system HF staff commited on
Commit
1565776
·
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - found
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - en
8
+ licenses:
9
+ - unknown
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - conditional-text-generation
18
+ task_ids:
19
+ - summarization
20
+ ---
21
+
22
+ # Dataset Card for Multi-XScience
23
+
24
+ ## Table of Contents
25
+ - [Dataset Description](#dataset-description)
26
+ - [Dataset Summary](#dataset-summary)
27
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
28
+ - [Languages](#languages)
29
+ - [Dataset Structure](#dataset-structure)
30
+ - [Data Instances](#data-instances)
31
+ - [Data Fields](#data-instances)
32
+ - [Data Splits](#data-instances)
33
+ - [Dataset Creation](#dataset-creation)
34
+ - [Curation Rationale](#curation-rationale)
35
+ - [Source Data](#source-data)
36
+ - [Annotations](#annotations)
37
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
38
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
39
+ - [Social Impact of Dataset](#social-impact-of-dataset)
40
+ - [Discussion of Biases](#discussion-of-biases)
41
+ - [Other Known Limitations](#other-known-limitations)
42
+ - [Additional Information](#additional-information)
43
+ - [Dataset Curators](#dataset-curators)
44
+ - [Licensing Information](#licensing-information)
45
+ - [Citation Information](#citation-information)
46
+
47
+ ## Dataset Description
48
+
49
+ - **Repository:** [Multi-XScience repository](https://github.com/yaolu/Multi-XScience)
50
+ - **Paper:** [Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles](https://arxiv.org/abs/2010.14235)
51
+
52
+ ### Dataset Summary
53
+
54
+ Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing therelated-work section of a paper based on itsabstract and the articles it references.
55
+
56
+ ### Supported Tasks and Leaderboards
57
+
58
+ [More Information Needed]
59
+
60
+ ### Languages
61
+
62
+ The text in the dataset is in English
63
+
64
+ ## Dataset Structure
65
+
66
+ ### Data Instances
67
+
68
+ {'abstract': 'Author(s): Kuperberg, Greg; Thurston, Dylan P. | Abstract: We give a purely topological definition of the perturbative quantum invariants of links and 3-manifolds associated with Chern-Simons field theory. Our definition is as close as possible to one given by Kontsevich. We will also establish some basic properties of these invariants, in particular that they are universally finite type with respect to algebraically split surgery and with respect to Torelli surgery. Torelli surgery is a mutual generalization of blink surgery of Garoufalidis and Levine and clasper surgery of Habiro.',
69
+ 'aid': 'math9912167',
70
+ 'mid': '1631980677',
71
+ 'ref_abstract': {'abstract': ['This note is a sequel to our earlier paper of the same title [4] and describes invariants of rational homology 3-spheres associated to acyclic orthogonal local systems. Our work is in the spirit of the Axelrod–Singer papers [1], generalizes some of their results, and furnishes a new setting for the purely topological implications of their work.',
72
+ 'Recently, Mullins calculated the Casson-Walker invariant of the 2-fold cyclic branched cover of an oriented link in S^3 in terms of its Jones polynomial and its signature, under the assumption that the 2-fold branched cover is a rational homology 3-sphere. Using elementary principles, we provide a similar calculation for the general case. In addition, we calculate the LMO invariant of the p-fold branched cover of twisted knots in S^3 in terms of the Kontsevich integral of the knot.'],
73
+ 'cite_N': ['@cite_16', '@cite_26'],
74
+ 'mid': ['1481005306', '1641082372']},
75
+ 'related_work': 'Two other generalizations that can be considered are invariants of graphs in 3-manifolds, and invariants associated to other flat connections @cite_16 . We will analyze these in future work. Among other things, there should be a general relation between flat bundles and links in 3-manifolds on the one hand and finite covers and branched covers on the other hand @cite_26 .'}
76
+
77
+ ### Data Fields
78
+
79
+ {`abstract`: text of paper abstract \
80
+ `aid`: arxiv id \
81
+ `mid`: microsoft academic graph id \
82
+ `ref_abstract`: \
83
+ { \
84
+ `abstract`: text of reference paper (cite_N) abstract \
85
+ `cite_N`: special cite symbol, \
86
+ `mid`: reference paper's (cite_N) microsoft academic graph id \
87
+ }, \
88
+ `related_work`: text of paper related work \
89
+ }
90
+
91
+ ### Data Splits
92
+
93
+ The data is split into a training, validation and test.
94
+
95
+ | Tain | Valid | Test |
96
+ | ------ | ----- | ---- |
97
+ | 30369 | 5066 | 5093 |
98
+
99
+
100
+ ## Dataset Creation
101
+
102
+ ### Curation Rationale
103
+
104
+ [More Information Needed]
105
+
106
+ ### Source Data
107
+
108
+ #### Initial Data Collection and Normalization
109
+
110
+ [More Information Needed]
111
+
112
+ #### Who are the source language producers?
113
+
114
+ [More Information Needed]
115
+
116
+ ### Annotations
117
+
118
+ #### Annotation process
119
+
120
+ [More Information Needed]
121
+
122
+ #### Who are the annotators?
