAL] case hf.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} ⊢ MeasurableSet ((fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}) [PROOFSTEP] suffices h_meas : @Measurable _ _ (m_set s) (f i) fun x : s => (x : Set.Iic i × Ω).snd [GOAL] case hf.refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} h_meas : Measurable fun x => (↑x).snd ⊢ MeasurableSet ((fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j}) case h_meas Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} ⊢ Measurable fun x => (↑x).snd [PROOFSTEP] exact h_meas (f.mono (min_le_left _ _) _ (hτ.measurableSet_le (min i j))) [GOAL] case h_meas Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst j : ι h_set_eq : (fun x => τ (↑x).snd) ⁻¹' Set.Iic j = (fun x => (↑x).snd) ⁻¹' {ω | τ ω ≤ min i j} ⊢ Measurable fun x => (↑x).snd [PROOFSTEP] exact measurable_snd.comp (@measurable_subtype_coe _ m_prod _) [GOAL] case hf.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst ⊢ Measurable (Set.restrict sᶜ fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd) [PROOFSTEP] letI sc := sᶜ [GOAL] case hf.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ⊢ Measurable (Set.restrict sᶜ fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd) [PROOFSTEP] suffices h_min_eq_left : (fun x : sc => min (↑(x : Set.Iic i × Ω).fst) (τ (x : Set.Iic i × Ω).snd)) = fun x : sc => ↑(x : Set.Iic i × Ω).fst [GOAL] case hf.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ h_min_eq_left : (fun x => min (↑(↑x).fst) (τ (↑x).snd)) = fun x => ↑(↑x).fst ⊢ Measurable (Set.restrict sᶜ fun p => (fun i ω => min i (τ ω)) (↑p.fst) p.snd) [PROOFSTEP] simp_rw [Set.restrict, h_min_eq_left] [GOAL] case hf.refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ h_min_eq_left : (fun x => min (↑(↑x).fst) (τ (↑x).snd)) = fun x => ↑(↑x).fst ⊢ Measurable fun x => ↑(↑x).fst [PROOFSTEP] exact h_meas_fst _ [GOAL] case h_min_eq_left Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ⊢ (fun x => min (↑(↑x).fst) (τ (↑x).snd)) = fun x => ↑(↑x).fst [PROOFSTEP] ext1 ω [GOAL] case h_min_eq_left.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ω : ↑sc ⊢ min (↑(↑ω).fst) (τ (↑ω).snd) = ↑(↑ω).fst [PROOFSTEP] rw [min_eq_left] [GOAL] case h_min_eq_left.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ω : ↑sc ⊢ ↑(↑ω).fst ≤ τ (↑ω).snd [PROOFSTEP] have hx_fst_le : ↑(ω : Set.Iic i × Ω).fst ≤ i := (ω : Set.Iic i × Ω).fst.prop [GOAL] case h_min_eq_left.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ω : ↑sc hx_fst_le : ↑(↑ω).fst ≤ i ⊢ ↑(↑ω).fst ≤ τ (↑ω).snd [PROOFSTEP] refine' hx_fst_le.trans (le_of_lt _) [GOAL] case h_min_eq_left.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ω : ↑sc hx_fst_le : ↑(↑ω).fst ≤ i ⊢ i < τ (↑ω).snd [PROOFSTEP] convert ω.prop [GOAL] case a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁷ : LinearOrder ι inst✝⁶ : MeasurableSpace ι inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : SecondCountableTopology ι inst✝² : BorelSpace ι inst✝¹ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝ : MetrizableSpace ι hτ : IsStoppingTime f τ i : ι m_prod : MeasurableSpace (↑(Set.Iic i) × Ω) := MeasurableSpace.prod Subtype.instMeasurableSpace (↑f i) m_set : (t : Set (↑(Set.Iic i) × Ω)) → MeasurableSpace ↑t := fun x => Subtype.instMeasurableSpace s : Set (↑(Set.Iic i) × Ω) := {p | τ p.snd ≤ i} hs : MeasurableSet s h_meas_fst : ∀ (t : Set (↑(Set.Iic i) × Ω)), Measurable fun x => ↑(↑x).fst sc : Set (↑(Set.Iic i) × Ω) := sᶜ ω : ↑sc hx_fst_le : ↑(↑ω).fst ≤ i ⊢ i < τ (↑ω).snd ↔ ↑ω ∈ sc [PROOFSTEP] simp only [not_le, Set.mem_compl_iff, Set.mem_setOf_eq] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : LinearOrder ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι inst✝ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m h : ProgMeasurable f u hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ⊢ StronglyMeasurable (stoppedValue u τ) [PROOFSTEP] have : stoppedValue u τ = (fun p : Set.Iic n × Ω => u (↑p.fst) p.snd) ∘ fun ω => (⟨τ ω, hτ_le ω⟩, ω) := by ext1 ω; simp only [stoppedValue, Function.comp_apply, Subtype.coe_mk] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : LinearOrder ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι inst✝ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m h : ProgMeasurable f u hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ⊢ stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω) [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : LinearOrder ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι inst✝ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m h : ProgMeasurable f u hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n ω : Ω ⊢ stoppedValue u τ ω = ((fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)) ω [PROOFSTEP] simp only [stoppedValue, Function.comp_apply, Subtype.coe_mk] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : LinearOrder ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι inst✝ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m h : ProgMeasurable f u hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n this : stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω) ⊢ StronglyMeasurable (stoppedValue u τ) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : LinearOrder ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι inst✝ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m h : ProgMeasurable f u hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n this : stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω) ⊢ StronglyMeasurable ((fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω)) [PROOFSTEP] refine' StronglyMeasurable.comp_measurable (h n) _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁶ : LinearOrder ι inst✝⁵ : MeasurableSpace ι inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι inst✝ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m h : ProgMeasurable f u hτ : IsStoppingTime f τ n : ι hτ_le : ∀ (ω : Ω), τ ω ≤ n this : stoppedValue u τ = (fun p => u (↑p.fst) p.snd) ∘ fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω) ⊢ Measurable fun ω => ({ val := τ ω, property := (_ : τ ω ≤ n) }, ω) [PROOFSTEP] exact (hτ.measurable_of_le hτ_le).subtype_mk.prod_mk measurable_id [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ ⊢ Measurable (stoppedValue u τ) [PROOFSTEP] have h_str_meas : ∀ i, StronglyMeasurable[f i] (stoppedValue u fun ω => min (τ ω) i) := fun i => stronglyMeasurable_stoppedValue_of_le hf_prog (hτ.min_const i) fun _ => min_le_right _ _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) ⊢ Measurable (stoppedValue u τ) [PROOFSTEP] intro t ht i [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι ⊢ MeasurableSet (stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i}) [PROOFSTEP] suffices stoppedValue u τ ⁻¹' t ∩ {ω : Ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω : Ω | τ ω ≤ i} by rw [this]; exact ((h_str_meas i).measurable ht).inter (hτ.measurableSet_le i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i} ⊢ MeasurableSet (stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i}) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι this : stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i} ⊢ MeasurableSet ((stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i}) [PROOFSTEP] exact ((h_str_meas i).measurable ht).inter (hτ.measurableSet_le i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι ⊢ stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} = (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι ω : Ω ⊢ ω ∈ stoppedValue u τ ⁻¹' t ∩ {ω | τ ω ≤ i} ↔ ω ∈ (stoppedValue u fun ω => min (τ ω) i) ⁻¹' t ∩ {ω | τ ω ≤ i} [PROOFSTEP] simp only [stoppedValue, Set.mem_inter_iff, Set.mem_preimage, Set.mem_setOf_eq, and_congr_left_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι ω : Ω ⊢ τ ω ≤ i → (u (τ ω) ω ∈ t ↔ u (min (τ ω) i) ω ∈ t) [PROOFSTEP] intro h [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι inst✝⁸ : MeasurableSpace ι inst✝⁷ : TopologicalSpace ι inst✝⁶ : OrderTopology ι inst✝⁵ : SecondCountableTopology ι inst✝⁴ : BorelSpace ι inst✝³ : TopologicalSpace β u : ι → Ω → β τ : Ω → ι f : Filtration ι m inst✝² : MetrizableSpace β inst✝¹ : MeasurableSpace β inst✝ : BorelSpace β hf_prog : ProgMeasurable f u hτ : IsStoppingTime f τ h_str_meas : ∀ (i : ι), StronglyMeasurable (stoppedValue u fun ω => min (τ ω) i) t : Set β ht : MeasurableSet t i : ι ω : Ω h : τ ω ≤ i ⊢ u (τ ω) ω ∈ t ↔ u (min (τ ω) i) ω ∈ t [PROOFSTEP] rw [min_eq_left h] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s ⊢ stoppedValue u τ = ∑ i in s, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] ext y [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ⊢ stoppedValue u τ y = Finset.sum s (fun i => Set.indicator {ω | τ ω = i} (u i)) y [PROOFSTEP] rw [stoppedValue, Finset.sum_apply, Finset.sum_indicator_eq_sum_filter] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ⊢ u (τ y) y = ∑ i in Finset.filter (fun i => y ∈ {ω | τ ω = i}) s, u i y [PROOFSTEP] suffices Finset.filter (fun i => y ∈ {ω : Ω | τ ω = i}) s = ({τ y} : Finset ι) by rw [this, Finset.sum_singleton] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω this : Finset.filter (fun i => y ∈ {ω | τ ω = i}) s = {τ y} ⊢ u (τ y) y = ∑ i in Finset.filter (fun i => y ∈ {ω | τ ω = i}) s, u i y [PROOFSTEP] rw [this, Finset.sum_singleton] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ⊢ Finset.filter (fun i => y ∈ {ω | τ ω = i}) s = {τ y} [PROOFSTEP] ext1 ω [GOAL] case h.a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι ⊢ ω ∈ Finset.filter (fun i => y ∈ {ω | τ ω = i}) s ↔ ω ∈ {τ y} [PROOFSTEP] simp only [Set.mem_setOf_eq, Finset.mem_filter, Finset.mem_singleton] [GOAL] case h.a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι ⊢ ω ∈ s ∧ τ y = ω ↔ ω = τ y [PROOFSTEP] constructor [GOAL] case h.a.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι ⊢ ω ∈ s ∧ τ y = ω → ω = τ y [PROOFSTEP] intro h [GOAL] case h.a.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι ⊢ ω = τ y → ω ∈ s ∧ τ y = ω [PROOFSTEP] intro h [GOAL] case h.a.mp Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι h : ω ∈ s ∧ τ y = ω ⊢ ω = τ y [PROOFSTEP] exact h.2.symm [GOAL] case h.a.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι h : ω = τ y ⊢ ω ∈ s ∧ τ y = ω [PROOFSTEP] refine' ⟨_, h.symm⟩ [GOAL] case h.a.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι h : ω = τ y ⊢ ω ∈ s [PROOFSTEP] rw [h] [GOAL] case h.a.mpr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝ : AddCommMonoid E s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s y : Ω ω : ι h : ω = τ y ⊢ τ y ∈ s [PROOFSTEP] exact hbdd y [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω ⊢ stoppedProcess u τ n ω = (Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) ω [PROOFSTEP] rw [Pi.add_apply, Finset.sum_apply] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω ⊢ stoppedProcess u τ n ω = Set.indicator {a | n ≤ τ a} (u n) ω + ∑ c in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = c} (u c) ω [PROOFSTEP] cases' le_or_lt n (τ ω) with h h [GOAL] case h.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω ⊢ stoppedProcess u τ n ω = Set.indicator {a | n ≤ τ a} (u n) ω + ∑ c in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = c} (u c) ω [PROOFSTEP] rw [stoppedProcess_eq_of_le h, Set.indicator_of_mem, Finset.sum_eq_zero, add_zero] [GOAL] case h.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω ⊢ ∀ (x : ι), x ∈ Finset.filter (fun x => x < n) s → Set.indicator {ω | τ ω = x} (u x) ω = 0 [PROOFSTEP] intro m hm [GOAL] case h.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω m : ι hm : m ∈ Finset.filter (fun x => x < n) s ⊢ Set.indicator {ω | τ ω = m} (u m) ω = 0 [PROOFSTEP] refine' Set.indicator_of_not_mem _ _ [GOAL] case h.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω m : ι hm : m ∈ Finset.filter (fun x => x < n) s ⊢ ¬ω ∈ {ω | τ ω = m} [PROOFSTEP] rw [Finset.mem_filter] at hm [GOAL] case h.inl Ω : Type u_1 β : Type u_2 ι : Type u_3 m✝ : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω m : ι hm : m ∈ s ∧ m < n ⊢ ¬ω ∈ {ω | τ ω = m} [PROOFSTEP] exact (hm.2.trans_le h).ne' [GOAL] case h.inl.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : n ≤ τ ω ⊢ ω ∈ {a | n ≤ τ a} [PROOFSTEP] exact h [GOAL] case h.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ stoppedProcess u τ n ω = Set.indicator {a | n ≤ τ a} (u n) ω + ∑ c in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = c} (u c) ω [PROOFSTEP] rw [stoppedProcess_eq_of_ge (le_of_lt h), Finset.sum_eq_single_of_mem (τ ω)] [GOAL] case h.inr Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ u (τ ω) ω = Set.indicator {a | n ≤ τ a} (u n) ω + Set.indicator {ω_1 | τ ω_1 = τ ω} (u (τ ω)) ω [PROOFSTEP] rw [Set.indicator_of_not_mem, zero_add, Set.indicator_of_mem] [GOAL] case h.inr.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ ω ∈ {ω_1 | τ ω_1 = τ ω} [PROOFSTEP] exact rfl [GOAL] case h.inr.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ ¬ω ∈ {a | n ≤ τ a} [PROOFSTEP] exact not_le.2 h [GOAL] case h.inr.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ τ ω ∈ Finset.filter (fun x => x < n) s [PROOFSTEP] rw [Finset.mem_filter] [GOAL] case h.inr.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ τ ω ∈ s ∧ τ ω < n [PROOFSTEP] exact ⟨hbdd ω h, h⟩ [GOAL] case h.inr.h₀ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n ⊢ ∀ (b : ι), b ∈ Finset.filter (fun x => x < n) s → b ≠ τ ω → Set.indicator {ω | τ ω = b} (u b) ω = 0 [PROOFSTEP] intro b _ hneq [GOAL] case h.inr.h₀ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n b : ι a✝ : b ∈ Finset.filter (fun x => x < n) s hneq : b ≠ τ ω ⊢ Set.indicator {ω | τ ω = b} (u b) ω = 0 [PROOFSTEP] rw [Set.indicator_of_not_mem] [GOAL] case h.inr.h₀.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : LinearOrder ι inst✝ : AddCommMonoid E s : Finset ι n : ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ω : Ω h : τ ω < n b : ι a✝ : b ∈ Finset.filter (fun x => x < n) s hneq : b ≠ τ ω ⊢ ¬ω ∈ {ω | τ ω = b} [PROOFSTEP] exact hneq.symm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : AddCommMonoid E n : ι ⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] have h_mem : ∀ ω, τ ω < n → τ ω ∈ Finset.Iio n := fun ω h => Finset.mem_Iio.mpr h [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : AddCommMonoid E n : ι h_mem : ∀ (ω : Ω), τ ω < n → τ ω ∈ Finset.Iio n ⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] rw [stoppedProcess_eq_of_mem_finset n h_mem] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : AddCommMonoid E n : ι h_mem : ∀ (ω : Ω), τ ω < n → τ ω ∈ Finset.Iio n ⊢ Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) (Finset.Iio n), Set.indicator {ω | τ ω = i} (u i) = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] congr with i [GOAL] case e_a.e_s.a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝² : LinearOrder ι inst✝¹ : LocallyFiniteOrderBot ι inst✝ : AddCommMonoid E n : ι h_mem : ∀ (ω : Ω), τ ω < n → τ ω ∈ Finset.Iio n i : ι ⊢ i ∈ Finset.filter (fun x => x < n) (Finset.Iio n) ↔ i ∈ Finset.Iio n [PROOFSTEP] simp [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s ⊢ Memℒp (stoppedValue u τ) p [PROOFSTEP] rw [stoppedValue_eq_of_mem_finset hbdd] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s ⊢ Memℒp (∑ i in s, Set.indicator {ω | τ ω = i} (u i)) p [PROOFSTEP] refine' memℒp_finset_sum' _ fun i _ => Memℒp.indicator _ (hu i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s i : ι x✝ : i ∈ s ⊢ MeasurableSet {ω | τ ω = i} [PROOFSTEP] refine' ℱ.le i {a : Ω | τ a = i} (hτ.measurableSet_eq_of_countable_range _ i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s i : ι x✝ : i ∈ s ⊢ Set.Countable (Set.range τ) [PROOFSTEP] refine' ((Finset.finite_toSet s).subset fun ω hω => _).countable [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s i : ι x✝ : i ∈ s ω : ι hω : ω ∈ Set.range τ ⊢ ω ∈ ↑s [PROOFSTEP] obtain ⟨y, rfl⟩ := hω [GOAL] case intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s i : ι x✝ : i ∈ s y : Ω ⊢ τ y ∈ ↑s [PROOFSTEP] exact hbdd y [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Integrable (u n) s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s ⊢ Integrable (stoppedValue u τ) [PROOFSTEP] simp_rw [← memℒp_one_iff_integrable] at hu ⊢ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝¹ : PartialOrder ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ s : Finset ι hbdd : ∀ (ω : Ω), τ ω ∈ s hu : ∀ (n : ι), Memℒp (u n) 1 ⊢ Memℒp (stoppedValue u τ) 1 [PROOFSTEP] exact memℒp_stoppedValue_of_mem_finset hτ hu hbdd [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ Memℒp (stoppedProcess u τ n) p [PROOFSTEP] rw [stoppedProcess_eq_of_mem_finset n hbdd] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ Memℒp (Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) p [PROOFSTEP] refine' Memℒp.add _ _ [GOAL] case refine'_1 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ Memℒp (Set.indicator {a | n ≤ τ a} (u n)) p [PROOFSTEP] exact Memℒp.indicator (ℱ.le n {a : Ω | n ≤ τ a} (hτ.measurableSet_ge n)) (hu n) [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ Memℒp (∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) p [PROOFSTEP] suffices Memℒp (fun ω => ∑ i in s.filter (· < n), {a : Ω | τ a = i}.indicator (u i) ω) p μ by convert this using 1; ext1 ω; simp only [Finset.sum_apply] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s this : Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p ⊢ Memℒp (∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i)) p [PROOFSTEP] convert this using 1 [GOAL] case h.e'_5 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s this : Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p ⊢ ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {ω | τ ω = i} (u i) = fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω [PROOFSTEP] ext1 ω [GOAL] case h.e'_5.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s this : Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p ω : Ω ⊢ Finset.sum (Finset.filter (fun x => x < n) s) (fun i => Set.indicator {ω | τ ω = i} (u i)) ω = ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω [PROOFSTEP] simp only [Finset.sum_apply] [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ Memℒp (fun ω => ∑ i in Finset.filter (fun x => x < n) s, Set.indicator {a | τ a = i} (u i) ω) p [PROOFSTEP] refine' memℒp_finset_sum _ fun i _ => Memℒp.indicator _ (hu i) [GOAL] case refine'_2 Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Memℒp (u n) p n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s i : ι x✝ : i ∈ Finset.filter (fun x => x < n) s ⊢ MeasurableSet {a | τ a = i} [PROOFSTEP] exact ℱ.le i {a : Ω | τ a = i} (hτ.measurableSet_eq i) [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ hu : ∀ (n : ι), Integrable (u n) n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s ⊢ Integrable (stoppedProcess u τ n) [PROOFSTEP] simp_rw [← memℒp_one_iff_integrable] at hu ⊢ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω μ : Measure Ω τ σ : Ω → ι E : Type u_4 p : ℝ≥0∞ u : ι → Ω → E inst✝⁴ : LinearOrder ι inst✝³ : TopologicalSpace ι inst✝² : OrderTopology ι inst✝¹ : FirstCountableTopology ι ℱ : Filtration ι m inst✝ : NormedAddCommGroup E hτ : IsStoppingTime ℱ τ n : ι s : Finset ι hbdd : ∀ (ω : Ω), τ ω < n → τ ω ∈ s hu : ∀ (n : ι), Memℒp (u n) 1 ⊢ Memℒp (stoppedProcess u τ n) 1 [PROOFSTEP] exact memℒp_stoppedProcess_of_mem_finset hτ hu n hbdd [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π ⊢ stoppedValue u π - stoppedValue u τ = fun ω => Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π ω : Ω ⊢ (stoppedValue u π - stoppedValue u τ) ω = Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω [PROOFSTEP] rw [Finset.sum_Ico_eq_sub _ (hle ω), Finset.sum_range_sub, Finset.sum_range_sub] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π ω : Ω ⊢ (stoppedValue u π - stoppedValue u τ) ω = (u (π ω) - u 0 - (u (τ ω) - u 0)) ω [PROOFSTEP] simp [stoppedValue] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ stoppedValue u π - stoppedValue u τ = fun ω => Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω [PROOFSTEP] rw [stoppedValue_sub_eq_sum hle] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ⊢ (fun ω => Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω) = fun ω => Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ω : Ω ⊢ Finset.sum (Finset.Ico (τ ω) (π ω)) (fun i => u (i + 1) - u i) ω = Finset.sum (Finset.range (N + 1)) (fun i => Set.indicator {ω | τ ω ≤ i ∧ i < π ω} (u (i + 1) - u i)) ω [PROOFSTEP] simp only [Finset.sum_apply, Finset.sum_indicator_eq_sum_filter] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ω : Ω ⊢ ∑ c in Finset.Ico (τ ω) (π ω), (u (c + 1) - u c) ω = ∑ c in Finset.filter (fun i => ω ∈ {ω | τ ω ≤ i ∧ i < π ω}) (Finset.range (N + 1)), (u (c + 1) - u c) ω [PROOFSTEP] refine' Finset.sum_congr _ fun _ _ => rfl [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ω : Ω ⊢ Finset.Ico (τ ω) (π ω) = Finset.filter (fun i => ω ∈ {ω | τ ω ≤ i ∧ i < π ω}) (Finset.range (N + 1)) [PROOFSTEP] ext i [GOAL] case h.a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ω : Ω i : ℕ ⊢ i ∈ Finset.Ico (τ ω) (π ω) ↔ i ∈ Finset.filter (fun i => ω ∈ {ω | τ ω ≤ i ∧ i < π ω}) (Finset.range (N + 1)) [PROOFSTEP] simp only [Finset.mem_filter, Set.mem_setOf_eq, Finset.mem_range, Finset.mem_Ico] [GOAL] case h.a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommGroup β hle : τ ≤ π N : ℕ hbdd : ∀ (ω : Ω), π ω ≤ N ω : Ω i : ℕ ⊢ τ ω ≤ i ∧ i < π ω ↔ i < N + 1 ∧ τ ω ≤ i ∧ i < π ω [PROOFSTEP] exact ⟨fun h => ⟨lt_trans h.2 (Nat.lt_succ_iff.2 <| hbdd _), h⟩, fun h => h.2⟩ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ ⊢ stoppedProcess u τ n = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.range n, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] rw [stoppedProcess_eq'' n] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ ⊢ Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.Iio n, Set.indicator {ω | τ ω = i} (u i) = Set.indicator {a | n ≤ τ a} (u n) + ∑ i in Finset.range n, Set.indicator {ω | τ ω = i} (u i) [PROOFSTEP] congr with i [GOAL] case e_a.e_s.a Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n i : ℕ ⊢ i ∈ Finset.Iio n ↔ i ∈ Finset.range n [PROOFSTEP] rw [Finset.mem_Iio, Finset.mem_range] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ ⊢ stoppedProcess u τ n = Set.indicator {a | n + 1 ≤ τ a} (u n) + ∑ i in Finset.range (n + 1), Set.indicator {a | τ a = i} (u i) [PROOFSTEP] have : {a | n ≤ τ a}.indicator (u n) = {a | n + 1 ≤ τ a}.indicator (u n) + {a | τ a = n}.indicator (u n) := by ext x rw [add_comm, Pi.add_apply, ← Set.indicator_union_of_not_mem_inter] · simp_rw [@eq_comm _ _ n, @le_iff_eq_or_lt _ _ n, Nat.succ_le_iff] rfl · rintro ⟨h₁, h₂⟩ exact (Nat.succ_le_iff.1 h₂).ne h₁.symm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ ⊢ Set.indicator {a | n ≤ τ a} (u n) = Set.indicator {a | n + 1 ≤ τ a} (u n) + Set.indicator {a | τ a = n} (u n) [PROOFSTEP] ext x [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ x : Ω ⊢ Set.indicator {a | n ≤ τ a} (u n) x = (Set.indicator {a | n + 1 ≤ τ a} (u n) + Set.indicator {a | τ a = n} (u n)) x [PROOFSTEP] rw [add_comm, Pi.add_apply, ← Set.indicator_union_of_not_mem_inter] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ x : Ω ⊢ Set.indicator {a | n ≤ τ a} (u n) x = Set.indicator ({a | τ a = n} ∪ {a | n + 1 ≤ τ a}) (u n) x [PROOFSTEP] simp_rw [@eq_comm _ _ n, @le_iff_eq_or_lt _ _ n, Nat.succ_le_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ x : Ω ⊢ Set.indicator {a | n = τ a ∨ n < τ a} (u n) x = Set.indicator ({a | n = τ a} ∪ {a | n < τ a}) (u n) x [PROOFSTEP] rfl [GOAL] case h.h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ x : Ω ⊢ ¬x ∈ {a | τ a = n} ∩ {a | n + 1 ≤ τ a} [PROOFSTEP] rintro ⟨h₁, h₂⟩ [GOAL] case h.h.intro Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ x : Ω h₁ : x ∈ {a | τ a = n} h₂ : x ∈ {a | n + 1 ≤ τ a} ⊢ False [PROOFSTEP] exact (Nat.succ_le_iff.1 h₂).ne h₁.symm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω f : Filtration ℕ m u : ℕ → Ω → β τ π : Ω → ℕ inst✝ : AddCommMonoid β n : ℕ this : Set.indicator {a | n ≤ τ a} (u n) = Set.indicator {a | n + 1 ≤ τ a} (u n) + Set.indicator {a | τ a = n} (u n) ⊢ stoppedProcess u τ n = Set.indicator {a | n + 1 ≤ τ a} (u n) + ∑ i in Finset.range (n + 1), Set.indicator {a | τ a = i} (u i) [PROOFSTEP] rw [stoppedProcess_eq, this, Finset.sum_range_succ_comm, ← add_assoc] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s ⊢ IsStoppingTime 𝒢 (Set.piecewise s τ η) [PROOFSTEP] intro n [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι ⊢ MeasurableSet {ω | Set.piecewise s τ η ω ≤ n} [PROOFSTEP] have : {ω | s.piecewise τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} := by ext1 ω simp only [Set.piecewise, Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff] by_cases hx : ω ∈ s <;> simp [hx] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι ⊢ {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} [PROOFSTEP] ext1 ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι ω : Ω ⊢ ω ∈ {ω | Set.piecewise s τ η ω ≤ n} ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} [PROOFSTEP] simp only [Set.piecewise, Set.mem_inter_iff, Set.mem_setOf_eq, and_congr_right_iff] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι ω : Ω ⊢ (if ω ∈ s then τ ω else η ω) ≤ n ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} [PROOFSTEP] by_cases hx : ω ∈ s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι ω : Ω hx : ω ∈ s ⊢ (if ω ∈ s then τ ω else η ω) ≤ n ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} [PROOFSTEP] simp [hx] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι ω : Ω hx : ¬ω ∈ s ⊢ (if ω ∈ s then τ ω else η ω) ≤ n ↔ ω ∈ s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} [PROOFSTEP] simp [hx] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} ⊢ MeasurableSet {ω | Set.piecewise s τ η ω ≤ n} [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}) [PROOFSTEP] by_cases hin : i ≤ n [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} hin : i ≤ n ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}) [PROOFSTEP] have hs_n : MeasurableSet[𝒢 n] s := 𝒢.mono hin _ hs [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} hin : i ≤ n hs_n : MeasurableSet s ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}) [PROOFSTEP] exact (hs_n.inter (hτ_st n)).union (hs_n.compl.inter (hη_st n)) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} hin : ¬i ≤ n ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}) [PROOFSTEP] have hτn : ∀ ω, ¬τ ω ≤ n := fun ω hτn => hin ((hτ ω).trans hτn) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} hin : ¬i ≤ n hτn : ∀ (ω : Ω), ¬τ ω ≤ n ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}) [PROOFSTEP] have hηn : ∀ ω, ¬η ω ≤ n := fun ω hηn => hin ((hη ω).trans hηn) [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i j : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s hτ_st : IsStoppingTime 𝒢 τ hη_st : IsStoppingTime 𝒢 η hτ : ∀ (ω : Ω), i ≤ τ ω hη : ∀ (ω : Ω), i ≤ η ω hs : MeasurableSet s n : ι this : {ω | Set.piecewise s τ η ω ≤ n} = s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n} hin : ¬i ≤ n hτn : ∀ (ω : Ω), ¬τ ω ≤ n hηn : ∀ (ω : Ω), ¬η ω ≤ n ⊢ MeasurableSet (s ∩ {ω | τ ω ≤ n} ∪ sᶜ ∩ {ω | η ω ≤ n}) [PROOFSTEP] simp [hτn, hηn, @MeasurableSet.empty _ _] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) = Set.piecewise s (f i) (f j) [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω ⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) ω = Set.piecewise s (f i) (f j) ω [PROOFSTEP] rw [stoppedValue] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω ⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = Set.piecewise s (f i) (f j) ω [PROOFSTEP] by_cases hx : ω ∈ s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω hx : ω ∈ s ⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = Set.piecewise s (f i) (f j) ω [PROOFSTEP] simp [hx] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω hx : ¬ω ∈ s ⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = Set.piecewise s (f i) (f j) ω [PROOFSTEP] simp [hx] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) = Set.indicator s (f i) + Set.indicator sᶜ (f j) [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω ⊢ stoppedValue f (Set.piecewise s (fun x => i) fun x => j) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω [PROOFSTEP] rw [stoppedValue] [GOAL] case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω ⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω [PROOFSTEP] by_cases hx : ω ∈ s [GOAL] case pos Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω hx : ω ∈ s ⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω [PROOFSTEP] simp [hx] [GOAL] case neg Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹ : Preorder ι 𝒢 : Filtration ι m τ η : Ω → ι i✝ j✝ : ι s : Set Ω inst✝ : DecidablePred fun x => x ∈ s ι' : Type u_4 i j : ι' f : ι' → Ω → ℝ ω : Ω hx : ¬ω ∈ s ⊢ f (Set.piecewise s (fun x => i) (fun x => j) ω) ω = (Set.indicator s (f i) + Set.indicator sᶜ (f j)) ω [PROOFSTEP] simp [hx] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : SigmaFiniteFiltration μ ℱ hτ : IsStoppingTime ℱ τ h_countable : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι ⊢ μ[f|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f|↑ℱ i] [PROOFSTEP] refine' condexp_ae_eq_restrict_of_measurableSpace_eq_on (hτ.measurableSpace_le_of_countable_range h_countable) (ℱ.le i) (hτ.measurableSet_eq_of_countable_range' h_countable i) fun t => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : SigmaFiniteFiltration μ ℱ hτ : IsStoppingTime ℱ τ h_countable : Set.Countable (Set.range τ) inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι t : Set Ω ⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : IsCountablyGenerated atTop hτ : IsStoppingTime ℱ τ i : ι inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m)) ⊢ μ[f|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i)] =ᵐ[Measure.restrict μ {x | τ x ≤ i}] μ[f|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] have : SigmaFinite (μ.trim hτ.measurableSpace_le) := haveI h_le : (hτ.min_const i).measurableSpace ≤ hτ.measurableSpace := by rw [IsStoppingTime.measurableSpace_min_const] exact inf_le_left sigmaFiniteTrim_mono _ h_le [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : IsCountablyGenerated atTop hτ : IsStoppingTime ℱ τ i : ι inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m)) ⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ IsStoppingTime.measurableSpace hτ [PROOFSTEP] rw [IsStoppingTime.measurableSpace_min_const] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : IsCountablyGenerated atTop hτ : IsStoppingTime ℱ τ i : ι inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m)) ⊢ IsStoppingTime.measurableSpace ?hτ ⊓ ↑ℱ i ≤ IsStoppingTime.measurableSpace hτ case hτ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : IsCountablyGenerated atTop hτ : IsStoppingTime ℱ τ i : ι inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m)) ⊢ IsStoppingTime ℱ fun ω => τ ω [PROOFSTEP] exact inf_le_left [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : IsCountablyGenerated atTop hτ : IsStoppingTime ℱ τ i : ι inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m)) this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) ⊢ μ[f|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i)] =ᵐ[Measure.restrict μ {x | τ x ≤ i}] μ[f|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] refine' (condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (hτ.min_const i).measurableSpace_le (hτ.measurableSet_le' i) fun t => _).symm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁵ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f : Ω → E inst✝¹ : IsCountablyGenerated atTop hτ : IsStoppingTime ℱ τ i : ι inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) i) ≤ m)) this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) t : Set Ω ⊢ MeasurableSet ({ω | τ ω ≤ i} ∩ t) ↔ MeasurableSet ({ω | τ ω ≤ i} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t, hτ.measurableSet_inter_le_const_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E f : Ω → E inst✝⁵ : IsCountablyGenerated atTop inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι inst✝¹ : SigmaFiniteFiltration μ ℱ hτ : IsStoppingTime ℱ τ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι ⊢ μ[f|IsStoppingTime.measurableSpace hτ] =ᵐ[Measure.restrict μ {x | τ x = i}] μ[f|↑ℱ i] [PROOFSTEP] refine' condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (ℱ.le i) (hτ.measurableSet_eq' i) fun t => _ [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝⁹ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁸ : NormedAddCommGroup E inst✝⁷ : NormedSpace ℝ E inst✝⁶ : CompleteSpace E f : Ω → E inst✝⁵ : IsCountablyGenerated atTop inst✝⁴ : TopologicalSpace ι inst✝³ : OrderTopology ι inst✝² : FirstCountableTopology ι inst✝¹ : SigmaFiniteFiltration μ ℱ hτ : IsStoppingTime ℱ τ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) i : ι t : Set Ω ⊢ MeasurableSet ({x | τ x = i} ∩ t) ↔ MeasurableSet ({x | τ x = i} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_eq_iff] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ μ[f|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[f|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] have : SigmaFinite (μ.trim hτ.measurableSpace_le) := haveI h_le : (hτ.min hσ).measurableSpace ≤ hτ.measurableSpace := by rw [IsStoppingTime.measurableSpace_min] exact inf_le_left; simp_all only sigmaFiniteTrim_mono _ h_le [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ IsStoppingTime.measurableSpace hτ [PROOFSTEP] rw [IsStoppingTime.measurableSpace_min] [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ IsStoppingTime.measurableSpace ?hτ ⊓ IsStoppingTime.measurableSpace ?hπ ≤ IsStoppingTime.measurableSpace hτ case hτ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ IsStoppingTime ℱ fun ω => τ ω case hπ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ IsStoppingTime ℱ fun ω => σ ω [PROOFSTEP] exact inf_le_left [GOAL] case hπ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) ⊢ IsStoppingTime ℱ fun ω => σ ω [PROOFSTEP] simp_all only [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) ⊢ μ[f|IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω))] =ᵐ[Measure.restrict μ {x | τ x ≤ σ x}] μ[f|IsStoppingTime.measurableSpace hτ] [PROOFSTEP] refine' (condexp_ae_eq_restrict_of_measurableSpace_eq_on hτ.measurableSpace_le (hτ.min hσ).measurableSpace_le (hτ.measurableSet_le_stopping_time hσ) fun t => _).symm [GOAL] Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) t : Set Ω ⊢ MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) ↔ MeasurableSet ({ω | τ ω ≤ σ ω} ∩ t) [PROOFSTEP] rw [Set.inter_comm _ t, IsStoppingTime.measurableSet_inter_le_iff] [GOAL] case hπ Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝¹⁰ : LinearOrder ι μ : Measure Ω ℱ : Filtration ι m τ σ : Ω → ι E : Type u_4 inst✝⁹ : NormedAddCommGroup E inst✝⁸ : NormedSpace ℝ E inst✝⁷ : CompleteSpace E f : Ω → E inst✝⁶ : IsCountablyGenerated atTop inst✝⁵ : TopologicalSpace ι inst✝⁴ : OrderTopology ι inst✝³ : MeasurableSpace ι inst✝² : SecondCountableTopology ι inst✝¹ : BorelSpace ι hτ : IsStoppingTime ℱ τ hσ : IsStoppingTime ℱ σ inst✝ : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace (_ : IsStoppingTime ℱ fun ω => min (τ ω) (σ ω)) ≤ m)) this : SigmaFinite (Measure.trim μ (_ : IsStoppingTime.measurableSpace hτ ≤ m)) t : Set Ω ⊢ IsStoppingTime ℱ fun ω => σ ω [PROOFSTEP] simp_all only
{"mathlib_filename": "Mathlib.Probability.Process.Stopping", "llama_tokens": 125624}
[GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 s : Set α t : ι → Set β hι : Nonempty ι ⊢ s ×ˢ ⋂ (i : ι), t i = ⋂ (i : ι), s ×ˢ t i [PROOFSTEP] ext x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 s : Set α t : ι → Set β hι : Nonempty ι x : α × β ⊢ x ∈ s ×ˢ ⋂ (i : ι), t i ↔ x ∈ ⋂ (i : ι), s ×ˢ t i [PROOFSTEP] simp only [mem_prod, mem_iInter] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 s : Set α t : ι → Set β hι : Nonempty ι x : α × β ⊢ (x.fst ∈ s ∧ ∀ (i : ι), x.snd ∈ t i) ↔ ∀ (i : ι), x.fst ∈ s ∧ x.snd ∈ t i [PROOFSTEP] exact ⟨fun h i => ⟨h.1, h.2 i⟩, fun h => ⟨(h hι.some).1, fun i => (h i).2⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ⊢ ⋃ (r : ℚ), Iic ↑r = univ [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 x : ℝ ⊢ x ∈ ⋃ (r : ℚ), Iic ↑r ↔ x ∈ univ [PROOFSTEP] simp only [mem_iUnion, mem_Iic, mem_univ, iff_true_iff] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 x : ℝ ⊢ ∃ i, x ≤ ↑i [PROOFSTEP] obtain ⟨r, hr⟩ := exists_rat_gt x [GOAL] case h.intro α : Type u_1 β : Type u_2 ι : Type u_3 x : ℝ r : ℚ hr : x < ↑r ⊢ ∃ i, x ≤ ↑i [PROOFSTEP] exact ⟨r, hr.le⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 ⊢ ⋂ (r : ℚ), Iic ↑r = ∅ [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 x : ℝ ⊢ x ∈ ⋂ (r : ℚ), Iic ↑r ↔ x ∈ ∅ [PROOFSTEP] simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 x : ℝ ⊢ ∃ x_1, ↑x_1 < x [PROOFSTEP] exact exists_rat_lt x [GOAL] α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α ⊢ atBot ≤ 𝓝 ⊥ [PROOFSTEP] cases subsingleton_or_nontrivial α [GOAL] case inl α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Subsingleton α ⊢ atBot ≤ 𝓝 ⊥ [PROOFSTEP] simp only [nhds_discrete, le_pure_iff, mem_atBot_sets, mem_singleton_iff, eq_iff_true_of_subsingleton, imp_true_iff, exists_const] [GOAL] case inr α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α ⊢ atBot ≤ 𝓝 ⊥ [PROOFSTEP] have h : atBot.HasBasis (fun _ : α => True) Iic := @atBot_basis α _ _ [GOAL] case inr α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α h : HasBasis atBot (fun x => True) Iic ⊢ atBot ≤ 𝓝 ⊥ [PROOFSTEP] have h_nhds : (𝓝 ⊥).HasBasis (fun a : α => ⊥ < a) fun a => Iio a := @nhds_bot_basis α _ _ _ _ _ [GOAL] case inr α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α h : HasBasis atBot (fun x => True) Iic h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a ⊢ atBot ≤ 𝓝 ⊥ [PROOFSTEP] intro s [GOAL] case inr α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α h : HasBasis atBot (fun x => True) Iic h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a s : Set α ⊢ s ∈ 𝓝 ⊥ → s ∈ atBot [PROOFSTEP] rw [h.mem_iff, h_nhds.mem_iff] [GOAL] case inr α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α h : HasBasis atBot (fun x => True) Iic h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a s : Set α ⊢ (∃ i, ⊥ < i ∧ Iio i ⊆ s) → ∃ i, True ∧ Iic i ⊆ s [PROOFSTEP] rintro ⟨a, ha_bot_lt, h_Iio_a_subset_s⟩ [GOAL] case inr.intro.intro α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α h : HasBasis atBot (fun x => True) Iic h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a s : Set α a : α ha_bot_lt : ⊥ < a h_Iio_a_subset_s : Iio a ⊆ s ⊢ ∃ i, True ∧ Iic i ⊆ s [PROOFSTEP] refine' ⟨⊥, trivial, _root_.trans _ h_Iio_a_subset_s⟩ [GOAL] case inr.intro.intro α✝ : Type u_1 β : Type u_2 ι : Type u_3 α : Type u_4 inst✝³ : TopologicalSpace α inst✝² : LinearOrder α inst✝¹ : OrderBot α inst✝ : OrderTopology α h✝ : Nontrivial α h : HasBasis atBot (fun x => True) Iic h_nhds : HasBasis (𝓝 ⊥) (fun a => ⊥ < a) fun a => Iio a s : Set α a : α ha_bot_lt : ⊥ < a h_Iio_a_subset_s : Iio a ⊆ s ⊢ Iic ⊥ ⊆ Iio a [PROOFSTEP] simpa only [Iic_bot, singleton_subset_iff, mem_Iio] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α ⊢ ENNReal.ofReal (⨅ (i : α), f i) = ⨅ (i : α), ENNReal.ofReal (f i) [PROOFSTEP] by_cases hf : BddBelow (range f) [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : BddBelow (range f) ⊢ ENNReal.ofReal (⨅ (i : α), f i) = ⨅ (i : α), ENNReal.ofReal (f i) [PROOFSTEP] exact Monotone.map_ciInf_of_continuousAt ENNReal.continuous_ofReal.continuousAt (fun i j hij => ENNReal.ofReal_le_ofReal hij) hf [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : ¬BddBelow (range f) ⊢ ENNReal.ofReal (⨅ (i : α), f i) = ⨅ (i : α), ENNReal.ofReal (f i) [PROOFSTEP] symm [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : ¬BddBelow (range f) ⊢ ⨅ (i : α), ENNReal.ofReal (f i) = ENNReal.ofReal (⨅ (i : α), f i) [PROOFSTEP] rw [Real.iInf_of_not_bddBelow hf, ENNReal.ofReal_zero, ← ENNReal.bot_eq_zero, iInf_eq_bot] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : ¬BddBelow (range f) ⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, ENNReal.ofReal (f i) < b [PROOFSTEP] obtain ⟨y, hy_mem, hy_neg⟩ := not_bddBelow_iff.mp hf 0 [GOAL] case neg.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : ¬BddBelow (range f) y : ℝ hy_mem : y ∈ range f hy_neg : y < 0 ⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, ENNReal.ofReal (f i) < b [PROOFSTEP] obtain ⟨i, rfl⟩ := mem_range.mpr hy_mem [GOAL] case neg.intro.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : ¬BddBelow (range f) i : α hy_mem : (fun y => f y) i ∈ range f hy_neg : (fun y => f y) i < 0 ⊢ ∀ (b : ℝ≥0∞), b > ⊥ → ∃ i, ENNReal.ofReal (f i) < b [PROOFSTEP] refine' fun x hx => ⟨i, _⟩ [GOAL] case neg.intro.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 f : α → ℝ inst✝ : Nonempty α hf : ¬BddBelow (range f) i : α hy_mem : (fun y => f y) i ∈ range f hy_neg : (fun y => f y) i < 0 x : ℝ≥0∞ hx : x > ⊥ ⊢ ENNReal.ofReal (f i) < x [PROOFSTEP] rwa [ENNReal.ofReal_of_nonpos hy_neg.le] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] cases nonempty_encodable β [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] cases isEmpty_or_nonempty β [GOAL] case intro.inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] conv => lhs congr ·skip · ext x rw [WithTop.iInf_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] lhs congr ·skip · ext x rw [WithTop.iInf_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] lhs congr ·skip · ext x rw [WithTop.iInf_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] lhs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ [PROOFSTEP] congr [GOAL] case μ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | μ case f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | fun a => ⨅ (b : β), f b a [PROOFSTEP] ·skip [GOAL] case μ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | μ [PROOFSTEP] skip [GOAL] case μ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | μ [PROOFSTEP] skip [GOAL] case μ α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | μ [PROOFSTEP] skip [GOAL] case f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | fun a => ⨅ (b : β), f b a [PROOFSTEP] · ext x rw [WithTop.iInf_empty] [GOAL] case f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | fun a => ⨅ (b : β), f b a [PROOFSTEP] ext x rw [WithTop.iInf_empty] [GOAL] case f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | fun a => ⨅ (b : β), f b a [PROOFSTEP] ext x rw [WithTop.iInf_empty] [GOAL] case f α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β | fun a => ⨅ (b : β), f b a [PROOFSTEP] ext x [GOAL] case f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β x : α | ⨅ (b : β), f b x [PROOFSTEP] rw [WithTop.iInf_empty] [GOAL] case intro.inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β ⊢ ∫⁻ (x : α), ⊤ ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] rw [WithTop.iInf_empty, lintegral_const] [GOAL] case intro.inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β ⊢ ⊤ * ↑↑μ univ = ⊤ [PROOFSTEP] rw [ENNReal.top_mul', if_neg] [GOAL] case intro.inl.hnc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : IsEmpty β ⊢ ¬↑↑μ univ = 0 [PROOFSTEP] simp only [Measure.measure_univ_eq_zero, hμ, not_false_iff] [GOAL] case intro.inr α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] inhabit β [GOAL] case intro.inr α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] have : ∀ a, ⨅ b, f b a = ⨅ n, f (h_directed.sequence f n) a := by refine' fun a => le_antisymm (le_iInf fun n => iInf_le _ _) (le_iInf fun b => iInf_le_of_le (Encodable.encode b + 1) _) exact h_directed.sequence_le b a [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β ⊢ ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a [PROOFSTEP] refine' fun a => le_antisymm (le_iInf fun n => iInf_le _ _) (le_iInf fun b => iInf_le_of_le (Encodable.encode b + 1) _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β a : α b : β ⊢ f (Directed.sequence f h_directed (Encodable.encode b + 1)) a ≤ f b a [PROOFSTEP] exact h_directed.sequence_le b a [GOAL] case intro.inr α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] calc ∫⁻ a, ⨅ b, f b a ∂μ _ = ∫⁻ a, ⨅ n, (f ∘ h_directed.sequence f) n a ∂μ := by simp only [this, Function.comp_apply] _ = ⨅ n, ∫⁻ a, (f ∘ h_directed.sequence f) n a ∂μ := by rw [lintegral_iInf ?_ h_directed.sequence_anti] · exact hf_int _ · exact (fun n => hf _) _ = ⨅ b, ∫⁻ a, f b a ∂μ := by refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _) · exact iInf_le_of_le (Encodable.encode b + 1) (lintegral_mono <| h_directed.sequence_le b) · exact iInf_le (fun b => ∫⁻ a, f b a ∂μ) _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a ⊢ ∫⁻ (a : α), ⨅ (b : β), f b a ∂μ = ∫⁻ (a : α), ⨅ (n : ℕ), (f ∘ Directed.sequence f h_directed) n a ∂μ [PROOFSTEP] simp only [this, Function.comp_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a ⊢ ∫⁻ (a : α), ⨅ (n : ℕ), (f ∘ Directed.sequence f h_directed) n a ∂μ = ⨅ (n : ℕ), ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ [PROOFSTEP] rw [lintegral_iInf ?_ h_directed.sequence_anti] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a ⊢ ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) 0 a ∂μ ≠ ⊤ [PROOFSTEP] exact hf_int _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a ⊢ ∀ (n : ℕ), Measurable ((f ∘ Directed.sequence f h_directed) n) [PROOFSTEP] exact (fun n => hf _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a ⊢ ⨅ (n : ℕ), ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ = ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _) [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a b : β ⊢ ⨅ (n : ℕ), ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ ≤ ∫⁻ (a : α), f b a ∂μ [PROOFSTEP] exact iInf_le_of_le (Encodable.encode b + 1) (lintegral_mono <| h_directed.sequence_le b) [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α inst✝ : Countable β f : β → α → ℝ≥0∞ μ : Measure α hμ : μ ≠ 0 hf : ∀ (b : β), Measurable (f b) hf_int : ∀ (b : β), ∫⁻ (a : α), f b a ∂μ ≠ ⊤ h_directed : Directed (fun x x_1 => x ≥ x_1) f val✝ : Encodable β h✝ : Nonempty β inhabited_h : Inhabited β this : ∀ (a : α), ⨅ (b : β), f b a = ⨅ (n : ℕ), f (Directed.sequence f h_directed n) a n : ℕ ⊢ ⨅ (b : β), ∫⁻ (a : α), f b a ∂μ ≤ ∫⁻ (a : α), (f ∘ Directed.sequence f h_directed) n a ∂μ [PROOFSTEP] exact iInf_le (fun b => ∫⁻ a, f b a ∂μ) _ [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℝ s : Set α hs : MeasurableSet s ⊢ ↑↑(IicSnd ρ r) s = ↑↑ρ (s ×ˢ Iic r) [PROOFSTEP] rw [IicSnd, fst_apply hs, restrict_apply' (MeasurableSet.univ.prod (measurableSet_Iic : MeasurableSet (Iic r))), ← prod_univ, prod_inter_prod, inter_univ, univ_inter] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r r' : ℝ h_le : r ≤ r' ⊢ IicSnd ρ r ≤ IicSnd ρ r' [PROOFSTEP] intro s hs [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r r' : ℝ h_le : r ≤ r' s : Set α hs : MeasurableSet s ⊢ ↑↑(IicSnd ρ r) s ≤ ↑↑(IicSnd ρ r') s [PROOFSTEP] simp_rw [IicSnd_apply ρ _ hs] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r r' : ℝ h_le : r ≤ r' s : Set α hs : MeasurableSet s ⊢ ↑↑ρ (s ×ˢ Iic r) ≤ ↑↑ρ (s ×ˢ Iic r') [PROOFSTEP] refine' measure_mono (prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, Iic_subset_Iic.mpr _⟩)) [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r r' : ℝ h_le : r ≤ r' s : Set α hs : MeasurableSet s ⊢ r ≤ r' [PROOFSTEP] exact_mod_cast h_le [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℝ ⊢ IicSnd ρ r ≤ fst ρ [PROOFSTEP] intro s hs [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℝ s : Set α hs : MeasurableSet s ⊢ ↑↑(IicSnd ρ r) s ≤ ↑↑(fst ρ) s [PROOFSTEP] simp_rw [fst_apply hs, IicSnd_apply ρ r hs] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℝ s : Set α hs : MeasurableSet s ⊢ ↑↑ρ (s ×ˢ Iic r) ≤ ↑↑ρ (Prod.fst ⁻¹' s) [PROOFSTEP] exact measure_mono (prod_subset_preimage_fst _ _) [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ⨅ (r : { r' // t < r' }), ↑↑(IicSnd ρ ↑↑r) s = ↑↑(IicSnd ρ ↑t) s [PROOFSTEP] simp_rw [ρ.IicSnd_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ⨅ (r : { r' // t < r' }), ↑↑ρ (s ×ˢ Iic ↑↑r) = ↑↑ρ (s ×ˢ Iic ↑t) [PROOFSTEP] rw [← measure_iInter_eq_iInf] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ↑↑ρ (⋂ (i : { r' // t < r' }), s ×ˢ Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic ↑t) [PROOFSTEP] rw [← prod_iInter] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ↑↑ρ (s ×ˢ ⋂ (i : { r' // t < r' }), Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic ↑t) [PROOFSTEP] congr with x : 1 [GOAL] case e_a.e_a.h α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ x : ℝ ⊢ x ∈ ⋂ (i : { r' // t < r' }), Iic ↑↑i ↔ x ∈ Iic ↑t [PROOFSTEP] simp only [mem_iInter, mem_Iic, Subtype.forall, Subtype.coe_mk] [GOAL] case e_a.e_a.h α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ x : ℝ ⊢ (∀ (a : ℚ), t < a → x ≤ ↑a) ↔ x ≤ ↑t [PROOFSTEP] refine' ⟨fun h => _, fun h a hta => h.trans _⟩ [GOAL] case e_a.e_a.h.refine'_1 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ x : ℝ h : ∀ (a : ℚ), t < a → x ≤ ↑a ⊢ x ≤ ↑t [PROOFSTEP] refine' le_of_forall_lt_rat_imp_le fun q htq => h q _ [GOAL] case e_a.e_a.h.refine'_1 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ x : ℝ h : ∀ (a : ℚ), t < a → x ≤ ↑a q : ℚ htq : ↑t < ↑q ⊢ t < q [PROOFSTEP] exact_mod_cast htq [GOAL] case e_a.e_a.h.refine'_2 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ x : ℝ h : x ≤ ↑t a : ℚ hta : t < a ⊢ ↑t ≤ ↑a [PROOFSTEP] exact_mod_cast hta.le [GOAL] case h α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ∀ (i : { r' // t < r' }), MeasurableSet (s ×ˢ Iic ↑↑i) [PROOFSTEP] exact fun _ => hs.prod measurableSet_Iic [GOAL] case hd α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ Directed (fun x x_1 => x ⊇ x_1) fun r => s ×ˢ Iic ↑↑r [PROOFSTEP] refine' Monotone.directed_ge fun r r' hrr' => prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, _⟩) [GOAL] case hd α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ r r' : { r' // t < r' } hrr' : r ≤ r' ⊢ Iic ↑↑r ⊆ Iic ↑↑r' [PROOFSTEP] refine' Iic_subset_Iic.mpr _ [GOAL] case hd α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ r r' : { r' // t < r' } hrr' : r ≤ r' ⊢ ↑↑r ≤ ↑↑r' [PROOFSTEP] exact_mod_cast hrr' [GOAL] case hfin α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) t : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ∃ i, ↑↑ρ (s ×ˢ Iic ↑↑i) ≠ ⊤ [PROOFSTEP] exact ⟨⟨t + 1, lt_add_one _⟩, measure_ne_top ρ _⟩ [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s ⊢ Tendsto (fun r => ↑↑(IicSnd ρ ↑r) s) atTop (𝓝 (↑↑(fst ρ) s)) [PROOFSTEP] simp_rw [ρ.IicSnd_apply _ hs, fst_apply hs, ← prod_univ] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atTop (𝓝 (↑↑ρ (s ×ˢ univ))) [PROOFSTEP] rw [← Real.iUnion_Iic_rat, prod_iUnion] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atTop (𝓝 (↑↑ρ (⋃ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] refine' tendsto_measure_iUnion fun r q hr_le_q x => _ [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s r q : ℚ hr_le_q : r ≤ q x : α × ℝ ⊢ x ∈ s ×ˢ Iic ↑r → x ∈ s ×ˢ Iic ↑q [PROOFSTEP] simp only [mem_prod, mem_Iic, and_imp] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s r q : ℚ hr_le_q : r ≤ q x : α × ℝ ⊢ x.fst ∈ s → x.snd ≤ ↑r → x.fst ∈ s ∧ x.snd ≤ ↑q [PROOFSTEP] refine' fun hxs hxr => ⟨hxs, hxr.trans _⟩ [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set α hs : MeasurableSet s r q : ℚ hr_le_q : r ≤ q x : α × ℝ hxs : x.fst ∈ s hxr : x.snd ≤ ↑r ⊢ ↑r ≤ ↑q [PROOFSTEP] exact_mod_cast hr_le_q [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s ⊢ Tendsto (fun r => ↑↑(IicSnd ρ ↑r) s) atBot (𝓝 0) [PROOFSTEP] simp_rw [ρ.IicSnd_apply _ hs] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 0) [PROOFSTEP] have h_empty : ρ (s ×ˢ ∅) = 0 := by simp only [prod_empty, measure_empty] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s ⊢ ↑↑ρ (s ×ˢ ∅) = 0 [PROOFSTEP] simp only [prod_empty, measure_empty] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 0) [PROOFSTEP] rw [← h_empty, ← Real.iInter_Iic_rat, prod_iInter] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] suffices h_neg : Tendsto (fun r : ℚ => ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (ρ (⋂ r : ℚ, s ×ˢ Iic ↑(-r)))) [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] have h_inter_eq : ⋂ r : ℚ, s ×ˢ Iic ↑(-r) = ⋂ r : ℚ, s ×ˢ Iic (r : ℝ) := by ext1 x simp only [Rat.cast_eq_id, id.def, mem_iInter, mem_prod, mem_Iic] refine' ⟨fun h i => ⟨(h i).1, _⟩, fun h i => ⟨(h i).1, _⟩⟩ <;> have h' := h (-i) · rw [neg_neg] at h' ; exact h'.2 · exact h'.2 [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) ⊢ ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ ⊢ x ∈ ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) ↔ x ∈ ⋂ (r : ℚ), s ×ˢ Iic ↑r [PROOFSTEP] simp only [Rat.cast_eq_id, id.def, mem_iInter, mem_prod, mem_Iic] [GOAL] case h α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ ⊢ (∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i)) ↔ ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑i [PROOFSTEP] refine' ⟨fun h i => ⟨(h i).1, _⟩, fun h i => ⟨(h i).1, _⟩⟩ [GOAL] case h.refine'_1 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i) i : ℚ ⊢ x.snd ≤ ↑i [PROOFSTEP] have h' := h (-i) [GOAL] case h.refine'_2 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑i i : ℚ ⊢ x.snd ≤ ↑(-i) [PROOFSTEP] have h' := h (-i) [GOAL] case h.refine'_1 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i) i : ℚ h' : x.fst ∈ s ∧ x.snd ≤ ↑(- -i) ⊢ x.snd ≤ ↑i [PROOFSTEP] rw [neg_neg] at h' [GOAL] case h.refine'_1 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑(-i) i : ℚ h' : x.fst ∈ s ∧ x.snd ≤ ↑i ⊢ x.snd ≤ ↑i [PROOFSTEP] exact h'.2 [GOAL] case h.refine'_2 α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) x : α × ℝ h : ∀ (i : ℚ), x.fst ∈ s ∧ x.snd ≤ ↑i i : ℚ h' : x.fst ∈ s ∧ x.snd ≤ ↑(-i) ⊢ x.snd ≤ ↑(-i) [PROOFSTEP] exact h'.2 [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] rw [h_inter_eq] at h_neg [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r))) h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] have h_fun_eq : (fun r : ℚ => ρ (s ×ˢ Iic (r : ℝ))) = fun r : ℚ => ρ (s ×ˢ Iic ↑(- -r)) := by simp_rw [neg_neg] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r))) h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r ⊢ (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) = fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r)) [PROOFSTEP] simp_rw [neg_neg] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r))) h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r h_fun_eq : (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) = fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r)) ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] rw [h_fun_eq] [GOAL] α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 h_neg : Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑r))) h_inter_eq : ⋂ (r : ℚ), s ×ˢ Iic ↑(-r) = ⋂ (r : ℚ), s ×ˢ Iic ↑r h_fun_eq : (fun r => ↑↑ρ (s ×ˢ Iic ↑r)) = fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r)) ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(- -r))) atBot (𝓝 (↑↑ρ (⋂ (i : ℚ), s ×ˢ Iic ↑i))) [PROOFSTEP] exact h_neg.comp tendsto_neg_atBot_atTop [GOAL] case h_neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 ⊢ Tendsto (fun r => ↑↑ρ (s ×ˢ Iic ↑(-r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), s ×ˢ Iic ↑(-r)))) [PROOFSTEP] refine' tendsto_measure_iInter (fun q => hs.prod measurableSet_Iic) _ ⟨0, measure_ne_top ρ _⟩ [GOAL] case h_neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 ⊢ Antitone fun r => s ×ˢ Iic ↑(-r) [PROOFSTEP] refine' fun q r hqr => prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, fun x hx => _⟩) [GOAL] case h_neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 q r : ℚ hqr : q ≤ r x : ℝ hx : x ∈ Iic ↑(-r) ⊢ x ∈ Iic ↑(-q) [PROOFSTEP] simp only [Rat.cast_neg, mem_Iic] at hx ⊢ [GOAL] case h_neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 q r : ℚ hqr : q ≤ r x : ℝ hx : x ≤ -↑r ⊢ x ≤ -↑q [PROOFSTEP] refine' hx.trans (neg_le_neg _) [GOAL] case h_neg α : Type u_1 β : Type u_2 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ s : Set α hs : MeasurableSet s h_empty : ↑↑ρ (s ×ˢ ∅) = 0 q r : ℚ hqr : q ≤ r x : ℝ hx : x ≤ -↑r ⊢ ↑q ≤ ↑r [PROOFSTEP] exact_mod_cast hqr [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑r) s [PROOFSTEP] have : ∀ r, ∫⁻ x in s, preCdf ρ r x ∂ρ.fst = ∫⁻ x in s, (preCdf ρ r * 1) x ∂ρ.fst := by simp only [mul_one, eq_self_iff_true, forall_const] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ ⊢ ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ [PROOFSTEP] simp only [mul_one, eq_self_iff_true, forall_const] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ ⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑r) s [PROOFSTEP] rw [this, ← set_lintegral_withDensity_eq_set_lintegral_mul _ measurable_preCdf _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ ⊢ ∫⁻ (x : α) in s, OfNat.ofNat 1 x ∂Measure.withDensity (Measure.fst ρ) (preCdf ρ r) = ↑↑(Measure.IicSnd ρ ↑r) s [PROOFSTEP] simp only [withDensity_preCdf ρ r, Pi.one_apply, lintegral_one, Measure.restrict_apply, MeasurableSet.univ, univ_inter] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ ⊢ Measurable 1 [PROOFSTEP] rw [(_ : (1 : α → ℝ≥0∞) = fun _ => 1)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ ⊢ Measurable fun x => 1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) r : ℚ s : Set α hs : MeasurableSet s inst✝ : IsFiniteMeasure ρ this : ∀ (r : ℚ), ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ = ∫⁻ (x : α) in s, (preCdf ρ r * 1) x ∂Measure.fst ρ ⊢ 1 = fun x => 1 [PROOFSTEP] exacts [measurable_const, rfl] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a [PROOFSTEP] simp_rw [Monotone, ae_all_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ (i i_1 : ℚ), i ≤ i_1 → ∀ᵐ (a : α) ∂Measure.fst ρ, preCdf ρ i a ≤ preCdf ρ i_1 a [PROOFSTEP] refine' fun r r' hrr' => ae_le_of_forall_set_lintegral_le_of_sigmaFinite measurable_preCdf measurable_preCdf fun s hs _ => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r r' : ℚ hrr' : r ≤ r' s : Set α hs : MeasurableSet s x✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, preCdf ρ r' x ∂Measure.fst ρ [PROOFSTEP] rw [set_lintegral_preCdf_fst ρ r hs, set_lintegral_preCdf_fst ρ r' hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r r' : ℚ hrr' : r ≤ r' s : Set α hs : MeasurableSet s x✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ↑↑(Measure.IicSnd ρ ↑r) s ≤ ↑↑(Measure.IicSnd ρ ↑r') s [PROOFSTEP] refine' Measure.IicSnd_mono ρ _ s hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r r' : ℚ hrr' : r ≤ r' s : Set α hs : MeasurableSet s x✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ↑r ≤ ↑r' [PROOFSTEP] exact_mod_cast hrr' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑t) s [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑t) s [PROOFSTEP] have h : ∀ q : Ioi t, ∫⁻ x in s, ⨅ r : Ioi t, preCdf ρ r x ∂ρ.fst ≤ ρ.IicSnd q s := by intro q rw [← set_lintegral_preCdf_fst ρ _ hs] refine' set_lintegral_mono_ae _ measurable_preCdf _ · exact measurable_iInf fun _ => measurable_preCdf · filter_upwards [monotone_preCdf _] with a _ exact fun _ => iInf_le _ q [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ ∀ (q : ↑(Ioi t)), ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑↑q) s [PROOFSTEP] intro q [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s q : ↑(Ioi t) ⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑↑q) s [PROOFSTEP] rw [← set_lintegral_preCdf_fst ρ _ hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s q : ↑(Ioi t) ⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, preCdf ρ (↑q) x ∂Measure.fst ρ [PROOFSTEP] refine' set_lintegral_mono_ae _ measurable_preCdf _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s q : ↑(Ioi t) ⊢ Measurable fun x => ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x [PROOFSTEP] exact measurable_iInf fun _ => measurable_preCdf [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s q : ↑(Ioi t) ⊢ ∀ᵐ (x : α) ∂Measure.fst ρ, x ∈ s → ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ≤ preCdf ρ (↑q) x [PROOFSTEP] filter_upwards [monotone_preCdf _] with a _ [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s q : ↑(Ioi t) a : α a✝ : Monotone fun r => preCdf ρ r a ⊢ a ∈ s → ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a ≤ preCdf ρ (↑q) a [PROOFSTEP] exact fun _ => iInf_le _ q [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s h : ∀ (q : ↑(Ioi t)), ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑↑q) s ⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ ≤ ↑↑(Measure.IicSnd ρ ↑t) s [PROOFSTEP] calc ∫⁻ x in s, ⨅ r : Ioi t, preCdf ρ r x ∂ρ.fst ≤ ⨅ q : Ioi t, ρ.IicSnd q s := le_iInf h _ = ρ.IicSnd t s := Measure.iInf_IicSnd_gt ρ t hs [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ ↑↑(Measure.IicSnd ρ ↑t) s ≤ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ [PROOFSTEP] rw [(set_lintegral_preCdf_fst ρ t hs).symm] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (x : α) in s, preCdf ρ t x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ [PROOFSTEP] refine' set_lintegral_mono_ae measurable_preCdf _ _ [GOAL] case refine'_2.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ Measurable fun x => ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x [PROOFSTEP] exact measurable_iInf fun _ => measurable_preCdf [GOAL] case refine'_2.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s ⊢ ∀ᵐ (x : α) ∂Measure.fst ρ, x ∈ s → preCdf ρ t x ≤ ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x [PROOFSTEP] filter_upwards [monotone_preCdf _] with a ha_mono [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s a : α ha_mono : Monotone fun r => preCdf ρ r a ⊢ a ∈ s → preCdf ρ t a ≤ ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a [PROOFSTEP] exact fun _ => le_iInf fun r => ha_mono (le_of_lt r.prop) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 [PROOFSTEP] rw [ae_all_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ (i : ℚ), ∀ᵐ (a : α) ∂Measure.fst ρ, preCdf ρ i a ≤ 1 [PROOFSTEP] refine' fun r => ae_le_of_forall_set_lintegral_le_of_sigmaFinite measurable_preCdf measurable_const fun s hs _ => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s x✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ∫⁻ (x : α) in s, preCdf ρ r x ∂Measure.fst ρ ≤ ∫⁻ (x : α) in s, 1 ∂Measure.fst ρ [PROOFSTEP] rw [set_lintegral_preCdf_fst ρ r hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s x✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ↑↑(Measure.IicSnd ρ ↑r) s ≤ ∫⁻ (x : α) in s, 1 ∂Measure.fst ρ [PROOFSTEP] simp only [Pi.one_apply, lintegral_one, Measure.restrict_apply, MeasurableSet.univ, univ_inter] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s x✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ↑↑(Measure.IicSnd ρ ↑r) s ≤ ↑↑(Measure.fst ρ) s [PROOFSTEP] exact Measure.IicSnd_le_fst ρ r s hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ r a ∂Measure.fst ρ) atTop (𝓝 (↑↑ρ univ)) [PROOFSTEP] convert ρ.tendsto_IicSnd_atTop MeasurableSet.univ [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x✝ : ℚ ⊢ ∫⁻ (a : α), preCdf ρ x✝ a ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑x✝) univ [PROOFSTEP] rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ] [GOAL] case h.e'_5.h.e'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ↑↑ρ univ = ↑↑(Measure.fst ρ) univ [PROOFSTEP] exact Measure.fst_univ.symm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ r a ∂Measure.fst ρ) atBot (𝓝 0) [PROOFSTEP] convert ρ.tendsto_IicSnd_atBot MeasurableSet.univ [GOAL] case h.e'_3.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x✝ : ℚ ⊢ ∫⁻ (a : α), preCdf ρ x✝ a ∂Measure.fst ρ = ↑↑(Measure.IicSnd ρ ↑x✝) univ [PROOFSTEP] rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have h_mono := monotone_preCdf ρ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have h_le_one := preCdf_le_one ρ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have h_exists : ∀ᵐ a ∂ρ.fst, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) := by filter_upwards [h_mono, h_le_one] with a ha_mono ha_le_one have h_tendsto : Tendsto (fun r => preCdf ρ r a) atTop atTop ∨ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) := tendsto_of_monotone ha_mono cases' h_tendsto with h_absurd h_tendsto · rw [Monotone.tendsto_atTop_atTop_iff ha_mono] at h_absurd obtain ⟨r, hr⟩ := h_absurd 2 exact absurd (hr.trans (ha_le_one r)) ENNReal.one_lt_two.not_le · exact h_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] filter_upwards [h_mono, h_le_one] with a ha_mono ha_le_one [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 a : α ha_mono : Monotone fun r => preCdf ρ r a ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] have h_tendsto : Tendsto (fun r => preCdf ρ r a) atTop atTop ∨ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) := tendsto_of_monotone ha_mono [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 a : α ha_mono : Monotone fun r => preCdf ρ r a ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_tendsto : Tendsto (fun r => preCdf ρ r a) atTop atTop ∨ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) ⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] cases' h_tendsto with h_absurd h_tendsto [GOAL] case h.inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 a : α ha_mono : Monotone fun r => preCdf ρ r a ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_absurd : Tendsto (fun r => preCdf ρ r a) atTop atTop ⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] rw [Monotone.tendsto_atTop_atTop_iff ha_mono] at h_absurd [GOAL] case h.inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 a : α ha_mono : Monotone fun r => preCdf ρ r a ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_absurd : ∀ (b : ℝ≥0∞), ∃ a_1, b ≤ preCdf ρ a_1 a ⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] obtain ⟨r, hr⟩ := h_absurd 2 [GOAL] case h.inl.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 a : α ha_mono : Monotone fun r => preCdf ρ r a ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_absurd : ∀ (b : ℝ≥0∞), ∃ a_1, b ≤ preCdf ρ a_1 a r : ℚ hr : 2 ≤ preCdf ρ r a ⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] exact absurd (hr.trans (ha_le_one r)) ENNReal.one_lt_two.not_le [GOAL] case h.inr α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 a : α ha_mono : Monotone fun r => preCdf ρ r a ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_tendsto : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) ⊢ ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) [PROOFSTEP] exact h_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] classical -- let `F` be the pointwise limit of `preCdf` where it exists, and 0 elsewhere. let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then h.choose else 0 have h_tendsto_ℚ : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) := by filter_upwards [h_exists] with a ha simp_rw [dif_pos ha] exact ha.choose_spec have h_tendsto_ℕ : ∀ᵐ a ∂ρ.fst, Tendsto (fun n : ℕ => preCdf ρ n a) atTop (𝓝 (F a)) := by filter_upwards [h_tendsto_ℚ] with a ha using ha.comp tendsto_nat_cast_atTop_atTop have hF_ae_meas : AEMeasurable F ρ.fst := by refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto_ℚ exact measurable_preCdf.aemeasurable have hF_le_one : ∀ᵐ a ∂ρ.fst, F a ≤ 1 := by filter_upwards [h_tendsto_ℚ, h_le_one] with a ha ha_le using le_of_tendsto' ha ha_le suffices ∀ᵐ a ∂ρ.fst, F a = 1 by filter_upwards [h_tendsto_ℚ, this] with a ha_tendsto ha_eq rwa [ha_eq] at ha_tendsto have h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := by have h_lintegral : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) := by refine' lintegral_tendsto_of_tendsto_of_monotone ( -- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable) _ h_tendsto_ℕ filter_upwards [h_mono] with a ha refine' fun n m hnm => ha _ exact_mod_cast hnm have h_lintegral' : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ _, 1 ∂ρ.fst)) := by rw [lintegral_one, Measure.fst_univ] exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop exact tendsto_nhds_unique h_lintegral h_lintegral' have : ∫⁻ a, 1 - F a ∂ρ.fst = 0 := by rw [lintegral_sub' hF_ae_meas _ hF_le_one, h_lintegral_eq, tsub_self] calc ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := h_lintegral_eq _ = ρ.fst univ := lintegral_one _ = ρ univ := Measure.fst_univ _ ≠ ∞ := measure_ne_top ρ _ rw [lintegral_eq_zero_iff' (aemeasurable_const.sub hF_ae_meas)] at this filter_upwards [this, hF_le_one] with ha h_one_sub_eq_zero h_le_one rw [Pi.zero_apply, tsub_eq_zero_iff_le] at h_one_sub_eq_zero exact le_antisymm h_le_one h_one_sub_eq_zero [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then h.choose else 0 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have h_tendsto_ℚ : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) := by filter_upwards [h_exists] with a ha simp_rw [dif_pos ha] exact ha.choose_spec [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) [PROOFSTEP] filter_upwards [h_exists] with a ha [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 a : α ha : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) ⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0)) [PROOFSTEP] simp_rw [dif_pos ha] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 a : α ha : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) ⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (Exists.choose ha)) [PROOFSTEP] exact ha.choose_spec [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have h_tendsto_ℕ : ∀ᵐ a ∂ρ.fst, Tendsto (fun n : ℕ => preCdf ρ n a) atTop (𝓝 (F a)) := by filter_upwards [h_tendsto_ℚ] with a ha using ha.comp tendsto_nat_cast_atTop_atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) [PROOFSTEP] filter_upwards [h_tendsto_ℚ] with a ha using ha.comp tendsto_nat_cast_atTop_atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have hF_ae_meas : AEMeasurable F ρ.fst := by refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto_ℚ exact measurable_preCdf.aemeasurable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) ⊢ AEMeasurable F [PROOFSTEP] refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto_ℚ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) n : ℚ ⊢ AEMeasurable fun x => preCdf ρ n x [PROOFSTEP] exact measurable_preCdf.aemeasurable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] have hF_le_one : ∀ᵐ a ∂ρ.fst, F a ≤ 1 := by filter_upwards [h_tendsto_ℚ, h_le_one] with a ha ha_le using le_of_tendsto' ha ha_le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 [PROOFSTEP] filter_upwards [h_tendsto_ℚ, h_le_one] with a ha ha_le using le_of_tendsto' ha ha_le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] suffices ∀ᵐ a ∂ρ.fst, F a = 1 by filter_upwards [h_tendsto_ℚ, this] with a ha_tendsto ha_eq rwa [ha_eq] at ha_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 this : ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] filter_upwards [h_tendsto_ℚ, this] with a ha_tendsto ha_eq [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 this : ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1 a : α ha_tendsto : Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0)) ha_eq : (if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0) = 1 ⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] rwa [ha_eq] at ha_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1 [PROOFSTEP] have h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := by have h_lintegral : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) := by refine' lintegral_tendsto_of_tendsto_of_monotone ( -- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable) _ h_tendsto_ℕ filter_upwards [h_mono] with a ha refine' fun n m hnm => ha _ exact_mod_cast hnm have h_lintegral' : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ _, 1 ∂ρ.fst)) := by rw [lintegral_one, Measure.fst_univ] exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop exact tendsto_nhds_unique h_lintegral h_lintegral' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ [PROOFSTEP] have h_lintegral : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) := by refine' lintegral_tendsto_of_tendsto_of_monotone ( -- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable) _ h_tendsto_ℕ filter_upwards [h_mono] with a ha refine' fun n m hnm => ha _ exact_mod_cast hnm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) [PROOFSTEP] refine' lintegral_tendsto_of_tendsto_of_monotone ( -- does this exist only for ℕ?fun _ => measurable_preCdf.aemeasurable) _ h_tendsto_ℕ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 ⊢ ∀ᵐ (x : α) ∂Measure.fst ρ, Monotone fun n => preCdf ρ (↑n) x [PROOFSTEP] filter_upwards [h_mono] with a ha [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 a : α ha : Monotone fun r => preCdf ρ r a ⊢ Monotone fun n => preCdf ρ (↑n) a [PROOFSTEP] refine' fun n m hnm => ha _ [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 a : α ha : Monotone fun r => preCdf ρ r a n m : ℕ hnm : n ≤ m ⊢ ↑n ≤ ↑m [PROOFSTEP] exact_mod_cast hnm [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ [PROOFSTEP] have h_lintegral' : Tendsto (fun r : ℕ => ∫⁻ a, preCdf ρ r a ∂ρ.fst) atTop (𝓝 (∫⁻ _, 1 ∂ρ.fst)) := by rw [lintegral_one, Measure.fst_univ] exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (x : α), 1 ∂Measure.fst ρ)) [PROOFSTEP] rw [lintegral_one, Measure.fst_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (↑↑ρ univ)) [PROOFSTEP] exact (tendsto_lintegral_preCdf_atTop ρ).comp tendsto_nat_cast_atTop_atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral' : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (↑r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (x : α), 1 ∂Measure.fst ρ)) ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ [PROOFSTEP] exact tendsto_nhds_unique h_lintegral h_lintegral' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1 [PROOFSTEP] have : ∫⁻ a, 1 - F a ∂ρ.fst = 0 := by rw [lintegral_sub' hF_ae_meas _ hF_le_one, h_lintegral_eq, tsub_self] calc ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := h_lintegral_eq _ = ρ.fst univ := lintegral_one _ = ρ univ := Measure.fst_univ _ ≠ ∞ := measure_ne_top ρ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ ⊢ ∫⁻ (a : α), 1 - F a ∂Measure.fst ρ = 0 [PROOFSTEP] rw [lintegral_sub' hF_ae_meas _ hF_le_one, h_lintegral_eq, tsub_self] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ ≠ ⊤ [PROOFSTEP] calc ∫⁻ a, F a ∂ρ.fst = ∫⁻ _, 1 ∂ρ.fst := h_lintegral_eq _ = ρ.fst univ := lintegral_one _ = ρ univ := Measure.fst_univ _ ≠ ∞ := measure_ne_top ρ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ this : ∫⁻ (a : α), 1 - F a ∂Measure.fst ρ = 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1 [PROOFSTEP] rw [lintegral_eq_zero_iff' (aemeasurable_const.sub hF_ae_meas)] at this [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ this : (fun a => 1 - F a) =ᵐ[Measure.fst ρ] 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, F a = 1 [PROOFSTEP] filter_upwards [this, hF_le_one] with ha h_one_sub_eq_zero h_le_one [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one✝ : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ this : (fun a => 1 - F a) =ᵐ[Measure.fst ρ] 0 ha : α h_one_sub_eq_zero : (1 - if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) = OfNat.ofNat 0 ha h_le_one : (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) ≤ 1 ⊢ (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) = 1 [PROOFSTEP] rw [Pi.zero_apply, tsub_eq_zero_iff_le] at h_one_sub_eq_zero [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_mono : ∀ᵐ (a : α) ∂Measure.fst ρ, Monotone fun r => preCdf ρ r a h_le_one✝ : ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (r : ℚ), preCdf ρ r a ≤ 1 h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto_ℚ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atTop (𝓝 (F a)) h_tendsto_ℕ : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun n => preCdf ρ (↑n) a) atTop (𝓝 (F a)) hF_ae_meas : AEMeasurable F hF_le_one : ∀ᵐ (a : α) ∂Measure.fst ρ, F a ≤ 1 h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = ∫⁻ (x : α), 1 ∂Measure.fst ρ this : (fun a => 1 - F a) =ᵐ[Measure.fst ρ] 0 ha : α h_one_sub_eq_zero : 1 ≤ if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0 h_le_one : (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) ≤ 1 ⊢ (if h : ∃ l, Tendsto (fun r => preCdf ρ r ha) atTop (𝓝 l) then Exists.choose h else 0) = 1 [PROOFSTEP] exact le_antisymm h_le_one h_one_sub_eq_zero [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0) [PROOFSTEP] suffices ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) by filter_upwards [this] with a ha have h_eq_neg : (fun r : ℚ => preCdf ρ r a) = fun r : ℚ => preCdf ρ (- -r) a := by simp_rw [neg_neg] rw [h_eq_neg] exact ha.comp tendsto_neg_atBot_atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0) [PROOFSTEP] filter_upwards [this] with a ha [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) a : α ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) ⊢ Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0) [PROOFSTEP] have h_eq_neg : (fun r : ℚ => preCdf ρ r a) = fun r : ℚ => preCdf ρ (- -r) a := by simp_rw [neg_neg] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) a : α ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) ⊢ (fun r => preCdf ρ r a) = fun r => preCdf ρ (- -r) a [PROOFSTEP] simp_rw [neg_neg] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) a : α ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) h_eq_neg : (fun r => preCdf ρ r a) = fun r => preCdf ρ (- -r) a ⊢ Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0) [PROOFSTEP] rw [h_eq_neg] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ this : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) a : α ha : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) h_eq_neg : (fun r => preCdf ρ r a) = fun r => preCdf ρ (- -r) a ⊢ Tendsto (fun r => preCdf ρ (- -r) a) atBot (𝓝 0) [PROOFSTEP] exact ha.comp tendsto_neg_atBot_atTop [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] have h_exists : ∀ᵐ a ∂ρ.fst, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) := by filter_upwards [monotone_preCdf ρ] with a ha have h_anti : Antitone fun r => preCdf ρ (-r) a := fun p q hpq => ha (neg_le_neg hpq) have h_tendsto : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ∨ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) := tendsto_of_antitone h_anti cases' h_tendsto with h_bot h_tendsto · exact ⟨0, Tendsto.mono_right h_bot atBot_le_nhds_bot⟩ · exact h_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) [PROOFSTEP] filter_upwards [monotone_preCdf ρ] with a ha [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : α ha : Monotone fun r => preCdf ρ r a ⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) [PROOFSTEP] have h_anti : Antitone fun r => preCdf ρ (-r) a := fun p q hpq => ha (neg_le_neg hpq) [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : α ha : Monotone fun r => preCdf ρ r a h_anti : Antitone fun r => preCdf ρ (-r) a ⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) [PROOFSTEP] have h_tendsto : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ∨ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) := tendsto_of_antitone h_anti [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : α ha : Monotone fun r => preCdf ρ r a h_anti : Antitone fun r => preCdf ρ (-r) a h_tendsto : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ∨ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) ⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) [PROOFSTEP] cases' h_tendsto with h_bot h_tendsto [GOAL] case h.inl α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : α ha : Monotone fun r => preCdf ρ r a h_anti : Antitone fun r => preCdf ρ (-r) a h_bot : Tendsto (fun r => preCdf ρ (-r) a) atTop atBot ⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) [PROOFSTEP] exact ⟨0, Tendsto.mono_right h_bot atBot_le_nhds_bot⟩ [GOAL] case h.inr α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : α ha : Monotone fun r => preCdf ρ r a h_anti : Antitone fun r => preCdf ρ (-r) a h_tendsto : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) ⊢ ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) [PROOFSTEP] exact h_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] classical let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then h.choose else 0 have h_tendsto : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) := by filter_upwards [h_exists] with a ha simp_rw [dif_pos ha] exact ha.choose_spec suffices h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = 0 · have hF_ae_meas : AEMeasurable F ρ.fst := by refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto exact measurable_preCdf.aemeasurable rw [lintegral_eq_zero_iff' hF_ae_meas] at h_lintegral_eq filter_upwards [h_tendsto, h_lintegral_eq] with a ha_tendsto ha_eq rwa [ha_eq] at ha_tendsto have h_lintegral : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) := by refine' tendsto_lintegral_filter_of_dominated_convergence (fun _ => 1) (eventually_of_forall fun _ => measurable_preCdf) (eventually_of_forall fun _ => _) _ h_tendsto · filter_upwards [preCdf_le_one ρ] with a ha using ha _ · rw [lintegral_one] exact measure_ne_top _ _ have h_lintegral' : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 0) := by have h_lintegral_eq : (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) = fun r : ℚ => ρ (univ ×ˢ Iic (-r : ℝ)) := by ext1 n rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ] norm_cast rw [h_lintegral_eq] have h_zero_eq_measure_iInter : (0 : ℝ≥0∞) = ρ (⋂ r : ℚ, univ ×ˢ Iic (-r : ℝ)) := by suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty] ext1 x simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le] simp_rw [neg_lt] exact exists_rat_gt _ rw [h_zero_eq_measure_iInter] refine' tendsto_measure_iInter (fun n => MeasurableSet.univ.prod measurableSet_Iic) (fun i j hij x => _) ⟨0, measure_ne_top ρ _⟩ simp only [mem_prod, mem_univ, mem_Iic, true_and_iff] refine' fun hxj => hxj.trans (neg_le_neg _) exact_mod_cast hij exact tendsto_nhds_unique h_lintegral h_lintegral' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] let F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then h.choose else 0 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] have h_tendsto : ∀ᵐ a ∂ρ.fst, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) := by filter_upwards [h_exists] with a ha simp_rw [dif_pos ha] exact ha.choose_spec [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) [PROOFSTEP] filter_upwards [h_exists] with a ha [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 a : α ha : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) ⊢ Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0)) [PROOFSTEP] simp_rw [dif_pos ha] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 a : α ha : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) ⊢ Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (Exists.choose ha)) [PROOFSTEP] exact ha.choose_spec [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] suffices h_lintegral_eq : ∫⁻ a, F a ∂ρ.fst = 0 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] have hF_ae_meas : AEMeasurable F ρ.fst := by refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto exact measurable_preCdf.aemeasurable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 ⊢ AEMeasurable F [PROOFSTEP] refine' aemeasurable_of_tendsto_metrizable_ae _ (fun n => _) h_tendsto [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 n : ℚ ⊢ AEMeasurable fun x => preCdf ρ (-n) x [PROOFSTEP] exact measurable_preCdf.aemeasurable [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral_eq : ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 hF_ae_meas : AEMeasurable F ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] rw [lintegral_eq_zero_iff' hF_ae_meas] at h_lintegral_eq [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral_eq : F =ᵐ[Measure.fst ρ] 0 hF_ae_meas : AEMeasurable F ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] filter_upwards [h_tendsto, h_lintegral_eq] with a ha_tendsto ha_eq [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral_eq : F =ᵐ[Measure.fst ρ] 0 hF_ae_meas : AEMeasurable F a : α ha_tendsto : Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0)) ha_eq : (if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0) = OfNat.ofNat 0 a ⊢ Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 0) [PROOFSTEP] rwa [ha_eq] at ha_tendsto [GOAL] case h_lintegral_eq α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 [PROOFSTEP] have h_lintegral : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 (∫⁻ a, F a ∂ρ.fst)) := by refine' tendsto_lintegral_filter_of_dominated_convergence (fun _ => 1) (eventually_of_forall fun _ => measurable_preCdf) (eventually_of_forall fun _ => _) _ h_tendsto · filter_upwards [preCdf_le_one ρ] with a ha using ha _ · rw [lintegral_one] exact measure_ne_top _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) [PROOFSTEP] refine' tendsto_lintegral_filter_of_dominated_convergence (fun _ => 1) (eventually_of_forall fun _ => measurable_preCdf) (eventually_of_forall fun _ => _) _ h_tendsto [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) x✝ : ℚ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, preCdf ρ (-x✝) a ≤ (fun x => 1) a [PROOFSTEP] filter_upwards [preCdf_le_one ρ] with a ha using ha _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) ⊢ ∫⁻ (a : α), (fun x => 1) a ∂Measure.fst ρ ≠ ⊤ [PROOFSTEP] rw [lintegral_one] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) ⊢ ↑↑(Measure.fst ρ) univ ≠ ⊤ [PROOFSTEP] exact measure_ne_top _ _ [GOAL] case h_lintegral_eq α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 [PROOFSTEP] have h_lintegral' : Tendsto (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) atTop (𝓝 0) := by have h_lintegral_eq : (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) = fun r : ℚ => ρ (univ ×ˢ Iic (-r : ℝ)) := by ext1 n rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ] norm_cast rw [h_lintegral_eq] have h_zero_eq_measure_iInter : (0 : ℝ≥0∞) = ρ (⋂ r : ℚ, univ ×ˢ Iic (-r : ℝ)) := by suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty] ext1 x simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le] simp_rw [neg_lt] exact exists_rat_gt _ rw [h_zero_eq_measure_iInter] refine' tendsto_measure_iInter (fun n => MeasurableSet.univ.prod measurableSet_Iic) (fun i j hij x => _) ⟨0, measure_ne_top ρ _⟩ simp only [mem_prod, mem_univ, mem_Iic, true_and_iff] refine' fun hxj => hxj.trans (neg_le_neg _) exact_mod_cast hij [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 0) [PROOFSTEP] have h_lintegral_eq : (fun r => ∫⁻ a, preCdf ρ (-r) a ∂ρ.fst) = fun r : ℚ => ρ (univ ×ˢ Iic (-r : ℝ)) := by ext1 n rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ] norm_cast [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) ⊢ (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) [PROOFSTEP] ext1 n [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) n : ℚ ⊢ ∫⁻ (a : α), preCdf ρ (-n) a ∂Measure.fst ρ = ↑↑ρ (univ ×ˢ Iic (-↑n)) [PROOFSTEP] rw [← set_lintegral_univ, set_lintegral_preCdf_fst ρ _ MeasurableSet.univ, Measure.IicSnd_univ] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) n : ℚ ⊢ ↑↑ρ (univ ×ˢ Iic ↑(-n)) = ↑↑ρ (univ ×ˢ Iic (-↑n)) [PROOFSTEP] norm_cast [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) ⊢ Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 0) [PROOFSTEP] rw [h_lintegral_eq] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) ⊢ Tendsto (fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))) atTop (𝓝 0) [PROOFSTEP] have h_zero_eq_measure_iInter : (0 : ℝ≥0∞) = ρ (⋂ r : ℚ, univ ×ˢ Iic (-r : ℝ)) := by suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty] ext1 x simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le] simp_rw [neg_lt] exact exists_rat_gt _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) ⊢ 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) [PROOFSTEP] suffices ⋂ r : ℚ, Iic (-(r : ℝ)) = ∅ by rw [← prod_iInter, this, prod_empty, measure_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) this : ⋂ (r : ℚ), Iic (-↑r) = ∅ ⊢ 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) [PROOFSTEP] rw [← prod_iInter, this, prod_empty, measure_empty] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) ⊢ ⋂ (r : ℚ), Iic (-↑r) = ∅ [PROOFSTEP] ext1 x [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) x : ℝ ⊢ x ∈ ⋂ (r : ℚ), Iic (-↑r) ↔ x ∈ ∅ [PROOFSTEP] simp only [mem_iInter, mem_Iic, mem_empty_iff_false, iff_false_iff, not_forall, not_le] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) x : ℝ ⊢ ∃ x_1, -↑x_1 < x [PROOFSTEP] simp_rw [neg_lt] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) x : ℝ ⊢ ∃ x_1, -x < ↑x_1 [PROOFSTEP] exact exists_rat_gt _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) ⊢ Tendsto (fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))) atTop (𝓝 0) [PROOFSTEP] rw [h_zero_eq_measure_iInter] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) ⊢ Tendsto (fun r => ↑↑ρ (univ ×ˢ Iic (-↑r))) atTop (𝓝 (↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)))) [PROOFSTEP] refine' tendsto_measure_iInter (fun n => MeasurableSet.univ.prod measurableSet_Iic) (fun i j hij x => _) ⟨0, measure_ne_top ρ _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) i j : ℚ hij : i ≤ j x : α × ℝ ⊢ x ∈ univ ×ˢ Iic (-↑j) → x ∈ univ ×ˢ Iic (-↑i) [PROOFSTEP] simp only [mem_prod, mem_univ, mem_Iic, true_and_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) i j : ℚ hij : i ≤ j x : α × ℝ ⊢ x.snd ≤ -↑j → x.snd ≤ -↑i [PROOFSTEP] refine' fun hxj => hxj.trans (neg_le_neg _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral_eq : (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) = fun r => ↑↑ρ (univ ×ˢ Iic (-↑r)) h_zero_eq_measure_iInter : 0 = ↑↑ρ (⋂ (r : ℚ), univ ×ˢ Iic (-↑r)) i j : ℚ hij : i ≤ j x : α × ℝ hxj : x.snd ≤ -↑j ⊢ ↑i ≤ ↑j [PROOFSTEP] exact_mod_cast hij [GOAL] case h_lintegral_eq α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ h_exists : ∀ᵐ (a : α) ∂Measure.fst ρ, ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) F : α → ℝ≥0∞ := fun a => if h : ∃ l, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 l) then Exists.choose h else 0 h_tendsto : ∀ᵐ (a : α) ∂Measure.fst ρ, Tendsto (fun r => preCdf ρ (-r) a) atTop (𝓝 (F a)) h_lintegral : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 (∫⁻ (a : α), F a ∂Measure.fst ρ)) h_lintegral' : Tendsto (fun r => ∫⁻ (a : α), preCdf ρ (-r) a ∂Measure.fst ρ) atTop (𝓝 0) ⊢ ∫⁻ (a : α), F a ∂Measure.fst ρ = 0 [PROOFSTEP] exact tendsto_nhds_unique h_lintegral h_lintegral' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, ∀ (t : ℚ), ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a = preCdf ρ t a [PROOFSTEP] rw [ae_all_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ (i : ℚ), ∀ᵐ (a : α) ∂Measure.fst ρ, ⨅ (r : ↑(Ioi i)), preCdf ρ (↑r) a = preCdf ρ i a [PROOFSTEP] refine' fun t => ae_eq_of_forall_set_lintegral_eq_of_sigmaFinite _ measurable_preCdf _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ ⊢ Measurable fun a => ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a [PROOFSTEP] exact measurable_iInf fun i => measurable_preCdf [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ ⊢ ∀ (s : Set α), MeasurableSet s → ↑↑(Measure.fst ρ) s < ⊤ → ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ = ∫⁻ (x : α) in s, preCdf ρ t x ∂Measure.fst ρ [PROOFSTEP] intro s hs _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ t : ℚ s : Set α hs : MeasurableSet s a✝ : ↑↑(Measure.fst ρ) s < ⊤ ⊢ ∫⁻ (x : α) in s, ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) x ∂Measure.fst ρ = ∫⁻ (x : α) in s, preCdf ρ t x ∂Measure.fst ρ [PROOFSTEP] rw [set_lintegral_iInf_gt_preCdf ρ t hs, set_lintegral_preCdf_fst ρ t hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, HasCondCdf ρ a [PROOFSTEP] filter_upwards [monotone_preCdf ρ, preCdf_le_one ρ, tendsto_preCdf_atTop_one ρ, tendsto_preCdf_atBot_zero ρ, inf_gt_preCdf ρ] with a h1 h2 h3 h4 h5 [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ a : α h1 : Monotone fun r => preCdf ρ r a h2 : ∀ (r : ℚ), preCdf ρ r a ≤ 1 h3 : Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) h4 : Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0) h5 : ∀ (t : ℚ), ⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a = preCdf ρ t a ⊢ HasCondCdf ρ a [PROOFSTEP] exact ⟨h1, h2, h3, h4, h5⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ HasCondCdf ρ a [PROOFSTEP] rw [condCdfSet, mem_compl_iff] at h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b} ⊢ HasCondCdf ρ a [PROOFSTEP] have h_ss := subset_toMeasurable ρ.fst {b | ¬HasCondCdf ρ b} [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b} h_ss : {b | ¬HasCondCdf ρ b} ⊆ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b} ⊢ HasCondCdf ρ a [PROOFSTEP] by_contra ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b} h_ss : {b | ¬HasCondCdf ρ b} ⊆ toMeasurable (Measure.fst ρ) {b | ¬HasCondCdf ρ b} ha : ¬HasCondCdf ρ a ⊢ False [PROOFSTEP] exact h (h_ss ha) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ condCdfSet ρ [PROOFSTEP] simp_rw [ae_iff, condCdfSet, not_mem_compl_iff, setOf_mem_eq, measure_toMeasurable] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ ⊢ ↑↑(Measure.fst ρ) {b | ¬HasCondCdf ρ b} = 0 [PROOFSTEP] exact hasCondCdf_ae ρ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ r : ℚ ⊢ condCdfRat ρ a r = if r < 0 then 0 else 1 [PROOFSTEP] simp only [condCdfRat, h, if_false] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ r : ℚ ⊢ condCdfRat ρ a r = ENNReal.toReal (preCdf ρ r a) [PROOFSTEP] simp only [condCdfRat, h, if_true] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Monotone (condCdfRat ρ a) [PROOFSTEP] by_cases h : a ∈ condCdfSet ρ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ Monotone (condCdfRat ρ a) [PROOFSTEP] simp only [condCdfRat, h, if_true, forall_const, and_self_iff] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ Monotone fun r => ENNReal.toReal (preCdf ρ r a) [PROOFSTEP] intro r r' hrr' [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ r r' : ℚ hrr' : r ≤ r' ⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r' [PROOFSTEP] have h' := hasCondCdf_of_mem_condCdfSet h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ r r' : ℚ hrr' : r ≤ r' h' : HasCondCdf ρ a ⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r' [PROOFSTEP] have h_ne_top : ∀ r, preCdf ρ r a ≠ ∞ := fun r => ((h'.le_one r).trans_lt ENNReal.one_lt_top).ne [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ r r' : ℚ hrr' : r ≤ r' h' : HasCondCdf ρ a h_ne_top : ∀ (r : ℚ), preCdf ρ r a ≠ ⊤ ⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r' [PROOFSTEP] rw [ENNReal.toReal_le_toReal (h_ne_top _) (h_ne_top _)] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ r r' : ℚ hrr' : r ≤ r' h' : HasCondCdf ρ a h_ne_top : ∀ (r : ℚ), preCdf ρ r a ≠ ⊤ ⊢ preCdf ρ r a ≤ preCdf ρ r' a [PROOFSTEP] exact h'.1 hrr' [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ Monotone (condCdfRat ρ a) [PROOFSTEP] simp only [condCdfRat, h, if_false] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ Monotone fun r => if r < 0 then 0 else 1 [PROOFSTEP] intro x y hxy [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ x y : ℚ hxy : x ≤ y ⊢ (fun r => if r < 0 then 0 else 1) x ≤ (fun r => if r < 0 then 0 else 1) y [PROOFSTEP] dsimp only [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ x y : ℚ hxy : x ≤ y ⊢ (if x < 0 then 0 else 1) ≤ if y < 0 then 0 else 1 [PROOFSTEP] split_ifs with h_1 h_2 h_2 [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ x y : ℚ hxy : x ≤ y h_1 : x < 0 h_2 : y < 0 ⊢ 0 ≤ 0 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ x y : ℚ hxy : x ≤ y h_1 : x < 0 h_2 : ¬y < 0 ⊢ 0 ≤ 1 case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ x y : ℚ hxy : x ≤ y h_1 : ¬x < 0 h_2 : y < 0 ⊢ 1 ≤ 0 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ x y : ℚ hxy : x ≤ y h_1 : ¬x < 0 h_2 : ¬y < 0 ⊢ 1 ≤ 1 [PROOFSTEP] exacts [le_rfl, zero_le_one, absurd (hxy.trans_lt h_2) h_1, le_rfl] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) q : ℚ ⊢ Measurable fun a => condCdfRat ρ a q [PROOFSTEP] simp_rw [condCdfRat, ite_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) q : ℚ ⊢ Measurable fun a => if a ∈ condCdfSet ρ then ENNReal.toReal (preCdf ρ q a) else if q < 0 then 0 else 1 [PROOFSTEP] exact Measurable.ite (measurableSet_condCdfSet ρ) measurable_preCdf.ennreal_toReal measurable_const [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ 0 ≤ condCdfRat ρ a r [PROOFSTEP] unfold condCdfRat [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ 0 ≤ ite (a ∈ condCdfSet ρ) (fun r => ENNReal.toReal (preCdf ρ r a)) (fun r => if r < 0 then 0 else 1) r [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h✝ : a ∈ condCdfSet ρ ⊢ 0 ≤ (fun r => ENNReal.toReal (preCdf ρ r a)) r [PROOFSTEP] exact ENNReal.toReal_nonneg [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h✝ : ¬a ∈ condCdfSet ρ ⊢ 0 ≤ (fun r => if r < 0 then 0 else 1) r [PROOFSTEP] dsimp only [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h✝ : ¬a ∈ condCdfSet ρ ⊢ 0 ≤ if r < 0 then 0 else 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h✝¹ : ¬a ∈ condCdfSet ρ h✝ : r < 0 ⊢ 0 ≤ 0 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h✝¹ : ¬a ∈ condCdfSet ρ h✝ : ¬r < 0 ⊢ 0 ≤ 1 [PROOFSTEP] exacts [le_rfl, zero_le_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ condCdfRat ρ a r ≤ 1 [PROOFSTEP] unfold condCdfRat [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ ite (a ∈ condCdfSet ρ) (fun r => ENNReal.toReal (preCdf ρ r a)) (fun r => if r < 0 then 0 else 1) r ≤ 1 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : a ∈ condCdfSet ρ ⊢ (fun r => ENNReal.toReal (preCdf ρ r a)) r ≤ 1 [PROOFSTEP] refine' ENNReal.toReal_le_of_le_ofReal zero_le_one _ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : a ∈ condCdfSet ρ ⊢ preCdf ρ r a ≤ ENNReal.ofReal 1 [PROOFSTEP] rw [ENNReal.ofReal_one] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : a ∈ condCdfSet ρ ⊢ preCdf ρ r a ≤ 1 [PROOFSTEP] exact (hasCondCdf_of_mem_condCdfSet h).le_one r [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : ¬a ∈ condCdfSet ρ ⊢ (fun r => if r < 0 then 0 else 1) r ≤ 1 [PROOFSTEP] dsimp only [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : ¬a ∈ condCdfSet ρ ⊢ (if r < 0 then 0 else 1) ≤ 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : ¬a ∈ condCdfSet ρ h✝ : r < 0 ⊢ 0 ≤ 1 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ h : ¬a ∈ condCdfSet ρ h✝ : ¬r < 0 ⊢ 1 ≤ 1 [PROOFSTEP] exacts [zero_le_one, le_rfl] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Tendsto (condCdfRat ρ a) atBot (𝓝 0) [PROOFSTEP] unfold condCdfRat [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Tendsto (if a ∈ condCdfSet ρ then fun r => ENNReal.toReal (preCdf ρ r a) else fun r => if r < 0 then 0 else 1) atBot (𝓝 0) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ Tendsto (fun r => ENNReal.toReal (preCdf ρ r a)) atBot (𝓝 0) [PROOFSTEP] rw [← ENNReal.zero_toReal, ENNReal.tendsto_toReal_iff] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ Tendsto (fun r => preCdf ρ r a) atBot (𝓝 0) [PROOFSTEP] exact (hasCondCdf_of_mem_condCdfSet h).tendsto_atBot_zero [GOAL] case pos.hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ ∀ (i : ℚ), preCdf ρ i a ≠ ⊤ [PROOFSTEP] have h' := hasCondCdf_of_mem_condCdfSet h [GOAL] case pos.hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ h' : HasCondCdf ρ a ⊢ ∀ (i : ℚ), preCdf ρ i a ≠ ⊤ [PROOFSTEP] exact fun r => ((h'.le_one r).trans_lt ENNReal.one_lt_top).ne [GOAL] case pos.hx α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ 0 ≠ ⊤ [PROOFSTEP] exact ENNReal.zero_ne_top [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ Tendsto (fun r => if r < 0 then 0 else 1) atBot (𝓝 0) [PROOFSTEP] refine' (tendsto_congr' _).mp tendsto_const_nhds [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ (fun x => 0) =ᶠ[atBot] fun r => if r < 0 then 0 else 1 [PROOFSTEP] rw [EventuallyEq, eventually_atBot] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ ∃ a, ∀ (b : ℚ), b ≤ a → 0 = if b < 0 then 0 else 1 [PROOFSTEP] refine' ⟨-1, fun q hq => (if_pos (hq.trans_lt _)).symm⟩ [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ q : ℚ hq : q ≤ -1 ⊢ -1 < 0 [PROOFSTEP] linarith [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Tendsto (condCdfRat ρ a) atTop (𝓝 1) [PROOFSTEP] unfold condCdfRat [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Tendsto (if a ∈ condCdfSet ρ then fun r => ENNReal.toReal (preCdf ρ r a) else fun r => if r < 0 then 0 else 1) atTop (𝓝 1) [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ ⊢ Tendsto (fun r => ENNReal.toReal (preCdf ρ r a)) atTop (𝓝 1) [PROOFSTEP] have h' := hasCondCdf_of_mem_condCdfSet h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ h' : HasCondCdf ρ a ⊢ Tendsto (fun r => ENNReal.toReal (preCdf ρ r a)) atTop (𝓝 1) [PROOFSTEP] rw [← ENNReal.one_toReal, ENNReal.tendsto_toReal_iff] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ h' : HasCondCdf ρ a ⊢ Tendsto (fun r => preCdf ρ r a) atTop (𝓝 1) [PROOFSTEP] exact h'.tendsto_atTop_one [GOAL] case pos.hf α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ h' : HasCondCdf ρ a ⊢ ∀ (i : ℚ), preCdf ρ i a ≠ ⊤ [PROOFSTEP] exact fun r => ((h'.le_one r).trans_lt ENNReal.one_lt_top).ne [GOAL] case pos.hx α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : a ∈ condCdfSet ρ h' : HasCondCdf ρ a ⊢ 1 ≠ ⊤ [PROOFSTEP] exact ENNReal.one_ne_top [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ Tendsto (fun r => if r < 0 then 0 else 1) atTop (𝓝 1) [PROOFSTEP] refine' (tendsto_congr' _).mp tendsto_const_nhds [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ (fun x => 1) =ᶠ[atTop] fun r => if r < 0 then 0 else 1 [PROOFSTEP] rw [EventuallyEq, eventually_atTop] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h : ¬a ∈ condCdfSet ρ ⊢ ∃ a, ∀ (b : ℚ), b ≥ a → 1 = if b < 0 then 0 else 1 [PROOFSTEP] exact ⟨0, fun q hq => (if_neg (not_lt.mpr hq)).symm⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ ⊢ (fun a => condCdfRat ρ a r) =ᵐ[Measure.fst ρ] fun a => ENNReal.toReal (preCdf ρ r a) [PROOFSTEP] filter_upwards [mem_condCdfSet_ae ρ] with a ha using condCdfRat_of_mem ρ a ha r [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ ⊢ (fun a => ENNReal.ofReal (condCdfRat ρ a r)) =ᵐ[Measure.fst ρ] preCdf ρ r [PROOFSTEP] filter_upwards [condCdfRat_ae_eq ρ r, preCdf_le_one ρ] with a ha ha_le_one [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ a : α ha : condCdfRat ρ a r = ENNReal.toReal (preCdf ρ r a) ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ ENNReal.ofReal (condCdfRat ρ a r) = preCdf ρ r a [PROOFSTEP] rw [ha, ENNReal.ofReal_toReal] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ a : α ha : condCdfRat ρ a r = ENNReal.toReal (preCdf ρ r a) ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ preCdf ρ r a ≠ ⊤ [PROOFSTEP] exact ((ha_le_one r).trans_lt ENNReal.one_lt_top).ne [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ⊢ ⨅ (r : ↑(Ioi t)), condCdfRat ρ a ↑r = condCdfRat ρ a t [PROOFSTEP] by_cases ha : a ∈ condCdfSet ρ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ⊢ ⨅ (r : ↑(Ioi t)), condCdfRat ρ a ↑r = condCdfRat ρ a t [PROOFSTEP] simp_rw [condCdfRat_of_mem ρ a ha] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ⊢ ⨅ (r : ↑(Ioi t)), ENNReal.toReal (preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a) [PROOFSTEP] have ha' := hasCondCdf_of_mem_condCdfSet ha [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ha' : HasCondCdf ρ a ⊢ ⨅ (r : ↑(Ioi t)), ENNReal.toReal (preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a) [PROOFSTEP] rw [← ENNReal.toReal_iInf] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ha' : HasCondCdf ρ a ⊢ ENNReal.toReal (⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a) [PROOFSTEP] suffices ⨅ i : ↥(Ioi t), preCdf ρ (↑i) a = preCdf ρ t a by rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ha' : HasCondCdf ρ a this : ⨅ (i : ↑(Ioi t)), preCdf ρ (↑i) a = preCdf ρ t a ⊢ ENNReal.toReal (⨅ (r : ↑(Ioi t)), preCdf ρ (↑r) a) = ENNReal.toReal (preCdf ρ t a) [PROOFSTEP] rw [this] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ha' : HasCondCdf ρ a ⊢ ⨅ (i : ↑(Ioi t)), preCdf ρ (↑i) a = preCdf ρ t a [PROOFSTEP] rw [← ha'.iInf_rat_gt_eq] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : a ∈ condCdfSet ρ ha' : HasCondCdf ρ a ⊢ ∀ (i : ↑(Ioi t)), preCdf ρ (↑i) a ≠ ⊤ [PROOFSTEP] exact fun r => ((ha'.le_one r).trans_lt ENNReal.one_lt_top).ne [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ ⊢ ⨅ (r : ↑(Ioi t)), condCdfRat ρ a ↑r = condCdfRat ρ a t [PROOFSTEP] simp_rw [condCdfRat_of_not_mem ρ a ha] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = if t < 0 then 0 else 1 [PROOFSTEP] have h_bdd : BddBelow (range fun r : ↥(Ioi t) => ite ((r : ℚ) < 0) (0 : ℝ) 1) := by refine' ⟨0, fun x hx => _⟩ obtain ⟨y, rfl⟩ := mem_range.mpr hx dsimp only split_ifs exacts [le_rfl, zero_le_one] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ ⊢ BddBelow (range fun r => if ↑r < 0 then 0 else 1) [PROOFSTEP] refine' ⟨0, fun x hx => _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ x : ℝ hx : x ∈ range fun r => if ↑r < 0 then 0 else 1 ⊢ 0 ≤ x [PROOFSTEP] obtain ⟨y, rfl⟩ := mem_range.mpr hx [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ y : ↑(Ioi t) hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1 ⊢ 0 ≤ (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y [PROOFSTEP] dsimp only [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ y : ↑(Ioi t) hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1 ⊢ 0 ≤ if ↑y < 0 then 0 else 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ y : ↑(Ioi t) hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1 h✝ : ↑y < 0 ⊢ 0 ≤ 0 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ y : ↑(Ioi t) hx : (fun y => (fun r => if ↑r < 0 then 0 else 1) y) y ∈ range fun r => if ↑r < 0 then 0 else 1 h✝ : ¬↑y < 0 ⊢ 0 ≤ 1 [PROOFSTEP] exacts [le_rfl, zero_le_one] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = if t < 0 then 0 else 1 [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = 0 [PROOFSTEP] refine' le_antisymm _ (le_ciInf fun x => _) [GOAL] case pos.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) ≤ 0 [PROOFSTEP] obtain ⟨q, htq, hq_neg⟩ : ∃ q, t < q ∧ q < 0 := by refine' ⟨t / 2, _, _⟩ · linarith · linarith [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 ⊢ ∃ q, t < q ∧ q < 0 [PROOFSTEP] refine' ⟨t / 2, _, _⟩ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 ⊢ t < t / 2 [PROOFSTEP] linarith [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 ⊢ t / 2 < 0 [PROOFSTEP] linarith [GOAL] case pos.refine'_1.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 q : ℚ htq : t < q hq_neg : q < 0 ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) ≤ 0 [PROOFSTEP] refine' (ciInf_le h_bdd ⟨q, htq⟩).trans _ [GOAL] case pos.refine'_1.intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 q : ℚ htq : t < q hq_neg : q < 0 ⊢ (if ↑{ val := q, property := htq } < 0 then 0 else 1) ≤ 0 [PROOFSTEP] rw [if_pos] [GOAL] case pos.refine'_1.intro.intro.hc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 q : ℚ htq : t < q hq_neg : q < 0 ⊢ ↑{ val := q, property := htq } < 0 [PROOFSTEP] rwa [Subtype.coe_mk] [GOAL] case pos.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 x : ↑(Ioi t) ⊢ 0 ≤ if ↑x < 0 then 0 else 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 x : ↑(Ioi t) h✝ : ↑x < 0 ⊢ 0 ≤ 0 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : t < 0 x : ↑(Ioi t) h✝ : ¬↑x < 0 ⊢ 0 ≤ 1 [PROOFSTEP] exacts [le_rfl, zero_le_one] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) = 1 [PROOFSTEP] refine' le_antisymm _ _ [GOAL] case neg.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 ⊢ (⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1) ≤ 1 [PROOFSTEP] refine' (ciInf_le h_bdd ⟨t + 1, lt_add_one t⟩).trans _ [GOAL] case neg.refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 ⊢ (if ↑{ val := t + 1, property := (_ : t < t + 1) } < 0 then 0 else 1) ≤ 1 [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 h✝ : ↑{ val := t + 1, property := (_ : t < t + 1) } < 0 ⊢ 0 ≤ 1 case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 h✝ : ¬↑{ val := t + 1, property := (_ : t < t + 1) } < 0 ⊢ 1 ≤ 1 [PROOFSTEP] exacts [zero_le_one, le_rfl] [GOAL] case neg.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 ⊢ 1 ≤ ⨅ (r : ↑(Ioi t)), if ↑r < 0 then 0 else 1 [PROOFSTEP] refine' le_ciInf fun x => _ [GOAL] case neg.refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 x : ↑(Ioi t) ⊢ 1 ≤ if ↑x < 0 then 0 else 1 [PROOFSTEP] rw [if_neg] [GOAL] case neg.refine'_2.hnc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : ¬t < 0 x : ↑(Ioi t) ⊢ ¬↑x < 0 [PROOFSTEP] rw [not_lt] at h ⊢ [GOAL] case neg.refine'_2.hnc α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α t : ℚ ha : ¬a ∈ condCdfSet ρ h_bdd : BddBelow (range fun r => if ↑r < 0 then 0 else 1) h : 0 ≤ t x : ↑(Ioi t) ⊢ 0 ≤ ↑x [PROOFSTEP] exact h.trans (mem_Ioi.mp x.prop).le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ condCdf' ρ a x = ⨅ (r : { r // x < ↑r }), condCdfRat ρ a ↑r [PROOFSTEP] rw [condCdf'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ condCdf' ρ a ↑r = condCdfRat ρ a r [PROOFSTEP] rw [← inf_gt_condCdfRat ρ a r, condCdf'] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ ⨅ (r_1 : { r' // ↑r < ↑r' }), condCdfRat ρ a ↑r_1 = ⨅ (r_1 : ↑(Ioi r)), condCdfRat ρ a ↑r_1 [PROOFSTEP] refine' Equiv.iInf_congr _ _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ { r' // ↑r < ↑r' } ≃ ↑(Ioi r) [PROOFSTEP] exact { toFun := fun t => ⟨t.1, by exact_mod_cast t.2⟩ invFun := fun t => ⟨t.1, by exact_mod_cast t.2⟩ left_inv := fun t => by simp only [Subtype.coe_eta] right_inv := fun t => by simp only [Subtype.coe_eta] } [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ t : { r' // ↑r < ↑r' } ⊢ ↑t ∈ Ioi r [PROOFSTEP] exact_mod_cast t.2 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ t : ↑(Ioi r) ⊢ ↑r < ↑↑t [PROOFSTEP] exact_mod_cast t.2 [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ t : { r' // ↑r < ↑r' } ⊢ (fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) ((fun t => { val := ↑t, property := (_ : r < ↑t) }) t) = t [PROOFSTEP] simp only [Subtype.coe_eta] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ t : ↑(Ioi r) ⊢ (fun t => { val := ↑t, property := (_ : r < ↑t) }) ((fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) t) = t [PROOFSTEP] simp only [Subtype.coe_eta] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ ⊢ ∀ (x : { r' // ↑r < ↑r' }), condCdfRat ρ a ↑(↑{ toFun := fun t => { val := ↑t, property := (_ : r < ↑t) }, invFun := fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }, left_inv := (_ : ∀ (t : { r' // ↑r < ↑r' }), { val := ↑t, property := (_ : ↑r < ↑↑((fun t => { val := ↑t, property := (_ : r < ↑t) }) t)) } = t), right_inv := (_ : ∀ (t : ↑(Ioi r)), { val := ↑t, property := (_ : r < ↑((fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) t)) } = t) } x) = condCdfRat ρ a ↑x [PROOFSTEP] intro t [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℚ t : { r' // ↑r < ↑r' } ⊢ condCdfRat ρ a ↑(↑{ toFun := fun t => { val := ↑t, property := (_ : r < ↑t) }, invFun := fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }, left_inv := (_ : ∀ (t : { r' // ↑r < ↑r' }), { val := ↑t, property := (_ : ↑r < ↑↑((fun t => { val := ↑t, property := (_ : r < ↑t) }) t)) } = t), right_inv := (_ : ∀ (t : ↑(Ioi r)), { val := ↑t, property := (_ : r < ↑((fun t => { val := ↑t, property := (_ : ↑r < ↑↑t) }) t)) } = t) } t) = condCdfRat ρ a ↑t [PROOFSTEP] simp only [Equiv.coe_fn_mk, Subtype.coe_mk] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℝ ⊢ 0 ≤ condCdf' ρ a r [PROOFSTEP] have : Nonempty { r' : ℚ // r < ↑r' } := by obtain ⟨r, hrx⟩ := exists_rat_gt r exact ⟨⟨r, hrx⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℝ ⊢ Nonempty { r' // r < ↑r' } [PROOFSTEP] obtain ⟨r, hrx⟩ := exists_rat_gt r [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r✝ : ℝ r : ℚ hrx : r✝ < ↑r ⊢ Nonempty { r' // r✝ < ↑r' } [PROOFSTEP] exact ⟨⟨r, hrx⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℝ this : Nonempty { r' // r < ↑r' } ⊢ 0 ≤ condCdf' ρ a r [PROOFSTEP] rw [condCdf'_def] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α r : ℝ this : Nonempty { r' // r < ↑r' } ⊢ 0 ≤ ⨅ (r_1 : { r' // r < ↑r' }), condCdfRat ρ a ↑r_1 [PROOFSTEP] exact le_ciInf fun r' => condCdfRat_nonneg ρ a _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ BddBelow (range fun r => condCdfRat ρ a ↑r) [PROOFSTEP] refine' ⟨0, fun z => _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x z : ℝ ⊢ (z ∈ range fun r => condCdfRat ρ a ↑r) → 0 ≤ z [PROOFSTEP] rintro ⟨u, rfl⟩ [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ u : { r' // x < ↑r' } ⊢ 0 ≤ (fun r => condCdfRat ρ a ↑r) u [PROOFSTEP] exact condCdfRat_nonneg ρ a _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Monotone (condCdf' ρ a) [PROOFSTEP] intro x y hxy [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y ⊢ condCdf' ρ a x ≤ condCdf' ρ a y [PROOFSTEP] have : Nonempty { r' : ℚ // y < ↑r' } := by obtain ⟨r, hrx⟩ := exists_rat_gt y exact ⟨⟨r, hrx⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y ⊢ Nonempty { r' // y < ↑r' } [PROOFSTEP] obtain ⟨r, hrx⟩ := exists_rat_gt y [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y r : ℚ hrx : y < ↑r ⊢ Nonempty { r' // y < ↑r' } [PROOFSTEP] exact ⟨⟨r, hrx⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y this : Nonempty { r' // y < ↑r' } ⊢ condCdf' ρ a x ≤ condCdf' ρ a y [PROOFSTEP] simp_rw [condCdf'_def] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y this : Nonempty { r' // y < ↑r' } ⊢ ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ≤ ⨅ (r : { r' // y < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] refine' le_ciInf fun r => (ciInf_le _ _).trans_eq _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y this : Nonempty { r' // y < ↑r' } r : { r' // y < ↑r' } ⊢ BddBelow (range fun r => condCdfRat ρ a ↑r) [PROOFSTEP] exact bddBelow_range_condCdfRat_gt ρ a x [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y this : Nonempty { r' // y < ↑r' } r : { r' // y < ↑r' } ⊢ { r' // x < ↑r' } [PROOFSTEP] exact ⟨r.1, hxy.trans_lt r.prop⟩ [GOAL] case refine'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x y : ℝ hxy : x ≤ y this : Nonempty { r' // y < ↑r' } r : { r' // y < ↑r' } ⊢ condCdfRat ρ a ↑{ val := ↑r, property := (_ : x < ↑↑r) } = condCdfRat ρ a ↑r [PROOFSTEP] rfl [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ContinuousWithinAt (condCdf' ρ a) (Ici x) x [PROOFSTEP] rw [← continuousWithinAt_Ioi_iff_Ici] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x [PROOFSTEP] convert Monotone.tendsto_nhdsWithin_Ioi (monotone_condCdf' ρ a) x [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (sInf (condCdf' ρ a '' Ioi x))) [PROOFSTEP] rw [sInf_image'] [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (a_1 : ↑(Ioi x)), condCdf' ρ a ↑a_1)) [PROOFSTEP] have h' : ⨅ r : Ioi x, condCdf' ρ a r = ⨅ r : { r' : ℚ // x < r' }, condCdf' ρ a r := by refine' Real.iInf_Ioi_eq_iInf_rat_gt x _ (monotone_condCdf' ρ a) refine' ⟨0, fun z => _⟩ rintro ⟨u, -, rfl⟩ exact condCdf'_nonneg ρ a u [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r [PROOFSTEP] refine' Real.iInf_Ioi_eq_iInf_rat_gt x _ (monotone_condCdf' ρ a) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ BddBelow (condCdf' ρ a '' Ioi x) [PROOFSTEP] refine' ⟨0, fun z => _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x z : ℝ ⊢ z ∈ condCdf' ρ a '' Ioi x → 0 ≤ z [PROOFSTEP] rintro ⟨u, -, rfl⟩ [GOAL] case intro.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x u : ℝ ⊢ 0 ≤ condCdf' ρ a u [PROOFSTEP] exact condCdf'_nonneg ρ a u [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r ⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (a_1 : ↑(Ioi x)), condCdf' ρ a ↑a_1)) [PROOFSTEP] have h'' : ⨅ r : { r' : ℚ // x < r' }, condCdf' ρ a r = ⨅ r : { r' : ℚ // x < r' }, condCdfRat ρ a r := by congr with r exact condCdf'_eq_condCdfRat ρ a r [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r ⊢ ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] congr with r [GOAL] case e_s.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r r : { r' // x < ↑r' } ⊢ condCdf' ρ a ↑↑r = condCdfRat ρ a ↑r [PROOFSTEP] exact condCdf'_eq_condCdfRat ρ a r [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r h'' : ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ⊢ ContinuousWithinAt (condCdf' ρ a) (Ioi x) x ↔ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (a_1 : ↑(Ioi x)), condCdf' ρ a ↑a_1)) [PROOFSTEP] rw [h', h'', ContinuousWithinAt] [GOAL] case a α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r h'' : ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ⊢ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (condCdf' ρ a x)) ↔ Tendsto (condCdf' ρ a) (𝓝[Ioi x] x) (𝓝 (⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r)) [PROOFSTEP] congr! [GOAL] case a.a.h.e'_5.h.e'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ h' : ⨅ (r : ↑(Ioi x)), condCdf' ρ a ↑r = ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r h'' : ⨅ (r : { r' // x < ↑r' }), condCdf' ρ a ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ⊢ condCdf' ρ a x = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] exact condCdf'_def' [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ↑(condCdf ρ a) x ≤ 1 [PROOFSTEP] obtain ⟨r, hrx⟩ := exists_rat_gt x [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ r : ℚ hrx : x < ↑r ⊢ ↑(condCdf ρ a) x ≤ 1 [PROOFSTEP] rw [← StieltjesFunction.iInf_rat_gt_eq] [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ r : ℚ hrx : x < ↑r ⊢ ⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r ≤ 1 [PROOFSTEP] simp_rw [condCdf_eq_condCdfRat] [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ r : ℚ hrx : x < ↑r ⊢ ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ≤ 1 [PROOFSTEP] refine' ciInf_le_of_le (bddBelow_range_condCdfRat_gt ρ a x) _ (condCdfRat_le_one _ _ _) [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ r : ℚ hrx : x < ↑r ⊢ { r' // x < ↑r' } [PROOFSTEP] exact ⟨r, hrx⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0) [PROOFSTEP] have h_exists : ∀ x : ℝ, ∃ q : ℚ, x < q ∧ ↑q < x + 1 := fun x => exists_rat_btwn (lt_add_one x) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 ⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0) [PROOFSTEP] let qs : ℝ → ℚ := fun x => (h_exists x).choose [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) ⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0) [PROOFSTEP] have hqs_tendsto : Tendsto qs atBot atBot := by rw [tendsto_atBot_atBot] refine' fun q => ⟨q - 1, fun y hy => _⟩ have h_le : ↑(qs y) ≤ (q : ℝ) - 1 + 1 := (h_exists y).choose_spec.2.le.trans (add_le_add hy le_rfl) rw [sub_add_cancel] at h_le exact_mod_cast h_le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) ⊢ Tendsto qs atBot atBot [PROOFSTEP] rw [tendsto_atBot_atBot] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) ⊢ ∀ (b : ℚ), ∃ i, ∀ (a : ℝ), a ≤ i → qs a ≤ b [PROOFSTEP] refine' fun q => ⟨q - 1, fun y hy => _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) q : ℚ y : ℝ hy : y ≤ ↑q - 1 ⊢ qs y ≤ q [PROOFSTEP] have h_le : ↑(qs y) ≤ (q : ℝ) - 1 + 1 := (h_exists y).choose_spec.2.le.trans (add_le_add hy le_rfl) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) q : ℚ y : ℝ hy : y ≤ ↑q - 1 h_le : ↑(qs y) ≤ ↑q - 1 + 1 ⊢ qs y ≤ q [PROOFSTEP] rw [sub_add_cancel] at h_le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) q : ℚ y : ℝ hy : y ≤ ↑q - 1 h_le : ↑(qs y) ≤ ↑q ⊢ qs y ≤ q [PROOFSTEP] exact_mod_cast h_le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) hqs_tendsto : Tendsto qs atBot atBot ⊢ Tendsto (↑(condCdf ρ a)) atBot (𝓝 0) [PROOFSTEP] refine' tendsto_of_tendsto_of_tendsto_of_le_of_le tendsto_const_nhds ((tendsto_condCdfRat_atBot ρ a).comp hqs_tendsto) (condCdf_nonneg ρ a) fun x => _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) hqs_tendsto : Tendsto qs atBot atBot x : ℝ ⊢ ↑(condCdf ρ a) x ≤ (condCdfRat ρ a ∘ qs) x [PROOFSTEP] rw [Function.comp_apply, ← condCdf_eq_condCdfRat] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x < ↑q ∧ ↑q < x + 1 qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x < ↑q ∧ ↑q < x + 1) hqs_tendsto : Tendsto qs atBot atBot x : ℝ ⊢ ↑(condCdf ρ a) x ≤ ↑(condCdf ρ a) ↑(qs x) [PROOFSTEP] exact (condCdf ρ a).mono (h_exists x).choose_spec.1.le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1) [PROOFSTEP] have h_exists : ∀ x : ℝ, ∃ q : ℚ, x - 1 < q ∧ ↑q < x := fun x => exists_rat_btwn (sub_one_lt x) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x ⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1) [PROOFSTEP] let qs : ℝ → ℚ := fun x => (h_exists x).choose [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) ⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1) [PROOFSTEP] have hqs_tendsto : Tendsto qs atTop atTop := by rw [tendsto_atTop_atTop] refine' fun q => ⟨q + 1, fun y hy => _⟩ have h_le : y - 1 ≤ qs y := (h_exists y).choose_spec.1.le rw [sub_le_iff_le_add] at h_le exact_mod_cast le_of_add_le_add_right (hy.trans h_le) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) ⊢ Tendsto qs atTop atTop [PROOFSTEP] rw [tendsto_atTop_atTop] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) ⊢ ∀ (b : ℚ), ∃ i, ∀ (a : ℝ), i ≤ a → b ≤ qs a [PROOFSTEP] refine' fun q => ⟨q + 1, fun y hy => _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) q : ℚ y : ℝ hy : ↑q + 1 ≤ y ⊢ q ≤ qs y [PROOFSTEP] have h_le : y - 1 ≤ qs y := (h_exists y).choose_spec.1.le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) q : ℚ y : ℝ hy : ↑q + 1 ≤ y h_le : y - 1 ≤ ↑(qs y) ⊢ q ≤ qs y [PROOFSTEP] rw [sub_le_iff_le_add] at h_le [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) q : ℚ y : ℝ hy : ↑q + 1 ≤ y h_le : y ≤ ↑(qs y) + 1 ⊢ q ≤ qs y [PROOFSTEP] exact_mod_cast le_of_add_le_add_right (hy.trans h_le) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) hqs_tendsto : Tendsto qs atTop atTop ⊢ Tendsto (↑(condCdf ρ a)) atTop (𝓝 1) [PROOFSTEP] refine' tendsto_of_tendsto_of_tendsto_of_le_of_le ((tendsto_condCdfRat_atTop ρ a).comp hqs_tendsto) tendsto_const_nhds _ (condCdf_le_one ρ a) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) hqs_tendsto : Tendsto qs atTop atTop ⊢ condCdfRat ρ a ∘ qs ≤ ↑(condCdf ρ a) [PROOFSTEP] intro x [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) hqs_tendsto : Tendsto qs atTop atTop x : ℝ ⊢ (condCdfRat ρ a ∘ qs) x ≤ ↑(condCdf ρ a) x [PROOFSTEP] rw [Function.comp_apply, ← condCdf_eq_condCdfRat] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α h_exists : ∀ (x : ℝ), ∃ q, x - 1 < ↑q ∧ ↑q < x qs : ℝ → ℚ := fun x => Exists.choose (_ : ∃ q, x - 1 < ↑q ∧ ↑q < x) hqs_tendsto : Tendsto qs atTop atTop x : ℝ ⊢ ↑(condCdf ρ a) ↑(qs x) ≤ ↑(condCdf ρ a) x [PROOFSTEP] exact (condCdf ρ a).mono (le_of_lt (h_exists x).choose_spec.2) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ ⊢ (fun a => ↑(condCdf ρ a) ↑r) =ᵐ[Measure.fst ρ] fun a => ENNReal.toReal (preCdf ρ r a) [PROOFSTEP] filter_upwards [mem_condCdfSet_ae ρ] with a ha using (condCdf_eq_condCdfRat ρ a r).trans (condCdfRat_of_mem ρ a ha r) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ ⊢ (fun a => ENNReal.ofReal (↑(condCdf ρ a) ↑r)) =ᵐ[Measure.fst ρ] preCdf ρ r [PROOFSTEP] filter_upwards [condCdf_ae_eq ρ r, preCdf_le_one ρ] with a ha ha_le_one [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ a : α ha : ↑(condCdf ρ a) ↑r = ENNReal.toReal (preCdf ρ r a) ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a [PROOFSTEP] rw [ha, ENNReal.ofReal_toReal] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ a : α ha : ↑(condCdf ρ a) ↑r = ENNReal.toReal (preCdf ρ r a) ha_le_one : ∀ (r : ℚ), preCdf ρ r a ≤ 1 ⊢ preCdf ρ r a ≠ ⊤ [PROOFSTEP] exact ((ha_le_one r).trans_lt ENNReal.one_lt_top).ne [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ ⊢ Measurable fun a => ↑(condCdf ρ a) x [PROOFSTEP] have : (fun a => condCdf ρ a x) = fun a => ⨅ r : { r' : ℚ // x < r' }, condCdfRat ρ a ↑r := by ext1 a rw [← StieltjesFunction.iInf_rat_gt_eq] congr with q rw [condCdf_eq_condCdfRat] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ ⊢ (fun a => ↑(condCdf ρ a) x) = fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ a : α ⊢ ↑(condCdf ρ a) x = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] rw [← StieltjesFunction.iInf_rat_gt_eq] [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ a : α ⊢ ⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r = ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] congr with q [GOAL] case h.e_s.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ a : α q : { r' // x < ↑r' } ⊢ ↑(condCdf ρ a) ↑↑q = condCdfRat ρ a ↑q [PROOFSTEP] rw [condCdf_eq_condCdfRat] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ this : (fun a => ↑(condCdf ρ a) x) = fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ⊢ Measurable fun a => ↑(condCdf ρ a) x [PROOFSTEP] rw [this] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) x : ℝ this : (fun a => ↑(condCdf ρ a) x) = fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r ⊢ Measurable fun a => ⨅ (r : { r' // x < ↑r' }), condCdfRat ρ a ↑r [PROOFSTEP] exact measurable_ciInf (fun q => measurable_condCdfRat ρ q) fun a => bddBelow_range_condCdfRat_gt ρ a _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑r) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic ↑r) [PROOFSTEP] have : ∀ᵐ a ∂ρ.fst, a ∈ s → ENNReal.ofReal (condCdf ρ a r) = preCdf ρ r a := by filter_upwards [ofReal_condCdf_ae_eq ρ r] with a ha using fun _ => ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s ⊢ ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ s → ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a [PROOFSTEP] filter_upwards [ofReal_condCdf_ae_eq ρ r] with a ha using fun _ => ha [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s this : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ s → ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑r) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic ↑r) [PROOFSTEP] rw [set_lintegral_congr_fun hs this, set_lintegral_preCdf_fst ρ r hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ r : ℚ s : Set α hs : MeasurableSet s this : ∀ᵐ (a : α) ∂Measure.fst ρ, a ∈ s → ENNReal.ofReal (↑(condCdf ρ a) ↑r) = preCdf ρ r a ⊢ ↑↑(Measure.IicSnd ρ ↑r) s = ↑↑ρ (s ×ˢ Iic ↑r) [PROOFSTEP] exact ρ.IicSnd_apply r hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] by_cases hρ_zero : ρ.fst.restrict s = 0 [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : Measure.restrict (Measure.fst ρ) s = 0 ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] rw [hρ_zero, lintegral_zero_measure] [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : Measure.restrict (Measure.fst ρ) s = 0 ⊢ 0 = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] refine' le_antisymm (zero_le _) _ [GOAL] case pos α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : Measure.restrict (Measure.fst ρ) s = 0 ⊢ ↑↑ρ (s ×ˢ Iic x) ≤ 0 [PROOFSTEP] calc ρ (s ×ˢ Iic x) ≤ ρ (Prod.fst ⁻¹' s) := measure_mono (prod_subset_preimage_fst s (Iic x)) _ = ρ.fst s := by rw [Measure.fst_apply hs] _ = ρ.fst.restrict s univ := by rw [Measure.restrict_apply_univ] _ = 0 := by simp only [hρ_zero, Measure.coe_zero, Pi.zero_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : Measure.restrict (Measure.fst ρ) s = 0 ⊢ ↑↑ρ (Prod.fst ⁻¹' s) = ↑↑(Measure.fst ρ) s [PROOFSTEP] rw [Measure.fst_apply hs] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : Measure.restrict (Measure.fst ρ) s = 0 ⊢ ↑↑(Measure.fst ρ) s = ↑↑(Measure.restrict (Measure.fst ρ) s) univ [PROOFSTEP] rw [Measure.restrict_apply_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : Measure.restrict (Measure.fst ρ) s = 0 ⊢ ↑↑(Measure.restrict (Measure.fst ρ) s) univ = 0 [PROOFSTEP] simp only [hρ_zero, Measure.coe_zero, Pi.zero_apply] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] have h : ∫⁻ a in s, ENNReal.ofReal (condCdf ρ a x) ∂ρ.fst = ∫⁻ a in s, ENNReal.ofReal (⨅ r : { r' : ℚ // x < r' }, condCdf ρ a r) ∂ρ.fst := by congr with a : 1 rw [← (condCdf ρ a).iInf_rat_gt_eq x] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ [PROOFSTEP] congr with a : 1 [GOAL] case e_f.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 a : α ⊢ ENNReal.ofReal (↑(condCdf ρ a) x) = ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) [PROOFSTEP] rw [← (condCdf ρ a).iInf_rat_gt_eq x] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] have h_nonempty : Nonempty { r' : ℚ // x < ↑r' } := by obtain ⟨r, hrx⟩ := exists_rat_gt x exact ⟨⟨r, hrx⟩⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ ⊢ Nonempty { r' // x < ↑r' } [PROOFSTEP] obtain ⟨r, hrx⟩ := exists_rat_gt x [GOAL] case intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ r : ℚ hrx : x < ↑r ⊢ Nonempty { r' // x < ↑r' } [PROOFSTEP] exact ⟨⟨r, hrx⟩⟩ [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] rw [h] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] simp_rw [ENNReal.ofReal_cinfi] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } ⊢ ∫⁻ (a : α) in s, ⨅ (i : { r' // x < ↑r' }), ENNReal.ofReal (↑(condCdf ρ a) ↑↑i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] have h_coe : ∀ b : { r' : ℚ // x < ↑r' }, (b : ℝ) = ((b : ℚ) : ℝ) := fun _ => by congr [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } x✝ : { r' // x < ↑r' } ⊢ ↑↑x✝ = ↑↑x✝ [PROOFSTEP] congr [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ∫⁻ (a : α) in s, ⨅ (i : { r' // x < ↑r' }), ENNReal.ofReal (↑(condCdf ρ a) ↑↑i) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] rw [lintegral_iInf_directed_of_measurable hρ_zero fun q : { r' : ℚ // x < ↑r' } => (measurable_condCdf ρ q).ennreal_ofReal] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ⨅ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) case neg.hf_int α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ∀ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ ≠ ⊤ case neg.h_directed α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ Directed (fun x x_1 => x ≥ x_1) fun q x_1 => ENNReal.ofReal (↑(condCdf ρ x_1) ↑↑q) [PROOFSTEP] rotate_left [GOAL] case neg.hf_int α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ∀ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ ≠ ⊤ [PROOFSTEP] intro b [GOAL] case neg.hf_int α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b b : { r' // x < ↑r' } ⊢ ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ ≠ ⊤ [PROOFSTEP] rw [set_lintegral_condCdf_rat ρ _ hs] [GOAL] case neg.hf_int α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b b : { r' // x < ↑r' } ⊢ ↑↑ρ (s ×ˢ Iic ↑↑b) ≠ ⊤ [PROOFSTEP] exact measure_ne_top ρ _ [GOAL] case neg.h_directed α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ Directed (fun x x_1 => x ≥ x_1) fun q x_1 => ENNReal.ofReal (↑(condCdf ρ x_1) ↑↑q) [PROOFSTEP] refine' Monotone.directed_ge fun i j hij a => ENNReal.ofReal_le_ofReal ((condCdf ρ a).mono _) [GOAL] case neg.h_directed α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b i j : { r' // x < ↑r' } hij : i ≤ j a : α ⊢ ↑↑i ≤ ↑↑j [PROOFSTEP] rw [h_coe, h_coe] [GOAL] case neg.h_directed α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b i j : { r' // x < ↑r' } hij : i ≤ j a : α ⊢ ↑↑i ≤ ↑↑j [PROOFSTEP] exact_mod_cast hij [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ⨅ (b : { r' // x < ↑r' }), ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) ↑↑b) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] simp_rw [set_lintegral_condCdf_rat ρ _ hs] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ⨅ (b : { r' // x < ↑r' }), ↑↑ρ (s ×ˢ Iic ↑↑b) = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] rw [← measure_iInter_eq_iInf] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ↑↑ρ (⋂ (i : { r' // x < ↑r' }), s ×ˢ Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] rw [← prod_iInter] [GOAL] case neg α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ↑↑ρ (s ×ˢ ⋂ (i : { r' // x < ↑r' }), Iic ↑↑i) = ↑↑ρ (s ×ˢ Iic x) [PROOFSTEP] congr with y [GOAL] case neg.e_a.e_a.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b y : ℝ ⊢ y ∈ ⋂ (i : { r' // x < ↑r' }), Iic ↑↑i ↔ y ∈ Iic x [PROOFSTEP] simp only [mem_iInter, mem_Iic, Subtype.forall, Subtype.coe_mk] [GOAL] case neg.e_a.e_a.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b y : ℝ ⊢ (∀ (a : ℚ), x < ↑a → y ≤ ↑a) ↔ y ≤ x [PROOFSTEP] exact ⟨le_of_forall_lt_rat_imp_le, fun hyx q hq => hyx.trans hq.le⟩ [GOAL] case neg.h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ∀ (i : { r' // x < ↑r' }), MeasurableSet (s ×ˢ Iic ↑↑i) [PROOFSTEP] exact fun i => hs.prod measurableSet_Iic [GOAL] case neg.hd α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ Directed (fun x x_1 => x ⊇ x_1) fun b => s ×ˢ Iic ↑↑b [PROOFSTEP] refine' Monotone.directed_ge fun i j hij => _ [GOAL] case neg.hd α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b i j : { r' // x < ↑r' } hij : i ≤ j ⊢ s ×ˢ Iic ↑↑i ≤ s ×ˢ Iic ↑↑j [PROOFSTEP] refine' prod_subset_prod_iff.mpr (Or.inl ⟨subset_rfl, Iic_subset_Iic.mpr _⟩) [GOAL] case neg.hd α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b i j : { r' // x < ↑r' } hij : i ≤ j ⊢ ↑↑i ≤ ↑↑j [PROOFSTEP] exact_mod_cast hij [GOAL] case neg.hfin α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s hρ_zero : ¬Measure.restrict (Measure.fst ρ) s = 0 h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ∫⁻ (a : α) in s, ENNReal.ofReal (⨅ (r : { r' // x < ↑r' }), ↑(condCdf ρ a) ↑↑r) ∂Measure.fst ρ h_nonempty : Nonempty { r' // x < ↑r' } h_coe : ∀ (b : { r' // x < ↑r' }), ↑↑b = ↑↑b ⊢ ∃ i, ↑↑ρ (s ×ˢ Iic ↑↑i) ≠ ⊤ [PROOFSTEP] exact ⟨h_nonempty.some, measure_ne_top _ _⟩ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ ⊢ ∫⁻ (a : α), ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (univ ×ˢ Iic x) [PROOFSTEP] rw [← set_lintegral_univ, set_lintegral_condCdf ρ _ MeasurableSet.univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ ⊢ Integrable fun a => ↑(condCdf ρ a) x [PROOFSTEP] refine' integrable_of_forall_fin_meas_le _ (measure_lt_top ρ.fst univ) _ fun t _ _ => _ [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ ⊢ AEStronglyMeasurable (fun a => ↑(condCdf ρ a) x) (Measure.fst ρ) [PROOFSTEP] exact (stronglyMeasurable_condCdf ρ _).aestronglyMeasurable [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ ⊢ ∫⁻ (x_1 : α) in t, ↑‖↑(condCdf ρ x_1) x‖₊ ∂Measure.fst ρ ≤ ↑↑(Measure.fst ρ) univ [PROOFSTEP] have : ∀ y, (‖condCdf ρ y x‖₊ : ℝ≥0∞) ≤ 1 := by intro y rw [Real.nnnorm_of_nonneg (condCdf_nonneg _ _ _)] -- Porting note: was exact_mod_cast condCdf_le_one _ _ _ simp only [ENNReal.coe_le_one_iff] exact condCdf_le_one _ _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ ⊢ ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1 [PROOFSTEP] intro y [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ y : α ⊢ ↑‖↑(condCdf ρ y) x‖₊ ≤ 1 [PROOFSTEP] rw [Real.nnnorm_of_nonneg (condCdf_nonneg _ _ _)] -- Porting note: was exact_mod_cast condCdf_le_one _ _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ y : α ⊢ ↑{ val := ↑(condCdf ρ y) x, property := (_ : 0 ≤ ↑(condCdf ρ y) x) } ≤ 1 [PROOFSTEP] simp only [ENNReal.coe_le_one_iff] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ y : α ⊢ { val := ↑(condCdf ρ y) x, property := (_ : 0 ≤ ↑(condCdf ρ y) x) } ≤ 1 [PROOFSTEP] exact condCdf_le_one _ _ _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ this : ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1 ⊢ ∫⁻ (x_1 : α) in t, ↑‖↑(condCdf ρ x_1) x‖₊ ∂Measure.fst ρ ≤ ↑↑(Measure.fst ρ) univ [PROOFSTEP] refine' (set_lintegral_mono (measurable_condCdf _ _).ennnorm measurable_one fun y _ => this y).trans _ [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ this : ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1 ⊢ ∫⁻ (x : α) in t, OfNat.ofNat 1 x ∂Measure.fst ρ ≤ ↑↑(Measure.fst ρ) univ [PROOFSTEP] simp only [Pi.one_apply, lintegral_one, Measure.restrict_apply, MeasurableSet.univ, univ_inter] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ t : Set α x✝¹ : MeasurableSet t x✝ : ↑↑(Measure.fst ρ) t ≠ ⊤ this : ∀ (y : α), ↑‖↑(condCdf ρ y) x‖₊ ≤ 1 ⊢ ↑↑(Measure.fst ρ) t ≤ ↑↑(Measure.fst ρ) univ [PROOFSTEP] exact measure_mono (subset_univ _) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s ⊢ ∫ (a : α) in s, ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (s ×ˢ Iic x)) [PROOFSTEP] have h := set_lintegral_condCdf ρ x hs [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) ⊢ ∫ (a : α) in s, ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (s ×ˢ Iic x)) [PROOFSTEP] rw [← ofReal_integral_eq_lintegral_ofReal] at h [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s h : ENNReal.ofReal (∫ (x_1 : α) in s, ↑(condCdf ρ x_1) x ∂Measure.fst ρ) = ↑↑ρ (s ×ˢ Iic x) ⊢ ∫ (a : α) in s, ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (s ×ˢ Iic x)) [PROOFSTEP] rw [← h, ENNReal.toReal_ofReal] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s h : ENNReal.ofReal (∫ (x_1 : α) in s, ↑(condCdf ρ x_1) x ∂Measure.fst ρ) = ↑↑ρ (s ×ˢ Iic x) ⊢ 0 ≤ ∫ (x_1 : α) in s, ↑(condCdf ρ x_1) x ∂Measure.fst ρ [PROOFSTEP] exact integral_nonneg fun _ => condCdf_nonneg _ _ _ [GOAL] case hfi α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) ⊢ Integrable fun a => ↑(condCdf ρ a) x [PROOFSTEP] exact (integrable_condCdf _ _).integrableOn [GOAL] case f_nn α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ s : Set α hs : MeasurableSet s h : ∫⁻ (a : α) in s, ENNReal.ofReal (↑(condCdf ρ a) x) ∂Measure.fst ρ = ↑↑ρ (s ×ˢ Iic x) ⊢ 0 ≤ᵐ[Measure.restrict (Measure.fst ρ) s] fun a => ↑(condCdf ρ a) x [PROOFSTEP] exact eventually_of_forall fun _ => condCdf_nonneg _ _ _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) inst✝ : IsFiniteMeasure ρ x : ℝ ⊢ ∫ (a : α), ↑(condCdf ρ a) x ∂Measure.fst ρ = ENNReal.toReal (↑↑ρ (univ ×ˢ Iic x)) [PROOFSTEP] rw [← set_integral_condCdf ρ _ MeasurableSet.univ, Measure.restrict_univ] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) (Iic x) = ENNReal.ofReal (↑(condCdf ρ a) x) [PROOFSTEP] rw [← sub_zero (condCdf ρ a x)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α x : ℝ ⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) (Iic x) = ENNReal.ofReal (↑(condCdf ρ a) x - 0) [PROOFSTEP] exact (condCdf ρ a).measure_Iic (tendsto_condCdf_atBot ρ a) _ [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ = 1 [PROOFSTEP] rw [← ENNReal.ofReal_one, ← sub_zero (1 : ℝ)] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) a : α ⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ = ENNReal.ofReal (1 - 0) [PROOFSTEP] exact StieltjesFunction.measure_univ _ (tendsto_condCdf_atBot ρ a) (tendsto_condCdf_atTop ρ a) [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) ⊢ Measurable fun a => StieltjesFunction.measure (condCdf ρ a) [PROOFSTEP] rw [Measure.measurable_measure] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) ⊢ ∀ (s : Set ℝ), MeasurableSet s → Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s [PROOFSTEP] refine' fun s hs => ?_ -- Porting note: supplied `C` [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s ⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s [PROOFSTEP] refine' MeasurableSpace.induction_on_inter (C := fun s => Measurable fun b ↦ StieltjesFunction.measure (condCdf ρ b) s) (borel_eq_generateFrom_Iic ℝ) isPiSystem_Iic _ _ _ _ hs [GOAL] case refine'_1 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s ⊢ (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) ∅ [PROOFSTEP] simp only [measure_empty, measurable_const] [GOAL] case refine'_2 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s ⊢ ∀ (t : Set ℝ), t ∈ range Iic → (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) t [PROOFSTEP] rintro S ⟨u, rfl⟩ [GOAL] case refine'_2.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s u : ℝ ⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) (Iic u) [PROOFSTEP] simp_rw [measure_condCdf_Iic ρ _ u] [GOAL] case refine'_2.intro α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s u : ℝ ⊢ Measurable fun b => ENNReal.ofReal (↑(condCdf ρ b) u) [PROOFSTEP] exact (measurable_condCdf ρ u).ennreal_ofReal [GOAL] case refine'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s ⊢ ∀ (t : Set ℝ), MeasurableSet t → (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) t → (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) tᶜ [PROOFSTEP] intro t ht ht_cd_meas [GOAL] case refine'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t ⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) tᶜ [PROOFSTEP] have : (fun a => (condCdf ρ a).measure tᶜ) = (fun a => (condCdf ρ a).measure univ) - fun a => (condCdf ρ a).measure t := by ext1 a rw [measure_compl ht (measure_ne_top (condCdf ρ a).measure _), Pi.sub_apply] [GOAL] α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t ⊢ (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ) = (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t [PROOFSTEP] ext1 a [GOAL] case h α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t a : α ⊢ ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ = ((fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t) a [PROOFSTEP] rw [measure_compl ht (measure_ne_top (condCdf ρ a).measure _), Pi.sub_apply] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t this : (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ) = (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t ⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) tᶜ [PROOFSTEP] simp_rw [this, measure_condCdf_univ ρ] [GOAL] case refine'_3 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s t : Set ℝ ht : MeasurableSet t ht_cd_meas : Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) t this : (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) tᶜ) = (fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) univ) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t ⊢ Measurable ((fun a => 1) - fun a => ↑↑(StieltjesFunction.measure (condCdf ρ a)) t) [PROOFSTEP] exact Measurable.sub measurable_const ht_cd_meas [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s ⊢ ∀ (f : ℕ → Set ℝ), Pairwise (Disjoint on f) → (∀ (i : ℕ), MeasurableSet (f i)) → (∀ (i : ℕ), (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (f i)) → (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (⋃ (i : ℕ), f i) [PROOFSTEP] intro f hf_disj hf_meas hf_cd_meas [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_cd_meas : ∀ (i : ℕ), (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (f i) ⊢ Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) (⋃ (i : ℕ), f i) [PROOFSTEP] simp_rw [measure_iUnion hf_disj hf_meas] [GOAL] case refine'_4 α : Type u_1 β : Type u_2 ι : Type u_3 mα : MeasurableSpace α ρ : Measure (α × ℝ) s : Set ℝ hs : MeasurableSet s f : ℕ → Set ℝ hf_disj : Pairwise (Disjoint on f) hf_meas : ∀ (i : ℕ), MeasurableSet (f i) hf_cd_meas : ∀ (i : ℕ), (fun s => Measurable fun b => ↑↑(StieltjesFunction.measure (condCdf ρ b)) s) (f i) ⊢ Measurable fun b => ∑' (i : ℕ), ↑↑(StieltjesFunction.measure (condCdf ρ b)) (f i) [PROOFSTEP] exact Measurable.ennreal_tsum hf_cd_meas
{"mathlib_filename": "Mathlib.Probability.Kernel.CondCdf", "llama_tokens": 111741}
[GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ evariance X μ < ⊤ [PROOFSTEP] have := ENNReal.pow_lt_top (hX.sub <| memℒp_const <| μ[X]).2 2 [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 this : snorm (X - fun x => ∫ (x : Ω), X x ∂μ) 2 μ ^ 2 < ⊤ ⊢ evariance X μ < ⊤ [PROOFSTEP] rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top, ← ENNReal.rpow_two] at this [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 this : ((∫⁻ (x : Ω), ↑‖(X - fun x => ∫ (x : Ω), X x ∂μ) x‖₊ ^ ENNReal.toReal 2 ∂μ) ^ (1 / ENNReal.toReal 2)) ^ 2 < ⊤ ⊢ evariance X μ < ⊤ [PROOFSTEP] simp only [coe_two, Pi.sub_apply, ENNReal.one_toReal, one_div] at this [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 this : ((∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ) ^ 2⁻¹) ^ 2 < ⊤ ⊢ evariance X μ < ⊤ [PROOFSTEP] rw [← ENNReal.rpow_mul, inv_mul_cancel (two_ne_zero : (2 : ℝ) ≠ 0), ENNReal.rpow_one] at this [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 this : ∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ < ⊤ ⊢ evariance X μ < ⊤ [PROOFSTEP] simp_rw [ENNReal.rpow_two] at this [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 this : ∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ < ⊤ ⊢ evariance X μ < ⊤ [PROOFSTEP] exact this [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 ⊢ evariance X μ = ⊤ [PROOFSTEP] by_contra h [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : ¬evariance X μ = ⊤ ⊢ False [PROOFSTEP] rw [← Ne.def, ← lt_top_iff_ne_top] at h [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ ⊢ False [PROOFSTEP] have : Memℒp (fun ω => X ω - μ[X]) 2 μ := by refine' ⟨hXm.sub aestronglyMeasurable_const, _⟩ rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top] simp only [coe_two, ENNReal.one_toReal, ENNReal.rpow_two, Ne.def] exact ENNReal.rpow_lt_top_of_nonneg (by linarith) h.ne [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ ⊢ Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 [PROOFSTEP] refine' ⟨hXm.sub aestronglyMeasurable_const, _⟩ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ ⊢ snorm (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 μ < ⊤ [PROOFSTEP] rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ ⊢ (∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ ENNReal.toReal 2 ∂μ) ^ (1 / ENNReal.toReal 2) < ⊤ [PROOFSTEP] simp only [coe_two, ENNReal.one_toReal, ENNReal.rpow_two, Ne.def] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ ⊢ (∫⁻ (x : Ω), ↑‖X x - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ) ^ (1 / 2) < ⊤ [PROOFSTEP] exact ENNReal.rpow_lt_top_of_nonneg (by linarith) h.ne [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ ⊢ 0 ≤ 1 / 2 [PROOFSTEP] linarith [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 ⊢ False [PROOFSTEP] refine' hX _ -- Porting note: `μ[X]` without whitespace is ambiguous as it could be GetElem, -- and `convert` cannot disambiguate based on typeclass inference failure. [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 ⊢ Memℒp X 2 [PROOFSTEP] convert this.add (memℒp_const <| μ [X]) [GOAL] case h.e'_5 Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 ⊢ X = (fun ω => X ω - ∫ (x : Ω), X x ∂μ) + fun x => ∫ (x : Ω), X x ∂μ [PROOFSTEP] ext ω [GOAL] case h.e'_5.h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hXm : AEStronglyMeasurable X μ hX : ¬Memℒp X 2 h : evariance X μ < ⊤ this : Memℒp (fun ω => X ω - ∫ (x : Ω), X x ∂μ) 2 ω : Ω ⊢ X ω = ((fun ω => X ω - ∫ (x : Ω), X x ∂μ) + fun x => ∫ (x : Ω), X x ∂μ) ω [PROOFSTEP] rw [Pi.add_apply, sub_add_cancel] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : AEStronglyMeasurable X μ ⊢ evariance X μ < ⊤ ↔ Memℒp X 2 [PROOFSTEP] refine' ⟨_, MeasureTheory.Memℒp.evariance_lt_top⟩ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : AEStronglyMeasurable X μ ⊢ evariance X μ < ⊤ → Memℒp X 2 [PROOFSTEP] contrapose [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : AEStronglyMeasurable X μ ⊢ ¬Memℒp X 2 → ¬evariance X μ < ⊤ [PROOFSTEP] rw [not_lt, top_le_iff] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : AEStronglyMeasurable X μ ⊢ ¬Memℒp X 2 → evariance X μ = ⊤ [PROOFSTEP] exact evariance_eq_top hX [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ ENNReal.ofReal (variance X μ) = evariance X μ [PROOFSTEP] rw [variance, ENNReal.ofReal_toReal] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ evariance X μ ≠ ⊤ [PROOFSTEP] exact hX.evariance_lt_top.ne [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω X : Ω → ℝ μ : Measure Ω ⊢ evariance X μ = ∫⁻ (ω : Ω), ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) ∂μ [PROOFSTEP] rw [evariance] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω X : Ω → ℝ μ : Measure Ω ⊢ ∫⁻ (ω : Ω), ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ = ∫⁻ (ω : Ω), ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) ∂μ [PROOFSTEP] congr [GOAL] case e_f Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω X : Ω → ℝ μ : Measure Ω ⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) = fun ω => ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) [PROOFSTEP] ext1 ω [GOAL] case e_f.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) [PROOFSTEP] rw [pow_two, ← ENNReal.coe_mul, ← nnnorm_mul, ← pow_two] [GOAL] case e_f.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ↑‖(X ω - ∫ (x : Ω), X x ∂μ) ^ 2‖₊ = ENNReal.ofReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) [PROOFSTEP] congr [GOAL] case e_f.h.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ‖(X ω - ∫ (x : Ω), X x ∂μ) ^ 2‖₊ = Real.toNNReal ((X ω - ∫ (x : Ω), X x ∂μ) ^ 2) [PROOFSTEP] exact (Real.toNNReal_eq_nnnorm_of_nonneg <| sq_nonneg _).symm [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ variance X μ = ∫ (x : Ω), (X ^ 2) x ∂μ [PROOFSTEP] rw [variance, evariance_eq_lintegral_ofReal, ← ofReal_integral_eq_lintegral_ofReal, ENNReal.toReal_ofReal] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ = ∫ (x : Ω), (X ^ 2) x ∂μ [PROOFSTEP] simp_rw [hXint, sub_zero] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ 0 ≤ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ [PROOFSTEP] simp_rw [hXint, sub_zero] [GOAL] case hfi Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ Integrable fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2 [PROOFSTEP] simp_rw [hXint, sub_zero] [GOAL] case f_nn Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ 0 ≤ᵐ[μ] fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2 [PROOFSTEP] simp_rw [hXint, sub_zero] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ ∫ (x : Ω), X x ^ 2 ∂μ = ∫ (x : Ω), (X ^ 2) x ∂μ [PROOFSTEP] rfl [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ 0 ≤ ∫ (x : Ω), X x ^ 2 ∂μ [PROOFSTEP] exact integral_nonneg fun ω => pow_two_nonneg _ [GOAL] case hfi Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ Integrable fun ω => X ω ^ 2 [PROOFSTEP] convert hX.integrable_norm_rpow two_ne_zero ENNReal.two_ne_top with ω [GOAL] case h.e'_5.h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ω : Ω ⊢ X ω ^ 2 = ‖X ω‖ ^ ENNReal.toReal 2 [PROOFSTEP] simp only [Pi.sub_apply, Real.norm_eq_abs, coe_two, ENNReal.one_toReal, Real.rpow_two, sq_abs, abs_pow] [GOAL] case f_nn Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : Memℒp X 2 hXint : ∫ (x : Ω), X x ∂μ = 0 ⊢ 0 ≤ᵐ[μ] fun ω => X ω ^ 2 [PROOFSTEP] exact ae_of_all _ fun ω => pow_two_nonneg _ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ variance X μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ [PROOFSTEP] rw [variance, evariance_eq_lintegral_ofReal, ← ofReal_integral_eq_lintegral_ofReal, ENNReal.toReal_ofReal] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ = ∫ (x : Ω), ((X - fun x => ∫ (x : Ω), X x ∂μ) ^ 2) x ∂μ [PROOFSTEP] rfl [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ 0 ≤ ∫ (x : Ω), (X x - ∫ (x : Ω), X x ∂μ) ^ 2 ∂μ [PROOFSTEP] exact integral_nonneg fun ω => pow_two_nonneg _ [GOAL] case hfi Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ Integrable fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2 [PROOFSTEP] convert (hX.sub <| memℒp_const (μ [X])).integrable_norm_rpow two_ne_zero ENNReal.two_ne_top with ω [GOAL] case h.e'_5.h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ω : Ω ⊢ (X ω - ∫ (x : Ω), X x ∂μ) ^ 2 = ‖(X - fun x => ∫ (x : Ω), X x ∂μ) ω‖ ^ ENNReal.toReal 2 [PROOFSTEP] simp only [Pi.sub_apply, Real.norm_eq_abs, coe_two, ENNReal.one_toReal, Real.rpow_two, sq_abs, abs_pow] [GOAL] case f_nn Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω inst✝ : IsFiniteMeasure μ hX : Memℒp X 2 ⊢ 0 ≤ᵐ[μ] fun ω => (X ω - ∫ (x : Ω), X x ∂μ) ^ 2 [PROOFSTEP] exact ae_of_all _ fun ω => pow_two_nonneg _ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω ⊢ evariance 0 μ = 0 [PROOFSTEP] simp [evariance] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : AEMeasurable X ⊢ evariance X μ = 0 ↔ X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ [PROOFSTEP] rw [evariance, lintegral_eq_zero_iff'] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : AEMeasurable X ⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 ↔ X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : AEMeasurable X ⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 → X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ [PROOFSTEP] intro hX [GOAL] case mpr Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : AEMeasurable X ⊢ (X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ) → (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 [PROOFSTEP] intro hX [GOAL] case mp Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX✝ : AEMeasurable X hX : (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 ⊢ X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ [PROOFSTEP] filter_upwards [hX] with ω hω [GOAL] case mpr Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX✝ : AEMeasurable X hX : X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ ⊢ (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 [PROOFSTEP] filter_upwards [hX] with ω hω [GOAL] case h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX✝ : AEMeasurable X hX : (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 ω : Ω hω : ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = OfNat.ofNat 0 ω ⊢ X ω = ∫ (x : Ω), X x ∂μ [PROOFSTEP] simp only [Pi.zero_apply, pow_eq_zero_iff, Nat.succ_pos', ENNReal.coe_eq_zero, nnnorm_eq_zero, sub_eq_zero] at hω [GOAL] case h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX✝ : AEMeasurable X hX : (fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) =ᵐ[μ] 0 ω : Ω hω : X ω = ∫ (x : Ω), X x ∂μ ⊢ X ω = ∫ (x : Ω), X x ∂μ [PROOFSTEP] exact hω [GOAL] case h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX✝ : AEMeasurable X hX : X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ ω : Ω hω : X ω = ∫ (x : Ω), X x ∂μ ⊢ ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = OfNat.ofNat 0 ω [PROOFSTEP] rw [hω] [GOAL] case h Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX✝ : AEMeasurable X hX : X =ᵐ[μ] fun x => ∫ (x : Ω), X x ∂μ ω : Ω hω : X ω = ∫ (x : Ω), X x ∂μ ⊢ ↑‖∫ (x : Ω), X x ∂μ - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 = OfNat.ofNat 0 ω [PROOFSTEP] simp [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ : Measure Ω hX : AEMeasurable X ⊢ AEMeasurable fun ω => ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 [PROOFSTEP] measurability [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ⊢ evariance (fun ω => c * X ω) μ = ENNReal.ofReal (c ^ 2) * evariance X μ [PROOFSTEP] rw [evariance, evariance, ← lintegral_const_mul' _ _ ENNReal.ofReal_lt_top.ne] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ⊢ ∫⁻ (ω : Ω), ↑‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 ∂μ = ∫⁻ (a : Ω), ENNReal.ofReal (c ^ 2) * ↑‖X a - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 ∂μ [PROOFSTEP] congr [GOAL] case e_f Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ⊢ (fun ω => ↑‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2) = fun a => ENNReal.ofReal (c ^ 2) * ↑‖X a - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 [PROOFSTEP] ext1 ω [GOAL] case e_f.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ↑‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = ENNReal.ofReal (c ^ 2) * ↑‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 [PROOFSTEP] rw [ENNReal.ofReal, ← ENNReal.coe_pow, ← ENNReal.coe_pow, ← ENNReal.coe_mul] [GOAL] case e_f.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ↑(‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2) = ↑(Real.toNNReal (c ^ 2) * ‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2) [PROOFSTEP] congr [GOAL] case e_f.h.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = Real.toNNReal (c ^ 2) * ‖X ω - ∫ (x : Ω), X x ∂μ‖₊ ^ 2 [PROOFSTEP] rw [← sq_abs, ← Real.rpow_two, Real.toNNReal_rpow_of_nonneg (abs_nonneg _), NNReal.rpow_two, ← mul_pow, Real.toNNReal_mul_nnnorm _ (abs_nonneg _)] [GOAL] case e_f.h.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2 [PROOFSTEP] conv_rhs => rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω | ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2 [PROOFSTEP] rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω | ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2 [PROOFSTEP] rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω | ‖|c| * (X ω - ∫ (x : Ω), X x ∂μ)‖₊ ^ 2 [PROOFSTEP] rw [← nnnorm_norm, norm_mul, norm_abs_eq_norm, ← norm_mul, nnnorm_norm, mul_sub] [GOAL] case e_f.h.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ‖c * X ω - ∫ (x : Ω), c * X x ∂μ‖₊ ^ 2 = ‖c * X ω - c * ∫ (x : Ω), X x ∂μ‖₊ ^ 2 [PROOFSTEP] congr [GOAL] case e_f.h.e_a.e_a.e_a.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ∫ (x : Ω), c * X x ∂μ = c * ∫ (x : Ω), X x ∂μ [PROOFSTEP] rw [mul_comm] [GOAL] case e_f.h.e_a.e_a.e_a.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ω : Ω ⊢ ∫ (x : Ω), c * X x ∂μ = (∫ (x : Ω), X x ∂μ) * c [PROOFSTEP] simp_rw [← smul_eq_mul, ← integral_smul_const, smul_eq_mul, mul_comm] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X : Ω → ℝ μ✝ μ : Measure Ω ⊢ variance 0 μ = 0 [PROOFSTEP] simp only [variance, evariance_zero, ENNReal.zero_toReal] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ⊢ variance (fun ω => c * X ω) μ = c ^ 2 * variance X μ [PROOFSTEP] rw [variance, evariance_mul, ENNReal.toReal_mul, ENNReal.toReal_ofReal (sq_nonneg _)] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω c : ℝ X : Ω → ℝ μ : Measure Ω ⊢ c ^ 2 * ENNReal.toReal (evariance (fun ω => X ω) μ) = c ^ 2 * variance X μ [PROOFSTEP] rfl [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω A : Type u_2 inst✝¹ : CommSemiring A inst✝ : Algebra A ℝ c : A X : Ω → ℝ μ : Measure Ω ⊢ variance (c • X) μ = c ^ 2 • variance X μ [PROOFSTEP] convert variance_smul (algebraMap A ℝ c) X μ using 1 [GOAL] case h.e'_2 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω A : Type u_2 inst✝¹ : CommSemiring A inst✝ : Algebra A ℝ c : A X : Ω → ℝ μ : Measure Ω ⊢ variance (c • X) μ = variance (↑(algebraMap A ℝ) c • X) μ [PROOFSTEP] congr [GOAL] case h.e'_2.e_X Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω A : Type u_2 inst✝¹ : CommSemiring A inst✝ : Algebra A ℝ c : A X : Ω → ℝ μ : Measure Ω ⊢ c • X = ↑(algebraMap A ℝ) c • X [PROOFSTEP] simp only [algebraMap_smul] [GOAL] case h.e'_3 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ✝ : Measure Ω A : Type u_2 inst✝¹ : CommSemiring A inst✝ : Algebra A ℝ c : A X : Ω → ℝ μ : Measure Ω ⊢ c ^ 2 • variance X μ = ↑(algebraMap A ℝ) c ^ 2 * variance X μ [PROOFSTEP] simp only [Algebra.smul_def, map_pow] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ variance X ℙ = (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2 [PROOFSTEP] rw [hX.variance_eq, sub_sq', integral_sub', integral_add'] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), ((fun x => ∫ (x : Ω), X x) ^ 2) a) - ∫ (a : Ω), (2 * X * fun x => ∫ (x : Ω), X x) a = (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2 case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable (X ^ 2) case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable ((fun x => ∫ (x : Ω), X x) ^ 2) case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable (X ^ 2 + (fun x => ∫ (x : Ω), X x) ^ 2) case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable (2 * X * fun x => ∫ (x : Ω), X x) [PROOFSTEP] rotate_left [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable (X ^ 2) [PROOFSTEP] exact hX.integrable_sq [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable ((fun x => ∫ (x : Ω), X x) ^ 2) [PROOFSTEP] convert @integrable_const Ω ℝ (_) ℙ _ _ (𝔼[X] ^ 2) [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable (X ^ 2 + (fun x => ∫ (x : Ω), X x) ^ 2) [PROOFSTEP] apply hX.integrable_sq.add [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable ((fun x => ∫ (x : Ω), X x) ^ 2) [PROOFSTEP] convert @integrable_const Ω ℝ (_) ℙ _ _ (𝔼[X] ^ 2) [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ Integrable (2 * X * fun x => ∫ (x : Ω), X x) [PROOFSTEP] exact ((hX.integrable one_le_two).const_mul 2).mul_const' _ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), ((fun x => ∫ (x : Ω), X x) ^ 2) a) - ∫ (a : Ω), (2 * X * fun x => ∫ (x : Ω), X x) a = (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2 [PROOFSTEP] simp [integral_mul_right, integral_mul_left] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 ⊢ (∫ (a : Ω), X a ^ 2) + (∫ (x : Ω), X x) ^ 2 - (2 * ∫ (x : Ω), X x) * ∫ (x : Ω), X x = (∫ (a : Ω), X a ^ 2) - (∫ (x : Ω), X x) ^ 2 [PROOFSTEP] ring [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ ⊢ variance X ℙ ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] by_cases hX : Memℒp X 2 [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : Memℒp X 2 ⊢ variance X ℙ ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] rw [variance_def' hX] [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : Memℒp X 2 ⊢ (∫ (a : Ω), (X ^ 2) a) - (∫ (a : Ω), X a) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] simp only [sq_nonneg, sub_le_self_iff] [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ variance X ℙ ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] rw [variance, evariance_eq_lintegral_ofReal, ← integral_eq_lintegral_of_nonneg_ae] [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a case neg.hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ 0 ≤ᵐ[ℙ] fun ω => (X ω - ∫ (x : Ω), X x) ^ 2 case neg.hfm Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ AEStronglyMeasurable (fun ω => (X ω - ∫ (x : Ω), X x) ^ 2) ℙ [PROOFSTEP] by_cases hint : Integrable X [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X ⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : ¬Integrable X ⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a case neg.hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ 0 ≤ᵐ[ℙ] fun ω => (X ω - ∫ (x : Ω), X x) ^ 2 case neg.hfm Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ AEStronglyMeasurable (fun ω => (X ω - ∫ (x : Ω), X x) ^ 2) ℙ [PROOFSTEP] swap [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : ¬Integrable X ⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] simp only [integral_undef hint, Pi.pow_apply, Pi.sub_apply, sub_zero] [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : ¬Integrable X ⊢ ∫ (a : Ω), X a ^ 2 ≤ ∫ (a : Ω), X a ^ 2 [PROOFSTEP] exact le_rfl [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X ⊢ ∫ (a : Ω), (X a - ∫ (x : Ω), X x) ^ 2 ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] rw [integral_undef] [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X ⊢ 0 ≤ ∫ (a : Ω), (X ^ 2) a [PROOFSTEP] exact integral_nonneg fun a => sq_nonneg _ [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X ⊢ ¬Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2 [PROOFSTEP] intro h [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2 ⊢ False [PROOFSTEP] have A : Memℒp (X - fun ω : Ω => 𝔼[X]) 2 ℙ := (memℒp_two_iff_integrable_sq (hint.aestronglyMeasurable.sub aestronglyMeasurable_const)).2 h [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2 A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2 ⊢ False [PROOFSTEP] have B : Memℒp (fun _ : Ω => 𝔼[X]) 2 ℙ := memℒp_const _ [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2 A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2 B : Memℒp (fun x => ∫ (a : Ω), X a) 2 ⊢ False [PROOFSTEP] apply hX [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2 A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2 B : Memℒp (fun x => ∫ (a : Ω), X a) 2 ⊢ Memℒp X 2 [PROOFSTEP] convert A.add B [GOAL] case h.e'_5 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 hint : Integrable X h : Integrable fun a => (X a - ∫ (x : Ω), X x) ^ 2 A : Memℒp (X - fun ω => ∫ (a : Ω), X a) 2 B : Memℒp (fun x => ∫ (a : Ω), X a) 2 ⊢ X = (X - fun ω => ∫ (a : Ω), X a) + fun x => ∫ (a : Ω), X a [PROOFSTEP] simp [GOAL] case neg.hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ 0 ≤ᵐ[ℙ] fun ω => (X ω - ∫ (x : Ω), X x) ^ 2 [PROOFSTEP] exact @ae_of_all _ (_) _ _ fun x => sq_nonneg _ [GOAL] case neg.hfm Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hm : AEStronglyMeasurable X ℙ hX : ¬Memℒp X 2 ⊢ AEStronglyMeasurable (fun ω => (X ω - ∫ (x : Ω), X x) ^ 2) ℙ [PROOFSTEP] exact (AEMeasurable.pow_const (hm.aemeasurable.sub_const _) _).aestronglyMeasurable [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ ⊢ evariance X ℙ = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) [PROOFSTEP] by_cases hℒ : Memℒp X 2 [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : Memℒp X 2 ⊢ evariance X ℙ = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) [PROOFSTEP] rw [← hℒ.ofReal_variance_eq, variance_def' hℒ, ENNReal.ofReal_sub _ (sq_nonneg _)] [GOAL] case pos Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : Memℒp X 2 ⊢ ENNReal.ofReal (∫ (a : Ω), (X ^ 2) a) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) [PROOFSTEP] congr [GOAL] case pos.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : Memℒp X 2 ⊢ ENNReal.ofReal (∫ (a : Ω), (X ^ 2) a) = ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) [PROOFSTEP] rw [lintegral_coe_eq_integral] [GOAL] case pos.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : Memℒp X 2 ⊢ ENNReal.ofReal (∫ (a : Ω), (X ^ 2) a) = ENNReal.ofReal (∫ (a : Ω), ↑(‖X a‖₊ ^ 2)) [PROOFSTEP] congr 2 with ω [GOAL] case pos.e_a.e_r.e_f.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : Memℒp X 2 ω : Ω ⊢ (X ^ 2) ω = ↑(‖X ω‖₊ ^ 2) [PROOFSTEP] simp only [Pi.pow_apply, NNReal.coe_pow, coe_nnnorm, Real.norm_eq_abs, Even.pow_abs even_two] [GOAL] case pos.e_a.hfi Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : Memℒp X 2 ⊢ Integrable fun x => ↑(‖X x‖₊ ^ 2) [PROOFSTEP] exact hℒ.abs.integrable_sq [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : ¬Memℒp X 2 ⊢ evariance X ℙ = (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) [PROOFSTEP] symm [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : ¬Memℒp X 2 ⊢ (∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2)) - ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) = evariance X ℙ [PROOFSTEP] rw [evariance_eq_top hX hℒ, ENNReal.sub_eq_top_iff] [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : ¬Memℒp X 2 ⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤ ∧ ENNReal.ofReal ((∫ (a : Ω), X a) ^ 2) ≠ ⊤ [PROOFSTEP] refine' ⟨_, ENNReal.ofReal_ne_top⟩ [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : ¬Memℒp X 2 ⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤ [PROOFSTEP] rw [Memℒp, not_and] at hℒ [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : AEStronglyMeasurable X ℙ → ¬snorm X 2 ℙ < ⊤ ⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤ [PROOFSTEP] specialize hℒ hX [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : ¬snorm X 2 ℙ < ⊤ ⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤ [PROOFSTEP] simp only [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top, not_lt, top_le_iff, coe_two, one_div, ENNReal.rpow_eq_top_iff, inv_lt_zero, inv_pos, and_true_iff, or_iff_not_imp_left, not_and_or, zero_lt_two] at hℒ [GOAL] case neg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hX : AEStronglyMeasurable X ℙ hℒ : (¬¬∫⁻ (x : Ω), ↑‖X x‖₊ ^ 2 = 0 → 0 ≤ 2) → ∫⁻ (x : Ω), ↑‖X x‖₊ ^ 2 = ⊤ ⊢ ∫⁻ (ω : Ω), ↑(‖X ω‖₊ ^ 2) = ⊤ [PROOFSTEP] exact_mod_cast hℒ fun _ => zero_le_two [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 ⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ↑(c ^ 2) [PROOFSTEP] have A : (c : ℝ≥0∞) ≠ 0 := by rwa [Ne.def, ENNReal.coe_eq_zero] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 ⊢ ↑c ≠ 0 [PROOFSTEP] rwa [Ne.def, ENNReal.coe_eq_zero] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 ⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ↑(c ^ 2) [PROOFSTEP] have B : AEStronglyMeasurable (fun _ : Ω => 𝔼[X]) ℙ := aestronglyMeasurable_const [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ↑(c ^ 2) [PROOFSTEP] convert meas_ge_le_mul_pow_snorm ℙ two_ne_zero ENNReal.two_ne_top (hX.sub B) A using 1 [GOAL] case h.e'_3 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ ↑↑ℙ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} = ↑↑ℙ {x | ↑c ≤ ↑‖(X - fun x => ∫ (a : Ω), X a) x‖₊} [PROOFSTEP] congr [GOAL] case h.e'_3.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ {ω | ↑c ≤ |X ω - ∫ (a : Ω), X a|} = {x | ↑c ≤ ↑‖(X - fun x => ∫ (a : Ω), X a) x‖₊} [PROOFSTEP] simp only [Pi.sub_apply, ENNReal.coe_le_coe, ← Real.norm_eq_abs, ← coe_nnnorm, NNReal.coe_le_coe, ENNReal.ofReal_coe_nnreal] [GOAL] case h.e'_4 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ evariance X ℙ / ↑(c ^ 2) = (↑c)⁻¹ ^ ENNReal.toReal 2 * snorm (X - fun x => ∫ (a : Ω), X a) 2 ℙ ^ ENNReal.toReal 2 [PROOFSTEP] rw [snorm_eq_lintegral_rpow_nnnorm two_ne_zero ENNReal.two_ne_top] [GOAL] case h.e'_4 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ evariance X ℙ / ↑(c ^ 2) = (↑c)⁻¹ ^ ENNReal.toReal 2 * ((∫⁻ (x : Ω), ↑‖(X - fun x => ∫ (a : Ω), X a) x‖₊ ^ ENNReal.toReal 2) ^ (1 / ENNReal.toReal 2)) ^ ENNReal.toReal 2 [PROOFSTEP] simp only [show ENNReal.some (c ^ 2) = (ENNReal.some c) ^ 2 by norm_cast, coe_two, one_div, Pi.sub_apply] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ ↑(c ^ 2) = ↑c ^ 2 [PROOFSTEP] norm_cast [GOAL] case h.e'_4 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ evariance X ℙ / ↑c ^ 2 = (↑c)⁻¹ ^ 2 * ((∫⁻ (x : Ω), ↑‖X x - ∫ (a : Ω), X a‖₊ ^ 2) ^ 2⁻¹) ^ 2 [PROOFSTEP] rw [div_eq_mul_inv, ENNReal.inv_pow, mul_comm, ENNReal.rpow_two] [GOAL] case h.e'_4 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ (↑c)⁻¹ ^ 2 * evariance X ℙ = (↑c)⁻¹ ^ 2 * ((∫⁻ (x : Ω), ↑‖X x - ∫ (a : Ω), X a‖₊ ^ 2) ^ 2⁻¹) ^ 2 [PROOFSTEP] congr [GOAL] case h.e'_4.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝ : MeasureSpace Ω X : Ω → ℝ hX : AEStronglyMeasurable X ℙ c : ℝ≥0 hc : c ≠ 0 A : ↑c ≠ 0 B : AEStronglyMeasurable (fun x => ∫ (a : Ω), X a) ℙ ⊢ evariance X ℙ = ((∫⁻ (x : Ω), ↑‖X x - ∫ (a : Ω), X a‖₊ ^ 2) ^ 2⁻¹) ^ 2 [PROOFSTEP] simp_rw [← ENNReal.rpow_mul, inv_mul_cancel (two_ne_zero : (2 : ℝ) ≠ 0), ENNReal.rpow_two, ENNReal.rpow_one, evariance] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 c : ℝ hc : 0 < c ⊢ ↑↑ℙ {ω | c ≤ |X ω - ∫ (a : Ω), X a|} ≤ ENNReal.ofReal (variance X ℙ / c ^ 2) [PROOFSTEP] rw [ENNReal.ofReal_div_of_pos (sq_pos_of_ne_zero _ hc.ne.symm), hX.ofReal_variance_eq] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 c : ℝ hc : 0 < c ⊢ ↑↑ℙ {ω | c ≤ |X ω - ∫ (a : Ω), X a|} ≤ evariance X ℙ / ENNReal.ofReal (c ^ 2) [PROOFSTEP] convert @meas_ge_le_evariance_div_sq _ _ _ hX.1 c.toNNReal (by simp [hc]) using 1 [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 c : ℝ hc : 0 < c ⊢ Real.toNNReal c ≠ 0 [PROOFSTEP] simp [hc] [GOAL] case h.e'_3 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 c : ℝ hc : 0 < c ⊢ ↑↑ℙ {ω | c ≤ |X ω - ∫ (a : Ω), X a|} = ↑↑ℙ {ω | ↑(Real.toNNReal c) ≤ |X ω - ∫ (a : Ω), X a|} [PROOFSTEP] simp only [Real.coe_toNNReal', max_le_iff, abs_nonneg, and_true_iff] [GOAL] case h.e'_4 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 c : ℝ hc : 0 < c ⊢ evariance X ℙ / ENNReal.ofReal (c ^ 2) = evariance X ℙ / ↑(Real.toNNReal c ^ 2) [PROOFSTEP] rw [ENNReal.ofReal_pow hc.le, ENNReal.coe_pow] [GOAL] case h.e'_4 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsFiniteMeasure ℙ X : Ω → ℝ hX : Memℒp X 2 c : ℝ hc : 0 < c ⊢ evariance X ℙ / ENNReal.ofReal c ^ 2 = evariance X ℙ / ↑(Real.toNNReal c) ^ 2 [PROOFSTEP] rfl [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ variance (X + Y) ℙ = (∫ (a : Ω), (fun a => X a ^ 2 + Y a ^ 2 + 2 * X a * Y a) a) - (∫ (a : Ω), (X + Y) a) ^ 2 [PROOFSTEP] simp [variance_def' (hX.add hY), add_sq'] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ (∫ (a : Ω), (fun a => X a ^ 2 + Y a ^ 2 + 2 * X a * Y a) a) - (∫ (a : Ω), (X + Y) a) ^ 2 = (((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + 2 * ∫ (a : Ω), (X * Y) a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 [PROOFSTEP] simp only [Pi.add_apply, Pi.pow_apply, Pi.mul_apply, mul_assoc] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ (∫ (a : Ω), X a ^ 2 + Y a ^ 2 + 2 * (X a * Y a)) - (∫ (a : Ω), X a + Y a) ^ 2 = (((∫ (a : Ω), X a ^ 2) + ∫ (a : Ω), Y a ^ 2) + 2 * ∫ (a : Ω), X a * Y a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 [PROOFSTEP] rw [integral_add, integral_add, integral_add, integral_mul_left] [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun a => X a [PROOFSTEP] exact hX.integrable one_le_two [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun a => Y a [PROOFSTEP] exact hY.integrable one_le_two [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun a => X a ^ 2 [PROOFSTEP] exact hX.integrable_sq [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun a => Y a ^ 2 [PROOFSTEP] exact hY.integrable_sq [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun a => X a ^ 2 + Y a ^ 2 [PROOFSTEP] exact hX.integrable_sq.add hY.integrable_sq [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun a => 2 * (X a * Y a) [PROOFSTEP] apply Integrable.const_mul [GOAL] case hg.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ Integrable fun x => X x * Y x [PROOFSTEP] exact h.integrable_mul (hX.integrable one_le_two) (hY.integrable one_le_two) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ (((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + 2 * ∫ (a : Ω), (X * Y) a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 = ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + ↑2 * ((∫ (a : Ω), X a) * ∫ (a : Ω), Y a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 [PROOFSTEP] congr [GOAL] case e_a.e_a.e_a Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ ∫ (a : Ω), (X * Y) a = (∫ (a : Ω), X a) * ∫ (a : Ω), Y a [PROOFSTEP] exact h.integral_mul_of_integrable (hX.integrable one_le_two) (hY.integrable one_le_two) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ ((∫ (a : Ω), (X ^ 2) a) + ∫ (a : Ω), (Y ^ 2) a) + ↑2 * ((∫ (a : Ω), X a) * ∫ (a : Ω), Y a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 = variance X ℙ + variance Y ℙ [PROOFSTEP] simp only [variance_def', hX, hY, Pi.pow_apply] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X Y : Ω → ℝ hX : Memℒp X 2 hY : Memℒp Y 2 h : IndepFun X Y ⊢ ((∫ (a : Ω), X a ^ 2) + ∫ (a : Ω), Y a ^ 2) + ↑2 * ((∫ (a : Ω), X a) * ∫ (a : Ω), Y a) - ((∫ (a : Ω), X a) + ∫ (a : Ω), Y a) ^ 2 = (∫ (a : Ω), X a ^ 2) - (∫ (a : Ω), X a) ^ 2 + ((∫ (a : Ω), Y a ^ 2) - (∫ (a : Ω), Y a) ^ 2) [PROOFSTEP] ring [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s : Finset ι hs : ∀ (i : ι), i ∈ s → Memℒp (X i) 2 h : Set.Pairwise ↑s fun i j => IndepFun (X i) (X j) ⊢ variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ [PROOFSTEP] classical induction' s using Finset.induction_on with k s ks IH · simp only [Finset.sum_empty, variance_zero] rw [variance_def' (memℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks] simp only [add_sq'] calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2 = 𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i] - (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 := by rw [integral_add', integral_add', integral_add'] · exact Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) · apply integrable_finset_sum' _ fun i hi => ?_ exact Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) · exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _)) · apply Memℒp.integrable_sq exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi) · apply Integrable.add · exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _)) · apply Memℒp.integrable_sq exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi) · rw [mul_assoc] apply Integrable.const_mul _ (2 : ℝ) simp only [mul_sum, sum_apply, Pi.mul_apply] apply integrable_finset_sum _ fun i hi => ?_ apply IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))) apply h (mem_insert_self _ _) (mem_insert_of_mem hi) exact fun hki => ks (hki.symm ▸ hi) _ = Var[X k] + Var[∑ i in s, X i] + (𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) := by rw [variance_def' (hs _ (mem_insert_self _ _)), variance_def' (memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi))] ring _ = Var[X k] + Var[∑ i in s, X i] := by simp only [mul_assoc, integral_mul_left, Pi.mul_apply, Pi.one_apply, sum_apply, add_right_eq_self, mul_sum] rw [integral_finset_sum s fun i hi => ?_]; swap · apply Integrable.const_mul _ (2 : ℝ) apply IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))) apply h (mem_insert_self _ _) (mem_insert_of_mem hi) exact fun hki => ks (hki.symm ▸ hi) rw [integral_finset_sum s fun i hi => Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)), mul_sum, mul_sum, ← sum_sub_distrib] apply Finset.sum_eq_zero fun i hi => ?_ have : ∀ (a : Ω), @OfNat.ofNat (Ω → ℝ) 2 instOfNat a = (2 : ℝ) := fun a => rfl conv_lhs => enter [1, 2, a]; rw [this] rw [integral_mul_left, IndepFun.integral_mul', sub_self] · apply h (mem_insert_self _ _) (mem_insert_of_mem hi) exact fun hki => ks (hki.symm ▸ hi) · exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_self _ _)) · exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_of_mem hi)) _ = Var[X k] + ∑ i in s, Var[X i] := by rw [IH (fun i hi => hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, Set.subset_insert]))] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s : Finset ι hs : ∀ (i : ι), i ∈ s → Memℒp (X i) 2 h : Set.Pairwise ↑s fun i j => IndepFun (X i) (X j) ⊢ variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ [PROOFSTEP] induction' s using Finset.induction_on with k s ks IH [GOAL] case empty Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s : Finset ι hs✝ : ∀ (i : ι), i ∈ s → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s fun i j => IndepFun (X i) (X j) hs : ∀ (i : ι), i ∈ ∅ → Memℒp (X i) 2 h : Set.Pairwise ↑∅ fun i j => IndepFun (X i) (X j) ⊢ variance (∑ i in ∅, X i) ℙ = ∑ i in ∅, variance (X i) ℙ [PROOFSTEP] simp only [Finset.sum_empty, variance_zero] [GOAL] case insert Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ variance (∑ i in insert k s, X i) ℙ = ∑ i in insert k s, variance (X i) ℙ [PROOFSTEP] rw [variance_def' (memℒp_finset_sum' _ hs), sum_insert ks, sum_insert ks] [GOAL] case insert Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (∫ (a : Ω), ((X k + ∑ x in s, X x) ^ 2) a) - (∫ (a : Ω), (X k + ∑ x in s, X x) a) ^ 2 = variance (X k) ℙ + ∑ x in s, variance (X x) ℙ [PROOFSTEP] simp only [add_sq'] [GOAL] case insert Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (∫ (a : Ω), (X k ^ 2 + (∑ x in s, X x) ^ 2 + 2 * X k * ∑ x in s, X x) a) - (∫ (a : Ω), (X k + ∑ x in s, X x) a) ^ 2 = variance (X k) ℙ + ∑ x in s, variance (X x) ℙ [PROOFSTEP] calc 𝔼[X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i] - 𝔼[X k + ∑ i in s, X i] ^ 2 = 𝔼[X k ^ 2] + 𝔼[(∑ i in s, X i) ^ 2] + 𝔼[2 * X k * ∑ i in s, X i] - (𝔼[X k] + 𝔼[∑ i in s, X i]) ^ 2 := by rw [integral_add', integral_add', integral_add'] · exact Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) · apply integrable_finset_sum' _ fun i hi => ?_ exact Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) · exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _)) · apply Memℒp.integrable_sq exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi) · apply Integrable.add · exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _)) · apply Memℒp.integrable_sq exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi) · rw [mul_assoc] apply Integrable.const_mul _ (2 : ℝ) simp only [mul_sum, sum_apply, Pi.mul_apply] apply integrable_finset_sum _ fun i hi => ?_ apply IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))) apply h (mem_insert_self _ _) (mem_insert_of_mem hi) exact fun hki => ks (hki.symm ▸ hi) _ = Var[X k] + Var[∑ i in s, X i] + (𝔼[2 * X k * ∑ i in s, X i] - 2 * 𝔼[X k] * 𝔼[∑ i in s, X i]) := by rw [variance_def' (hs _ (mem_insert_self _ _)), variance_def' (memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi))] ring _ = Var[X k] + Var[∑ i in s, X i] := by simp only [mul_assoc, integral_mul_left, Pi.mul_apply, Pi.one_apply, sum_apply, add_right_eq_self, mul_sum] rw [integral_finset_sum s fun i hi => ?_]; swap · apply Integrable.const_mul _ (2 : ℝ) apply IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))) apply h (mem_insert_self _ _) (mem_insert_of_mem hi) exact fun hki => ks (hki.symm ▸ hi) rw [integral_finset_sum s fun i hi => Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)), mul_sum, mul_sum, ← sum_sub_distrib] apply Finset.sum_eq_zero fun i hi => ?_ have : ∀ (a : Ω), @OfNat.ofNat (Ω → ℝ) 2 instOfNat a = (2 : ℝ) := fun a => rfl conv_lhs => enter [1, 2, a]; rw [this] rw [integral_mul_left, IndepFun.integral_mul', sub_self] · apply h (mem_insert_self _ _) (mem_insert_of_mem hi) exact fun hki => ks (hki.symm ▸ hi) · exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_self _ _)) · exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_of_mem hi)) _ = Var[X k] + ∑ i in s, Var[X i] := by rw [IH (fun i hi => hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, Set.subset_insert]))] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (∫ (a : Ω), (X k ^ 2 + (∑ i in s, X i) ^ 2 + 2 * X k * ∑ i in s, X i) a) - (∫ (a : Ω), (X k + ∑ i in s, X i) a) ^ 2 = (((∫ (a : Ω), (X k ^ 2) a) + ∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) + ∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - ((∫ (a : Ω), X k a) + ∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2 [PROOFSTEP] rw [integral_add', integral_add', integral_add'] [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (X k) [PROOFSTEP] exact Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _)) [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (∑ i in s, X i) [PROOFSTEP] apply integrable_finset_sum' _ fun i hi => ?_ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ Integrable (X i) [PROOFSTEP] exact Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)) [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (X k ^ 2) [PROOFSTEP] exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _)) [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable ((∑ i in s, X i) ^ 2) [PROOFSTEP] apply Memℒp.integrable_sq [GOAL] case hg.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Memℒp (fun x => Finset.sum s (fun i => X i) x) 2 [PROOFSTEP] exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi) [GOAL] case hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (X k ^ 2 + (∑ i in s, X i) ^ 2) [PROOFSTEP] apply Integrable.add [GOAL] case hf.hf Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (X k ^ 2) [PROOFSTEP] exact Memℒp.integrable_sq (hs _ (mem_insert_self _ _)) [GOAL] case hf.hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable ((∑ i in s, X i) ^ 2) [PROOFSTEP] apply Memℒp.integrable_sq [GOAL] case hf.hg.h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Memℒp (fun x => Finset.sum s (fun i => X i) x) 2 [PROOFSTEP] exact memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi) [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (2 * X k * ∑ i in s, X i) [PROOFSTEP] rw [mul_assoc] [GOAL] case hg Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable (2 * (X k * ∑ i in s, X i)) [PROOFSTEP] apply Integrable.const_mul _ (2 : ℝ) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable fun x => (X k * ∑ i in s, X i) x [PROOFSTEP] simp only [mul_sum, sum_apply, Pi.mul_apply] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ Integrable fun x => ∑ x_1 in s, X k x * X x_1 x [PROOFSTEP] apply integrable_finset_sum _ fun i hi => ?_ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ Integrable fun a => X k a * X i a [PROOFSTEP] apply IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ IndepFun (X k) (X i) [PROOFSTEP] apply h (mem_insert_self _ _) (mem_insert_of_mem hi) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ k ≠ i [PROOFSTEP] exact fun hki => ks (hki.symm ▸ hi) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (((∫ (a : Ω), (X k ^ 2) a) + ∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) + ∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - ((∫ (a : Ω), X k a) + ∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2 = variance (X k) ℙ + variance (∑ i in s, X i) ℙ + ((∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - (2 * ∫ (a : Ω), X k a) * ∫ (a : Ω), Finset.sum s (fun i => X i) a) [PROOFSTEP] rw [variance_def' (hs _ (mem_insert_self _ _)), variance_def' (memℒp_finset_sum' _ fun i hi => hs _ (mem_insert_of_mem hi))] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (((∫ (a : Ω), (X k ^ 2) a) + ∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) + ∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - ((∫ (a : Ω), X k a) + ∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2 = (∫ (a : Ω), (X k ^ 2) a) - (∫ (a : Ω), X k a) ^ 2 + ((∫ (a : Ω), ((∑ i in s, X i) ^ 2) a) - (∫ (a : Ω), Finset.sum s (fun i => X i) a) ^ 2) + ((∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - (2 * ∫ (a : Ω), X k a) * ∫ (a : Ω), Finset.sum s (fun i => X i) a) [PROOFSTEP] ring [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ variance (X k) ℙ + variance (∑ i in s, X i) ℙ + ((∫ (a : Ω), (2 * X k * ∑ i in s, X i) a) - (2 * ∫ (a : Ω), X k a) * ∫ (a : Ω), Finset.sum s (fun i => X i) a) = variance (X k) ℙ + variance (∑ i in s, X i) ℙ [PROOFSTEP] simp only [mul_assoc, integral_mul_left, Pi.mul_apply, Pi.one_apply, sum_apply, add_right_eq_self, mul_sum] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (∫ (a : Ω), ∑ x in s, OfNat.ofNat 2 a * (X k a * X x a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), ∑ c in s, X c a) = 0 [PROOFSTEP] rw [integral_finset_sum s fun i hi => ?_] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (∑ i in s, ∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), ∑ c in s, X c a) = 0 Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ Integrable fun a => OfNat.ofNat 2 a * (X k a * X i a) [PROOFSTEP] swap [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ Integrable fun a => OfNat.ofNat 2 a * (X k a * X i a) [PROOFSTEP] apply Integrable.const_mul _ (2 : ℝ) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ Integrable fun x => X k x * X i x [PROOFSTEP] apply IndepFun.integrable_mul _ (Memℒp.integrable one_le_two (hs _ (mem_insert_self _ _))) (Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi))) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ IndepFun (X k) (X i) [PROOFSTEP] apply h (mem_insert_self _ _) (mem_insert_of_mem hi) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ k ≠ i [PROOFSTEP] exact fun hki => ks (hki.symm ▸ hi) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ (∑ i in s, ∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), ∑ c in s, X c a) = 0 [PROOFSTEP] rw [integral_finset_sum s fun i hi => Memℒp.integrable one_le_two (hs _ (mem_insert_of_mem hi)), mul_sum, mul_sum, ← sum_sub_distrib] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ ∑ x in s, ((∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X x a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X x a)) = 0 [PROOFSTEP] apply Finset.sum_eq_zero fun i hi => ?_ [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s ⊢ (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) = 0 [PROOFSTEP] have : ∀ (a : Ω), @OfNat.ofNat (Ω → ℝ) 2 instOfNat a = (2 : ℝ) := fun a => rfl [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 ⊢ (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) = 0 [PROOFSTEP] conv_lhs => enter [1, 2, a]; rw [this] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 | (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) [PROOFSTEP] enter [1, 2, a]; rw [this] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 | (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) [PROOFSTEP] enter [1, 2, a]; rw [this] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 | (∫ (a : Ω), OfNat.ofNat 2 a * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) [PROOFSTEP] enter [1, 2, a] [GOAL] case h Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 a : Ω | OfNat.ofNat 2 a * (X k a * X i a) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 ⊢ (∫ (a : Ω), 2 * (X k a * X i a)) - 2 * ((∫ (a : Ω), X k a) * ∫ (a : Ω), X i a) = 0 [PROOFSTEP] rw [integral_mul_left, IndepFun.integral_mul', sub_self] [GOAL] case hXY Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 ⊢ IndepFun (fun a => X k a) fun a => X i a [PROOFSTEP] apply h (mem_insert_self _ _) (mem_insert_of_mem hi) [GOAL] case hXY Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 ⊢ k ≠ i [PROOFSTEP] exact fun hki => ks (hki.symm ▸ hi) [GOAL] case hX Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 ⊢ AEStronglyMeasurable (fun a => X k a) ℙ [PROOFSTEP] exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_self _ _)) [GOAL] case hY Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) i : ι hi : i ∈ s this : ∀ (a : Ω), OfNat.ofNat 2 a = 2 ⊢ AEStronglyMeasurable (fun a => X i a) ℙ [PROOFSTEP] exact Memℒp.aestronglyMeasurable (hs _ (mem_insert_of_mem hi)) [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ variance (X k) ℙ + variance (∑ i in s, X i) ℙ = variance (X k) ℙ + ∑ i in s, variance (X i) ℙ [PROOFSTEP] rw [IH (fun i hi => hs i (mem_insert_of_mem hi)) (h.mono (by simp only [coe_insert, Set.subset_insert]))] [GOAL] Ω : Type u_1 m : MeasurableSpace Ω X✝ : Ω → ℝ μ : Measure Ω inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ ι : Type u_2 X : ι → Ω → ℝ s✝ : Finset ι hs✝ : ∀ (i : ι), i ∈ s✝ → Memℒp (X i) 2 h✝ : Set.Pairwise ↑s✝ fun i j => IndepFun (X i) (X j) k : ι s : Finset ι ks : ¬k ∈ s IH : (∀ (i : ι), i ∈ s → Memℒp (X i) 2) → (Set.Pairwise ↑s fun i j => IndepFun (X i) (X j)) → variance (∑ i in s, X i) ℙ = ∑ i in s, variance (X i) ℙ hs : ∀ (i : ι), i ∈ insert k s → Memℒp (X i) 2 h : Set.Pairwise ↑(insert k s) fun i j => IndepFun (X i) (X j) ⊢ ↑s ⊆ ↑(insert k s) [PROOFSTEP] simp only [coe_insert, Set.subset_insert]
