File size: 8,092 Bytes
507b8a4 e06df01 507b8a4 e06df01 fe76afe e06df01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
---
dataset_info:
features:
- name: num_atoms
dtype: int64
- name: atomic_symbols
sequence: string
- name: pos
sequence:
sequence: float64
- name: charges
sequence: float64
- name: harmonic_oscillator_frequencies
sequence: float64
- name: smiles
dtype: string
- name: inchi
dtype: string
- name: A
dtype: float64
- name: B
dtype: float64
- name: C
dtype: float64
- name: mu
dtype: float64
- name: alpha
dtype: float64
- name: homo
dtype: float64
- name: lumo
dtype: float64
- name: gap
dtype: float64
- name: r2
dtype: float64
- name: zpve
dtype: float64
- name: u0
dtype: float64
- name: u
dtype: float64
- name: h
dtype: float64
- name: g
dtype: float64
- name: cv
dtype: float64
- name: canonical_smiles
dtype: string
- name: logP
dtype: float64
- name: qed
dtype: float64
- name: np_score
dtype: float64
- name: sa_score
dtype: float64
- name: ring_count
dtype: int64
- name: R3
dtype: int64
- name: R4
dtype: int64
- name: R5
dtype: int64
- name: R6
dtype: int64
- name: R7
dtype: int64
- name: R8
dtype: int64
- name: R9
dtype: int64
- name: single_bond
dtype: int64
- name: double_bond
dtype: int64
- name: triple_bond
dtype: int64
- name: aromatic_bond
dtype: int64
splits:
- name: train
num_bytes: 199395693
num_examples: 133885
download_size: 180380355
dataset_size: 199395693
---
# Dataset Card for "QM9"
QM9 dataset from [Ruddigkeit et al., 2012](https://pubs.acs.org/doi/full/10.1021/ci300415d);
[Ramakrishnan et al., 2014](https://www.nature.com/articles/sdata201422).
Original data downloaded from: http://quantum-machine.org/datasets.
Additional annotations (QED, logP, SA score, NP score, bond and ring counts) added using [`rdkit`](https://www.rdkit.org/docs/index.html) library.
## Quick start usage:
```python
from datasets import load_dataset
ds = load_dataset("yairschiff/qm9")
# Random train/test splits as recommended by:
# https://moleculenet.org/datasets-1
test_size = 0.1
seed = 1
ds.train_test_split(test_size=test_size, seed=seed)
# Use `ds['canonical_smiles']` from `rdkit` as inputs.
```
## Full processing steps
```python
import os
import typing
import datasets
import numpy as np
import pandas as pd
import rdkit
import torch
from rdkit import Chem as rdChem
from rdkit.Chem import Crippen, QED
from rdkit.Contrib.NP_Score import npscorer
from rdkit.Contrib.SA_Score import sascorer
from tqdm.auto import tqdm
# TODO: Update to 2024.03.6 release when available instead of suppressing warning!
# See: https://github.com/rdkit/rdkit/issues/7625#
rdkit.rdBase.DisableLog('rdApp.warning')
def parse_float(
s: str
) -> float:
"""Parses floats potentially written as exponentiated values.
Copied from https://www.kaggle.com/code/tawe141/extracting-data-from-qm9-xyz-files/code
"""
try:
return float(s)
except ValueError:
base, power = s.split('*^')
return float(base) * 10**float(power)
def count_rings_and_bonds(
mol: rdChem.Mol, max_ring_size: int = -1
) -> typing.Dict[str, int]:
"""Counts bond and ring (by type)."""
# Counting rings
ssr = rdChem.GetSymmSSSR(mol)
ring_count = len(ssr)
ring_sizes = {} if max_ring_size < 0 else {i: 0 for i in range(3, max_ring_size+1)}
for ring in ssr:
ring_size = len(ring)
if ring_size not in ring_sizes:
ring_sizes[ring_size] = 0
ring_sizes[ring_size] += 1
# Counting bond types
bond_counts = {
'single': 0,
'double': 0,
'triple': 0,
'aromatic': 0
}
for bond in mol.GetBonds():
if bond.GetIsAromatic():
bond_counts['aromatic'] += 1
elif bond.GetBondType() == rdChem.BondType.SINGLE:
bond_counts['single'] += 1
elif bond.GetBondType() == rdChem.BondType.DOUBLE:
bond_counts['double'] += 1
elif bond.GetBondType() == rdChem.BondType.TRIPLE:
bond_counts['triple'] += 1
result = {
'ring_count': ring_count,
}
for k, v in ring_sizes.items():
result[f"R{k}"] = v
for k, v in bond_counts.items():
result[f"{k}_bond"] = v
return result
def parse_xyz(
filename: str,
max_ring_size: int = -1,
npscorer_model: typing.Optional[dict] = None,
array_format: str = 'np'
) -> typing.Dict[str, typing.Any]:
"""Parses QM9 specific xyz files.
