# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Wikipedia NQ dataset.""" import json import datasets _CITATION = """ @inproceedings{karpukhin-etal-2020-dense, title = "Dense Passage Retrieval for Open-Domain Question Answering", author = "Karpukhin, Vladimir and Oguz, Barlas and Min, Sewon and Lewis, Patrick and Wu, Ledell and Edunov, Sergey and Chen, Danqi and Yih, Wen-tau", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.550", doi = "10.18653/v1/2020.emnlp-main.550", pages = "6769--6781", } """ _DESCRIPTION = "dataset load script for Wikipedia NQ" _DATASET_URLS = { 'train': "https://huggingface.co/datasets/xxazz/wikipedia-nq/resolve/main/nq-train.jsonl.gz", 'dev': "https://huggingface.co/datasets/xxazz/wikipedia-nq/resolve/main/nq-dev.jsonl.gz", 'test': "https://huggingface.co/datasets/xxazz/wikipedia-nq/resolve/main/nq-test.jsonl.gz", } class WikipediaNq(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.0.1") BUILDER_CONFIGS = [ datasets.BuilderConfig(version=VERSION, description="Wikipedia NQ train/dev/test datasets"), ] def _info(self): features = datasets.Features({ 'query_id': datasets.Value('string'), 'query': datasets.Value('string'), 'answers': [datasets.Value('string')], 'pos_doc_ids': [datasets.Value('string')], 'neg_doc_ids': [datasets.Value('string')], }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage="", # License for the dataset if available license="", # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.data_files: downloaded_files = self.config.data_files else: downloaded_files = dl_manager.download_and_extract(_DATASET_URLS) splits = [ datasets.SplitGenerator( name=split, gen_kwargs={ "files": [downloaded_files[split]] if isinstance(downloaded_files[split], str) else downloaded_files[split], }, ) for split in downloaded_files ] return splits def _generate_examples(self, files): """Yields examples.""" for filepath in files: with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) if data.get('neg_doc_ids') is None: data['neg_doc_ids'] = [] if data.get('pos_doc_ids') is None: data['pos_doc_ids'] = [] if data.get('answers') is None: data['answers'] = [] yield data['query_id'], data