{"mathlib_filename": "Mathlib.Probability.Variance", "llama_tokens": 48928}
[GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ ⊢ AEStronglyMeasurable (ProbabilityTheory.truncation f A) μ [PROOFSTEP] apply AEStronglyMeasurable.comp_aemeasurable _ hf.aemeasurable [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ ⊢ AEStronglyMeasurable (indicator (Set.Ioc (-A) A) id) (Measure.map f μ) [PROOFSTEP] exact (stronglyMeasurable_id.indicator measurableSet_Ioc).aestronglyMeasurable [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α ⊢ |truncation f A x| ≤ |A| [PROOFSTEP] simp only [truncation, Set.indicator, Set.mem_Icc, id.def, Function.comp_apply] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α ⊢ |if f x ∈ Set.Ioc (-A) A then f x else 0| ≤ |A| [PROOFSTEP] split_ifs with h [GOAL] case pos α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h : f x ∈ Set.Ioc (-A) A ⊢ |f x| ≤ |A| [PROOFSTEP] exact abs_le_abs h.2 (neg_le.2 h.1.le) [GOAL] case neg α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h : ¬f x ∈ Set.Ioc (-A) A ⊢ |0| ≤ |A| [PROOFSTEP] simp [abs_nonneg] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ ⊢ truncation f 0 = 0 [PROOFSTEP] simp [truncation] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ ⊢ (fun x => 0) ∘ f = 0 [PROOFSTEP] rfl [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α ⊢ |truncation f A x| ≤ |f x| [PROOFSTEP] simp only [truncation, indicator, Set.mem_Icc, id.def, Function.comp_apply] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α ⊢ |if f x ∈ Set.Ioc (-A) A then f x else 0| ≤ |f x| [PROOFSTEP] split_ifs [GOAL] case pos α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h✝ : f x ∈ Set.Ioc (-A) A ⊢ |f x| ≤ |f x| [PROOFSTEP] exact le_rfl [GOAL] case neg α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h✝ : ¬f x ∈ Set.Ioc (-A) A ⊢ |0| ≤ |f x| [PROOFSTEP] simp [abs_nonneg] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h : |f x| < A ⊢ truncation f A x = f x [PROOFSTEP] simp only [truncation, indicator, Set.mem_Icc, id.def, Function.comp_apply, ite_eq_left_iff] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h : |f x| < A ⊢ ¬f x ∈ Set.Ioc (-A) A → 0 = f x [PROOFSTEP] intro H [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h : |f x| < A H : ¬f x ∈ Set.Ioc (-A) A ⊢ 0 = f x [PROOFSTEP] apply H.elim [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ x : α h : |f x| < A H : ¬f x ∈ Set.Ioc (-A) A ⊢ f x ∈ Set.Ioc (-A) A [PROOFSTEP] simp [(abs_lt.1 h).1, (abs_lt.1 h).2.le] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x ⊢ truncation f A = indicator (Set.Ioc 0 A) id ∘ f [PROOFSTEP] ext x [GOAL] case h α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α ⊢ truncation f A x = (indicator (Set.Ioc 0 A) id ∘ f) x [PROOFSTEP] rcases(h x).lt_or_eq with (hx | hx) [GOAL] case h.inl α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 < f x ⊢ truncation f A x = (indicator (Set.Ioc 0 A) id ∘ f) x [PROOFSTEP] simp only [truncation, indicator, hx, Set.mem_Ioc, id.def, Function.comp_apply, true_and_iff] [GOAL] case h.inl α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 < f x ⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0 [PROOFSTEP] by_cases h'x : f x ≤ A [GOAL] case pos α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 < f x h'x : f x ≤ A ⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0 [PROOFSTEP] have : -A < f x := by linarith [h x] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 < f x h'x : f x ≤ A ⊢ -A < f x [PROOFSTEP] linarith [h x] [GOAL] case pos α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 < f x h'x : f x ≤ A this : -A < f x ⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0 [PROOFSTEP] simp only [this, true_and_iff] [GOAL] case neg α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 < f x h'x : ¬f x ≤ A ⊢ (if -A < f x ∧ f x ≤ A then f x else 0) = if f x ≤ A then f x else 0 [PROOFSTEP] simp only [h'x, and_false_iff] [GOAL] case h.inr α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ A : ℝ h : ∀ (x : α), 0 ≤ f x x : α hx : 0 = f x ⊢ truncation f A x = (indicator (Set.Ioc 0 A) id ∘ f) x [PROOFSTEP] simp only [truncation, indicator, hx, id.def, Function.comp_apply, ite_self] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ inst✝ : IsFiniteMeasure μ hf : AEStronglyMeasurable f μ A : ℝ ⊢ Integrable (truncation f A) [PROOFSTEP] rw [← memℒp_one_iff_integrable] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ inst✝ : IsFiniteMeasure μ hf : AEStronglyMeasurable f μ A : ℝ ⊢ Memℒp (truncation f A) 1 [PROOFSTEP] exact hf.memℒp_truncation [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A n : ℕ hn : n ≠ 0 ⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in -A..A, y ^ n ∂Measure.map f μ [PROOFSTEP] have M : MeasurableSet (Set.Ioc (-A) A) := measurableSet_Ioc [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A n : ℕ hn : n ≠ 0 M : MeasurableSet (Set.Ioc (-A) A) ⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in -A..A, y ^ n ∂Measure.map f μ [PROOFSTEP] change ∫ x, (fun z => indicator (Set.Ioc (-A) A) id z ^ n) (f x) ∂μ = _ [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A n : ℕ hn : n ≠ 0 M : MeasurableSet (Set.Ioc (-A) A) ⊢ ∫ (x : α), (fun z => indicator (Set.Ioc (-A) A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in -A..A, y ^ n ∂Measure.map f μ [PROOFSTEP] rw [← integral_map (f := fun z => _ ^ n) hf.aemeasurable, intervalIntegral.integral_of_le, ← integral_indicator M] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A n : ℕ hn : n ≠ 0 M : MeasurableSet (Set.Ioc (-A) A) ⊢ ∫ (y : ℝ), indicator (Set.Ioc (-A) A) id y ^ n ∂Measure.map f μ = ∫ (x : ℝ), indicator (Set.Ioc (-A) A) (fun x => x ^ n) x ∂Measure.map f μ [PROOFSTEP] simp only [indicator, zero_pow' _ hn, id.def, ite_pow] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A n : ℕ hn : n ≠ 0 M : MeasurableSet (Set.Ioc (-A) A) ⊢ -A ≤ A [PROOFSTEP] linarith [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A n : ℕ hn : n ≠ 0 M : MeasurableSet (Set.Ioc (-A) A) ⊢ AEStronglyMeasurable (fun z => indicator (Set.Ioc (-A) A) id z ^ n) (Measure.map f μ) [PROOFSTEP] exact ((measurable_id.indicator M).pow_const n).aestronglyMeasurable [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f ⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] have M : MeasurableSet (Set.Ioc 0 A) := measurableSet_Ioc [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) ⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] have M' : MeasurableSet (Set.Ioc A 0) := measurableSet_Ioc [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) ⊢ ∫ (x : α), truncation f A x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] rw [truncation_eq_of_nonneg h'f] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) ⊢ ∫ (x : α), (indicator (Set.Ioc 0 A) id ∘ fun x => f x) x ^ n ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] change ∫ x, (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = _ [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) ⊢ ∫ (x : α), (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] rcases le_or_lt 0 A with (hA | hA) [GOAL] case inl α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : 0 ≤ A ⊢ ∫ (x : α), (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] rw [← integral_map (f := fun z => _ ^ n) hf.aemeasurable, intervalIntegral.integral_of_le hA, ← integral_indicator M] [GOAL] case inl α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : 0 ≤ A ⊢ ∫ (y : ℝ), indicator (Set.Ioc 0 A) id y ^ n ∂Measure.map f μ = ∫ (x : ℝ), indicator (Set.Ioc 0 A) (fun x => x ^ n) x ∂Measure.map f μ [PROOFSTEP] simp only [indicator, zero_pow' _ hn, id.def, ite_pow] [GOAL] case inl α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : 0 ≤ A ⊢ AEStronglyMeasurable (fun z => indicator (Set.Ioc 0 A) id z ^ n) (Measure.map f μ) [PROOFSTEP] exact ((measurable_id.indicator M).pow_const n).aestronglyMeasurable [GOAL] case inr α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 ⊢ ∫ (x : α), (fun z => indicator (Set.Ioc 0 A) id z ^ n) (f x) ∂μ = ∫ (y : ℝ) in 0 ..A, y ^ n ∂Measure.map f μ [PROOFSTEP] rw [← integral_map (f := fun z => _ ^ n) hf.aemeasurable, intervalIntegral.integral_of_ge hA.le, ← integral_indicator M'] [GOAL] case inr α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 ⊢ ∫ (y : ℝ), indicator (Set.Ioc 0 A) id y ^ n ∂Measure.map f μ = -∫ (x : ℝ), indicator (Set.Ioc A 0) (fun x => x ^ n) x ∂Measure.map f μ [PROOFSTEP] simp only [Set.Ioc_eq_empty_of_le hA.le, zero_pow' _ hn, Set.indicator_empty, integral_zero, zero_eq_neg] [GOAL] case inr α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 ⊢ ∫ (x : ℝ), indicator (Set.Ioc A 0) (fun x => x ^ n) x ∂Measure.map f μ = 0 [PROOFSTEP] apply integral_eq_zero_of_ae [GOAL] case inr.hf α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 ⊢ (fun a => indicator (Set.Ioc A 0) (fun x => x ^ n) a) =ᵐ[Measure.map f μ] 0 [PROOFSTEP] have : ∀ᵐ x ∂Measure.map f μ, (0 : ℝ) ≤ x := (ae_map_iff hf.aemeasurable measurableSet_Ici).2 (eventually_of_forall h'f) [GOAL] case inr.hf α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x ⊢ (fun a => indicator (Set.Ioc A 0) (fun x => x ^ n) a) =ᵐ[Measure.map f μ] 0 [PROOFSTEP] filter_upwards [this] with x hx [GOAL] case h α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x x : ℝ hx : 0 ≤ x ⊢ indicator (Set.Ioc A 0) (fun x => x ^ n) x = OfNat.ofNat 0 x [PROOFSTEP] simp only [indicator, Set.mem_Ioc, Pi.zero_apply, ite_eq_right_iff, and_imp] [GOAL] case h α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x x : ℝ hx : 0 ≤ x ⊢ A < x → x ≤ 0 → x ^ n = 0 [PROOFSTEP] intro _ h''x [GOAL] case h α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x x : ℝ hx : 0 ≤ x a✝ : A < x h''x : x ≤ 0 ⊢ x ^ n = 0 [PROOFSTEP] have : x = 0 := by linarith [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 this : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x x : ℝ hx : 0 ≤ x a✝ : A < x h''x : x ≤ 0 ⊢ x = 0 [PROOFSTEP] linarith [GOAL] case h α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 this✝ : ∀ᵐ (x : ℝ) ∂Measure.map f μ, 0 ≤ x x : ℝ hx : 0 ≤ x a✝ : A < x h''x : x ≤ 0 this : x = 0 ⊢ x ^ n = 0 [PROOFSTEP] simp [this, zero_pow' _ hn] [GOAL] case inr α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ n : ℕ hn : n ≠ 0 h'f : 0 ≤ f M : MeasurableSet (Set.Ioc 0 A) M' : MeasurableSet (Set.Ioc A 0) hA : A < 0 ⊢ AEStronglyMeasurable (fun z => indicator (Set.Ioc 0 A) id z ^ n) (Measure.map f μ) [PROOFSTEP] exact ((measurable_id.indicator M).pow_const n).aestronglyMeasurable [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ hA : 0 ≤ A ⊢ ∫ (x : α), truncation f A x ∂μ = ∫ (y : ℝ) in -A..A, y ∂Measure.map f μ [PROOFSTEP] simpa using moment_truncation_eq_intervalIntegral hf hA one_ne_zero [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : AEStronglyMeasurable f μ A : ℝ h'f : 0 ≤ f ⊢ ∫ (x : α), truncation f A x ∂μ = ∫ (y : ℝ) in 0 ..A, y ∂Measure.map f μ [PROOFSTEP] simpa using moment_truncation_eq_intervalIntegral_of_nonneg hf one_ne_zero h'f [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f h'f : 0 ≤ f A : ℝ ⊢ ∫ (x : α), truncation f A x ∂μ ≤ ∫ (x : α), f x ∂μ [PROOFSTEP] apply integral_mono_of_nonneg (eventually_of_forall fun x => ?_) hf (eventually_of_forall fun x => ?_) [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f h'f : 0 ≤ f A : ℝ x : α ⊢ OfNat.ofNat 0 x ≤ truncation f A x [PROOFSTEP] exact truncation_nonneg _ (h'f x) [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f : α → ℝ hf : Integrable f h'f : 0 ≤ f A : ℝ x : α ⊢ truncation f A x ≤ f x [PROOFSTEP] calc truncation f A x ≤ |truncation f A x| := le_abs_self _ _ ≤ |f x| := (abs_truncation_le_abs_self _ _ _) _ = f x := abs_of_nonneg (h'f x) [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f ⊢ Tendsto (fun A => ∫ (x : α), truncation f A x ∂μ) atTop (𝓝 (∫ (x : α), f x ∂μ)) [PROOFSTEP] refine' tendsto_integral_filter_of_dominated_convergence (fun x => abs (f x)) _ _ _ _ [GOAL] case refine'_1 α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f ⊢ ∀ᶠ (n : ℝ) in atTop, AEStronglyMeasurable (fun x => truncation f n x) μ [PROOFSTEP] exact eventually_of_forall fun A => hf.aestronglyMeasurable.truncation [GOAL] case refine'_2 α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f ⊢ ∀ᶠ (n : ℝ) in atTop, ∀ᵐ (a : α) ∂μ, ‖truncation f n a‖ ≤ (fun x => |f x|) a [PROOFSTEP] apply eventually_of_forall fun A => ?_ [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f A : ℝ ⊢ ∀ᵐ (a : α) ∂μ, ‖truncation f A a‖ ≤ (fun x => |f x|) a [PROOFSTEP] apply eventually_of_forall fun x => ?_ [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f A : ℝ x : α ⊢ ‖truncation f A x‖ ≤ (fun x => |f x|) x [PROOFSTEP] rw [Real.norm_eq_abs] [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f A : ℝ x : α ⊢ |truncation f A x| ≤ (fun x => |f x|) x [PROOFSTEP] exact abs_truncation_le_abs_self _ _ _ [GOAL] case refine'_3 α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f ⊢ Integrable fun x => |f x| [PROOFSTEP] apply hf.abs [GOAL] case refine'_4 α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f ⊢ ∀ᵐ (a : α) ∂μ, Tendsto (fun n => truncation f n a) atTop (𝓝 (f a)) [PROOFSTEP] apply eventually_of_forall fun x => ?_ [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f x : α ⊢ Tendsto (fun n => truncation f n x) atTop (𝓝 (f x)) [PROOFSTEP] apply tendsto_const_nhds.congr' _ [GOAL] α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f x : α ⊢ (fun x_1 => f x) =ᶠ[atTop] fun n => truncation f n x [PROOFSTEP] filter_upwards [Ioi_mem_atTop (abs (f x))] with A hA [GOAL] case h α : Type u_1 m : MeasurableSpace α μ : Measure α f✝ f : α → ℝ hf : Integrable f x : α A : ℝ hA : A ∈ Set.Ioi |f x| ⊢ f x = truncation f A x [PROOFSTEP] exact (truncation_eq_self hA).symm [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] let ρ : Measure ℝ := Measure.map X ℙ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] haveI : IsProbabilityMeasure ρ := isProbabilityMeasure_map hint.aemeasurable [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] have A : ∑ j in range K, ∫ _ in j..N, (1 : ℝ) ∂ρ ≤ 𝔼[X] + 1 := calc ∑ j in range K, ∫ _ in j..N, (1 : ℝ) ∂ρ = ∑ j in range K, ∑ i in Ico j N, ∫ _ in i..(i + 1 : ℕ), (1 : ℝ) ∂ρ := by apply sum_congr rfl fun j hj => ?_ rw [intervalIntegral.sum_integral_adjacent_intervals_Ico ((mem_range.1 hj).le.trans hKN)] intro k _ exact continuous_const.intervalIntegrable _ _ _ = ∑ i in range N, ∑ j in range (min (i + 1) K), ∫ _ in i..(i + 1 : ℕ), (1 : ℝ) ∂ρ := by simp_rw [sum_sigma'] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range, mem_Ico] at hij simp only [hij, Nat.lt_succ_iff.2 hij.2.1, mem_sigma, mem_range, lt_min_iff, and_self_iff] · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range, lt_min_iff] at hij simp only [hij, Nat.lt_succ_iff.1 hij.2.1, mem_sigma, mem_range, mem_Ico, and_self_iff] · rintro ⟨i, j⟩ hij; rfl · rintro ⟨i, j⟩ hij; rfl _ ≤ ∑ i in range N, (i + 1) * ∫ _ in i..(i + 1 : ℕ), (1 : ℝ) ∂ρ := by apply sum_le_sum fun i _ => ?_ simp only [Nat.cast_add, Nat.cast_one, sum_const, card_range, nsmul_eq_mul, Nat.cast_min] refine' mul_le_mul_of_nonneg_right (min_le_left _ _) _ apply intervalIntegral.integral_nonneg · simp only [le_add_iff_nonneg_right, zero_le_one] · simp only [zero_le_one, imp_true_iff] _ ≤ ∑ i in range N, ∫ x in i..(i + 1 : ℕ), x + 1 ∂ρ := by apply sum_le_sum fun i _ => ?_ have I : (i : ℝ) ≤ (i + 1 : ℕ) := by simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one] simp_rw [intervalIntegral.integral_of_le I, ← integral_mul_left] apply set_integral_mono_on · exact continuous_const.integrableOn_Ioc · exact (continuous_id.add continuous_const).integrableOn_Ioc · exact measurableSet_Ioc · intro x hx simp only [Nat.cast_add, Nat.cast_one, Set.mem_Ioc] at hx simp [hx.1.le] _ = ∫ x in (0)..N, x + 1 ∂ρ := by rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_] · norm_cast · exact (continuous_id.add continuous_const).intervalIntegrable _ _ _ = ∫ x in (0)..N, x ∂ρ + ∫ x in (0)..N, 1 ∂ρ := by rw [intervalIntegral.integral_add] · exact continuous_id.intervalIntegrable _ _ · exact continuous_const.intervalIntegrable _ _ _ = 𝔼[truncation X N] + ∫ x in (0)..N, 1 ∂ρ := by rw [integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg] _ ≤ 𝔼[X] + ∫ x in (0)..N, 1 ∂ρ := (add_le_add_right (integral_truncation_le_integral_of_nonneg hint hnonneg) _) _ ≤ 𝔼[X] + 1 := by refine' add_le_add le_rfl _ rw [intervalIntegral.integral_of_le (Nat.cast_nonneg _)] simp only [integral_const, Measure.restrict_apply', measurableSet_Ioc, Set.univ_inter, Algebra.id.smul_eq_mul, mul_one] rw [← ENNReal.one_toReal] exact ENNReal.toReal_mono ENNReal.one_ne_top prob_le_one [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ = ∑ j in range K, ∑ i in Ico j N, ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ [PROOFSTEP] apply sum_congr rfl fun j hj => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ j : ℕ hj : j ∈ range K ⊢ ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ = ∑ i in Ico j N, ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ [PROOFSTEP] rw [intervalIntegral.sum_integral_adjacent_intervals_Ico ((mem_range.1 hj).le.trans hKN)] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ j : ℕ hj : j ∈ range K ⊢ ∀ (k : ℕ), k ∈ Set.Ico j N → IntervalIntegrable (fun x => 1) ρ ↑k ↑(k + 1) [PROOFSTEP] intro k _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ j : ℕ hj : j ∈ range K k : ℕ a✝ : k ∈ Set.Ico j N ⊢ IntervalIntegrable (fun x => 1) ρ ↑k ↑(k + 1) [PROOFSTEP] exact continuous_const.intervalIntegrable _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ j in range K, ∑ i in Ico j N, ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ = ∑ i in range N, ∑ j in range (min (i + 1) K), ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ [PROOFSTEP] simp_rw [sum_sigma'] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ x in Finset.sigma (range K) fun a => Ico a N, ∫ (x : ℝ) in ↑x.snd..↑(x.snd + 1), 1 ∂Measure.map X ℙ = ∑ x in Finset.sigma (range N) fun a => range (min (a + 1) K), ∫ (x : ℝ) in ↑x.fst..↑(x.fst + 1), 1 ∂Measure.map X ℙ [PROOFSTEP] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ [GOAL] case refine'_1 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ico a N), (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range (min (a + 1) K) [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ico a N ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range N) fun a => range (min (a + 1) K) [PROOFSTEP] simp only [mem_sigma, mem_range, mem_Ico] at hij [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ico a N hij : i < K ∧ i ≤ j ∧ j < N ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range N) fun a => range (min (a + 1) K) [PROOFSTEP] simp only [hij, Nat.lt_succ_iff.2 hij.2.1, mem_sigma, mem_range, lt_min_iff, and_self_iff] [GOAL] case refine'_2 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)), (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ico a N [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_2.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range (min (a + 1) K) ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => Ico a N [PROOFSTEP] simp only [mem_sigma, mem_range, lt_min_iff] at hij [GOAL] case refine'_2.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range (min (a + 1) K) hij : i < N ∧ j < i + 1 ∧ j < K ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range K) fun a => Ico a N [PROOFSTEP] simp only [hij, Nat.lt_succ_iff.1 hij.2.1, mem_sigma, mem_range, mem_Ico, and_self_iff] [GOAL] case refine'_3 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ico a N), (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha) (_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)) = a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_3.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ico a N ⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij) (_ : (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)) = { fst := i, snd := j } [PROOFSTEP] rfl [GOAL] case refine'_4 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range (min (a + 1) K)), (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha) (_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ico a N) = a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_4.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range (min (a + 1) K) ⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij) (_ : (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => Ico a N) = { fst := i, snd := j } [PROOFSTEP] rfl [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ i in range N, ∑ j in range (min (i + 1) K), ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∑ i in range N, (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ [PROOFSTEP] apply sum_le_sum fun i _ => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ ∑ j in range (min (i + 1) K), ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ [PROOFSTEP] simp only [Nat.cast_add, Nat.cast_one, sum_const, card_range, nsmul_eq_mul, Nat.cast_min] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ min (↑i + 1) ↑K * ∫ (x : ℝ) in ↑i..↑i + 1, 1 ∂Measure.map X ℙ ≤ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑i + 1, 1 ∂Measure.map X ℙ [PROOFSTEP] refine' mul_le_mul_of_nonneg_right (min_le_left _ _) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ 0 ≤ ∫ (x : ℝ) in ↑i..↑i + 1, 1 ∂Measure.map X ℙ [PROOFSTEP] apply intervalIntegral.integral_nonneg [GOAL] case hab Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ ↑i ≤ ↑i + 1 [PROOFSTEP] simp only [le_add_iff_nonneg_right, zero_le_one] [GOAL] case hf Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ ∀ (u : ℝ), u ∈ Set.Icc (↑i) (↑i + 1) → 0 ≤ 1 [PROOFSTEP] simp only [zero_le_one, imp_true_iff] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ i in range N, (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∑ i in range N, ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ [PROOFSTEP] apply sum_le_sum fun i _ => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ [PROOFSTEP] have I : (i : ℝ) ≤ (i + 1 : ℕ) := by simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N ⊢ ↑i ≤ ↑(i + 1) [PROOFSTEP] simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ (↑i + 1) * ∫ (x : ℝ) in ↑i..↑(i + 1), 1 ∂ρ ≤ ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ [PROOFSTEP] simp_rw [intervalIntegral.integral_of_le I, ← integral_mul_left] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ ∫ (a : ℝ) in Set.Ioc ↑i ↑(i + 1), (↑i + 1) * 1 ∂Measure.map X ℙ ≤ ∫ (x : ℝ) in Set.Ioc ↑i ↑(i + 1), x + 1 ∂Measure.map X ℙ [PROOFSTEP] apply set_integral_mono_on [GOAL] case hf Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ IntegrableOn (fun a => (↑i + 1) * 1) (Set.Ioc ↑i ↑(i + 1)) [PROOFSTEP] exact continuous_const.integrableOn_Ioc [GOAL] case hg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ IntegrableOn (fun a => a + 1) (Set.Ioc ↑i ↑(i + 1)) [PROOFSTEP] exact (continuous_id.add continuous_const).integrableOn_Ioc [GOAL] case hs Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ MeasurableSet (Set.Ioc ↑i ↑(i + 1)) [PROOFSTEP] exact measurableSet_Ioc [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) ⊢ ∀ (x : ℝ), x ∈ Set.Ioc ↑i ↑(i + 1) → (↑i + 1) * 1 ≤ x + 1 [PROOFSTEP] intro x hx [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) x : ℝ hx : x ∈ Set.Ioc ↑i ↑(i + 1) ⊢ (↑i + 1) * 1 ≤ x + 1 [PROOFSTEP] simp only [Nat.cast_add, Nat.cast_one, Set.mem_Ioc] at hx [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ i : ℕ x✝ : i ∈ range N I : ↑i ≤ ↑(i + 1) x : ℝ hx : ↑i < x ∧ x ≤ ↑i + 1 ⊢ (↑i + 1) * 1 ≤ x + 1 [PROOFSTEP] simp [hx.1.le] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∑ i in range N, ∫ (x : ℝ) in ↑i..↑(i + 1), x + 1 ∂ρ = ∫ (x : ℝ) in 0 ..↑N, x + 1 ∂ρ [PROOFSTEP] rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∫ (x : ℝ) in ↑0 ..↑N, x + 1 ∂ρ = ∫ (x : ℝ) in 0 ..↑N, x + 1 ∂ρ [PROOFSTEP] norm_cast [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ k : ℕ x✝ : k < N ⊢ IntervalIntegrable (fun x => x + 1) ρ ↑k ↑(k + 1) [PROOFSTEP] exact (continuous_id.add continuous_const).intervalIntegrable _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∫ (x : ℝ) in 0 ..↑N, x + 1 ∂ρ = ∫ (x : ℝ) in 0 ..↑N, x ∂ρ + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ [PROOFSTEP] rw [intervalIntegral.integral_add] [GOAL] case hf Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ IntervalIntegrable (fun x => x) ρ 0 ↑N [PROOFSTEP] exact continuous_id.intervalIntegrable _ _ [GOAL] case hg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ IntervalIntegrable (fun x => 1) ρ 0 ↑N [PROOFSTEP] exact continuous_const.intervalIntegrable _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∫ (x : ℝ) in 0 ..↑N, x ∂ρ + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ = (∫ (a : Ω), truncation X (↑N) a) + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ [PROOFSTEP] rw [integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ (∫ (a : Ω), X a) + ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 [PROOFSTEP] refine' add_le_add le_rfl _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∫ (x : ℝ) in 0 ..↑N, 1 ∂ρ ≤ 1 [PROOFSTEP] rw [intervalIntegral.integral_of_le (Nat.cast_nonneg _)] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ∫ (x : ℝ) in Set.Ioc 0 ↑N, 1 ∂ρ ≤ 1 [PROOFSTEP] simp only [integral_const, Measure.restrict_apply', measurableSet_Ioc, Set.univ_inter, Algebra.id.smul_eq_mul, mul_one] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ENNReal.toReal (↑↑(Measure.map X ℙ) (Set.Ioc 0 ↑N)) ≤ 1 [PROOFSTEP] rw [← ENNReal.one_toReal] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ ⊢ ENNReal.toReal (↑↑(Measure.map X ℙ) (Set.Ioc 0 ↑N)) ≤ ENNReal.toReal 1 [PROOFSTEP] exact ENNReal.toReal_mono ENNReal.one_ne_top prob_le_one [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] have B : ∀ a b, ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ _ in Set.Ioc a b, (1 : ℝ) ∂ρ) := by intro a b rw [ofReal_set_integral_one ρ _, Measure.map_apply_of_aemeasurable hint.aemeasurable measurableSet_Ioc] rfl [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 ⊢ ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) [PROOFSTEP] intro a b [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 a b : ℝ ⊢ ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) [PROOFSTEP] rw [ofReal_set_integral_one ρ _, Measure.map_apply_of_aemeasurable hint.aemeasurable measurableSet_Ioc] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 a b : ℝ ⊢ ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ↑↑ℙ (X ⁻¹' Set.Ioc a b) [PROOFSTEP] rfl [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] calc ∑ j in range K, ℙ {ω | X ω ∈ Set.Ioc (j : ℝ) N} = ∑ j in range K, ENNReal.ofReal (∫ _ in Set.Ioc (j : ℝ) N, (1 : ℝ) ∂ρ) := by simp_rw [B] _ = ENNReal.ofReal (∑ j in range K, ∫ _ in Set.Ioc (j : ℝ) N, (1 : ℝ) ∂ρ) := by rw [ENNReal.ofReal_sum_of_nonneg] simp only [integral_const, Algebra.id.smul_eq_mul, mul_one, ENNReal.toReal_nonneg, imp_true_iff] _ = ENNReal.ofReal (∑ j in range K, ∫ _ in (j : ℝ)..N, (1 : ℝ) ∂ρ) := by congr 1 refine' sum_congr rfl fun j hj => _ rw [intervalIntegral.integral_of_le (Nat.cast_le.2 ((mem_range.1 hj).le.trans hKN))] _ ≤ ENNReal.ofReal (𝔼[X] + 1) := ENNReal.ofReal_le_ofReal A [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} = ∑ j in range K, ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ) [PROOFSTEP] simp_rw [B] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) ⊢ ∑ j in range K, ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ) = ENNReal.ofReal (∑ j in range K, ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ) [PROOFSTEP] rw [ENNReal.ofReal_sum_of_nonneg] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) ⊢ ∀ (i : ℕ), i ∈ range K → 0 ≤ ∫ (x : ℝ) in Set.Ioc ↑i ↑N, 1 ∂ρ [PROOFSTEP] simp only [integral_const, Algebra.id.smul_eq_mul, mul_one, ENNReal.toReal_nonneg, imp_true_iff] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) ⊢ ENNReal.ofReal (∑ j in range K, ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ) = ENNReal.ofReal (∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ) [PROOFSTEP] congr 1 [GOAL] case e_r Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) ⊢ ∑ j in range K, ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ = ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ [PROOFSTEP] refine' sum_congr rfl fun j hj => _ [GOAL] case e_r Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K N : ℕ hKN : K ≤ N ρ : Measure ℝ := Measure.map X ℙ this : IsProbabilityMeasure ρ A : ∑ j in range K, ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ ≤ (∫ (a : Ω), X a) + 1 B : ∀ (a b : ℝ), ↑↑ℙ {ω | X ω ∈ Set.Ioc a b} = ENNReal.ofReal (∫ (x : ℝ) in Set.Ioc a b, 1 ∂ρ) j : ℕ hj : j ∈ range K ⊢ ∫ (x : ℝ) in Set.Ioc ↑j ↑N, 1 ∂ρ = ∫ (x : ℝ) in ↑j..↑N, 1 ∂ρ [PROOFSTEP] rw [intervalIntegral.integral_of_le (Nat.cast_le.2 ((mem_range.1 hj).le.trans hKN))] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X ⊢ ∑' (j : ℕ), ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} < ⊤ [PROOFSTEP] suffices : ∀ K : ℕ, ∑ j in range K, ℙ {ω | X ω ∈ Set.Ioi (j : ℝ)} ≤ ENNReal.ofReal (𝔼[X] + 1) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X this : ∀ (K : ℕ), ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) ⊢ ∑' (j : ℕ), ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} < ⊤ case this Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X ⊢ ∀ (K : ℕ), ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] exact (le_of_tendsto_of_tendsto (ENNReal.tendsto_nat_tsum _) tendsto_const_nhds (eventually_of_forall this)).trans_lt ENNReal.ofReal_lt_top [GOAL] case this Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X ⊢ ∀ (K : ℕ), ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] intro K [GOAL] case this Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] have A : Tendsto (fun N : ℕ => ∑ j in range K, ℙ {ω | X ω ∈ Set.Ioc (j : ℝ) N}) atTop (𝓝 (∑ j in range K, ℙ {ω | X ω ∈ Set.Ioi (j : ℝ)})) := by refine' tendsto_finset_sum _ fun i _ => _ have : {ω | X ω ∈ Set.Ioi (i : ℝ)} = ⋃ N : ℕ, {ω | X ω ∈ Set.Ioc (i : ℝ) N} := by apply Set.Subset.antisymm _ _ · intro ω hω obtain ⟨N, hN⟩ : ∃ N : ℕ, X ω ≤ N := exists_nat_ge (X ω) exact Set.mem_iUnion.2 ⟨N, hω, hN⟩ · simp (config := { contextual := true }) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff, Set.setOf_subset_setOf, imp_true_iff] rw [this] apply tendsto_measure_iUnion intro m n hmn x hx exact ⟨hx.1, hx.2.trans (Nat.cast_le.2 hmn)⟩ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ ⊢ Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop (𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j})) [PROOFSTEP] refine' tendsto_finset_sum _ fun i _ => _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ⊢ Tendsto (fun N => ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑i ↑N}) atTop (𝓝 (↑↑ℙ {ω | X ω ∈ Set.Ioi ↑i})) [PROOFSTEP] have : {ω | X ω ∈ Set.Ioi (i : ℝ)} = ⋃ N : ℕ, {ω | X ω ∈ Set.Ioc (i : ℝ) N} := by apply Set.Subset.antisymm _ _ · intro ω hω obtain ⟨N, hN⟩ : ∃ N : ℕ, X ω ≤ N := exists_nat_ge (X ω) exact Set.mem_iUnion.2 ⟨N, hω, hN⟩ · simp (config := { contextual := true }) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff, Set.setOf_subset_setOf, imp_true_iff] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ⊢ {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} [PROOFSTEP] apply Set.Subset.antisymm _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ⊢ {ω | X ω ∈ Set.Ioi ↑i} ⊆ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} [PROOFSTEP] intro ω hω [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ω : Ω hω : ω ∈ {ω | X ω ∈ Set.Ioi ↑i} ⊢ ω ∈ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} [PROOFSTEP] obtain ⟨N, hN⟩ : ∃ N : ℕ, X ω ≤ N := exists_nat_ge (X ω) [GOAL] case intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ω : Ω hω : ω ∈ {ω | X ω ∈ Set.Ioi ↑i} N : ℕ hN : X ω ≤ ↑N ⊢ ω ∈ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} [PROOFSTEP] exact Set.mem_iUnion.2 ⟨N, hω, hN⟩ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K ⊢ ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} ⊆ {ω | X ω ∈ Set.Ioi ↑i} [PROOFSTEP] simp (config := { contextual := true }) only [Set.mem_Ioc, Set.mem_Ioi, Set.iUnion_subset_iff, Set.setOf_subset_setOf, imp_true_iff] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} ⊢ Tendsto (fun N => ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑i ↑N}) atTop (𝓝 (↑↑ℙ {ω | X ω ∈ Set.Ioi ↑i})) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} ⊢ Tendsto (fun N => ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑i ↑N}) atTop (𝓝 (↑↑ℙ (⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N}))) [PROOFSTEP] apply tendsto_measure_iUnion [GOAL] case hm Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} ⊢ Monotone fun N => {ω | X ω ∈ Set.Ioc ↑i ↑N} [PROOFSTEP] intro m n hmn x hx [GOAL] case hm Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K i : ℕ x✝ : i ∈ range K this : {ω | X ω ∈ Set.Ioi ↑i} = ⋃ (N : ℕ), {ω | X ω ∈ Set.Ioc ↑i ↑N} m n : ℕ hmn : m ≤ n x : Ω hx : x ∈ (fun N => {ω | X ω ∈ Set.Ioc ↑i ↑N}) m ⊢ x ∈ (fun N => {ω | X ω ∈ Set.Ioc ↑i ↑N}) n [PROOFSTEP] exact ⟨hx.1, hx.2.trans (Nat.cast_le.2 hmn)⟩ [GOAL] case this Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ A : Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop (𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j})) ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] apply le_of_tendsto_of_tendsto A tendsto_const_nhds [GOAL] case this Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ A : Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop (𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j})) ⊢ (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) ≤ᶠ[atTop] fun x => ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] filter_upwards [Ici_mem_atTop K] with N hN [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ A : Tendsto (fun N => ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N}) atTop (𝓝 (∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioi ↑j})) N : ℕ hN : N ∈ Set.Ici K ⊢ ∑ j in range K, ↑↑ℙ {ω | X ω ∈ Set.Ioc ↑j ↑N} ≤ ENNReal.ofReal ((∫ (a : Ω), X a) + 1) [PROOFSTEP] exact sum_prob_mem_Ioc_le hint hnonneg hN [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a [PROOFSTEP] set Y := fun n : ℕ => truncation X n [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a [PROOFSTEP] let ρ : Measure ℝ := Measure.map X ℙ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a [PROOFSTEP] have Y2 : ∀ n, 𝔼[Y n ^ 2] = ∫ x in (0)..n, x ^ 2 ∂ρ := by intro n change 𝔼[fun x => Y n x ^ 2] = _ rw [moment_truncation_eq_intervalIntegral_of_nonneg hint.1 two_ne_zero hnonneg] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ ⊢ ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ [PROOFSTEP] intro n [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ n : ℕ ⊢ ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ [PROOFSTEP] change 𝔼[fun x => Y n x ^ 2] = _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ n : ℕ ⊢ ∫ (a : Ω), (fun x => Y n x ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ [PROOFSTEP] rw [moment_truncation_eq_intervalIntegral_of_nonneg hint.1 two_ne_zero hnonneg] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation X ↑j ^ 2) a ≤ 2 * ∫ (a : Ω), X a [PROOFSTEP] calc ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[Y j ^ 2] = ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * ∫ x in (0)..j, x ^ 2 ∂ρ := by simp_rw [Y2] _ = ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * ∑ k in range j, ∫ x in k..(k + 1 : ℕ), x ^ 2 ∂ρ := by congr 1 with j congr 1 rw [intervalIntegral.sum_integral_adjacent_intervals] · norm_cast intro k _ exact (continuous_id.pow _).intervalIntegrable _ _ _ = ∑ k in range K, (∑ j in Ioo k K, ((j : ℝ) ^ 2)⁻¹) * ∫ x in k..(k + 1 : ℕ), x ^ 2 ∂ρ := by simp_rw [mul_sum, sum_mul, sum_sigma'] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range, mem_filter] at hij simp [hij, mem_sigma, mem_range, and_self_iff, hij.2.trans hij.1] · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range, mem_Ioo] at hij simp only [hij, mem_sigma, mem_range, and_self_iff] · rintro ⟨i, j⟩ hij; rfl · rintro ⟨i, j⟩ hij; rfl _ ≤ ∑ k in range K, ↑2 / (k + ↑1) * ∫ x in k..(k + 1 : ℕ), x ^ 2 ∂ρ := by apply sum_le_sum fun k _ => ?_ refine' mul_le_mul_of_nonneg_right (sum_Ioo_inv_sq_le _ _) _ refine' intervalIntegral.integral_nonneg_of_forall _ fun u => sq_nonneg _ simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one] _ ≤ ∑ k in range K, ∫ x in k..(k + 1 : ℕ), 2 * x ∂ρ := by apply sum_le_sum fun k _ => ?_ have Ik : (k : ℝ) ≤ (k + 1 : ℕ) := by simp rw [← intervalIntegral.integral_const_mul, intervalIntegral.integral_of_le Ik, intervalIntegral.integral_of_le Ik] refine' set_integral_mono_on _ _ measurableSet_Ioc fun x hx => _ · apply Continuous.integrableOn_Ioc exact continuous_const.mul (continuous_pow 2) · apply Continuous.integrableOn_Ioc exact continuous_const.mul continuous_id' · calc ↑2 / (↑k + ↑1) * x ^ 2 = x / (k + 1) * (2 * x) := by ring _ ≤ 1 * (2 * x) := (mul_le_mul_of_nonneg_right (by convert (div_le_one _).2 hx.2; norm_cast simp only [Nat.cast_add, Nat.cast_one] linarith only [show (0 : ℝ) ≤ k from Nat.cast_nonneg k]) (mul_nonneg zero_le_two ((Nat.cast_nonneg k).trans hx.1.le))) _ = 2 * x := by rw [one_mul] _ = 2 * ∫ x in (0 : ℝ)..K, x ∂ρ := by rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_] swap; · exact (continuous_const.mul continuous_id').intervalIntegrable _ _ rw [intervalIntegral.integral_const_mul] norm_cast _ ≤ 2 * 𝔼[X] := mul_le_mul_of_nonneg_left (by rw [← integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg] exact integral_truncation_le_integral_of_nonneg hint hnonneg) zero_le_two [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (Y j ^ 2) a = ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ [PROOFSTEP] simp_rw [Y2] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = ∑ j in range K, (↑j ^ 2)⁻¹ * ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] congr 1 with j [GOAL] case e_f.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ j : ℕ ⊢ (↑j ^ 2)⁻¹ * ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = (↑j ^ 2)⁻¹ * ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] congr 1 [GOAL] case e_f.h.e_a Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ j : ℕ ⊢ ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] rw [intervalIntegral.sum_integral_adjacent_intervals] [GOAL] case e_f.h.e_a Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ j : ℕ ⊢ ∫ (x : ℝ) in 0 ..↑j, x ^ 2 ∂ρ = ∫ (x : ℝ) in ↑0 ..↑j, x ^ 2 ∂ρ [PROOFSTEP] norm_cast [GOAL] case e_f.h.e_a Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ j : ℕ ⊢ ∀ (k : ℕ), k < j → IntervalIntegrable (fun x => x ^ 2) ρ ↑k ↑(k + 1) [PROOFSTEP] intro k _ [GOAL] case e_f.h.e_a Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ j k : ℕ a✝ : k < j ⊢ IntervalIntegrable (fun x => x ^ 2) ρ ↑k ↑(k + 1) [PROOFSTEP] exact (continuous_id.pow _).intervalIntegrable _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * ∑ k in range j, ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ = ∑ k in range K, (∑ j in Ioo k K, (↑j ^ 2)⁻¹) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] simp_rw [mul_sum, sum_mul, sum_sigma'] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ x in Finset.sigma (range K) fun a => range a, (↑x.fst ^ 2)⁻¹ * ∫ (x : ℝ) in ↑x.snd..↑(x.snd + 1), x ^ 2 ∂Measure.map X ℙ = ∑ x in Finset.sigma (range K) fun a => Ioo a K, (↑x.snd ^ 2)⁻¹ * ∫ (x : ℝ) in ↑x.fst..↑(x.fst + 1), x ^ 2 ∂Measure.map X ℙ [PROOFSTEP] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ [GOAL] case refine'_1 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => range a), (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ioo a K [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => range a ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => Ioo a K [PROOFSTEP] simp only [mem_sigma, mem_range, mem_filter] at hij [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => range a hij : i < K ∧ j < i ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range K) fun a => Ioo a K [PROOFSTEP] simp [hij, mem_sigma, mem_range, and_self_iff, hij.2.trans hij.1] [GOAL] case refine'_2 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ioo a K), (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => range a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_2.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ioo a K ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => range a [PROOFSTEP] simp only [mem_sigma, mem_range, mem_Ioo] at hij [GOAL] case refine'_2.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ioo a K hij : i < K ∧ i < j ∧ j < K ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range K) fun a => range a [PROOFSTEP] simp only [hij, mem_sigma, mem_range, and_self_iff] [GOAL] case refine'_3 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => range a), (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha) (_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => Ioo a K) = a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_3.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => range a ⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij) (_ : (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => Ioo a K) = { fst := i, snd := j } [PROOFSTEP] rfl [GOAL] case refine'_4 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range K) fun a => Ioo a K), (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha) (_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range K) fun a => range a) = a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_4.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range K) fun a => Ioo a K ⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij) (_ : (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range K) fun a => range a) = { fst := i, snd := j } [PROOFSTEP] rfl [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ k in range K, (∑ j in Ioo k K, (↑j ^ 2)⁻¹) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ ∑ k in range K, 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] apply sum_le_sum fun k _ => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K ⊢ (∑ j in Ioo k K, (↑j ^ 2)⁻¹) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] refine' mul_le_mul_of_nonneg_right (sum_Ioo_inv_sq_le _ _) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K ⊢ 0 ≤ ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ [PROOFSTEP] refine' intervalIntegral.integral_nonneg_of_forall _ fun u => sq_nonneg _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K ⊢ ↑k ≤ ↑(k + 1) [PROOFSTEP] simp only [Nat.cast_add, Nat.cast_one, le_add_iff_nonneg_right, zero_le_one] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ k in range K, 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ ∑ k in range K, ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ [PROOFSTEP] apply sum_le_sum fun k _ => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K ⊢ 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ [PROOFSTEP] have Ik : (k : ℝ) ≤ (k + 1 : ℕ) := by simp [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K ⊢ ↑k ≤ ↑(k + 1) [PROOFSTEP] simp [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) ⊢ 2 / (↑k + 1) * ∫ (x : ℝ) in ↑k..↑(k + 1), x ^ 2 ∂ρ ≤ ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ [PROOFSTEP] rw [← intervalIntegral.integral_const_mul, intervalIntegral.integral_of_le Ik, intervalIntegral.integral_of_le Ik] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) ⊢ ∫ (x : ℝ) in Set.Ioc ↑k ↑(k + 1), 2 / (↑k + 1) * x ^ 2 ∂ρ ≤ ∫ (x : ℝ) in Set.Ioc ↑k ↑(k + 1), 2 * x ∂ρ [PROOFSTEP] refine' set_integral_mono_on _ _ measurableSet_Ioc fun x hx => _ [GOAL] case refine'_1 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) ⊢ IntegrableOn (fun x => 2 / (↑k + 1) * x ^ 2) (Set.Ioc ↑k ↑(k + 1)) [PROOFSTEP] apply Continuous.integrableOn_Ioc [GOAL] case refine'_1.hf Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) ⊢ Continuous fun x => 2 / (↑k + 1) * x ^ 2 [PROOFSTEP] exact continuous_const.mul (continuous_pow 2) [GOAL] case refine'_2 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) ⊢ IntegrableOn (fun x => 2 * x) (Set.Ioc ↑k ↑(k + 1)) [PROOFSTEP] apply Continuous.integrableOn_Ioc [GOAL] case refine'_2.hf Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) ⊢ Continuous fun x => 2 * x [PROOFSTEP] exact continuous_const.mul continuous_id' [GOAL] case refine'_3 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 2 / (↑k + 1) * x ^ 2 ≤ 2 * x [PROOFSTEP] calc ↑2 / (↑k + ↑1) * x ^ 2 = x / (k + 1) * (2 * x) := by ring _ ≤ 1 * (2 * x) := (mul_le_mul_of_nonneg_right (by convert (div_le_one _).2 hx.2; norm_cast simp only [Nat.cast_add, Nat.cast_one] linarith only [show (0 : ℝ) ≤ k from Nat.cast_nonneg k]) (mul_nonneg zero_le_two ((Nat.cast_nonneg k).trans hx.1.le))) _ = 2 * x := by rw [one_mul] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 2 / (↑k + 1) * x ^ 2 = x / (↑k + 1) * (2 * x) [PROOFSTEP] ring [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ x / (↑k + 1) ≤ 1 [PROOFSTEP] convert (div_le_one _).2 hx.2 [GOAL] case h.e'_3.h.e'_6 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ ↑k + 1 = ↑(k + 1) Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 0 < ↑(k + 1) [PROOFSTEP] norm_cast [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 0 < ↑(k + 1) [PROOFSTEP] simp only [Nat.cast_add, Nat.cast_one] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 0 < ↑k + 1 [PROOFSTEP] linarith only [show (0 : ℝ) ≤ k from Nat.cast_nonneg k] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k ∈ range K Ik : ↑k ≤ ↑(k + 1) x : ℝ hx : x ∈ Set.Ioc ↑k ↑(k + 1) ⊢ 1 * (2 * x) = 2 * x [PROOFSTEP] rw [one_mul] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∑ k in range K, ∫ (x : ℝ) in ↑k..↑(k + 1), 2 * x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ [PROOFSTEP] rw [intervalIntegral.sum_integral_adjacent_intervals fun k _ => ?_] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∫ (x : ℝ) in ↑0 ..↑K, 2 * x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k < K ⊢ IntervalIntegrable (fun x => 2 * x) ρ ↑k ↑(k + 1) [PROOFSTEP] swap [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ k : ℕ x✝ : k < K ⊢ IntervalIntegrable (fun x => 2 * x) ρ ↑k ↑(k + 1) [PROOFSTEP] exact (continuous_const.mul continuous_id').intervalIntegrable _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∫ (x : ℝ) in ↑0 ..↑K, 2 * x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ [PROOFSTEP] rw [intervalIntegral.integral_const_mul] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ 2 * ∫ (x : ℝ) in ↑0 ..↑K, x ∂ρ = 2 * ∫ (x : ℝ) in 0 ..↑K, x ∂ρ [PROOFSTEP] norm_cast [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∫ (x : ℝ) in 0 ..↑K, x ∂ρ ≤ ∫ (a : Ω), X a [PROOFSTEP] rw [← integral_truncation_eq_intervalIntegral_of_nonneg hint.1 hnonneg] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : Ω → ℝ hint : Integrable X hnonneg : 0 ≤ X K : ℕ Y : ℕ → Ω → ℝ := fun n => truncation X ↑n ρ : Measure ℝ := Measure.map X ℙ Y2 : ∀ (n : ℕ), ∫ (a : Ω), (Y n ^ 2) a = ∫ (x : ℝ) in 0 ..↑n, x ^ 2 ∂ρ ⊢ ∫ (x : Ω), truncation X (↑K) x ≤ ∫ (a : Ω), X a [PROOFSTEP] exact integral_truncation_le_integral_of_nonneg hint hnonneg [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have c_pos : 0 < c := zero_lt_one.trans c_one [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have hX : ∀ i, AEStronglyMeasurable (X i) ℙ := fun i => (hident i).symm.aestronglyMeasurable_snd hint.1 [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have A : ∀ i, StronglyMeasurable (indicator (Set.Ioc (-i : ℝ) i) id) := fun i => stronglyMeasurable_id.indicator measurableSet_Ioc [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] set Y := fun n : ℕ => truncation (X n) n [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] set S := fun n => ∑ i in range n, Y i with hS [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] let u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have u_mono : Monotone u := fun i j hij => Nat.floor_mono (pow_le_pow c_one.le hij) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have I1 : ∀ K, ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * Var[Y j] ≤ 2 * 𝔼[X 0] := by intro K calc ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * Var[Y j] ≤ ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[truncation (X 0) j ^ 2] := by apply sum_le_sum fun j _ => ?_ refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _)) rw [(hident j).truncation.variance_eq] exact variance_le_expectation_sq (hX 0).truncation _ ≤ 2 * 𝔼[X 0] := sum_variance_truncation_le hint (hnonneg 0) K [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u ⊢ ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a [PROOFSTEP] intro K [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u K : ℕ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a [PROOFSTEP] calc ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * Var[Y j] ≤ ∑ j in range K, ((j : ℝ) ^ 2)⁻¹ * 𝔼[truncation (X 0) j ^ 2] := by apply sum_le_sum fun j _ => ?_ refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _)) rw [(hident j).truncation.variance_eq] exact variance_le_expectation_sq (hX 0).truncation _ ≤ 2 * 𝔼[X 0] := sum_variance_truncation_le hint (hnonneg 0) K [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u K : ℕ ⊢ ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ ∑ j in range K, (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a [PROOFSTEP] apply sum_le_sum fun j _ => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u K j : ℕ x✝ : j ∈ range K ⊢ (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ (↑j ^ 2)⁻¹ * ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ (inv_nonneg.2 (sq_nonneg _)) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u K j : ℕ x✝ : j ∈ range K ⊢ variance (Y j) ℙ ≤ ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a [PROOFSTEP] rw [(hident j).truncation.variance_eq] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u K j : ℕ x✝ : j ∈ range K ⊢ variance (truncation (X 0) ↑j) ℙ ≤ ∫ (a : Ω), (truncation (X 0) ↑j ^ 2) a [PROOFSTEP] exact variance_le_expectation_sq (hX 0).truncation [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] let C := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * 𝔼[X 0]) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have I2 : ∀ N, ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * Var[S (u i)] ≤ C := by intro N calc ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * Var[S (u i)] = ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * ∑ j in range (u i), Var[Y j] := by congr 1 with i congr 1 rw [hS, IndepFun.variance_sum] · intro j _ exact (hident j).aestronglyMeasurable_fst.memℒp_truncation · intro k _ l _ hkl exact (hindep hkl).comp (A k).measurable (A l).measurable _ = ∑ j in range (u (N - 1)), (∑ i in (range N).filter fun i => j < u i, ((u i : ℝ) ^ 2)⁻¹) * Var[Y j] := by simp_rw [mul_sum, sum_mul, sum_sigma'] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range] at hij simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true_iff] exact hij.2.trans_le (u_mono (Nat.le_pred_of_lt hij.1)) · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range, mem_filter] at hij simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self_iff] · rintro ⟨i, j⟩ hij; rfl · rintro ⟨i, j⟩ hij; rfl _ ≤ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * Var[Y j] := by apply sum_le_sum fun j hj => ?_ rcases@eq_zero_or_pos _ _ j with (rfl | hj) · simp only [Nat.cast_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul] simp only [Nat.cast_zero, truncation_zero, variance_zero, mul_zero, le_rfl] apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _) convert sum_div_nat_floor_pow_sq_le_div_sq N (Nat.cast_pos.2 hj) c_one using 2 · simp only [Nat.cast_lt] · simp only [one_div] _ = c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), ((j : ℝ) ^ 2)⁻¹ * Var[Y j] := by simp_rw [mul_sum, div_eq_mul_inv, mul_assoc] _ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * 𝔼[X 0]) := by apply mul_le_mul_of_nonneg_left (I1 _) apply mul_nonneg (pow_nonneg c_pos.le _) exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) ⊢ ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C [PROOFSTEP] intro N [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C [PROOFSTEP] calc ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * Var[S (u i)] = ∑ i in range N, ((u i : ℝ) ^ 2)⁻¹ * ∑ j in range (u i), Var[Y j] := by congr 1 with i congr 1 rw [hS, IndepFun.variance_sum] · intro j _ exact (hident j).aestronglyMeasurable_fst.memℒp_truncation · intro k _ l _ hkl exact (hindep hkl).comp (A k).measurable (A l).measurable _ = ∑ j in range (u (N - 1)), (∑ i in (range N).filter fun i => j < u i, ((u i : ℝ) ^ 2)⁻¹) * Var[Y j] := by simp_rw [mul_sum, sum_mul, sum_sigma'] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range] at hij simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true_iff] exact hij.2.trans_le (u_mono (Nat.le_pred_of_lt hij.1)) · rintro ⟨i, j⟩ hij simp only [mem_sigma, mem_range, mem_filter] at hij simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self_iff] · rintro ⟨i, j⟩ hij; rfl · rintro ⟨i, j⟩ hij; rfl _ ≤ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * Var[Y j] := by apply sum_le_sum fun j hj => ?_ rcases@eq_zero_or_pos _ _ j with (rfl | hj) · simp only [Nat.cast_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul] simp only [Nat.cast_zero, truncation_zero, variance_zero, mul_zero, le_rfl] apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _) convert sum_div_nat_floor_pow_sq_le_div_sq N (Nat.cast_pos.2 hj) c_one using 2 · simp only [Nat.cast_lt] · simp only [one_div] _ = c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), ((j : ℝ) ^ 2)⁻¹ * Var[Y j] := by simp_rw [mul_sum, div_eq_mul_inv, mul_assoc] _ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * 𝔼[X 0]) := by apply mul_le_mul_of_nonneg_left (I1 _) apply mul_nonneg (pow_nonneg c_pos.le _) exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ = ∑ i in range N, (↑(u i) ^ 2)⁻¹ * ∑ j in range (u i), variance (Y j) ℙ [PROOFSTEP] congr 1 with i [GOAL] case e_f.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i : ℕ ⊢ (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ = (↑(u i) ^ 2)⁻¹ * ∑ j in range (u i), variance (Y j) ℙ [PROOFSTEP] congr 1 [GOAL] case e_f.h.e_a Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i : ℕ ⊢ variance (S (u i)) ℙ = ∑ j in range (u i), variance (Y j) ℙ [PROOFSTEP] rw [hS, IndepFun.variance_sum] [GOAL] case e_f.h.e_a.hs Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i : ℕ ⊢ ∀ (i_1 : ℕ), i_1 ∈ range (u i) → Memℒp (Y i_1) 2 [PROOFSTEP] intro j _ [GOAL] case e_f.h.e_a.hs Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ a✝ : j ∈ range (u i) ⊢ Memℒp (Y j) 2 [PROOFSTEP] exact (hident j).aestronglyMeasurable_fst.memℒp_truncation [GOAL] case e_f.h.e_a.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i : ℕ ⊢ Set.Pairwise ↑(range (u i)) fun i j => IndepFun (Y i) (Y j) [PROOFSTEP] intro k _ l _ hkl [GOAL] case e_f.h.e_a.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i k : ℕ a✝¹ : k ∈ ↑(range (u i)) l : ℕ a✝ : l ∈ ↑(range (u i)) hkl : k ≠ l ⊢ IndepFun (Y k) (Y l) [PROOFSTEP] exact (hindep hkl).comp (A k).measurable (A l).measurable [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * ∑ j in range (u i), variance (Y j) ℙ = ∑ j in range (u (N - 1)), (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ [PROOFSTEP] simp_rw [mul_sum, sum_mul, sum_sigma'] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∑ x in Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊, (↑⌊c ^ x.fst⌋₊ ^ 2)⁻¹ * variance (truncation (X x.snd) ↑x.snd) ℙ = ∑ x in Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N), (↑⌊c ^ x.snd⌋₊ ^ 2)⁻¹ * variance (truncation (X x.fst) ↑x.fst) ℙ [PROOFSTEP] refine' sum_bij' (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ (fun a _ => rfl) (fun (p : Σ _ : ℕ, ℕ) _ => (⟨p.2, p.1⟩ : Σ _ : ℕ, ℕ)) _ _ _ [GOAL] case refine'_1 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊), (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N) [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N) [PROOFSTEP] simp only [mem_sigma, mem_range] at hij [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ hij : i < N ∧ j < ⌊c ^ i⌋₊ ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N) [PROOFSTEP] simp only [hij.1, hij.2, mem_sigma, mem_range, mem_filter, and_true_iff] [GOAL] case refine'_1.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ hij : i < N ∧ j < ⌊c ^ i⌋₊ ⊢ j < ⌊c ^ (N - 1)⌋₊ [PROOFSTEP] exact hij.2.trans_le (u_mono (Nat.le_pred_of_lt hij.1)) [GOAL] case refine'_2 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)), (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_2.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N) ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ [PROOFSTEP] simp only [mem_sigma, mem_range, mem_filter] at hij [GOAL] case refine'_2.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij✝ : { fst := i, snd := j } ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N) hij : i < ⌊c ^ (N - 1)⌋₊ ∧ j < N ∧ i < ⌊c ^ j⌋₊ ⊢ (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij✝ ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ [PROOFSTEP] simp only [hij.2.1, hij.2.2, mem_sigma, mem_range, and_self_iff] [GOAL] case refine'_3 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊), (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha) (_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)) = a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_3.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊ ⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij) (_ : (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)) = { fst := i, snd := j } [PROOFSTEP] rfl [GOAL] case refine'_4 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∀ (a : (_ : ℕ) × ℕ) (ha : a ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N)), (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) a ha) (_ : (fun p x => { fst := p.snd, snd := p.fst }) a ha ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊) = a [PROOFSTEP] rintro ⟨i, j⟩ hij [GOAL] case refine'_4.mk Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N i j : ℕ hij : { fst := i, snd := j } ∈ Finset.sigma (range ⌊c ^ (N - 1)⌋₊) fun a => filter (fun i => a < ⌊c ^ i⌋₊) (range N) ⊢ (fun p x => { fst := p.snd, snd := p.fst }) ((fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij) (_ : (fun p x => { fst := p.snd, snd := p.fst }) { fst := i, snd := j } hij ∈ Finset.sigma (range N) fun a => range ⌊c ^ a⌋₊) = { fst := i, snd := j } [PROOFSTEP] rfl [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∑ j in range (u (N - 1)), (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ ≤ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ [PROOFSTEP] apply sum_le_sum fun j hj => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N j : ℕ hj : j ∈ range (u (N - 1)) ⊢ (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ [PROOFSTEP] rcases@eq_zero_or_pos _ _ j with (rfl | hj) [GOAL] case inl Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ hj : 0 ∈ range (u (N - 1)) ⊢ (∑ i in filter (fun i => 0 < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y 0) ℙ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑0 ^ 2 * variance (Y 0) ℙ [PROOFSTEP] simp only [Nat.cast_zero, zero_pow', Ne.def, bit0_eq_zero, Nat.one_ne_zero, not_false_iff, div_zero, zero_mul] [GOAL] case inl Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ hj : 0 ∈ range (u (N - 1)) ⊢ (∑ x in filter (fun i => 0 < ⌊c ^ i⌋₊) (range N), (↑⌊c ^ x⌋₊ ^ 2)⁻¹) * variance (truncation (X 0) 0) ℙ ≤ 0 [PROOFSTEP] simp only [Nat.cast_zero, truncation_zero, variance_zero, mul_zero, le_rfl] [GOAL] case inr Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N j : ℕ hj✝ : j ∈ range (u (N - 1)) hj : 0 < j ⊢ (∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹) * variance (Y j) ℙ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ [PROOFSTEP] apply mul_le_mul_of_nonneg_right _ (variance_nonneg _ _) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N j : ℕ hj✝ : j ∈ range (u (N - 1)) hj : 0 < j ⊢ ∑ i in filter (fun i => j < u i) (range N), (↑(u i) ^ 2)⁻¹ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 [PROOFSTEP] convert sum_div_nat_floor_pow_sq_le_div_sq N (Nat.cast_pos.2 hj) c_one using 2 [GOAL] case h.e'_3.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N j : ℕ hj✝ : j ∈ range (u (N - 1)) hj : 0 < j ⊢ filter (fun i => j < u i) (range N) = filter (fun x => ↑j < ↑⌊c ^ x⌋₊) (range N) [PROOFSTEP] simp only [Nat.cast_lt] [GOAL] case h.e'_3.a Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N j : ℕ hj✝ : j ∈ range (u (N - 1)) hj : 0 < j x✝ : ℕ a✝ : x✝ ∈ filter (fun x => ↑j < ↑⌊c ^ x⌋₊) (range N) ⊢ (↑(u x✝) ^ 2)⁻¹ = 1 / ↑⌊c ^ x✝⌋₊ ^ 2 [PROOFSTEP] simp only [one_div] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ ∑ j in range (u (N - 1)), c ^ 5 * (c - 1)⁻¹ ^ 3 / ↑j ^ 2 * variance (Y j) ℙ = c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), (↑j ^ 2)⁻¹ * variance (Y j) ℙ [PROOFSTEP] simp_rw [mul_sum, div_eq_mul_inv, mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ c ^ 5 * (c - 1)⁻¹ ^ 3 * ∑ j in range (u (N - 1)), (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) [PROOFSTEP] apply mul_le_mul_of_nonneg_left (I1 _) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ 0 ≤ c ^ 5 * (c - 1)⁻¹ ^ 3 [PROOFSTEP] apply mul_nonneg (pow_nonneg c_pos.le _) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) N : ℕ ⊢ 0 ≤ (c - 1)⁻¹ ^ 3 [PROOFSTEP] exact pow_nonneg (inv_nonneg.2 (sub_nonneg.2 c_one.le)) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have I3 : ∀ N, ∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) := by intro N calc ∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤ ∑ i in range N, ENNReal.ofReal (Var[S (u i)] / (u i * ε) ^ 2) := by refine' sum_le_sum fun i _ => _ apply meas_ge_le_variance_div_sq · exact memℒp_finset_sum' _ fun j _ => (hident j).aestronglyMeasurable_fst.memℒp_truncation · apply mul_pos (Nat.cast_pos.2 _) εpos refine' zero_lt_one.trans_le _ apply Nat.le_floor rw [Nat.cast_one] apply one_le_pow_of_one_le c_one.le _ = ENNReal.ofReal (∑ i in range N, Var[S (u i)] / (u i * ε) ^ 2) := by rw [ENNReal.ofReal_sum_of_nonneg fun i _ => ?_] exact div_nonneg (variance_nonneg _ _) (sq_nonneg _) _ ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) := by apply ENNReal.ofReal_le_ofReal conv_lhs => enter [2, i] rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc] rw [← mul_sum] refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _) conv_lhs => enter [2, i]; rw [inv_pow] exact I2 N [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C ⊢ ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) [PROOFSTEP] intro N [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) [PROOFSTEP] calc ∑ i in range N, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|} ≤ ∑ i in range N, ENNReal.ofReal (Var[S (u i)] / (u i * ε) ^ 2) := by refine' sum_le_sum fun i _ => _ apply meas_ge_le_variance_div_sq · exact memℒp_finset_sum' _ fun j _ => (hident j).aestronglyMeasurable_fst.memℒp_truncation · apply mul_pos (Nat.cast_pos.2 _) εpos refine' zero_lt_one.trans_le _ apply Nat.le_floor rw [Nat.cast_one] apply one_le_pow_of_one_le c_one.le _ = ENNReal.ofReal (∑ i in range N, Var[S (u i)] / (u i * ε) ^ 2) := by rw [ENNReal.ofReal_sum_of_nonneg fun i _ => ?_] exact div_nonneg (variance_nonneg _ _) (sq_nonneg _) _ ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) := by apply ENNReal.ofReal_le_ofReal conv_lhs => enter [2, i] rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc] rw [← mul_sum] refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _) conv_lhs => enter [2, i]; rw [inv_pow] exact I2 N [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ∑ i in range N, ENNReal.ofReal (variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) [PROOFSTEP] refine' sum_le_sum fun i _ => _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) [PROOFSTEP] apply meas_ge_le_variance_div_sq [GOAL] case hX Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ Memℒp (fun ω => S (u i) ω) 2 [PROOFSTEP] exact memℒp_finset_sum' _ fun j _ => (hident j).aestronglyMeasurable_fst.memℒp_truncation [GOAL] case hc Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ 0 < ↑(u i) * ε [PROOFSTEP] apply mul_pos (Nat.cast_pos.2 _) εpos [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ 0 < u i [PROOFSTEP] refine' zero_lt_one.trans_le _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ 1 ≤ u i [PROOFSTEP] apply Nat.le_floor [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ ↑1 ≤ c ^ i [PROOFSTEP] rw [Nat.cast_one] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ 1 ≤ c ^ i [PROOFSTEP] apply one_le_pow_of_one_le c_one.le [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ i in range N, ENNReal.ofReal (variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) = ENNReal.ofReal (∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) [PROOFSTEP] rw [ENNReal.ofReal_sum_of_nonneg fun i _ => ?_] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ x✝ : i ∈ range N ⊢ 0 ≤ variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 [PROOFSTEP] exact div_nonneg (variance_nonneg _ _) (sq_nonneg _) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ENNReal.ofReal (∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2) ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) [PROOFSTEP] apply ENNReal.ofReal_le_ofReal [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 ≤ ε⁻¹ ^ 2 * C [PROOFSTEP] conv_lhs => enter [2, i] rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ | ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 [PROOFSTEP] enter [2, i] rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ | ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 [PROOFSTEP] enter [2, i] rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ | ∑ i in range N, variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 [PROOFSTEP] enter [2, i] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ | variance (S (u i)) ℙ / (↑(u i) * ε) ^ 2 [PROOFSTEP] rw [div_eq_inv_mul, ← inv_pow, mul_inv, mul_comm _ ε⁻¹, mul_pow, mul_assoc] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ i in range N, ε⁻¹ ^ 2 * ((↑(u i))⁻¹ ^ 2 * variance (S (u i)) ℙ) ≤ ε⁻¹ ^ 2 * C [PROOFSTEP] rw [← mul_sum] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ε⁻¹ ^ 2 * ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ ≤ ε⁻¹ ^ 2 * C [PROOFSTEP] refine' mul_le_mul_of_nonneg_left _ (sq_nonneg _) [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ ≤ C [PROOFSTEP] conv_lhs => enter [2, i]; rw [inv_pow] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ | ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ [PROOFSTEP] enter [2, i]; rw [inv_pow] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ | ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ [PROOFSTEP] enter [2, i]; rw [inv_pow] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ | ∑ x in range N, (↑(u x))⁻¹ ^ 2 * variance (S (u x)) ℙ [PROOFSTEP] enter [2, i] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N i : ℕ | (↑(u i))⁻¹ ^ 2 * variance (S (u i)) ℙ [PROOFSTEP] rw [inv_pow] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C N : ℕ ⊢ ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C [PROOFSTEP] exact I2 N [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] have I4 : (∑' i, ℙ {ω | (u i * ε : ℝ) ≤ |S (u i) ω - 𝔼[S (u i)]|}) < ∞ := (le_of_tendsto_of_tendsto' (ENNReal.tendsto_nat_tsum _) tendsto_const_nhds I3).trans_lt ENNReal.ofReal_lt_top [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤ ⊢ ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) Y a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] filter_upwards [ae_eventually_not_mem I4.ne] with ω hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬↑⌊c ^ n⌋₊ * ε ≤ |Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| ⊢ ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun n => truncation (X n) ↑n) a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] simp_rw [not_le, mul_comm, sum_apply] at hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, |∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) ω - ∫ (a : Ω), ∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) a| < ε * ↑⌊c ^ n⌋₊ ⊢ ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun n => truncation (X n) ↑n) a| < ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] convert hω [GOAL] case h.e'_2.h.h.e'_3.h.e'_3.h.e'_6.h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ε : ℝ εpos : 0 < ε c_pos : 0 < c hX : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ A : ∀ (i : ℝ), StronglyMeasurable (indicator (Set.Ioc (-i) i) id) Y : ℕ → Ω → ℝ := fun n => truncation (X n) ↑n S : ℕ → Ω → ℝ := fun n => ∑ i in range n, Y i hS : S = fun n => ∑ i in range n, Y i u : ℕ → ℕ := fun n => ⌊c ^ n⌋₊ u_mono : Monotone u I1 : ∀ (K : ℕ), ∑ j in range K, (↑j ^ 2)⁻¹ * variance (Y j) ℙ ≤ 2 * ∫ (a : Ω), X 0 a C : ℝ := c ^ 5 * (c - 1)⁻¹ ^ 3 * (2 * ∫ (a : Ω), X 0 a) I2 : ∀ (N : ℕ), ∑ i in range N, (↑(u i) ^ 2)⁻¹ * variance (S (u i)) ℙ ≤ C I3 : ∀ (N : ℕ), ∑ i in range N, ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} ≤ ENNReal.ofReal (ε⁻¹ ^ 2 * C) I4 : ∑' (i : ℕ), ↑↑ℙ {ω | ↑(u i) * ε ≤ |S (u i) ω - ∫ (a : Ω), S (u i) a|} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, |∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) ω - ∫ (a : Ω), ∑ c in range ⌊c ^ n⌋₊, truncation (X c) (↑c) a| < ε * ↑⌊c ^ n⌋₊ x✝¹ : ℕ x✝ : Ω ⊢ Finset.sum (range ⌊c ^ x✝¹⌋₊) (fun n => truncation (X n) ↑n) x✝ = ∑ c in range ⌊c ^ x✝¹⌋₊, truncation (X c) (↑c) x✝ [PROOFSTEP] simp only [sum_apply] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] obtain ⟨v, -, v_pos, v_lim⟩ : ∃ v : ℕ → ℝ, StrictAnti v ∧ (∀ n : ℕ, 0 < v n) ∧ Tendsto v atTop (𝓝 0) := exists_seq_strictAnti_tendsto (0 : ℝ) [GOAL] case intro.intro.intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] have := fun i => strong_law_aux1 X hint hindep hident hnonneg c_one (v_pos i) [GOAL] case intro.intro.intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] filter_upwards [ae_all_iff.2 this] with ω hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] apply Asymptotics.isLittleO_iff.2 fun ε εpos => ?_ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ε : ℝ εpos : 0 < ε ⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ x⌋₊) (fun i => truncation (X i) ↑i) a‖ ≤ ε * ‖↑⌊c ^ x⌋₊‖ [PROOFSTEP] obtain ⟨i, hi⟩ : ∃ i, v i < ε := ((tendsto_order.1 v_lim).2 ε εpos).exists [GOAL] case intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ε : ℝ εpos : 0 < ε i : ℕ hi : v i < ε ⊢ ∀ᶠ (x : ℕ) in atTop, ‖∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ x⌋₊) (fun i => truncation (X i) ↑i) a‖ ≤ ε * ‖↑⌊c ^ x⌋₊‖ [PROOFSTEP] filter_upwards [hω i] with n hn [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ε : ℝ εpos : 0 < ε i : ℕ hi : v i < ε n : ℕ hn : |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ⊢ ‖∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a‖ ≤ ε * ‖↑⌊c ^ n⌋₊‖ [PROOFSTEP] simp only [Real.norm_eq_abs, LatticeOrderedGroup.abs_abs, Nat.abs_cast] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c v : ℕ → ℝ v_pos : ∀ (n : ℕ), 0 < v n v_lim : Tendsto v atTop (𝓝 0) this : ∀ (i : ℕ), ∀ᵐ (ω : Ω), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ω : Ω hω : ∀ (i : ℕ), ∀ᶠ (n : ℕ) in atTop, |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ε : ℝ εpos : 0 < ε i : ℕ hi : v i < ε n : ℕ hn : |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| < v i * ↑⌊c ^ n⌋₊ ⊢ |∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a| ≤ ε * ↑⌊c ^ n⌋₊ [PROOFSTEP] exact hn.le.trans (mul_le_mul_of_nonneg_right hi.le (Nat.cast_nonneg _)) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ (fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) =o[atTop] Nat.cast [PROOFSTEP] have A : Tendsto (fun i => 𝔼[truncation (X i) i]) atTop (𝓝 𝔼[X 0]) := by convert (tendsto_integral_truncation hint).comp tendsto_nat_cast_atTop_atTop using 1 ext i exact (hident i).truncation.integral_eq [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] convert (tendsto_integral_truncation hint).comp tendsto_nat_cast_atTop_atTop using 1 [GOAL] case h.e'_3 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) = (fun A => ∫ (x : Ω), truncation (X 0) A x) ∘ Nat.cast [PROOFSTEP] ext i [GOAL] case h.e'_3.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω i : ℕ ⊢ ∫ (a : Ω), truncation (X i) (↑i) a = ((fun A => ∫ (x : Ω), truncation (X 0) A x) ∘ Nat.cast) i [PROOFSTEP] exact (hident i).truncation.integral_eq [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a)) ⊢ (fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) =o[atTop] Nat.cast [PROOFSTEP] convert Asymptotics.isLittleO_sum_range_of_tendsto_zero (tendsto_sub_nhds_zero_iff.2 A) using 1 [GOAL] case h.e'_7 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a)) ⊢ (fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) = fun n => ∑ i in range n, ((∫ (a : Ω), truncation (X i) (↑i) a) - ∫ (a : Ω), X 0 a) [PROOFSTEP] ext1 n [GOAL] case h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a)) n : ℕ ⊢ (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a = ∑ i in range n, ((∫ (a : Ω), truncation (X i) (↑i) a) - ∫ (a : Ω), X 0 a) [PROOFSTEP] simp only [sum_sub_distrib, sum_const, card_range, nsmul_eq_mul, sum_apply, sub_left_inj] [GOAL] case h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a)) n : ℕ ⊢ ∫ (a : Ω), ∑ c in range n, truncation (X c) (↑c) a = ∑ x in range n, ∫ (a : Ω), truncation (X x) (↑x) a [PROOFSTEP] rw [integral_finset_sum _ fun i _ => ?_] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : Tendsto (fun i => ∫ (a : Ω), truncation (X i) (↑i) a) atTop (𝓝 (∫ (a : Ω), X 0 a)) n i : ℕ x✝ : i ∈ range n ⊢ Integrable fun a => truncation (X i) (↑i) a [PROOFSTEP] exact ((hident i).symm.integrable_snd hint).1.integrable_truncation [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] filter_upwards [strong_law_aux2 X hint hindep hident hnonneg c_one] with ω hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] have A : Tendsto (fun n : ℕ => ⌊c ^ n⌋₊) atTop atTop := tendsto_nat_floor_atTop.comp (tendsto_pow_atTop_atTop_of_one_lt c_one) [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] convert hω.add ((strong_law_aux3 X hint hident).comp_tendsto A) using 1 [GOAL] case h.e'_7 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) = fun x => (∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ x⌋₊) (fun i => truncation (X i) ↑i) a) + ((fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) ∘ fun n => ⌊c ^ n⌋₊) x [PROOFSTEP] ext1 n [GOAL] case h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop n : ℕ ⊢ ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a = (∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ∫ (a : Ω), Finset.sum (range ⌊c ^ n⌋₊) (fun i => truncation (X i) ↑i) a) + ((fun n => (∫ (a : Ω), Finset.sum (range n) (fun i => truncation (X i) ↑i) a) - ↑n * ∫ (a : Ω), X 0 a) ∘ fun n => ⌊c ^ n⌋₊) n [PROOFSTEP] simp [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n [PROOFSTEP] have A : (∑' j : ℕ, ℙ {ω | X j ω ∈ Set.Ioi (j : ℝ)}) < ∞ := by convert tsum_prob_mem_Ioi_lt_top hint (hnonneg 0) using 2 ext1 j exact (hident j).measure_mem_eq measurableSet_Ioi [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ [PROOFSTEP] convert tsum_prob_mem_Ioi_lt_top hint (hnonneg 0) using 2 [GOAL] case h.e'_3.h.e'_5 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ (fun j => ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j}) = fun j => ↑↑ℙ {ω | X 0 ω ∈ Set.Ioi ↑j} [PROOFSTEP] ext1 j [GOAL] case h.e'_3.h.e'_5.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω j : ℕ ⊢ ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} = ↑↑ℙ {ω | X 0 ω ∈ Set.Ioi ↑j} [PROOFSTEP] exact (hident j).measure_mem_eq measurableSet_Ioi [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n [PROOFSTEP] have B : ∀ᵐ ω, Tendsto (fun n : ℕ => truncation (X n) n ω - X n ω) atTop (𝓝 0) := by filter_upwards [ae_eventually_not_mem A.ne] with ω hω apply tendsto_const_nhds.congr' _ filter_upwards [hω, Ioi_mem_atTop 0] with n hn npos simp only [truncation, indicator, Set.mem_Ioc, id.def, Function.comp_apply] split_ifs with h · exact (sub_self _).symm · have : -(n : ℝ) < X n ω := by apply lt_of_lt_of_le _ (hnonneg n ω) simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos simp only [this, true_and_iff, not_le] at h exact (hn h).elim [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) [PROOFSTEP] filter_upwards [ae_eventually_not_mem A.ne] with ω hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n ⊢ Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) [PROOFSTEP] apply tendsto_const_nhds.congr' _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n ⊢ (fun x => 0) =ᶠ[atTop] fun n => truncation (X n) (↑n) ω - X n ω [PROOFSTEP] filter_upwards [hω, Ioi_mem_atTop 0] with n hn npos [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 ⊢ 0 = truncation (X n) (↑n) ω - X n ω [PROOFSTEP] simp only [truncation, indicator, Set.mem_Ioc, id.def, Function.comp_apply] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 ⊢ 0 = (if -↑n < X n ω ∧ X n ω ≤ ↑n then X n ω else 0) - X n ω [PROOFSTEP] split_ifs with h [GOAL] case pos Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : -↑n < X n ω ∧ X n ω ≤ ↑n ⊢ 0 = X n ω - X n ω [PROOFSTEP] exact (sub_self _).symm [GOAL] case neg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) ⊢ 0 = 0 - X n ω [PROOFSTEP] have : -(n : ℝ) < X n ω := by apply lt_of_lt_of_le _ (hnonneg n ω) simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) ⊢ -↑n < X n ω [PROOFSTEP] apply lt_of_lt_of_le _ (hnonneg n ω) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) ⊢ -↑n < 0 [PROOFSTEP] simpa only [Right.neg_neg_iff, Nat.cast_pos] using npos [GOAL] case neg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 h : ¬(-↑n < X n ω ∧ X n ω ≤ ↑n) this : -↑n < X n ω ⊢ 0 = 0 - X n ω [PROOFSTEP] simp only [this, true_and_iff, not_le] at h [GOAL] case neg Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ ω : Ω hω : ∀ᶠ (n : ℕ) in atTop, ¬X n ω ∈ Set.Ioi ↑n n : ℕ hn : ¬X n ω ∈ Set.Ioi ↑n npos : n ∈ Set.Ioi 0 this : -↑n < X n ω h : ↑n < X n ω ⊢ 0 = 0 - X n ω [PROOFSTEP] exact (hn h).elim [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) ⊢ ∀ᵐ (ω : Ω), (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n [PROOFSTEP] filter_upwards [B] with ω hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) ω : Ω hω : Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) ⊢ (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n [PROOFSTEP] convert isLittleO_sum_range_of_tendsto_zero hω using 1 [GOAL] case h.e'_7 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) ω : Ω hω : Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) ⊢ (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) = fun n => ∑ i in range n, (truncation (X i) (↑i) ω - X i ω) [PROOFSTEP] ext n [GOAL] case h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω A : ∑' (j : ℕ), ↑↑ℙ {ω | X j ω ∈ Set.Ioi ↑j} < ⊤ B : ∀ᵐ (ω : Ω), Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) ω : Ω hω : Tendsto (fun n => truncation (X n) (↑n) ω - X n ω) atTop (𝓝 0) n : ℕ ⊢ ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω = ∑ i in range n, (truncation (X i) (↑i) ω - X i ω) [PROOFSTEP] rw [sum_sub_distrib] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] have H : ∀ n : ℕ, (0 : ℝ) < ⌊c ^ n⌋₊ := by intro n refine' zero_lt_one.trans_le _ simp only [Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow_of_one_le c_one.le n] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c ⊢ ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ [PROOFSTEP] intro n [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c n : ℕ ⊢ 0 < ↑⌊c ^ n⌋₊ [PROOFSTEP] refine' zero_lt_one.trans_le _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c n : ℕ ⊢ 1 ≤ ↑⌊c ^ n⌋₊ [PROOFSTEP] simp only [Nat.one_le_cast, Nat.one_le_floor_iff, one_le_pow_of_one_le c_one.le n] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] filter_upwards [strong_law_aux4 X hint hindep hident hnonneg c_one, strong_law_aux5 X hint hident hnonneg] with ω hω h'ω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n ⊢ Tendsto (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] rw [← tendsto_sub_nhds_zero_iff, ← Asymptotics.isLittleO_one_iff ℝ] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n ⊢ (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a) =o[atTop] fun _x => 1 [PROOFSTEP] have L : (fun n : ℕ => ∑ i in range ⌊c ^ n⌋₊, X i ω - ⌊c ^ n⌋₊ * 𝔼[X 0]) =o[atTop] fun n => (⌊c ^ n⌋₊ : ℝ) := by have A : Tendsto (fun n : ℕ => ⌊c ^ n⌋₊) atTop atTop := tendsto_nat_floor_atTop.comp (tendsto_pow_atTop_atTop_of_one_lt c_one) convert hω.sub (h'ω.comp_tendsto A) using 1 ext1 n simp only [Function.comp_apply, sub_sub_sub_cancel_left] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] have A : Tendsto (fun n : ℕ => ⌊c ^ n⌋₊) atTop atTop := tendsto_nat_floor_atTop.comp (tendsto_pow_atTop_atTop_of_one_lt c_one) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ [PROOFSTEP] convert hω.sub (h'ω.comp_tendsto A) using 1 [GOAL] case h.e'_7 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop ⊢ (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) = fun x => (∑ i in range ⌊c ^ x⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ x⌋₊ * ∫ (a : Ω), X 0 a) - ((fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) ∘ fun n => ⌊c ^ n⌋₊) x [PROOFSTEP] ext1 n [GOAL] case h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n A : Tendsto (fun n => ⌊c ^ n⌋₊) atTop atTop n : ℕ ⊢ ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a = (∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) - ((fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) ∘ fun n => ⌊c ^ n⌋₊) n [PROOFSTEP] simp only [Function.comp_apply, sub_sub_sub_cancel_left] [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ ⊢ (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a) =o[atTop] fun _x => 1 [PROOFSTEP] convert L.mul_isBigO (isBigO_refl (fun n : ℕ => (⌊c ^ n⌋₊ : ℝ)⁻¹) atTop) using 1 [GOAL] case h.e'_7 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ ⊢ (fun n => (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a) = fun x => (∑ i in range ⌊c ^ x⌋₊, X i ω - ↑⌊c ^ x⌋₊ * ∫ (a : Ω), X 0 a) * (↑⌊c ^ x⌋₊)⁻¹ [PROOFSTEP] ext1 n [GOAL] case h.e'_7.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ n : ℕ ⊢ (∑ i in range ⌊c ^ n⌋₊, X i ω) / ↑⌊c ^ n⌋₊ - ∫ (a : Ω), X 0 a = (∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) * (↑⌊c ^ n⌋₊)⁻¹ [PROOFSTEP] field_simp [(H n).ne'] [GOAL] case h.e'_8 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ ⊢ (fun _x => 1) = fun x => ↑⌊c ^ x⌋₊ * (↑⌊c ^ x⌋₊)⁻¹ [PROOFSTEP] ext1 n [GOAL] case h.e'_8.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℝ c_one : 1 < c H : ∀ (n : ℕ), 0 < ↑⌊c ^ n⌋₊ ω : Ω hω : (fun n => ∑ i in range ⌊c ^ n⌋₊, truncation (X i) (↑i) ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ h'ω : (fun n => ∑ i in range n, truncation (X i) (↑i) ω - ∑ i in range n, X i ω) =o[atTop] fun n => ↑n L : (fun n => ∑ i in range ⌊c ^ n⌋₊, X i ω - ↑⌊c ^ n⌋₊ * ∫ (a : Ω), X 0 a) =o[atTop] fun n => ↑⌊c ^ n⌋₊ n : ℕ ⊢ 1 = ↑⌊c ^ n⌋₊ * (↑⌊c ^ n⌋₊)⁻¹ [PROOFSTEP] field_simp [(H n).ne'] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] obtain ⟨c, -, cone, clim⟩ : ∃ c : ℕ → ℝ, StrictAnti c ∧ (∀ n : ℕ, 1 < c n) ∧ Tendsto c atTop (𝓝 1) := exists_seq_strictAnti_tendsto (1 : ℝ) [GOAL] case intro.intro.intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℕ → ℝ cone : ∀ (n : ℕ), 1 < c n clim : Tendsto c atTop (𝓝 1) ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] have : ∀ k, ∀ᵐ ω, Tendsto (fun n : ℕ => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ⌊c k ^ n⌋₊) atTop (𝓝 𝔼[X 0]) := fun k => strong_law_aux6 X hint hindep hident hnonneg (cone k) [GOAL] case intro.intro.intro Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℕ → ℝ cone : ∀ (n : ℕ), 1 < c n clim : Tendsto c atTop (𝓝 1) this : ∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] filter_upwards [ae_all_iff.2 this] with ω hω [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℕ → ℝ cone : ∀ (n : ℕ), 1 < c n clim : Tendsto c atTop (𝓝 1) this : ∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ω : Ω hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ⊢ Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] apply tendsto_div_of_monotone_of_tendsto_div_floor_pow _ _ _ c cone clim _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℕ → ℝ cone : ∀ (n : ℕ), 1 < c n clim : Tendsto c atTop (𝓝 1) this : ∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ω : Ω hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ⊢ Monotone fun n => ∑ i in range n, X i ω [PROOFSTEP] intro m n hmn [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℕ → ℝ cone : ∀ (n : ℕ), 1 < c n clim : Tendsto c atTop (𝓝 1) this : ∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ω : Ω hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) m n : ℕ hmn : m ≤ n ⊢ (fun n => ∑ i in range n, X i ω) m ≤ (fun n => ∑ i in range n, X i ω) n [PROOFSTEP] exact sum_le_sum_of_subset_of_nonneg (range_mono hmn) fun i _ _ => hnonneg i ω [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hnonneg : ∀ (i : ℕ) (ω : Ω), 0 ≤ X i ω c : ℕ → ℝ cone : ∀ (n : ℕ), 1 < c n clim : Tendsto c atTop (𝓝 1) this : ∀ (k : ℕ), ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ω : Ω hω : ∀ (i : ℕ), Tendsto (fun n => (∑ i in range ⌊c i ^ n⌋₊, X i ω) / ↑⌊c i ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) ⊢ ∀ (k : ℕ), Tendsto (fun n => (∑ i in range ⌊c k ^ n⌋₊, X i ω) / ↑⌊c k ^ n⌋₊) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] exact hω [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] let pos : ℝ → ℝ := fun x => max x 0 [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] let neg : ℝ → ℝ := fun x => max (-x) 0 [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] have posm : Measurable pos := measurable_id'.max measurable_const [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] have negm : Measurable neg := measurable_id'.neg.max measurable_const [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] have A : ∀ᵐ ω, Tendsto (fun n : ℕ => (∑ i in range n, (pos ∘ X i) ω) / n) atTop (𝓝 𝔼[pos ∘ X 0]) := strong_law_aux7 _ hint.pos_part (fun i j hij => (hindep hij).comp posm posm) (fun i => (hident i).comp posm) fun i ω => le_max_right _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a)) ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] have B : ∀ᵐ ω, Tendsto (fun n : ℕ => (∑ i in range n, (neg ∘ X i) ω) / n) atTop (𝓝 𝔼[neg ∘ X 0]) := strong_law_aux7 _ hint.neg_part (fun i j hij => (hindep hij).comp negm negm) (fun i => (hident i).comp negm) fun i ω => le_max_right _ _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a)) B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a)) ⊢ ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] filter_upwards [A, B] with ω hωpos hωneg [GOAL] case h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a)) B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a)) ω : Ω hωpos : Tendsto (fun n => (∑ i in range n, ((fun x => max x 0) ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a)) hωneg : Tendsto (fun n => (∑ i in range n, ((fun x => max (-x) 0) ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a)) ⊢ Tendsto (fun n => (∑ i in range n, X i ω) / ↑n) atTop (𝓝 (∫ (a : Ω), X 0 a)) [PROOFSTEP] convert hωpos.sub hωneg using 1 [GOAL] case h.e'_3 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a)) B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a)) ω : Ω hωpos : Tendsto (fun n => (∑ i in range n, ((fun x => max x 0) ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a)) hωneg : Tendsto (fun n => (∑ i in range n, ((fun x => max (-x) 0) ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a)) ⊢ (fun n => (∑ i in range n, X i ω) / ↑n) = fun x => (∑ i in range x, ((fun x => max x 0) ∘ X i) ω) / ↑x - (∑ i in range x, ((fun x => max (-x) 0) ∘ X i) ω) / ↑x [PROOFSTEP] simp only [← sub_div, ← sum_sub_distrib, max_zero_sub_max_neg_zero_eq_self, Function.comp_apply] [GOAL] case h.e'_5 Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ X : ℕ → Ω → ℝ hint : Integrable (X 0) hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) pos : ℝ → ℝ := fun x => max x 0 neg : ℝ → ℝ := fun x => max (-x) 0 posm : Measurable pos negm : Measurable neg A : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (pos ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (pos ∘ X 0) a)) B : ∀ᵐ (ω : Ω), Tendsto (fun n => (∑ i in range n, (neg ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), (neg ∘ X 0) a)) ω : Ω hωpos : Tendsto (fun n => (∑ i in range n, ((fun x => max x 0) ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a)) hωneg : Tendsto (fun n => (∑ i in range n, ((fun x => max (-x) 0) ∘ X i) ω) / ↑n) atTop (𝓝 (∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a)) ⊢ 𝓝 (∫ (a : Ω), X 0 a) = 𝓝 ((∫ (a : Ω), ((fun x => max x 0) ∘ X 0) a) - ∫ (a : Ω), ((fun x => max (-x) 0) ∘ X 0) a) [PROOFSTEP] simp only [← integral_sub hint.pos_part hint.neg_part, max_zero_sub_max_neg_zero_eq_self, Function.comp_apply] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) ⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0) [PROOFSTEP] have hmeas : ∀ i, AEStronglyMeasurable (X i) ℙ := fun i => (hident i).aestronglyMeasurable_iff.2 hℒp.1 [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ ⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0) [PROOFSTEP] have hint : Integrable (X 0) ℙ := hℒp.integrable hp [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) ⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0) [PROOFSTEP] have havg : ∀ n, AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / n) ℙ := by intro n simp_rw [div_eq_mul_inv] exact AEStronglyMeasurable.mul_const (aestronglyMeasurable_sum _ fun i _ => hmeas i) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) ⊢ ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ [PROOFSTEP] intro n [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) n : ℕ ⊢ AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ [PROOFSTEP] simp_rw [div_eq_mul_inv] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) n : ℕ ⊢ AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) * (↑n)⁻¹) ℙ [PROOFSTEP] exact AEStronglyMeasurable.mul_const (aestronglyMeasurable_sum _ fun i _ => hmeas i) _ [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ ⊢ Tendsto (fun n => snorm (fun ω => (∑ i in range n, X i ω) / ↑n - ∫ (a : Ω), X 0 a) p ℙ) atTop (𝓝 0) [PROOFSTEP] refine' tendsto_Lp_of_tendstoInMeasure _ hp hp' havg (memℒp_const _) _ (tendstoInMeasure_of_tendsto_ae havg (strong_law_ae _ hint hindep hident)) [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ ⊢ UnifIntegrable (fun n ω => (∑ i in range n, X i ω) / ↑n) p ℙ [PROOFSTEP] rw [(_ : (fun n ω => (∑ i in range n, X i ω) / ↑n) = fun n => (∑ i in range n, X i) / ↑n)] [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ ⊢ UnifIntegrable (fun n => (∑ i in range n, X i) / ↑n) p ℙ [PROOFSTEP] exact (uniformIntegrable_average hp <| Memℒp.uniformIntegrable_of_identDistrib hp hp' hℒp hident).2.1 [GOAL] Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ ⊢ (fun n ω => (∑ i in range n, X i ω) / ↑n) = fun n => (∑ i in range n, X i) / ↑n [PROOFSTEP] ext n ω [GOAL] case h.h Ω : Type u_1 inst✝¹ : MeasureSpace Ω inst✝ : IsProbabilityMeasure ℙ p : ℝ≥0∞ hp : 1 ≤ p hp' : p ≠ ⊤ X : ℕ → Ω → ℝ hℒp : Memℒp (X 0) p hindep : Pairwise fun i j => IndepFun (X i) (X j) hident : ∀ (i : ℕ), IdentDistrib (X i) (X 0) hmeas : ∀ (i : ℕ), AEStronglyMeasurable (X i) ℙ hint : Integrable (X 0) havg : ∀ (n : ℕ), AEStronglyMeasurable (fun ω => (∑ i in range n, X i ω) / ↑n) ℙ n : ℕ ω : Ω ⊢ (∑ i in range n, X i ω) / ↑n = ((∑ i in range n, X i) / ↑n) ω [PROOFSTEP] simp only [Pi.coe_nat, Pi.div_apply, sum_apply]