See https://www.nature.com/articles/sdata201422/tables/2 for reference.
Adapted from https://www.kaggle.com/code/tawe141/extracting-data-from-qm9-xyz-files/code
"""
assert array_format in ['np', 'pt'], \
f"Invalid array_format: `{array_format}` provided. Must be one of `np` (numpy.array), `pt` (torch.tensor)."
num_atoms = 0
scalar_properties = []
atomic_symbols = []
xyz = []
charges = []
harmonic_vibrational_frequencies = []
smiles = ''
inchi = ''
with open(filename, 'r') as f:
for line_num, line in enumerate(f):
if line_num == 0:
num_atoms = int(line)
elif line_num == 1:
scalar_properties = [float(i) for i in line.split()[2:]]
elif 2 <= line_num <= 1 + num_atoms:
atom_symbol, x, y, z, charge = line.split()
atomic_symbols.append(atom_symbol)
xyz.append([parse_float(x), parse_float(y), parse_float(z)])
charges.append(parse_float(charge))
elif line_num == num_atoms + 2:
harmonic_vibrational_frequencies = [float(i) for i in line.split()]
elif line_num == num_atoms + 3:
smiles = line.split()[0]
elif line_num == num_atoms + 4:
inchi = line.split()[0]
array_wrap = np.array if array_format == 'np' else torch.tensor
result = {
'num_atoms': num_atoms,
'atomic_symbols': atomic_symbols,
'pos': array_wrap(xyz),
'charges': array_wrap(charges),
'harmonic_oscillator_frequencies': array_wrap(harmonic_vibrational_frequencies),
'smiles': smiles,
'inchi': inchi
}
scalar_property_labels = [
'A', 'B', 'C', 'mu', 'alpha', 'homo', 'lumo', 'gap', 'r2', 'zpve', 'u0', 'u', 'h', 'g', 'cv'
]
scalar_properties = dict(zip(scalar_property_labels, scalar_properties))
result.update(scalar_properties)
# RdKit
result['canonical_smiles'] = rdChem.CanonSmiles(result['smiles'])
m = rdChem.MolFromSmiles(result['canonical_smiles'])
result['logP'] = Crippen.MolLogP(m)
result['qed'] = QED.qed(m)
if npscorer_model is not None:
result['np_score'] = npscorer.scoreMol(m, npscorer_model)
result['sa_score'] = sascorer.calculateScore(m)
result.update(count_rings_and_bonds(m, max_ring_size=max_ring_size))
return result
"""
Download xyz files from:
https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
> wget https://figshare.com/ndownloader/files/3195389/dsgdb9nsd.xyz.tar.bz2
> mkdir dsgdb9nsd.xyz
> tar -xvjf dsgdb9nsd.xyz.tar.bz2 -C dsgdb9nsd.xyz
"""
MAX_RING_SIZE = 9
fscore = npscorer.readNPModel()
xyz_dir_path = '<PATH TO dsgdb9nsd.xyz>'
parsed_xyz = []
for file in tqdm(sorted(os.listdir(xyz_dir_path)), desc='Parsing'):
parsed = parse_xyz(os.path.join(xyz_dir_path, file),
max_ring_size=MAX_RING_SIZE,
npscorer_model=fscore,
array_format='np')
parsed_xyz.append(parsed)
qm9_df = pd.DataFrame(data=parsed_xyz)
# Conversion below is needed to avoid:
# `ArrowInvalid: ('Can only convert 1-dimensional array values',
# 'Conversion failed for column pos with type object')`
qm9_df['pos'] = qm9_df['pos'].apply(lambda x: [xi for xi in x])
dataset = datasets.Dataset.from_pandas(qm9_df)
``` |