123
+
124
+ [More Information Needed]
125
+
126
+ ### Personal and Sensitive Information
127
+
128
+ [More Information Needed]
129
+
130
+ ## Considerations for Using the Data
131
+
132
+ ### Social Impact of Dataset
133
+
134
+ [More Information Needed]
135
+
136
+ ### Discussion of Biases
137
+
138
+ [More Information Needed]
139
+
140
+ ### Other Known Limitations
141
+
142
+ [More Information Needed]
143
+
144
+ ## Additional Information
145
+
146
+ ### Dataset Curators
147
+
148
+ [More Information Needed]
149
+
150
+ ### Licensing Information
151
+
152
+ [More Information Needed]
153
+
154
+ ### Citation Information
155
+
156
+ [More Information Needed]
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "\nMulti-XScience,a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing therelated-work section of a paper based on itsabstract and the articles it references.\n", "citation": "\n@article{lu2020multi,\n title={Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles},\n author={Lu, Yao and Dong, Yue and Charlin, Laurent},\n journal={arXiv preprint arXiv:2010.14235},\n year={2020}\n}\n", "homepage": "https://github.com/yaolu/Multi-XScience", "license": "", "features": {"aid": {"dtype": "string", "id": null, "_type": "Value"}, "mid": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}, "related_work": {"dtype": "string", "id": null, "_type": "Value"}, "ref_abstract": {"feature": {"cite_N": {"dtype": "string", "id": null, "_type": "Value"}, "mid": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"dtype": "string", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "multi_x_science_sum", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 169364465, "num_examples": 30369, "dataset_name": "multi_x_science_sum"}, "test": {"name": "test", "num_bytes": 27965523, "num_examples": 5093, "dataset_name": "multi_x_science_sum"}, "validation": {"name": "validation", "num_bytes": 28168498, "num_examples": 5066, "dataset_name": "multi_x_science_sum"}}, "download_checksums": {"https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/train.json.gz": {"num_bytes": 46052652, "checksum": "447590bb3580b489fe388ccaf563b771ce310d4054b188e4d4055916653ce915"}, "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/test.json.gz": {"num_bytes": 7601038, "checksum": "40b08749cc676c28b44e9c328dc3befa659eb2a752344e9388918e47efde3444"}, "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/val.json.gz": {"num_bytes": 7675614, "checksum": "fc5a84edad99d9d9fe6e71567b1c198f410e34a3b1e71a56e73b77b930258a8a"}}, "download_size": 61329304, "post_processing_size": null, "dataset_size": 225498486, "size_in_bytes": 286827790}}
dummy/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2975dc6fef12846296d8841a2f8600958f6f619c12bd72eddcd5396280c0a3b4
3
+ size 1528
multi_x_science_sum.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Multi-XScience Dataset."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import json
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """
27
+ @article{lu2020multi,
28
+ title={Multi-XScience: A Large-scale Dataset for Extreme Multi-document Summarization of Scientific Articles},
29
+ author={Lu, Yao and Dong, Yue and Charlin, Laurent},
30
+ journal={arXiv preprint arXiv:2010.14235},
31
+ year={2020}
32
+ }
33
+ """
34
+
35
+ _DESCRIPTION = """
36
+ Multi-XScience, a large-scale multi-document summarization dataset created from scientific articles. Multi-XScience introduces a challenging multi-document summarization task: writing the related-work section of a paper based on its abstract and the articles it references.
37
+ """
38
+
39
+ _URL_TRAIN = "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/train.json.gz"
40
+ _URL_TEST = "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/test.json.gz"
41
+ _URL_VAL = "https://raw.githubusercontent.com/yaolu/Multi-XScience/master/data/val.json.gz"
42
+
43
+
44
+ class MultiXScienceSum(datasets.GeneratorBasedBuilder):
45
+ """"Multi-XScience Dataset."""
46
+
47
+ VERSION = datasets.Version("1.1.0")
48
+
49
+ def _info(selif):
50
+ return datasets.DatasetInfo(
51
+ description=_DESCRIPTION,
52
+ features=datasets.Features(
53
+ {
54
+ "aid": datasets.Value("string"),
55
+ "mid": datasets.Value("string"),
56
+ "abstract": datasets.Value("string"),
57
+ "related_work": datasets.Value("string"),
58
+ "ref_abstract": datasets.Sequence(
59
+ {
60
+ "cite_N": datasets.Value("string"),
61
+ "mid": datasets.Value("string"),
62
+ "abstract": datasets.Value("string"),
63
+ },
64
+ ),
65
+ }
66
+ ),
67
+ supervised_keys=None,
68
+ homepage="https://github.com/yaolu/Multi-XScience",
69
+ citation=_CITATION,
70
+ )
71
+
72
+ def _split_generators(self, dl_manager):
73
+ """Returns SplitGenerators."""
74
+ train_path = dl_manager.download_and_extract(_URL_TRAIN)
75
+ test_path = dl_manager.download_and_extract(_URL_TEST)
76
+ val_path = dl_manager.download_and_extract(_URL_VAL)
77
+
78
+ return [
79
+ datasets.SplitGenerator(
80
+ name=datasets.Split.TRAIN,
81
+ gen_kwargs={"path": train_path},
82
+ ),
83
+ datasets.SplitGenerator(
84
+ name=datasets.Split.TEST,
85
+ gen_kwargs={"path": test_path},
86
+ ),
87
+ datasets.SplitGenerator(
88
+ name=datasets.Split.VALIDATION,
89
+ gen_kwargs={"path": val_path},
90
+ ),
91
+ ]
92
+
93
+ def _generate_examples(self, path=None):
94
+ """Yields examples."""
95
+ with open(path, encoding="utf-8") as f:
96
+ data = json.load(f)
97
+ f.close()
98
+
99
+ for idx, el in enumerate(data):
100
+ cite_n = list(el["ref_abstract"].keys())
101
+ cite_n_mid = [el["ref_abstract"][cite]["mid"] for cite in cite_n]
102
+ cite_n_abstract = [el["ref_abstract"][cite]["abstract"] for cite in cite_n]
103
+ tmp = {"cite_N": cite_n, "mid": cite_n_mid, "abstract": cite_n_abstract}
104
+ d = el.copy()
105
+ d["ref_abstract"] = tmp
106
+ yield idx, d