{"mathlib_filename": "Mathlib.Probability.StrongLaw", "llama_tokens": 125319}
[GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ✝ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f g : ι → Ω → E ℱ✝ ℱ : Filtration ι m0 μ : Measure Ω inst✝ : IsFiniteMeasure μ x : E i j : ι x✝ : i ≤ j ⊢ μ[(fun x_1 x_2 => x) j|↑ℱ i] =ᵐ[μ] (fun x_1 x_2 => x) i [PROOFSTEP] rw [condexp_const (ℱ.le _)] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ✝ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ✝ : Filtration ι m0 inst✝¹ : OrderBot ι ℱ : Filtration ι m0 μ : Measure Ω inst✝ : IsFiniteMeasure μ f : Ω → E hf : StronglyMeasurable f hfint : Integrable f ⊢ Martingale (fun x => f) ℱ μ [PROOFSTEP] refine' ⟨fun i => hf.mono <| ℱ.mono bot_le, fun i j _ => _⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ✝ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ✝ : Filtration ι m0 inst✝¹ : OrderBot ι ℱ : Filtration ι m0 μ : Measure Ω inst✝ : IsFiniteMeasure μ f : Ω → E hf : StronglyMeasurable f hfint : Integrable f i j : ι x✝ : i ≤ j ⊢ μ[(fun x => f) j|↑ℱ i] =ᵐ[μ] (fun x => f) i [PROOFSTEP] rw [condexp_of_stronglyMeasurable (ℱ.le _) (hf.mono <| ℱ.mono bot_le) hfint] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ✝ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ✝ ℱ : Filtration ι m0 μ : Measure Ω i j : ι x✝ : i ≤ j ⊢ μ[OfNat.ofNat 0 j|↑ℱ i] =ᵐ[μ] OfNat.ofNat 0 i [PROOFSTEP] rw [Pi.zero_apply, condexp_zero] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ✝ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ✝ ℱ : Filtration ι m0 μ : Measure Ω i j : ι x✝ : i ≤ j ⊢ 0 =ᵐ[μ] OfNat.ofNat 0 i [PROOFSTEP] simp [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ✝ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ✝ ℱ : Filtration ι m0 μ : Measure Ω i j : ι x✝ : i ≤ j ⊢ 0 =ᵐ[μ] 0 [PROOFSTEP] rfl [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ hf : Martingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ = ∫ (ω : Ω) in s, f j ω ∂μ [PROOFSTEP] rw [← @set_integral_condexp _ _ _ _ _ (ℱ i) m0 _ _ _ (ℱ.le i) _ (hf.integrable j) hs] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ hf : Martingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ = ∫ (x : Ω) in s, (μ[f j|↑ℱ i]) x ∂μ [PROOFSTEP] refine' set_integral_congr_ae (ℱ.le i s hs) _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ hf : Martingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∀ᵐ (x : Ω) ∂μ, x ∈ s → f i x = (μ[f j|↑ℱ i]) x [PROOFSTEP] filter_upwards [hf.2 i j hij] with _ heq _ using heq.symm [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 hf : Martingale f ℱ μ hg : Martingale g ℱ μ ⊢ Martingale (f + g) ℱ μ [PROOFSTEP] refine' ⟨hf.adapted.add hg.adapted, fun i j hij => _⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 hf : Martingale f ℱ μ hg : Martingale g ℱ μ i j : ι hij : i ≤ j ⊢ μ[(f + g) j|↑ℱ i] =ᵐ[μ] (f + g) i [PROOFSTEP] exact (condexp_add (hf.integrable j) (hg.integrable j)).trans ((hf.2 i j hij).add (hg.2 i j hij)) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 hf : Martingale f ℱ μ hg : Martingale g ℱ μ ⊢ Martingale (f - g) ℱ μ [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 hf : Martingale f ℱ μ hg : Martingale g ℱ μ ⊢ Martingale (f + -g) ℱ μ [PROOFSTEP] exact hf.add hg.neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 c : ℝ hf : Martingale f ℱ μ ⊢ Martingale (c • f) ℱ μ [PROOFSTEP] refine' ⟨hf.adapted.smul c, fun i j hij => _⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 c : ℝ hf : Martingale f ℱ μ i j : ι hij : i ≤ j ⊢ μ[(c • f) j|↑ℱ i] =ᵐ[μ] (c • f) i [PROOFSTEP] refine' (condexp_smul c (f j)).trans ((hf.2 i j hij).mono fun x hx => _) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 c : ℝ hf : Martingale f ℱ μ i j : ι hij : i ≤ j x : Ω hx : (μ[f j|↑ℱ i]) x = f i x ⊢ (c • μ[f j|↑ℱ i]) x = (c • f) i x [PROOFSTEP] rw [Pi.smul_apply, hx, Pi.smul_apply, Pi.smul_apply] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ f : ι → Ω → ℝ hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f j ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ [PROOFSTEP] rw [← set_integral_condexp (ℱ.le i) (hf.integrable j) hs] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ f : ι → Ω → ℝ hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (x : Ω) in s, (μ[f j|↑ℱ i]) x ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ [PROOFSTEP] refine' set_integral_mono_ae integrable_condexp.integrableOn (hf.integrable i).integrableOn _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ f : ι → Ω → ℝ hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ (fun x => (μ[f j|↑ℱ i]) x) ≤ᵐ[μ] fun ω => f i ω [PROOFSTEP] filter_upwards [hf.2.1 i j hij] with _ heq using heq [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ ⊢ Supermartingale (f + g) ℱ μ [PROOFSTEP] refine' ⟨hf.1.add hg.1, fun i j hij => _, fun i => (hf.2.2 i).add (hg.2.2 i)⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ i j : ι hij : i ≤ j ⊢ μ[(f + g) j|↑ℱ i] ≤ᵐ[μ] (f + g) i [PROOFSTEP] refine' (condexp_add (hf.integrable j) (hg.integrable j)).le.trans _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ i j : ι hij : i ≤ j ⊢ μ[f j|↑ℱ i] + μ[g j|↑ℱ i] ≤ᵐ[μ] (f + g) i [PROOFSTEP] filter_upwards [hf.2.1 i j hij, hg.2.1 i j hij] [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ i j : ι hij : i ≤ j ⊢ ∀ (a : Ω), (μ[f j|↑ℱ i]) a ≤ f i a → (μ[g j|↑ℱ i]) a ≤ g i a → (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a ≤ (f + g) i a [PROOFSTEP] intros [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ i j : ι hij : i ≤ j a✝² : Ω a✝¹ : (μ[f j|↑ℱ i]) a✝² ≤ f i a✝² a✝ : (μ[g j|↑ℱ i]) a✝² ≤ g i a✝² ⊢ (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a✝² ≤ (f + g) i a✝² [PROOFSTEP] refine' add_le_add _ _ [GOAL] case h.refine'_1 Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ i j : ι hij : i ≤ j a✝² : Ω a✝¹ : (μ[f j|↑ℱ i]) a✝² ≤ f i a✝² a✝ : (μ[g j|↑ℱ i]) a✝² ≤ g i a✝² ⊢ (μ[f j|↑ℱ i]) a✝² ≤ f i a✝² [PROOFSTEP] assumption [GOAL] case h.refine'_2 Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Supermartingale g ℱ μ i j : ι hij : i ≤ j a✝² : Ω a✝¹ : (μ[f j|↑ℱ i]) a✝² ≤ f i a✝² a✝ : (μ[g j|↑ℱ i]) a✝² ≤ g i a✝² ⊢ (μ[g j|↑ℱ i]) a✝² ≤ g i a✝² [PROOFSTEP] assumption [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ ⊢ Submartingale (-f) ℱ μ [PROOFSTEP] refine' ⟨hf.1.neg, fun i j hij => _, fun i => (hf.2.2 i).neg⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j ⊢ (-f) i ≤ᵐ[μ] μ[(-f) j|↑ℱ i] [PROOFSTEP] refine' EventuallyLE.trans _ (condexp_neg (f j)).symm.le [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j ⊢ (-f) i ≤ᵐ[μ] -μ[f j|↑ℱ i] [PROOFSTEP] filter_upwards [hf.2.1 i j hij] with _ _ [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j a✝¹ : Ω a✝ : (μ[f j|↑ℱ i]) a✝¹ ≤ f i a✝¹ ⊢ (-f) i a✝¹ ≤ (-μ[f j|↑ℱ i]) a✝¹ [PROOFSTEP] simpa [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ ⊢ Submartingale (f + g) ℱ μ [PROOFSTEP] refine' ⟨hf.1.add hg.1, fun i j hij => _, fun i => (hf.2.2 i).add (hg.2.2 i)⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j ⊢ (f + g) i ≤ᵐ[μ] μ[(f + g) j|↑ℱ i] [PROOFSTEP] refine' EventuallyLE.trans _ (condexp_add (hf.integrable j) (hg.integrable j)).symm.le [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j ⊢ (f + g) i ≤ᵐ[μ] μ[f j|↑ℱ i] + μ[g j|↑ℱ i] [PROOFSTEP] filter_upwards [hf.2.1 i j hij, hg.2.1 i j hij] [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j ⊢ ∀ (a : Ω), f i a ≤ (μ[f j|↑ℱ i]) a → g i a ≤ (μ[g j|↑ℱ i]) a → (f + g) i a ≤ (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a [PROOFSTEP] intros [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j a✝² : Ω a✝¹ : f i a✝² ≤ (μ[f j|↑ℱ i]) a✝² a✝ : g i a✝² ≤ (μ[g j|↑ℱ i]) a✝² ⊢ (f + g) i a✝² ≤ (μ[f j|↑ℱ i] + μ[g j|↑ℱ i]) a✝² [PROOFSTEP] refine' add_le_add _ _ [GOAL] case h.refine'_1 Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j a✝² : Ω a✝¹ : f i a✝² ≤ (μ[f j|↑ℱ i]) a✝² a✝ : g i a✝² ≤ (μ[g j|↑ℱ i]) a✝² ⊢ f i a✝² ≤ (μ[f j|↑ℱ i]) a✝² [PROOFSTEP] assumption [GOAL] case h.refine'_2 Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j a✝² : Ω a✝¹ : f i a✝² ≤ (μ[f j|↑ℱ i]) a✝² a✝ : g i a✝² ≤ (μ[g j|↑ℱ i]) a✝² ⊢ g i a✝² ≤ (μ[g j|↑ℱ i]) a✝² [PROOFSTEP] assumption [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ ⊢ Supermartingale (-f) ℱ μ [PROOFSTEP] refine' ⟨hf.1.neg, fun i j hij => (condexp_neg (f j)).le.trans _, fun i => (hf.2.2 i).neg⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ i j : ι hij : i ≤ j ⊢ -μ[f j|↑ℱ i] ≤ᵐ[μ] (-f) i [PROOFSTEP] filter_upwards [hf.2.1 i j hij] with _ _ [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ i j : ι hij : i ≤ j a✝¹ : Ω a✝ : f i a✝¹ ≤ (μ[f j|↑ℱ i]) a✝¹ ⊢ (-μ[f j|↑ℱ i]) a✝¹ ≤ (-f) i a✝¹ [PROOFSTEP] simpa [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ [PROOFSTEP] rw [← neg_le_neg_iff, ← integral_neg, ← integral_neg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : SigmaFiniteFiltration μ ℱ f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (a : Ω) in s, -f j a ∂μ ≤ ∫ (a : Ω) in s, -f i a ∂μ [PROOFSTEP] exact Supermartingale.set_integral_le hf.neg hij hs [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Supermartingale g ℱ μ ⊢ Submartingale (f - g) ℱ μ [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Submartingale f ℱ μ hg : Supermartingale g ℱ μ ⊢ Submartingale (f + -g) ℱ μ [PROOFSTEP] exact hf.add hg.neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g✝ : ι → Ω → E ℱ : Filtration ι m0 f g : ι → Ω → ℝ hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ ⊢ Submartingale (f ⊔ g) ℱ μ [PROOFSTEP] refine' ⟨fun i => @StronglyMeasurable.sup _ _ _ _ (ℱ i) _ _ _ (hf.adapted i) (hg.adapted i), fun i j hij => _, fun i => Integrable.sup (hf.integrable _) (hg.integrable _)⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g✝ : ι → Ω → E ℱ : Filtration ι m0 f g : ι → Ω → ℝ hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j ⊢ (f ⊔ g) i ≤ᵐ[μ] μ[(f ⊔ g) j|↑ℱ i] [PROOFSTEP] refine' EventuallyLE.sup_le _ _ [GOAL] case refine'_1 Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g✝ : ι → Ω → E ℱ : Filtration ι m0 f g : ι → Ω → ℝ hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j ⊢ (fun i_1 => f i i_1) ≤ᵐ[μ] μ[(f ⊔ g) j|↑ℱ i] [PROOFSTEP] exact EventuallyLE.trans (hf.2.1 i j hij) (condexp_mono (hf.integrable _) (Integrable.sup (hf.integrable j) (hg.integrable j)) (eventually_of_forall fun x => le_max_left _ _)) [GOAL] case refine'_2 Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g✝ : ι → Ω → E ℱ : Filtration ι m0 f g : ι → Ω → ℝ hf : Submartingale f ℱ μ hg : Submartingale g ℱ μ i j : ι hij : i ≤ j ⊢ (fun i_1 => g i i_1) ≤ᵐ[μ] μ[(f ⊔ g) j|↑ℱ i] [PROOFSTEP] exact EventuallyLE.trans (hg.2.1 i j hij) (condexp_mono (hg.integrable _) (Integrable.sup (hf.integrable j) (hg.integrable j)) (eventually_of_forall fun x => le_max_right _ _)) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ ⊢ Submartingale f ℱ μ [PROOFSTEP] refine' ⟨hadp, fun i j hij => _, hint⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j ⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i] [PROOFSTEP] suffices f i ≤ᵐ[μ.trim (ℱ.le i)] μ[f j|ℱ i] by exact ae_le_of_ae_le_trim this [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j this : f i ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] ⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i] [PROOFSTEP] exact ae_le_of_ae_le_trim this [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j ⊢ f i ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] [PROOFSTEP] suffices 0 ≤ᵐ[μ.trim (ℱ.le i)] μ[f j|ℱ i] - f i by filter_upwards [this] with x hx rwa [← sub_nonneg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j this : 0 ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] - f i ⊢ f i ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] [PROOFSTEP] filter_upwards [this] with x hx [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j this : 0 ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] - f i x : Ω hx : OfNat.ofNat 0 x ≤ (μ[f j|↑ℱ i] - f i) x ⊢ f i x ≤ (μ[f j|↑ℱ i]) x [PROOFSTEP] rwa [← sub_nonneg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j ⊢ 0 ≤ᵐ[Measure.trim μ (_ : ↑ℱ i ≤ m0)] μ[f j|↑ℱ i] - f i [PROOFSTEP] refine' ae_nonneg_of_forall_set_integral_nonneg ((integrable_condexp.sub (hint i)).trim _ (stronglyMeasurable_condexp.sub <| hadp i)) fun s hs _ => _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → ∀ (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s x✝ : ↑↑(Measure.trim μ (_ : ↑ℱ i ≤ m0)) s < ⊤ ⊢ 0 ≤ ∫ (x : Ω) in s, (μ[f j|↑ℱ i] - f i) x ∂Measure.trim μ (_ : ↑ℱ i ≤ m0) [PROOFSTEP] specialize hf i j hij s hs [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) i j : ι hij : i ≤ j s : Set Ω hs : MeasurableSet s x✝ : ↑↑(Measure.trim μ (_ : ↑ℱ i ≤ m0)) s < ⊤ hf : ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ ⊢ 0 ≤ ∫ (x : Ω) in s, (μ[f j|↑ℱ i] - f i) x ∂Measure.trim μ (_ : ↑ℱ i ≤ m0) [PROOFSTEP] rwa [← set_integral_trim _ (stronglyMeasurable_condexp.sub <| hadp i) hs, integral_sub' integrable_condexp.integrableOn (hint i).integrableOn, sub_nonneg, set_integral_condexp (ℱ.le i) (hint j) hs] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] ⊢ Submartingale f ℱ μ [PROOFSTEP] refine' ⟨hadp, fun i j hij => _, hint⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] i j : ι hij : i ≤ j ⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i] [PROOFSTEP] rw [← condexp_of_stronglyMeasurable (ℱ.le _) (hadp _) (hint _), ← eventually_sub_nonneg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 inst✝ : IsFiniteMeasure μ f : ι → Ω → ℝ hadp : Adapted ℱ f hint : ∀ (i : ι), Integrable (f i) hf : ∀ (i j : ι), i ≤ j → 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] i j : ι hij : i ≤ j ⊢ 0 ≤ᵐ[μ] μ[f j|↑ℱ i] - μ[f i|↑ℱ i] [PROOFSTEP] exact EventuallyLE.trans (hf i j hij) (condexp_sub (hint _) (hint _)).le [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j ⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] [PROOFSTEP] by_cases h : SigmaFinite (μ.trim (ℱ.le i)) [GOAL] case pos Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0)) ⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] case neg Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j h : ¬SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0)) ⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] [PROOFSTEP] swap [GOAL] case neg Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j h : ¬SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0)) ⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] [PROOFSTEP] rw [condexp_of_not_sigmaFinite (ℱ.le i) h] [GOAL] case pos Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0)) ⊢ 0 ≤ᵐ[μ] μ[f j - f i|↑ℱ i] [PROOFSTEP] refine' EventuallyLE.trans _ (condexp_sub (hf.integrable _) (hf.integrable _)).symm.le [GOAL] case pos Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0)) ⊢ 0 ≤ᵐ[μ] μ[f j|↑ℱ i] - μ[f i|↑ℱ i] [PROOFSTEP] rw [eventually_sub_nonneg, condexp_of_stronglyMeasurable (ℱ.le _) (hf.adapted _) (hf.integrable _)] [GOAL] case pos Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝³ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 f : ι → Ω → ℝ hf : Submartingale f ℱ μ i j : ι hij : i ≤ j h : SigmaFinite (Measure.trim μ (_ : ↑ℱ i ≤ m0)) ⊢ f i ≤ᵐ[μ] μ[f j|↑ℱ i] [PROOFSTEP] exact hf.2.1 i j hij [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Submartingale g ℱ μ ⊢ Supermartingale (f - g) ℱ μ [PROOFSTEP] rw [sub_eq_add_neg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f g : ι → Ω → E ℱ : Filtration ι m0 inst✝¹ : Preorder E inst✝ : CovariantClass E E (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1 hf : Supermartingale f ℱ μ hg : Submartingale g ℱ μ ⊢ Supermartingale (f + -g) ℱ μ [PROOFSTEP] exact hf.add hg.neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Supermartingale f ℱ μ ⊢ Supermartingale (c • f) ℱ μ [PROOFSTEP] refine' ⟨hf.1.smul c, fun i j hij => _, fun i => (hf.2.2 i).smul c⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j ⊢ μ[(c • f) j|↑ℱ i] ≤ᵐ[μ] (c • f) i [PROOFSTEP] refine' (condexp_smul c (f j)).le.trans _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j ⊢ c • μ[f j|↑ℱ i] ≤ᵐ[μ] (c • f) i [PROOFSTEP] filter_upwards [hf.2.1 i j hij] with _ hle [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j a✝ : Ω hle : (μ[f j|↑ℱ i]) a✝ ≤ f i a✝ ⊢ (c • μ[f j|↑ℱ i]) a✝ ≤ (c • f) i a✝ [PROOFSTEP] simp_rw [Pi.smul_apply] [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Supermartingale f ℱ μ i j : ι hij : i ≤ j a✝ : Ω hle : (μ[f j|↑ℱ i]) a✝ ≤ f i a✝ ⊢ c • (μ[f j|↑ℱ i]) a✝ ≤ c • f i a✝ [PROOFSTEP] exact smul_le_smul_of_nonneg hle hc [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Supermartingale f ℱ μ ⊢ Submartingale (c • f) ℱ μ [PROOFSTEP] rw [← neg_neg c, (by ext (i x); simp : - -c • f = -(-c • f))] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Supermartingale f ℱ μ ⊢ - -c • f = -(-c • f) [PROOFSTEP] ext (i x) [GOAL] case h.h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Supermartingale f ℱ μ i : ι x : Ω ⊢ (- -c • f) i x = (-(-c • f)) i x [PROOFSTEP] simp [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Supermartingale f ℱ μ ⊢ Submartingale (-(-c • f)) ℱ μ [PROOFSTEP] exact (hf.smul_nonneg <| neg_nonneg.2 hc).neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Submartingale f ℱ μ ⊢ Submartingale (c • f) ℱ μ [PROOFSTEP] rw [← neg_neg c, (by ext (i x); simp : - -c • f = -(c • -f))] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Submartingale f ℱ μ ⊢ - -c • f = -(c • -f) [PROOFSTEP] ext (i x) [GOAL] case h.h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Submartingale f ℱ μ i : ι x : Ω ⊢ (- -c • f) i x = (-(c • -f)) i x [PROOFSTEP] simp [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : 0 ≤ c hf : Submartingale f ℱ μ ⊢ Submartingale (-(c • -f)) ℱ μ [PROOFSTEP] exact Supermartingale.neg (hf.neg.smul_nonneg hc) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Submartingale f ℱ μ ⊢ Supermartingale (c • f) ℱ μ [PROOFSTEP] rw [← neg_neg c, (by ext (i x); simp : - -c • f = -(-c • f))] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Submartingale f ℱ μ ⊢ - -c • f = -(-c • f) [PROOFSTEP] ext (i x) [GOAL] case h.h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Submartingale f ℱ μ i : ι x : Ω ⊢ (- -c • f) i x = (-(-c • f)) i x [PROOFSTEP] simp [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁷ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁶ : NormedAddCommGroup E inst✝⁵ : NormedSpace ℝ E inst✝⁴ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 F : Type u_4 inst✝³ : NormedLatticeAddCommGroup F inst✝² : NormedSpace ℝ F inst✝¹ : CompleteSpace F inst✝ : OrderedSMul ℝ F f : ι → Ω → F c : ℝ hc : c ≤ 0 hf : Submartingale f ℱ μ ⊢ Supermartingale (-(-c • f)) ℱ μ [PROOFSTEP] exact (hf.smul_nonneg <| neg_nonneg.2 hc).neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ⊢ Submartingale f 𝒢 μ [PROOFSTEP] refine' submartingale_of_set_integral_le hadp hint fun i j hij s hs => _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ i j : ℕ hij : i ≤ j s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f j ω ∂μ [PROOFSTEP] induction' hij with k hk₁ hk₂ [GOAL] case refl Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ i j : ℕ s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ [PROOFSTEP] exact le_rfl [GOAL] case step Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ i j : ℕ s : Set Ω hs : MeasurableSet s k : ℕ hk₁ : Nat.le i k hk₂ : ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f k ω ∂μ ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (Nat.succ k) ω ∂μ [PROOFSTEP] exact le_trans hk₂ (hf k s (𝒢.mono hk₁ _ hs)) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ ⊢ Supermartingale f 𝒢 μ [PROOFSTEP] rw [← neg_neg f] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ ⊢ Supermartingale (- -f) 𝒢 μ [PROOFSTEP] refine' (submartingale_of_set_integral_le_succ hadp.neg (fun i => (hint i).neg) _).neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, f (i + 1) ω ∂μ ≤ ∫ (ω : Ω) in s, f i ω ∂μ ⊢ ∀ (i : ℕ) (s : Set Ω), MeasurableSet s → ∫ (ω : Ω) in s, (-f) i ω ∂μ ≤ ∫ (ω : Ω) in s, (-f) (i + 1) ω ∂μ [PROOFSTEP] simpa only [integral_neg, Pi.neg_apply, neg_le_neg_iff] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] ⊢ Submartingale f 𝒢 μ [PROOFSTEP] refine' submartingale_of_set_integral_le_succ hadp hint fun i s hs => _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] i : ℕ s : Set Ω hs : MeasurableSet s ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ [PROOFSTEP] have : ∫ ω in s, f (i + 1) ω ∂μ = ∫ ω in s, (μ[f (i + 1)|𝒢 i]) ω ∂μ := (set_integral_condexp (𝒢.le i) (hint _) hs).symm [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] i : ℕ s : Set Ω hs : MeasurableSet s this : ∫ (ω : Ω) in s, f (i + 1) ω ∂μ = ∫ (ω : Ω) in s, (μ[f (i + 1)|↑𝒢 i]) ω ∂μ ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, f (i + 1) ω ∂μ [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] i : ℕ s : Set Ω hs : MeasurableSet s this : ∫ (ω : Ω) in s, f (i + 1) ω ∂μ = ∫ (ω : Ω) in s, (μ[f (i + 1)|↑𝒢 i]) ω ∂μ ⊢ ∫ (ω : Ω) in s, f i ω ∂μ ≤ ∫ (ω : Ω) in s, (μ[f (i + 1)|↑𝒢 i]) ω ∂μ [PROOFSTEP] exact set_integral_mono_ae (hint i).integrableOn integrable_condexp.integrableOn (hf i) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1)|↑𝒢 i] ≤ᵐ[μ] f i ⊢ Supermartingale f 𝒢 μ [PROOFSTEP] rw [← neg_neg f] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1)|↑𝒢 i] ≤ᵐ[μ] f i ⊢ Supermartingale (- -f) 𝒢 μ [PROOFSTEP] refine' (submartingale_nat hadp.neg (fun i => (hint i).neg) fun i => EventuallyLE.trans _ (condexp_neg _).symm.le).neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1)|↑𝒢 i] ≤ᵐ[μ] f i i : ℕ ⊢ (-f) i ≤ᵐ[μ] -μ[fun i_1 => f (i + 1) i_1|↑𝒢 i] [PROOFSTEP] filter_upwards [hf i] with x hx using neg_le_neg hx [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f (i + 1) - f i|↑𝒢 i] ⊢ Submartingale f 𝒢 μ [PROOFSTEP] refine' submartingale_nat hadp hint fun i => _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f (i + 1) - f i|↑𝒢 i] i : ℕ ⊢ f i ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] [PROOFSTEP] rw [← condexp_of_stronglyMeasurable (𝒢.le _) (hadp _) (hint _), ← eventually_sub_nonneg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f (i + 1) - f i|↑𝒢 i] i : ℕ ⊢ 0 ≤ᵐ[μ] μ[f (i + 1)|↑𝒢 i] - μ[f i|↑𝒢 i] [PROOFSTEP] exact EventuallyLE.trans (hf i) (condexp_sub (hint _) (hint _)).le [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i] ⊢ Supermartingale f 𝒢 μ [PROOFSTEP] rw [← neg_neg f] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i] ⊢ Supermartingale (- -f) 𝒢 μ [PROOFSTEP] refine' (submartingale_of_condexp_sub_nonneg_nat hadp.neg (fun i => (hint i).neg) _).neg [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i] ⊢ ∀ (i : ℕ), 0 ≤ᵐ[μ] μ[(-f) (i + 1) - (-f) i|↑𝒢 i] [PROOFSTEP] simpa only [Pi.zero_apply, Pi.neg_apply, neg_sub_neg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0 ⊢ Martingale f 𝒢 μ [PROOFSTEP] refine' martingale_iff.2 ⟨supermartingale_of_condexp_sub_nonneg_nat hadp hint fun i => _, submartingale_of_condexp_sub_nonneg_nat hadp hint fun i => (hf i).symm.le⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0 i : ℕ ⊢ 0 ≤ᵐ[μ] μ[f i - f (i + 1)|↑𝒢 i] [PROOFSTEP] rw [← neg_sub] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0 i : ℕ ⊢ 0 ≤ᵐ[μ] μ[-(f (i + 1) - f i)|↑𝒢 i] [PROOFSTEP] refine' (EventuallyEq.trans _ (condexp_neg _).symm).le [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0 i : ℕ ⊢ 0 =ᵐ[μ] -μ[f (i + 1) - f i|↑𝒢 i] [PROOFSTEP] filter_upwards [hf i] with x hx [GOAL] case h Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ f : ℕ → Ω → ℝ hadp : Adapted 𝒢 f hint : ∀ (i : ℕ), Integrable (f i) hf : ∀ (i : ℕ), μ[f (i + 1) - f i|↑𝒢 i] =ᵐ[μ] 0 i : ℕ x : Ω hx : (μ[f (i + 1) - f i|↑𝒢 i]) x = OfNat.ofNat 0 x ⊢ OfNat.ofNat 0 x = (-μ[f (i + 1) - f i|↑𝒢 i]) x [PROOFSTEP] simpa only [Pi.zero_apply, Pi.neg_apply, zero_eq_neg] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Submartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) n : ℕ ⊢ f 0 ≤ᵐ[μ] f n [PROOFSTEP] induction' n with k ih [GOAL] case zero Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Submartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) ⊢ f 0 ≤ᵐ[μ] f Nat.zero [PROOFSTEP] rfl [GOAL] case succ Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Submartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) k : ℕ ih : f 0 ≤ᵐ[μ] f k ⊢ f 0 ≤ᵐ[μ] f (Nat.succ k) [PROOFSTEP] exact ih.trans ((hfmgle.2.1 k (k + 1) k.le_succ).trans_eq <| Germ.coe_eq.mp <| congr_arg Germ.ofFun <| condexp_of_stronglyMeasurable (𝒢.le _) (hfadp _) <| hfmgle.integrable _) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Supermartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) n : ℕ ⊢ f n ≤ᵐ[μ] f 0 [PROOFSTEP] induction' n with k ih [GOAL] case zero Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Supermartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) ⊢ f Nat.zero ≤ᵐ[μ] f 0 [PROOFSTEP] rfl [GOAL] case succ Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁵ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝⁴ : NormedAddCommGroup E inst✝³ : NormedSpace ℝ E inst✝² : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝¹ : Preorder E inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Supermartingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) k : ℕ ih : f k ≤ᵐ[μ] f 0 ⊢ f (Nat.succ k) ≤ᵐ[μ] f 0 [PROOFSTEP] exact ((Germ.coe_eq.mp <| congr_arg Germ.ofFun <| condexp_of_stronglyMeasurable (𝒢.le _) (hfadp _) <| hfmgle.integrable _).symm.trans_le (hfmgle.2.1 k (k + 1) k.le_succ)).trans ih [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Martingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) n : ℕ ⊢ f n =ᵐ[μ] f 0 [PROOFSTEP] induction' n with k ih [GOAL] case zero Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Martingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) ⊢ f Nat.zero =ᵐ[μ] f 0 [PROOFSTEP] rfl [GOAL] case succ Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : SigmaFiniteFiltration μ 𝒢 f : ℕ → Ω → E hfmgle : Martingale f 𝒢 μ hfadp : Adapted 𝒢 fun n => f (n + 1) k : ℕ ih : f k =ᵐ[μ] f 0 ⊢ f (Nat.succ k) =ᵐ[μ] f 0 [PROOFSTEP] exact ((Germ.coe_eq.mp (congr_arg Germ.ofFun <| condexp_of_stronglyMeasurable (𝒢.le _) (hfadp _) (hfmgle.integrable _))).symm.trans (hfmgle.2 k (k + 1) k.le_succ)).trans ih [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω ⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ [PROOFSTEP] have hξbdd : ∀ i, ∃ C, ∀ ω, |ξ i ω| ≤ C := fun i => ⟨R, fun ω => (abs_of_nonneg (hnonneg i ω)).trans_le (hbdd i ω)⟩ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C ⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ [PROOFSTEP] have hint : ∀ m, Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) μ := fun m => integrable_finset_sum' _ fun i _ => Integrable.bdd_mul ((hf.integrable _).sub (hf.integrable _)) hξ.stronglyMeasurable.aestronglyMeasurable (hξbdd _) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) ⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ [PROOFSTEP] have hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k) := by intro m refine' Finset.stronglyMeasurable_sum' _ fun i hi => _ rw [Finset.mem_range] at hi exact (hξ.stronglyMeasurable_le hi.le).mul ((hf.adapted.stronglyMeasurable_le (Nat.succ_le_of_lt hi)).sub (hf.adapted.stronglyMeasurable_le hi.le)) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) ⊢ Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k) [PROOFSTEP] intro m [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) m : ℕ ⊢ StronglyMeasurable ((fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) m) [PROOFSTEP] refine' Finset.stronglyMeasurable_sum' _ fun i hi => _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) m i : ℕ hi : i ∈ Finset.range m ⊢ StronglyMeasurable (ξ i * (f (i + 1) - f i)) [PROOFSTEP] rw [Finset.mem_range] at hi [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) m i : ℕ hi : i < m ⊢ StronglyMeasurable (ξ i * (f (i + 1) - f i)) [PROOFSTEP] exact (hξ.stronglyMeasurable_le hi.le).mul ((hf.adapted.stronglyMeasurable_le (Nat.succ_le_of_lt hi)).sub (hf.adapted.stronglyMeasurable_le hi.le)) [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k) ⊢ Submartingale (fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k)) 𝒢 μ [PROOFSTEP] refine' submartingale_of_condexp_sub_nonneg_nat hadp hint fun i => _ [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k) i : ℕ ⊢ 0 ≤ᵐ[μ] μ[∑ k in Finset.range (i + 1), ξ k * (f (k + 1) - f k) - ∑ k in Finset.range i, ξ k * (f (k + 1) - f k)|↑𝒢 i] [PROOFSTEP] simp only [← Finset.sum_Ico_eq_sub _ (Nat.le_succ _), Finset.sum_apply, Pi.mul_apply, Pi.sub_apply, Nat.Ico_succ_singleton, Finset.sum_singleton] [GOAL] Ω : Type u_1 E : Type u_2 ι : Type u_3 inst✝⁴ : Preorder ι m0 : MeasurableSpace Ω μ : Measure Ω inst✝³ : NormedAddCommGroup E inst✝² : NormedSpace ℝ E inst✝¹ : CompleteSpace E f✝ g : ι → Ω → E ℱ : Filtration ι m0 𝒢 : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ R : ℝ ξ f : ℕ → Ω → ℝ hf : Submartingale f 𝒢 μ hξ : Adapted 𝒢 ξ hbdd : ∀ (n : ℕ) (ω : Ω), ξ n ω ≤ R hnonneg : ∀ (n : ℕ) (ω : Ω), 0 ≤ ξ n ω hξbdd : ∀ (i : ℕ), ∃ C, ∀ (ω : Ω), |ξ i ω| ≤ C hint : ∀ (m : ℕ), Integrable (∑ k in Finset.range m, ξ k * (f (k + 1) - f k)) hadp : Adapted 𝒢 fun n => ∑ k in Finset.range n, ξ k * (f (k + 1) - f k) i : ℕ ⊢ 0 ≤ᵐ[μ] μ[ξ i * (f (i + 1) - f i)|↑𝒢 i] [PROOFSTEP] exact EventuallyLE.trans (EventuallyLE.mul_nonneg (eventually_of_forall (hnonneg _)) (hf.condexp_sub_nonneg (Nat.le_succ _))) (condexp_stronglyMeasurable_mul (hξ _) (((hf.integrable _).sub (hf.integrable _)).bdd_mul hξ.stronglyMeasurable.aestronglyMeasurable (hξbdd _)) ((hf.integrable _).sub (hf.integrable _))).symm.le
{"mathlib_filename": "Mathlib.Probability.Martingale.Basic", "llama_tokens": 37958}
[GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : Preorder ι inst✝¹ : OrderBot ι inst✝ : InfSet ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω ⊢ upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω [PROOFSTEP] rw [upperCrossingTime] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : Preorder ι inst✝¹ : OrderBot ι inst✝ : InfSet ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω✝ ω : Ω ⊢ upperCrossingTime a b f N (n + 1) ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω [PROOFSTEP] simp only [upperCrossingTime_succ] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝² : Preorder ι inst✝¹ : OrderBot ι inst✝ : InfSet ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω✝ ω : Ω ⊢ hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω ⊢ upperCrossingTime a b f N n ω ≤ N [PROOFSTEP] cases n [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι m : ℕ ω : Ω ⊢ upperCrossingTime a b f N Nat.zero ω ≤ N [PROOFSTEP] simp only [upperCrossingTime_zero, Pi.bot_apply, bot_le, Nat.zero_eq] [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι m : ℕ ω : Ω n✝ : ℕ ⊢ upperCrossingTime a b f N (Nat.succ n✝) ω ≤ N [PROOFSTEP] simp only [upperCrossingTime_succ, hitting_le] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω ⊢ lowerCrossingTime a b f N n ω ≤ N [PROOFSTEP] simp only [lowerCrossingTime, hitting_le ω] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω ⊢ upperCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N n ω [PROOFSTEP] simp only [lowerCrossingTime, le_hitting upperCrossingTime_le ω] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω ⊢ lowerCrossingTime a b f N n ω ≤ upperCrossingTime a b f N (n + 1) ω [PROOFSTEP] rw [upperCrossingTime_succ] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω ⊢ lowerCrossingTime a b f N n ω ≤ hitting f (Set.Ici b) (lowerCrossingTimeAux a f (upperCrossingTime a b f N n ω) N ω) N ω [PROOFSTEP] exact le_hitting lowerCrossingTime_le ω [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω hnm : n ≤ m ⊢ lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω [PROOFSTEP] suffices Monotone fun n => lowerCrossingTime a b f N n ω by exact this hnm [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω hnm : n ≤ m this : Monotone fun n => lowerCrossingTime a b f N n ω ⊢ lowerCrossingTime a b f N n ω ≤ lowerCrossingTime a b f N m ω [PROOFSTEP] exact this hnm [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω hnm : n ≤ m ⊢ Monotone fun n => lowerCrossingTime a b f N n ω [PROOFSTEP] exact monotone_nat_of_le_succ fun n => le_trans lowerCrossingTime_le_upperCrossingTime_succ upperCrossingTime_le_lowerCrossingTime [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω hnm : n ≤ m ⊢ upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω [PROOFSTEP] suffices Monotone fun n => upperCrossingTime a b f N n ω by exact this hnm [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω hnm : n ≤ m this : Monotone fun n => upperCrossingTime a b f N n ω ⊢ upperCrossingTime a b f N n ω ≤ upperCrossingTime a b f N m ω [PROOFSTEP] exact this hnm [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω inst✝ : ConditionallyCompleteLinearOrderBot ι a b : ℝ f : ι → Ω → ℝ N : ι n m : ℕ ω : Ω hnm : n ≤ m ⊢ Monotone fun n => upperCrossingTime a b f N n ω [PROOFSTEP] exact monotone_nat_of_le_succ fun n => le_trans upperCrossingTime_le_lowerCrossingTime lowerCrossingTime_le_upperCrossingTime_succ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω h : lowerCrossingTime a b f N n ω ≠ N ⊢ stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne lowerCrossingTime_le h)).1 le_rfl [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω h : lowerCrossingTime a b f N n ω ≠ N j : ℕ hj₁ : j ∈ Set.Icc (upperCrossingTime a b f N n ω) (lowerCrossingTime a b f N n ω) hj₂ : f j ω ∈ Set.Iic a ⊢ stoppedValue f (lowerCrossingTime a b f N n) ω ≤ a [PROOFSTEP] exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 lowerCrossingTime_le⟩, hj₂⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω h : upperCrossingTime a b f N (n + 1) ω ≠ N ⊢ b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := (hitting_le_iff_of_lt _ (lt_of_le_of_ne upperCrossingTime_le h)).1 le_rfl [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω h : upperCrossingTime a b f N (n + 1) ω ≠ N j : ℕ hj₁ : j ∈ Set.Icc (lowerCrossingTimeAux a f (upperCrossingTime a b f N (Nat.add n 0) ω) N ω) (upperCrossingTime a b f N (n + 1) ω) hj₂ : f j ω ∈ Set.Ici b ⊢ b ≤ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω [PROOFSTEP] exact stoppedValue_hitting_mem ⟨j, ⟨hj₁.1, le_trans hj₁.2 (hitting_le _)⟩, hj₂⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : lowerCrossingTime a b f N (n + 1) ω ≠ N ⊢ upperCrossingTime a b f N (n + 1) ω < lowerCrossingTime a b f N (n + 1) ω [PROOFSTEP] refine' lt_of_le_of_ne upperCrossingTime_le_lowerCrossingTime fun h => not_le.2 hab <| le_trans _ (stoppedValue_lowerCrossingTime hn) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : lowerCrossingTime a b f N (n + 1) ω ≠ N h : upperCrossingTime a b f N (n + 1) ω = lowerCrossingTime a b f N (n + 1) ω ⊢ b ≤ stoppedValue f (lowerCrossingTime a b f N (n + 1)) ω [PROOFSTEP] simp only [stoppedValue] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : lowerCrossingTime a b f N (n + 1) ω ≠ N h : upperCrossingTime a b f N (n + 1) ω = lowerCrossingTime a b f N (n + 1) ω ⊢ b ≤ f (lowerCrossingTime a b f N (n + 1) ω) ω [PROOFSTEP] rw [← h] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : lowerCrossingTime a b f N (n + 1) ω ≠ N h : upperCrossingTime a b f N (n + 1) ω = lowerCrossingTime a b f N (n + 1) ω ⊢ b ≤ f (upperCrossingTime a b f N (n + 1) ω) ω [PROOFSTEP] exact stoppedValue_upperCrossingTime (h.symm ▸ hn) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : upperCrossingTime a b f N (n + 1) ω ≠ N ⊢ lowerCrossingTime a b f N n ω < upperCrossingTime a b f N (n + 1) ω [PROOFSTEP] refine' lt_of_le_of_ne lowerCrossingTime_le_upperCrossingTime_succ fun h => not_le.2 hab <| le_trans (stoppedValue_upperCrossingTime hn) _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : upperCrossingTime a b f N (n + 1) ω ≠ N h : lowerCrossingTime a b f N n ω = upperCrossingTime a b f N (n + 1) ω ⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω ≤ a [PROOFSTEP] simp only [stoppedValue] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : upperCrossingTime a b f N (n + 1) ω ≠ N h : lowerCrossingTime a b f N n ω = upperCrossingTime a b f N (n + 1) ω ⊢ f (upperCrossingTime a b f N (n + 1) ω) ω ≤ a [PROOFSTEP] rw [← h] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b hn : upperCrossingTime a b f N (n + 1) ω ≠ N h : lowerCrossingTime a b f N n ω = upperCrossingTime a b f N (n + 1) ω ⊢ f (lowerCrossingTime a b f N n ω) ω ≤ a [PROOFSTEP] exact stoppedValue_lowerCrossingTime (h.symm ▸ hn) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b ⊢ ∃ n, upperCrossingTime a b f N n ω = N [PROOFSTEP] by_contra h [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b h : ¬∃ n, upperCrossingTime a b f N n ω = N ⊢ False [PROOFSTEP] push_neg at h [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b h : ∀ (n : ℕ), upperCrossingTime a b f N n ω ≠ N ⊢ False [PROOFSTEP] have : StrictMono fun n => upperCrossingTime a b f N n ω := strictMono_nat_of_lt_succ fun n => upperCrossingTime_lt_succ hab (h _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b h : ∀ (n : ℕ), upperCrossingTime a b f N n ω ≠ N this : StrictMono fun n => upperCrossingTime a b f N n ω ⊢ False [PROOFSTEP] obtain ⟨_, ⟨k, rfl⟩, hk⟩ : ∃ (m : _) (_ : m ∈ Set.range fun n => upperCrossingTime a b f N n ω), N < m := ⟨upperCrossingTime a b f N (N + 1) ω, ⟨N + 1, rfl⟩, lt_of_lt_of_le N.lt_succ_self (StrictMono.id_le this (N + 1))⟩ [GOAL] case intro.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b h : ∀ (n : ℕ), upperCrossingTime a b f N n ω ≠ N this : StrictMono fun n => upperCrossingTime a b f N n ω k : ℕ hk : N < (fun n => upperCrossingTime a b f N n ω) k ⊢ False [PROOFSTEP] exact not_le.2 hk upperCrossingTime_le [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b ⊢ BddAbove {n | upperCrossingTime a b f N n ω < N} [PROOFSTEP] obtain ⟨k, hk⟩ := exists_upperCrossingTime_eq f N ω hab [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω hab : a < b k : ℕ hk : upperCrossingTime a b f N k ω = N ⊢ BddAbove {n | upperCrossingTime a b f N n ω < N} [PROOFSTEP] refine' ⟨k, fun n (hn : upperCrossingTime a b f N n ω < N) => _⟩ [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω hab : a < b k : ℕ hk : upperCrossingTime a b f N k ω = N n : ℕ hn : upperCrossingTime a b f N n ω < N ⊢ n ≤ k [PROOFSTEP] by_contra hn' [GOAL] case intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω hab : a < b k : ℕ hk : upperCrossingTime a b f N k ω = N n : ℕ hn : upperCrossingTime a b f N n ω < N hn' : ¬n ≤ k ⊢ False [PROOFSTEP] exact hn.ne (upperCrossingTime_stabilize (not_le.1 hn').le hk) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b ⊢ upperCrossingTime a b f N N ω = N [PROOFSTEP] by_cases hN' : N < Nat.find (exists_upperCrossingTime_eq f N ω hab) [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ⊢ upperCrossingTime a b f N N ω = N [PROOFSTEP] refine' le_antisymm upperCrossingTime_le _ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ⊢ N ≤ upperCrossingTime a b f N N ω [PROOFSTEP] have hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.find (exists_upperCrossingTime_eq f N ω hab)).pred) := by refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ rw [Nat.lt_pred_iff] at hm convert Nat.find_min _ hm [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ⊢ StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.pred (Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)))) [PROOFSTEP] refine' strictMonoOn_Iic_of_lt_succ fun m hm => upperCrossingTime_lt_succ hab _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m✝ : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) m : ℕ hm : m < Nat.pred (Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)) ⊢ upperCrossingTime a b f N (m + 1) ω ≠ N [PROOFSTEP] rw [Nat.lt_pred_iff] at hm [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m✝ : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) m : ℕ hm : Nat.succ m < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ⊢ upperCrossingTime a b f N (m + 1) ω ≠ N [PROOFSTEP] convert Nat.find_min _ hm [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) hmono : StrictMonoOn (fun n => upperCrossingTime a b f N n ω) (Set.Iic (Nat.pred (Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N)))) ⊢ N ≤ upperCrossingTime a b f N N ω [PROOFSTEP] convert StrictMonoOn.Iic_id_le hmono N (Nat.le_pred_of_lt hN') [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : ¬N < Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ⊢ upperCrossingTime a b f N N ω = N [PROOFSTEP] rw [not_lt] at hN' [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω f : ℕ → Ω → ℝ N : ℕ ω : Ω hab : a < b hN' : Nat.find (_ : ∃ n, upperCrossingTime a b f N n ω = N) ≤ N ⊢ upperCrossingTime a b f N N ω = N [PROOFSTEP] exact upperCrossingTime_stabilize hN' (Nat.find_spec (exists_upperCrossingTime_eq f N ω hab)) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f ⊢ IsStoppingTime ℱ (upperCrossingTime a b f N n) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N n) [PROOFSTEP] induction' n with k ih [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f ⊢ IsStoppingTime ℱ (upperCrossingTime a b f N Nat.zero) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N Nat.zero) [PROOFSTEP] refine' ⟨isStoppingTime_const _ 0, _⟩ [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f ⊢ IsStoppingTime ℱ (lowerCrossingTime a b f N Nat.zero) [PROOFSTEP] simp [hitting_isStoppingTime hf measurableSet_Iic] [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ ih : IsStoppingTime ℱ (upperCrossingTime a b f N k) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N k) ⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (Nat.succ k)) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k)) [PROOFSTEP] obtain ⟨_, ih₂⟩ := ih [GOAL] case succ.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) ⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (Nat.succ k)) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k)) [PROOFSTEP] have : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) := by intro n simp_rw [upperCrossingTime_succ_eq] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) ⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) [PROOFSTEP] intro n [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) n : ℕ ⊢ MeasurableSet {ω | upperCrossingTime a b f N (k + 1) ω ≤ n} [PROOFSTEP] simp_rw [upperCrossingTime_succ_eq] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) n : ℕ ⊢ MeasurableSet {ω | hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω ≤ n} [PROOFSTEP] exact isStoppingTime_hitting_isStoppingTime ih₂ (fun _ => lowerCrossingTime_le) measurableSet_Ici hf _ [GOAL] case succ.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) this : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) ⊢ IsStoppingTime ℱ (upperCrossingTime a b f N (Nat.succ k)) ∧ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k)) [PROOFSTEP] refine' ⟨this, _⟩ [GOAL] case succ.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) this : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) ⊢ IsStoppingTime ℱ (lowerCrossingTime a b f N (Nat.succ k)) [PROOFSTEP] intro n [GOAL] case succ.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f k : ℕ left✝ : IsStoppingTime ℱ (upperCrossingTime a b f N k) ih₂ : IsStoppingTime ℱ (lowerCrossingTime a b f N k) this : IsStoppingTime ℱ (upperCrossingTime a b f N (k + 1)) n : ℕ ⊢ MeasurableSet {ω | lowerCrossingTime a b f N (Nat.succ k) ω ≤ n} [PROOFSTEP] exact isStoppingTime_hitting_isStoppingTime this (fun _ => upperCrossingTime_le) measurableSet_Iic hf _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ upcrossingStrat a b f N n ω ≤ 1 [PROOFSTEP] rw [upcrossingStrat, ← Set.indicator_finset_biUnion_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ Set.indicator (⋃ (i : ℕ) (_ : i ∈ Finset.range N), Set.Ico (lowerCrossingTime a b f N i ω) (upperCrossingTime a b f N (i + 1) ω)) 1 n ≤ 1 [PROOFSTEP] exact Set.indicator_le_self' (fun _ _ => zero_le_one) _ [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ ∀ (i : ℕ), i ∈ Finset.range N → ∀ (j : ℕ), j ∈ Finset.range N → i ≠ j → Disjoint (Set.Ico (lowerCrossingTime a b f N i ω) (upperCrossingTime a b f N (i + 1) ω)) (Set.Ico (lowerCrossingTime a b f N j ω) (upperCrossingTime a b f N (j + 1) ω)) [PROOFSTEP] intro i _ j _ hij [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j ⊢ Disjoint (Set.Ico (lowerCrossingTime a b f N i ω) (upperCrossingTime a b f N (i + 1) ω)) (Set.Ico (lowerCrossingTime a b f N j ω) (upperCrossingTime a b f N (j + 1) ω)) [PROOFSTEP] rw [Set.Ico_disjoint_Ico] [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j ⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤ max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω) [PROOFSTEP] obtain hij' | hij' := lt_or_gt_of_ne hij [GOAL] case h.inl Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j hij' : i < j ⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤ max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω) [PROOFSTEP] rw [min_eq_left (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_right (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] [GOAL] case h.inl Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j hij' : i < j ⊢ upperCrossingTime a b f N (Nat.succ i) ω ≤ lowerCrossingTime a b f N j ω [PROOFSTEP] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) [GOAL] case h.inr Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j hij' : i > j ⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤ max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω) [PROOFSTEP] rw [gt_iff_lt] at hij' [GOAL] case h.inr Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j hij' : j < i ⊢ min (upperCrossingTime a b f N (i + 1) ω) (upperCrossingTime a b f N (j + 1) ω) ≤ max (lowerCrossingTime a b f N i ω) (lowerCrossingTime a b f N j ω) [PROOFSTEP] rw [min_eq_right (upperCrossingTime_mono (Nat.succ_le_succ hij'.le) : upperCrossingTime a b f N _ ω ≤ upperCrossingTime a b f N _ ω), max_eq_left (lowerCrossingTime_mono hij'.le : lowerCrossingTime a b f N _ _ ≤ lowerCrossingTime _ _ _ _ _ _)] [GOAL] case h.inr Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 i : ℕ a✝¹ : i ∈ Finset.range N j : ℕ a✝ : j ∈ Finset.range N hij : i ≠ j hij' : j < i ⊢ upperCrossingTime a b f N (Nat.succ j) ω ≤ lowerCrossingTime a b f N i ω [PROOFSTEP] refine' le_trans upperCrossingTime_le_lowerCrossingTime (lowerCrossingTime_mono (Nat.succ_le_of_lt hij')) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f ⊢ Adapted ℱ (upcrossingStrat a b f N) [PROOFSTEP] intro n [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f n : ℕ ⊢ StronglyMeasurable (upcrossingStrat a b f N n) [PROOFSTEP] change StronglyMeasurable[ℱ n] fun ω => ∑ k in Finset.range N, ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}).indicator 1 n [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f n : ℕ ⊢ StronglyMeasurable fun ω => ∑ k in Finset.range N, Set.indicator ({n | lowerCrossingTime a b f N k ω ≤ n} ∩ {n | n < upperCrossingTime a b f N (k + 1) ω}) 1 n [PROOFSTEP] refine' Finset.stronglyMeasurable_sum _ fun i _ => stronglyMeasurable_const.indicator ((hf.isStoppingTime_lowerCrossingTime n).inter _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f n i : ℕ x✝ : i ∈ Finset.range N ⊢ MeasurableSet fun ω => setOf (fun n => n < upperCrossingTime a b f N (i + 1) ω) n [PROOFSTEP] simp_rw [← not_le] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n✝ m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f n i : ℕ x✝ : i ∈ Finset.range N ⊢ MeasurableSet fun ω => setOf (fun n => ¬upperCrossingTime a b f N (i + 1) ω ≤ n) n [PROOFSTEP] exact (hf.isStoppingTime_upperCrossingTime n).compl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ a b : ℝ N : ℕ ⊢ Submartingale (fun n => ∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ℱ μ [PROOFSTEP] refine' hf.sum_mul_sub (fun n => (adapted_const ℱ 1 n).sub (hf.adapted.upcrossingStrat_adapted n)) (_ : ∀ n ω, (1 - upcrossingStrat a b f N n) ω ≤ 1) _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ a b : ℝ N : ℕ ⊢ ∀ (n : ℕ) (ω : Ω), (1 - upcrossingStrat a b f N n) ω ≤ 1 [PROOFSTEP] exact fun n ω => sub_le_self _ upcrossingStrat_nonneg [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ a b : ℝ N : ℕ ⊢ ∀ (n : ℕ) (ω : Ω), 0 ≤ (1 - upcrossingStrat a b f N n) ω [PROOFSTEP] intro n ω [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ a b : ℝ N n : ℕ ω : Ω ⊢ 0 ≤ (1 - upcrossingStrat a b f N n) ω [PROOFSTEP] simp [upcrossingStrat_le_one] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ ⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ [PROOFSTEP] have h₁ : (0 : ℝ) ≤ μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] := by have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ rw [integral_univ, integral_univ] at this refine' le_trans _ this simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ ⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] have := (hf.sum_sub_upcrossingStrat_mul a b N).set_integral_le (zero_le n) MeasurableSet.univ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ this : ∫ (ω : Ω) in Set.univ, Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ω ∂μ ≤ ∫ (ω : Ω) in Set.univ, Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) ω ∂μ ⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] rw [integral_univ, integral_univ] at this [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ this : ∫ (x : Ω), Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] refine' le_trans _ this [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ this : ∫ (x : Ω), Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range 0) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] simp only [Finset.range_zero, Finset.sum_empty, integral_zero', le_refl] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ [PROOFSTEP] have h₂ : μ[∑ k in Finset.range n, (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)] = μ[∑ k in Finset.range n, (f (k + 1) - f k)] - μ[∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k)] := by simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 ext; simp [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ = ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ - ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] simp only [sub_mul, one_mul, Finset.sum_sub_distrib, Pi.sub_apply, Finset.sum_apply, Pi.mul_apply] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ ∫ (x : Ω), ∑ x_1 in Finset.range n, f (x_1 + 1) x - ∑ x_1 in Finset.range n, f x_1 x - ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x) ∂μ = ∫ (x : Ω), ∑ x_1 in Finset.range n, f (x_1 + 1) x - ∑ x_1 in Finset.range n, f x_1 x ∂μ - ∫ (x : Ω), ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x) ∂μ [PROOFSTEP] refine' integral_sub (Integrable.sub (integrable_finset_sum _ fun i _ => hf.integrable _) (integrable_finset_sum _ fun i _ => hf.integrable _)) _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ Integrable fun x => ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x) [PROOFSTEP] convert (hf.sum_upcrossingStrat_mul a b N).integrable n using 1 [GOAL] case h.e'_5 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ ⊢ (fun x => ∑ x_1 in Finset.range n, upcrossingStrat a b f N x_1 x * (f (x_1 + 1) x - f x_1 x)) = ∑ k in Finset.range n, upcrossingStrat a b f N k * (f (k + 1) - f k) [PROOFSTEP] ext [GOAL] case h.e'_5.h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ x✝ : Ω ⊢ ∑ x in Finset.range n, upcrossingStrat a b f N x x✝ * (f (x + 1) x✝ - f x x✝) = Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x✝ [PROOFSTEP] simp [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : 0 ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ h₂ : ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ = ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ - ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ [PROOFSTEP] rw [h₂, sub_nonneg] at h₁ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ h₂ : ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ = ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ - ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ [PROOFSTEP] refine' le_trans h₁ _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ h₁ : ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ h₂ : ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => (1 - upcrossingStrat a b f N k) * (f (k + 1) - f k)) x ∂μ = ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ - ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ ⊢ ∫ (x : Ω), Finset.sum (Finset.range n) (fun k => f (k + 1) - f k) x ∂μ ≤ ∫ (x : Ω), f n x ∂μ - ∫ (x : Ω), f 0 x ∂μ [PROOFSTEP] simp_rw [Finset.sum_range_sub, integral_sub' (hf.integrable _) (hf.integrable _), le_refl] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f✝ : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝² : Preorder ι inst✝¹ : OrderBot ι inst✝ : InfSet ι a b : ℝ f : ι → Ω → ℝ ω : Ω ⊢ upcrossingsBefore a b f ⊥ ω = ⊥ [PROOFSTEP] simp [upcrossingsBefore] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ upcrossingsBefore a b f 0 ω = 0 [PROOFSTEP] simp [upcrossingsBefore] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ upcrossingsBefore a b f 0 = 0 [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 ω : Ω ⊢ upcrossingsBefore a b f 0 ω = OfNat.ofNat 0 ω [PROOFSTEP] exact upcrossingsBefore_zero [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n ⊢ upperCrossingTime a b f N n ω = N [PROOFSTEP] refine' le_antisymm upperCrossingTime_le (not_lt.1 _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n ⊢ ¬upperCrossingTime a b f N n ω < N [PROOFSTEP] convert not_mem_of_csSup_lt hn (upperCrossingTime_lt_bddAbove hab) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω hab : a < b ⊢ upcrossingsBefore a b f N ω ≤ N [PROOFSTEP] by_cases hN : N = 0 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω hab : a < b hN : N = 0 ⊢ upcrossingsBefore a b f N ω ≤ N [PROOFSTEP] subst hN [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω hab : a < b ⊢ upcrossingsBefore a b f 0 ω ≤ 0 [PROOFSTEP] rw [upcrossingsBefore_zero] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω hab : a < b hN : ¬N = 0 ⊢ upcrossingsBefore a b f N ω ≤ N [PROOFSTEP] refine' csSup_le ⟨0, zero_lt_iff.2 hN⟩ fun n (hn : _ < N) => _ [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω hab : a < b hN : ¬N = 0 n : ℕ hn : upperCrossingTime a b f N n ω < N ⊢ n ≤ N [PROOFSTEP] by_contra hnN [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f✝ : ℕ → Ω → ℝ N n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 f : ℕ → Ω → ℝ ω : Ω hab : a < b hN : ¬N = 0 n : ℕ hn : upperCrossingTime a b f N n ω < N hnN : ¬n ≤ N ⊢ False [PROOFSTEP] exact hn.ne (upperCrossingTime_eq_of_bound_le hab (not_le.1 hnN).le) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : lowerCrossingTime a b f N n ω < N ⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω [PROOFSTEP] have h' : upperCrossingTime a b f N n ω < N := lt_of_le_of_lt upperCrossingTime_le_lowerCrossingTime h [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : lowerCrossingTime a b f N n ω < N h' : upperCrossingTime a b f N n ω < N ⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω [PROOFSTEP] induction' n with k ih [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h : lowerCrossingTime a b f N Nat.zero ω < N h' : upperCrossingTime a b f N Nat.zero ω < N ⊢ upperCrossingTime a b f M Nat.zero ω = upperCrossingTime a b f N Nat.zero ω ∧ lowerCrossingTime a b f M Nat.zero ω = lowerCrossingTime a b f N Nat.zero ω [PROOFSTEP] simp only [Nat.zero_eq, upperCrossingTime_zero, bot_eq_zero', eq_self_iff_true, lowerCrossingTime_zero, true_and_iff, eq_comm] [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h : lowerCrossingTime a b f N Nat.zero ω < N h' : upperCrossingTime a b f N Nat.zero ω < N ⊢ hitting f (Set.Iic a) 0 N ω = hitting f (Set.Iic a) 0 M ω [PROOFSTEP] refine' hitting_eq_hitting_of_exists hNM _ [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h : lowerCrossingTime a b f N Nat.zero ω < N h' : upperCrossingTime a b f N Nat.zero ω < N ⊢ ∃ j, j ∈ Set.Icc 0 N ∧ f j ω ∈ Set.Iic a [PROOFSTEP] rw [lowerCrossingTime, hitting_lt_iff] at h [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h : ∃ j, j ∈ Set.Ico (upperCrossingTime a b f N Nat.zero ω) N ∧ f j ω ∈ Set.Iic a h' : upperCrossingTime a b f N Nat.zero ω < N ⊢ ∃ j, j ∈ Set.Icc 0 N ∧ f j ω ∈ Set.Iic a case zero.hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h : hitting f (Set.Iic a) (upperCrossingTime a b f N Nat.zero ω) N ω < N h' : upperCrossingTime a b f N Nat.zero ω < N ⊢ N ≤ N [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h [GOAL] case zero.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h' : upperCrossingTime a b f N Nat.zero ω < N j : ℕ hj₁ : j ∈ Set.Ico (upperCrossingTime a b f N Nat.zero ω) N hj₂ : f j ω ∈ Set.Iic a ⊢ ∃ j, j ∈ Set.Icc 0 N ∧ f j ω ∈ Set.Iic a case zero.hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N h : hitting f (Set.Iic a) (upperCrossingTime a b f N Nat.zero ω) N ω < N h' : upperCrossingTime a b f N Nat.zero ω < N ⊢ N ≤ N [PROOFSTEP] exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ ih : lowerCrossingTime a b f N k ω < N → upperCrossingTime a b f N k ω < N → upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ∧ lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω [PROOFSTEP] specialize ih (lt_of_le_of_lt (lowerCrossingTime_mono (Nat.le_succ _)) h) (lt_of_le_of_lt (upperCrossingTime_mono (Nat.le_succ _)) h') [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ∧ lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω [PROOFSTEP] have : upperCrossingTime a b f M k.succ ω = upperCrossingTime a b f N k.succ ω := by rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' simp only [upperCrossingTime_succ_eq] obtain ⟨j, hj₁, hj₂⟩ := h' rw [eq_comm, ih.2] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω [PROOFSTEP] rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h' [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ N ≤ N [PROOFSTEP] simp only [upperCrossingTime_succ_eq] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f M k ω) M ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ N ≤ N [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h' [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h' : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω j : ℕ hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N hj₂ : f j ω ∈ Set.Ici b ⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f M k ω) M ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ N ≤ N [PROOFSTEP] rw [eq_comm, ih.2] [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h' : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω j : ℕ hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N k ω) N hj₂ : f j ω ∈ Set.Ici b ⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) M ω case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : hitting f (Set.Ici b) (lowerCrossingTime a b f N k ω) N ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω ⊢ N ≤ N [PROOFSTEP] exacts [hitting_eq_hitting_of_exists hNM ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ⊢ upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ∧ lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω [PROOFSTEP] refine' ⟨this, _⟩ [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ⊢ lowerCrossingTime a b f M (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω [PROOFSTEP] simp only [lowerCrossingTime, eq_comm, this] [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ⊢ hitting f (Set.Iic a) (upperCrossingTime a b f N (Nat.succ k) ω) N ω = hitting f (Set.Iic a) (upperCrossingTime a b f N (Nat.succ k) ω) M ω [PROOFSTEP] refine' hitting_eq_hitting_of_exists hNM _ [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : lowerCrossingTime a b f N (Nat.succ k) ω < N h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a [PROOFSTEP] rw [lowerCrossingTime, hitting_lt_iff _ le_rfl] at h [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h✝ : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h : ∃ j, j ∈ Set.Ico (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω ⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h [GOAL] case succ.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : lowerCrossingTime a b f N n ω < N h'✝ : upperCrossingTime a b f N n ω < N k : ℕ h' : upperCrossingTime a b f N (Nat.succ k) ω < N ih : upperCrossingTime a b f M k ω = upperCrossingTime a b f N k ω ∧ lowerCrossingTime a b f M k ω = lowerCrossingTime a b f N k ω this : upperCrossingTime a b f M (Nat.succ k) ω = upperCrossingTime a b f N (Nat.succ k) ω j : ℕ hj₁ : j ∈ Set.Ico (upperCrossingTime a b f N (Nat.succ k) ω) N hj₂ : f j ω ∈ Set.Iic a ⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a [PROOFSTEP] exact ⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N ⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω [PROOFSTEP] have := (crossing_eq_crossing_of_lowerCrossingTime_lt hNM (lt_of_le_of_lt lowerCrossingTime_le_upperCrossingTime_succ h)).2 [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω ∧ lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω [PROOFSTEP] refine' ⟨_, this⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ upperCrossingTime a b f M (n + 1) ω = upperCrossingTime a b f N (n + 1) ω [PROOFSTEP] rw [upperCrossingTime_succ_eq, upperCrossingTime_succ_eq, eq_comm, this] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω = hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) M ω [PROOFSTEP] refine' hitting_eq_hitting_of_exists hNM _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N (n + 1) ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b [PROOFSTEP] rw [upperCrossingTime_succ_eq, hitting_lt_iff] at h [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ N ≤ N [PROOFSTEP] obtain ⟨j, hj₁, hj₂⟩ := h [GOAL] case intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω j : ℕ hj₁ : j ∈ Set.Ico (lowerCrossingTime a b f N n ω) N hj₂ : f j ω ∈ Set.Ici b ⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N n ω) N ∧ f j ω ∈ Set.Ici b case hi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : hitting f (Set.Ici b) (lowerCrossingTime a b f N n ω) N ω < N this : lowerCrossingTime a b f M n ω = lowerCrossingTime a b f N n ω ⊢ N ≤ N [PROOFSTEP] exacts [⟨j, ⟨hj₁.1, hj₁.2.le⟩, hj₂⟩, le_rfl] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N n ω < N ⊢ upperCrossingTime a b f M n ω = upperCrossingTime a b f N n ω [PROOFSTEP] cases n [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M h : upperCrossingTime a b f N Nat.zero ω < N ⊢ upperCrossingTime a b f M Nat.zero ω = upperCrossingTime a b f N Nat.zero ω [PROOFSTEP] simp [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N m : ℕ ω : Ω ℱ : Filtration ℕ m0 M : ℕ hNM : N ≤ M n✝ : ℕ h : upperCrossingTime a b f N (Nat.succ n✝) ω < N ⊢ upperCrossingTime a b f M (Nat.succ n✝) ω = upperCrossingTime a b f N (Nat.succ n✝) ω [PROOFSTEP] exact (crossing_eq_crossing_of_upperCrossingTime_lt hNM h).1 [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b ⊢ Monotone fun N ω => upcrossingsBefore a b f N ω [PROOFSTEP] intro N M hNM ω [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω ⊢ (fun N ω => upcrossingsBefore a b f N ω) N ω ≤ (fun N ω => upcrossingsBefore a b f N ω) M ω [PROOFSTEP] simp only [upcrossingsBefore] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M} [PROOFSTEP] by_cases hemp : {n : ℕ | upperCrossingTime a b f N n ω < N}.Nonempty [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N} ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M} [PROOFSTEP] refine' csSup_le_csSup (upperCrossingTime_lt_bddAbove hab) hemp fun n hn => _ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N} n : ℕ hn : n ∈ {n | upperCrossingTime a b f N n ω < N} ⊢ n ∈ {n | upperCrossingTime a b f M n ω < M} [PROOFSTEP] rw [Set.mem_setOf_eq, upperCrossingTime_eq_upperCrossingTime_of_lt hNM hn] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n✝ m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : Set.Nonempty {n | upperCrossingTime a b f N n ω < N} n : ℕ hn : n ∈ {n | upperCrossingTime a b f N n ω < N} ⊢ upperCrossingTime a b f N n ω < M [PROOFSTEP] exact lt_of_lt_of_le hn hNM [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : ¬Set.Nonempty {n | upperCrossingTime a b f N n ω < N} ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M} [PROOFSTEP] rw [Set.not_nonempty_iff_eq_empty] at hemp [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b N M : ℕ hNM : N ≤ M ω : Ω hemp : {n | upperCrossingTime a b f N n ω < N} = ∅ ⊢ sSup {n | upperCrossingTime a b f N n ω < N} ≤ sSup {n | upperCrossingTime a b f M n ω < M} [PROOFSTEP] simp [hemp, csSup_empty, bot_eq_zero', zero_le'] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ upcrossingsBefore a b f N ω < upcrossingsBefore a b f (N₂ + 1) ω [PROOFSTEP] refine' lt_of_lt_of_le (Nat.lt_succ_self _) (le_csSup (upperCrossingTime_lt_bddAbove hab) _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ Nat.succ (upcrossingsBefore a b f N ω) ∈ {n | upperCrossingTime a b f (N₂ + 1) n ω < N₂ + 1} [PROOFSTEP] rw [Set.mem_setOf_eq, upperCrossingTime_succ_eq, hitting_lt_iff _ le_rfl] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ ∃ j, j ∈ Set.Ico (lowerCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω) (N₂ + 1) ∧ f j ω ∈ Set.Ici b [PROOFSTEP] refine' ⟨N₂, ⟨_, Nat.lt_succ_self _⟩, hN₂'.le⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ lowerCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N₂ [PROOFSTEP] rw [lowerCrossingTime, hitting_le_iff_of_lt _ (Nat.lt_succ_self _)] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω) N₂ ∧ f j ω ∈ Set.Iic a [PROOFSTEP] refine' ⟨N₁, ⟨le_trans _ hN₁, hN₂⟩, hN₁'.le⟩ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N [PROOFSTEP] by_cases hN : 0 < N [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : 0 < N ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N [PROOFSTEP] have : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N := Nat.sSup_mem (upperCrossingTime_lt_nonempty hN) (upperCrossingTime_lt_bddAbove hab) [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : 0 < N this : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N [PROOFSTEP] rw [upperCrossingTime_eq_upperCrossingTime_of_lt (hN₁.trans (hN₂.trans <| Nat.le_succ _)) this] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : 0 < N this : upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω < N ⊢ upperCrossingTime a b f N (upcrossingsBefore a b f N ω) ω ≤ N [PROOFSTEP] exact this.le [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : ¬0 < N ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N [PROOFSTEP] rw [not_lt, le_zero_iff] at hN [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : N = 0 ⊢ upperCrossingTime a b f (N₂ + 1) (upcrossingsBefore a b f N ω) ω ≤ N [PROOFSTEP] rw [hN, upcrossingsBefore_zero, upperCrossingTime_zero] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b N₁ N₂ : ℕ hN₁ : N ≤ N₁ hN₁' : f N₁ ω < a hN₂ : N₁ ≤ N₂ hN₂' : b < f N₂ ω hN : N = 0 ⊢ ⊥ ω ≤ 0 [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n ⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 [PROOFSTEP] have : N ≤ upperCrossingTime a b f N n ω := by rw [upcrossingsBefore] at hn rw [← not_lt] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n ⊢ N ≤ upperCrossingTime a b f N n ω [PROOFSTEP] rw [upcrossingsBefore] at hn [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : sSup {n | upperCrossingTime a b f N n ω < N} < n ⊢ N ≤ upperCrossingTime a b f N n ω [PROOFSTEP] rw [← not_lt] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : sSup {n | upperCrossingTime a b f N n ω < N} < n ⊢ ¬upperCrossingTime a b f N n ω < N [PROOFSTEP] exact fun h => not_le.2 hn (le_csSup (upperCrossingTime_lt_bddAbove hab) h) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hn : upcrossingsBefore a b f N ω < n this : N ≤ upperCrossingTime a b f N n ω ⊢ stoppedValue f (upperCrossingTime a b f N (n + 1)) ω - stoppedValue f (lowerCrossingTime a b f N n) ω = 0 [PROOFSTEP] simp [stoppedValue, upperCrossingTime_stabilize' (Nat.le_succ n) this, lowerCrossingTime_stabilize' le_rfl (le_trans this upperCrossingTime_le_lowerCrossingTime)] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω [PROOFSTEP] classical by_cases hN : N = 0 · simp [hN] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] rw [Finset.sum_comm] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le simp_rw [h₁] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') refine' le_trans _ h₂ rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω [PROOFSTEP] by_cases hN : N = 0 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω [PROOFSTEP] simp [hN] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ k in Finset.range N, upcrossingStrat a b f N k ω * (f (k + 1) - f k) ω [PROOFSTEP] simp_rw [upcrossingStrat, Finset.sum_mul, ← Set.indicator_mul_left _ _ (fun x ↦ (f (x + 1) - f x) ω), Pi.one_apply, Pi.sub_apply, one_mul] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ x in Finset.range N, ∑ x_1 in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N x_1 ω) (upperCrossingTime a b f N (x_1 + 1) ω)) (fun a => f (a + 1) ω - f a ω) x [PROOFSTEP] rw [Finset.sum_comm] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ y in Finset.range N, ∑ x in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N y ω) (upperCrossingTime a b f N (y + 1) ω)) (fun a => f (a + 1) ω - f a ω) x [PROOFSTEP] have h₁ : ∀ k, ∑ n in Finset.range N, (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)).indicator (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω := by intro k rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] · rfl · ext i simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 ⊢ ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω [PROOFSTEP] intro k [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k : ℕ ⊢ ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω [PROOFSTEP] rw [Finset.sum_indicator_eq_sum_filter, (_ : Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)), Finset.sum_Ico_eq_add_neg _ lowerCrossingTime_le_upperCrossingTime_succ, Finset.sum_range_sub fun n => f n ω, Finset.sum_range_sub fun n => f n ω, neg_sub, sub_add_sub_cancel] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k : ℕ ⊢ f (upperCrossingTime a b f N (k + 1) ω) ω - f (lowerCrossingTime a b f N k ω) ω = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k : ℕ ⊢ Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) = Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω) [PROOFSTEP] ext i [GOAL] case a Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k i : ℕ ⊢ i ∈ Finset.filter (fun i => i ∈ Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (Finset.range N) ↔ i ∈ Finset.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω) [PROOFSTEP] simp only [Set.mem_Ico, Finset.mem_filter, Finset.mem_range, Finset.mem_Ico, and_iff_right_iff_imp, and_imp] [GOAL] case a Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 k i : ℕ ⊢ lowerCrossingTime a b f N k ω ≤ i → i < upperCrossingTime a b f N (k + 1) ω → i < N [PROOFSTEP] exact fun _ h => lt_of_lt_of_le h upperCrossingTime_le [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ y in Finset.range N, ∑ x in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N y ω) (upperCrossingTime a b f N (y + 1) ω)) (fun a => f (a + 1) ω - f a ω) x [PROOFSTEP] simp_rw [h₁] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ x in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (x + 1)) ω - stoppedValue f (lowerCrossingTime a b f N x) ω) [PROOFSTEP] have h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) [PROOFSTEP] calc ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ rwa [Finset.mem_range] at hi _ ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) := by refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ by_cases hi' : i = upcrossingsBefore a b f N ω · subst hi' simp only [stoppedValue] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N · rw [heq, sub_self] · rw [sub_nonneg] exact le_trans (stoppedValue_lowerCrossingTime heq) hf · rw [sub_eq_zero_of_upcrossingsBefore_lt hab] rw [Finset.mem_range, not_lt] at hi exact lt_of_le_of_ne hi (Ne.symm hi') [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) [PROOFSTEP] refine' Finset.sum_le_sum fun i hi => le_sub_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ hi : i ∈ Finset.range (upcrossingsBefore a b f N ω) ⊢ i < upcrossingsBefore a b f N ω [PROOFSTEP] rwa [Finset.mem_range] at hi [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω ⊢ ∑ k in Finset.range (upcrossingsBefore a b f N ω), (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) [PROOFSTEP] refine' Finset.sum_le_sum_of_subset_of_nonneg (Finset.range_subset.2 (upcrossingsBefore_le f ω hab)) fun i _ hi => _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω [PROOFSTEP] by_cases hi' : i = upcrossingsBefore a b f N ω [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω) hi' : i = upcrossingsBefore a b f N ω ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω [PROOFSTEP] subst hi' [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (upcrossingsBefore a b f N ω + 1)) ω - stoppedValue f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω)) ω [PROOFSTEP] simp only [stoppedValue] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ f (upperCrossingTime a b f N (upcrossingsBefore a b f N ω + 1) ω) ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω [PROOFSTEP] rw [upperCrossingTime_eq_of_upcrossingsBefore_lt hab (Nat.lt_succ_self _)] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω) ⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω [PROOFSTEP] by_cases heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω) heq : lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω [PROOFSTEP] rw [heq, sub_self] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω) heq : ¬lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ⊢ 0 ≤ f N ω - f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω [PROOFSTEP] rw [sub_nonneg] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω x✝ : upcrossingsBefore a b f N ω ∈ Finset.range N hi : ¬upcrossingsBefore a b f N ω ∈ Finset.range (upcrossingsBefore a b f N ω) heq : ¬lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω = N ⊢ f (lowerCrossingTime a b f N (upcrossingsBefore a b f N ω) ω) ω ≤ f N ω [PROOFSTEP] exact le_trans (stoppedValue_lowerCrossingTime heq) hf [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω) hi' : ¬i = upcrossingsBefore a b f N ω ⊢ 0 ≤ stoppedValue f (upperCrossingTime a b f N (i + 1)) ω - stoppedValue f (lowerCrossingTime a b f N i) ω [PROOFSTEP] rw [sub_eq_zero_of_upcrossingsBefore_lt hab] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : ¬i ∈ Finset.range (upcrossingsBefore a b f N ω) hi' : ¬i = upcrossingsBefore a b f N ω ⊢ upcrossingsBefore a b f N ω < i [PROOFSTEP] rw [Finset.mem_range, not_lt] at hi [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω i : ℕ x✝ : i ∈ Finset.range N hi : upcrossingsBefore a b f N ω ≤ i hi' : ¬i = upcrossingsBefore a b f N ω ⊢ upcrossingsBefore a b f N ω < i [PROOFSTEP] exact lt_of_le_of_ne hi (Ne.symm hi') [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ x in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (x + 1)) ω - stoppedValue f (lowerCrossingTime a b f N x) ω) [PROOFSTEP] refine' le_trans _ h₂ [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : a ≤ f N ω hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), ∑ n in Finset.range N, Set.indicator (Set.Ico (lowerCrossingTime a b f N k ω) (upperCrossingTime a b f N (k + 1) ω)) (fun m => f (m + 1) ω - f m ω) n = stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω h₂ : ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) ≤ ∑ k in Finset.range N, (stoppedValue f (upperCrossingTime a b f N (k + 1)) ω - stoppedValue f (lowerCrossingTime a b f N k) ω) ⊢ (b - a) * ↑(upcrossingsBefore a b f N ω) ≤ ∑ _k in Finset.range (upcrossingsBefore a b f N ω), (b - a) [PROOFSTEP] rw [Finset.sum_const, Finset.card_range, nsmul_eq_mul, mul_comm] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] rw [← integral_mul_left] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ ∫ (a_1 : Ω), (b - a) * ↑(upcrossingsBefore a b f N a_1) ∂μ ≤ ∫ (x : Ω), Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x ∂μ [PROOFSTEP] refine' integral_mono_of_nonneg _ ((hf.sum_upcrossingStrat_mul a b N).integrable N) _ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ 0 ≤ᵐ[μ] fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1) [PROOFSTEP] exact eventually_of_forall fun ω => mul_nonneg (sub_nonneg.2 hab.le) (Nat.cast_nonneg _) [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ≤ᵐ[μ] fun x => Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x [PROOFSTEP] refine' eventually_of_forall fun ω => _ [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hfN : ∀ (ω : Ω), a ≤ f N ω hfzero : 0 ≤ f 0 hab : a < b ω : Ω ⊢ (fun a_1 => (b - a) * ↑(upcrossingsBefore a b f N a_1)) ω ≤ (fun x => Finset.sum (Finset.range N) (fun k => upcrossingStrat a b f N k * (f (k + 1) - f k)) x) ω [PROOFSTEP] simpa using mul_upcrossingsBefore_le (hfN ω) hab [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n [PROOFSTEP] have hab' : 0 < b - a := sub_pos.2 hab [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n [PROOFSTEP] have hf : ∀ ω i, b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω := by intro i ω refine' ⟨fun h => _, fun h => _⟩ · rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] · rw [← sub_le_sub_iff_right a] at h rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a ⊢ ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω [PROOFSTEP] intro i ω [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ ⊢ b - a ≤ (f ω i - a)⁺ ↔ b ≤ f ω i [PROOFSTEP] refine' ⟨fun h => _, fun h => _⟩ [GOAL] case refine'_1 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ h : b - a ≤ (f ω i - a)⁺ ⊢ b ≤ f ω i [PROOFSTEP] rwa [← sub_le_sub_iff_right a, ← LatticeOrderedGroup.pos_eq_self_of_pos_pos (lt_of_lt_of_le hab' h)] [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ h : b ≤ f ω i ⊢ b - a ≤ (f ω i - a)⁺ [PROOFSTEP] rw [← sub_le_sub_iff_right a] at h [GOAL] case refine'_2 Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a i : Ω ω : ℕ h : b - a ≤ f ω i - a ⊢ b - a ≤ (f ω i - a)⁺ [PROOFSTEP] rwa [LatticeOrderedGroup.pos_of_nonneg _ (le_trans hab'.le h)] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n [PROOFSTEP] have hf' : ∀ ω i, (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a := by intro ω i rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω ⊢ ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a [PROOFSTEP] intro ω i [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω ω : Ω i : ℕ ⊢ (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a [PROOFSTEP] rw [LatticeOrderedGroup.pos_nonpos_iff, sub_nonpos] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = upperCrossingTime a b f N n ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N n = lowerCrossingTime a b f N n [PROOFSTEP] induction' n with k ih [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = upperCrossingTime a b f N Nat.zero ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = lowerCrossingTime a b f N Nat.zero [PROOFSTEP] refine' ⟨rfl, _⟩ [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N Nat.zero = lowerCrossingTime a b f N Nat.zero [PROOFSTEP] simp only [lowerCrossingTime_zero, hitting, Set.mem_Icc, Set.mem_Iic, Nat.zero_eq] [GOAL] case zero Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ⊢ (fun x => if ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j x - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i x - a)⁺ ≤ 0}) else N) = fun x => if ∃ j, j ∈ Set.Icc ⊥ N ∧ f j x ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i x ≤ a}) else N [PROOFSTEP] ext ω [GOAL] case zero.h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω ⊢ (if ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) else N) = if ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a then sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) else N [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) [PROOFSTEP] simp_rw [hf'] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N [PROOFSTEP] simp_rw [Set.mem_Iic, ← hf' _ _] at h₂ [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ≤ 0 ⊢ sInf (Set.Icc ⊥ N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N [PROOFSTEP] exact False.elim (h₂ h₁) [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a ⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) [PROOFSTEP] simp_rw [Set.mem_Iic, hf' _ _] at h₁ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₂ : ∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a h₁ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ≤ a ⊢ N = sInf (Set.Icc ⊥ N ∩ {i | f i ω ≤ a}) [PROOFSTEP] exact False.elim (h₁ h₂) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j, j ∈ Set.Icc ⊥ N ∧ f j ω ∈ Set.Iic a ⊢ N = N [PROOFSTEP] rfl [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = upperCrossingTime a b f N (Nat.succ k) ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k) [PROOFSTEP] have : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) := by ext ω simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] split_ifs with h₁ h₂ h₂ · simp_rw [← sub_le_iff_le_add, hf ω] · refine' False.elim (h₂ _) simp_all only [Set.mem_Ici] · refine' False.elim (h₁ _) simp_all only [Set.mem_Ici] · rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) ω = upperCrossingTime a b f N (k + 1) ω [PROOFSTEP] simp only [upperCrossingTime_succ_eq, ← ih.2, hitting, Set.mem_Ici, tsub_le_iff_right] [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω ⊢ (if ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) then sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) else N) = if ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b then sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω}) else N [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ⊢ sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) = sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω}) [PROOFSTEP] simp_rw [← sub_le_iff_le_add, hf ω] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ⊢ sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ (f i ω - a)⁺ + a}) = N [PROOFSTEP] refine' False.elim (h₂ _) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b [PROOFSTEP] simp_all only [Set.mem_Ici] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ⊢ N = sInf (Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∩ {i | b ≤ f i ω}) [PROOFSTEP] refine' False.elim (h₁ _) [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ⊢ ∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) [PROOFSTEP] simp_all only [Set.mem_Ici] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k ω) N ∧ (f j ω - a)⁺ ∈ Set.Ici (b - a) h₂ : ¬∃ j, j ∈ Set.Icc (lowerCrossingTime a b f N k ω) N ∧ f j ω ∈ Set.Ici b ⊢ N = N [PROOFSTEP] rfl [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ⊢ upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = upperCrossingTime a b f N (Nat.succ k) ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k) [PROOFSTEP] refine' ⟨this, _⟩ [GOAL] case succ Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) = lowerCrossingTime a b f N (Nat.succ k) [PROOFSTEP] ext ω [GOAL] case succ.h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω ⊢ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω = lowerCrossingTime a b f N (Nat.succ k) ω [PROOFSTEP] simp only [lowerCrossingTime, this, hitting, Set.mem_Iic] [GOAL] case succ.h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω ⊢ (if ∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 then sInf (Set.Icc (upperCrossingTime a b f N (k + 1) ω) N ∩ {i | (f i ω - a)⁺ ≤ 0}) else N) = if ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a then sInf (Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∩ {i | f i ω ≤ a}) else N [PROOFSTEP] split_ifs with h₁ h₂ h₂ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω h₁ : ∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc (upperCrossingTime a b f N (k + 1) ω) N ∩ {i | (f i ω - a)⁺ ≤ 0}) = sInf (Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∩ {i | f i ω ≤ a}) [PROOFSTEP] simp_rw [hf' ω] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω h₁ : ∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a ⊢ sInf (Set.Icc (upperCrossingTime a b f N (k + 1) ω) N ∩ {i | (f i ω - a)⁺ ≤ 0}) = N [PROOFSTEP] refine' False.elim (h₂ _) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω h₁ : ∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a ⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a [PROOFSTEP] simp_all only [Set.mem_Iic] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a ⊢ N = sInf (Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∩ {i | f i ω ≤ a}) [PROOFSTEP] refine' False.elim (h₁ _) [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a ⊢ ∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 [PROOFSTEP] simp_all only [Set.mem_Iic] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hab : a < b hab' : 0 < b - a hf : ∀ (ω : Ω) (i : ℕ), b - a ≤ (f i ω - a)⁺ ↔ b ≤ f i ω hf' : ∀ (ω : Ω) (i : ℕ), (f i ω - a)⁺ ≤ 0 ↔ f i ω ≤ a k : ℕ ih : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = upperCrossingTime a b f N k ∧ lowerCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N k = lowerCrossingTime a b f N k this : upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (k + 1) = upperCrossingTime a b f N (k + 1) ω : Ω h₁ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime 0 (b - a) (fun n ω => (f n ω - a)⁺) N (Nat.succ k) ω) N ∧ (f j ω - a)⁺ ∈ Set.Iic 0 h₂ : ¬∃ j, j ∈ Set.Icc (upperCrossingTime a b f N (Nat.succ k) ω) N ∧ f j ω ∈ Set.Iic a ⊢ N = N [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b ⊢ upcrossingsBefore 0 (b - a) (fun n ω => (f n ω - a)⁺) N ω = upcrossingsBefore a b f N ω [PROOFSTEP] simp_rw [upcrossingsBefore, (crossing_pos_eq hab).1] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ [PROOFSTEP] refine' le_trans (le_of_eq _) (integral_mul_upcrossingsBefore_le_integral (hf.sub_martingale (martingale_const _ _ _)).pos (fun ω => LatticeOrderedGroup.pos_nonneg _) (fun ω => LatticeOrderedGroup.pos_nonneg _) (sub_pos.2 hab)) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ = (b - a - 0) * ∫ (x : Ω), ↑(upcrossingsBefore 0 (b - a) (f - fun x x => a)⁺ N x) ∂μ [PROOFSTEP] simp_rw [sub_zero, ← upcrossingsBefore_pos_eq hab] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Submartingale f ℱ μ hab : a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore 0 (b - a) (fun n ω => (f n ω - a)⁺) N x) ∂μ = (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore 0 (b - a) (f - fun x x => a)⁺ N x) ∂μ [PROOFSTEP] rfl [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ N : ℕ ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ [PROOFSTEP] by_cases hab : a < b [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ N : ℕ hab : a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ [PROOFSTEP] exact mul_integral_upcrossingsBefore_le_integral_pos_part_aux hf hab [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ N : ℕ hab : ¬a < b ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ [PROOFSTEP] rw [not_lt, ← sub_nonpos] at hab [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ N : ℕ hab✝ : b ≤ a hab : b - a ≤ 0 ⊢ (b - a) * ∫ (x : Ω), ↑(upcrossingsBefore a b f N x) ∂μ ≤ ∫ (x : Ω), (fun ω => (f N ω - a)⁺) x ∂μ [PROOFSTEP] exact le_trans (mul_nonpos_of_nonpos_of_nonneg hab (integral_nonneg fun ω => Nat.cast_nonneg _)) (integral_nonneg fun ω => LatticeOrderedGroup.pos_nonneg _) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] by_cases hN : N = 0 [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : N = 0 ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] simp [hN] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] rw [← Finset.sum_Ico_consecutive _ (Nat.succ_le_succ zero_le') (Nat.succ_le_succ (upcrossingsBefore_le f ω hab))] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico (Nat.succ 0) (Nat.succ (upcrossingsBefore a b f N ω)), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i + ∑ i in Finset.Ico (Nat.succ (upcrossingsBefore a b f N ω)) (Nat.succ N), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] have h₁ : ∀ k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1), {n : ℕ | upperCrossingTime a b f N n ω < N}.indicator 1 k = 1 := by rintro k hk rw [Finset.mem_Ico] at hk rw [Set.indicator_of_mem] · rfl · exact upperCrossingTime_lt_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab (Nat.lt_succ_iff.1 hk.2) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 ⊢ ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 [PROOFSTEP] rintro k hk [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 k : ℕ hk : k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) ⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 [PROOFSTEP] rw [Finset.mem_Ico] at hk [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 k : ℕ hk : 1 ≤ k ∧ k < upcrossingsBefore a b f N ω + 1 ⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 [PROOFSTEP] rw [Set.indicator_of_mem] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 k : ℕ hk : 1 ≤ k ∧ k < upcrossingsBefore a b f N ω + 1 ⊢ OfNat.ofNat 1 k = 1 [PROOFSTEP] rfl [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 k : ℕ hk : 1 ≤ k ∧ k < upcrossingsBefore a b f N ω + 1 ⊢ k ∈ {n | upperCrossingTime a b f N n ω < N} [PROOFSTEP] exact upperCrossingTime_lt_of_le_upcrossingsBefore (zero_lt_iff.2 hN) hab (Nat.lt_succ_iff.1 hk.2) [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico (Nat.succ 0) (Nat.succ (upcrossingsBefore a b f N ω)), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i + ∑ i in Finset.Ico (Nat.succ (upcrossingsBefore a b f N ω)) (Nat.succ N), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] have h₂ : ∀ k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1), {n : ℕ | upperCrossingTime a b f N n ω < N}.indicator 1 k = 0 := by rintro k hk rw [Finset.mem_Ico, Nat.succ_le_iff] at hk rw [Set.indicator_of_not_mem] simp only [Set.mem_setOf_eq, not_lt] exact (upperCrossingTime_eq_of_upcrossingsBefore_lt hab hk.1).symm.le [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 ⊢ ∀ (k : ℕ), k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0 [PROOFSTEP] rintro k hk [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 k : ℕ hk : k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1) ⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0 [PROOFSTEP] rw [Finset.mem_Ico, Nat.succ_le_iff] at hk [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 k : ℕ hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1 ⊢ Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0 [PROOFSTEP] rw [Set.indicator_of_not_mem] [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 k : ℕ hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1 ⊢ ¬k ∈ {n | upperCrossingTime a b f N n ω < N} [PROOFSTEP] simp only [Set.mem_setOf_eq, not_lt] [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 k : ℕ hk : upcrossingsBefore a b f N ω < k ∧ k < N + 1 ⊢ N ≤ upperCrossingTime a b f N k ω [PROOFSTEP] exact (upperCrossingTime_eq_of_upcrossingsBefore_lt hab hk.1).symm.le [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hab : a < b hN : ¬N = 0 h₁ : ∀ (k : ℕ), k ∈ Finset.Ico 1 (upcrossingsBefore a b f N ω + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 1 h₂ : ∀ (k : ℕ), k ∈ Finset.Ico (upcrossingsBefore a b f N ω + 1) (N + 1) → Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 k = 0 ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico (Nat.succ 0) (Nat.succ (upcrossingsBefore a b f N ω)), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i + ∑ i in Finset.Ico (Nat.succ (upcrossingsBefore a b f N ω)) (Nat.succ N), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] rw [Finset.sum_congr rfl h₁, Finset.sum_congr rfl h₂, Finset.sum_const, Finset.sum_const, smul_eq_mul, mul_one, smul_eq_mul, mul_zero, Nat.card_Ico, Nat.add_succ_sub_one, add_zero, add_zero] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f hab : a < b ⊢ Measurable (upcrossingsBefore a b f N) [PROOFSTEP] have : upcrossingsBefore a b f N = fun ω => ∑ i in Finset.Ico 1 (N + 1), {n | upperCrossingTime a b f N n ω < N}.indicator 1 i := by ext ω exact upcrossingsBefore_eq_sum hab [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f hab : a < b ⊢ upcrossingsBefore a b f N = fun ω => ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] ext ω [GOAL] case h Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f hab : a < b ω : Ω ⊢ upcrossingsBefore a b f N ω = ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] exact upcrossingsBefore_eq_sum hab [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f hab : a < b this : upcrossingsBefore a b f N = fun ω => ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i ⊢ Measurable (upcrossingsBefore a b f N) [PROOFSTEP] rw [this] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 hf : Adapted ℱ f hab : a < b this : upcrossingsBefore a b f N = fun ω => ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i ⊢ Measurable fun ω => ∑ i in Finset.Ico 1 (N + 1), Set.indicator {n | upperCrossingTime a b f N n ω < N} 1 i [PROOFSTEP] exact Finset.measurable_sum _ fun i _ => Measurable.indicator measurable_const <| ℱ.le N _ (hf.isStoppingTime_upperCrossingTime.measurableSet_lt_of_pred N) [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Adapted ℱ f hab : a < b ⊢ ∀ᵐ (ω : Ω) ∂μ, ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N [PROOFSTEP] refine' eventually_of_forall fun ω => _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Adapted ℱ f hab : a < b ω : Ω ⊢ ‖↑(upcrossingsBefore a b f N ω)‖ ≤ ↑N [PROOFSTEP] rw [Real.norm_eq_abs, Nat.abs_cast, Nat.cast_le] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ hf : Adapted ℱ f hab : a < b ω : Ω ⊢ upcrossingsBefore a b f N ω ≤ N [PROOFSTEP] refine' upcrossingsBefore_le _ _ hab [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ upcrossings a b f ω < ⊤ ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k [PROOFSTEP] have : upcrossings a b f ω < ∞ ↔ ∃ k : ℝ≥0, upcrossings a b f ω ≤ k := by constructor · intro h lift upcrossings a b f ω to ℝ≥0 using h.ne with r hr exact ⟨r, le_rfl⟩ · rintro ⟨k, hk⟩ exact lt_of_le_of_lt hk ENNReal.coe_lt_top [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ upcrossings a b f ω < ⊤ → ∃ k, upcrossings a b f ω ≤ ↑k [PROOFSTEP] intro h [GOAL] case mp Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 h : upcrossings a b f ω < ⊤ ⊢ ∃ k, upcrossings a b f ω ≤ ↑k [PROOFSTEP] lift upcrossings a b f ω to ℝ≥0 using h.ne with r hr [GOAL] case mp.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 r : ℝ≥0 hr : ↑r = upcrossings a b f ω upcrossings_lt_top_iff✝ upcrossings_lt_top_iff : ↑r < ⊤ ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k h✝ h : ↑r < ⊤ ⊢ ∃ k, ↑r ≤ ↑k [PROOFSTEP] exact ⟨r, le_rfl⟩ [GOAL] case mpr Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 ⊢ (∃ k, upcrossings a b f ω ≤ ↑k) → upcrossings a b f ω < ⊤ [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mpr.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 k : ℝ≥0 hk : upcrossings a b f ω ≤ ↑k ⊢ upcrossings a b f ω < ⊤ [PROOFSTEP] exact lt_of_le_of_lt hk ENNReal.coe_lt_top [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k ⊢ upcrossings a b f ω < ⊤ ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k [PROOFSTEP] simp_rw [this, upcrossings, iSup_le_iff] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k ⊢ (∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k) ↔ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k [PROOFSTEP] constructor [GOAL] case mp Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k ⊢ (∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k) → ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mpr Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k ⊢ (∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k) → ∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k [PROOFSTEP] rintro ⟨k, hk⟩ [GOAL] case mp.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℝ≥0 hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k ⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k [PROOFSTEP] obtain ⟨m, hm⟩ := exists_nat_ge k [GOAL] case mp.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m✝ : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℝ≥0 hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k m : ℕ hm : k ≤ ↑m ⊢ ∃ k, ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k [PROOFSTEP] refine' ⟨m, fun N => Nat.cast_le.1 ((hk N).trans _)⟩ [GOAL] case mp.intro.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m✝ : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℝ≥0 hk : ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k m : ℕ hm : k ≤ ↑m N : ℕ ⊢ ↑k ≤ ↑m [PROOFSTEP] rwa [← ENNReal.coe_nat, ENNReal.coe_le_coe] [GOAL] case mpr.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℕ hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k ⊢ ∃ k, ∀ (i : ℕ), ↑(upcrossingsBefore a b f i ω) ≤ ↑k [PROOFSTEP] refine' ⟨k, fun N => _⟩ [GOAL] case mpr.intro Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a b : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 this : upcrossings a b f ω < ⊤ ↔ ∃ k, upcrossings a b f ω ≤ ↑k k : ℕ hk : ∀ (N : ℕ), upcrossingsBefore a b f N ω ≤ k N : ℕ ⊢ ↑(upcrossingsBefore a b f N ω) ≤ ↑↑k [PROOFSTEP] simp only [ENNReal.coe_nat, Nat.cast_le, hk N] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ ⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] by_cases hab : a < b [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b ⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] simp_rw [upcrossings] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b ⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), ⨆ (N : ℕ), ↑(upcrossingsBefore a b f N ω) ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] have : ∀ N, ∫⁻ ω, ENNReal.ofReal ((f N ω - a)⁺) ∂μ = ENNReal.ofReal (∫ ω, (f N ω - a)⁺ ∂μ) := by intro N rw [ofReal_integral_eq_lintegral_ofReal] · exact (hf.sub_martingale (martingale_const _ _ _)).pos.integrable _ · exact eventually_of_forall fun ω => LatticeOrderedGroup.pos_nonneg _ [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b ⊢ ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) [PROOFSTEP] intro N [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b N : ℕ ⊢ ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) [PROOFSTEP] rw [ofReal_integral_eq_lintegral_ofReal] [GOAL] case hfi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b N : ℕ ⊢ Integrable fun ω => (f N ω - a)⁺ [PROOFSTEP] exact (hf.sub_martingale (martingale_const _ _ _)).pos.integrable _ [GOAL] case f_nn Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b N : ℕ ⊢ 0 ≤ᵐ[μ] fun ω => (f N ω - a)⁺ [PROOFSTEP] exact eventually_of_forall fun ω => LatticeOrderedGroup.pos_nonneg _ [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), ⨆ (N : ℕ), ↑(upcrossingsBefore a b f N ω) ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] rw [lintegral_iSup'] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ⊢ ENNReal.ofReal (b - a) * ⨆ (n : ℕ), ∫⁻ (a_1 : Ω), ↑(upcrossingsBefore a b f n a_1) ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] simp_rw [this, ENNReal.mul_iSup, iSup_le_iff] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ⊢ ∀ (i : ℕ), ENNReal.ofReal (b - a) * ∫⁻ (a_1 : Ω), ↑(upcrossingsBefore a b f i a_1) ∂μ ≤ ⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) [PROOFSTEP] intro N [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) N : ℕ ⊢ ENNReal.ofReal (b - a) * ∫⁻ (a_1 : Ω), ↑(upcrossingsBefore a b f N a_1) ∂μ ≤ ⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) [PROOFSTEP] rw [(by simp : ∫⁻ ω, upcrossingsBefore a b f N ω ∂μ = ∫⁻ ω, ↑(upcrossingsBefore a b f N ω : ℝ≥0) ∂μ), lintegral_coe_eq_integral, ← ENNReal.ofReal_mul (sub_pos.2 hab).le] [GOAL] Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) N : ℕ ⊢ ∫⁻ (ω : Ω), ↑(upcrossingsBefore a b f N ω) ∂μ = ∫⁻ (ω : Ω), ↑↑(upcrossingsBefore a b f N ω) ∂μ [PROOFSTEP] simp [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) N : ℕ ⊢ ENNReal.ofReal ((b - a) * ∫ (a_1 : Ω), ↑↑(upcrossingsBefore a b f N a_1) ∂μ) ≤ ⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) [PROOFSTEP] simp_rw [NNReal.coe_nat_cast] [GOAL] case pos Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) N : ℕ ⊢ ENNReal.ofReal ((b - a) * ∫ (a_1 : Ω), ↑(upcrossingsBefore a b f N a_1) ∂μ) ≤ ⨆ (N : ℕ), ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) [PROOFSTEP] exact (ENNReal.ofReal_le_ofReal (hf.mul_integral_upcrossingsBefore_le_integral_pos_part a b N)).trans (le_iSup (α := ℝ≥0∞) _ N) [GOAL] case pos.hfi Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) N : ℕ ⊢ Integrable fun x => ↑↑(upcrossingsBefore a b f N x) [PROOFSTEP] simp only [NNReal.coe_nat_cast, hf.adapted.integrable_upcrossingsBefore hab] [GOAL] case pos.hf Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ⊢ ∀ (n : ℕ), AEMeasurable fun ω => ↑(upcrossingsBefore a b f n ω) [PROOFSTEP] exact fun n => measurable_from_top.comp_aemeasurable (hf.adapted.measurable_upcrossingsBefore hab).aemeasurable [GOAL] case pos.h_mono Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ⊢ ∀ᵐ (x : Ω) ∂μ, Monotone fun n => ↑(upcrossingsBefore a b f n x) [PROOFSTEP] refine' eventually_of_forall fun ω N M hNM => _ [GOAL] case pos.h_mono Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ω : Ω N M : ℕ hNM : N ≤ M ⊢ (fun n => ↑(upcrossingsBefore a b f n ω)) N ≤ (fun n => ↑(upcrossingsBefore a b f n ω)) M [PROOFSTEP] rw [Nat.cast_le] [GOAL] case pos.h_mono Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N✝ n m : ℕ ω✝ : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : a < b this : ∀ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ = ENNReal.ofReal (∫ (ω : Ω), (f N ω - a)⁺ ∂μ) ω : Ω N M : ℕ hNM : N ≤ M ⊢ upcrossingsBefore a b f N ω ≤ upcrossingsBefore a b f M ω [PROOFSTEP] exact upcrossingsBefore_mono hab hNM ω [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab : ¬a < b ⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] rw [not_lt, ← sub_nonpos] at hab [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab✝ : b ≤ a hab : b - a ≤ 0 ⊢ ENNReal.ofReal (b - a) * ∫⁻ (ω : Ω), upcrossings a b f ω ∂μ ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] rw [ENNReal.ofReal_of_nonpos hab, zero_mul] [GOAL] case neg Ω : Type u_1 ι : Type u_2 m0 : MeasurableSpace Ω μ : Measure Ω a✝ b✝ : ℝ f : ℕ → Ω → ℝ N n m : ℕ ω : Ω ℱ : Filtration ℕ m0 inst✝ : IsFiniteMeasure μ a b : ℝ hf : Submartingale f ℱ μ hab✝ : b ≤ a hab : b - a ≤ 0 ⊢ 0 ≤ ⨆ (N : ℕ), ∫⁻ (ω : Ω), ENNReal.ofReal (f N ω - a)⁺ ∂μ [PROOFSTEP] exact zero_le _
{"mathlib_filename": "Mathlib.Probability.Martingale.Upcrossing", "llama_tokens": 82297}
[GOAL] ⊢ eval zero' = fun v => pure (0 :: v) [PROOFSTEP] simp [eval] [GOAL] ⊢ eval succ = fun v => pure [Nat.succ (List.headI v)] [PROOFSTEP] simp [eval] [GOAL] ⊢ eval tail = fun v => pure (List.tail v) [PROOFSTEP] simp [eval] [GOAL] f fs : Code ⊢ eval (cons f fs) = fun v => do let n ← eval f v let ns ← eval fs v pure (List.headI n :: ns) [PROOFSTEP] simp [eval] [GOAL] f g : Code ⊢ eval (comp f g) = fun v => eval g v >>= eval f [PROOFSTEP] simp [eval] [GOAL] f g : Code ⊢ eval (case f g) = fun v => Nat.rec (eval f (List.tail v)) (fun y x => eval g (y :: List.tail v)) (List.headI v) [PROOFSTEP] simp [eval] [GOAL] f : Code ⊢ eval (fix f) = PFun.fix fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (eval f v) [PROOFSTEP] simp [eval] [GOAL] v : List ℕ ⊢ eval nil v = pure [] [PROOFSTEP] simp [nil] [GOAL] v : List ℕ ⊢ eval id v = pure v [PROOFSTEP] simp [id] [GOAL] v : List ℕ ⊢ eval head v = pure [List.headI v] [PROOFSTEP] simp [head] [GOAL] v : List ℕ ⊢ eval zero v = pure [0] [PROOFSTEP] simp [zero] [GOAL] v : List ℕ ⊢ eval pred v = pure [Nat.pred (List.headI v)] [PROOFSTEP] simp [pred] [GOAL] v : List ℕ ⊢ Nat.rec (Part.some [0]) (fun y x => Part.some [y]) (List.headI v) = Part.some [Nat.pred (List.headI v)] [PROOFSTEP] cases v.headI [GOAL] case zero v : List ℕ ⊢ Nat.rec (Part.some [0]) (fun y x => Part.some [y]) Nat.zero = Part.some [Nat.pred Nat.zero] [PROOFSTEP] simp [GOAL] case succ v : List ℕ n✝ : ℕ ⊢ Nat.rec (Part.some [0]) (fun y x => Part.some [y]) (Nat.succ n✝) = Part.some [Nat.pred (Nat.succ n✝)] [PROOFSTEP] simp [GOAL] m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ hf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v hg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f) [PROOFSTEP] rsuffices ⟨cg, hg⟩ : ∃ c : Code, ∀ v : Vector ℕ m, c.eval v.1 = Subtype.val <$> Vector.mOfFn fun i => g i v [GOAL] case intro m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ hf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f) [PROOFSTEP] obtain ⟨cf, hf⟩ := hf [GOAL] case intro.intro m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v cf : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> f v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f) [PROOFSTEP] exact ⟨cf.comp cg, fun v => by simp [hg, hf, map_bind, seq_bind_eq, Function.comp] rfl⟩ [GOAL] m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v cf : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> f v v : Vector ℕ m ⊢ eval (Code.comp cf cg) ↑v = pure <$> ((Vector.mOfFn fun i => g i v) >>= f) [PROOFSTEP] simp [hg, hf, map_bind, seq_bind_eq, Function.comp] [GOAL] m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg : ∀ (v : Vector ℕ m), eval cg ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v cf : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> f v v : Vector ℕ m ⊢ (do let x ← Vector.mOfFn fun i => g i v pure <$> f x) = do let a ← Vector.mOfFn fun i => g i v pure <$> f a [PROOFSTEP] rfl [GOAL] m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ hf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v hg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] clear hf f [GOAL] m n : ℕ g : Fin n → Vector ℕ m →. ℕ hg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] induction' n with n IH [GOAL] case zero m n : ℕ g✝ : Fin n → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v g : Fin Nat.zero → Vector ℕ m →. ℕ hg : ∀ (i : Fin Nat.zero), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] exact ⟨nil, fun v => by simp [Vector.mOfFn, Bind.bind]; rfl⟩ [GOAL] m n : ℕ g✝ : Fin n → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v g : Fin Nat.zero → Vector ℕ m →. ℕ hg : ∀ (i : Fin Nat.zero), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v v : Vector ℕ m ⊢ eval nil ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] simp [Vector.mOfFn, Bind.bind] [GOAL] m n : ℕ g✝ : Fin n → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v g : Fin Nat.zero → Vector ℕ m →. ℕ hg : ∀ (i : Fin Nat.zero), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v v : Vector ℕ m ⊢ Part.some [] = Subtype.val <$> Part.some Vector.nil [PROOFSTEP] rfl [GOAL] case succ m n✝ : ℕ g✝ : Fin n✝ → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v n : ℕ IH : ∀ {g : Fin n → Vector ℕ m →. ℕ}, (∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) → ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v g : Fin (Nat.succ n) → Vector ℕ m →. ℕ hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] obtain ⟨cg, hg₁⟩ := hg 0 [GOAL] case succ.intro m n✝ : ℕ g✝ : Fin n✝ → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v n : ℕ IH : ∀ {g : Fin n → Vector ℕ m →. ℕ}, (∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) → ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v g : Fin (Nat.succ n) → Vector ℕ m →. ℕ hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] obtain ⟨cl, hl⟩ := IH fun i => hg i.succ [GOAL] case succ.intro.intro m n✝ : ℕ g✝ : Fin n✝ → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v n : ℕ IH : ∀ {g : Fin n → Vector ℕ m →. ℕ}, (∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) → ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v g : Fin (Nat.succ n) → Vector ℕ m →. ℕ hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v cl : Code hl : ∀ (v : Vector ℕ m), eval cl ↑v = Subtype.val <$> Vector.mOfFn fun i => g (Fin.succ i) v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] exact ⟨cons cg cl, fun v => by simp [Vector.mOfFn, hg₁, map_bind, seq_bind_eq, bind_assoc, (· ∘ ·), hl] rfl⟩ [GOAL] m n✝ : ℕ g✝ : Fin n✝ → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v n : ℕ IH : ∀ {g : Fin n → Vector ℕ m →. ℕ}, (∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) → ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v g : Fin (Nat.succ n) → Vector ℕ m →. ℕ hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v cl : Code hl : ∀ (v : Vector ℕ m), eval cl ↑v = Subtype.val <$> Vector.mOfFn fun i => g (Fin.succ i) v v : Vector ℕ m ⊢ eval (cons cg cl) ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v [PROOFSTEP] simp [Vector.mOfFn, hg₁, map_bind, seq_bind_eq, bind_assoc, (· ∘ ·), hl] [GOAL] m n✝ : ℕ g✝ : Fin n✝ → Vector ℕ m →. ℕ hg✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g✝ i v n : ℕ IH : ∀ {g : Fin n → Vector ℕ m →. ℕ}, (∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v) → ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = Subtype.val <$> Vector.mOfFn fun i => g i v g : Fin (Nat.succ n) → Vector ℕ m →. ℕ hg : ∀ (i : Fin (Nat.succ n)), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v cg : Code hg₁ : ∀ (v : Vector ℕ m), eval cg ↑v = pure <$> g 0 v cl : Code hl : ∀ (v : Vector ℕ m), eval cl ↑v = Subtype.val <$> Vector.mOfFn fun i => g (Fin.succ i) v v : Vector ℕ m ⊢ (do let x ← g 0 v let x_1 ← Vector.mOfFn fun i => g (Fin.succ i) v Part.some (List.headI (pure x) :: ↑x_1)) = do let a ← g 0 v let a_1 ← Vector.mOfFn fun i => g (Fin.succ i) v Subtype.val <$> Part.some (a ::ᵥ a_1) [PROOFSTEP] rfl [GOAL] n : ℕ f : Vector ℕ n →. ℕ hf : Nat.Partrec' f ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v [PROOFSTEP] induction' hf with n f hf [GOAL] case prim n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ hf : Nat.Primrec' f ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] induction hf [GOAL] case prim.zero n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 0), eval c ↑v = pure <$> (↑fun x => 0) v case prim.succ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v case prim.get n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ i✝ : Fin n✝ ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (↑fun v => Vector.get v i✝) v case prim.comp n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v case prim.prec n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : Nat.Primrec' g✝ a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v ⊢ ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case prim.zero => exact ⟨zero', fun ⟨[], _⟩ => rfl⟩ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 0), eval c ↑v = pure <$> (↑fun x => 0) v [PROOFSTEP] case prim.zero => exact ⟨zero', fun ⟨[], _⟩ => rfl⟩ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 0), eval c ↑v = pure <$> (↑fun x => 0) v [PROOFSTEP] exact ⟨zero', fun ⟨[], _⟩ => rfl⟩ [GOAL] case prim.succ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v case prim.get n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ i✝ : Fin n✝ ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (↑fun v => Vector.get v i✝) v case prim.comp n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v case prim.prec n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : Nat.Primrec' g✝ a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v ⊢ ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case prim.succ => exact ⟨succ, fun ⟨[v], _⟩ => rfl⟩ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v [PROOFSTEP] case prim.succ => exact ⟨succ, fun ⟨[v], _⟩ => rfl⟩ [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ n → ℕ ⊢ ∃ c, ∀ (v : Vector ℕ 1), eval c ↑v = pure <$> (↑fun v => Nat.succ (Vector.head v)) v [PROOFSTEP] exact ⟨succ, fun ⟨[v], _⟩ => rfl⟩ [GOAL] case prim.get n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ i✝ : Fin n✝ ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (↑fun v => Vector.get v i✝) v case prim.comp n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v case prim.prec n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : Nat.Primrec' g✝ a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v ⊢ ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case prim.get n i => refine' Fin.succRec (fun n => _) (fun n i IH => _) i · exact ⟨head, fun ⟨List.cons a as, _⟩ => by simp [Bind.bind]; rfl⟩ · obtain ⟨c, h⟩ := IH exact ⟨c.comp tail, fun v => by simpa [← Vector.get_tail, Bind.bind] using h v.tail⟩ [GOAL] n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ n : ℕ i : Fin n ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v [PROOFSTEP] case prim.get n i => refine' Fin.succRec (fun n => _) (fun n i IH => _) i · exact ⟨head, fun ⟨List.cons a as, _⟩ => by simp [Bind.bind]; rfl⟩ · obtain ⟨c, h⟩ := IH exact ⟨c.comp tail, fun v => by simpa [← Vector.get_tail, Bind.bind] using h v.tail⟩ [GOAL] n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ n : ℕ i : Fin n ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v [PROOFSTEP] refine' Fin.succRec (fun n => _) (fun n i IH => _) i [GOAL] case refine'_1 n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ n✝¹ → ℕ n✝ : ℕ i : Fin n✝ n : ℕ ⊢ ∃ c, ∀ (v : Vector ℕ (Nat.succ n)), eval c ↑v = pure <$> (↑fun v => Vector.get v 0) v [PROOFSTEP] exact ⟨head, fun ⟨List.cons a as, _⟩ => by simp [Bind.bind]; rfl⟩ [GOAL] n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ n✝¹ → ℕ n✝ : ℕ i : Fin n✝ n : ℕ x✝ : Vector ℕ (Nat.succ n) a : ℕ as : List ℕ property✝ : List.length (a :: as) = Nat.succ n ⊢ eval head ↑{ val := a :: as, property := property✝ } = pure <$> (↑fun v => Vector.get v 0) { val := a :: as, property := property✝ } [PROOFSTEP] simp [Bind.bind] [GOAL] n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ n✝¹ → ℕ n✝ : ℕ i : Fin n✝ n : ℕ x✝ : Vector ℕ (Nat.succ n) a : ℕ as : List ℕ property✝ : List.length (a :: as) = Nat.succ n ⊢ Part.some [a] = pure <$> Part.some (Vector.head { val := a :: as, property := property✝ }) [PROOFSTEP] rfl [GOAL] case refine'_2 n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ n✝¹ → ℕ n✝ : ℕ i✝ : Fin n✝ n : ℕ i : Fin n IH : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v ⊢ ∃ c, ∀ (v : Vector ℕ (Nat.succ n)), eval c ↑v = pure <$> (↑fun v => Vector.get v (Fin.succ i)) v [PROOFSTEP] obtain ⟨c, h⟩ := IH [GOAL] case refine'_2.intro n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ n✝¹ → ℕ n✝ : ℕ i✝ : Fin n✝ n : ℕ i : Fin n c : Code h : ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v ⊢ ∃ c, ∀ (v : Vector ℕ (Nat.succ n)), eval c ↑v = pure <$> (↑fun v => Vector.get v (Fin.succ i)) v [PROOFSTEP] exact ⟨c.comp tail, fun v => by simpa [← Vector.get_tail, Bind.bind] using h v.tail⟩ [GOAL] n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ n✝¹ → ℕ n✝ : ℕ i✝ : Fin n✝ n : ℕ i : Fin n c : Code h : ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (↑fun v => Vector.get v i) v v : Vector ℕ (Nat.succ n) ⊢ eval (comp c tail) ↑v = pure <$> (↑fun v => Vector.get v (Fin.succ i)) v [PROOFSTEP] simpa [← Vector.get_tail, Bind.bind] using h v.tail [GOAL] case prim.comp n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Fin n✝ → Vector ℕ m✝ → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Primrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> ↑(g✝ i) v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (↑fun a => f✝ (Vector.ofFn fun i => g✝ i a)) v case prim.prec n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : Nat.Primrec' g✝ a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v ⊢ ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case prim.comp m n f g hf hg IHf IHg => simpa [Part.bind_eq_bind] using exists_code.comp IHf IHg [GOAL] n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ m n : ℕ f : Vector ℕ n → ℕ g : Fin n → Vector ℕ m → ℕ hf : Nat.Primrec' f hg : ∀ (i : Fin n), Nat.Primrec' (g i) IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ↑(g i) v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (↑fun a => f (Vector.ofFn fun i => g i a)) v [PROOFSTEP] case prim.comp m n f g hf hg IHf IHg => simpa [Part.bind_eq_bind] using exists_code.comp IHf IHg [GOAL] n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ m n : ℕ f : Vector ℕ n → ℕ g : Fin n → Vector ℕ m → ℕ hf : Nat.Primrec' f hg : ∀ (i : Fin n), Nat.Primrec' (g i) IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> ↑(g i) v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (↑fun a => f (Vector.ofFn fun i => g i a)) v [PROOFSTEP] simpa [Part.bind_eq_bind] using exists_code.comp IHf IHg [GOAL] case prim.prec n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n : ℕ f : Vector ℕ n → ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ g✝ : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f✝ a✝ : Nat.Primrec' g✝ a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> ↑f✝ v a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 2)), eval c ↑v = pure <$> ↑g✝ v ⊢ ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f✝ (Vector.tail v)) (fun y IH => g✝ (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case prim.prec n f g _ _ IHf IHg => obtain ⟨cf, hf⟩ := IHf obtain ⟨cg, hg⟩ := IHg simp only [Part.map_eq_map, Part.map_some, PFun.coe_val] at hf hg refine' ⟨prec cf cg, fun v => _⟩ rw [← v.cons_head_tail] specialize hf v.tail replace hg := fun a b => hg (a ::ᵥ b ::ᵥ v.tail) simp only [Vector.cons_val, Vector.tail_val] at hf hg simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, Vector.tail_cons, Vector.head_cons, PFun.coe_val, Vector.tail_val] simp only [← Part.pure_eq_some] at hf hg ⊢ induction' v.head with n _ <;> simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl, Bind.bind, Functor.map] suffices ∀ a b, a + b = n → (n.succ :: 0 :: g (n ::ᵥ Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) n ::ᵥ v.tail) :: v.val.tail : List ℕ) ∈ PFun.fix (fun v : List ℕ => Part.bind (cg.eval (v.headI :: v.tail.tail)) (fun x => Part.some (if v.tail.headI = 0 then Sum.inl (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail : List ℕ) else Sum.inr (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail)))) (a :: b :: Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) a :: v.val.tail) by erw [Part.eq_some_iff.2 (this 0 n (zero_add n))] simp only [List.headI, Part.bind_some, List.tail_cons] intro a b e induction' b with b IH generalizing a · refine' PFun.mem_fix_iff.2 (Or.inl <| Part.eq_some_iff.1 _) simp only [hg, ← e, Part.bind_some, List.tail_cons, pure] rfl · refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH (a + 1) (by rwa [add_right_comm])⟩) simp only [hg, eval, Part.bind_some, Nat.rec_add_one, List.tail_nil, List.tail_cons, pure] exact Part.mem_some_iff.2 rfl [GOAL] n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v IHg : ∃ c, ∀ (v : Vector ℕ (n + 2)), eval c ↑v = pure <$> ↑g v ⊢ ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v [PROOFSTEP] case prim.prec n f g _ _ IHf IHg => obtain ⟨cf, hf⟩ := IHf obtain ⟨cg, hg⟩ := IHg simp only [Part.map_eq_map, Part.map_some, PFun.coe_val] at hf hg refine' ⟨prec cf cg, fun v => _⟩ rw [← v.cons_head_tail] specialize hf v.tail replace hg := fun a b => hg (a ::ᵥ b ::ᵥ v.tail) simp only [Vector.cons_val, Vector.tail_val] at hf hg simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, Vector.tail_cons, Vector.head_cons, PFun.coe_val, Vector.tail_val] simp only [← Part.pure_eq_some] at hf hg ⊢ induction' v.head with n _ <;> simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl, Bind.bind, Functor.map] suffices ∀ a b, a + b = n → (n.succ :: 0 :: g (n ::ᵥ Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) n ::ᵥ v.tail) :: v.val.tail : List ℕ) ∈ PFun.fix (fun v : List ℕ => Part.bind (cg.eval (v.headI :: v.tail.tail)) (fun x => Part.some (if v.tail.headI = 0 then Sum.inl (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail : List ℕ) else Sum.inr (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail)))) (a :: b :: Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) a :: v.val.tail) by erw [Part.eq_some_iff.2 (this 0 n (zero_add n))] simp only [List.headI, Part.bind_some, List.tail_cons] intro a b e induction' b with b IH generalizing a · refine' PFun.mem_fix_iff.2 (Or.inl <| Part.eq_some_iff.1 _) simp only [hg, ← e, Part.bind_some, List.tail_cons, pure] rfl · refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH (a + 1) (by rwa [add_right_comm])⟩) simp only [hg, eval, Part.bind_some, Nat.rec_add_one, List.tail_nil, List.tail_cons, pure] exact Part.mem_some_iff.2 rfl [GOAL] n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> ↑f v IHg : ∃ c, ∀ (v : Vector ℕ (n + 2)), eval c ↑v = pure <$> ↑g v ⊢ ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v [PROOFSTEP] obtain ⟨cf, hf⟩ := IHf [GOAL] case intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g IHg : ∃ c, ∀ (v : Vector ℕ (n + 2)), eval c ↑v = pure <$> ↑g v cf : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> ↑f v ⊢ ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v [PROOFSTEP] obtain ⟨cg, hg⟩ := IHg [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = pure <$> ↑f v cg : Code hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = pure <$> ↑g v ⊢ ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v [PROOFSTEP] simp only [Part.map_eq_map, Part.map_some, PFun.coe_val] at hf hg [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = Part.some (pure (f v)) hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v)) ⊢ ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v [PROOFSTEP] refine' ⟨prec cf cg, fun v => _⟩ [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = Part.some (pure (f v)) hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v)) v : Vector ℕ (n + 1) ⊢ eval (prec cf cg) ↑v = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) v [PROOFSTEP] rw [← v.cons_head_tail] [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code hf : ∀ (v : Vector ℕ n), eval cf ↑v = Part.some (pure (f v)) hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v)) v : Vector ℕ (n + 1) ⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) (Vector.head v ::ᵥ Vector.tail v) [PROOFSTEP] specialize hf v.tail [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code hg : ∀ (v : Vector ℕ (n + 2)), eval cg ↑v = Part.some (pure (g v)) v : Vector ℕ (n + 1) hf : eval cf ↑(Vector.tail v) = Part.some (pure (f (Vector.tail v))) ⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) (Vector.head v ::ᵥ Vector.tail v) [PROOFSTEP] replace hg := fun a b => hg (a ::ᵥ b ::ᵥ v.tail) [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n + 1) hf : eval cf ↑(Vector.tail v) = Part.some (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg ↑(a ::ᵥ b ::ᵥ Vector.tail v) = Part.some (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) ⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) (Vector.head v ::ᵥ Vector.tail v) [PROOFSTEP] simp only [Vector.cons_val, Vector.tail_val] at hf hg [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n + 1) hf : eval cf (List.tail ↑v) = Part.some (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = Part.some (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) ⊢ eval (prec cf cg) ↑(Vector.head v ::ᵥ Vector.tail v) = pure <$> (↑fun v => Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v)) (Vector.head v ::ᵥ Vector.tail v) [PROOFSTEP] simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, Vector.tail_cons, Vector.head_cons, PFun.coe_val, Vector.tail_val] [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n + 1) hf : eval cf (List.tail ↑v) = Part.some (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = Part.some (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) ⊢ eval (prec cf cg) (Vector.head v :: List.tail ↑v) = Part.some (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v))) [PROOFSTEP] simp only [← Part.pure_eq_some] at hf hg ⊢ [GOAL] case intro.intro n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) ⊢ eval (prec cf cg) (Vector.head v :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Vector.head v))) [PROOFSTEP] induction' v.head with n _ [GOAL] case intro.intro.zero n✝¹ : ℕ f✝¹ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f✝ : Vector ℕ n✝ → ℕ n : ℕ f : Vector ℕ n → ℕ g : Vector ℕ (n + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) ⊢ eval (prec cf cg) (Nat.zero :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) Nat.zero)) [PROOFSTEP] simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl, Bind.bind, Functor.map] [GOAL] case intro.intro.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) ⊢ eval (prec cf cg) (Nat.succ n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (Nat.succ n))) [PROOFSTEP] simp [prec, hf, Part.bind_assoc, ← Part.bind_some_eq_map, Part.bind_some, show ∀ x, pure x = [x] from fun _ => rfl, Bind.bind, Functor.map] [GOAL] case intro.intro.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) ⊢ (Part.bind (PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (0 :: n :: f (Vector.tail v) :: List.tail ↑v)) fun x => Part.some [List.headI (List.tail (List.tail x))]) = Part.some [g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v)] [PROOFSTEP] suffices ∀ a b, a + b = n → (n.succ :: 0 :: g (n ::ᵥ Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) n ::ᵥ v.tail) :: v.val.tail : List ℕ) ∈ PFun.fix (fun v : List ℕ => Part.bind (cg.eval (v.headI :: v.tail.tail)) (fun x => Part.some (if v.tail.headI = 0 then Sum.inl (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail : List ℕ) else Sum.inr (v.headI.succ :: v.tail.headI.pred :: x.headI :: v.tail.tail.tail)))) (a :: b :: Nat.rec (f v.tail) (fun y IH => g (y ::ᵥ IH ::ᵥ v.tail)) a :: v.val.tail) by erw [Part.eq_some_iff.2 (this 0 n (zero_add n))] simp only [List.headI, Part.bind_some, List.tail_cons] [GOAL] n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) this : ∀ (a b : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ⊢ (Part.bind (PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (0 :: n :: f (Vector.tail v) :: List.tail ↑v)) fun x => Part.some [List.headI (List.tail (List.tail x))]) = Part.some [g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v)] [PROOFSTEP] erw [Part.eq_some_iff.2 (this 0 n (zero_add n))] [GOAL] n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) this : ∀ (a b : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ⊢ (Part.bind (Part.some (Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v)) fun x => Part.some [List.headI (List.tail (List.tail x))]) = Part.some [g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v)] [PROOFSTEP] simp only [List.headI, Part.bind_some, List.tail_cons] [GOAL] case intro.intro.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) ⊢ ∀ (a b : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) [PROOFSTEP] intro a b e [GOAL] case intro.intro.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝¹ : Nat.Primrec' f a✝ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a b : ℕ e : a + b = n ⊢ Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) [PROOFSTEP] induction' b with b IH generalizing a [GOAL] case intro.intro.succ.zero n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b : ℕ e✝ : a✝ + b = n a : ℕ e : a + Nat.zero = n ⊢ Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) [PROOFSTEP] refine' PFun.mem_fix_iff.2 (Or.inl <| Part.eq_some_iff.1 _) [GOAL] case intro.intro.succ.zero n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b : ℕ e✝ : a✝ + b = n a : ℕ e : a + Nat.zero = n ⊢ (Part.bind (eval cg (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) :: List.tail (List.tail (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)))) fun x => Part.some (if List.headI (List.tail (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) = 0 then Sum.inl (Nat.succ (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (List.tail (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))) :: List.headI x :: List.tail (List.tail (List.tail (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)))) else Sum.inr (Nat.succ (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (List.tail (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))) :: List.headI x :: List.tail (List.tail (List.tail (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)))))) = Part.some (Sum.inl (Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v)) [PROOFSTEP] simp only [hg, ← e, Part.bind_some, List.tail_cons, pure] [GOAL] case intro.intro.succ.zero n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b : ℕ e✝ : a✝ + b = n a : ℕ e : a + Nat.zero = n ⊢ Part.some (if List.headI (Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) = 0 then Sum.inl (Nat.succ (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: List.headI (List.ret (g (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ Vector.tail v))) :: List.tail ↑v) else Sum.inr (Nat.succ (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: List.headI (List.ret (g (List.headI (a :: Nat.zero :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ Vector.tail v))) :: List.tail ↑v)) = Part.some (Sum.inl (Nat.succ (a + Nat.zero) :: 0 :: g ((a + Nat.zero) ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (a + Nat.zero) ::ᵥ Vector.tail v) :: List.tail ↑v)) [PROOFSTEP] rfl [GOAL] case intro.intro.succ.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b✝ : ℕ e✝ : a✝ + b✝ = n b : ℕ IH : ∀ (a : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) a : ℕ e : a + Nat.succ b = n ⊢ Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) [PROOFSTEP] refine' PFun.mem_fix_iff.2 (Or.inr ⟨_, _, IH (a + 1) (by rwa [add_right_comm])⟩) [GOAL] n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b✝ : ℕ e✝ : a✝ + b✝ = n b : ℕ IH : ∀ (a : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) a : ℕ e : a + Nat.succ b = n ⊢ a + 1 + b = n [PROOFSTEP] rwa [add_right_comm] [GOAL] case intro.intro.succ.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b✝ : ℕ e✝ : a✝ + b✝ = n b : ℕ IH : ∀ (a : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) a : ℕ e : a + Nat.succ b = n ⊢ Sum.inr ((a + 1) :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) (a + 1) :: List.tail ↑v) ∈ Part.bind (eval cg (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) :: List.tail (List.tail (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)))) fun x => Part.some (if List.headI (List.tail (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) = 0 then Sum.inl (Nat.succ (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (List.tail (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))) :: List.headI x :: List.tail (List.tail (List.tail (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)))) else Sum.inr (Nat.succ (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (List.tail (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))) :: List.headI x :: List.tail (List.tail (List.tail (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v))))) [PROOFSTEP] simp only [hg, eval, Part.bind_some, Nat.rec_add_one, List.tail_nil, List.tail_cons, pure] [GOAL] case intro.intro.succ.succ n✝² : ℕ f✝¹ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f✝ : Vector ℕ n✝¹ → ℕ n✝ : ℕ f : Vector ℕ n✝ → ℕ g : Vector ℕ (n✝ + 2) → ℕ a✝² : Nat.Primrec' f a✝¹ : Nat.Primrec' g cf cg : Code v : Vector ℕ (n✝ + 1) hf : eval cf (List.tail ↑v) = pure (pure (f (Vector.tail v))) hg : ∀ (a b : ℕ), eval cg (a :: b :: List.tail ↑v) = pure (pure (g (a ::ᵥ b ::ᵥ Vector.tail v))) n : ℕ n_ih✝ : eval (prec cf cg) (n :: List.tail ↑v) = pure (pure (Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n)) a✝ b✝ : ℕ e✝ : a✝ + b✝ = n b : ℕ IH : ∀ (a : ℕ), a + b = n → Nat.succ n :: 0 :: g (n ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) n ::ᵥ Vector.tail v) :: List.tail ↑v ∈ PFun.fix (fun v => Part.bind (eval cg (List.headI v :: List.tail (List.tail v))) fun x => Part.some (if List.headI (List.tail v) = 0 then Sum.inl (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))) else Sum.inr (Nat.succ (List.headI v) :: Nat.pred (List.headI (List.tail v)) :: List.headI x :: List.tail (List.tail (List.tail v))))) (a :: b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) a : ℕ e : a + Nat.succ b = n ⊢ Sum.inr ((a + 1) :: b :: g (a ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ Vector.tail v) :: List.tail ↑v) ∈ Part.some (if List.headI (Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) = 0 then Sum.inl (Nat.succ (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: List.headI (List.ret (g (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ Vector.tail v))) :: List.tail ↑v) else Sum.inr (Nat.succ (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: Nat.pred (List.headI (Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v)) :: List.headI (List.ret (g (List.headI (a :: Nat.succ b :: Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a :: List.tail ↑v) ::ᵥ Nat.rec (f (Vector.tail v)) (fun y IH => g (y ::ᵥ IH ::ᵥ Vector.tail v)) a ::ᵥ Vector.tail v))) :: List.tail ↑v)) [PROOFSTEP] exact Part.mem_some_iff.2 rfl [GOAL] case comp n : ℕ f : Vector ℕ n →. ℕ m✝ n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ g✝ : Fin n✝ → Vector ℕ m✝ →. ℕ a✝¹ : Nat.Partrec' f✝ a✝ : ∀ (i : Fin n✝), Nat.Partrec' (g✝ i) a_ih✝¹ : ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> f✝ v a_ih✝ : ∀ (i : Fin n✝), ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> g✝ i v ⊢ ∃ c, ∀ (v : Vector ℕ m✝), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g✝ i v) >>= f✝) v case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case comp m n f g _ _ IHf IHg => exact exists_code.comp IHf IHg [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ a✝¹ : Nat.Partrec' f a✝ : ∀ (i : Fin n), Nat.Partrec' (g i) IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g i v) >>= f) v [PROOFSTEP] case comp m n f g _ _ IHf IHg => exact exists_code.comp IHf IHg [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ m n : ℕ f : Vector ℕ n →. ℕ g : Fin n → Vector ℕ m →. ℕ a✝¹ : Nat.Partrec' f a✝ : ∀ (i : Fin n), Nat.Partrec' (g i) IHf : ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> f v IHg : ∀ (i : Fin n), ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> g i v ⊢ ∃ c, ∀ (v : Vector ℕ m), eval c ↑v = pure <$> (fun v => (Vector.mOfFn fun i => g i v) >>= f) v [PROOFSTEP] exact exists_code.comp IHf IHg [GOAL] case rfind n : ℕ f : Vector ℕ n →. ℕ n✝ : ℕ f✝ : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f✝ a_ih✝ : ∃ c, ∀ (v : Vector ℕ (n✝ + 1)), eval c ↑v = pure <$> ↑f✝ v ⊢ ∃ c, ∀ (v : Vector ℕ n✝), eval c ↑v = pure <$> (fun v => Nat.rfind fun n => Part.some (decide (f✝ (n ::ᵥ v) = 0))) v [PROOFSTEP] case rfind n f _ IHf => obtain ⟨cf, hf⟩ := IHf; refine' ⟨rfind cf, fun v => _⟩ replace hf := fun a => hf (a ::ᵥ v) simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, PFun.coe_val, show ∀ x, pure x = [x] from fun _ => rfl] at hf ⊢ refine' Part.ext fun x => _ simp only [rfind, Part.bind_eq_bind, Part.pure_eq_some, Part.map_eq_map, Part.bind_some, exists_prop, cons_eval, comp_eval, fix_eval, tail_eval, succ_eval, zero'_eval, List.headI_nil, List.headI_cons, pred_eval, Part.map_some, Bool.false_eq_decide_iff, Part.mem_bind_iff, List.length, Part.mem_map_iff, Nat.mem_rfind, List.tail_nil, List.tail_cons, Bool.true_eq_decide_iff, Part.mem_some_iff, Part.map_bind] constructor · rintro ⟨v', h1, rfl⟩ suffices ∀ v₁ : List ℕ, v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) v₁ → ∀ n, (v₁ = n :: v.val) → (∀ m < n, ¬f (m ::ᵥ v) = 0) → ∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred] by exact this _ h1 0 rfl (by rintro _ ⟨⟩) clear h1 intro v₀ h1 refine' PFun.fixInduction h1 fun v₁ h2 IH => _ clear h1 rintro n rfl hm have := PFun.mem_fix_iff.1 h2 simp only [hf, Part.bind_some] at this split_ifs at this with h · simp only [List.headI_nil, List.headI_cons, exists_false, or_false_iff, Part.mem_some_iff, List.tail_cons, false_and_iff, Sum.inl.injEq] at this subst this exact ⟨_, ⟨h, @(hm)⟩, rfl⟩ · refine' IH (n.succ :: v.val) (by simp_all) _ rfl fun m h' => _ obtain h | rfl := Nat.lt_succ_iff_lt_or_eq.1 h' exacts [hm _ h, h] · rintro ⟨n, ⟨hn, hm⟩, rfl⟩ refine' ⟨n.succ :: v.1, _, rfl⟩ have : (n.succ :: v.1 : List ℕ) ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) (n :: v.val) := PFun.mem_fix_iff.2 (Or.inl (by simp [hf, hn])) generalize (n.succ :: v.1 : List ℕ) = w at this ⊢ clear hn induction' n with n IH · exact this refine' IH (fun {m} h' => hm (Nat.lt_succ_of_lt h')) (PFun.mem_fix_iff.2 (Or.inr ⟨_, _, this⟩)) simp only [hf, hm n.lt_succ_self, Part.bind_some, List.headI, eq_self_iff_true, if_false, Part.mem_some_iff, and_self_iff, List.tail_cons] [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f IHf : ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> ↑f v ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v [PROOFSTEP] case rfind n f _ IHf => obtain ⟨cf, hf⟩ := IHf; refine' ⟨rfind cf, fun v => _⟩ replace hf := fun a => hf (a ::ᵥ v) simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, PFun.coe_val, show ∀ x, pure x = [x] from fun _ => rfl] at hf ⊢ refine' Part.ext fun x => _ simp only [rfind, Part.bind_eq_bind, Part.pure_eq_some, Part.map_eq_map, Part.bind_some, exists_prop, cons_eval, comp_eval, fix_eval, tail_eval, succ_eval, zero'_eval, List.headI_nil, List.headI_cons, pred_eval, Part.map_some, Bool.false_eq_decide_iff, Part.mem_bind_iff, List.length, Part.mem_map_iff, Nat.mem_rfind, List.tail_nil, List.tail_cons, Bool.true_eq_decide_iff, Part.mem_some_iff, Part.map_bind] constructor · rintro ⟨v', h1, rfl⟩ suffices ∀ v₁ : List ℕ, v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) v₁ → ∀ n, (v₁ = n :: v.val) → (∀ m < n, ¬f (m ::ᵥ v) = 0) → ∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred] by exact this _ h1 0 rfl (by rintro _ ⟨⟩) clear h1 intro v₀ h1 refine' PFun.fixInduction h1 fun v₁ h2 IH => _ clear h1 rintro n rfl hm have := PFun.mem_fix_iff.1 h2 simp only [hf, Part.bind_some] at this split_ifs at this with h · simp only [List.headI_nil, List.headI_cons, exists_false, or_false_iff, Part.mem_some_iff, List.tail_cons, false_and_iff, Sum.inl.injEq] at this subst this exact ⟨_, ⟨h, @(hm)⟩, rfl⟩ · refine' IH (n.succ :: v.val) (by simp_all) _ rfl fun m h' => _ obtain h | rfl := Nat.lt_succ_iff_lt_or_eq.1 h' exacts [hm _ h, h] · rintro ⟨n, ⟨hn, hm⟩, rfl⟩ refine' ⟨n.succ :: v.1, _, rfl⟩ have : (n.succ :: v.1 : List ℕ) ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) (n :: v.val) := PFun.mem_fix_iff.2 (Or.inl (by simp [hf, hn])) generalize (n.succ :: v.1 : List ℕ) = w at this ⊢ clear hn induction' n with n IH · exact this refine' IH (fun {m} h' => hm (Nat.lt_succ_of_lt h')) (PFun.mem_fix_iff.2 (Or.inr ⟨_, _, this⟩)) simp only [hf, hm n.lt_succ_self, Part.bind_some, List.headI, eq_self_iff_true, if_false, Part.mem_some_iff, and_self_iff, List.tail_cons] [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f IHf : ∃ c, ∀ (v : Vector ℕ (n + 1)), eval c ↑v = pure <$> ↑f v ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v [PROOFSTEP] obtain ⟨cf, hf⟩ := IHf [GOAL] case intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code hf : ∀ (v : Vector ℕ (n + 1)), eval cf ↑v = pure <$> ↑f v ⊢ ∃ c, ∀ (v : Vector ℕ n), eval c ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v [PROOFSTEP] refine' ⟨rfind cf, fun v => _⟩ [GOAL] case intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code hf : ∀ (v : Vector ℕ (n + 1)), eval cf ↑v = pure <$> ↑f v v : Vector ℕ n ⊢ eval (rfind cf) ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v [PROOFSTEP] replace hf := fun a => hf (a ::ᵥ v) [GOAL] case intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf ↑(a ::ᵥ v) = pure <$> ↑f (a ::ᵥ v) ⊢ eval (rfind cf) ↑v = pure <$> (fun v => Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) v [PROOFSTEP] simp only [Part.map_eq_map, Part.map_some, Vector.cons_val, PFun.coe_val, show ∀ x, pure x = [x] from fun _ => rfl] at hf ⊢ [GOAL] case intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] ⊢ eval (rfind cf) ↑v = Part.map pure (Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) [PROOFSTEP] refine' Part.ext fun x => _ [GOAL] case intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] x : List ℕ ⊢ x ∈ eval (rfind cf) ↑v ↔ x ∈ Part.map pure (Nat.rfind fun n_1 => Part.some (decide (f (n_1 ::ᵥ v) = 0))) [PROOFSTEP] simp only [rfind, Part.bind_eq_bind, Part.pure_eq_some, Part.map_eq_map, Part.bind_some, exists_prop, cons_eval, comp_eval, fix_eval, tail_eval, succ_eval, zero'_eval, List.headI_nil, List.headI_cons, pred_eval, Part.map_some, Bool.false_eq_decide_iff, Part.mem_bind_iff, List.length, Part.mem_map_iff, Nat.mem_rfind, List.tail_nil, List.tail_cons, Bool.true_eq_decide_iff, Part.mem_some_iff, Part.map_bind] [GOAL] case intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] x : List ℕ ⊢ (∃ a, a ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) ∧ x = [Nat.pred (List.headI a)]) ↔ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x [PROOFSTEP] constructor [GOAL] case intro.mp n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] x : List ℕ ⊢ (∃ a, a ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) ∧ x = [Nat.pred (List.headI a)]) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x [PROOFSTEP] rintro ⟨v', h1, rfl⟩ [GOAL] case intro.mp.intro.intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = [Nat.pred (List.headI v')] [PROOFSTEP] suffices ∀ v₁ : List ℕ, v' ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) v₁ → ∀ n, (v₁ = n :: v.val) → (∀ m < n, ¬f (m ::ᵥ v) = 0) → ∃ a : ℕ, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [v'.headI.pred] by exact this _ h1 0 rfl (by rintro _ ⟨⟩) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) this : ∀ (v₁ : List ℕ), v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₁ → ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = [Nat.pred (List.headI v')] [PROOFSTEP] exact this _ h1 0 rfl (by rintro _ ⟨⟩) [GOAL] n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) this : ∀ (v₁ : List ℕ), v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₁ → ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] ⊢ ∀ (m : ℕ), m < 0 → ¬f (m ::ᵥ v) = 0 [PROOFSTEP] rintro _ ⟨⟩ [GOAL] case intro.mp.intro.intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ h1 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) ⊢ ∀ (v₁ : List ℕ), v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₁ → ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] clear h1 [GOAL] case intro.mp.intro.intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' : List ℕ ⊢ ∀ (v₁ : List ℕ), v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₁ → ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] intro v₀ h1 [GOAL] case intro.mp.intro.intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ h1 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₀ ⊢ ∀ (n_1 : ℕ), v₀ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] refine' PFun.fixInduction h1 fun v₁ h2 IH => _ [GOAL] case intro.mp.intro.intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ h1 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₀ v₁ : List ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₁ IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf v₁) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v₁) :: List.tail v₁) else Sum.inr (Nat.succ (List.headI v₁) :: List.tail v₁))) → ∀ (n_1 : ℕ), a'' = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] ⊢ ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] clear h1 [GOAL] case intro.mp.intro.intro n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ v₁ : List ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) v₁ IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf v₁) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v₁) :: List.tail v₁) else Sum.inr (Nat.succ (List.headI v₁) :: List.tail v₁))) → ∀ (n_1 : ℕ), a'' = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] ⊢ ∀ (n_1 : ℕ), v₁ = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] rintro n rfl hm [GOAL] case intro.mp.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] have := PFun.mem_fix_iff.1 h2 [GOAL] case intro.mp.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 this : (Sum.inl v' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) ∨ ∃ a', (Sum.inr a' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] simp only [hf, Part.bind_some] at this [GOAL] case intro.mp.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 this : Sum.inl v' ∈ Part.some (if List.headI [f (n ::ᵥ v)] = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (if List.headI [f (n ::ᵥ v)] = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] split_ifs at this with h [GOAL] case pos n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h : List.headI [f (n ::ᵥ v)] = 0 this : Sum.inl v' ∈ Part.some (Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] simp only [List.headI_nil, List.headI_cons, exists_false, or_false_iff, Part.mem_some_iff, List.tail_cons, false_and_iff, Sum.inl.injEq] at this [GOAL] case pos n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h : List.headI [f (n ::ᵥ v)] = 0 this : v' = Nat.succ n :: ↑v ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] subst this [GOAL] case pos n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v₀ : List ℕ n : ℕ hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h : List.headI [f (n ::ᵥ v)] = 0 h2 : Nat.succ n :: ↑v ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n_1 : ℕ), a'' = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI (Nat.succ n :: ↑v))] ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI (Nat.succ n :: ↑v))] [PROOFSTEP] exact ⟨_, ⟨h, @(hm)⟩, rfl⟩ [GOAL] case neg n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h : ¬List.headI [f (n ::ᵥ v)] = 0 this : Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' ⊢ ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] [PROOFSTEP] refine' IH (n.succ :: v.val) (by simp_all) _ rfl fun m h' => _ [GOAL] n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h : ¬List.headI [f (n ::ᵥ v)] = 0 this : Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' ⊢ Sum.inr (Nat.succ n :: ↑v) ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) [PROOFSTEP] simp_all [GOAL] case neg n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h : ¬List.headI [f (n ::ᵥ v)] = 0 this : Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' m : ℕ h' : m < Nat.succ n ⊢ ¬f (m ::ᵥ v) = 0 [PROOFSTEP] obtain h | rfl := Nat.lt_succ_iff_lt_or_eq.1 h' [GOAL] case neg.inl n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ n : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)))) → ∀ (n : ℕ), a'' = n :: ↑v → (∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m : ℕ), m < n → ¬f (m ::ᵥ v) = 0 h✝ : ¬List.headI [f (n ::ᵥ v)] = 0 this : Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' m : ℕ h' : m < Nat.succ n h : m < n ⊢ ¬f (m ::ᵥ v) = 0 case neg.inr n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] v' v₀ : List ℕ m : ℕ h2 : v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (m :: ↑v) IH : ∀ (a'' : List ℕ), (Sum.inr a'' ∈ Part.bind (eval cf (m :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v)) else Sum.inr (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v)))) → ∀ (n_1 : ℕ), a'' = n_1 :: ↑v → (∀ (m : ℕ), m < n_1 → ¬f (m ::ᵥ v) = 0) → ∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ [a] = [Nat.pred (List.headI v')] hm : ∀ (m_1 : ℕ), m_1 < m → ¬f (m_1 ::ᵥ v) = 0 h : ¬List.headI [f (m ::ᵥ v)] = 0 this : Sum.inl v' ∈ Part.some (Sum.inr (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v))) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr (Nat.succ (List.headI (m :: ↑v)) :: List.tail (m :: ↑v))) ∧ v' ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) a' h' : m < Nat.succ m ⊢ ¬f (m ::ᵥ v) = 0 [PROOFSTEP] exacts [hm _ h, h] [GOAL] case intro.mpr n✝ : ℕ f✝ : Vector ℕ n✝ →. ℕ n : ℕ f : Vector ℕ (n + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] x : List ℕ ⊢ (∃ a, (f (a ::ᵥ v) = 0 ∧ ∀ {m : ℕ}, m < a → ¬f (m ::ᵥ v) = 0) ∧ pure a = x) → ∃ a, a ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) ∧ x = [Nat.pred (List.headI a)] [PROOFSTEP] rintro ⟨n, ⟨hn, hm⟩, rfl⟩ [GOAL] case intro.mpr.intro.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hn : f (n ::ᵥ v) = 0 hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 ⊢ ∃ a, a ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) ∧ pure n = [Nat.pred (List.headI a)] [PROOFSTEP] refine' ⟨n.succ :: v.1, _, rfl⟩ [GOAL] case intro.mpr.intro.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hn : f (n ::ᵥ v) = 0 hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 ⊢ Nat.succ n :: ↑v ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) [PROOFSTEP] have : (n.succ :: v.1 : List ℕ) ∈ PFun.fix (fun v => (cf.eval v).bind fun y => Part.some <| if y.headI = 0 then Sum.inl (v.headI.succ :: v.tail) else Sum.inr (v.headI.succ :: v.tail)) (n :: v.val) := PFun.mem_fix_iff.2 (Or.inl (by simp [hf, hn])) [GOAL] n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hn : f (n ::ᵥ v) = 0 hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 ⊢ Sum.inl (Nat.succ n :: ↑v) ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) [PROOFSTEP] simp [hf, hn] [GOAL] case intro.mpr.intro.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hn : f (n ::ᵥ v) = 0 hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 this : Nat.succ n :: ↑v ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) ⊢ Nat.succ n :: ↑v ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) [PROOFSTEP] generalize (n.succ :: v.1 : List ℕ) = w at this ⊢ [GOAL] case intro.mpr.intro.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hn : f (n ::ᵥ v) = 0 hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 w : List ℕ this : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) ⊢ w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) [PROOFSTEP] clear hn [GOAL] case intro.mpr.intro.intro.intro n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hm : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 w : List ℕ this : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) ⊢ w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) [PROOFSTEP] induction' n with n IH [GOAL] case intro.mpr.intro.intro.intro.zero n✝¹ : ℕ f✝ : Vector ℕ n✝¹ →. ℕ n✝ : ℕ f : Vector ℕ (n✝ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n : ℕ hm✝ : ∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0 w : List ℕ this✝ : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) hm : ∀ {m : ℕ}, m < Nat.zero → ¬f (m ::ᵥ v) = 0 this : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (Nat.zero :: ↑v) ⊢ w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) [PROOFSTEP] exact this [GOAL] case intro.mpr.intro.intro.intro.succ n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ (n✝¹ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝¹ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n✝ : ℕ hm✝ : ∀ {m : ℕ}, m < n✝ → ¬f (m ::ᵥ v) = 0 w : List ℕ this✝ : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n✝ :: ↑v) n : ℕ IH : (∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0) → w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) → w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) hm : ∀ {m : ℕ}, m < Nat.succ n → ¬f (m ::ᵥ v) = 0 this : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (Nat.succ n :: ↑v) ⊢ w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) [PROOFSTEP] refine' IH (fun {m} h' => hm (Nat.lt_succ_of_lt h')) (PFun.mem_fix_iff.2 (Or.inr ⟨_, _, this⟩)) [GOAL] case intro.mpr.intro.intro.intro.succ n✝² : ℕ f✝ : Vector ℕ n✝² →. ℕ n✝¹ : ℕ f : Vector ℕ (n✝¹ + 1) → ℕ a✝ : Nat.Partrec' ↑f cf : Code v : Vector ℕ n✝¹ hf : ∀ (a : ℕ), eval cf (a :: ↑v) = Part.some [f (a ::ᵥ v)] n✝ : ℕ hm✝ : ∀ {m : ℕ}, m < n✝ → ¬f (m ::ᵥ v) = 0 w : List ℕ this✝ : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n✝ :: ↑v) n : ℕ IH : (∀ {m : ℕ}, m < n → ¬f (m ::ᵥ v) = 0) → w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (n :: ↑v) → w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (0 :: ↑v) hm : ∀ {m : ℕ}, m < Nat.succ n → ¬f (m ::ᵥ v) = 0 this : w ∈ PFun.fix (fun v => Part.bind (eval cf v) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI v) :: List.tail v) else Sum.inr (Nat.succ (List.headI v) :: List.tail v))) (Nat.succ n :: ↑v) ⊢ Sum.inr (Nat.succ n :: ↑v) ∈ Part.bind (eval cf (n :: ↑v)) fun y => Part.some (if List.headI y = 0 then Sum.inl (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v)) else Sum.inr (Nat.succ (List.headI (n :: ↑v)) :: List.tail (n :: ↑v))) [PROOFSTEP] simp only [hf, hm n.lt_succ_self, Part.bind_some, List.headI, eq_self_iff_true, if_false, Part.mem_some_iff, and_self_iff, List.tail_cons] [GOAL] k k' : Cont v : List ℕ ⊢ eval (then k k') v = eval k v >>= eval k' [PROOFSTEP] induction' k with _ _ _ _ _ _ _ _ _ k_ih _ _ k_ih generalizing v [GOAL] case halt k' : Cont v✝ v : List ℕ ⊢ eval (then halt k') v = eval halt v >>= eval k' [PROOFSTEP] simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *] [GOAL] case cons₁ k' : Cont v✝ : List ℕ a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ eval (then (cons₁ a✝² a✝¹ a✝) k') v = eval (cons₁ a✝² a✝¹ a✝) v >>= eval k' [PROOFSTEP] simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *] [GOAL] case cons₂ k' : Cont v✝ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ eval (then (cons₂ a✝¹ a✝) k') v = eval (cons₂ a✝¹ a✝) v >>= eval k' [PROOFSTEP] simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *] [GOAL] case comp k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ eval (then (comp a✝¹ a✝) k') v = eval (comp a✝¹ a✝) v >>= eval k' [PROOFSTEP] simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *] [GOAL] case fix k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ eval (then (fix a✝¹ a✝) k') v = eval (fix a✝¹ a✝) v >>= eval k' [PROOFSTEP] simp only [Cont.eval, Cont.then, bind_assoc, pure_bind, *] [GOAL] case comp k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ Code.eval a✝¹ v >>= eval (then a✝ k') = Code.eval a✝¹ v >>= fun x => eval a✝ x >>= eval k' [PROOFSTEP] simp only [← k_ih] [GOAL] case fix k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ (if List.headI v = 0 then eval a✝ (List.tail v) >>= eval k' else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval (then a✝ k')) = (if List.headI v = 0 then eval a✝ (List.tail v) else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval a✝) >>= eval k' [PROOFSTEP] split_ifs <;> [rfl; simp only [← k_ih, bind_assoc]] [GOAL] case fix k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ ⊢ (if List.headI v = 0 then eval a✝ (List.tail v) >>= eval k' else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval (then a✝ k')) = (if List.headI v = 0 then eval a✝ (List.tail v) else Code.eval (Code.fix a✝¹) (List.tail v) >>= eval a✝) >>= eval k' [PROOFSTEP] split_ifs [GOAL] case pos k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ h✝ : List.headI v = 0 ⊢ eval a✝ (List.tail v) >>= eval k' = eval a✝ (List.tail v) >>= eval k' [PROOFSTEP] rfl [GOAL] case neg k' : Cont v✝ : List ℕ a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, eval (then a✝ k') v = eval a✝ v >>= eval k' v : List ℕ h✝ : ¬List.headI v = 0 ⊢ Code.eval (Code.fix a✝¹) (List.tail v) >>= eval (then a✝ k') = Code.eval (Code.fix a✝¹) (List.tail v) >>= eval a✝ >>= eval k' [PROOFSTEP] simp only [← k_ih, bind_assoc] [GOAL] c : Code k k' : Cont v : List ℕ ⊢ stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' [PROOFSTEP] induction c generalizing k v [GOAL] case zero' k' k : Cont v : List ℕ ⊢ stepNormal Code.zero' (Cont.then k k') v = Cfg.then (stepNormal Code.zero' k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case succ k' k : Cont v : List ℕ ⊢ stepNormal Code.succ (Cont.then k k') v = Cfg.then (stepNormal Code.succ k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case tail k' k : Cont v : List ℕ ⊢ stepNormal Code.tail (Cont.then k k') v = Cfg.then (stepNormal Code.tail k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case cons k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal (Code.cons a✝¹ a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.cons a✝¹ a✝) k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal (Code.comp a✝¹ a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.comp a✝¹ a✝) k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal (Code.case a✝¹ a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.case a✝¹ a✝) k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal (Code.fix a✝) (Cont.then k k') v = Cfg.then (stepNormal (Code.fix a✝) k v) k' [PROOFSTEP] simp only [Cont.then, stepNormal, *] [GOAL] case zero' k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') (0 :: v) = Cfg.then (Cfg.ret k (0 :: v)) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case zero' k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') (0 :: v) = Cfg.then (Cfg.ret k (0 :: v)) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case zero' k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') (0 :: v) = Cfg.then (Cfg.ret k (0 :: v)) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] [PROOFSTEP] done [GOAL] case succ k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') [Nat.succ (List.headI v)] = Cfg.then (Cfg.ret k [Nat.succ (List.headI v)]) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case succ k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') [Nat.succ (List.headI v)] = Cfg.then (Cfg.ret k [Nat.succ (List.headI v)]) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case succ k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') [Nat.succ (List.headI v)] = Cfg.then (Cfg.ret k [Nat.succ (List.headI v)]) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] [PROOFSTEP] done [GOAL] case tail k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') (List.tail v) = Cfg.then (Cfg.ret k (List.tail v)) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case tail k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') (List.tail v) = Cfg.then (Cfg.ret k (List.tail v)) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case tail k' k : Cont v : List ℕ ⊢ Cfg.ret (Cont.then k k') (List.tail v) = Cfg.then (Cfg.ret k (List.tail v)) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] [PROOFSTEP] done [GOAL] case cons k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case cons k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case cons k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case cons k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = (match (motive := Cfg → Cont → Cfg) stepNormal a✝¹ (Cont.cons₁ a✝ v k) v with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = (match (motive := Cfg → Cont → Cfg) stepNormal a✝ (Cont.comp a✝¹ k) v with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (List.headI v) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (List.headI v) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (List.headI v) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec ((match (motive := Cfg → Cont → Cfg) stepNormal a✝¹ k (List.tail v) with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k') (fun y x => (match (motive := Cfg → Cont → Cfg) stepNormal a✝ k (y :: List.tail v) with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k') (List.headI v) = (match (motive := Cfg → Cont → Cfg) Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v) with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = (match (motive := Cfg → Cont → Cfg) stepNormal a✝ (Cont.fix a✝ k) v with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case cons k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝¹ (Cont.cons₁ a✝ v (Cont.then k k')) v = Cfg.then (stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k' case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k' case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (List.headI v) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k' case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k' [PROOFSTEP] case cons c c' ih _ => rw [← ih, Cont.then] [GOAL] k' : Cont c c' : Code ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k' k : Cont v : List ℕ ⊢ stepNormal c (Cont.cons₁ c' v (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.cons₁ c' v k) v) k' [PROOFSTEP] case cons c c' ih _ => rw [← ih, Cont.then] [GOAL] k' : Cont c c' : Code ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k' k : Cont v : List ℕ ⊢ stepNormal c (Cont.cons₁ c' v (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.cons₁ c' v k) v) k' [PROOFSTEP] rw [← ih, Cont.then] [GOAL] case comp k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.comp a✝¹ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.comp a✝¹ k) v) k' case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (List.headI v) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k' case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k' [PROOFSTEP] case comp c c' _ ih' => rw [← ih', Cont.then] [GOAL] k' : Cont c c' : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' ih' : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k' k : Cont v : List ℕ ⊢ stepNormal c' (Cont.comp c (Cont.then k k')) v = Cfg.then (stepNormal c' (Cont.comp c k) v) k' [PROOFSTEP] case comp c c' _ ih' => rw [← ih', Cont.then] [GOAL] k' : Cont c c' : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' ih' : ∀ (k : Cont) (v : List ℕ), stepNormal c' (Cont.then k k') v = Cfg.then (stepNormal c' k v) k' k : Cont v : List ℕ ⊢ stepNormal c' (Cont.comp c (Cont.then k k')) v = Cfg.then (stepNormal c' (Cont.comp c k) v) k' [PROOFSTEP] rw [← ih', Cont.then] [GOAL] case case k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (List.headI v) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k' [PROOFSTEP] cases v.headI [GOAL] case case.zero k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') Nat.zero = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) Nat.zero) k' [PROOFSTEP] simp only [Nat.rec] [GOAL] case case.succ k' : Cont a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝¹ (Cont.then k k') v = Cfg.then (stepNormal a✝¹ k v) k' a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ n✝ : ℕ ⊢ Nat.rec (Cfg.then (stepNormal a✝¹ k (List.tail v)) k') (fun y x => Cfg.then (stepNormal a✝ k (y :: List.tail v)) k') (Nat.succ n✝) = Cfg.then (Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (Nat.succ n✝)) k' [PROOFSTEP] simp only [Nat.rec] [GOAL] case fix k' : Cont a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), stepNormal a✝ (Cont.then k k') v = Cfg.then (stepNormal a✝ k v) k' k : Cont v : List ℕ ⊢ stepNormal a✝ (Cont.fix a✝ (Cont.then k k')) v = Cfg.then (stepNormal a✝ (Cont.fix a✝ k) v) k' [PROOFSTEP] case fix c ih => rw [← ih, Cont.then] [GOAL] k' : Cont c : Code ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' k : Cont v : List ℕ ⊢ stepNormal c (Cont.fix c (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.fix c k) v) k' [PROOFSTEP] case fix c ih => rw [← ih, Cont.then] [GOAL] k' : Cont c : Code ih : ∀ (k : Cont) (v : List ℕ), stepNormal c (Cont.then k k') v = Cfg.then (stepNormal c k v) k' k : Cont v : List ℕ ⊢ stepNormal c (Cont.fix c (Cont.then k k')) v = Cfg.then (stepNormal c (Cont.fix c k) v) k' [PROOFSTEP] rw [← ih, Cont.then] [GOAL] k k' : Cont v : List ℕ ⊢ stepRet (Cont.then k k') v = Cfg.then (stepRet k v) k' [PROOFSTEP] induction k generalizing v [GOAL] case halt k' : Cont v : List ℕ ⊢ stepRet (Cont.then Cont.halt k') v = Cfg.then (stepRet Cont.halt v) k' [PROOFSTEP] simp only [Cont.then, stepRet, *] [GOAL] case cons₁ k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepRet (Cont.then (Cont.cons₁ a✝² a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) k' [PROOFSTEP] simp only [Cont.then, stepRet, *] [GOAL] case cons₂ k' : Cont a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepRet (Cont.then (Cont.cons₂ a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.cons₂ a✝¹ a✝) v) k' [PROOFSTEP] simp only [Cont.then, stepRet, *] [GOAL] case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepRet (Cont.then (Cont.comp a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.comp a✝¹ a✝) v) k' [PROOFSTEP] simp only [Cont.then, stepRet, *] [GOAL] case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepRet (Cont.then (Cont.fix a✝¹ a✝) k') v = Cfg.then (stepRet (Cont.fix a✝¹ a✝) v) k' [PROOFSTEP] simp only [Cont.then, stepRet, *] [GOAL] case halt k' : Cont v : List ℕ ⊢ stepRet k' v = Cfg.then (Cfg.halt v) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case halt k' : Cont v : List ℕ ⊢ stepRet k' v = Cfg.then (Cfg.halt v) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case halt k' : Cont v : List ℕ ⊢ stepRet k' v = Cfg.then (Cfg.halt v) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] [PROOFSTEP] done [GOAL] case cons₁ k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case cons₁ k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case cons₁ k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case cons₁ k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = (match (motive := Cfg → Cont → Cfg) stepNormal a✝² (Cont.cons₂ v a✝) a✝¹ with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = (match (motive := Cfg → Cont → Cfg) stepNormal a✝¹ a✝ v with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] try {simp only [Cfg.then]; done } [GOAL] case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] {simp only [Cfg.then]; done } [GOAL] case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] simp only [Cfg.then] [GOAL] case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then (match (motive := Cfg → Cont → Cfg) stepRet a✝ (List.tail v) with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = (match (motive := Cfg → Cont → Cfg) if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v) with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) k' [PROOFSTEP] done [GOAL] case cons₁ k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k' case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] case cons₁ => rw [← stepNormal_then] rfl [GOAL] k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k' [PROOFSTEP] case cons₁ => rw [← stepNormal_then] rfl [GOAL] k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = Cfg.then (stepNormal a✝² (Cont.cons₂ v a✝) a✝¹) k' [PROOFSTEP] rw [← stepNormal_then] [GOAL] k' : Cont a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝² (Cont.cons₂ v (Cont.then a✝ k')) a✝¹ = stepNormal a✝² (Cont.then (Cont.cons₂ v a✝) k') a✝¹ [PROOFSTEP] rfl [GOAL] case comp k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] case comp => rw [← stepNormal_then] [GOAL] k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' [PROOFSTEP] case comp => rw [← stepNormal_then] [GOAL] k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ stepNormal a✝¹ (Cont.then a✝ k') v = Cfg.then (stepNormal a✝¹ a✝ v) k' [PROOFSTEP] rw [← stepNormal_then] [GOAL] case fix k' : Cont a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] case fix _ k_ih => split_ifs · rw [← k_ih] · rw [← stepNormal_then] rfl [GOAL] k' : Cont a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] case fix _ k_ih => split_ifs · rw [← k_ih] · rw [← stepNormal_then] rfl [GOAL] k' : Cont a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ ⊢ (if List.headI v = 0 then Cfg.then (stepRet a✝ (List.tail v)) k' else stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v)) = Cfg.then (if List.headI v = 0 then stepRet a✝ (List.tail v) else stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] split_ifs [GOAL] case pos k' : Cont a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ h✝ : List.headI v = 0 ⊢ Cfg.then (stepRet a✝ (List.tail v)) k' = Cfg.then (stepRet a✝ (List.tail v)) k' [PROOFSTEP] rw [← k_ih] [GOAL] case neg k' : Cont a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ h✝ : ¬List.headI v = 0 ⊢ stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v) = Cfg.then (stepNormal a✝¹ (Cont.fix a✝¹ a✝) (List.tail v)) k' [PROOFSTEP] rw [← stepNormal_then] [GOAL] case neg k' : Cont a✝¹ : Code a✝ : Cont k_ih : ∀ {v : List ℕ}, stepRet (Cont.then a✝ k') v = Cfg.then (stepRet a✝ v) k' v : List ℕ h✝ : ¬List.headI v = 0 ⊢ stepNormal a✝¹ (Cont.fix a✝¹ (Cont.then a✝ k')) (List.tail v) = stepNormal a✝¹ (Cont.then (Cont.fix a✝¹ a✝) k') (List.tail v) [PROOFSTEP] rfl [GOAL] c : Code h : Ok c v : List ℕ ⊢ Turing.eval step (stepNormal c Cont.halt v) = Cfg.halt <$> eval c v [PROOFSTEP] rw [h, ← bind_pure_comp] [GOAL] c : Code h : Ok c v : List ℕ ⊢ (do let v ← eval c v Turing.eval step (Cfg.ret Cont.halt v)) = do let a ← eval c v pure (Cfg.halt a) [PROOFSTEP] congr [GOAL] case e_a c : Code h : Ok c v : List ℕ ⊢ (fun v => Turing.eval step (Cfg.ret Cont.halt v)) = fun a => pure (Cfg.halt a) [PROOFSTEP] funext v [GOAL] case e_a.h c : Code h : Ok c v✝ v : List ℕ ⊢ Turing.eval step (Cfg.ret Cont.halt v) = pure (Cfg.halt v) [PROOFSTEP] exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.single rfl, rfl⟩) [GOAL] c : Code k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal c k v = Cfg.ret k' v' [PROOFSTEP] induction c generalizing k v [GOAL] case zero' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.zero' k v = Cfg.ret k' v' case succ k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.succ k v = Cfg.ret k' v' case tail k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v' case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v' case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v' case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] iterate 3 exact ⟨_, _, rfl⟩ [GOAL] case zero' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.zero' k v = Cfg.ret k' v' case succ k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.succ k v = Cfg.ret k' v' case tail k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v' case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v' case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v' case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] exact ⟨_, _, rfl⟩ [GOAL] case succ k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.succ k v = Cfg.ret k' v' case tail k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v' case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v' case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v' case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] exact ⟨_, _, rfl⟩ [GOAL] case tail k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal Code.tail k v = Cfg.ret k' v' case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v' case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v' case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] exact ⟨_, _, rfl⟩ [GOAL] case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons a✝¹ a✝) k v = Cfg.ret k' v' case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v' case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] case cons _f fs IHf _IHfs => apply IHf [GOAL] _f fs : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _f k v = Cfg.ret k' v' _IHfs : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal fs k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons _f fs) k v = Cfg.ret k' v' [PROOFSTEP] case cons _f fs IHf _IHfs => apply IHf [GOAL] _f fs : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _f k v = Cfg.ret k' v' _IHfs : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal fs k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.cons _f fs) k v = Cfg.ret k' v' [PROOFSTEP] apply IHf [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp a✝¹ a✝) k v = Cfg.ret k' v' case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] case comp f _g _IHf IHg => apply IHg [GOAL] f _g : Code _IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp f _g) k v = Cfg.ret k' v' [PROOFSTEP] case comp f _g _IHf IHg => apply IHg [GOAL] f _g : Code _IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal _g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.comp f _g) k v = Cfg.ret k' v' [PROOFSTEP] apply IHg [GOAL] case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝¹ k v = Cfg.ret k' v' a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case a✝¹ a✝) k v = Cfg.ret k' v' case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] case case f g IHf IHg => rw [stepNormal] simp only [] cases v.headI <;> simp only [] <;> [apply IHf; apply IHg] [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case f g) k v = Cfg.ret k' v' [PROOFSTEP] case case f g IHf IHg => rw [stepNormal] simp only [] cases v.headI <;> simp only [] <;> [apply IHf; apply IHg] [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.case f g) k v = Cfg.ret k' v' [PROOFSTEP] rw [stepNormal] [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', (fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) k v = Cfg.ret k' v' [PROOFSTEP] simp only [] [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v) = Cfg.ret k' v' [PROOFSTEP] cases v.headI <;> simp only [] <;> [apply IHf; apply IHg] [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v) = Cfg.ret k' v' [PROOFSTEP] cases v.headI [GOAL] case zero f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero = Cfg.ret k' v' [PROOFSTEP] simp only [] [GOAL] case succ f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ n✝ : ℕ ⊢ ∃ k' v', Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n✝) = Cfg.ret k' v' [PROOFSTEP] simp only [] [GOAL] case zero f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal f k (List.tail v) = Cfg.ret k' v' [PROOFSTEP] apply IHf [GOAL] case succ f g : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' IHg : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal g k v = Cfg.ret k' v' k : Cont v : List ℕ n✝ : ℕ ⊢ ∃ k' v', stepNormal g k (n✝ :: List.tail v) = Cfg.ret k' v' [PROOFSTEP] apply IHg [GOAL] case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal a✝ k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix a✝) k v = Cfg.ret k' v' [PROOFSTEP] case fix f IHf => apply IHf [GOAL] f : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix f) k v = Cfg.ret k' v' [PROOFSTEP] case fix f IHf => apply IHf [GOAL] f : Code IHf : ∀ (k : Cont) (v : List ℕ), ∃ k' v', stepNormal f k v = Cfg.ret k' v' k : Cont v : List ℕ ⊢ ∃ k' v', stepNormal (Code.fix f) k v = Cfg.ret k' v' [PROOFSTEP] apply IHf [GOAL] f : Code k : Cont v : List ℕ fok : Code.Ok f ⊢ eval step (stepNormal f (Cont.fix f k) v) = do let v ← Code.eval (Code.fix f) v eval step (Cfg.ret k v) [PROOFSTEP] refine' Part.ext fun x => _ [GOAL] f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) ↔ x ∈ do let v ← Code.eval (Code.fix f) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [Part.bind_eq_bind, Part.mem_bind_iff] [GOAL] f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) ↔ ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a) [PROOFSTEP] constructor [GOAL] case mp f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) → ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a) [PROOFSTEP] suffices ∀ c, x ∈ eval step c → ∀ v c', c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁ ∈ f.eval v, ∃ v₂ ∈ if List.headI v₁ = 0 then pure v₁.tail else f.fix.eval v₁.tail, x ∈ eval step (Cfg.ret k v₂) by intro h obtain ⟨v₁, hv₁, v₂, hv₂, h₃⟩ := this _ h _ _ (stepNormal_then _ Cont.halt _ _) ReflTransGen.refl refine' ⟨v₂, PFun.mem_fix_iff.2 _, h₃⟩ simp only [Part.eq_some_iff.2 hv₁, Part.map_some] split_ifs at hv₂ ⊢ · rw [Part.mem_some_iff.1 hv₂] exact Or.inl (Part.mem_some _) · exact Or.inr ⟨_, Part.mem_some _, hv₂⟩ [GOAL] f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) → ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a) [PROOFSTEP] intro h [GOAL] f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) ⊢ ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a) [PROOFSTEP] obtain ⟨v₁, hv₁, v₂, hv₂, h₃⟩ := this _ h _ _ (stepNormal_then _ Cont.halt _ _) ReflTransGen.refl [GOAL] case intro.intro.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f v v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ ∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a) [PROOFSTEP] refine' ⟨v₂, PFun.mem_fix_iff.2 _, h₃⟩ [GOAL] case intro.intro.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f v v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ Sum.inl v₂ ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ∨ ∃ a', Sum.inr a' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] simp only [Part.eq_some_iff.2 hv₁, Part.map_some] [GOAL] case intro.intro.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f v v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ Sum.inl v₂ ∈ Part.some (if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∨ ∃ a', Sum.inr a' ∈ Part.some (if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] split_ifs at hv₂ ⊢ [GOAL] case pos f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : List.headI v₁ = 0 hv₂ : v₂ ∈ pure (List.tail v₁) ⊢ Sum.inl v₂ ∈ Part.some (Sum.inl (List.tail v₁)) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inl (List.tail v₁)) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] rw [Part.mem_some_iff.1 hv₂] [GOAL] case pos f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : List.headI v₁ = 0 hv₂ : v₂ ∈ pure (List.tail v₁) ⊢ Sum.inl (List.tail v₁) ∈ Part.some (Sum.inl (List.tail v₁)) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inl (List.tail v₁)) ∧ List.tail v₁ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] exact Or.inl (Part.mem_some _) [GOAL] case neg f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg this : ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) h : x ∈ eval step (stepNormal f (Cont.fix f k) v) v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f v v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : ¬List.headI v₁ = 0 hv₂ : v₂ ∈ Code.eval (Code.fix f) (List.tail v₁) ⊢ Sum.inl v₂ ∈ Part.some (Sum.inr (List.tail v₁)) ∨ ∃ a', Sum.inr a' ∈ Part.some (Sum.inr (List.tail v₁)) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] exact Or.inr ⟨_, Part.mem_some _, hv₂⟩ [GOAL] case mp f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg ⊢ ∀ (c : Cfg), x ∈ eval step c → ∀ (v : List ℕ) (c' : Cfg), c = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] refine' fun c he => evalInduction he fun y h IH => _ [GOAL] case mp f : Code k : Cont v : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c y : Cfg h : x ∈ eval step y IH : ∀ (a' : Cfg), step y = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) ⊢ ∀ (v : List ℕ) (c' : Cfg), y = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rintro v (⟨v'⟩ | ⟨k', v'⟩) rfl hr [GOAL] case mp.halt f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (Cfg.then (Cfg.halt v') (Cont.fix f k)) IH : ∀ (a' : Cfg), step (Cfg.then (Cfg.halt v') (Cont.fix f k)) = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rw [Cfg.then] at h IH [GOAL] case mp.ret f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v : List ℕ k' : Cont v' : List ℕ h : x ∈ eval step (Cfg.then (Cfg.ret k' v') (Cont.fix f k)) IH : ∀ (a' : Cfg), step (Cfg.then (Cfg.ret k' v') (Cont.fix f k)) = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.ret k' v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rw [Cfg.then] at h IH [GOAL] case mp.halt f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step ((match (motive := Cfg → Cont → Cfg) Cfg.halt v' with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) (Cont.fix f k)) IH : ∀ (a' : Cfg), step ((match (motive := Cfg → Cont → Cfg) Cfg.halt v' with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) (Cont.fix f k)) = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] simp only [] at h IH [GOAL] case mp.ret f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v : List ℕ k' : Cont v' : List ℕ h : x ∈ eval step ((match (motive := Cfg → Cont → Cfg) Cfg.ret k' v' with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) (Cont.fix f k)) IH : ∀ (a' : Cfg), step ((match (motive := Cfg → Cont → Cfg) Cfg.ret k' v' with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) (Cont.fix f k)) = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.ret k' v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] simp only [] at h IH [GOAL] case mp.halt f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] have := mem_eval.2 ⟨hr, rfl⟩ [GOAL] case mp.halt f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') this : Cfg.halt v' ∈ eval step (stepNormal f Cont.halt v) ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rw [fok, Part.bind_eq_bind, Part.mem_bind_iff] at this [GOAL] case mp.halt f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') this : ∃ a, a ∈ Code.eval f v ∧ Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt a) ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] obtain ⟨v'', h₁, h₂⟩ := this [GOAL] case mp.halt.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rw [reaches_eval] at h₂ [GOAL] case mp.halt.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') h₂ : Cfg.halt v' ∈ eval step ?m.194513 ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) case mp.halt.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') ⊢ Reaches step (Cfg.ret Cont.halt v'') ?m.194513 f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') ⊢ Cfg [PROOFSTEP] swap [GOAL] case mp.halt.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') ⊢ Reaches step (Cfg.ret Cont.halt v'') ?m.194513 case mp.halt.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') h₂ : Cfg.halt v' ∈ eval step ?m.194513 ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case mp.halt.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') v'' : List ℕ h₁ : v'' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v'') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v'') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] cases Part.mem_unique h₂ (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩) [GOAL] case mp.halt.intro.intro.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] refine' ⟨v', h₁, _⟩ [GOAL] case mp.halt.intro.intro.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (stepRet (Cont.fix f k) v') IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') ⊢ ∃ v₂, (v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rw [stepRet] at h [GOAL] case mp.halt.intro.intro.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ h : x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') ⊢ ∃ v₂, (v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] revert h [GOAL] case mp.halt.intro.intro.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') ⊢ x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) → ∃ v₂, (v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] by_cases he : v'.headI = 0 [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 ⊢ x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) → ∃ v₂, (v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] simp only [exists_prop, if_pos, if_false, he] [GOAL] case neg f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 ⊢ x ∈ eval step (if List.headI v' = 0 then stepRet k (List.tail v') else stepNormal f (Cont.fix f k) (List.tail v')) → ∃ v₂, (v₂ ∈ if List.headI v' = 0 then pure (List.tail v') else Code.eval (Code.fix f) (List.tail v')) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] simp only [exists_prop, if_pos, if_false, he] [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 ⊢ x ∈ eval step (stepRet k (List.tail v')) → ∃ v₂, v₂ ∈ pure (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] intro h [GOAL] case neg f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) → ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] intro h [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 h : x ∈ eval step (stepRet k (List.tail v')) ⊢ ∃ v₂, v₂ ∈ pure (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] refine' ⟨_, Part.mem_some _, _⟩ [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 h : x ∈ eval step (stepRet k (List.tail v')) ⊢ x ∈ eval step (Cfg.ret k (List.tail v')) [PROOFSTEP] rw [reaches_eval] [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 h : x ∈ eval step (stepRet k (List.tail v')) ⊢ x ∈ eval step ?m.195505 case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 h : x ∈ eval step (stepRet k (List.tail v')) ⊢ Reaches step (Cfg.ret k (List.tail v')) ?m.195505 f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 h : x ∈ eval step (stepRet k (List.tail v')) ⊢ Cfg [PROOFSTEP] exact h [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : List.headI v' = 0 h : x ∈ eval step (stepRet k (List.tail v')) ⊢ Reaches step (Cfg.ret k (List.tail v')) (stepRet k (List.tail v')) [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case neg f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) ⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] obtain ⟨k₀, v₀, e₀⟩ := stepNormal.is_ret f Cont.halt v'.tail [GOAL] case neg.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ ⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] have e₁ := stepNormal_then f Cont.halt (Cont.fix f k) v'.tail [GOAL] case neg.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.then Cont.halt (Cont.fix f k)) (List.tail v') = Cfg.then (stepNormal f Cont.halt (List.tail v')) (Cont.fix f k) ⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] rw [e₀, Cont.then, Cfg.then] at e₁ [GOAL] case neg.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f ((fun k' => k') (Cont.fix f k)) (List.tail v') = (match (motive := Cfg → Cont → Cfg) Cfg.ret k₀ v₀ with | Cfg.halt v => fun k' => stepRet k' v | Cfg.ret k v => fun k' => Cfg.ret (Cont.then k k') v) (Cont.fix f k) ⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] simp only [] at e₁ [GOAL] case neg.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ ⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] obtain ⟨v₁, hv₁, v₂, hv₂, h₃⟩ := IH (stepRet (k₀.then (Cont.fix f k)) v₀) (by rw [stepRet, if_neg he, e₁]; rfl) v'.tail _ stepRet_then (by apply ReflTransGen.single; rw [e₀]; rfl) [GOAL] f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ ⊢ step (stepRet (Cont.fix f k) v') = some (stepRet (Cont.then k₀ (Cont.fix f k)) v₀) [PROOFSTEP] rw [stepRet, if_neg he, e₁] [GOAL] f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ ⊢ step (Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀) = some (stepRet (Cont.then k₀ (Cont.fix f k)) v₀) [PROOFSTEP] rfl [GOAL] f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ ⊢ Reaches step (stepNormal f Cont.halt (List.tail v')) (stepRet k₀ v₀) [PROOFSTEP] apply ReflTransGen.single [GOAL] case hab f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ ⊢ stepRet k₀ v₀ ∈ step (stepNormal f Cont.halt (List.tail v')) [PROOFSTEP] rw [e₀] [GOAL] case hab f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ ⊢ stepRet k₀ v₀ ∈ step (Cfg.ret k₀ v₀) [PROOFSTEP] rfl [GOAL] case neg.intro.intro.intro.intro.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f (List.tail v') v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ ∃ v₂, v₂ ∈ Code.eval (Code.fix f) (List.tail v') ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] refine' ⟨_, PFun.mem_fix_iff.2 _, h₃⟩ [GOAL] case neg.intro.intro.intro.intro.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f (List.tail v') v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ Sum.inl v₂ ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f (List.tail v')) ∨ ∃ a', Sum.inr a' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f (List.tail v')) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] simp only [Part.eq_some_iff.2 hv₁, Part.map_some, Part.mem_some_iff] [GOAL] case neg.intro.intro.intro.intro.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f (List.tail v') v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ (Sum.inl v₂ = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∨ ∃ a', (Sum.inr a' = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] split_ifs at hv₂ ⊢ <;> [exact Or.inl (congr_arg Sum.inl (Part.mem_some_iff.1 hv₂)); exact Or.inr ⟨_, rfl, hv₂⟩] [GOAL] case neg.intro.intro.intro.intro.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f (List.tail v') v₂ : List ℕ hv₂ : v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁) h₃ : x ∈ eval step (Cfg.ret k v₂) ⊢ (Sum.inl v₂ = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∨ ∃ a', (Sum.inr a' = if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] split_ifs at hv₂ ⊢ [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f (List.tail v') v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : List.headI v₁ = 0 hv₂ : v₂ ∈ pure (List.tail v₁) ⊢ Sum.inl v₂ = Sum.inl (List.tail v₁) ∨ ∃ a', False ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] exact Or.inl (congr_arg Sum.inl (Part.mem_some_iff.1 hv₂)) [GOAL] case neg f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he✝ : x ∈ eval step c v v' : List ℕ IH : ∀ (a' : Cfg), step (stepRet (Cont.fix f k) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.halt v') h₁ : v' ∈ Code.eval f v h₂✝ : Cfg.halt v' ∈ eval step (Cfg.ret Cont.halt v') h₂ : Cfg.halt v' ∈ eval step (stepRet Cont.halt v') he : ¬List.headI v' = 0 h : x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v')) k₀ : Cont v₀ : List ℕ e₀ : stepNormal f Cont.halt (List.tail v') = Cfg.ret k₀ v₀ e₁ : stepNormal f (Cont.fix f k) (List.tail v') = Cfg.ret (Cont.then k₀ (Cont.fix f k)) v₀ v₁ : List ℕ hv₁ : v₁ ∈ Code.eval f (List.tail v') v₂ : List ℕ h₃ : x ∈ eval step (Cfg.ret k v₂) h✝ : ¬List.headI v₁ = 0 hv₂ : v₂ ∈ Code.eval (Code.fix f) (List.tail v₁) ⊢ False ∨ ∃ a', Sum.inr a' = Sum.inr (List.tail v₁) ∧ v₂ ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) a' [PROOFSTEP] exact Or.inr ⟨_, rfl, hv₂⟩ [GOAL] case mp.ret f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x c : Cfg he : x ∈ eval step c v : List ℕ k' : Cont v' : List ℕ h : x ∈ eval step (Cfg.ret (Cont.then k' (Cont.fix f k)) v') IH : ∀ (a' : Cfg), step (Cfg.ret (Cont.then k' (Cont.fix f k)) v') = some a' → ∀ (v : List ℕ) (c' : Cfg), a' = Cfg.then c' (Cont.fix f k) → Reaches step (stepNormal f Cont.halt v) c' → ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) hr : Reaches step (stepNormal f Cont.halt v) (Cfg.ret k' v') ⊢ ∃ v₁, v₁ ∈ Code.eval f v ∧ ∃ v₂, (v₂ ∈ if List.headI v₁ = 0 then pure (List.tail v₁) else Code.eval (Code.fix f) (List.tail v₁)) ∧ x ∈ eval step (Cfg.ret k v₂) [PROOFSTEP] exact IH _ rfl _ _ stepRet_then (ReflTransGen.tail hr rfl) [GOAL] case mpr f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg ⊢ (∃ a, a ∈ Code.eval (Code.fix f) v ∧ x ∈ eval step (Cfg.ret k a)) → x ∈ eval step (stepNormal f (Cont.fix f k) v) [PROOFSTEP] rintro ⟨v', he, hr⟩ [GOAL] case mpr.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr : x ∈ eval step (Cfg.ret k v') ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) [PROOFSTEP] rw [reaches_eval] at hr [GOAL] case mpr.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step ?m.197483 ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) case mpr.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr : x ∈ eval step (Cfg.ret k v') ⊢ Reaches step (Cfg.ret k v') ?m.197483 f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr : x ∈ eval step (Cfg.ret k v') ⊢ Cfg [PROOFSTEP] swap [GOAL] case mpr.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr : x ∈ eval step (Cfg.ret k v') ⊢ Reaches step (Cfg.ret k v') ?m.197483 case mpr.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step ?m.197483 ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr : x ∈ eval step (Cfg.ret k v') ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case mpr.intro.intro f : Code k : Cont v : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he : v' ∈ Code.eval (Code.fix f) v hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) [PROOFSTEP] refine' PFun.fixInduction he fun v (he : v' ∈ f.fix.eval v) IH => _ [GOAL] case mpr.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) v) [PROOFSTEP] rw [fok, Part.bind_eq_bind, Part.mem_bind_iff] [GOAL] case mpr.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] obtain he | ⟨v'', he₁', _⟩ := PFun.mem_fix_iff.1 he [GOAL] case mpr.intro.intro.inl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝¹ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') he : Sum.inl v' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] obtain ⟨v', he₁, he₂⟩ := (Part.mem_map_iff _).1 he [GOAL] case mpr.intro.intro.inl.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v'✝ : List ℕ he✝¹ : v'✝ ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v'✝) hr : x ∈ eval step (stepRet k v'✝) v : List ℕ he✝ : v'✝ ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') he : Sum.inl v'✝ ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) v' : List ℕ he₁ : v' ∈ Code.eval f v he₂ : (if List.headI v' = 0 then Sum.inl (List.tail v') else Sum.inr (List.tail v')) = Sum.inl v'✝ ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] split_ifs at he₂ with h [GOAL] case pos f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v'✝ : List ℕ he✝¹ : v'✝ ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v'✝) hr : x ∈ eval step (stepRet k v'✝) v : List ℕ he✝ : v'✝ ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') he : Sum.inl v'✝ ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he₂ : Sum.inl (List.tail v') = Sum.inl v'✝ ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] cases he₂ [GOAL] case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] refine' ⟨_, he₁, _⟩ [GOAL] case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ x ∈ eval step (Cfg.ret (Cont.fix f k) v') [PROOFSTEP] rw [reaches_eval] [GOAL] case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ x ∈ eval step ?m.198384 case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ Reaches step (Cfg.ret (Cont.fix f k) v') ?m.198384 f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ Cfg [PROOFSTEP] swap [GOAL] case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ Reaches step (Cfg.ret (Cont.fix f k) v') ?m.198384 case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ x ∈ eval step ?m.198384 f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case pos.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v : List ℕ IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v' : List ℕ he₁ : v' ∈ Code.eval f v h : List.headI v' = 0 he✝¹ : List.tail v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k (List.tail v')) hr : x ∈ eval step (stepRet k (List.tail v')) he✝ : List.tail v' ∈ Code.eval (Code.fix f) v he : Sum.inl (List.tail v') ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) ⊢ x ∈ eval step (stepRet (Cont.fix f k) v') [PROOFSTEP] rwa [stepRet, if_pos h] [GOAL] case mpr.intro.intro.inr.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v'' : List ℕ he₁' : Sum.inr v'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) v'' ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] obtain ⟨v₁, he₁, he₂⟩ := (Part.mem_map_iff _).1 he₁' [GOAL] case mpr.intro.intro.inr.intro.intro.intro.intro f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v'' : List ℕ he₁' : Sum.inr v'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) v'' v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v he₂ : (if List.headI v₁ = 0 then Sum.inl (List.tail v₁) else Sum.inr (List.tail v₁)) = Sum.inr v'' ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] split_ifs at he₂ with h [GOAL] case neg f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v'' : List ℕ he₁' : Sum.inr v'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) v'' v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 he₂ : Sum.inr (List.tail v₁) = Sum.inr v'' ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] cases he₂ [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 he₁' : Sum.inr (List.tail v₁) ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] clear he₁' [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ ∃ a, a ∈ Code.eval f v ∧ x ∈ eval step (Cfg.ret (Cont.fix f k) a) [PROOFSTEP] refine' ⟨_, he₁, _⟩ [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ x ∈ eval step (Cfg.ret (Cont.fix f k) v₁) [PROOFSTEP] rw [reaches_eval] [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ x ∈ eval step ?m.199070 case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ Reaches step (Cfg.ret (Cont.fix f k) v₁) ?m.199070 f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ Cfg [PROOFSTEP] swap [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ Reaches step (Cfg.ret (Cont.fix f k) v₁) ?m.199070 case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ x ∈ eval step ?m.199070 f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ x ∈ eval step (stepRet (Cont.fix f k) v₁) [PROOFSTEP] rw [stepRet, if_neg h] [GOAL] case neg.refl f : Code k : Cont v✝ : List ℕ fok : Code.Ok f x : Cfg v' : List ℕ he✝ : v' ∈ Code.eval (Code.fix f) v✝ hr✝ : x ∈ eval step (Cfg.ret k v') hr : x ∈ eval step (stepRet k v') v : List ℕ he : v' ∈ Code.eval (Code.fix f) v IH : ∀ (a'' : List ℕ), Sum.inr a'' ∈ Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v) → x ∈ eval step (stepNormal f (Cont.fix f k) a'') v₁ : List ℕ he₁ : v₁ ∈ Code.eval f v h : ¬List.headI v₁ = 0 right✝ : v' ∈ PFun.fix (fun v => Part.map (fun v => if List.headI v = 0 then Sum.inl (List.tail v) else Sum.inr (List.tail v)) (Code.eval f v)) (List.tail v₁) ⊢ x ∈ eval step (stepNormal f (Cont.fix f k) (List.tail v₁)) [PROOFSTEP] exact IH v₁.tail ((Part.mem_map_iff _).2 ⟨_, he₁, if_neg h⟩) [GOAL] c : Code ⊢ Code.Ok c [PROOFSTEP] induction c [GOAL] case zero' ⊢ Code.Ok Code.zero' [PROOFSTEP] intro k v [GOAL] case succ ⊢ Code.Ok Code.succ [PROOFSTEP] intro k v [GOAL] case tail ⊢ Code.Ok Code.tail [PROOFSTEP] intro k v [GOAL] case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ ⊢ Code.Ok (Code.cons a✝¹ a✝) [PROOFSTEP] intro k v [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ ⊢ Code.Ok (Code.comp a✝¹ a✝) [PROOFSTEP] intro k v [GOAL] case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ ⊢ Code.Ok (Code.case a✝¹ a✝) [PROOFSTEP] intro k v [GOAL] case fix a✝ : Code a_ih✝ : Code.Ok a✝ ⊢ Code.Ok (Code.fix a✝) [PROOFSTEP] intro k v [GOAL] case zero' k : Cont v : List ℕ ⊢ eval step (stepNormal Code.zero' k v) = do let v ← Code.eval Code.zero' v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case succ k : Cont v : List ℕ ⊢ eval step (stepNormal Code.succ k v) = do let v ← Code.eval Code.succ v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case tail k : Cont v : List ℕ ⊢ eval step (stepNormal Code.tail k v) = do let v ← Code.eval Code.tail v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step (stepNormal (Code.cons a✝¹ a✝) k v) = do let v ← Code.eval (Code.cons a✝¹ a✝) v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step (stepNormal (Code.comp a✝¹ a✝) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step (stepNormal (Code.case a✝¹ a✝) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step (stepNormal (Code.fix a✝) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepNormal] [GOAL] case zero' k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k (0 :: v)) k v) = do let v ← Code.eval Code.zero' v eval step (Cfg.ret k v) case succ k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k [Nat.succ (List.headI v)]) k v) = do let v ← Code.eval Code.succ v eval step (Cfg.ret k v) case tail k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do let v ← Code.eval Code.tail v eval step (Cfg.ret k v) case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do let v ← Code.eval (Code.cons a✝¹ a✝) v eval step (Cfg.ret k v) case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] iterate 3 simp only [Code.eval, pure_bind] [GOAL] case zero' k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k (0 :: v)) k v) = do let v ← Code.eval Code.zero' v eval step (Cfg.ret k v) case succ k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k [Nat.succ (List.headI v)]) k v) = do let v ← Code.eval Code.succ v eval step (Cfg.ret k v) case tail k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do let v ← Code.eval Code.tail v eval step (Cfg.ret k v) case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do let v ← Code.eval (Code.cons a✝¹ a✝) v eval step (Cfg.ret k v) case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [Code.eval, pure_bind] [GOAL] case succ k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k [Nat.succ (List.headI v)]) k v) = do let v ← Code.eval Code.succ v eval step (Cfg.ret k v) case tail k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do let v ← Code.eval Code.tail v eval step (Cfg.ret k v) case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do let v ← Code.eval (Code.cons a✝¹ a✝) v eval step (Cfg.ret k v) case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [Code.eval, pure_bind] [GOAL] case tail k : Cont v : List ℕ ⊢ eval step ((fun k v => Cfg.ret k (List.tail v)) k v) = do let v ← Code.eval Code.tail v eval step (Cfg.ret k v) case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do let v ← Code.eval (Code.cons a✝¹ a✝) v eval step (Cfg.ret k v) case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [Code.eval, pure_bind] [GOAL] case cons a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝¹ (Cont.cons₁ a✝ v k) v) k v) = do let v ← Code.eval (Code.cons a✝¹ a✝) v eval step (Cfg.ret k v) case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] case cons f fs IHf IHfs => rw [Code.eval, IHf] simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [stepRet, IHfs]; congr; funext v' refine' Eq.trans _ (Eq.symm _) <;> try exact reaches_eval (ReflTransGen.single rfl) [GOAL] f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal f (Cont.cons₁ fs v k) v) k v) = do let v ← Code.eval (Code.cons f fs) v eval step (Cfg.ret k v) [PROOFSTEP] case cons f fs IHf IHfs => rw [Code.eval, IHf] simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [stepRet, IHfs]; congr; funext v' refine' Eq.trans _ (Eq.symm _) <;> try exact reaches_eval (ReflTransGen.single rfl) [GOAL] f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal f (Cont.cons₁ fs v k) v) k v) = do let v ← Code.eval (Code.cons f fs) v eval step (Cfg.ret k v) [PROOFSTEP] rw [Code.eval, IHf] [GOAL] f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v : List ℕ ⊢ (do let v_1 ← Code.eval f v eval step (Cfg.ret (Cont.cons₁ fs v k) v_1)) = do let v ← (fun v => do let n ← Code.eval f v let ns ← Code.eval fs v pure (List.headI n :: ns)) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [bind_assoc, Cont.eval, pure_bind] [GOAL] f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v : List ℕ ⊢ (do let v_1 ← Code.eval f v eval step (Cfg.ret (Cont.cons₁ fs v k) v_1)) = do let x ← Code.eval f v let x_1 ← Code.eval fs v eval step (Cfg.ret k (List.headI x :: x_1)) [PROOFSTEP] congr [GOAL] case e_a f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v : List ℕ ⊢ (fun v_1 => eval step (Cfg.ret (Cont.cons₁ fs v k) v_1)) = fun x => do let x_1 ← Code.eval fs v eval step (Cfg.ret k (List.headI x :: x_1)) [PROOFSTEP] funext v [GOAL] case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ eval step (Cfg.ret (Cont.cons₁ fs v✝ k) v) = do let x ← Code.eval fs v✝ eval step (Cfg.ret k (List.headI v :: x)) [PROOFSTEP] rw [reaches_eval] [GOAL] case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ eval step ?m.200491 = do let x ← Code.eval fs v✝ eval step (Cfg.ret k (List.headI v :: x)) case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ Reaches step (Cfg.ret (Cont.cons₁ fs v✝ k) v) ?m.200491 f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ Cfg [PROOFSTEP] swap [GOAL] case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ Reaches step (Cfg.ret (Cont.cons₁ fs v✝ k) v) ?m.200491 case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ eval step ?m.200491 = do let x ← Code.eval fs v✝ eval step (Cfg.ret k (List.headI v :: x)) f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ eval step (stepRet (Cont.cons₁ fs v✝ k) v) = do let x ← Code.eval fs v✝ eval step (Cfg.ret k (List.headI v :: x)) [PROOFSTEP] rw [stepRet, IHfs] [GOAL] case e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ (do let v_1 ← Code.eval fs v✝ eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = do let x ← Code.eval fs v✝ eval step (Cfg.ret k (List.headI v :: x)) [PROOFSTEP] congr [GOAL] case e_a.h.e_a f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v : List ℕ ⊢ (fun v_1 => eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = fun x => eval step (Cfg.ret k (List.headI v :: x)) [PROOFSTEP] funext v' [GOAL] case e_a.h.e_a.h f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v v' : List ℕ ⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = eval step (Cfg.ret k (List.headI v :: v')) [PROOFSTEP] refine' Eq.trans _ (Eq.symm _) [GOAL] case e_a.h.e_a.h.refine'_1 f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v v' : List ℕ ⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = ?e_a.h.e_a.h.refine'_2✝ [PROOFSTEP] try exact reaches_eval (ReflTransGen.single rfl) [GOAL] case e_a.h.e_a.h.refine'_1 f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v v' : List ℕ ⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = ?e_a.h.e_a.h.refine'_2✝ [PROOFSTEP] exact reaches_eval (ReflTransGen.single rfl) [GOAL] case e_a.h.e_a.h.refine'_3 f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v v' : List ℕ ⊢ eval step (Cfg.ret k (List.headI v :: v')) = eval step (stepRet (Cont.cons₂ v k) v') [PROOFSTEP] try exact reaches_eval (ReflTransGen.single rfl) [GOAL] case e_a.h.e_a.h.refine'_3 f fs : Code IHf : Code.Ok f IHfs : Code.Ok fs k : Cont v✝ v v' : List ℕ ⊢ eval step (Cfg.ret k (List.headI v :: v')) = eval step (stepRet (Cont.cons₂ v k) v') [PROOFSTEP] exact reaches_eval (ReflTransGen.single rfl) [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.comp a✝¹ k) v) k v) = do let v ← Code.eval (Code.comp a✝¹ a✝) v eval step (Cfg.ret k v) case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] case comp f g IHf IHg => rw [Code.eval, IHg] simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [stepRet, IHf] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal g (Cont.comp f k) v) k v) = do let v ← Code.eval (Code.comp f g) v eval step (Cfg.ret k v) [PROOFSTEP] case comp f g IHf IHg => rw [Code.eval, IHg] simp only [bind_assoc, Cont.eval, pure_bind]; congr; funext v rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [stepRet, IHf] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal g (Cont.comp f k) v) k v) = do let v ← Code.eval (Code.comp f g) v eval step (Cfg.ret k v) [PROOFSTEP] rw [Code.eval, IHg] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ (do let v ← Code.eval g v eval step (Cfg.ret (Cont.comp f k) v)) = do let v ← (fun v => Code.eval g v >>= Code.eval f) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [bind_assoc, Cont.eval, pure_bind] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ (do let v ← Code.eval g v eval step (Cfg.ret (Cont.comp f k) v)) = do let x ← Code.eval g v let v ← Code.eval f x eval step (Cfg.ret k v) [PROOFSTEP] congr [GOAL] case e_a f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ (fun v => eval step (Cfg.ret (Cont.comp f k) v)) = fun x => do let v ← Code.eval f x eval step (Cfg.ret k v) [PROOFSTEP] funext v [GOAL] case e_a.h f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ eval step (Cfg.ret (Cont.comp f k) v) = do let v ← Code.eval f v eval step (Cfg.ret k v) [PROOFSTEP] rw [reaches_eval] [GOAL] case e_a.h f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ eval step ?m.201265 = do let v ← Code.eval f v eval step (Cfg.ret k v) case e_a.h f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ Reaches step (Cfg.ret (Cont.comp f k) v) ?m.201265 f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ Cfg [PROOFSTEP] swap [GOAL] case e_a.h f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ Reaches step (Cfg.ret (Cont.comp f k) v) ?m.201265 case e_a.h f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ eval step ?m.201265 = do let v ← Code.eval f v eval step (Cfg.ret k v) f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case e_a.h f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v✝ v : List ℕ ⊢ eval step (stepRet (Cont.comp f k) v) = do let v ← Code.eval f v eval step (Cfg.ret k v) [PROOFSTEP] rw [stepRet, IHf] [GOAL] case case a✝¹ a✝ : Code a_ih✝¹ : Code.Ok a✝¹ a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal a✝¹ k (List.tail v)) (fun y x => stepNormal a✝ k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case a✝¹ a✝) v eval step (Cfg.ret k v) case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] case case f g IHf IHg => simp only [Code.eval] cases v.headI <;> simp only [Code.eval] <;> [apply IHf; apply IHg] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case f g) v eval step (Cfg.ret k v) [PROOFSTEP] case case f g IHf IHg => simp only [Code.eval] cases v.headI <;> simp only [Code.eval] <;> [apply IHf; apply IHg] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step ((fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) k v) = do let v ← Code.eval (Code.case f g) v eval step (Cfg.ret k v) [PROOFSTEP] simp only [Code.eval] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) = do let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) (List.headI v) eval step (Cfg.ret k v) [PROOFSTEP] cases v.headI <;> simp only [Code.eval] <;> [apply IHf; apply IHg] [GOAL] f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) = do let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) (List.headI v) eval step (Cfg.ret k v) [PROOFSTEP] cases v.headI [GOAL] case zero f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) = do let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) Nat.zero eval step (Cfg.ret k v) [PROOFSTEP] simp only [Code.eval] [GOAL] case succ f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ n✝ : ℕ ⊢ eval step (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n✝)) = do let v ← Nat.rec (Code.eval f (List.tail v)) (fun y x => Code.eval g (y :: List.tail v)) (Nat.succ n✝) eval step (Cfg.ret k v) [PROOFSTEP] simp only [Code.eval] [GOAL] case zero f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ ⊢ eval step (stepNormal f k (List.tail v)) = do let v ← Code.eval f (List.tail v) eval step (Cfg.ret k v) [PROOFSTEP] apply IHf [GOAL] case succ f g : Code IHf : Code.Ok f IHg : Code.Ok g k : Cont v : List ℕ n✝ : ℕ ⊢ eval step (stepNormal g k (n✝ :: List.tail v)) = do let v ← Code.eval g (n✝ :: List.tail v) eval step (Cfg.ret k v) [PROOFSTEP] apply IHg [GOAL] case fix a✝ : Code a_ih✝ : Code.Ok a✝ k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal a✝ (Cont.fix a✝ k) v) k v) = do let v ← Code.eval (Code.fix a✝) v eval step (Cfg.ret k v) [PROOFSTEP] case fix f IHf => rw [cont_eval_fix IHf] [GOAL] f : Code IHf : Code.Ok f k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal f (Cont.fix f k) v) k v) = do let v ← Code.eval (Code.fix f) v eval step (Cfg.ret k v) [PROOFSTEP] case fix f IHf => rw [cont_eval_fix IHf] [GOAL] f : Code IHf : Code.Ok f k : Cont v : List ℕ ⊢ eval step ((fun k v => stepNormal f (Cont.fix f k) v) k v) = do let v ← Code.eval (Code.fix f) v eval step (Cfg.ret k v) [PROOFSTEP] rw [cont_eval_fix IHf] [GOAL] k : Cont v : List ℕ ⊢ eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v [PROOFSTEP] induction k generalizing v [GOAL] case halt v : List ℕ ⊢ eval step (stepRet Cont.halt v) = Cfg.halt <$> Cont.eval Cont.halt v case cons₁ a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ a✝² a✝¹ a✝) v case cons₂ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.cons₂ a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ a✝¹ a✝) v case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v [PROOFSTEP] case halt => simp only [mem_eval, Cont.eval, map_pure] exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩) [GOAL] v : List ℕ ⊢ eval step (stepRet Cont.halt v) = Cfg.halt <$> Cont.eval Cont.halt v [PROOFSTEP] case halt => simp only [mem_eval, Cont.eval, map_pure] exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩) [GOAL] v : List ℕ ⊢ eval step (stepRet Cont.halt v) = Cfg.halt <$> Cont.eval Cont.halt v [PROOFSTEP] simp only [mem_eval, Cont.eval, map_pure] [GOAL] v : List ℕ ⊢ eval step (stepRet Cont.halt v) = pure (Cfg.halt v) [PROOFSTEP] exact Part.eq_some_iff.2 (mem_eval.2 ⟨ReflTransGen.refl, rfl⟩) [GOAL] case cons₁ a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ a✝² a✝¹ a✝) v case cons₂ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.cons₂ a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ a✝¹ a✝) v case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v [PROOFSTEP] case cons₁ fs as k IH => rw [Cont.eval, stepRet, code_is_ok] simp only [← bind_pure_comp, bind_assoc]; congr; funext v' rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [stepRet, IH, bind_pure_comp] [GOAL] fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.cons₁ fs as k) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ fs as k) v [PROOFSTEP] case cons₁ fs as k IH => rw [Cont.eval, stepRet, code_is_ok] simp only [← bind_pure_comp, bind_assoc]; congr; funext v' rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [stepRet, IH, bind_pure_comp] [GOAL] fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.cons₁ fs as k) v) = Cfg.halt <$> Cont.eval (Cont.cons₁ fs as k) v [PROOFSTEP] rw [Cont.eval, stepRet, code_is_ok] [GOAL] fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ (do let v_1 ← Code.eval fs as eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = Cfg.halt <$> (fun v => do let ns ← Code.eval fs as Cont.eval k (List.headI v :: ns)) v [PROOFSTEP] simp only [← bind_pure_comp, bind_assoc] [GOAL] fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ (do let v_1 ← Code.eval fs as eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = do let x ← Code.eval fs as let a ← Cont.eval k (List.headI v :: x) pure (Cfg.halt a) [PROOFSTEP] congr [GOAL] case e_a fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ (fun v_1 => eval step (Cfg.ret (Cont.cons₂ v k) v_1)) = fun x => do let a ← Cont.eval k (List.headI v :: x) pure (Cfg.halt a) [PROOFSTEP] funext v' [GOAL] case e_a.h fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step (Cfg.ret (Cont.cons₂ v k) v') = do let a ← Cont.eval k (List.headI v :: v') pure (Cfg.halt a) [PROOFSTEP] rw [reaches_eval] [GOAL] case e_a.h fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step ?m.203004 = do let a ← Cont.eval k (List.headI v :: v') pure (Cfg.halt a) case e_a.h fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Reaches step (Cfg.ret (Cont.cons₂ v k) v') ?m.203004 fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Cfg [PROOFSTEP] swap [GOAL] case e_a.h fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Reaches step (Cfg.ret (Cont.cons₂ v k) v') ?m.203004 case e_a.h fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step ?m.203004 = do let a ← Cont.eval k (List.headI v :: v') pure (Cfg.halt a) fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case e_a.h fs : Code as : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step (stepRet (Cont.cons₂ v k) v') = do let a ← Cont.eval k (List.headI v :: v') pure (Cfg.halt a) [PROOFSTEP] rw [stepRet, IH, bind_pure_comp] [GOAL] case cons₂ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.cons₂ a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ a✝¹ a✝) v case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v [PROOFSTEP] case cons₂ ns k IH => rw [Cont.eval, stepRet]; exact IH [GOAL] ns : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.cons₂ ns k) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ ns k) v [PROOFSTEP] case cons₂ ns k IH => rw [Cont.eval, stepRet]; exact IH [GOAL] ns : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.cons₂ ns k) v) = Cfg.halt <$> Cont.eval (Cont.cons₂ ns k) v [PROOFSTEP] rw [Cont.eval, stepRet] [GOAL] ns : List ℕ k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet k (List.headI ns :: v)) = Cfg.halt <$> (fun v => Cont.eval k (List.headI ns :: v)) v [PROOFSTEP] exact IH [GOAL] case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.comp a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.comp a✝¹ a✝) v case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v [PROOFSTEP] case comp f k IH => rw [Cont.eval, stepRet, code_is_ok] simp only [← bind_pure_comp, bind_assoc]; congr; funext v' rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [IH, bind_pure_comp] [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.comp f k) v) = Cfg.halt <$> Cont.eval (Cont.comp f k) v [PROOFSTEP] case comp f k IH => rw [Cont.eval, stepRet, code_is_ok] simp only [← bind_pure_comp, bind_assoc]; congr; funext v' rw [reaches_eval]; swap; exact ReflTransGen.single rfl rw [IH, bind_pure_comp] [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.comp f k) v) = Cfg.halt <$> Cont.eval (Cont.comp f k) v [PROOFSTEP] rw [Cont.eval, stepRet, code_is_ok] [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ (do let v ← Code.eval f v eval step (Cfg.ret k v)) = Cfg.halt <$> (fun v => Code.eval f v >>= Cont.eval k) v [PROOFSTEP] simp only [← bind_pure_comp, bind_assoc] [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ (do let v ← Code.eval f v eval step (Cfg.ret k v)) = do let x ← Code.eval f v let a ← Cont.eval k x pure (Cfg.halt a) [PROOFSTEP] congr [GOAL] case e_a f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ (fun v => eval step (Cfg.ret k v)) = fun x => do let a ← Cont.eval k x pure (Cfg.halt a) [PROOFSTEP] funext v' [GOAL] case e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step (Cfg.ret k v') = do let a ← Cont.eval k v' pure (Cfg.halt a) [PROOFSTEP] rw [reaches_eval] [GOAL] case e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step ?m.203696 = do let a ← Cont.eval k v' pure (Cfg.halt a) case e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Reaches step (Cfg.ret k v') ?m.203696 f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Cfg [PROOFSTEP] swap [GOAL] case e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Reaches step (Cfg.ret k v') ?m.203696 case e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step ?m.203696 = do let a ← Cont.eval k v' pure (Cfg.halt a) f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ Cfg [PROOFSTEP] exact ReflTransGen.single rfl [GOAL] case e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v v' : List ℕ ⊢ eval step (stepRet k v') = do let a ← Cont.eval k v' pure (Cfg.halt a) [PROOFSTEP] rw [IH, bind_pure_comp] [GOAL] case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ {v : List ℕ}, eval step (stepRet a✝ v) = Cfg.halt <$> Cont.eval a✝ v v : List ℕ ⊢ eval step (stepRet (Cont.fix a✝¹ a✝) v) = Cfg.halt <$> Cont.eval (Cont.fix a✝¹ a✝) v [PROOFSTEP] case fix f k IH => rw [Cont.eval, stepRet]; simp only [bind_pure_comp] split_ifs; · exact IH simp only [← bind_pure_comp, bind_assoc, cont_eval_fix (code_is_ok _)] congr; funext; rw [bind_pure_comp, ← IH] exact reaches_eval (ReflTransGen.single rfl) [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.fix f k) v) = Cfg.halt <$> Cont.eval (Cont.fix f k) v [PROOFSTEP] case fix f k IH => rw [Cont.eval, stepRet]; simp only [bind_pure_comp] split_ifs; · exact IH simp only [← bind_pure_comp, bind_assoc, cont_eval_fix (code_is_ok _)] congr; funext; rw [bind_pure_comp, ← IH] exact reaches_eval (ReflTransGen.single rfl) [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (stepRet (Cont.fix f k) v) = Cfg.halt <$> Cont.eval (Cont.fix f k) v [PROOFSTEP] rw [Cont.eval, stepRet] [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) = Cfg.halt <$> (fun v => if List.headI v = 0 then Cont.eval k (List.tail v) else Code.eval (Code.fix f) (List.tail v) >>= Cont.eval k) v [PROOFSTEP] simp only [bind_pure_comp] [GOAL] f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ ⊢ eval step (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) = Cfg.halt <$> if List.headI v = 0 then Cont.eval k (List.tail v) else Code.eval (Code.fix f) (List.tail v) >>= Cont.eval k [PROOFSTEP] split_ifs [GOAL] case pos f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ h✝ : List.headI v = 0 ⊢ eval step (stepRet k (List.tail v)) = Cfg.halt <$> Cont.eval k (List.tail v) [PROOFSTEP] exact IH [GOAL] case neg f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ h✝ : ¬List.headI v = 0 ⊢ eval step (stepNormal f (Cont.fix f k) (List.tail v)) = Cfg.halt <$> (Code.eval (Code.fix f) (List.tail v) >>= Cont.eval k) [PROOFSTEP] simp only [← bind_pure_comp, bind_assoc, cont_eval_fix (code_is_ok _)] [GOAL] case neg f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ h✝ : ¬List.headI v = 0 ⊢ (do let v ← Code.eval (Code.fix f) (List.tail v) eval step (Cfg.ret k v)) = do let x ← Code.eval (Code.fix f) (List.tail v) let a ← Cont.eval k x pure (Cfg.halt a) [PROOFSTEP] congr [GOAL] case neg.e_a f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ h✝ : ¬List.headI v = 0 ⊢ (fun v => eval step (Cfg.ret k v)) = fun x => do let a ← Cont.eval k x pure (Cfg.halt a) [PROOFSTEP] funext [GOAL] case neg.e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ h✝ : ¬List.headI v = 0 x✝ : List ℕ ⊢ eval step (Cfg.ret k x✝) = do let a ← Cont.eval k x✝ pure (Cfg.halt a) [PROOFSTEP] rw [bind_pure_comp, ← IH] [GOAL] case neg.e_a.h f : Code k : Cont IH : ∀ {v : List ℕ}, eval step (stepRet k v) = Cfg.halt <$> Cont.eval k v v : List ℕ h✝ : ¬List.headI v = 0 x✝ : List ℕ ⊢ eval step (Cfg.ret k x✝) = eval step (stepRet k x✝) [PROOFSTEP] exact reaches_eval (ReflTransGen.single rfl) [GOAL] a b : Λ' ⊢ Decidable (a = b) [PROOFSTEP] induction a generalizing b [GOAL] case move p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) b : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = b) [PROOFSTEP] cases b [GOAL] case clear p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) b : Λ' ⊢ Decidable (clear p✝ k✝ q✝ = b) [PROOFSTEP] cases b [GOAL] case copy q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) b : Λ' ⊢ Decidable (copy q✝ = b) [PROOFSTEP] cases b [GOAL] case push k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) b : Λ' ⊢ Decidable (push k✝ s✝ q✝ = b) [PROOFSTEP] cases b [GOAL] case read f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) b : Λ' ⊢ Decidable (read f✝ = b) [PROOFSTEP] cases b [GOAL] case succ q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) b : Λ' ⊢ Decidable (succ q✝ = b) [PROOFSTEP] cases b [GOAL] case pred q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) b : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = b) [PROOFSTEP] cases b [GOAL] case ret k✝ : Cont' b : Λ' ⊢ Decidable (ret k✝ = b) [PROOFSTEP] cases b [GOAL] case move.move p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.move p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.move.h p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case move.move.h.refl p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) ⊢ False [PROOFSTEP] done [GOAL] case move.clear p✝¹ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝ k₂✝ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.clear p✝¹ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝ k₂✝ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.clear.h p✝¹ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬move p✝¹ k₁✝ k₂✝ q✝¹ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case move.copy p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.copy p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.copy.h p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬move p✝ k₁✝ k₂✝ q✝¹ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case move.push p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.push p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.push.h p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬move p✝ k₁✝ k₂✝ q✝¹ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case move.read p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.read p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.read.h p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ ¬move p✝ k₁✝ k₂✝ q✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case move.succ p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.succ p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝¹ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.succ.h p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬move p✝ k₁✝ k₂✝ q✝¹ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case move.pred p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.pred p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.pred.h p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ ¬move p✝ k₁✝ k₂✝ q✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case move.ret p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case move.ret p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (move p✝ k₁✝ k₂✝ q✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case move.ret.h p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ ¬move p✝ k₁✝ k₂✝ q✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.move p✝¹ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.move p✝¹ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.move.h p✝¹ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬clear p✝¹ k✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.clear p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.clear p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.clear.h p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case clear.clear.h.refl p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) ⊢ False [PROOFSTEP] done [GOAL] case clear.copy p✝ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (clear p✝ k✝ q✝¹ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.copy p✝ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (clear p✝ k✝ q✝¹ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.copy.h p✝ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬clear p✝ k✝ q✝¹ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.push p✝ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (clear p✝ k✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.push p✝ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (clear p✝ k✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.push.h p✝ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬clear p✝ k✝¹ q✝¹ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.read p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (clear p✝ k✝ q✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.read p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (clear p✝ k✝ q✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.read.h p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ ¬clear p✝ k✝ q✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.succ p✝ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (clear p✝ k✝ q✝¹ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.succ p✝ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (clear p✝ k✝ q✝¹ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.succ.h p✝ : Γ' → Bool k✝ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬clear p✝ k✝ q✝¹ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.pred p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (clear p✝ k✝ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.pred p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (clear p✝ k✝ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.pred.h p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ ¬clear p✝ k✝ q✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case clear.ret p✝ : Γ' → Bool k✝¹ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (clear p✝ k✝¹ q✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case clear.ret p✝ : Γ' → Bool k✝¹ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (clear p✝ k✝¹ q✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case clear.ret.h p✝ : Γ' → Bool k✝¹ : K' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ ¬clear p✝ k✝¹ q✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.move q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (copy q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.move q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (copy q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.move.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬copy q✝¹ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.clear q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (copy q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.clear q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (copy q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.clear.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬copy q✝¹ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.copy.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬copy q✝¹ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case copy.copy.h.refl q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) ⊢ False [PROOFSTEP] done [GOAL] case copy.push q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (copy q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.push q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (copy q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.push.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬copy q✝¹ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.read q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (copy q✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.read q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (copy q✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.read.h q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ ¬copy q✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.succ.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬copy q✝¹ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.pred q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (copy q✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.pred q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (copy q✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.pred.h q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ ¬copy q✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case copy.ret q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (copy q✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case copy.ret q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (copy q✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case copy.ret.h q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ ¬copy q✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.move k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.move k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.move.h k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬push k✝ s✝ q✝¹ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.clear k✝¹ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.clear k✝¹ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.clear.h k✝¹ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬push k✝¹ s✝ q✝¹ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.copy k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝¹ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.copy k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝¹ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.copy.h k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬push k✝ s✝ q✝¹ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.push k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.push k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.push.h k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case push.push.h.refl k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) ⊢ False [PROOFSTEP] done [GOAL] case push.read k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (push k✝ s✝ q✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.read k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (push k✝ s✝ q✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.read.h k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ ¬push k✝ s✝ q✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.succ k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝¹ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.succ k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝¹ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.succ.h k✝ : K' s✝ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬push k✝ s✝ q✝¹ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.pred k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.pred k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (push k✝ s✝ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.pred.h k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ ¬push k✝ s✝ q✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case push.ret k✝¹ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (push k✝¹ s✝ q✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case push.ret k✝¹ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (push k✝¹ s✝ q✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case push.ret.h k✝¹ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ ¬push k✝¹ s✝ q✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.move f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (read f✝ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.move f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (read f✝ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.move.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬read f✝ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.clear f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (read f✝ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.clear f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (read f✝ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.clear.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬read f✝ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.copy f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q✝ : Λ' ⊢ Decidable (read f✝ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.copy f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q✝ : Λ' ⊢ Decidable (read f✝ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.copy.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q✝ : Λ' ⊢ ¬read f✝ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.push f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (read f✝ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.push f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (read f✝ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.push.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬read f✝ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.read.h f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ ¬read f✝¹ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case read.read.h.refl f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) ⊢ False [PROOFSTEP] done [GOAL] case read.succ f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q✝ : Λ' ⊢ Decidable (read f✝ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.succ f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q✝ : Λ' ⊢ Decidable (read f✝ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.succ.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q✝ : Λ' ⊢ ¬read f✝ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.pred f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (read f✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.pred f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (read f✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.pred.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) q₁✝ q₂✝ : Λ' ⊢ ¬read f✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case read.ret f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) k✝ : Cont' ⊢ Decidable (read f✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case read.ret f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) k✝ : Cont' ⊢ Decidable (read f✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case read.ret.h f✝ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝ a = b) k✝ : Cont' ⊢ ¬read f✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.move q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (succ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.move q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (succ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.move.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬succ q✝¹ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.clear q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (succ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.clear q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (succ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.clear.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬succ q✝¹ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.copy.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬succ q✝¹ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.push q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (succ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.push q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (succ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.push.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬succ q✝¹ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.read q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (succ q✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.read q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (succ q✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.read.h q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) f✝ : Option Γ' → Λ' ⊢ ¬succ q✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.succ.h q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ ¬succ q✝¹ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case succ.succ.h.refl q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) ⊢ False [PROOFSTEP] done [GOAL] case succ.pred q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (succ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.pred q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (succ q✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.pred.h q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) q₁✝ q₂✝ : Λ' ⊢ ¬succ q✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case succ.ret q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (succ q✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case succ.ret q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ Decidable (succ q✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case succ.ret.h q✝ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝ = b) k✝ : Cont' ⊢ ¬succ q✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.move q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.move q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.move.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬pred q₁✝ q₂✝ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.clear q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.clear q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.clear.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬pred q₁✝ q₂✝ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.copy q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.copy q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.copy.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) q✝ : Λ' ⊢ ¬pred q₁✝ q₂✝ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.push q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.push q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.push.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬pred q₁✝ q₂✝ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.read q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (pred q₁✝ q₂✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.read q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) f✝ : Option Γ' → Λ' ⊢ Decidable (pred q₁✝ q₂✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.read.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) f✝ : Option Γ' → Λ' ⊢ ¬pred q₁✝ q₂✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.succ q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.succ q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) q✝ : Λ' ⊢ Decidable (pred q₁✝ q₂✝ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.succ.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) q✝ : Λ' ⊢ ¬pred q₁✝ q₂✝ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.pred.h q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ ¬pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case pred.pred.h.refl q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) ⊢ False [PROOFSTEP] done [GOAL] case pred.ret q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) k✝ : Cont' ⊢ Decidable (pred q₁✝ q₂✝ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case pred.ret q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) k✝ : Cont' ⊢ Decidable (pred q₁✝ q₂✝ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case pred.ret.h q₁✝ q₂✝ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝ = b) k✝ : Cont' ⊢ ¬pred q₁✝ q₂✝ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.move k✝ : Cont' p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (ret k✝ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.move k✝ : Cont' p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (ret k✝ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.move.h k✝ : Cont' p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ ¬ret k✝ = move p✝ k₁✝ k₂✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.clear k✝¹ : Cont' p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (ret k✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.clear k✝¹ : Cont' p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (ret k✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.clear.h k✝¹ : Cont' p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ ¬ret k✝¹ = clear p✝ k✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.copy k✝ : Cont' q✝ : Λ' ⊢ Decidable (ret k✝ = copy q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.copy k✝ : Cont' q✝ : Λ' ⊢ Decidable (ret k✝ = copy q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.copy.h k✝ : Cont' q✝ : Λ' ⊢ ¬ret k✝ = copy q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.push k✝¹ : Cont' k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (ret k✝¹ = push k✝ s✝ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.push k✝¹ : Cont' k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (ret k✝¹ = push k✝ s✝ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.push.h k✝¹ : Cont' k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ ¬ret k✝¹ = push k✝ s✝ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.read k✝ : Cont' f✝ : Option Γ' → Λ' ⊢ Decidable (ret k✝ = read f✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.read k✝ : Cont' f✝ : Option Γ' → Λ' ⊢ Decidable (ret k✝ = read f✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.read.h k✝ : Cont' f✝ : Option Γ' → Λ' ⊢ ¬ret k✝ = read f✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.succ k✝ : Cont' q✝ : Λ' ⊢ Decidable (ret k✝ = succ q✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.succ k✝ : Cont' q✝ : Λ' ⊢ Decidable (ret k✝ = succ q✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.succ.h k✝ : Cont' q✝ : Λ' ⊢ ¬ret k✝ = succ q✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.pred k✝ : Cont' q₁✝ q₂✝ : Λ' ⊢ Decidable (ret k✝ = pred q₁✝ q₂✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.pred k✝ : Cont' q₁✝ q₂✝ : Λ' ⊢ Decidable (ret k✝ = pred q₁✝ q₂✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.pred.h k✝ : Cont' q₁✝ q₂✝ : Λ' ⊢ ¬ret k✝ = pred q₁✝ q₂✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] [PROOFSTEP] done [GOAL] case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] try apply Decidable.isFalse; rintro ⟨⟨⟩⟩; done [GOAL] case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] apply Decidable.isFalse [GOAL] case ret.ret.h k✝¹ k✝ : Cont' ⊢ ¬ret k✝¹ = ret k✝ [PROOFSTEP] rintro ⟨⟨⟩⟩ [GOAL] case ret.ret.h.refl k✝ : Cont' ⊢ False [PROOFSTEP] done [GOAL] case move.move p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝) case clear.clear p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) case copy.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) case push.push k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case move.move _ _ _ _ I _ _ _ _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] case move.move _ _ _ _ I _ _ _ _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' ⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] letI := I [GOAL] p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ Decidable (move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ move p✝¹ k₁✝¹ k₂✝¹ q✝¹ = move p✝ k₁✝ k₂✝ q✝ ↔ ?m.224030 [PROOFSTEP] simp [Function.funext_iff] [GOAL] p✝¹ : Γ' → Bool k₁✝¹ k₂✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ (∀ (a : Γ'), p✝¹ a = p✝ a) ∧ k₁✝¹ = k₁✝ ∧ k₂✝¹ = k₂✝ ∧ q✝¹ = q✝ ↔ ?m.224030 [PROOFSTEP] rfl [GOAL] case clear.clear p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) case copy.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) case push.push k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case clear.clear _ _ _ I _ _ _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] case clear.clear _ _ _ I _ _ _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] letI := I [GOAL] p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ Decidable (clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ clear p✝¹ k✝¹ q✝¹ = clear p✝ k✝ q✝ ↔ ?m.227323 [PROOFSTEP] simp [Function.funext_iff] [GOAL] p✝¹ : Γ' → Bool k✝¹ : K' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) p✝ : Γ' → Bool k✝ : K' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ (∀ (a : Γ'), p✝¹ a = p✝ a) ∧ k✝¹ = k✝ ∧ q✝¹ = q✝ ↔ ?m.227323 [PROOFSTEP] rfl [GOAL] case copy.copy q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) case push.push k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case copy.copy _ I _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) [PROOFSTEP] case copy.copy _ I _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (copy q✝¹ = copy q✝) [PROOFSTEP] letI := I [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ Decidable (copy q✝¹ = copy q✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ copy q✝¹ = copy q✝ ↔ ?m.230273 [PROOFSTEP] simp [Function.funext_iff] [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ q✝¹ = q✝ ↔ ?m.230273 [PROOFSTEP] rfl [GOAL] case push.push k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case push.push _ _ _ I _ _ _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] case push.push _ _ _ I _ _ _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] letI := I [GOAL] k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ Decidable (push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ push k✝¹ s✝¹ q✝¹ = push k✝ s✝ q✝ ↔ ?m.231623 [PROOFSTEP] simp [Function.funext_iff] [GOAL] k✝¹ : K' s✝¹ : Option Γ' → Option Γ' q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ k✝¹ = k✝ ∧ (∀ (a : Option Γ'), s✝¹ a = s✝ a) ∧ q✝¹ = q✝ ↔ ?m.231623 [PROOFSTEP] rfl [GOAL] case read.read f✝¹ : Option Γ' → Λ' f_ih✝ : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case read.read _ I _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] f✝¹ : Option Γ' → Λ' I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) [PROOFSTEP] case read.read _ I _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] f✝¹ : Option Γ' → Λ' I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' ⊢ Decidable (read f✝¹ = read f✝) [PROOFSTEP] letI := I [GOAL] f✝¹ : Option Γ' → Λ' I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' this : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) := I ⊢ Decidable (read f✝¹ = read f✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] f✝¹ : Option Γ' → Λ' I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' this : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) := I ⊢ read f✝¹ = read f✝ ↔ ?m.235705 [PROOFSTEP] simp [Function.funext_iff] [GOAL] f✝¹ : Option Γ' → Λ' I : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) f✝ : Option Γ' → Λ' this : (a : Option Γ') → (b : Λ') → Decidable (f✝¹ a = b) := I ⊢ (∀ (a : Option Γ'), f✝¹ a = f✝ a) ↔ ?m.235705 [PROOFSTEP] rfl [GOAL] case succ.succ q✝¹ : Λ' q_ih✝ : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case succ.succ _ I _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) [PROOFSTEP] case succ.succ _ I _ => letI := I exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' ⊢ Decidable (succ q✝¹ = succ q✝) [PROOFSTEP] letI := I [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ Decidable (succ q✝¹ = succ q✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ succ q✝¹ = succ q✝ ↔ ?m.239621 [PROOFSTEP] simp [Function.funext_iff] [GOAL] q✝¹ : Λ' I : (b : Λ') → Decidable (q✝¹ = b) q✝ : Λ' this : (b : Λ') → Decidable (q✝¹ = b) := I ⊢ q✝¹ = q✝ ↔ ?m.239621 [PROOFSTEP] rfl [GOAL] case pred.pred q₁✝¹ q₂✝¹ : Λ' q₁_ih✝ : (b : Λ') → Decidable (q₁✝¹ = b) q₂_ih✝ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case pred.pred _ _ I₁ I₂ _ _ => letI := I₁ letI := I₂ exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q₁✝¹ q₂✝¹ : Λ' I₁ : (b : Λ') → Decidable (q₁✝¹ = b) I₂ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) [PROOFSTEP] case pred.pred _ _ I₁ I₂ _ _ => letI := I₁ letI := I₂ exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q₁✝¹ q₂✝¹ : Λ' I₁ : (b : Λ') → Decidable (q₁✝¹ = b) I₂ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) [PROOFSTEP] letI := I₁ [GOAL] q₁✝¹ q₂✝¹ : Λ' I₁ : (b : Λ') → Decidable (q₁✝¹ = b) I₂ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' this : (b : Λ') → Decidable (q₁✝¹ = b) := I₁ ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) [PROOFSTEP] letI := I₂ [GOAL] q₁✝¹ q₂✝¹ : Λ' I₁ : (b : Λ') → Decidable (q₁✝¹ = b) I₂ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' this✝ : (b : Λ') → Decidable (q₁✝¹ = b) := I₁ this : (b : Λ') → Decidable (q₂✝¹ = b) := I₂ ⊢ Decidable (pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] q₁✝¹ q₂✝¹ : Λ' I₁ : (b : Λ') → Decidable (q₁✝¹ = b) I₂ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' this✝ : (b : Λ') → Decidable (q₁✝¹ = b) := I₁ this : (b : Λ') → Decidable (q₂✝¹ = b) := I₂ ⊢ pred q₁✝¹ q₂✝¹ = pred q₁✝ q₂✝ ↔ ?m.240977 [PROOFSTEP] simp [Function.funext_iff] [GOAL] q₁✝¹ q₂✝¹ : Λ' I₁ : (b : Λ') → Decidable (q₁✝¹ = b) I₂ : (b : Λ') → Decidable (q₂✝¹ = b) q₁✝ q₂✝ : Λ' this✝ : (b : Λ') → Decidable (q₁✝¹ = b) := I₁ this : (b : Λ') → Decidable (q₂✝¹ = b) := I₂ ⊢ q₁✝¹ = q₁✝ ∧ q₂✝¹ = q₂✝ ↔ ?m.240977 [PROOFSTEP] rfl [GOAL] case ret.ret k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case ret.ret _ _ => exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] case ret.ret _ _ => exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] k✝¹ k✝ : Cont' ⊢ Decidable (ret k✝¹ = ret k✝) [PROOFSTEP] exact decidable_of_iff' _ (by simp [Function.funext_iff]; rfl) [GOAL] k✝¹ k✝ : Cont' ⊢ ret k✝¹ = ret k✝ ↔ ?m.242367 [PROOFSTEP] simp [Function.funext_iff] [GOAL] k✝¹ k✝ : Cont' ⊢ k✝¹ = k✝ ↔ ?m.242367 [PROOFSTEP] rfl [GOAL] ⊢ trNat 0 = [] [PROOFSTEP] rw [trNat, Nat.cast_zero] [GOAL] ⊢ trNum 0 = [] [PROOFSTEP] rfl [GOAL] a b c d a' : List Γ' ⊢ update (elim a b c d) main a' = elim a' b c d [PROOFSTEP] funext x [GOAL] case h a b c d a' : List Γ' x : K' ⊢ update (elim a b c d) main a' x = elim a' b c d x [PROOFSTEP] cases x [GOAL] case h.main a b c d a' : List Γ' ⊢ update (elim a b c d) main a' main = elim a' b c d main [PROOFSTEP] rfl [GOAL] case h.rev a b c d a' : List Γ' ⊢ update (elim a b c d) main a' rev = elim a' b c d rev [PROOFSTEP] rfl [GOAL] case h.aux a b c d a' : List Γ' ⊢ update (elim a b c d) main a' aux = elim a' b c d aux [PROOFSTEP] rfl [GOAL] case h.stack a b c d a' : List Γ' ⊢ update (elim a b c d) main a' stack = elim a' b c d stack [PROOFSTEP] rfl [GOAL] a b c d b' : List Γ' ⊢ update (elim a b c d) rev b' = elim a b' c d [PROOFSTEP] funext x [GOAL] case h a b c d b' : List Γ' x : K' ⊢ update (elim a b c d) rev b' x = elim a b' c d x [PROOFSTEP] cases x [GOAL] case h.main a b c d b' : List Γ' ⊢ update (elim a b c d) rev b' main = elim a b' c d main [PROOFSTEP] rfl [GOAL] case h.rev a b c d b' : List Γ' ⊢ update (elim a b c d) rev b' rev = elim a b' c d rev [PROOFSTEP] rfl [GOAL] case h.aux a b c d b' : List Γ' ⊢ update (elim a b c d) rev b' aux = elim a b' c d aux [PROOFSTEP] rfl [GOAL] case h.stack a b c d b' : List Γ' ⊢ update (elim a b c d) rev b' stack = elim a b' c d stack [PROOFSTEP] rfl [GOAL] a b c d c' : List Γ' ⊢ update (elim a b c d) aux c' = elim a b c' d [PROOFSTEP] funext x [GOAL] case h a b c d c' : List Γ' x : K' ⊢ update (elim a b c d) aux c' x = elim a b c' d x [PROOFSTEP] cases x [GOAL] case h.main a b c d c' : List Γ' ⊢ update (elim a b c d) aux c' main = elim a b c' d main [PROOFSTEP] rfl [GOAL] case h.rev a b c d c' : List Γ' ⊢ update (elim a b c d) aux c' rev = elim a b c' d rev [PROOFSTEP] rfl [GOAL] case h.aux a b c d c' : List Γ' ⊢ update (elim a b c d) aux c' aux = elim a b c' d aux [PROOFSTEP] rfl [GOAL] case h.stack a b c d c' : List Γ' ⊢ update (elim a b c d) aux c' stack = elim a b c' d stack [PROOFSTEP] rfl [GOAL] a b c d d' : List Γ' ⊢ update (elim a b c d) stack d' = elim a b c d' [PROOFSTEP] funext x [GOAL] case h a b c d d' : List Γ' x : K' ⊢ update (elim a b c d) stack d' x = elim a b c d' x [PROOFSTEP] cases x [GOAL] case h.main a b c d d' : List Γ' ⊢ update (elim a b c d) stack d' main = elim a b c d' main [PROOFSTEP] rfl [GOAL] case h.rev a b c d d' : List Γ' ⊢ update (elim a b c d) stack d' rev = elim a b c d' rev [PROOFSTEP] rfl [GOAL] case h.aux a b c d d' : List Γ' ⊢ update (elim a b c d) stack d' aux = elim a b c d' aux [PROOFSTEP] rfl [GOAL] case h.stack a b c d d' : List Γ' ⊢ update (elim a b c d) stack d' stack = elim a b c d' stack [PROOFSTEP] rfl [GOAL] α : Type u_1 p : α → Bool l₁ : List α o : α l₂ : List α x✝ : ∀ (x : α), x ∈ l₁ → p x = false left✝ : p o = true h₃ : [] = l₁ ++ o :: l₂ ⊢ splitAtPred p [] = (l₁, some o, l₂) [PROOFSTEP] simp at h₃ [GOAL] α : Type u_1 p : α → Bool a : α L l₁ : List α o : Option α l₂ : List α h₁ : ∀ (x : α), x ∈ l₁ → p x = false h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) o ⊢ splitAtPred p (a :: L) = (l₁, o, l₂) [PROOFSTEP] rw [splitAtPred] [GOAL] α : Type u_1 p : α → Bool a : α L l₁ : List α o : Option α l₂ : List α h₁ : ∀ (x : α), x ∈ l₁ → p x = false h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) o ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (l₁, o, l₂) [PROOFSTEP] have IH := splitAtPred_eq p L [GOAL] α : Type u_1 p : α → Bool a : α L l₁ : List α o : Option α l₂ : List α h₁ : ∀ (x : α), x ∈ l₁ → p x = false h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) o IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (l₁, o, l₂) [PROOFSTEP] cases' o with o [GOAL] case none α : Type u_1 p : α → Bool a : α L l₁ l₂ : List α h₁ : ∀ (x : α), x ∈ l₁ → p x = false IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) none ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (l₁, none, l₂) [PROOFSTEP] cases' l₁ with a' l₁ [GOAL] case none.nil α : Type u_1 p : α → Bool a : α L l₂ : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) h₁ : ∀ (x : α), x ∈ [] → p x = false h₂ : Option.elim' (a :: L = [] ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = [] ++ a_1 :: l₂) none ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = ([], none, l₂) [PROOFSTEP] rcases h₂ with ⟨⟨⟩, rfl⟩ [GOAL] case none.cons α : Type u_1 p : α → Bool a : α L l₂ : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) a' : α l₁ : List α h₁ : ∀ (x : α), x ∈ a' :: l₁ → p x = false h₂ : Option.elim' (a :: L = a' :: l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = a' :: l₁ ++ a_1 :: l₂) none ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (a' :: l₁, none, l₂) [PROOFSTEP] rcases h₂ with ⟨⟨⟩, rfl⟩ [GOAL] case none.cons.intro.refl α : Type u_1 p : α → Bool a : α L : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) h₁ : ∀ (x : α), x ∈ a :: L → p x = false ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (a :: L, none, []) [PROOFSTEP] rw [h₁ a (List.Mem.head _), cond, IH L none [] _ ⟨rfl, rfl⟩] [GOAL] α : Type u_1 p : α → Bool a : α L : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) h₁ : ∀ (x : α), x ∈ a :: L → p x = false ⊢ ∀ (x : α), x ∈ L → p x = false [PROOFSTEP] exact fun x h => h₁ x (List.Mem.tail _ h) [GOAL] case some α : Type u_1 p : α → Bool a : α L l₁ l₂ : List α h₁ : ∀ (x : α), x ∈ l₁ → p x = false IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) o : α h₂ : Option.elim' (a :: L = l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = l₁ ++ a_1 :: l₂) (some o) ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (l₁, some o, l₂) [PROOFSTEP] cases' l₁ with a' l₁ [GOAL] case some.nil α : Type u_1 p : α → Bool a : α L l₂ : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) o : α h₁ : ∀ (x : α), x ∈ [] → p x = false h₂ : Option.elim' (a :: L = [] ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = [] ++ a_1 :: l₂) (some o) ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = ([], some o, l₂) [PROOFSTEP] rcases h₂ with ⟨h₂, ⟨⟩⟩ [GOAL] case some.cons α : Type u_1 p : α → Bool a : α L l₂ : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) o a' : α l₁ : List α h₁ : ∀ (x : α), x ∈ a' :: l₁ → p x = false h₂ : Option.elim' (a :: L = a' :: l₁ ∧ l₂ = []) (fun a_1 => p a_1 = true ∧ a :: L = a' :: l₁ ++ a_1 :: l₂) (some o) ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (a' :: l₁, some o, l₂) [PROOFSTEP] rcases h₂ with ⟨h₂, ⟨⟩⟩ [GOAL] case some.nil.intro.refl α : Type u_1 p : α → Bool a : α L : List α IH : ∀ (l₁ : List α) (o : Option α) (l₂ : List α), (∀ (x : α), x ∈ l₁ → p x = false) → Option.elim' (L = l₁ ∧ l₂ = []) (fun a => p a = true ∧ L = l₁ ++ a :: l₂) o → splitAtPred p L = (l₁, o, l₂) h₁ : ∀ (x : α), x ∈ [] → p x = false h₂ : p a = true ⊢ (bif p a then ([], some a, L) else match splitAtPred p L with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = ([], some a, L) [PROOFSTEP] rw [h₂, cond] [GOAL] case some.cons.intro.refl α : Type u_1 p : α → Bool a : α l₂ : List α o : α l₁ : List α h₂ : p o = true h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false IH : ∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α), (∀ (x : α), x ∈ l₁_1 → p x = false) → Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = []) (fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 → splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1) ⊢ (bif p a then ([], some a, List.append l₁ (o :: l₂)) else match splitAtPred p (List.append l₁ (o :: l₂)) with | (l₁, o, l₂) => (a :: l₁, o, l₂)) = (a :: l₁, some o, l₂) [PROOFSTEP] rw [h₁ a (List.Mem.head _), cond, IH l₁ (some o) l₂ _ ⟨h₂, _⟩] [GOAL] α : Type u_1 p : α → Bool a : α l₂ : List α o : α l₁ : List α h₂ : p o = true h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false IH : ∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α), (∀ (x : α), x ∈ l₁_1 → p x = false) → Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = []) (fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 → splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1) ⊢ ∀ (x : α), x ∈ l₁ → p x = false [PROOFSTEP] try rfl [GOAL] α : Type u_1 p : α → Bool a : α l₂ : List α o : α l₁ : List α h₂ : p o = true h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false IH : ∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α), (∀ (x : α), x ∈ l₁_1 → p x = false) → Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = []) (fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 → splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1) ⊢ ∀ (x : α), x ∈ l₁ → p x = false [PROOFSTEP] rfl [GOAL] α : Type u_1 p : α → Bool a : α l₂ : List α o : α l₁ : List α h₂ : p o = true h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false IH : ∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α), (∀ (x : α), x ∈ l₁_1 → p x = false) → Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = []) (fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 → splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1) ⊢ List.append l₁ (o :: l₂) = l₁ ++ o :: l₂ [PROOFSTEP] try rfl [GOAL] α : Type u_1 p : α → Bool a : α l₂ : List α o : α l₁ : List α h₂ : p o = true h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false IH : ∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α), (∀ (x : α), x ∈ l₁_1 → p x = false) → Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = []) (fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 → splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1) ⊢ List.append l₁ (o :: l₂) = l₁ ++ o :: l₂ [PROOFSTEP] rfl [GOAL] α : Type u_1 p : α → Bool a : α l₂ : List α o : α l₁ : List α h₂ : p o = true h₁ : ∀ (x : α), x ∈ a :: l₁ → p x = false IH : ∀ (l₁_1 : List α) (o_1 : Option α) (l₂_1 : List α), (∀ (x : α), x ∈ l₁_1 → p x = false) → Option.elim' (List.append l₁ (o :: l₂) = l₁_1 ∧ l₂_1 = []) (fun a => p a = true ∧ List.append l₁ (o :: l₂) = l₁_1 ++ a :: l₂_1) o_1 → splitAtPred p (List.append l₁ (o :: l₂)) = (l₁_1, o_1, l₂_1) ⊢ ∀ (x : α), x ∈ l₁ → p x = false [PROOFSTEP] exact fun x h => h₁ x (List.Mem.tail _ h) [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S k₁) = (L₁, o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } [PROOFSTEP] induction' L₁ with a L₁ IH generalizing S s [GOAL] case nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux [] (S k₂)) } [PROOFSTEP] rw [(_ : [].reverseAux _ = _), Function.update_eq_self] [GOAL] case nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update S k₁ L₂ } p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ List.reverseAux [] (S k₂) = update S k₁ L₂ k₂ [PROOFSTEP] swap [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ List.reverseAux [] (S k₂) = update S k₁ L₂ k₂ [PROOFSTEP] rw [Function.update_noteq h₁.symm] [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ List.reverseAux [] (S k₂) = S k₂ [PROOFSTEP] rfl [GOAL] case nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] refine' TransGen.head' rfl _ [GOAL] case nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ ReflTransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.move p k₁ k₂ q)) s S) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] simp [GOAL] case nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (S k₁), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (S k₁), stk := update S k₁ (List.tail (S k₁)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (S k₁), stk := update (update S k₁ (List.tail (S k₁))) k₂ (Option.iget (List.head? (S k₁)) :: update S k₁ (List.tail (S k₁)) k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] revert e [GOAL] case nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' ⊢ splitAtPred p (S k₁) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (S k₁), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (S k₁), stk := update S k₁ (List.tail (S k₁)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (S k₁), stk := update (update S k₁ (List.tail (S k₁))) k₂ (Option.iget (List.head? (S k₁)) :: update S k₁ (List.tail (S k₁)) k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] cases' S k₁ with a Sk [GOAL] case nil.nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' ⊢ splitAtPred p [] = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k₁ (List.tail []) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? [], stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] intro e [GOAL] case nil.cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ splitAtPred p (a :: Sk) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a :: Sk), stk := update S k₁ (List.tail (a :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a :: Sk), stk := update (update S k₁ (List.tail (a :: Sk))) k₂ (Option.iget (List.head? (a :: Sk)) :: update S k₁ (List.tail (a :: Sk)) k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] intro e [GOAL] case nil.nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p [] = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k₁ (List.tail []) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? [], stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] cases e [GOAL] case nil.nil.refl p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ s : Option Γ' S : K' → List Γ' e : splitAtPred p (S✝ k₁) = (L₁, none, []) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k₁ (List.tail []) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? [], stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) }) { l := some q, var := none, stk := update S k₁ [] } [PROOFSTEP] rfl [GOAL] case nil.cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : splitAtPred p (a :: Sk) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a :: Sk), stk := update S k₁ (List.tail (a :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a :: Sk), stk := update (update S k₁ (List.tail (a :: Sk))) k₂ (Option.iget (List.head? (a :: Sk)) :: update S k₁ (List.tail (a :: Sk)) k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] simp only [splitAtPred, Option.elim, List.head?, List.tail_cons, Option.iget_some] at e ⊢ [GOAL] case nil.cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : (bif p a then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif p a then { l := some q, var := some a, stk := update S k₁ Sk } else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] revert e [GOAL] case nil.cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ (bif p a then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif p a then { l := some q, var := some a, stk := update S k₁ Sk } else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] cases p a [GOAL] case nil.cons.false p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ (bif false then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif false then { l := some q, var := some a, stk := update S k₁ Sk } else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] intro e [GOAL] case nil.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ (bif true then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif true then { l := some q, var := some a, stk := update S k₁ Sk } else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] intro e [GOAL] case nil.cons.false p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : (bif false then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif false then { l := some q, var := some a, stk := update S k₁ Sk } else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢ [GOAL] case nil.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : (bif true then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif true then { l := some q, var := some a, stk := update S k₁ Sk } else { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (a :: update S k₁ Sk k₂) }) { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢ [GOAL] case nil.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : some a = o ∧ Sk = L₂ ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some q, var := some a, stk := update S k₁ Sk } { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] simp only [e] [GOAL] case nil.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : some a = o ∧ Sk = L₂ ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some q, var := o, stk := update S k₁ L₂ } { l := some q, var := o, stk := update S k₁ L₂ } [PROOFSTEP] rfl [GOAL] case cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = (a :: L₁, o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux (a :: L₁) (S k₂)) } [PROOFSTEP] refine' TransGen.head rfl _ [GOAL] case cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.move p k₁ k₂ q)) s S) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux (a :: L₁) (S k₂)) } [PROOFSTEP] simp [GOAL] case cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (S k₁), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (S k₁), stk := update S k₁ (List.tail (S k₁)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (S k₁), stk := update (update S k₁ (List.tail (S k₁))) k₂ (Option.iget (List.head? (S k₁)) :: update S k₁ (List.tail (S k₁)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] cases' e₁ : S k₁ with a' Sk [GOAL] case cons.nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = (a :: L₁, o, L₂) e₁ : S k₁ = [] ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k₁ (List.tail []) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? [], stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] rw [e₁, splitAtPred] at e [GOAL] case cons.cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k₁) = (a :: L₁, o, L₂) a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] rw [e₁, splitAtPred] at e [GOAL] case cons.nil p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' e : ([], none, []) = (a :: L₁, o, L₂) e₁ : S k₁ = [] ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k₁ (List.tail []) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? [], stk := update (update S k₁ (List.tail [])) k₂ (Option.iget (List.head? []) :: update S k₁ (List.tail []) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] cases e [GOAL] case cons.cons p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e : (bif p a' then ([], some a', Sk) else match splitAtPred p Sk with | (l₁, o, l₂) => (a' :: l₁, o, l₂)) = (a :: L₁, o, L₂) e₁ : S k₁ = a' :: Sk ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] cases e₂ : p a' [GOAL] case cons.cons.false p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e : (bif p a' then ([], some a', Sk) else match splitAtPred p Sk with | (l₁, o, l₂) => (a' :: l₁, o, l₂)) = (a :: L₁, o, L₂) e₁ : S k₁ = a' :: Sk e₂ : p a' = false ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] simp only [e₂, cond] at e [GOAL] case cons.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e : (bif p a' then ([], some a', Sk) else match splitAtPred p Sk with | (l₁, o, l₂) => (a' :: l₁, o, l₂)) = (a :: L₁, o, L₂) e₁ : S k₁ = a' :: Sk e₂ : p a' = true ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] simp only [e₂, cond] at e [GOAL] case cons.cons.false p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk e₂ : p a' = false e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } case cons.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk e₂ : p a' = true e : ([], some a', Sk) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] swap [GOAL] case cons.cons.true p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk e₂ : p a' = true e : ([], some a', Sk) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] cases e [GOAL] case cons.cons.false p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk e₂ : p a' = false e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] rcases e₃ : splitAtPred p Sk with ⟨_, _, _⟩ [GOAL] case cons.cons.false.mk.mk p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk e₂ : p a' = false e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂) fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] rw [e₃] at e [GOAL] case cons.cons.false.mk.mk p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ e✝ : splitAtPred p (S✝ k₁) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (S k₂)) } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k₁ = a' :: Sk e₂ : p a' = false fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e : (a' :: (fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) = (a :: L₁, o, L₂) e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k₁ (List.tail (a' :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a' :: Sk), stk := update (update S k₁ (List.tail (a' :: Sk))) k₂ (Option.iget (List.head? (a' :: Sk)) :: update S k₁ (List.tail (a' :: Sk)) k₂) }) { l := some q, var := o, stk := update (update S k₁ L₂) k₂ (List.reverseAux L₁ (a :: S k₂)) } [PROOFSTEP] cases e [GOAL] case cons.cons.false.mk.mk.refl p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k₁ = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) } ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a :: Sk), stk := update S k₁ (List.tail (a :: Sk)) } else { l := some (Λ'.move p k₁ k₂ q), var := List.head? (a :: Sk), stk := update (update S k₁ (List.tail (a :: Sk))) k₂ (Option.iget (List.head? (a :: Sk)) :: update S k₁ (List.tail (a :: Sk)) k₂) }) { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (a :: S k₂)) } [PROOFSTEP] simp [e₂] [GOAL] case cons.cons.false.mk.mk.refl p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k₁ = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) } ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.move p k₁ k₂ q), var := some a, stk := update (update S k₁ Sk) k₂ (Option.iget (some a) :: update S k₁ Sk k₂) } { l := some q, var := fst✝, stk := update (update S k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) } [PROOFSTEP] convert @IH _ (update (update S k₁ Sk) k₂ (a :: S k₂)) _ using 2 [GOAL] case h.e'_1.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k₁ = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) } ⊢ update (update S k₁ Sk) k₂ (Option.iget (some a) :: update S k₁ Sk k₂) = update (update S k₁ Sk) k₂ (a :: S k₂) [PROOFSTEP] simp [Function.update_noteq, h₁, h₁.symm, e₃, List.reverseAux] [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k₁ = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) } ⊢ update (update S k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) = update (update (update (update S k₁ Sk) k₂ (a :: S k₂)) k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (update (update S k₁ Sk) k₂ (a :: S k₂) k₂)) [PROOFSTEP] simp [Function.update_noteq, h₁, h₁.symm, e₃, List.reverseAux] [GOAL] case cons.cons.false.mk.mk.refl.convert_2 p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k₁ = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) } ⊢ splitAtPred p (update (update S k₁ Sk) k₂ (a :: S k₂) k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) [PROOFSTEP] simp [Function.update_noteq, h₁, h₁.symm, e₃, List.reverseAux] [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' h₁ : k₁ ≠ k₂ a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k₁ = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k₁) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k₁) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.move p k₁ k₂ q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update (update S k₁ (fst✝¹, fst✝, snd✝).2.snd) k₂ (List.reverseAux (fst✝¹, fst✝, snd✝).fst (S k₂)) } ⊢ update (update S k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) = update (update (update (update S k₁ Sk) k₂ (a :: S k₂)) k₁ snd✝) k₂ (List.reverseAux fst✝¹ (a :: S k₂)) [PROOFSTEP] simp [Function.update_comm h₁.symm] [GOAL] q : Λ' s : Option Γ' S : K' → List Γ' ⊢ rev ≠ main [PROOFSTEP] decide [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (move₂ p k₁ k₂ q), var := s, stk := S } { l := some q, var := none, stk := update (update S k₁ (Option.elim o id List.cons L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] refine' (move_ok h₁.1 e).trans (TransGen.head rfl _) [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, o, L₂) ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.push k₁ id (Λ'.move (fun x => false) rev k₂ q))) o (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)))) { l := some q, var := none, stk := update (update S k₁ (Option.elim o id List.cons L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] simp [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif Option.isSome o then { l := some (Λ'.move (fun x => false) rev k₂ q), var := o, stk := update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget o :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) } else { l := some (Λ'.move (fun x => false) rev k₂ q), var := o, stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) }) { l := some q, var := none, stk := update (update S k₁ ((match (motive := Option Γ' → (List Γ' → List Γ') → (Γ' → List Γ' → List Γ') → List Γ' → List Γ') o, id, List.cons with | some x, x_1, f => f x | none, y, x => y) L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] cases o [GOAL] case none p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif Option.isSome none then { l := some (Λ'.move (fun x => false) rev k₂ q), var := none, stk := update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget none :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) } else { l := some (Λ'.move (fun x => false) rev k₂ q), var := none, stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) }) { l := some q, var := none, stk := update (update S k₁ ((match (motive := Option Γ' → (List Γ' → List Γ') → (Γ' → List Γ' → List Γ') → List Γ' → List Γ') none, id, List.cons with | some x, x_1, f => f x | none, y, x => y) L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] simp only [Option.elim, id.def] [GOAL] case some p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif Option.isSome (some val✝) then { l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝, stk := update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) } else { l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝, stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) }) { l := some q, var := none, stk := update (update S k₁ ((match (motive := Option Γ' → (List Γ' → List Γ') → (Γ' → List Γ' → List Γ') → List Γ' → List Γ') some val✝, id, List.cons with | some x, x_1, f => f x | none, y, x => y) L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] simp only [Option.elim, id.def] [GOAL] case none p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif Option.isSome none then { l := some (Λ'.move (fun x => false) rev k₂ q), var := none, stk := update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget none :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) } else { l := some (Λ'.move (fun x => false) rev k₂ q), var := none, stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) }) { l := some q, var := none, stk := update (update S k₁ L₂) k₂ (L₁ ++ S k₂) } [PROOFSTEP] simp only [TM2.stepAux, Option.isSome, cond_false] [GOAL] case none p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.move (fun x => false) rev k₂ q), var := none, stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) } { l := some q, var := none, stk := update (update S k₁ L₂) k₂ (L₁ ++ S k₂) } [PROOFSTEP] convert move_ok h₁.2.1.symm (splitAtPred_false _) using 2 [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ update (update S k₁ L₂) k₂ (L₁ ++ S k₂) = update (update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) rev []) k₂ (List.reverseAux (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) rev) (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₂)) [PROOFSTEP] simp only [Function.update_comm h₁.1, Function.update_idem] [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ update (update S k₁ L₂) k₂ (L₁ ++ S k₂) = update (update (update S rev []) k₁ L₂) k₂ (List.reverseAux (update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ rev) (update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ k₂)) [PROOFSTEP] rw [show update S rev [] = S by rw [← h₂, Function.update_eq_self]] [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ update S rev [] = S [PROOFSTEP] rw [← h₂, Function.update_eq_self] [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] e : splitAtPred p (S k₁) = (L₁, none, L₂) ⊢ update (update S k₁ L₂) k₂ (L₁ ++ S k₂) = update (update S k₁ L₂) k₂ (List.reverseAux (update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ rev) (update (update S rev (List.reverseAux L₁ (S rev))) k₁ L₂ k₂)) [PROOFSTEP] simp only [Function.update_noteq h₁.2.2.symm, Function.update_noteq h₁.2.1, Function.update_noteq h₁.1.symm, List.reverseAux_eq, h₂, Function.update_same, List.append_nil, List.reverse_reverse] [GOAL] case some p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif Option.isSome (some val✝) then { l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝, stk := update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) } else { l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝, stk := update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) }) { l := some q, var := none, stk := update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] simp only [TM2.stepAux, Option.isSome, cond_true] [GOAL] case some p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.move (fun x => false) rev k₂ q), var := some val✝, stk := update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) } { l := some q, var := none, stk := update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) } [PROOFSTEP] convert move_ok h₁.2.1.symm (splitAtPred_false _) using 2 [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) = update (update (update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁)) rev []) k₂ (List.reverseAux (update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) rev) (update (update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev))) k₁ (Option.iget (some val✝) :: update (update S k₁ L₂) rev (List.reverseAux L₁ (S rev)) k₁) k₂)) [PROOFSTEP] simp only [h₂, Function.update_comm h₁.1, List.reverseAux_eq, Function.update_same, List.append_nil, Function.update_idem] [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) = update (update (update S rev []) k₁ (Option.iget (some val✝) :: L₂)) k₂ (List.reverse (update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) rev) ++ update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) k₂) [PROOFSTEP] rw [show update S rev [] = S by rw [← h₂, Function.update_eq_self]] [GOAL] p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ update S rev [] = S [PROOFSTEP] rw [← h₂, Function.update_eq_self] [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k₁ k₂ : K' q : Λ' s : Option Γ' L₁ L₂ : List Γ' S : K' → List Γ' h₁ : k₁ ≠ rev ∧ k₂ ≠ rev ∧ k₁ ≠ k₂ h₂ : S rev = [] val✝ : Γ' e : splitAtPred p (S k₁) = (L₁, some val✝, L₂) ⊢ update (update S k₁ (val✝ :: L₂)) k₂ (L₁ ++ S k₂) = update (update S k₁ (Option.iget (some val✝) :: L₂)) k₂ (List.reverse (update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) rev) ++ update (update S rev (List.reverse L₁)) k₁ (Option.iget (some val✝) :: L₂) k₂) [PROOFSTEP] simp only [Function.update_noteq h₁.1.symm, Function.update_noteq h₁.2.2.symm, Function.update_noteq h₁.2.1, Function.update_same, List.reverse_reverse] [GOAL] p : Γ' → Bool k : K' q : Λ' s : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S : K' → List Γ' e : splitAtPred p (S k) = (L₁, o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] induction' L₁ with a L₁ IH generalizing S s [GOAL] case nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = ([], o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] refine' TransGen.head' rfl _ [GOAL] case nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = ([], o, L₂) ⊢ ReflTransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.clear p k q)) s S) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp [GOAL] case nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (S k), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (S k), stk := update S k (List.tail (S k)) } else { l := some (Λ'.clear p k q), var := List.head? (S k), stk := update S k (List.tail (S k)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] revert e [GOAL] case nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' ⊢ splitAtPred p (S k) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (S k), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (S k), stk := update S k (List.tail (S k)) } else { l := some (Λ'.clear p k q), var := List.head? (S k), stk := update S k (List.tail (S k)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases' S k with a Sk [GOAL] case nil.nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' ⊢ splitAtPred p [] = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k (List.tail []) } else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] intro e [GOAL] case nil.cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ splitAtPred p (a :: Sk) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] intro e [GOAL] case nil.nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' e : splitAtPred p [] = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k (List.tail []) } else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases e [GOAL] case nil.nil.refl p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' s : Option Γ' S : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, none, []) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k (List.tail []) } else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) }) { l := some q, var := none, stk := update S k [] } [PROOFSTEP] rfl [GOAL] case nil.cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : splitAtPred p (a :: Sk) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp only [splitAtPred, Option.elim, List.head?, List.tail_cons] at e ⊢ [GOAL] case nil.cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : (bif p a then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif p a then { l := some q, var := some a, stk := update S k Sk } else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] revert e [GOAL] case nil.cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ (bif p a then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif p a then { l := some q, var := some a, stk := update S k Sk } else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases p a [GOAL] case nil.cons.false p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ (bif false then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif false then { l := some q, var := some a, stk := update S k Sk } else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] intro e [GOAL] case nil.cons.true p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' ⊢ (bif true then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) → ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif true then { l := some q, var := some a, stk := update S k Sk } else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] intro e [GOAL] case nil.cons.false p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : (bif false then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif false then { l := some q, var := some a, stk := update S k Sk } else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢ [GOAL] case nil.cons.true p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : (bif true then ([], some a, Sk) else (a :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd)) = ([], o, L₂) ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif true then { l := some q, var := some a, stk := update S k Sk } else { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp only [cond_false, cond_true, Prod.mk.injEq, true_and, false_and] at e ⊢ [GOAL] case nil.cons.true p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e : some a = o ∧ Sk = L₂ ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some q, var := some a, stk := update S k Sk } { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] rcases e with ⟨e₁, e₂⟩ [GOAL] case nil.cons.true.intro p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e : splitAtPred p (S✝ k) = (L₁, o, L₂) s : Option Γ' S : K' → List Γ' a : Γ' Sk : List Γ' e₁ : some a = o e₂ : Sk = L₂ ⊢ ReflTransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some q, var := some a, stk := update S k Sk } { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] rw [e₁, e₂] [GOAL] case cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = (a :: L₁, o, L₂) ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] refine' TransGen.head rfl _ [GOAL] case cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.clear p k q)) s S) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp [GOAL] case cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (S k), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (S k), stk := update S k (List.tail (S k)) } else { l := some (Λ'.clear p k q), var := List.head? (S k), stk := update S k (List.tail (S k)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases' e₁ : S k with a' Sk [GOAL] case cons.nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = (a :: L₁, o, L₂) e₁ : S k = [] ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k (List.tail []) } else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] rw [e₁, splitAtPred] at e [GOAL] case cons.cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' e : splitAtPred p (S k) = (a :: L₁, o, L₂) a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] rw [e₁, splitAtPred] at e [GOAL] case cons.nil p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' e : ([], none, []) = (a :: L₁, o, L₂) e₁ : S k = [] ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? [], true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? [], stk := update S k (List.tail []) } else { l := some (Λ'.clear p k q), var := List.head? [], stk := update S k (List.tail []) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases e [GOAL] case cons.cons p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e : (bif p a' then ([], some a', Sk) else match splitAtPred p Sk with | (l₁, o, l₂) => (a' :: l₁, o, l₂)) = (a :: L₁, o, L₂) e₁ : S k = a' :: Sk ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases e₂ : p a' [GOAL] case cons.cons.false p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e : (bif p a' then ([], some a', Sk) else match splitAtPred p Sk with | (l₁, o, l₂) => (a' :: l₁, o, l₂)) = (a :: L₁, o, L₂) e₁ : S k = a' :: Sk e₂ : p a' = false ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp only [e₂, cond] at e [GOAL] case cons.cons.true p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e : (bif p a' then ([], some a', Sk) else match splitAtPred p Sk with | (l₁, o, l₂) => (a' :: l₁, o, l₂)) = (a :: L₁, o, L₂) e₁ : S k = a' :: Sk e₂ : p a' = true ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] simp only [e₂, cond] at e [GOAL] case cons.cons.false p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk e₂ : p a' = false e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } case cons.cons.true p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk e₂ : p a' = true e : ([], some a', Sk) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] swap [GOAL] case cons.cons.true p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk e₂ : p a' = true e : ([], some a', Sk) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases e [GOAL] case cons.cons.false p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk e₂ : p a' = false e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] rcases e₃ : splitAtPred p Sk with ⟨_, _, _⟩ [GOAL] case cons.cons.false.mk.mk p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk e₂ : p a' = false e : (a' :: (splitAtPred p Sk).fst, (splitAtPred p Sk).2.fst, (splitAtPred p Sk).2.snd) = (a :: L₁, o, L₂) fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] rw [e₃] at e [GOAL] case cons.cons.false.mk.mk p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁✝ : List Γ' o : Option Γ' L₂ : List Γ' S✝ : K' → List Γ' e✝ : splitAtPred p (S✝ k) = (L₁✝, o, L₂) a : Γ' L₁ : List Γ' IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = (L₁, o, L₂) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := o, stk := update S k L₂ } s : Option Γ' S : K' → List Γ' a' : Γ' Sk : List Γ' e₁ : S k = a' :: Sk e₂ : p a' = false fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e : (a' :: (fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) = (a :: L₁, o, L₂) e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a' :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a' :: Sk), stk := update S k (List.tail (a' :: Sk)) }) { l := some q, var := o, stk := update S k L₂ } [PROOFSTEP] cases e [GOAL] case cons.cons.false.mk.mk.refl p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd } ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) (bif match List.head? (a :: Sk), true, p with | some x, x_1, f => f x | none, y, x => y then { l := some q, var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) } else { l := some (Λ'.clear p k q), var := List.head? (a :: Sk), stk := update S k (List.tail (a :: Sk)) }) { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd } [PROOFSTEP] simp [e₂] [GOAL] case cons.cons.false.mk.mk.refl p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd } ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.clear p k q), var := some a, stk := update S k Sk } { l := some q, var := fst✝, stk := update S k snd✝ } [PROOFSTEP] convert @IH _ (update S k Sk) _ using 2 [GOAL] case h.e'_2.h.e'_7 p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd } ⊢ update S k snd✝ = update (update S k Sk) k (fst✝¹, fst✝, snd✝).2.snd [PROOFSTEP] simp [e₃] [GOAL] case cons.cons.false.mk.mk.refl.convert_2 p : Γ' → Bool k : K' q : Λ' s✝ : Option Γ' L₁ : List Γ' S✝ : K' → List Γ' a : Γ' s : Option Γ' S : K' → List Γ' Sk fst✝¹ : List Γ' fst✝ : Option Γ' snd✝ : List Γ' e₃ : splitAtPred p Sk = (fst✝¹, fst✝, snd✝) e₁ : S k = a :: Sk e₂ : p a = false e : splitAtPred p (S✝ k) = (L₁, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) IH : ∀ {s : Option Γ'} {S : K' → List Γ'}, splitAtPred p (S k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) → Reaches₁ (TM2.step tr) { l := some (Λ'.clear p k q), var := s, stk := S } { l := some q, var := (fst✝¹, fst✝, snd✝).2.fst, stk := update S k (fst✝¹, fst✝, snd✝).2.snd } ⊢ splitAtPred p (update S k Sk k) = ((fst✝¹, fst✝, snd✝).fst, (fst✝¹, fst✝, snd✝).2.fst, (fst✝¹, fst✝, snd✝).2.snd) [PROOFSTEP] simp [e₃] [GOAL] q : Λ' s : Option Γ' a b c d : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d } { l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) } [PROOFSTEP] induction' b with x b IH generalizing a d s [GOAL] case nil q : Λ' s✝ : Option Γ' a✝ c d✝ : List Γ' s : Option Γ' a d : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a [] c d } { l := some q, var := none, stk := elim (List.reverseAux [] a) [] c (List.reverseAux [] d) } [PROOFSTEP] refine' TransGen.single _ [GOAL] case nil q : Λ' s✝ : Option Γ' a✝ c d✝ : List Γ' s : Option Γ' a d : List Γ' ⊢ { l := some q, var := none, stk := elim (List.reverseAux [] a) [] c (List.reverseAux [] d) } ∈ TM2.step tr { l := some (Λ'.copy q), var := s, stk := elim a [] c d } [PROOFSTEP] simp [GOAL] case cons q : Λ' s✝ : Option Γ' a✝ c d✝ : List Γ' x : Γ' b : List Γ' IH : ∀ (s : Option Γ') (a d : List Γ'), Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d } { l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) } s : Option Γ' a d : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a (x :: b) c d } { l := some q, var := none, stk := elim (List.reverseAux (x :: b) a) [] c (List.reverseAux (x :: b) d) } [PROOFSTEP] refine' TransGen.head rfl _ [GOAL] case cons q : Λ' s✝ : Option Γ' a✝ c d✝ : List Γ' x : Γ' b : List Γ' IH : ∀ (s : Option Γ') (a d : List Γ'), Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d } { l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) } s : Option Γ' a d : List Γ' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.copy q)) s (elim a (x :: b) c d)) { l := some q, var := none, stk := elim (List.reverseAux (x :: b) a) [] c (List.reverseAux (x :: b) d) } [PROOFSTEP] simp [GOAL] case cons q : Λ' s✝ : Option Γ' a✝ c d✝ : List Γ' x : Γ' b : List Γ' IH : ∀ (s : Option Γ') (a d : List Γ'), Reaches₁ (TM2.step tr) { l := some (Λ'.copy q), var := s, stk := elim a b c d } { l := some q, var := none, stk := elim (List.reverseAux b a) [] c (List.reverseAux b d) } s : Option Γ' a d : List Γ' ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.copy q), var := some x, stk := elim (Option.iget (some x) :: a) b c (Option.iget (some x) :: d) } { l := some q, var := none, stk := elim (List.reverseAux b (x :: a)) [] c (List.reverseAux b (x :: d)) } [PROOFSTEP] exact IH _ _ _ [GOAL] a : ℕ l : List ℕ x : Γ' h : x ∈ trList (a :: l) ⊢ x ≠ Γ'.consₗ [PROOFSTEP] simp [trList] at h [GOAL] a : ℕ l : List ℕ x : Γ' h : x ∈ trNat a ∨ x = Γ'.cons ∨ x ∈ trList l ⊢ x ≠ Γ'.consₗ [PROOFSTEP] obtain h | rfl | h := h [GOAL] case inl a : ℕ l : List ℕ x : Γ' h : x ∈ trNat a ⊢ x ≠ Γ'.consₗ [PROOFSTEP] rintro rfl [GOAL] case inl a : ℕ l : List ℕ h : Γ'.consₗ ∈ trNat a ⊢ False [PROOFSTEP] cases trNat_natEnd _ _ h [GOAL] case inr.inl a : ℕ l : List ℕ ⊢ Γ'.cons ≠ Γ'.consₗ [PROOFSTEP] rintro ⟨⟩ [GOAL] case inr.inr a : ℕ l : List ℕ x : Γ' h : x ∈ trList l ⊢ x ≠ Γ'.consₗ [PROOFSTEP] exact trList_ne_consₗ l _ h [GOAL] q : Λ' s : Option Γ' L : List ℕ c d : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (head main q), var := s, stk := elim (trList L) [] c d } { l := some q, var := none, stk := elim (trList [List.headI L]) [] c d } [PROOFSTEP] let o : Option Γ' := List.casesOn L none fun _ _ => some Γ'.cons [GOAL] q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ Reaches₁ (TM2.step tr) { l := some (head main q), var := s, stk := elim (trList L) [] c d } { l := some q, var := none, stk := elim (trList [List.headI L]) [] c d } [PROOFSTEP] refine' (move_ok (by decide) (splitAtPred_eq _ _ (trNat L.headI) o (trList L.tail) (trNat_natEnd _) _)).trans (TransGen.head rfl (TransGen.head rfl _)) [GOAL] q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ main ≠ rev [PROOFSTEP] decide [GOAL] case refine'_1 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ Option.elim' (elim (trList L) [] c d main = trNat (List.headI L) ∧ trList (List.tail L) = []) (fun a => natEnd a = true ∧ elim (trList L) [] c d main = trNat (List.headI L) ++ a :: trList (List.tail L)) o [PROOFSTEP] cases L [GOAL] case refine'_1.nil q : Λ' s : Option Γ' c d : List Γ' o : Option Γ' := List.casesOn [] none fun x x => some Γ'.cons ⊢ Option.elim' (elim (trList []) [] c d main = trNat (List.headI []) ∧ trList (List.tail []) = []) (fun a => natEnd a = true ∧ elim (trList []) [] c d main = trNat (List.headI []) ++ a :: trList (List.tail [])) o [PROOFSTEP] simp [GOAL] case refine'_1.cons q : Λ' s : Option Γ' c d : List Γ' head✝ : ℕ tail✝ : List ℕ o : Option Γ' := List.casesOn (head✝ :: tail✝) none fun x x => some Γ'.cons ⊢ Option.elim' (elim (trList (head✝ :: tail✝)) [] c d main = trNat (List.headI (head✝ :: tail✝)) ∧ trList (List.tail (head✝ :: tail✝)) = []) (fun a => natEnd a = true ∧ elim (trList (head✝ :: tail✝)) [] c d main = trNat (List.headI (head✝ :: tail✝)) ++ a :: trList (List.tail (head✝ :: tail✝))) o [PROOFSTEP] simp [GOAL] case refine'_2 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr ((fun x => Λ'.read fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev q)) o)) o (update (update (update (elim (trList L) [] c d) main (trList (List.tail L))) rev (List.reverseAux (trNat (List.headI L)) (elim (trList L) [] c d rev))) rev ((fun s => Option.iget ((fun x => some Γ'.cons) s)) o :: update (update (elim (trList L) [] c d) main (trList (List.tail L))) rev (List.reverseAux (trNat (List.headI L)) (elim (trList L) [] c d rev)) rev))) { l := some q, var := none, stk := elim (trList [List.headI L]) [] c d } [PROOFSTEP] simp [GOAL] case refine'_2 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (ite (List.rec none (fun head tail tail_ih => some Γ'.cons) L = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev q)), var := List.rec none (fun head tail tail_ih => some Γ'.cons) L, stk := elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d } { l := some q, var := none, stk := elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d } [PROOFSTEP] rw [if_neg (show o ≠ some Γ'.consₗ by cases L <;> simp)] [GOAL] q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ o ≠ some Γ'.consₗ [PROOFSTEP] cases L [GOAL] case nil q : Λ' s : Option Γ' c d : List Γ' o : Option Γ' := List.casesOn [] none fun x x => some Γ'.cons ⊢ o ≠ some Γ'.consₗ [PROOFSTEP] simp [GOAL] case cons q : Λ' s : Option Γ' c d : List Γ' head✝ : ℕ tail✝ : List ℕ o : Option Γ' := List.casesOn (head✝ :: tail✝) none fun x x => some Γ'.cons ⊢ o ≠ some Γ'.consₗ [PROOFSTEP] simp [GOAL] case refine'_2 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main (unrev q)), var := List.rec none (fun head tail tail_ih => some Γ'.cons) L, stk := elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d } { l := some q, var := none, stk := elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d } [PROOFSTEP] refine' (clear_ok (splitAtPred_eq _ _ _ none [] _ ⟨rfl, rfl⟩)).trans _ [GOAL] case refine'_2.refine'_1 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ ∀ (x : Γ'), x ∈ elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d main → decide (x = Γ'.consₗ) = false [PROOFSTEP] exact fun x h => Bool.decide_false (trList_ne_consₗ _ _ h) [GOAL] case refine'_2.refine'_2 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (unrev q), var := none, stk := update (elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d) main [] } { l := some q, var := none, stk := elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q : Λ' s : Option Γ' L : List ℕ c d : List Γ' o : Option Γ' := List.casesOn L none fun x x => some Γ'.cons ⊢ elim (trNat (List.headI L) ++ [Γ'.cons]) [] c d = update (update (update (elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d) main []) rev []) main (List.reverseAux (update (elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d) main [] rev) (update (elim (trList (List.tail L)) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat (List.headI L)) []) c d) main [] main)) [PROOFSTEP] simp [List.reverseAux_eq] [GOAL] q : Λ' s : Option Γ' L₁ L₂ : List ℕ L₃ : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList L₂ ++ Γ'.consₗ :: L₃) } { l := some q, var := none, stk := elim (trList (List.headI L₂ :: L₁)) [] [] L₃ } [PROOFSTEP] cases' L₂ with a L₂ [GOAL] case nil q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃) } { l := some q, var := none, stk := elim (trList (List.headI [] :: L₁)) [] [] L₃ } [PROOFSTEP] refine' TransGen.trans (move_ok (by decide) (splitAtPred_eq _ _ [] (some Γ'.consₗ) L₃ (by rintro _ ⟨⟩) ⟨rfl, rfl⟩)) (TransGen.head rfl (TransGen.head rfl _)) [GOAL] q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' ⊢ stack ≠ rev [PROOFSTEP] decide [GOAL] q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' ⊢ ∀ (x : Γ'), x ∈ [] → natEnd x = false [PROOFSTEP] rintro _ ⟨⟩ [GOAL] case nil q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr ((fun x => Λ'.read fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack) (unrev q)) (some Γ'.consₗ))) (some Γ'.consₗ) (update (update (update (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃)) stack L₃) rev (List.reverseAux [] (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃) rev))) rev ((fun s => Option.iget ((fun x => some Γ'.cons) s)) (some Γ'.consₗ) :: update (update (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃)) stack L₃) rev (List.reverseAux [] (elim (trList L₁) [] [] (trList [] ++ Γ'.consₗ :: L₃) rev)) rev))) { l := some q, var := none, stk := elim (trList (List.headI [] :: L₁)) [] [] L₃ } [PROOFSTEP] simp [GOAL] case nil q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (unrev q), var := some Γ'.consₗ, stk := elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃ } { l := some q, var := none, stk := elim (Γ'.cons :: trList L₁) [] [] L₃ } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' ⊢ elim (Γ'.cons :: trList L₁) [] [] L₃ = update (update (elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃) rev []) main (List.reverseAux (elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃ rev) (elim (trList L₁) [Option.iget (some Γ'.cons)] [] L₃ main)) [PROOFSTEP] simp [GOAL] case cons q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ Reaches₁ (TM2.step tr) { l := some (head stack q), var := s, stk := elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) } { l := some q, var := none, stk := elim (trList (List.headI (a :: L₂) :: L₁)) [] [] L₃ } [PROOFSTEP] refine' TransGen.trans (move_ok (by decide) (splitAtPred_eq _ _ (trNat a) (some Γ'.cons) (trList L₂ ++ Γ'.consₗ :: L₃) (trNat_natEnd _) ⟨rfl, by simp⟩)) (TransGen.head rfl (TransGen.head rfl _)) [GOAL] q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ stack ≠ rev [PROOFSTEP] decide [GOAL] q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) stack = trNat a ++ Γ'.cons :: (trList L₂ ++ Γ'.consₗ :: L₃) [PROOFSTEP] simp [GOAL] case cons q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr ((fun x => Λ'.read fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack) (unrev q)) (some Γ'.cons))) (some Γ'.cons) (update (update (update (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃)) stack (trList L₂ ++ Γ'.consₗ :: L₃)) rev (List.reverseAux (trNat a) (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) rev))) rev ((fun s => Option.iget ((fun x => some Γ'.cons) s)) (some Γ'.cons) :: update (update (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃)) stack (trList L₂ ++ Γ'.consₗ :: L₃)) rev (List.reverseAux (trNat a) (elim (trList L₁) [] [] (trList (a :: L₂) ++ Γ'.consₗ :: L₃) rev)) rev))) { l := some q, var := none, stk := elim (trList (List.headI (a :: L₂) :: L₁)) [] [] L₃ } [PROOFSTEP] simp [GOAL] case cons q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.clear (fun x => decide (x = Γ'.consₗ)) stack (unrev q)), var := some Γ'.cons, stk := elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃) } { l := some q, var := none, stk := elim (trNat a ++ Γ'.cons :: trList L₁) [] [] L₃ } [PROOFSTEP] refine' TransGen.trans (clear_ok (splitAtPred_eq _ _ (trList L₂) (some Γ'.consₗ) L₃ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, by simp⟩)) _ [GOAL] q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃) stack = trList L₂ ++ Γ'.consₗ :: L₃ [PROOFSTEP] simp [GOAL] case cons q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (unrev q), var := some Γ'.consₗ, stk := update (elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃)) stack L₃ } { l := some q, var := none, stk := elim (trNat a ++ Γ'.cons :: trList L₁) [] [] L₃ } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q : Λ' s : Option Γ' L₁ : List ℕ L₃ : List Γ' a : ℕ L₂ : List ℕ ⊢ elim (trNat a ++ Γ'.cons :: trList L₁) [] [] L₃ = update (update (update (elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃)) stack L₃) rev []) main (List.reverseAux (update (elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃)) stack L₃ rev) (update (elim (trList L₁) (Option.iget (some Γ'.cons) :: List.reverseAux (trNat a) []) [] (trList L₂ ++ Γ'.consₗ :: L₃)) stack L₃ main)) [PROOFSTEP] simp [List.reverseAux_eq] [GOAL] q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trList [n]) [] c d } { l := some q, var := none, stk := elim (trList [Nat.succ n]) [] c d } [PROOFSTEP] simp [trNat, Num.add_one] [GOAL] q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trNum ↑n ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trNum (Num.succ ↑n) ++ [Γ'.cons]) [] c d } [PROOFSTEP] cases' (n : Num) with a [GOAL] case zero q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trNum Num.zero ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d } [PROOFSTEP] refine' TransGen.head rfl _ [GOAL] case zero q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ TransGen (fun a b => b ∈ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) a) (TM2.stepAux (tr (Λ'.succ q)) s (elim (trNum Num.zero ++ [Γ'.cons]) [] c d)) { l := some q, var := none, stk := elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d } [PROOFSTEP] simp [GOAL] case zero q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (unrev q), var := List.head? (trNum Num.zero ++ [Γ'.cons]), stk := elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d } { l := some q, var := none, stk := elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d = update (update (elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d) rev []) main (List.reverseAux (elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d rev) (elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d main)) [PROOFSTEP] simp [GOAL] case h.e'_2.h.e'_7 q : Λ' s : Option Γ' n : ℕ c d : List Γ' ⊢ elim (trNum (Num.succ Num.zero) ++ [Γ'.cons]) [] c d = elim (Γ'.bit1 :: Γ'.cons :: List.tail (trNum Num.zero ++ [Γ'.cons])) [] c d [PROOFSTEP] rfl [GOAL] case pos q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trNum (Num.pos a) ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trNum (Num.succ (Num.pos a)) ++ [Γ'.cons]) [] c d } [PROOFSTEP] simp [Num.succ, trNum, Num.succ'] [GOAL] case pos q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d } [PROOFSTEP] suffices ∀ l₁, ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a.succ) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) ⟨some q.succ, s, K'.elim (trPosNum a ++ [Γ'.cons]) l₁ c d⟩ ⟨some (unrev q), s', K'.elim (l₂' ++ [Γ'.cons]) l₁' c d⟩ by obtain ⟨l₁', l₂', s', e, h⟩ := this [] simp [List.reverseAux] at e refine' h.trans _ convert unrev_ok using 2 simp [e, List.reverseAux_eq] [GOAL] q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d } [PROOFSTEP] obtain ⟨l₁', l₂', s', e, h⟩ := this [] [GOAL] case intro.intro.intro.intro q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux [] (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d } [PROOFSTEP] simp [List.reverseAux] at e [GOAL] case intro.intro.intro.intro q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : trPosNum (PosNum.succ a) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d } [PROOFSTEP] refine' h.trans _ [GOAL] case intro.intro.intro.intro q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : trPosNum (PosNum.succ a) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } { l := some q, var := none, stk := elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : trPosNum (PosNum.succ a) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) [] c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ elim (trPosNum (PosNum.succ a) ++ [Γ'.cons]) [] c d = update (update (elim (l₂' ++ [Γ'.cons]) l₁' c d) rev []) main (List.reverseAux (elim (l₂' ++ [Γ'.cons]) l₁' c d rev) (elim (l₂' ++ [Γ'.cons]) l₁' c d main)) [PROOFSTEP] simp [e, List.reverseAux_eq] [GOAL] case pos q : Λ' s : Option Γ' n : ℕ c d : List Γ' a : PosNum ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ a)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum a ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] induction' a with m IH m _ generalizing s [GOAL] case pos.one q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' s : Option Γ' ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ PosNum.one)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum PosNum.one ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] intro l₁ [GOAL] case pos.bit1 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit1 m))) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] intro l₁ [GOAL] case pos.bit0 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum a_ih✝ : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit0 m))) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] intro l₁ [GOAL] case pos.one q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' s : Option Γ' l₁ : List Γ' ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ PosNum.one)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum PosNum.one ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] refine' ⟨Γ'.bit0 :: l₁, [Γ'.bit1], some Γ'.cons, rfl, TransGen.head rfl (TransGen.single _)⟩ [GOAL] case pos.one q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' s : Option Γ' l₁ : List Γ' ⊢ { l := some (unrev q), var := some Γ'.cons, stk := elim ([Γ'.bit1] ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } ∈ TM2.step tr (TM2.stepAux (tr (Λ'.succ q)) s (elim (trPosNum PosNum.one ++ [Γ'.cons]) l₁ c d)) [PROOFSTEP] simp [trPosNum] [GOAL] case pos.bit1 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit1 m))) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] obtain ⟨l₁', l₂', s', e, h⟩ := IH (Γ'.bit0 :: l₁) [GOAL] case pos.bit1.intro.intro.intro.intro q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := ?m.523453, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit1 m))) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] refine' ⟨l₁', l₂', s', e, TransGen.head _ h⟩ [GOAL] case pos.bit1.intro.intro.intro.intro.refine'_1 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ Option Γ' case pos.bit1.intro.intro.intro.intro.refine'_2 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } ∈ TM2.step tr { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d } [PROOFSTEP] swap [GOAL] case pos.bit1.intro.intro.intro.intro.refine'_2 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } ∈ TM2.step tr { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit1 m) ++ [Γ'.cons]) l₁ c d } case pos.bit1.intro.intro.intro.intro.refine'_1 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ Option Γ' [PROOFSTEP] simp [PosNum.succ, trPosNum] [GOAL] case pos.bit1.intro.intro.intro.intro.refine'_2 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit0 :: l₁) (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := ?pos.bit1.intro.intro.intro.intro.refine'_1, stk := elim (trPosNum m ++ [Γ'.cons]) (Γ'.bit0 :: l₁) c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } ⊢ some Γ'.bit1 = ?pos.bit1.intro.intro.intro.intro.refine'_1 case pos.bit1.intro.intro.intro.intro.refine'_1 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum IH : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ Option Γ' [PROOFSTEP] rfl [GOAL] case pos.bit0 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum a_ih✝ : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ (PosNum.bit0 m))) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } [PROOFSTEP] refine' ⟨l₁, _, some Γ'.bit0, rfl, TransGen.single _⟩ [GOAL] case pos.bit0 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum a_ih✝ : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ { l := some (unrev q), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ [Γ'.cons]) l₁ c d } ∈ TM2.step tr { l := some (Λ'.succ q), var := s, stk := elim (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) l₁ c d } [PROOFSTEP] simp [GOAL] case pos.bit0 q : Λ' s✝ : Option Γ' n : ℕ c d : List Γ' m : PosNum a_ih✝ : ∀ {s : Option Γ'} (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.succ m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.succ q), var := s, stk := elim (trPosNum m ++ [Γ'.cons]) l₁ c d } { l := some (unrev q), var := s', stk := elim (l₂' ++ [Γ'.cons]) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ (bif decide (List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) = some Γ'.bit1) then { l := some (Λ'.succ q), var := List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]), stk := elim (List.tail (trPosNum (PosNum.bit0 m) ++ [Γ'.cons])) (Γ'.bit0 :: l₁) c d } else bif decide (List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]) = some Γ'.cons) then { l := some (unrev q), var := List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]), stk := elim (Γ'.bit1 :: Γ'.cons :: List.tail (trPosNum (PosNum.bit0 m) ++ [Γ'.cons])) l₁ c d } else { l := some (unrev q), var := List.head? (trPosNum (PosNum.bit0 m) ++ [Γ'.cons]), stk := elim (Γ'.bit1 :: List.tail (trPosNum (PosNum.bit0 m) ++ [Γ'.cons])) l₁ c d }) = { l := some (unrev q), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ [Γ'.cons]) l₁ c d } [PROOFSTEP] rfl [GOAL] q₁ q₂ : Λ' s : Option Γ' v : List ℕ c d : List Γ' ⊢ ∃ s', Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList v) [] c d } (Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail v)) [] c d } (fun n x => { l := some q₂, var := s', stk := elim (trList (n :: List.tail v)) [] c d }) (List.headI v)) [PROOFSTEP] rcases v with (_ | ⟨_ | n, v⟩) [GOAL] case nil q₁ q₂ : Λ' s : Option Γ' c d : List Γ' ⊢ ∃ s', Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList []) [] c d } (Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail [])) [] c d } (fun n x => { l := some q₂, var := s', stk := elim (trList (n :: List.tail [])) [] c d }) (List.headI [])) [PROOFSTEP] refine' ⟨none, TransGen.single _⟩ [GOAL] case nil q₁ q₂ : Λ' s : Option Γ' c d : List Γ' ⊢ Nat.rec { l := some q₁, var := none, stk := elim (trList (List.tail [])) [] c d } (fun n x => { l := some q₂, var := none, stk := elim (trList (n :: List.tail [])) [] c d }) (List.headI []) ∈ TM2.step tr { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList []) [] c d } [PROOFSTEP] simp [GOAL] case nil q₁ q₂ : Λ' s : Option Γ' c d : List Γ' ⊢ { l := some q₁, var := none, stk := elim [] [] c d } = Nat.rec { l := some q₁, var := none, stk := elim [] [] c d } (fun n x => { l := some q₂, var := none, stk := elim (trNat n ++ [Γ'.cons]) [] c d }) default [PROOFSTEP] rfl [GOAL] case cons.zero q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ ⊢ ∃ s', Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.zero :: v)) [] c d } (Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail (Nat.zero :: v))) [] c d } (fun n x => { l := some q₂, var := s', stk := elim (trList (n :: List.tail (Nat.zero :: v))) [] c d }) (List.headI (Nat.zero :: v))) [PROOFSTEP] refine' ⟨some Γ'.cons, TransGen.single _⟩ [GOAL] case cons.zero q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ ⊢ Nat.rec { l := some q₁, var := some Γ'.cons, stk := elim (trList (List.tail (Nat.zero :: v))) [] c d } (fun n x => { l := some q₂, var := some Γ'.cons, stk := elim (trList (n :: List.tail (Nat.zero :: v))) [] c d }) (List.headI (Nat.zero :: v)) ∈ TM2.step tr { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.zero :: v)) [] c d } [PROOFSTEP] simp [GOAL] case cons.succ q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ ∃ s', Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.succ n :: v)) [] c d } (Nat.rec { l := some q₁, var := s', stk := elim (trList (List.tail (Nat.succ n :: v))) [] c d } (fun n_1 x => { l := some q₂, var := s', stk := elim (trList (n_1 :: List.tail (Nat.succ n :: v))) [] c d }) (List.headI (Nat.succ n :: v))) [PROOFSTEP] refine' ⟨none, _⟩ [GOAL] case cons.succ q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trList (Nat.succ n :: v)) [] c d } (Nat.rec { l := some q₁, var := none, stk := elim (trList (List.tail (Nat.succ n :: v))) [] c d } (fun n_1 x => { l := some q₂, var := none, stk := elim (trList (n_1 :: List.tail (Nat.succ n :: v))) [] c d }) (List.headI (Nat.succ n :: v))) [PROOFSTEP] simp [trNat, Num.add_one, Num.succ, trNum] [GOAL] case cons.succ q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (Num.succ' ↑n) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim ((match ↑n with | Num.zero => [] | Num.pos n => trPosNum n) ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] cases' (n : Num) with a [GOAL] case cons.succ.zero q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (Num.succ' Num.zero) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim ((match Num.zero with | Num.zero => [] | Num.pos n => trPosNum n) ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] simp [trPosNum, trNum, show Num.zero.succ' = PosNum.one from rfl] [GOAL] case cons.succ.zero q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (Γ'.bit1 :: Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim (Γ'.cons :: trList v) [] c d } [PROOFSTEP] refine' TransGen.head rfl _ [GOAL] case cons.succ.zero q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ TransGen (fun a b => b ∈ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) a) (TM2.stepAux (tr (Λ'.pred q₁ q₂)) s (elim (Γ'.bit1 :: Γ'.cons :: trList v) [] c d)) { l := some q₂, var := none, stk := elim (Γ'.cons :: trList v) [] c d } [PROOFSTEP] simp [GOAL] case cons.succ.zero q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (unrev q₂), var := some Γ'.cons, stk := elim (Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim (Γ'.cons :: trList v) [] c d } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ ⊢ elim (Γ'.cons :: trList v) [] c d = update (update (elim (Γ'.cons :: trList v) [] c d) rev []) main (List.reverseAux (elim (Γ'.cons :: trList v) [] c d rev) (elim (Γ'.cons :: trList v) [] c d main)) [PROOFSTEP] simp [GOAL] case cons.succ.pos q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (Num.succ' (Num.pos a)) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim ((match Num.pos a with | Num.zero => [] | Num.pos n => trPosNum n) ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] simp [trNum, Num.succ'] [GOAL] case cons.succ.pos q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] suffices ∀ l₁, ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) ⟨some (q₁.pred q₂), s, K'.elim (trPosNum a.succ ++ Γ'.cons :: trList v) l₁ c d⟩ ⟨some (unrev q₂), s', K'.elim (l₂' ++ Γ'.cons :: trList v) l₁' c d⟩ by obtain ⟨l₁', l₂', s', e, h⟩ := this [] simp [List.reverseAux] at e refine' h.trans _ convert unrev_ok using 2 simp [e, List.reverseAux_eq] [GOAL] q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] obtain ⟨l₁', l₂', s', e, h⟩ := this [] [GOAL] case intro.intro.intro.intro q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux [] (trPosNum a) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] simp [List.reverseAux] at e [GOAL] case intro.intro.intro.intro q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : trPosNum a = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ Reaches₁ (fun x => match x with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] refine' h.trans _ [GOAL] case intro.intro.intro.intro q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : trPosNum a = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } { l := some q₂, var := none, stk := elim (trPosNum a ++ Γ'.cons :: trList v) [] c d } [PROOFSTEP] convert unrev_ok using 2 [GOAL] case h.e'_2.h.e'_7 q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum this : ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } l₁' l₂' : List Γ' s' : Option Γ' e : trPosNum a = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) [] c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ elim (trPosNum a ++ Γ'.cons :: trList v) [] c d = update (update (elim (l₂' ++ Γ'.cons :: trList v) l₁' c d) rev []) main (List.reverseAux (elim (l₂' ++ Γ'.cons :: trList v) l₁' c d rev) (elim (l₂' ++ Γ'.cons :: trList v) l₁' c d main)) [PROOFSTEP] simp [e, List.reverseAux_eq] [GOAL] case cons.succ.pos q₁ q₂ : Λ' s : Option Γ' c d : List Γ' v : List ℕ n : ℕ a : PosNum ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum a) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ a) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] induction' a with m IH m IH generalizing s [GOAL] case cons.succ.pos.one q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ s : Option Γ' ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum PosNum.one) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] intro l₁ [GOAL] case cons.succ.pos.bit1 q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit1 m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] intro l₁ [GOAL] case cons.succ.pos.bit0 q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' ⊢ ∀ (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit0 m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] intro l₁ [GOAL] case cons.succ.pos.one q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ s : Option Γ' l₁ : List Γ' ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum PosNum.one) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] refine' ⟨Γ'.bit1 :: l₁, [], some Γ'.cons, rfl, TransGen.head rfl (TransGen.single _)⟩ [GOAL] case cons.succ.pos.one q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ s : Option Γ' l₁ : List Γ' ⊢ { l := some (unrev q₂), var := some Γ'.cons, stk := elim ([] ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } ∈ TM2.step tr (TM2.stepAux (tr (Λ'.pred q₁ q₂)) s (elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d)) [PROOFSTEP] simp [trPosNum, show PosNum.one.succ = PosNum.one.bit0 from rfl] [GOAL] case cons.succ.pos.bit1 q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit1 m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] obtain ⟨l₁', l₂', s', e, h⟩ := IH (some Γ'.bit0) (Γ'.bit1 :: l₁) [GOAL] case cons.succ.pos.bit1.intro.intro.intro.intro q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit1 :: l₁) (trPosNum m) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit1 m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] refine' ⟨l₁', l₂', s', e, TransGen.head _ h⟩ [GOAL] case cons.succ.pos.bit1.intro.intro.intro.intro q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit1 :: l₁) (trPosNum m) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ { l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } ∈ TM2.step tr { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) l₁ c d } [PROOFSTEP] simp [GOAL] case cons.succ.pos.bit1.intro.intro.intro.intro q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ l₁' l₂' : List Γ' s' : Option Γ' e : List.reverseAux (Γ'.bit1 :: l₁) (trPosNum m) = List.reverseAux l₁' l₂' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ (bif decide (List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v) = some Γ'.bit0) then { l := some (Λ'.pred q₁ q₂), var := List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v), stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) (Γ'.bit1 :: l₁) c d } else bif match Option.iget (List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) with | Γ'.consₗ => true | Γ'.cons => true | x => false then { l := some q₁, var := List.head? (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v), stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) l₁ c d } else bif match Option.iget (List.head? (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v))) with | Γ'.consₗ => true | Γ'.cons => true | x => false then { l := some (unrev q₂), var := List.head? (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)), stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) l₁ c d } else { l := some (unrev q₂), var := List.head? (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)), stk := elim (List.tail (trPosNum (PosNum.succ (PosNum.bit1 m)) ++ Γ'.cons :: trList v)) (Γ'.bit0 :: l₁) c d }) = { l := some (Λ'.pred q₁ q₂), var := some Γ'.bit0, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) (Γ'.bit1 :: l₁) c d } [PROOFSTEP] rfl [GOAL] case cons.succ.pos.bit0 q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit0 m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] obtain ⟨a, l, e, h⟩ : ∃ a l, (trPosNum m = a :: l) ∧ natEnd a = false := by cases m <;> refine' ⟨_, _, rfl, rfl⟩ [GOAL] q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' ⊢ ∃ a l, trPosNum m = a :: l ∧ natEnd a = false [PROOFSTEP] cases m [GOAL] case one q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ s : Option Γ' l₁ : List Γ' IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum PosNum.one) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ PosNum.one) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ ∃ a l, trPosNum PosNum.one = a :: l ∧ natEnd a = false [PROOFSTEP] refine' ⟨_, _, rfl, rfl⟩ [GOAL] case bit1 q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ s : Option Γ' l₁ : List Γ' a✝ : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit1 a✝)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit1 a✝)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ ∃ a l, trPosNum (PosNum.bit1 a✝) = a :: l ∧ natEnd a = false [PROOFSTEP] refine' ⟨_, _, rfl, rfl⟩ [GOAL] case bit0 q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ s : Option Γ' l₁ : List Γ' a✝ : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit0 a✝)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 a✝)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } ⊢ ∃ a l, trPosNum (PosNum.bit0 a✝) = a :: l ∧ natEnd a = false [PROOFSTEP] refine' ⟨_, _, rfl, rfl⟩ [GOAL] case cons.succ.pos.bit0.intro.intro.intro q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' a : Γ' l : List Γ' e : trPosNum m = a :: l h : natEnd a = false ⊢ ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum (PosNum.bit0 m)) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } [PROOFSTEP] refine' ⟨Γ'.bit0 :: l₁, _, some a, rfl, TransGen.single _⟩ [GOAL] case cons.succ.pos.bit0.intro.intro.intro q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' a : Γ' l : List Γ' e : trPosNum m = a :: l h : natEnd a = false ⊢ { l := some (unrev q₂), var := some a, stk := elim (trPosNum m ++ Γ'.cons :: trList v) (Γ'.bit0 :: l₁) c d } ∈ TM2.step tr { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ (PosNum.bit0 m)) ++ Γ'.cons :: trList v) l₁ c d } [PROOFSTEP] simp [trPosNum, PosNum.succ, e, h, show some Γ'.bit1 ≠ some Γ'.bit0 by decide, Option.iget, -natEnd] [GOAL] q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' a : Γ' l : List Γ' e : trPosNum m = a :: l h : natEnd a = false ⊢ some Γ'.bit1 ≠ some Γ'.bit0 [PROOFSTEP] decide [GOAL] case cons.succ.pos.bit0.intro.intro.intro q₁ q₂ : Λ' s✝ : Option Γ' c d : List Γ' v : List ℕ n : ℕ m : PosNum IH : ∀ (s : Option Γ') (l₁ : List Γ'), ∃ l₁' l₂' s', List.reverseAux l₁ (trPosNum m) = List.reverseAux l₁' l₂' ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.pred q₁ q₂), var := s, stk := elim (trPosNum (PosNum.succ m) ++ Γ'.cons :: trList v) l₁ c d } { l := some (unrev q₂), var := s', stk := elim (l₂' ++ Γ'.cons :: trList v) l₁' c d } s : Option Γ' l₁ : List Γ' a : Γ' l : List Γ' e : trPosNum m = a :: l h : natEnd a = false ⊢ (bif natEnd Γ'.bit1 then { l := some q₁, var := some Γ'.bit1, stk := elim (a :: (l ++ Γ'.cons :: trList v)) l₁ c d } else { l := some (unrev q₂), var := some a, stk := elim (a :: (l ++ Γ'.cons :: trList v)) (Γ'.bit0 :: l₁) c d }) = { l := some (unrev q₂), var := some a, stk := elim (a :: (l ++ Γ'.cons :: trList v)) (Γ'.bit0 :: l₁) c d } [PROOFSTEP] rfl [GOAL] c : Code k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal c k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal c (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] induction c generalizing k v s [GOAL] case zero' k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.zero' k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case succ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.succ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case tail k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.tail k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case zero' => refine' ⟨_, ⟨s, rfl⟩, TransGen.single _⟩; simp [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.zero' k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case zero' => refine' ⟨_, ⟨s, rfl⟩, TransGen.single _⟩; simp [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.zero' k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] refine' ⟨_, ⟨s, rfl⟩, TransGen.single _⟩ [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList (0 :: v)) [] [] (trContStack k) } ∈ TM2.step tr { l := some (trNormal Code.zero' (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } [PROOFSTEP] simp [GOAL] case succ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.succ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case tail k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.tail k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case succ => refine' ⟨_, ⟨none, rfl⟩, head_main_ok.trans succ_ok⟩ [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.succ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case succ => refine' ⟨_, ⟨none, rfl⟩, head_main_ok.trans succ_ok⟩ [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.succ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.succ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] refine' ⟨_, ⟨none, rfl⟩, head_main_ok.trans succ_ok⟩ [GOAL] case tail k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.tail k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case tail => let o : Option Γ' := List.casesOn v none fun _ _ => some Γ'.cons refine' ⟨_, ⟨o, rfl⟩, _⟩; convert clear_ok _ using 2; simp; rfl; swap refine' splitAtPred_eq _ _ (trNat v.headI) _ _ (trNat_natEnd _) _ cases v <;> simp [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.tail k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case tail => let o : Option Γ' := List.casesOn v none fun _ _ => some Γ'.cons refine' ⟨_, ⟨o, rfl⟩, _⟩; convert clear_ok _ using 2; simp; rfl; swap refine' splitAtPred_eq _ _ (trNat v.headI) _ _ (trNat_natEnd _) _ cases v <;> simp [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal Code.tail k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] let o : Option Γ' := List.casesOn v none fun _ _ => some Γ'.cons [GOAL] k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ ∃ b₂, TrCfg (stepNormal Code.tail k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] refine' ⟨_, ⟨o, rfl⟩, _⟩ [GOAL] k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ Reaches₁ (TM2.step tr) { l := some (trNormal Code.tail (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } { l := some (Λ'.ret (trCont k)), var := o, stk := elim (trList (List.tail v)) [] [] (trContStack k) } [PROOFSTEP] convert clear_ok _ using 2 [GOAL] case h.e'_4.h.e'_7 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ elim (trList (List.tail v)) [] [] (trContStack k) = update (elim (trList v) [] [] (trContStack k)) main ?convert_7 case convert_5 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ' case convert_7 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ' case convert_9 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, ?convert_7) [PROOFSTEP] simp [GOAL] case h.e'_4.h.e'_7 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ elim (trList (List.tail v)) [] [] (trContStack k) = elim ?convert_7 [] [] (trContStack k) case convert_5 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ' case convert_7 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ' case convert_9 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, ?convert_7) [PROOFSTEP] rfl [GOAL] case convert_5 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ' case convert_9 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, trList (List.tail v)) [PROOFSTEP] swap [GOAL] case convert_9 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ splitAtPred natEnd (elim (trList v) [] [] (trContStack k) main) = (?convert_5, o, trList (List.tail v)) case convert_5 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ List Γ' [PROOFSTEP] refine' splitAtPred_eq _ _ (trNat v.headI) _ _ (trNat_natEnd _) _ [GOAL] case convert_9 k : Cont v : List ℕ s : Option Γ' o : Option Γ' := List.casesOn v none fun x x => some Γ'.cons ⊢ Option.elim' (elim (trList v) [] [] (trContStack k) main = trNat (List.headI v) ∧ trList (List.tail v) = []) (fun a => natEnd a = true ∧ elim (trList v) [] [] (trContStack k) main = trNat (List.headI v) ++ a :: trList (List.tail v)) o [PROOFSTEP] cases v [GOAL] case convert_9.nil k : Cont s : Option Γ' o : Option Γ' := List.casesOn [] none fun x x => some Γ'.cons ⊢ Option.elim' (elim (trList []) [] [] (trContStack k) main = trNat (List.headI []) ∧ trList (List.tail []) = []) (fun a => natEnd a = true ∧ elim (trList []) [] [] (trContStack k) main = trNat (List.headI []) ++ a :: trList (List.tail [])) o [PROOFSTEP] simp [GOAL] case convert_9.cons k : Cont s : Option Γ' head✝ : ℕ tail✝ : List ℕ o : Option Γ' := List.casesOn (head✝ :: tail✝) none fun x x => some Γ'.cons ⊢ Option.elim' (elim (trList (head✝ :: tail✝)) [] [] (trContStack k) main = trNat (List.headI (head✝ :: tail✝)) ∧ trList (List.tail (head✝ :: tail✝)) = []) (fun a => natEnd a = true ∧ elim (trList (head✝ :: tail✝)) [] [] (trContStack k) main = trNat (List.headI (head✝ :: tail✝)) ++ a :: trList (List.tail (head✝ :: tail✝))) o [PROOFSTEP] simp [GOAL] case cons a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case cons f fs IHf _ => obtain ⟨c, h₁, h₂⟩ := IHf (Cont.cons₁ fs v k) v none refine' ⟨c, h₁, TransGen.head rfl <| (move_ok (by decide) (splitAtPred_false _)).trans _⟩ simp [stepNormal] refine' (copy_ok _ none [] (trList v).reverse _ _).trans _ convert h₂ using 2 simp [List.reverseAux_eq, trContStack] [GOAL] f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons f fs) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons f fs) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case cons f fs IHf _ => obtain ⟨c, h₁, h₂⟩ := IHf (Cont.cons₁ fs v k) v none refine' ⟨c, h₁, TransGen.head rfl <| (move_ok (by decide) (splitAtPred_false _)).trans _⟩ simp [stepNormal] refine' (copy_ok _ none [] (trList v).reverse _ _).trans _ convert h₂ using 2 simp [List.reverseAux_eq, trContStack] [GOAL] f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons f fs) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons f fs) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] obtain ⟨c, h₁, h₂⟩ := IHf (Cont.cons₁ fs v k) v none [GOAL] case intro.intro f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) } c ⊢ ∃ b₂, TrCfg (stepNormal (Code.cons f fs) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.cons f fs) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] refine' ⟨c, h₁, TransGen.head rfl <| (move_ok (by decide) (splitAtPred_false _)).trans _⟩ [GOAL] f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) } c ⊢ main ≠ rev [PROOFSTEP] decide [GOAL] case intro.intro f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) } c ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (Λ'.copy (trNormal f (Cont'.cons₁ fs (trCont k)))), var := none, stk := update (update (update (elim (trList v) [] [] (trContStack k)) stack ((fun s => Option.iget ((fun x => some Γ'.consₗ) s)) s :: elim (trList v) [] [] (trContStack k) stack)) main []) rev (List.reverseAux (update (elim (trList v) [] [] (trContStack k)) stack ((fun s => Option.iget ((fun x => some Γ'.consₗ) s)) s :: elim (trList v) [] [] (trContStack k) stack) main) (update (elim (trList v) [] [] (trContStack k)) stack ((fun s => Option.iget ((fun x => some Γ'.consₗ) s)) s :: elim (trList v) [] [] (trContStack k) stack) rev)) } c [PROOFSTEP] simp [stepNormal] [GOAL] case intro.intro f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) } c ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (Λ'.copy (trNormal f (Cont'.cons₁ fs (trCont k)))), var := none, stk := elim [] (List.reverseAux (trList v) []) [] (Option.iget (some Γ'.consₗ) :: trContStack k) } c [PROOFSTEP] refine' (copy_ok _ none [] (trList v).reverse _ _).trans _ [GOAL] case intro.intro f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) } c ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (trNormal f (Cont'.cons₁ fs (trCont k))), var := none, stk := elim (List.reverseAux (List.reverse (trList v)) []) [] [] (List.reverseAux (List.reverse (trList v)) (Option.iget (some Γ'.consₗ) :: trContStack k)) } c [PROOFSTEP] convert h₂ using 2 [GOAL] case h.e'_1.h.e'_7 f fs : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal fs k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepNormal f (Cont.cons₁ fs v k) v) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.cons₁ fs v k))), var := none, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) } c ⊢ elim (List.reverseAux (List.reverse (trList v)) []) [] [] (List.reverseAux (List.reverse (trList v)) (Option.iget (some Γ'.consₗ) :: trContStack k)) = elim (trList v) [] [] (trContStack (Cont.cons₁ fs v k)) [PROOFSTEP] simp [List.reverseAux_eq, trContStack] [GOAL] case comp a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case comp f _ _ IHg => exact IHg (Cont.comp f k) v s [GOAL] f a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp f a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp f a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case comp f _ _ IHg => exact IHg (Cont.comp f k) v s [GOAL] f a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.comp f a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.comp f a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] exact IHg (Cont.comp f k) v s [GOAL] case case a✝¹ a✝ : Code a_ih✝¹ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝¹ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝¹ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case a✝¹ a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case a✝¹ a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case case f g IHf IHg => rw [stepNormal] simp only obtain ⟨s', h⟩ := pred_ok _ _ s v _ _ revert h; cases' v.headI with n <;> intro h · obtain ⟨c, h₁, h₂⟩ := IHf k _ s' exact ⟨_, h₁, h.trans h₂⟩ · obtain ⟨c, h₁, h₂⟩ := IHg k _ s' exact ⟨_, h₁, h.trans h₂⟩ [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case f g) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case case f g IHf IHg => rw [stepNormal] simp only obtain ⟨s', h⟩ := pred_ok _ _ s v _ _ revert h; cases' v.headI with n <;> intro h · obtain ⟨c, h₁, h₂⟩ := IHf k _ s' exact ⟨_, h₁, h.trans h₂⟩ · obtain ⟨c, h₁, h₂⟩ := IHg k _ s' exact ⟨_, h₁, h.trans h₂⟩ [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.case f g) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] rw [stepNormal] [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg ((fun k v => Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] simp only [GOAL] f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] obtain ⟨s', h⟩ := pred_ok _ _ s v _ _ [GOAL] case intro f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 } (Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 } (fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 }) (List.headI v)) ⊢ ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] revert h [GOAL] case intro f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 } (Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 } (fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 }) (List.headI v)) → ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (List.headI v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] cases' v.headI with n [GOAL] case intro.zero f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 } (Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 } (fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 }) Nat.zero) → ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] intro h [GOAL] case intro.succ f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' n : ℕ ⊢ Reaches₁ (TM2.step tr) { l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 } (Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 } (fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 }) (Nat.succ n)) → ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] intro h [GOAL] case intro.zero f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 } (Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 } (fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 }) Nat.zero) ⊢ ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] obtain ⟨c, h₁, h₂⟩ := IHf k _ s' [GOAL] case intro.zero.intro.intro f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred ?m.585609 ?m.585610), var := s, stk := elim (trList v) [] ?m.585611 ?m.585612 } (Nat.rec { l := some ?m.585609, var := s', stk := elim (trList (List.tail v)) [] ?m.585611 ?m.585612 } (fun n x => { l := some ?m.585610, var := s', stk := elim (trList (n :: List.tail v)) [] ?m.585611 ?m.585612 }) Nat.zero) c : Cfg' h₁ : TrCfg (stepNormal f k ?m.585742) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s', stk := elim (trList ?m.585742) [] [] (trContStack k) } c ⊢ ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) Nat.zero) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] exact ⟨_, h₁, h.trans h₂⟩ [GOAL] case intro.succ f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' n : ℕ h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred (trNormal f (trCont k)) (trNormal g (trCont k))), var := s, stk := elim (trList v) [] [] (trContStack k) } (Nat.rec { l := some (trNormal f (trCont k)), var := s', stk := elim (trList (List.tail v)) [] [] (trContStack k) } (fun n x => { l := some (trNormal g (trCont k)), var := s', stk := elim (trList (n :: List.tail v)) [] [] (trContStack k) }) (Nat.succ n)) ⊢ ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] obtain ⟨c, h₁, h₂⟩ := IHg k _ s' [GOAL] case intro.succ.intro.intro f g : Code IHf : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ IHg : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal g k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s s' : Option Γ' n : ℕ h : Reaches₁ (TM2.step tr) { l := some (Λ'.pred (trNormal f (trCont k)) (trNormal g (trCont k))), var := s, stk := elim (trList v) [] [] (trContStack k) } (Nat.rec { l := some (trNormal f (trCont k)), var := s', stk := elim (trList (List.tail v)) [] [] (trContStack k) } (fun n x => { l := some (trNormal g (trCont k)), var := s', stk := elim (trList (n :: List.tail v)) [] [] (trContStack k) }) (Nat.succ n)) c : Cfg' h₁ : TrCfg (stepNormal g k ?m.585866) c h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal g (trCont k)), var := s', stk := elim (trList ?m.585866) [] [] (trContStack k) } c ⊢ ∃ b₂, TrCfg (Nat.rec (stepNormal f k (List.tail v)) (fun y x => stepNormal g k (y :: List.tail v)) (Nat.succ n)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.case f g) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] exact ⟨_, h₁, h.trans h₂⟩ [GOAL] case fix a✝ : Code a_ih✝ : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal a✝ k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal a✝ (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix a✝) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix a✝) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case fix f IH => apply IH [GOAL] f : Code IH : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix f) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix f) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] case fix f IH => apply IH [GOAL] f : Code IH : ∀ (k : Cont) (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepNormal f k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepNormal (Code.fix f) k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (trNormal (Code.fix f) (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] apply IH [GOAL] k : Cont v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ [PROOFSTEP] induction k generalizing v s [GOAL] case halt v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet Cont.halt v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont Cont.halt)), var := s, stk := elim (trList v) [] [] (trContStack Cont.halt) } b₂ case cons₁ a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₁ a✝² a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ a✝² a✝¹ a✝)) } b₂ case cons₂ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₂ a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₂ a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₂ a✝¹ a✝)) } b₂ case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) } b₂ case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) } b₂ [PROOFSTEP] case halt => exact ⟨_, rfl, TransGen.single rfl⟩ [GOAL] v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet Cont.halt v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont Cont.halt)), var := s, stk := elim (trList v) [] [] (trContStack Cont.halt) } b₂ [PROOFSTEP] case halt => exact ⟨_, rfl, TransGen.single rfl⟩ [GOAL] v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet Cont.halt v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont Cont.halt)), var := s, stk := elim (trList v) [] [] (trContStack Cont.halt) } b₂ [PROOFSTEP] exact ⟨_, rfl, TransGen.single rfl⟩ [GOAL] case cons₁ a✝² : Code a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₁ a✝² a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₁ a✝² a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ a✝² a✝¹ a✝)) } b₂ case cons₂ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₂ a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₂ a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₂ a✝¹ a✝)) } b₂ case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) } b₂ case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) } b₂ [PROOFSTEP] case cons₁ fs as k _ => obtain ⟨s', h₁, h₂⟩ := trNormal_respects fs (Cont.cons₂ v k) as none refine' ⟨s', h₁, TransGen.head rfl _⟩; simp refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl simp refine' (move₂_ok (by decide) _ _).trans _; pick_goal 4; · rfl pick_goal 4; · exact splitAtPred_eq _ _ _ (some Γ'.consₗ) _ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, rfl⟩ refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl simp exact h₂ [GOAL] fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₁ fs as k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₁ fs as k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) } b₂ [PROOFSTEP] case cons₁ fs as k _ => obtain ⟨s', h₁, h₂⟩ := trNormal_respects fs (Cont.cons₂ v k) as none refine' ⟨s', h₁, TransGen.head rfl _⟩; simp refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl simp refine' (move₂_ok (by decide) _ _).trans _; pick_goal 4; · rfl pick_goal 4; · exact splitAtPred_eq _ _ _ (some Γ'.consₗ) _ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, rfl⟩ refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _; · rfl simp exact h₂ [GOAL] fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₁ fs as k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₁ fs as k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) } b₂ [PROOFSTEP] obtain ⟨s', h₁, h₂⟩ := trNormal_respects fs (Cont.cons₂ v k) as none [GOAL] case intro.intro fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₁ fs as k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₁ fs as k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) } b₂ [PROOFSTEP] refine' ⟨s', h₁, TransGen.head rfl _⟩ [GOAL] case intro.intro fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.ret (trCont (Cont.cons₁ fs as k)))) s (elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)))) s' [PROOFSTEP] simp [GOAL] case intro.intro fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) } s' [PROOFSTEP] refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _ [GOAL] fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ main ≠ rev ∧ aux ≠ rev ∧ main ≠ aux [PROOFSTEP] decide [GOAL] case intro.intro.refine'_1 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) rev = [] [PROOFSTEP] rfl [GOAL] case intro.intro.refine'_2 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k))))), var := none, stk := update (update (elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k))) main (Option.elim none id List.cons [])) aux (elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) main ++ elim (trList v) [] [] (trContStack (Cont.cons₁ fs as k)) aux) } s' [PROOFSTEP] simp [GOAL] case intro.intro.refine'_2 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k))))), var := none, stk := elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) } s' [PROOFSTEP] refine' (move₂_ok (by decide) _ _).trans _ [GOAL] fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ stack ≠ rev ∧ main ≠ rev ∧ stack ≠ main [PROOFSTEP] decide [GOAL] case intro.intro.refine'_2.refine'_1 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ List Γ' case intro.intro.refine'_2.refine'_2 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ Option Γ' case intro.intro.refine'_2.refine'_3 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ List Γ' case intro.intro.refine'_2.refine'_4 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) rev = [] case intro.intro.refine'_2.refine'_5 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ splitAtPred (fun s => decide (s = Γ'.consₗ)) (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) stack) = (?intro.intro.refine'_2.refine'_1, ?intro.intro.refine'_2.refine'_2, ?intro.intro.refine'_2.refine'_3) case intro.intro.refine'_2.refine'_6 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))), var := none, stk := update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim ?intro.intro.refine'_2.refine'_2 id List.cons ?intro.intro.refine'_2.refine'_3)) main (?intro.intro.refine'_2.refine'_1 ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) } s' [PROOFSTEP] pick_goal 4 [GOAL] case intro.intro.refine'_2.refine'_4 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) rev = [] [PROOFSTEP] rfl [GOAL] case intro.intro.refine'_2.refine'_1 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ List Γ' case intro.intro.refine'_2.refine'_2 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ Option Γ' case intro.intro.refine'_2.refine'_3 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ List Γ' case intro.intro.refine'_2.refine'_5 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ splitAtPred (fun s => decide (s = Γ'.consₗ)) (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) stack) = (?intro.intro.refine'_2.refine'_1, ?intro.intro.refine'_2.refine'_2, ?intro.intro.refine'_2.refine'_3) case intro.intro.refine'_2.refine'_6 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))), var := none, stk := update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim ?intro.intro.refine'_2.refine'_2 id List.cons ?intro.intro.refine'_2.refine'_3)) main (?intro.intro.refine'_2.refine'_1 ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) } s' [PROOFSTEP] pick_goal 4 [GOAL] case intro.intro.refine'_2.refine'_5 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ splitAtPred (fun s => decide (s = Γ'.consₗ)) (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) stack) = (?intro.intro.refine'_2.refine'_1, ?intro.intro.refine'_2.refine'_2, ?intro.intro.refine'_2.refine'_3) [PROOFSTEP] exact splitAtPred_eq _ _ _ (some Γ'.consₗ) _ (fun x h => Bool.decide_false (trList_ne_consₗ _ _ h)) ⟨rfl, rfl⟩ [GOAL] case intro.intro.refine'_2.refine'_6 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ (trCont k)))), var := none, stk := update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k)))) main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) } s' [PROOFSTEP] refine' (move₂_ok (by decide) _ (splitAtPred_false _)).trans _ [GOAL] fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ aux ≠ rev ∧ stack ≠ rev ∧ aux ≠ stack [PROOFSTEP] decide [GOAL] case intro.intro.refine'_2.refine'_6.refine'_1 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k)))) main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) rev = [] [PROOFSTEP] rfl [GOAL] case intro.intro.refine'_2.refine'_6.refine'_2 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) { l := some (trNormal fs (Cont'.cons₂ (trCont k))), var := none, stk := update (update (update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k)))) main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main)) aux (Option.elim none id List.cons [])) stack (update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k)))) main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) aux ++ update (update (elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k))) stack (Option.elim (some Γ'.consₗ) id List.cons (trLList (contStack k)))) main (trList as ++ elim [] [] (trList v) (trContStack (Cont.cons₁ fs as k)) main) stack) } s' [PROOFSTEP] simp [GOAL] case intro.intro.refine'_2.refine'_6.refine'_2 fs : Code as : List ℕ k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal fs (Cont.cons₂ v k) as) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal fs (trCont (Cont.cons₂ v k))), var := none, stk := elim (trList as) [] [] (trContStack (Cont.cons₂ v k)) } s' ⊢ TransGen (fun a b => (match a with | { l := none, var := var, stk := stk } => none | { l := some l, var := v, stk := S } => some (TM2.stepAux (tr l) v S)) = some b) { l := some (trNormal fs (Cont'.cons₂ (trCont k))), var := none, stk := elim (trList as) [] [] (trList v ++ Γ'.consₗ :: trLList (contStack k)) } s' [PROOFSTEP] exact h₂ [GOAL] case cons₂ a✝¹ : List ℕ a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₂ a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₂ a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₂ a✝¹ a✝)) } b₂ case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) } b₂ case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) } b₂ [PROOFSTEP] case cons₂ ns k IH => obtain ⟨c, h₁, h₂⟩ := IH (ns.headI :: v) none exact ⟨c, h₁, TransGen.head rfl <| head_stack_ok.trans h₂⟩ [GOAL] ns : List ℕ k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₂ ns k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₂ ns k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₂ ns k)) } b₂ [PROOFSTEP] case cons₂ ns k IH => obtain ⟨c, h₁, h₂⟩ := IH (ns.headI :: v) none exact ⟨c, h₁, TransGen.head rfl <| head_stack_ok.trans h₂⟩ [GOAL] ns : List ℕ k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₂ ns k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₂ ns k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₂ ns k)) } b₂ [PROOFSTEP] obtain ⟨c, h₁, h₂⟩ := IH (ns.headI :: v) none [GOAL] case intro.intro ns : List ℕ k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' c : Cfg' h₁ : TrCfg (stepRet k (List.headI ns :: v)) c h₂ : Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := none, stk := elim (trList (List.headI ns :: v)) [] [] (trContStack k) } c ⊢ ∃ b₂, TrCfg (stepRet (Cont.cons₂ ns k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.cons₂ ns k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.cons₂ ns k)) } b₂ [PROOFSTEP] exact ⟨c, h₁, TransGen.head rfl <| head_stack_ok.trans h₂⟩ [GOAL] case comp a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp a✝¹ a✝)) } b₂ case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) } b₂ [PROOFSTEP] case comp f k _ => obtain ⟨s', h₁, h₂⟩ := trNormal_respects f k v s exact ⟨_, h₁, TransGen.head rfl h₂⟩ [GOAL] f : Code k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp f k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp f k)) } b₂ [PROOFSTEP] case comp f k _ => obtain ⟨s', h₁, h₂⟩ := trNormal_respects f k v s exact ⟨_, h₁, TransGen.head rfl h₂⟩ [GOAL] f : Code k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp f k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp f k)) } b₂ [PROOFSTEP] obtain ⟨s', h₁, h₂⟩ := trNormal_respects f k v s [GOAL] case intro.intro f : Code k : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' s' : Cfg' h₁ : TrCfg (stepNormal f k v) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } s' ⊢ ∃ b₂, TrCfg (stepRet (Cont.comp f k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.comp f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.comp f k)) } b₂ [PROOFSTEP] exact ⟨_, h₁, TransGen.head rfl h₂⟩ [GOAL] case fix a✝¹ : Code a✝ : Cont a_ih✝ : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet a✝ v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont a✝)), var := s, stk := elim (trList v) [] [] (trContStack a✝) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix a✝¹ a✝) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix a✝¹ a✝))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix a✝¹ a✝)) } b₂ [PROOFSTEP] case fix f k IH => rw [stepRet] have : if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail := by cases' v with n · exact ⟨rfl, rfl⟩ cases' n with n · simp rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail] cases (n : Num).succ' <;> exact ⟨rfl, rfl⟩ by_cases v.headI = 0 <;> simp only [h, ite_true, ite_false] at this ⊢ · obtain ⟨c, h₁, h₂⟩ := IH v.tail (trList v).head? refine' ⟨c, h₁, TransGen.head rfl _⟩ simp [trCont, trContStack, this, -TM2.step, -natEnd] exact h₂ · obtain ⟨s', h₁, h₂⟩ := trNormal_respects f (Cont.fix f k) v.tail (some Γ'.cons) refine' ⟨_, h₁, TransGen.head rfl <| TransGen.trans _ h₂⟩ simp [trCont, this.1, -TM2.step, -natEnd] convert clear_ok (splitAtPred_eq _ _ (trNat v.headI).tail (some Γ'.cons) _ _ _) using 2 · simp convert rfl · exact fun x h => trNat_natEnd _ _ (List.tail_subset _ h) · exact ⟨rfl, this.2⟩ [GOAL] f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix f k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] case fix f k IH => rw [stepRet] have : if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail := by cases' v with n · exact ⟨rfl, rfl⟩ cases' n with n · simp rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail] cases (n : Num).succ' <;> exact ⟨rfl, rfl⟩ by_cases v.headI = 0 <;> simp only [h, ite_true, ite_false] at this ⊢ · obtain ⟨c, h₁, h₂⟩ := IH v.tail (trList v).head? refine' ⟨c, h₁, TransGen.head rfl _⟩ simp [trCont, trContStack, this, -TM2.step, -natEnd] exact h₂ · obtain ⟨s', h₁, h₂⟩ := trNormal_respects f (Cont.fix f k) v.tail (some Γ'.cons) refine' ⟨_, h₁, TransGen.head rfl <| TransGen.trans _ h₂⟩ simp [trCont, this.1, -TM2.step, -natEnd] convert clear_ok (splitAtPred_eq _ _ (trNat v.headI).tail (some Γ'.cons) _ _ _) using 2 · simp convert rfl · exact fun x h => trNat_natEnd _ _ (List.tail_subset _ h) · exact ⟨rfl, this.2⟩ [GOAL] f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (stepRet (Cont.fix f k) v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] rw [stepRet] [GOAL] f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ ∃ b₂, TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] have : if v.headI = 0 then natEnd (trList v).head?.iget = true ∧ (trList v).tail = trList v.tail else natEnd (trList v).head?.iget = false ∧ (trList v).tail = (trNat v.headI).tail ++ Γ'.cons :: trList v.tail := by cases' v with n · exact ⟨rfl, rfl⟩ cases' n with n · simp rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail] cases (n : Num).succ' <;> exact ⟨rfl, rfl⟩ [GOAL] f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' ⊢ if List.headI v = 0 then natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) else natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) [PROOFSTEP] cases' v with n [GOAL] case nil f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' ⊢ if List.headI [] = 0 then natEnd (Option.iget (List.head? (trList []))) = true ∧ List.tail (trList []) = trList (List.tail []) else natEnd (Option.iget (List.head? (trList []))) = false ∧ List.tail (trList []) = List.tail (trNat (List.headI [])) ++ Γ'.cons :: trList (List.tail []) [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] case cons f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' n : ℕ tail✝ : List ℕ ⊢ if List.headI (n :: tail✝) = 0 then natEnd (Option.iget (List.head? (trList (n :: tail✝)))) = true ∧ List.tail (trList (n :: tail✝)) = trList (List.tail (n :: tail✝)) else natEnd (Option.iget (List.head? (trList (n :: tail✝)))) = false ∧ List.tail (trList (n :: tail✝)) = List.tail (trNat (List.headI (n :: tail✝))) ++ Γ'.cons :: trList (List.tail (n :: tail✝)) [PROOFSTEP] cases' n with n [GOAL] case cons.zero f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' tail✝ : List ℕ ⊢ if List.headI (Nat.zero :: tail✝) = 0 then natEnd (Option.iget (List.head? (trList (Nat.zero :: tail✝)))) = true ∧ List.tail (trList (Nat.zero :: tail✝)) = trList (List.tail (Nat.zero :: tail✝)) else natEnd (Option.iget (List.head? (trList (Nat.zero :: tail✝)))) = false ∧ List.tail (trList (Nat.zero :: tail✝)) = List.tail (trNat (List.headI (Nat.zero :: tail✝))) ++ Γ'.cons :: trList (List.tail (Nat.zero :: tail✝)) [PROOFSTEP] simp [GOAL] case cons.succ f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' tail✝ : List ℕ n : ℕ ⊢ if List.headI (Nat.succ n :: tail✝) = 0 then natEnd (Option.iget (List.head? (trList (Nat.succ n :: tail✝)))) = true ∧ List.tail (trList (Nat.succ n :: tail✝)) = trList (List.tail (Nat.succ n :: tail✝)) else natEnd (Option.iget (List.head? (trList (Nat.succ n :: tail✝)))) = false ∧ List.tail (trList (Nat.succ n :: tail✝)) = List.tail (trNat (List.headI (Nat.succ n :: tail✝))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝)) [PROOFSTEP] rw [trList, List.headI, trNat, Nat.cast_succ, Num.add_one, Num.succ, List.tail] [GOAL] case cons.succ f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' tail✝ : List ℕ n : ℕ ⊢ if (match Nat.succ n :: tail✝ with | [] => default | a :: tail => a) = 0 then natEnd (Option.iget (List.head? (trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝))) = true ∧ (match trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = trList (List.tail (Nat.succ n :: tail✝)) else natEnd (Option.iget (List.head? (trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝))) = false ∧ (match trNum (Num.pos (Num.succ' ↑n)) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = List.tail (trNum (Num.pos (Num.succ' ↑n))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝)) [PROOFSTEP] cases (n : Num).succ' [GOAL] case cons.succ.one f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' tail✝ : List ℕ n : ℕ ⊢ if (match Nat.succ n :: tail✝ with | [] => default | a :: tail => a) = 0 then natEnd (Option.iget (List.head? (trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝))) = true ∧ (match trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = trList (List.tail (Nat.succ n :: tail✝)) else natEnd (Option.iget (List.head? (trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝))) = false ∧ (match trNum (Num.pos PosNum.one) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = List.tail (trNum (Num.pos PosNum.one)) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝)) [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] case cons.succ.bit1 f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' tail✝ : List ℕ n : ℕ a✝ : PosNum ⊢ if (match Nat.succ n :: tail✝ with | [] => default | a :: tail => a) = 0 then natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝))) = true ∧ (match trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = trList (List.tail (Nat.succ n :: tail✝)) else natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝))) = false ∧ (match trNum (Num.pos (PosNum.bit1 a✝)) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = List.tail (trNum (Num.pos (PosNum.bit1 a✝))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝)) [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] case cons.succ.bit0 f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ s : Option Γ' tail✝ : List ℕ n : ℕ a✝ : PosNum ⊢ if (match Nat.succ n :: tail✝ with | [] => default | a :: tail => a) = 0 then natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝))) = true ∧ (match trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = trList (List.tail (Nat.succ n :: tail✝)) else natEnd (Option.iget (List.head? (trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝))) = false ∧ (match trNum (Num.pos (PosNum.bit0 a✝)) ++ Γ'.cons :: trList tail✝ with | [] => [] | head :: as => as) = List.tail (trNum (Num.pos (PosNum.bit0 a✝))) ++ Γ'.cons :: trList (List.tail (Nat.succ n :: tail✝)) [PROOFSTEP] exact ⟨rfl, rfl⟩ [GOAL] f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' this : if List.headI v = 0 then natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) else natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) ⊢ ∃ b₂, TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] by_cases v.headI = 0 [GOAL] f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' this : if List.headI v = 0 then natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) else natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) ⊢ ∃ b₂, TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] by_cases v.headI = 0 [GOAL] case pos f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' this : if List.headI v = 0 then natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) else natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) h : List.headI v = 0 ⊢ ∃ b₂, TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] simp only [h, ite_true, ite_false] at this ⊢ [GOAL] case neg f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' this : if List.headI v = 0 then natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) else natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) h : ¬List.headI v = 0 ⊢ ∃ b₂, TrCfg (if List.headI v = 0 then stepRet k (List.tail v) else stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] simp only [h, ite_true, ite_false] at this ⊢ [GOAL] case pos f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) ⊢ ∃ b₂, TrCfg (stepRet k (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] obtain ⟨c, h₁, h₂⟩ := IH v.tail (trList v).head? [GOAL] case pos.intro.intro f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) c : Cfg' h₁ : TrCfg (stepRet k (List.tail v)) c h₂ : Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := List.head? (trList v), stk := elim (trList (List.tail v)) [] [] (trContStack k) } c ⊢ ∃ b₂, TrCfg (stepRet k (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] refine' ⟨c, h₁, TransGen.head rfl _⟩ [GOAL] case pos.intro.intro f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) c : Cfg' h₁ : TrCfg (stepRet k (List.tail v)) c h₂ : Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := List.head? (trList v), stk := elim (trList (List.tail v)) [] [] (trContStack k) } c ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.ret (trCont (Cont.fix f k)))) s (elim (trList v) [] [] (trContStack (Cont.fix f k)))) c [PROOFSTEP] simp [trCont, trContStack, this, -TM2.step, -natEnd] [GOAL] case pos.intro.intro f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = true ∧ List.tail (trList v) = trList (List.tail v) c : Cfg' h₁ : TrCfg (stepRet k (List.tail v)) c h₂ : Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := List.head? (trList v), stk := elim (trList (List.tail v)) [] [] (trContStack k) } c ⊢ TransGen (fun a b => TM2.step tr a = some b) { l := some (Λ'.ret (trCont k)), var := List.head? (trList v), stk := elim (trList (List.tail v)) [] [] (trLList (contStack k)) } c [PROOFSTEP] exact h₂ [GOAL] case neg f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) ⊢ ∃ b₂, TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] obtain ⟨s', h₁, h₂⟩ := trNormal_respects f (Cont.fix f k) v.tail (some Γ'.cons) [GOAL] case neg.intro.intro f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ ∃ b₂, TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont (Cont.fix f k))), var := s, stk := elim (trList v) [] [] (trContStack (Cont.fix f k)) } b₂ [PROOFSTEP] refine' ⟨_, h₁, TransGen.head rfl <| TransGen.trans _ h₂⟩ [GOAL] case neg.intro.intro f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ TransGen (fun a b => b ∈ TM2.step tr a) (TM2.stepAux (tr (Λ'.ret (trCont (Cont.fix f k)))) s (elim (trList v) [] [] (trContStack (Cont.fix f k)))) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } [PROOFSTEP] simp [trCont, this.1, -TM2.step, -natEnd] [GOAL] case neg.intro.intro f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ TransGen (fun a b => TM2.step tr a = some b) { l := some (Λ'.clear natEnd main (trNormal f (Cont'.fix f (trCont k)))), var := List.head? (trList v), stk := elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k)) } { l := some (trNormal f (Cont'.fix f (trCont k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } [PROOFSTEP] convert clear_ok (splitAtPred_eq _ _ (trNat v.headI).tail (some Γ'.cons) _ _ _) using 2 [GOAL] case h.e'_2.h.e'_7 f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) = update (elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k))) main ?neg.intro.intro.convert_6✝ [PROOFSTEP] simp [GOAL] case h.e'_2.h.e'_7 f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) = elim ?neg.intro.intro.convert_6✝ [] [] (trContStack (Cont.fix f k)) [PROOFSTEP] convert rfl [GOAL] case neg.intro.intro.convert_7 f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ ∀ (x : Γ'), x ∈ List.tail (trNat (List.headI v)) → natEnd x = false [PROOFSTEP] exact fun x h => trNat_natEnd _ _ (List.tail_subset _ h) [GOAL] case neg.intro.intro.convert_8 f : Code k : Cont IH : ∀ (v : List ℕ) (s : Option Γ'), ∃ b₂, TrCfg (stepRet k v) b₂ ∧ Reaches₁ (TM2.step tr) { l := some (Λ'.ret (trCont k)), var := s, stk := elim (trList v) [] [] (trContStack k) } b₂ v : List ℕ s : Option Γ' h : ¬List.headI v = 0 this : natEnd (Option.iget (List.head? (trList v))) = false ∧ List.tail (trList v) = List.tail (trNat (List.headI v)) ++ Γ'.cons :: trList (List.tail v) s' : Cfg' h₁ : TrCfg (stepNormal f (Cont.fix f k) (List.tail v)) s' h₂ : Reaches₁ (TM2.step tr) { l := some (trNormal f (trCont (Cont.fix f k))), var := some Γ'.cons, stk := elim (trList (List.tail v)) [] [] (trContStack (Cont.fix f k)) } s' ⊢ Option.elim' (elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k)) main = List.tail (trNat (List.headI v)) ∧ trList (List.tail v) = []) (fun a => natEnd a = true ∧ elim (List.tail (trList v)) [] [] (trContStack (Cont.fix f k)) main = List.tail (trNat (List.headI v)) ++ a :: trList (List.tail v)) (some Γ'.cons) [PROOFSTEP] exact ⟨rfl, this.2⟩ [GOAL] c : Code v : List ℕ ⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v [PROOFSTEP] obtain ⟨i, h₁, h₂⟩ := tr_init c v [GOAL] case intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i ⊢ eval (TM2.step tr) (init c v) = halt <$> Code.eval c v [PROOFSTEP] refine' Part.ext fun x => _ [GOAL] case intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') ⊢ x ∈ eval (TM2.step tr) (init c v) ↔ x ∈ halt <$> Code.eval c v [PROOFSTEP] rw [reaches_eval h₂.to_reflTransGen] [GOAL] case intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') ⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ x ∈ halt <$> Code.eval c v [PROOFSTEP] simp [-TM2.step] [GOAL] case intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') ⊢ x ∈ eval (fun a => TM2.step tr a) i ↔ ∃ a, a ∈ Code.eval c v ∧ halt a = x [PROOFSTEP] refine' ⟨fun h => _, _⟩ [GOAL] case intro.intro.refine'_1 c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') h : x ∈ eval (fun a => TM2.step tr a) i ⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x [PROOFSTEP] obtain ⟨c, hc₁, hc₂⟩ := tr_eval_rev tr_respects h₁ h [GOAL] case intro.intro.refine'_1.intro.intro c✝ : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c✝ Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c✝ v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') h : x ∈ eval (fun a => TM2.step tr a) i c : Cfg hc₁ : TrCfg c x hc₂ : c ∈ eval step (stepNormal c✝ Cont.halt v) ⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x [PROOFSTEP] simp [stepNormal_eval] at hc₂ [GOAL] case intro.intro.refine'_1.intro.intro c✝ : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c✝ Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c✝ v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') h : x ∈ eval (fun a => TM2.step tr a) i c : Cfg hc₁ : TrCfg c x hc₂ : ∃ a, a ∈ Code.eval c✝ v ∧ Cfg.halt a = c ⊢ ∃ a, a ∈ Code.eval c✝ v ∧ halt a = x [PROOFSTEP] obtain ⟨v', hv, rfl⟩ := hc₂ [GOAL] case intro.intro.refine'_1.intro.intro.intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') h : x ∈ eval (fun a => TM2.step tr a) i v' : List ℕ hv : v' ∈ Code.eval c v hc₁ : TrCfg (Cfg.halt v') x ⊢ ∃ a, a ∈ Code.eval c v ∧ halt a = x [PROOFSTEP] exact ⟨_, hv, hc₁.symm⟩ [GOAL] case intro.intro.refine'_2 c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i x : TM2.Cfg (fun x => Γ') Λ' (Option Γ') ⊢ (∃ a, a ∈ Code.eval c v ∧ halt a = x) → x ∈ eval (fun a => TM2.step tr a) i [PROOFSTEP] rintro ⟨v', hv, rfl⟩ [GOAL] case intro.intro.refine'_2.intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i v' : List ℕ hv : v' ∈ Code.eval c v ⊢ halt v' ∈ eval (fun a => TM2.step tr a) i [PROOFSTEP] have := Turing.tr_eval (b₁ := Cfg.halt v') tr_respects h₁ [GOAL] case intro.intro.refine'_2.intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i v' : List ℕ hv : v' ∈ Code.eval c v this : Cfg.halt v' ∈ eval step (stepNormal c Cont.halt v) → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i ⊢ halt v' ∈ eval (fun a => TM2.step tr a) i [PROOFSTEP] simp [stepNormal_eval, -TM2.step] at this [GOAL] case intro.intro.refine'_2.intro.intro c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i v' : List ℕ hv : v' ∈ Code.eval c v this : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i ⊢ halt v' ∈ eval (fun a => TM2.step tr a) i [PROOFSTEP] obtain ⟨_, ⟨⟩, h⟩ := this hv [GOAL] case intro.intro.refine'_2.intro.intro.intro.intro.refl c : Code v : List ℕ i : Cfg' h₁ : TrCfg (stepNormal c Cont.halt v) i h₂ : Reaches₁ (TM2.step tr) (init c v) i v' : List ℕ hv : v' ∈ Code.eval c v this : v' ∈ Code.eval c v → ∃ b₂, TrCfg (Cfg.halt v') b₂ ∧ b₂ ∈ eval (TM2.step tr) i h : halt v' ∈ eval (TM2.step tr) i ⊢ halt v' ∈ eval (fun a => TM2.step tr a) i [PROOFSTEP] exact h [GOAL] q q' : Λ' ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q [PROOFSTEP] induction' q with _ _ _ q q_ih _ _ q q_ih q q_ih _ _ q q_ih q q_ih q q_ih q₁ q₂ q₁_ih q₂_ih _ [GOAL] case move q' : Λ' p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case clear q' : Λ' p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ (Λ'.clear p✝ k✝ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.clear p✝ k✝ q) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case copy q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ (Λ'.copy q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.copy q) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case push q' : Λ' k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ (Λ'.push k✝ s✝ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.push k✝ s✝ q) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ q' ∈ trStmts₁ (Λ'.read q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.read q) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ (Λ'.succ q) → trStmts₁ q' ⊆ trStmts₁ (Λ'.succ q) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ q' ∈ trStmts₁ (Λ'.pred q₁ q₂) → trStmts₁ q' ⊆ trStmts₁ (Λ'.pred q₁ q₂) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case ret q' : Λ' k✝ : Cont' ⊢ q' ∈ trStmts₁ (Λ'.ret k✝) → trStmts₁ q' ⊆ trStmts₁ (Λ'.ret k✝) [PROOFSTEP] simp (config := { contextual := true }) only [trStmts₁, Finset.mem_insert, Finset.mem_union, or_imp, Finset.mem_singleton, Finset.Subset.refl, imp_true_iff, true_and_iff] [GOAL] case move q' : Λ' p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) case clear q' : Λ' p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) case copy q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q) case push q' : Λ' k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q) case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ (q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧ (q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' = unrev q₂ → insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) [PROOFSTEP] iterate 4 exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _) [GOAL] case move q' : Λ' p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) case clear q' : Λ' p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) case copy q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q) case push q' : Λ' k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q) case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ (q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧ (q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' = unrev q₂ → insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) [PROOFSTEP] exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _) [GOAL] case clear q' : Λ' p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) case copy q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q) case push q' : Λ' k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q) case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ (q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧ (q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' = unrev q₂ → insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) [PROOFSTEP] exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _) [GOAL] case copy q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.copy q) (trStmts₁ q) case push q' : Λ' k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q) case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ (q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧ (q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' = unrev q₂ → insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) [PROOFSTEP] exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _) [GOAL] case push q' : Λ' k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.push k✝ s✝ q) (trStmts₁ q) case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ (q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧ (q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' = unrev q₂ → insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) [PROOFSTEP] exact fun h => Finset.Subset.trans (q_ih h) (Finset.subset_insert _ _) [GOAL] case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ (q' ∈ Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) [PROOFSTEP] simp [GOAL] case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) ⊢ ∀ (x : Option Γ'), q' ∈ trStmts₁ (q x) → trStmts₁ q' ⊆ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) [PROOFSTEP] intro s h x h' [GOAL] case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) s : Option Γ' h : q' ∈ trStmts₁ (q s) x : Λ' h' : x ∈ trStmts₁ q' ⊢ x ∈ insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) [PROOFSTEP] simp [GOAL] case read q' : Λ' q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), q' ∈ trStmts₁ (q a) → trStmts₁ q' ⊆ trStmts₁ (q a) s : Option Γ' h : q' ∈ trStmts₁ (q s) x : Λ' h' : x ∈ trStmts₁ q' ⊢ x = Λ'.read q ∨ ∃ a, x ∈ trStmts₁ (q a) [PROOFSTEP] exact Or.inr ⟨_, q_ih s h h'⟩ [GOAL] case succ q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ (q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) ∧ (q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) [PROOFSTEP] constructor [GOAL] case succ.left q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' = unrev q → insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) [PROOFSTEP] rintro rfl [GOAL] case succ.left q : Λ' q_ih : unrev q ∈ trStmts₁ q → trStmts₁ (unrev q) ⊆ trStmts₁ q ⊢ insert (Λ'.move (fun x => false) rev main q) (trStmts₁ q) ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) [PROOFSTEP] apply Finset.subset_insert [GOAL] case succ.right q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q ⊢ q' ∈ trStmts₁ q → trStmts₁ q' ⊆ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) [PROOFSTEP] intro h x h' [GOAL] case succ.right q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q h : q' ∈ trStmts₁ q x : Λ' h' : x ∈ trStmts₁ q' ⊢ x ∈ insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) [PROOFSTEP] simp [GOAL] case succ.right q' q : Λ' q_ih : q' ∈ trStmts₁ q → trStmts₁ q' ⊆ trStmts₁ q h : q' ∈ trStmts₁ q x : Λ' h' : x ∈ trStmts₁ q' ⊢ x = Λ'.succ q ∨ x = unrev q ∨ x ∈ trStmts₁ q [PROOFSTEP] exact Or.inr (Or.inr <| q_ih h h') [GOAL] case pred q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ ⊢ (q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' = unrev q₂ → insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) ∧ (q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂))) [PROOFSTEP] refine' ⟨fun h x h' => _, fun _ x h' => _, fun h x h' => _⟩ [GOAL] case pred.refine'_1 q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ h : q' ∈ trStmts₁ q₁ x : Λ' h' : x ∈ trStmts₁ q' ⊢ x ∈ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)) [PROOFSTEP] simp [GOAL] case pred.refine'_2 q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ x✝ : q' = unrev q₂ x : Λ' h' : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊢ x ∈ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)) [PROOFSTEP] simp [GOAL] case pred.refine'_3 q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ h : q' ∈ trStmts₁ q₂ x : Λ' h' : x ∈ trStmts₁ q' ⊢ x ∈ insert (Λ'.pred q₁ q₂) (trStmts₁ q₁ ∪ insert (unrev q₂) (trStmts₁ q₂)) [PROOFSTEP] simp [GOAL] case pred.refine'_1 q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ h : q' ∈ trStmts₁ q₁ x : Λ' h' : x ∈ trStmts₁ q' ⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂ [PROOFSTEP] exact Or.inr (Or.inr <| Or.inl <| q₁_ih h h') [GOAL] case pred.refine'_2 q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ x✝ : q' = unrev q₂ x : Λ' h' : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) ⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂ [PROOFSTEP] cases' Finset.mem_insert.1 h' with h' h' [GOAL] case pred.refine'_2.inl q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ x✝ : q' = unrev q₂ x : Λ' h'✝ : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) h' : x = Λ'.move (fun x => false) rev main q₂ ⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂ [PROOFSTEP] simp [h', unrev] [GOAL] case pred.refine'_2.inr q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ x✝ : q' = unrev q₂ x : Λ' h'✝ : x ∈ insert (Λ'.move (fun x => false) rev main q₂) (trStmts₁ q₂) h' : x ∈ trStmts₁ q₂ ⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂ [PROOFSTEP] simp [h', unrev] [GOAL] case pred.refine'_3 q' q₁ q₂ : Λ' q₁_ih : q' ∈ trStmts₁ q₁ → trStmts₁ q' ⊆ trStmts₁ q₁ q₂_ih : q' ∈ trStmts₁ q₂ → trStmts₁ q' ⊆ trStmts₁ q₂ h : q' ∈ trStmts₁ q₂ x : Λ' h' : x ∈ trStmts₁ q' ⊢ x = Λ'.pred q₁ q₂ ∨ x = unrev q₂ ∨ x ∈ trStmts₁ q₁ ∨ x ∈ trStmts₁ q₂ [PROOFSTEP] exact Or.inr (Or.inr <| Or.inr <| q₂_ih h h') [GOAL] q : Λ' ⊢ q ∈ trStmts₁ q [PROOFSTEP] induction q [GOAL] case move p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.move p✝ k₁✝ k₂✝ q✝ ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case move p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.move p✝ k₁✝ k₂✝ q✝ ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case move p✝ : Γ' → Bool k₁✝ k₂✝ : K' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.move p✝ k₁✝ k₂✝ q✝ ∈ trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case clear p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.clear p✝ k✝ q✝ ∈ trStmts₁ (Λ'.clear p✝ k✝ q✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case clear p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.clear p✝ k✝ q✝ ∈ trStmts₁ (Λ'.clear p✝ k✝ q✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case clear p✝ : Γ' → Bool k✝ : K' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.clear p✝ k✝ q✝ ∈ trStmts₁ (Λ'.clear p✝ k✝ q✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case copy q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.copy q✝ ∈ trStmts₁ (Λ'.copy q✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case copy q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.copy q✝ ∈ trStmts₁ (Λ'.copy q✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case copy q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.copy q✝ ∈ trStmts₁ (Λ'.copy q✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case push k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.push k✝ s✝ q✝ ∈ trStmts₁ (Λ'.push k✝ s✝ q✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case push k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.push k✝ s✝ q✝ ∈ trStmts₁ (Λ'.push k✝ s✝ q✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case push k✝ : K' s✝ : Option Γ' → Option Γ' q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.push k✝ s✝ q✝ ∈ trStmts₁ (Λ'.push k✝ s✝ q✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case read f✝ : Option Γ' → Λ' f_ih✝ : ∀ (a : Option Γ'), f✝ a ∈ trStmts₁ (f✝ a) ⊢ Λ'.read f✝ ∈ trStmts₁ (Λ'.read f✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case read f✝ : Option Γ' → Λ' f_ih✝ : ∀ (a : Option Γ'), f✝ a ∈ trStmts₁ (f✝ a) ⊢ Λ'.read f✝ ∈ trStmts₁ (Λ'.read f✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case read f✝ : Option Γ' → Λ' f_ih✝ : ∀ (a : Option Γ'), f✝ a ∈ trStmts₁ (f✝ a) ⊢ Λ'.read f✝ ∈ trStmts₁ (Λ'.read f✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case succ q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.succ q✝ ∈ trStmts₁ (Λ'.succ q✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case succ q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.succ q✝ ∈ trStmts₁ (Λ'.succ q✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case succ q✝ : Λ' q_ih✝ : q✝ ∈ trStmts₁ q✝ ⊢ Λ'.succ q✝ ∈ trStmts₁ (Λ'.succ q✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case pred q₁✝ q₂✝ : Λ' q₁_ih✝ : q₁✝ ∈ trStmts₁ q₁✝ q₂_ih✝ : q₂✝ ∈ trStmts₁ q₂✝ ⊢ Λ'.pred q₁✝ q₂✝ ∈ trStmts₁ (Λ'.pred q₁✝ q₂✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case pred q₁✝ q₂✝ : Λ' q₁_ih✝ : q₁✝ ∈ trStmts₁ q₁✝ q₂_ih✝ : q₂✝ ∈ trStmts₁ q₂✝ ⊢ Λ'.pred q₁✝ q₂✝ ∈ trStmts₁ (Λ'.pred q₁✝ q₂✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] case pred q₁✝ q₂✝ : Λ' q₁_ih✝ : q₁✝ ∈ trStmts₁ q₁✝ q₂_ih✝ : q₂✝ ∈ trStmts₁ q₂✝ ⊢ Λ'.pred q₁✝ q₂✝ ∈ trStmts₁ (Λ'.pred q₁✝ q₂✝) [PROOFSTEP] apply Finset.mem_insert_self [GOAL] case ret k✝ : Cont' ⊢ Λ'.ret k✝ ∈ trStmts₁ (Λ'.ret k✝) [PROOFSTEP] first | apply Finset.mem_singleton_self | apply Finset.mem_insert_self [GOAL] case ret k✝ : Cont' ⊢ Λ'.ret k✝ ∈ trStmts₁ (Λ'.ret k✝) [PROOFSTEP] apply Finset.mem_singleton_self [GOAL] c : Code k : Cont' ⊢ trStmts₁ (trNormal c k) ⊆ codeSupp' c k [PROOFSTEP] cases c [GOAL] case zero' k : Cont' ⊢ trStmts₁ (trNormal Code.zero' k) ⊆ codeSupp' Code.zero' k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case zero' k : Cont' ⊢ trStmts₁ (trNormal Code.zero' k) ⊆ codeSupp' Code.zero' k [PROOFSTEP] rfl [GOAL] case succ k : Cont' ⊢ trStmts₁ (trNormal Code.succ k) ⊆ codeSupp' Code.succ k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case succ k : Cont' ⊢ trStmts₁ (trNormal Code.succ k) ⊆ codeSupp' Code.succ k [PROOFSTEP] rfl [GOAL] case tail k : Cont' ⊢ trStmts₁ (trNormal Code.tail k) ⊆ codeSupp' Code.tail k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case tail k : Cont' ⊢ trStmts₁ (trNormal Code.tail k) ⊆ codeSupp' Code.tail k [PROOFSTEP] rfl [GOAL] case cons k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.cons a✝¹ a✝) k) ⊆ codeSupp' (Code.cons a✝¹ a✝) k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case cons k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.cons a✝¹ a✝) k) ⊆ codeSupp' (Code.cons a✝¹ a✝) k [PROOFSTEP] rfl [GOAL] case cons k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.cons a✝¹ a✝) k) ⊆ codeSupp' (Code.cons a✝¹ a✝) k [PROOFSTEP] exact Finset.subset_union_left _ _ [GOAL] case comp k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.comp a✝¹ a✝) k) ⊆ codeSupp' (Code.comp a✝¹ a✝) k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case comp k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.comp a✝¹ a✝) k) ⊆ codeSupp' (Code.comp a✝¹ a✝) k [PROOFSTEP] rfl [GOAL] case comp k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.comp a✝¹ a✝) k) ⊆ codeSupp' (Code.comp a✝¹ a✝) k [PROOFSTEP] exact Finset.subset_union_left _ _ [GOAL] case case k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.case a✝¹ a✝) k) ⊆ codeSupp' (Code.case a✝¹ a✝) k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case case k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.case a✝¹ a✝) k) ⊆ codeSupp' (Code.case a✝¹ a✝) k [PROOFSTEP] rfl [GOAL] case case k : Cont' a✝¹ a✝ : Code ⊢ trStmts₁ (trNormal (Code.case a✝¹ a✝) k) ⊆ codeSupp' (Code.case a✝¹ a✝) k [PROOFSTEP] exact Finset.subset_union_left _ _ [GOAL] case fix k : Cont' a✝ : Code ⊢ trStmts₁ (trNormal (Code.fix a✝) k) ⊆ codeSupp' (Code.fix a✝) k [PROOFSTEP] first | rfl | exact Finset.subset_union_left _ _ [GOAL] case fix k : Cont' a✝ : Code ⊢ trStmts₁ (trNormal (Code.fix a✝) k) ⊆ codeSupp' (Code.fix a✝) k [PROOFSTEP] rfl [GOAL] case fix k : Cont' a✝ : Code ⊢ trStmts₁ (trNormal (Code.fix a✝) k) ⊆ codeSupp' (Code.fix a✝) k [PROOFSTEP] exact Finset.subset_union_left _ _ [GOAL] f fs : Code k : Cont' ⊢ codeSupp (Code.cons f fs) k = trStmts₁ (trNormal (Code.cons f fs) k) ∪ codeSupp f (Cont'.cons₁ fs k) [PROOFSTEP] simp [codeSupp, codeSupp', contSupp, Finset.union_assoc] [GOAL] f g : Code k : Cont' ⊢ codeSupp (Code.comp f g) k = trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) [PROOFSTEP] simp [codeSupp, codeSupp', contSupp, Finset.union_assoc] [GOAL] f g : Code k : Cont' ⊢ trStmts₁ (trNormal g (Cont'.comp f k)) ∪ (codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ (codeSupp' f k ∪ contSupp k))) = trStmts₁ (trNormal g (Cont'.comp f k)) ∪ (codeSupp' g (Cont'.comp f k) ∪ (codeSupp' f k ∪ contSupp k)) [PROOFSTEP] rw [← Finset.union_assoc _ _ (contSupp k), Finset.union_eq_right_iff_subset.2 (codeSupp'_self _ _)] [GOAL] f g : Code k : Cont' ⊢ codeSupp (Code.case f g) k = trStmts₁ (trNormal (Code.case f g) k) ∪ (codeSupp f k ∪ codeSupp g k) [PROOFSTEP] simp [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.union_left_comm] [GOAL] f : Code k : Cont' ⊢ codeSupp (Code.fix f) k = trStmts₁ (trNormal (Code.fix f) k) ∪ codeSupp f (Cont'.fix f k) [PROOFSTEP] simp [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.union_left_comm, Finset.union_left_idem] [GOAL] fs : Code k : Cont' ⊢ contSupp (Cont'.cons₁ fs k) = trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ codeSupp fs (Cont'.cons₂ k) [PROOFSTEP] simp [codeSupp, codeSupp', contSupp, Finset.union_assoc] [GOAL] f : Code k : Cont' ⊢ contSupp (Cont'.fix f k) = codeSupp f (Cont'.fix f k) [PROOFSTEP] simp (config := { contextual := true }) [codeSupp, codeSupp', contSupp, Finset.union_assoc, Finset.subset_iff] [GOAL] K S : Finset Λ' q : Λ' ⊢ Supports (insert q K) S ↔ TM2.SupportsStmt S (tr q) ∧ Supports K S [PROOFSTEP] simp [Supports] [GOAL] S : Finset Λ' q : Λ' ⊢ Supports {q} S ↔ TM2.SupportsStmt S (tr q) [PROOFSTEP] simp [Supports] [GOAL] K₁ K₂ S : Finset Λ' ⊢ Supports (K₁ ∪ K₂) S ↔ Supports K₁ S ∧ Supports K₂ S [PROOFSTEP] simp [Supports, or_imp, forall_and] [GOAL] K : Option Γ' → Finset Λ' S : Finset Λ' ⊢ Supports (Finset.biUnion Finset.univ K) S ↔ ∀ (a : Option Γ'), Supports (K a) S [PROOFSTEP] simp [Supports] [GOAL] K : Option Γ' → Finset Λ' S : Finset Λ' ⊢ (∀ (q : Λ') (x : Option Γ'), q ∈ K x → TM2.SupportsStmt S (tr q)) ↔ ∀ (a : Option Γ') (q : Λ'), q ∈ K a → TM2.SupportsStmt S (tr q) [PROOFSTEP] apply forall_swap [GOAL] S : Finset Λ' k : K' q : Λ' H : Λ'.Supports S q x✝ : Option Γ' ⊢ Λ'.Supports S ((fun s => ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) k) (unrev q)) x✝) [PROOFSTEP] dsimp only [GOAL] S : Finset Λ' k : K' q : Λ' H : Λ'.Supports S q x✝ : Option Γ' ⊢ Λ'.Supports S (ite (x✝ = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) k) (unrev q)) [PROOFSTEP] split_ifs [GOAL] case pos S : Finset Λ' k : K' q : Λ' H : Λ'.Supports S q x✝ : Option Γ' h✝ : x✝ = some Γ'.consₗ ⊢ Λ'.Supports S (id (unrev q)) [PROOFSTEP] exact H [GOAL] case neg S : Finset Λ' k : K' q : Λ' H : Λ'.Supports S q x✝ : Option Γ' h✝ : ¬x✝ = some Γ'.consₗ ⊢ Λ'.Supports S (Λ'.clear (fun x => decide (x = Γ'.consₗ)) k (unrev q)) [PROOFSTEP] exact H [GOAL] S : Finset Λ' k : Cont' H₁ : contSupp k ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret k)) [PROOFSTEP] have W := fun {q} => trStmts₁_self q [GOAL] S : Finset Λ' k : Cont' H₁ : contSupp k ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q ⊢ TM2.SupportsStmt S (tr (Λ'.ret k)) [PROOFSTEP] cases k [GOAL] case halt S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q H₁ : contSupp Cont'.halt ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret Cont'.halt)) case cons₁ S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝))) case cons₂ S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝ : Cont' H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝))) case comp S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) case fix S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] case halt => trivial [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q H₁ : contSupp Cont'.halt ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret Cont'.halt)) [PROOFSTEP] case halt => trivial [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q H₁ : contSupp Cont'.halt ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret Cont'.halt)) [PROOFSTEP] trivial [GOAL] case cons₁ S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝))) case cons₂ S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝ : Cont' H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝))) case comp S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) case fix S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] case cons₁ => rw [contSupp_cons₁, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝))) [PROOFSTEP] case cons₁ => rw [contSupp_cons₁, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝))) [PROOFSTEP] rw [contSupp_cons₁, Finset.union_subset_iff] at H₁ [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal a✝¹ (Cont'.cons₂ a✝))))) ⊆ S ∧ codeSupp a✝¹ (Cont'.cons₂ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₁ a✝¹ a✝))) [PROOFSTEP] exact fun _ => H₁.1 W [GOAL] case cons₂ S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝ : Cont' H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝))) case comp S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) case fix S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] case cons₂ => rw [contSupp_cons₂, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝ : Cont' H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝))) [PROOFSTEP] case cons₂ => rw [contSupp_cons₂, Finset.union_subset_iff] at H₁ ; exact fun _ => H₁.1 W [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝ : Cont' H₁ : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝))) [PROOFSTEP] rw [contSupp_cons₂, Finset.union_subset_iff] at H₁ [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝ : Cont' H₁ : trStmts₁ (head stack (Λ'.ret a✝)) ⊆ S ∧ contSupp a✝ ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.cons₂ a✝))) [PROOFSTEP] exact fun _ => H₁.1 W [GOAL] case comp S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) case fix S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] case comp => rw [contSupp_comp] at H₁ ; exact fun _ => H₁ (codeSupp_self _ _ W) [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) [PROOFSTEP] case comp => rw [contSupp_comp] at H₁ ; exact fun _ => H₁ (codeSupp_self _ _ W) [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) [PROOFSTEP] rw [contSupp_comp] at H₁ [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ a✝ ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.comp a✝¹ a✝))) [PROOFSTEP] exact fun _ => H₁ (codeSupp_self _ _ W) [GOAL] case fix S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] case fix => rw [contSupp_fix] at H₁ have L := @Finset.mem_union_left; have R := @Finset.mem_union_right intro s; dsimp only; cases natEnd s.iget · refine' H₁ (R _ <| L _ <| R _ <| R _ <| L _ W) · exact H₁ (R _ <| L _ <| R _ <| R _ <| R _ <| Finset.mem_singleton_self _) [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] case fix => rw [contSupp_fix] at H₁ have L := @Finset.mem_union_left; have R := @Finset.mem_union_right intro s; dsimp only; cases natEnd s.iget · refine' H₁ (R _ <| L _ <| R _ <| R _ <| L _ W) · exact H₁ (R _ <| L _ <| R _ <| R _ <| R _ <| Finset.mem_singleton_self _) [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] rw [contSupp_fix] at H₁ [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] have L := @Finset.mem_union_left [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] have R := @Finset.mem_union_right [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t ⊢ TM2.SupportsStmt S (tr (Λ'.ret (Cont'.fix a✝¹ a✝))) [PROOFSTEP] intro s [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t s : Option Γ' ⊢ (fun s => bif natEnd (Option.iget s) then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) s ∈ S [PROOFSTEP] dsimp only [GOAL] S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t s : Option Γ' ⊢ (bif natEnd (Option.iget s) then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) ∈ S [PROOFSTEP] cases natEnd s.iget [GOAL] case false S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S L : ∀ {α : Type ?u.680338} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t R : ∀ {α : Type ?u.680369} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t s : Option Γ' ⊢ (bif false then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) ∈ S [PROOFSTEP] refine' H₁ (R _ <| L _ <| R _ <| R _ <| L _ W) [GOAL] case true S : Finset Λ' W : ∀ {q : Λ'}, q ∈ trStmts₁ q a✝¹ : Code a✝ : Cont' H₁ : codeSupp a✝¹ (Cont'.fix a✝¹ a✝) ⊆ S L : ∀ {α : Type} [inst : DecidableEq α] {s : Finset α} {a : α} (t : Finset α), a ∈ s → a ∈ s ∪ t R : ∀ {α : Type} [inst : DecidableEq α] {t : Finset α} {a : α} (s : Finset α), a ∈ t → a ∈ s ∪ t s : Option Γ' ⊢ (bif true then Λ'.ret a✝ else Λ'.clear natEnd main (trNormal a✝¹ (Cont'.fix a✝¹ a✝))) ∈ S [PROOFSTEP] exact H₁ (R _ <| L _ <| R _ <| R _ <| R _ <| Finset.mem_singleton_self _) [GOAL] S : Finset Λ' q : Λ' H₁ : Λ'.Supports S q HS₁ : trStmts₁ q ⊆ S ⊢ Supports (trStmts₁ q) S [PROOFSTEP] have W := fun {q} => trStmts₁_self q [GOAL] S : Finset Λ' q : Λ' H₁ : Λ'.Supports S q HS₁ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q ⊢ Supports (trStmts₁ q) S [PROOFSTEP] induction' q with _ _ _ q q_ih _ _ q q_ih q q_ih _ _ q q_ih q q_ih q q_ih q₁ q₂ q₁_ih q₂_ih _ [GOAL] case move S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q) HS₁ : trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q) ⊆ S ⊢ Supports (trStmts₁ (Λ'.move p✝ k₁✝ k₂✝ q)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case clear S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q) HS₁ : trStmts₁ (Λ'.clear p✝ k✝ q) ⊆ S ⊢ Supports (trStmts₁ (Λ'.clear p✝ k✝ q)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case copy S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.copy q) HS₁ : trStmts₁ (Λ'.copy q) ⊆ S ⊢ Supports (trStmts₁ (Λ'.copy q)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case push S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q) HS₁ : trStmts₁ (Λ'.push k✝ s✝ q) ⊆ S ⊢ Supports (trStmts₁ (Λ'.push k✝ s✝ q)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case read S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : trStmts₁ (Λ'.read q) ⊆ S ⊢ Supports (trStmts₁ (Λ'.read q)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case succ S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : trStmts₁ (Λ'.succ q) ⊆ S ⊢ Supports (trStmts₁ (Λ'.succ q)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case pred S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : trStmts₁ (Λ'.pred q₁ q₂) ⊆ S ⊢ Supports (trStmts₁ (Λ'.pred q₁ q₂)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case ret S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : Cont' H₁ : Λ'.Supports S (Λ'.ret k✝) HS₁ : trStmts₁ (Λ'.ret k✝) ⊆ S ⊢ Supports (trStmts₁ (Λ'.ret k✝)) S [PROOFSTEP] simp [trStmts₁, -Finset.singleton_subset_iff] at HS₁ ⊢ [GOAL] case move S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q) HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S case clear S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q) HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S case copy S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.copy q) HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S case push S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q) HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S case read S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S case succ S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S case pred S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S case ret S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : Cont' H₁ : Λ'.Supports S (Λ'.ret k✝) HS₁ : {Λ'.ret k✝} ⊆ S ⊢ Supports {Λ'.ret k✝} S [PROOFSTEP] any_goals cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case move S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q) HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case move.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q) HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.move p✝ k₁✝ k₂✝ q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case move.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q) HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.move p✝ k₁✝ k₂✝ q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case clear S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q) HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case clear.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q) HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.clear p✝ k✝ q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case clear.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q) HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.clear p✝ k✝ q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case copy S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.copy q) HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case copy.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.copy q) HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S h₁ : Λ'.copy q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case copy.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.copy q) HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S h₁ : Λ'.copy q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case push S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q) HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case push.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q) HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.push k✝ s✝ q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case push.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q) HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.push k✝ s✝ q ∈ S h₂ : trStmts₁ q ⊆ S ⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case read S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case read.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S h₁ : Λ'.read q ∈ S h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case read.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S h₁ : Λ'.read q ∈ S h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case read.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S h₁ : Λ'.read q ∈ S h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S [PROOFSTEP] try simp [Finset.subset_iff] at h₂ [GOAL] case read.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S h₁ : Λ'.read q ∈ S h₂ : (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S [PROOFSTEP] simp [Finset.subset_iff] at h₂ [GOAL] case succ S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case succ.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S h₁ : Λ'.succ q ∈ S h₂ : insert (unrev q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case succ.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S h₁ : Λ'.succ q ∈ S h₂ : insert (unrev q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case succ.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S h₁ : Λ'.succ q ∈ S h₂ : insert (unrev q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S [PROOFSTEP] try simp [Finset.subset_iff] at h₂ [GOAL] case succ.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S h₁ : Λ'.succ q ∈ S h₂ : insert (unrev q) (trStmts₁ q) ⊆ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S [PROOFSTEP] simp [Finset.subset_iff] at h₂ [GOAL] case pred S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S [PROOFSTEP] first | have h₃ := h₂ W | try simp [Finset.subset_iff] at h₂ [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S [PROOFSTEP] have h₃ := h₂ W [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S [PROOFSTEP] try simp [Finset.subset_iff] at h₂ [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂) ⊆ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S [PROOFSTEP] simp [Finset.subset_iff] at h₂ [GOAL] case ret S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : Cont' H₁ : Λ'.Supports S (Λ'.ret k✝) HS₁ : {Λ'.ret k✝} ⊆ S ⊢ Supports {Λ'.ret k✝} S [PROOFSTEP] cases' Finset.insert_subset_iff.1 HS₁ with h₁ h₂ [GOAL] case move.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k₁✝ k₂✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.move p✝ k₁✝ k₂✝ q) HS₁ : insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.move p✝ k₁✝ k₂✝ q ∈ S h₂ : trStmts₁ q ⊆ S h₃ : q ∈ S ⊢ Supports (insert (Λ'.move p✝ k₁✝ k₂✝ q) (trStmts₁ q)) S [PROOFSTEP] exact supports_insert.2 ⟨⟨fun _ => h₃, fun _ => h₁⟩, q_ih H₁ h₂⟩ -- move [GOAL] case clear.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q p✝ : Γ' → Bool k✝ : K' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.clear p✝ k✝ q) HS₁ : insert (Λ'.clear p✝ k✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.clear p✝ k✝ q ∈ S h₂ : trStmts₁ q ⊆ S h₃ : q ∈ S ⊢ Supports (insert (Λ'.clear p✝ k✝ q) (trStmts₁ q)) S [PROOFSTEP] exact supports_insert.2 ⟨⟨fun _ => h₃, fun _ => h₁⟩, q_ih H₁ h₂⟩ -- clear [GOAL] case copy.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.copy q) HS₁ : insert (Λ'.copy q) (trStmts₁ q) ⊆ S h₁ : Λ'.copy q ∈ S h₂ : trStmts₁ q ⊆ S h₃ : q ∈ S ⊢ Supports (insert (Λ'.copy q) (trStmts₁ q)) S [PROOFSTEP] exact supports_insert.2 ⟨⟨fun _ => h₁, fun _ => h₃⟩, q_ih H₁ h₂⟩ -- copy [GOAL] case push.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : K' s✝ : Option Γ' → Option Γ' q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.push k✝ s✝ q) HS₁ : insert (Λ'.push k✝ s✝ q) (trStmts₁ q) ⊆ S h₁ : Λ'.push k✝ s✝ q ∈ S h₂ : trStmts₁ q ⊆ S h₃ : q ∈ S ⊢ Supports (insert (Λ'.push k✝ s✝ q) (trStmts₁ q)) S [PROOFSTEP] exact supports_insert.2 ⟨⟨fun _ => h₃, fun _ => h₃⟩, q_ih H₁ h₂⟩ -- push [GOAL] case read.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S h₁ : Λ'.read q ∈ S h₂ : ∀ ⦃x : Λ'⦄ (x_1 : Option Γ'), x ∈ trStmts₁ (q x_1) → x ∈ S ⊢ Supports (insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s))) S [PROOFSTEP] refine' supports_insert.2 ⟨fun _ => h₂ _ W, _⟩ -- read [GOAL] case read.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Option Γ' → Λ' q_ih : ∀ (a : Option Γ'), Λ'.Supports S (q a) → trStmts₁ (q a) ⊆ S → Supports (trStmts₁ (q a)) S H₁ : Λ'.Supports S (Λ'.read q) HS₁ : insert (Λ'.read q) (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) ⊆ S h₁ : Λ'.read q ∈ S h₂ : ∀ ⦃x : Λ'⦄ (x_1 : Option Γ'), x ∈ trStmts₁ (q x_1) → x ∈ S ⊢ Supports (Finset.biUnion Finset.univ fun s => trStmts₁ (q s)) S [PROOFSTEP] exact supports_biUnion.2 fun _ => q_ih _ (H₁ _) fun _ h => h₂ _ h [GOAL] case succ.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S h₁ : Λ'.succ q ∈ S h₂ : unrev q ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q → a ∈ S ⊢ Supports (insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q))) S [PROOFSTEP] refine' supports_insert.2 ⟨⟨fun _ => h₁, fun _ => h₂.1, fun _ => h₂.1⟩, _⟩ -- succ [GOAL] case succ.intro S : Finset Λ' q✝ : Λ' H₁✝ : Λ'.Supports S q✝ HS₁✝ : trStmts₁ q✝ ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q : Λ' q_ih : Λ'.Supports S q → trStmts₁ q ⊆ S → Supports (trStmts₁ q) S H₁ : Λ'.Supports S (Λ'.succ q) HS₁ : insert (Λ'.succ q) (insert (unrev q) (trStmts₁ q)) ⊆ S h₁ : Λ'.succ q ∈ S h₂ : unrev q ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q → a ∈ S ⊢ Supports (insert (unrev q) (trStmts₁ q)) S [PROOFSTEP] exact supports_insert.2 ⟨⟨fun _ => h₂.2 _ W, fun _ => h₂.1⟩, q_ih H₁ h₂.2⟩ [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S ⊢ Supports (insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂))) S [PROOFSTEP] refine' -- predsupports_insert.2 ⟨⟨fun _ => h₁, fun _ => h₂.2 _ (Or.inl W), fun _ => h₂.1, fun _ => h₂.1⟩, _⟩ [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S ⊢ Supports (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) S [PROOFSTEP] refine' supports_insert.2 ⟨⟨fun _ => h₂.2 _ (Or.inr W), fun _ => h₂.1⟩, _⟩ [GOAL] case pred.intro S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S ⊢ Supports (trStmts₁ q₁ ∪ trStmts₁ q₂) S [PROOFSTEP] refine' supports_union.2 ⟨_, _⟩ [GOAL] case pred.intro.refine'_1 S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S ⊢ Supports (trStmts₁ q₁) S [PROOFSTEP] exact q₁_ih H₁.1 fun _ h => h₂.2 _ (Or.inl h) [GOAL] case pred.intro.refine'_2 S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q q₁ q₂ : Λ' q₁_ih : Λ'.Supports S q₁ → trStmts₁ q₁ ⊆ S → Supports (trStmts₁ q₁) S q₂_ih : Λ'.Supports S q₂ → trStmts₁ q₂ ⊆ S → Supports (trStmts₁ q₂) S H₁ : Λ'.Supports S (Λ'.pred q₁ q₂) HS₁ : insert (Λ'.pred q₁ q₂) (insert (unrev q₂) (trStmts₁ q₁ ∪ trStmts₁ q₂)) ⊆ S h₁ : Λ'.pred q₁ q₂ ∈ S h₂ : unrev q₂ ∈ S ∧ ∀ (a : Λ'), a ∈ trStmts₁ q₁ ∨ a ∈ trStmts₁ q₂ → a ∈ S ⊢ Supports (trStmts₁ q₂) S [PROOFSTEP] exact q₂_ih H₁.2 fun _ h => h₂.2 _ (Or.inr h) [GOAL] case ret S : Finset Λ' q : Λ' H₁✝ : Λ'.Supports S q HS₁✝ : trStmts₁ q ⊆ S W : ∀ {q : Λ'}, q ∈ trStmts₁ q k✝ : Cont' H₁ : Λ'.Supports S (Λ'.ret k✝) HS₁ : {Λ'.ret k✝} ⊆ S ⊢ Supports {Λ'.ret k✝} S [PROOFSTEP] exact supports_singleton.2 (ret_supports H₁) -- ret [GOAL] S : Finset Λ' q : Λ' K : Finset Λ' H₁ : Λ'.Supports S q H₂ : trStmts₁ q ∪ K ⊆ S H₃ : K ⊆ S → Supports K S ⊢ Supports (trStmts₁ q ∪ K) S [PROOFSTEP] simp [Finset.union_subset_iff] at H₂ [GOAL] S : Finset Λ' q : Λ' K : Finset Λ' H₁ : Λ'.Supports S q H₃ : K ⊆ S → Supports K S H₂ : trStmts₁ q ⊆ S ∧ K ⊆ S ⊢ Supports (trStmts₁ q ∪ K) S [PROOFSTEP] exact supports_union.2 ⟨trStmts₁_supports H₁ H₂.1, H₃ H₂.2⟩ [GOAL] S : Finset Λ' c : Code k : Cont' Hk : codeSupp c k ⊆ S ⊢ Λ'.Supports S (trNormal c k) [PROOFSTEP] induction c generalizing k [GOAL] case zero' S : Finset Λ' k : Cont' Hk : codeSupp Code.zero' k ⊆ S ⊢ Λ'.Supports S (trNormal Code.zero' k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case succ S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S ⊢ Λ'.Supports S (trNormal Code.succ k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case tail S : Finset Λ' k : Cont' Hk : codeSupp Code.tail k ⊆ S ⊢ Λ'.Supports S (trNormal Code.tail k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal (Code.cons a✝¹ a✝) k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal (Code.comp a✝¹ a✝) k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal (Code.case a✝¹ a✝) k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal (Code.fix a✝) k) [PROOFSTEP] simp [Λ'.Supports, head] [GOAL] case zero' S : Finset Λ' k : Cont' Hk : codeSupp Code.zero' k ⊆ S ⊢ contSupp k ⊆ S case succ S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S ⊢ ∀ (s : Option Γ'), Λ'.Supports S (ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k)))) case tail S : Finset Λ' k : Cont' Hk : codeSupp Code.tail k ⊆ S ⊢ contSupp k ⊆ S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k)) case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k)) case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k) case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case zero' => exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.zero' k ⊆ S ⊢ contSupp k ⊆ S [PROOFSTEP] case zero' => exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.zero' k ⊆ S ⊢ contSupp k ⊆ S [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] case succ S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S ⊢ ∀ (s : Option Γ'), Λ'.Supports S (ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k)))) case tail S : Finset Λ' k : Cont' Hk : codeSupp Code.tail k ⊆ S ⊢ contSupp k ⊆ S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k)) case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k)) case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k) case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case succ => intro; split_ifs <;> exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S ⊢ ∀ (s : Option Γ'), Λ'.Supports S (ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k)))) [PROOFSTEP] case succ => intro; split_ifs <;> exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S ⊢ ∀ (s : Option Γ'), Λ'.Supports S (ite (s = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k)))) [PROOFSTEP] intro [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S s✝ : Option Γ' ⊢ Λ'.Supports S (ite (s✝ = some Γ'.consₗ) id (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main) (unrev (Λ'.succ (Λ'.ret k)))) [PROOFSTEP] split_ifs [GOAL] case pos S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S s✝ : Option Γ' h✝ : s✝ = some Γ'.consₗ ⊢ Λ'.Supports S (id (unrev (Λ'.succ (Λ'.ret k)))) [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] case neg S : Finset Λ' k : Cont' Hk : codeSupp Code.succ k ⊆ S s✝ : Option Γ' h✝ : ¬s✝ = some Γ'.consₗ ⊢ Λ'.Supports S (Λ'.clear (fun x => decide (x = Γ'.consₗ)) main (unrev (Λ'.succ (Λ'.ret k)))) [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] case tail S : Finset Λ' k : Cont' Hk : codeSupp Code.tail k ⊆ S ⊢ contSupp k ⊆ S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k)) case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k)) case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k) case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case tail => exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.tail k ⊆ S ⊢ contSupp k ⊆ S [PROOFSTEP] case tail => exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' k : Cont' Hk : codeSupp Code.tail k ⊆ S ⊢ contSupp k ⊆ S [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ (Cont'.cons₁ a✝ k)) case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k)) case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k) case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case cons f fs IHf _ => apply IHf rw [codeSupp_cons] at Hk exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k) k : Cont' Hk : codeSupp (Code.cons f fs) k ⊆ S ⊢ Λ'.Supports S (trNormal f (Cont'.cons₁ fs k)) [PROOFSTEP] case cons f fs IHf _ => apply IHf rw [codeSupp_cons] at Hk exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k) k : Cont' Hk : codeSupp (Code.cons f fs) k ⊆ S ⊢ Λ'.Supports S (trNormal f (Cont'.cons₁ fs k)) [PROOFSTEP] apply IHf [GOAL] case Hk S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k) k : Cont' Hk : codeSupp (Code.cons f fs) k ⊆ S ⊢ codeSupp f (Cont'.cons₁ fs k) ⊆ S [PROOFSTEP] rw [codeSupp_cons] at Hk [GOAL] case Hk S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) a_ih✝ : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Λ'.Supports S (trNormal fs k) k : Cont' Hk : trStmts₁ (trNormal (Code.cons f fs) k) ∪ codeSupp f (Cont'.cons₁ fs k) ⊆ S ⊢ codeSupp f (Cont'.cons₁ fs k) ⊆ S [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.comp a✝¹ k)) case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k) case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case comp f g _ IHg => apply IHg; rw [codeSupp_comp] at Hk ; exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' f g : Code a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : codeSupp (Code.comp f g) k ⊆ S ⊢ Λ'.Supports S (trNormal g (Cont'.comp f k)) [PROOFSTEP] case comp f g _ IHg => apply IHg; rw [codeSupp_comp] at Hk ; exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' f g : Code a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : codeSupp (Code.comp f g) k ⊆ S ⊢ Λ'.Supports S (trNormal g (Cont'.comp f k)) [PROOFSTEP] apply IHg [GOAL] case Hk S : Finset Λ' f g : Code a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : codeSupp (Code.comp f g) k ⊆ S ⊢ codeSupp g (Cont'.comp f k) ⊆ S [PROOFSTEP] rw [codeSupp_comp] at Hk [GOAL] case Hk S : Finset Λ' f g : Code a_ih✝ : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S ⊢ codeSupp g (Cont'.comp f k) ⊆ S [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Λ'.Supports S (trNormal a✝¹ k) a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝¹ k) ∧ Λ'.Supports S (trNormal a✝ k) case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case case f g IHf IHg => simp only [codeSupp_case, Finset.union_subset_iff] at Hk exact ⟨IHf Hk.2.1, IHg Hk.2.2⟩ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : codeSupp (Code.case f g) k ⊆ S ⊢ Λ'.Supports S (trNormal f k) ∧ Λ'.Supports S (trNormal g k) [PROOFSTEP] case case f g IHf IHg => simp only [codeSupp_case, Finset.union_subset_iff] at Hk exact ⟨IHf Hk.2.1, IHg Hk.2.2⟩ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : codeSupp (Code.case f g) k ⊆ S ⊢ Λ'.Supports S (trNormal f k) ∧ Λ'.Supports S (trNormal g k) [PROOFSTEP] simp only [codeSupp_case, Finset.union_subset_iff] at Hk [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Λ'.Supports S (trNormal g k) k : Cont' Hk : trStmts₁ (trNormal (Code.case f g) k) ⊆ S ∧ codeSupp f k ⊆ S ∧ codeSupp g k ⊆ S ⊢ Λ'.Supports S (trNormal f k) ∧ Λ'.Supports S (trNormal g k) [PROOFSTEP] exact ⟨IHf Hk.2.1, IHg Hk.2.2⟩ [GOAL] case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Λ'.Supports S (trNormal a✝ k) k : Cont' Hk : codeSupp (Code.fix a✝) k ⊆ S ⊢ Λ'.Supports S (trNormal a✝ (Cont'.fix a✝ k)) [PROOFSTEP] case fix f IHf => apply IHf; rw [codeSupp_fix] at Hk ; exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) k : Cont' Hk : codeSupp (Code.fix f) k ⊆ S ⊢ Λ'.Supports S (trNormal f (Cont'.fix f k)) [PROOFSTEP] case fix f IHf => apply IHf; rw [codeSupp_fix] at Hk ; exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) k : Cont' Hk : codeSupp (Code.fix f) k ⊆ S ⊢ Λ'.Supports S (trNormal f (Cont'.fix f k)) [PROOFSTEP] apply IHf [GOAL] case Hk S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) k : Cont' Hk : codeSupp (Code.fix f) k ⊆ S ⊢ codeSupp f (Cont'.fix f k) ⊆ S [PROOFSTEP] rw [codeSupp_fix] at Hk [GOAL] case Hk S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Λ'.Supports S (trNormal f k) k : Cont' Hk : trStmts₁ (trNormal (Code.fix f) k) ∪ codeSupp f (Cont'.fix f k) ⊆ S ⊢ codeSupp f (Cont'.fix f k) ⊆ S [PROOFSTEP] exact Finset.union_subset_right Hk [GOAL] S : Finset Λ' c : Code k : Cont' H : codeSupp c k ⊆ S ⊢ Supports (codeSupp' c k) S [PROOFSTEP] induction c generalizing k [GOAL] case zero' S : Finset Λ' k : Cont' H : codeSupp Code.zero' k ⊆ S ⊢ Supports (codeSupp' Code.zero' k) S case succ S : Finset Λ' k : Cont' H : codeSupp Code.succ k ⊆ S ⊢ Supports (codeSupp' Code.succ k) S case tail S : Finset Λ' k : Cont' H : codeSupp Code.tail k ⊆ S ⊢ Supports (codeSupp' Code.tail k) S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] iterate 3 exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H) [GOAL] case zero' S : Finset Λ' k : Cont' H : codeSupp Code.zero' k ⊆ S ⊢ Supports (codeSupp' Code.zero' k) S case succ S : Finset Λ' k : Cont' H : codeSupp Code.succ k ⊆ S ⊢ Supports (codeSupp' Code.succ k) S case tail S : Finset Λ' k : Cont' H : codeSupp Code.tail k ⊆ S ⊢ Supports (codeSupp' Code.tail k) S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H) [GOAL] case succ S : Finset Λ' k : Cont' H : codeSupp Code.succ k ⊆ S ⊢ Supports (codeSupp' Code.succ k) S case tail S : Finset Λ' k : Cont' H : codeSupp Code.tail k ⊆ S ⊢ Supports (codeSupp' Code.tail k) S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H) [GOAL] case tail S : Finset Λ' k : Cont' H : codeSupp Code.tail k ⊆ S ⊢ Supports (codeSupp' Code.tail k) S case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] exact trStmts₁_supports (trNormal_supports H) (Finset.Subset.trans (codeSupp_self _ _) H) [GOAL] case cons S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.cons a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.cons a✝¹ a✝) k) S case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] case cons f fs IHf IHfs => have H' := H; simp only [codeSupp_cons, Finset.union_subset_iff] at H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ refine' supports_union.2 ⟨IHf H'.2, _⟩ refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun h => _ · simp only [codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢ exact ⟨h.2.2.1, h.2.2.2, H.2⟩ refine' supports_union.2 ⟨IHfs _, _⟩ · rw [codeSupp, contSupp_cons₁] at H' exact Finset.union_subset_right (Finset.union_subset_right H'.2) exact trStmts₁_supports (head_supports <| Finset.union_subset_right H) (Finset.union_subset_right h) [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S ⊢ Supports (codeSupp' (Code.cons f fs) k) S [PROOFSTEP] case cons f fs IHf IHfs => have H' := H; simp only [codeSupp_cons, Finset.union_subset_iff] at H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ refine' supports_union.2 ⟨IHf H'.2, _⟩ refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun h => _ · simp only [codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢ exact ⟨h.2.2.1, h.2.2.2, H.2⟩ refine' supports_union.2 ⟨IHfs _, _⟩ · rw [codeSupp, contSupp_cons₁] at H' exact Finset.union_subset_right (Finset.union_subset_right H'.2) exact trStmts₁_supports (head_supports <| Finset.union_subset_right H) (Finset.union_subset_right h) [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S ⊢ Supports (codeSupp' (Code.cons f fs) k) S [PROOFSTEP] have H' := H [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H H' : codeSupp (Code.cons f fs) k ⊆ S ⊢ Supports (codeSupp' (Code.cons f fs) k) S [PROOFSTEP] simp only [codeSupp_cons, Finset.union_subset_iff] at H' [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S ⊢ Supports (codeSupp' (Code.cons f fs) k) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S ⊢ Supports (codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k))))) S [PROOFSTEP] refine' supports_union.2 ⟨IHf H'.2, _⟩ [GOAL] S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S ⊢ Supports (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun h => _ [GOAL] case refine'_1 S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S ⊢ codeSupp fs (Cont'.cons₂ k) ⊆ S [PROOFSTEP] simp only [codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢ [GOAL] case refine'_1 S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h : codeSupp' f (Cont'.cons₁ fs k) ⊆ S ∧ trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ⊆ S ∧ codeSupp' fs (Cont'.cons₂ k) ⊆ S ∧ trStmts₁ (head stack (Λ'.ret k)) ⊆ S H : codeSupp' (Code.cons f fs) k ⊆ S ∧ contSupp k ⊆ S ⊢ codeSupp' fs (Cont'.cons₂ k) ⊆ S ∧ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ∧ contSupp k ⊆ S [PROOFSTEP] exact ⟨h.2.2.1, h.2.2.2, H.2⟩ [GOAL] case refine'_2 S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h✝ : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ⊢ Supports (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k))) S [PROOFSTEP] refine' supports_union.2 ⟨IHfs _, _⟩ [GOAL] case refine'_2.refine'_1 S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h✝ : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ⊢ codeSupp fs (Cont'.cons₂ k) ⊆ S [PROOFSTEP] rw [codeSupp, contSupp_cons₁] at H' [GOAL] case refine'_2.refine'_1 S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ codeSupp fs (Cont'.cons₂ k)) ⊆ S h✝ : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ⊢ codeSupp fs (Cont'.cons₂ k) ⊆ S [PROOFSTEP] exact Finset.union_subset_right (Finset.union_subset_right H'.2) [GOAL] case refine'_2.refine'_2 S : Finset Λ' f fs : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHfs : ∀ {k : Cont'}, codeSupp fs k ⊆ S → Supports (codeSupp' fs k) S k : Cont' H : codeSupp (Code.cons f fs) k ⊆ S H' : trStmts₁ (trNormal (Code.cons f fs) k) ⊆ S ∧ codeSupp f (Cont'.cons₁ fs k) ⊆ S h✝ : codeSupp' f (Cont'.cons₁ fs k) ∪ (trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal fs (Cont'.cons₂ k))))) ∪ (codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)))) ⊆ S h : codeSupp' fs (Cont'.cons₂ k) ∪ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ⊢ Supports (trStmts₁ (head stack (Λ'.ret k))) S [PROOFSTEP] exact trStmts₁_supports (head_supports <| Finset.union_subset_right H) (Finset.union_subset_right h) [GOAL] case comp S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.comp a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.comp a✝¹ a✝) k) S case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] case comp f g IHf IHg => have H' := H; rw [codeSupp_comp] at H' ; have H' := Finset.union_subset_right H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ refine' supports_union.2 ⟨IHg H', _⟩ refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _ · simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢ exact ⟨h.2.2, H.2⟩ exact IHf (Finset.union_subset_right H') [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S ⊢ Supports (codeSupp' (Code.comp f g) k) S [PROOFSTEP] case comp f g IHf IHg => have H' := H; rw [codeSupp_comp] at H' ; have H' := Finset.union_subset_right H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ refine' supports_union.2 ⟨IHg H', _⟩ refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _ · simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢ exact ⟨h.2.2, H.2⟩ exact IHf (Finset.union_subset_right H') [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S ⊢ Supports (codeSupp' (Code.comp f g) k) S [PROOFSTEP] have H' := H [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H H' : codeSupp (Code.comp f g) k ⊆ S ⊢ Supports (codeSupp' (Code.comp f g) k) S [PROOFSTEP] rw [codeSupp_comp] at H' [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S H' : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S ⊢ Supports (codeSupp' (Code.comp f g) k) S [PROOFSTEP] have H' := Finset.union_subset_right H' [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S ⊢ Supports (codeSupp' (Code.comp f g) k) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S ⊢ Supports (codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k)) S [PROOFSTEP] refine' supports_union.2 ⟨IHg H', _⟩ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S ⊢ Supports (trStmts₁ (trNormal f k) ∪ codeSupp' f k) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _ [GOAL] case refine'_1 S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S ⊢ codeSupp f k ⊆ S [PROOFSTEP] simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp] at h H ⊢ [GOAL] case refine'_1 S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ⊆ S ∧ trStmts₁ (trNormal f k) ⊆ S ∧ codeSupp' f k ⊆ S H : (trStmts₁ (trNormal (Code.comp f g) k) ⊆ S ∧ codeSupp' g (Cont'.comp f k) ⊆ S ∧ trStmts₁ (trNormal f k) ⊆ S ∧ codeSupp' f k ⊆ S) ∧ contSupp k ⊆ S ⊢ codeSupp' f k ⊆ S ∧ contSupp k ⊆ S [PROOFSTEP] exact ⟨h.2.2, H.2⟩ [GOAL] case refine'_2 S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.comp f g) k ⊆ S H'✝ : trStmts₁ (trNormal (Code.comp f g) k) ∪ codeSupp g (Cont'.comp f k) ⊆ S H' : codeSupp g (Cont'.comp f k) ⊆ S h : codeSupp' g (Cont'.comp f k) ∪ (trStmts₁ (trNormal f k) ∪ codeSupp' f k) ⊆ S x✝ : codeSupp' f k ⊆ S ⊢ Supports (codeSupp' f k) S [PROOFSTEP] exact IHf (Finset.union_subset_right H') [GOAL] case case S : Finset Λ' a✝¹ a✝ : Code a_ih✝¹ : ∀ {k : Cont'}, codeSupp a✝¹ k ⊆ S → Supports (codeSupp' a✝¹ k) S a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.case a✝¹ a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.case a✝¹ a✝) k) S case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] case case f g IHf IHg => have H' := H; simp only [codeSupp_case, Finset.union_subset_iff] at H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun _ => _ exact supports_union.2 ⟨IHf H'.2.1, IHg H'.2.2⟩ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.case f g) k ⊆ S ⊢ Supports (codeSupp' (Code.case f g) k) S [PROOFSTEP] case case f g IHf IHg => have H' := H; simp only [codeSupp_case, Finset.union_subset_iff] at H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun _ => _ exact supports_union.2 ⟨IHf H'.2.1, IHg H'.2.2⟩ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.case f g) k ⊆ S ⊢ Supports (codeSupp' (Code.case f g) k) S [PROOFSTEP] have H' := H [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H H' : codeSupp (Code.case f g) k ⊆ S ⊢ Supports (codeSupp' (Code.case f g) k) S [PROOFSTEP] simp only [codeSupp_case, Finset.union_subset_iff] at H' [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.case f g) k ⊆ S H' : trStmts₁ (trNormal (Code.case f g) k) ⊆ S ∧ codeSupp f k ⊆ S ∧ codeSupp g k ⊆ S ⊢ Supports (codeSupp' (Code.case f g) k) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun _ => _ [GOAL] S : Finset Λ' f g : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S IHg : ∀ {k : Cont'}, codeSupp g k ⊆ S → Supports (codeSupp' g k) S k : Cont' H : codeSupp (Code.case f g) k ⊆ S H' : trStmts₁ (trNormal (Code.case f g) k) ⊆ S ∧ codeSupp f k ⊆ S ∧ codeSupp g k ⊆ S x✝ : codeSupp' f k ∪ codeSupp' g k ⊆ S ⊢ Supports (codeSupp' f k ∪ codeSupp' g k) S [PROOFSTEP] exact supports_union.2 ⟨IHf H'.2.1, IHg H'.2.2⟩ [GOAL] case fix S : Finset Λ' a✝ : Code a_ih✝ : ∀ {k : Cont'}, codeSupp a✝ k ⊆ S → Supports (codeSupp' a✝ k) S k : Cont' H : codeSupp (Code.fix a✝) k ⊆ S ⊢ Supports (codeSupp' (Code.fix a✝) k) S [PROOFSTEP] case fix f IHf => have H' := H; simp only [codeSupp_fix, Finset.union_subset_iff] at H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ refine' supports_union.2 ⟨IHf H'.2, _⟩ refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _ · simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp, trStmts₁, Finset.insert_subset_iff] at h H ⊢ exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩ exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H) [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S ⊢ Supports (codeSupp' (Code.fix f) k) S [PROOFSTEP] case fix f IHf => have H' := H; simp only [codeSupp_fix, Finset.union_subset_iff] at H' refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ refine' supports_union.2 ⟨IHf H'.2, _⟩ refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _ · simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp, trStmts₁, Finset.insert_subset_iff] at h H ⊢ exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩ exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H) [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S ⊢ Supports (codeSupp' (Code.fix f) k) S [PROOFSTEP] have H' := H [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H H' : codeSupp (Code.fix f) k ⊆ S ⊢ Supports (codeSupp' (Code.fix f) k) S [PROOFSTEP] simp only [codeSupp_fix, Finset.union_subset_iff] at H' [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S ⊢ Supports (codeSupp' (Code.fix f) k) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports H) (Finset.union_subset_left H) fun h => _ [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S ⊢ Supports (codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k})) S [PROOFSTEP] refine' supports_union.2 ⟨IHf H'.2, _⟩ [GOAL] S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S ⊢ Supports (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports _) (Finset.union_subset_right h) fun _ => _ [GOAL] case refine'_1 S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S ⊢ codeSupp f (Cont'.fix f k) ⊆ S [PROOFSTEP] simp only [codeSupp', codeSupp, Finset.union_subset_iff, contSupp, trStmts₁, Finset.insert_subset_iff] at h H ⊢ [GOAL] case refine'_1 S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S h : codeSupp' f (Cont'.fix f k) ⊆ S ∧ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k)) ∈ S ∧ trStmts₁ (trNormal f (Cont'.fix f k)) ⊆ S) ∧ {Λ'.ret k} ⊆ S H : (trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp' f (Cont'.fix f k) ⊆ S ∧ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k)) ∈ S ∧ trStmts₁ (trNormal f (Cont'.fix f k)) ⊆ S) ∧ {Λ'.ret k} ⊆ S) ∧ contSupp k ⊆ S ⊢ codeSupp' f (Cont'.fix f k) ⊆ S ∧ (trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp' f (Cont'.fix f k) ⊆ S ∧ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k)) ∈ S ∧ trStmts₁ (trNormal f (Cont'.fix f k)) ⊆ S) ∧ {Λ'.ret k} ⊆ S) ∧ contSupp k ⊆ S [PROOFSTEP] exact ⟨h.1, ⟨H.1.1, h⟩, H.2⟩ [GOAL] case refine'_2 S : Finset Λ' f : Code IHf : ∀ {k : Cont'}, codeSupp f k ⊆ S → Supports (codeSupp' f k) S k : Cont' H : codeSupp (Code.fix f) k ⊆ S H' : trStmts₁ (trNormal (Code.fix f) k) ⊆ S ∧ codeSupp f (Cont'.fix f k) ⊆ S h : codeSupp' f (Cont'.fix f k) ∪ (trStmts₁ (Λ'.clear natEnd main (trNormal f (Cont'.fix f k))) ∪ {Λ'.ret k}) ⊆ S x✝ : {Λ'.ret k} ⊆ S ⊢ Supports {Λ'.ret k} S [PROOFSTEP] exact supports_singleton.2 (ret_supports <| Finset.union_subset_right H) [GOAL] S : Finset Λ' k : Cont' H : contSupp k ⊆ S ⊢ Supports (contSupp k) S [PROOFSTEP] induction k [GOAL] case halt S : Finset Λ' H : contSupp Cont'.halt ⊆ S ⊢ Supports (contSupp Cont'.halt) S [PROOFSTEP] simp [contSupp_halt, Supports] [GOAL] case cons₁ S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.cons₁ a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.cons₁ a✝¹ a✝)) S case cons₂ S : Finset Λ' a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.cons₂ a✝)) S case comp S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.comp a✝¹ a✝)) S case fix S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S [PROOFSTEP] case cons₁ f k IH => have H₁ := H; rw [contSupp_cons₁] at H₁ ; have H₂ := Finset.union_subset_right H₁ refine' trStmts₁_supports' (trNormal_supports H₂) H₁ fun h => _ refine' supports_union.2 ⟨codeSupp'_supports H₂, _⟩ simp only [codeSupp, contSupp_cons₂, Finset.union_subset_iff] at H₂ exact trStmts₁_supports' (head_supports H₂.2.2) (Finset.union_subset_right h) IH [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₁ f k)) S [PROOFSTEP] case cons₁ f k IH => have H₁ := H; rw [contSupp_cons₁] at H₁ ; have H₂ := Finset.union_subset_right H₁ refine' trStmts₁_supports' (trNormal_supports H₂) H₁ fun h => _ refine' supports_union.2 ⟨codeSupp'_supports H₂, _⟩ simp only [codeSupp, contSupp_cons₂, Finset.union_subset_iff] at H₂ exact trStmts₁_supports' (head_supports H₂.2.2) (Finset.union_subset_right h) IH [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₁ f k)) S [PROOFSTEP] have H₁ := H [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H H₁ : contSupp (Cont'.cons₁ f k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₁ f k)) S [PROOFSTEP] rw [contSupp_cons₁] at H₁ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S H₁ : trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪ codeSupp f (Cont'.cons₂ k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₁ f k)) S [PROOFSTEP] have H₂ := Finset.union_subset_right H₁ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S H₁ : trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪ codeSupp f (Cont'.cons₂ k) ⊆ S H₂ : codeSupp f (Cont'.cons₂ k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₁ f k)) S [PROOFSTEP] refine' trStmts₁_supports' (trNormal_supports H₂) H₁ fun h => _ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S H₁ : trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪ codeSupp f (Cont'.cons₂ k) ⊆ S H₂ : codeSupp f (Cont'.cons₂ k) ⊆ S h : codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) ⊆ S ⊢ Supports (codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k)) S [PROOFSTEP] refine' supports_union.2 ⟨codeSupp'_supports H₂, _⟩ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S H₁ : trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪ codeSupp f (Cont'.cons₂ k) ⊆ S H₂ : codeSupp f (Cont'.cons₂ k) ⊆ S h : codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) ⊆ S ⊢ Supports (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) S [PROOFSTEP] simp only [codeSupp, contSupp_cons₂, Finset.union_subset_iff] at H₂ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₁ f k) ⊆ S H₁ : trStmts₁ (move₂ (fun x => false) main aux (move₂ (fun s => decide (s = Γ'.consₗ)) stack main (move₂ (fun x => false) aux stack (trNormal f (Cont'.cons₂ k))))) ∪ codeSupp f (Cont'.cons₂ k) ⊆ S h : codeSupp' f (Cont'.cons₂ k) ∪ (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) ⊆ S H₂ : codeSupp' f (Cont'.cons₂ k) ⊆ S ∧ trStmts₁ (head stack (Λ'.ret k)) ⊆ S ∧ contSupp k ⊆ S ⊢ Supports (trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k) S [PROOFSTEP] exact trStmts₁_supports' (head_supports H₂.2.2) (Finset.union_subset_right h) IH [GOAL] case cons₂ S : Finset Λ' a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.cons₂ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.cons₂ a✝)) S case comp S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.comp a✝¹ a✝)) S case fix S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S [PROOFSTEP] case cons₂ k IH => have H' := H; rw [contSupp_cons₂] at H' exact trStmts₁_supports' (head_supports <| Finset.union_subset_right H') H' IH [GOAL] S : Finset Λ' k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₂ k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₂ k)) S [PROOFSTEP] case cons₂ k IH => have H' := H; rw [contSupp_cons₂] at H' exact trStmts₁_supports' (head_supports <| Finset.union_subset_right H') H' IH [GOAL] S : Finset Λ' k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₂ k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₂ k)) S [PROOFSTEP] have H' := H [GOAL] S : Finset Λ' k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H H' : contSupp (Cont'.cons₂ k) ⊆ S ⊢ Supports (contSupp (Cont'.cons₂ k)) S [PROOFSTEP] rw [contSupp_cons₂] at H' [GOAL] S : Finset Λ' k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.cons₂ k) ⊆ S H' : trStmts₁ (head stack (Λ'.ret k)) ∪ contSupp k ⊆ S ⊢ Supports (contSupp (Cont'.cons₂ k)) S [PROOFSTEP] exact trStmts₁_supports' (head_supports <| Finset.union_subset_right H') H' IH [GOAL] case comp S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.comp a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.comp a✝¹ a✝)) S case fix S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S [PROOFSTEP] case comp f k IH => have H' := H; rw [contSupp_comp] at H' ; have H₂ := Finset.union_subset_right H' exact supports_union.2 ⟨codeSupp'_supports H', IH H₂⟩ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.comp f k) ⊆ S ⊢ Supports (contSupp (Cont'.comp f k)) S [PROOFSTEP] case comp f k IH => have H' := H; rw [contSupp_comp] at H' ; have H₂ := Finset.union_subset_right H' exact supports_union.2 ⟨codeSupp'_supports H', IH H₂⟩ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.comp f k) ⊆ S ⊢ Supports (contSupp (Cont'.comp f k)) S [PROOFSTEP] have H' := H [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H H' : contSupp (Cont'.comp f k) ⊆ S ⊢ Supports (contSupp (Cont'.comp f k)) S [PROOFSTEP] rw [contSupp_comp] at H' [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.comp f k) ⊆ S H' : codeSupp f k ⊆ S ⊢ Supports (contSupp (Cont'.comp f k)) S [PROOFSTEP] have H₂ := Finset.union_subset_right H' [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.comp f k) ⊆ S H' : codeSupp f k ⊆ S H₂ : contSupp k ⊆ S ⊢ Supports (contSupp (Cont'.comp f k)) S [PROOFSTEP] exact supports_union.2 ⟨codeSupp'_supports H', IH H₂⟩ [GOAL] case fix S : Finset Λ' a✝¹ : Code a✝ : Cont' a_ih✝ : contSupp a✝ ⊆ S → Supports (contSupp a✝) S H : contSupp (Cont'.fix a✝¹ a✝) ⊆ S ⊢ Supports (contSupp (Cont'.fix a✝¹ a✝)) S [PROOFSTEP] case fix f k IH => rw [contSupp] at H exact supports_union.2 ⟨codeSupp'_supports H, IH (Finset.union_subset_right H)⟩ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.fix f k) ⊆ S ⊢ Supports (contSupp (Cont'.fix f k)) S [PROOFSTEP] case fix f k IH => rw [contSupp] at H exact supports_union.2 ⟨codeSupp'_supports H, IH (Finset.union_subset_right H)⟩ [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : contSupp (Cont'.fix f k) ⊆ S ⊢ Supports (contSupp (Cont'.fix f k)) S [PROOFSTEP] rw [contSupp] at H [GOAL] S : Finset Λ' f : Code k : Cont' IH : contSupp k ⊆ S → Supports (contSupp k) S H : codeSupp' (Code.fix f) k ∪ contSupp k ⊆ S ⊢ Supports (contSupp (Cont'.fix f k)) S [PROOFSTEP] exact supports_union.2 ⟨codeSupp'_supports H, IH (Finset.union_subset_right H)⟩
{"mathlib_filename": "Mathlib.Computability.TMToPartrec", "llama_tokens": 364962}